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Abstract. We classify Lévy processes according to the solution spaces of the associated
parabolic PIDEs. This classification reveals structural characteristics of the processes and is
relevant for applications such as for solving PIDEs numerically for pricing options in Lévy
models.

The classification is done via the Fourier transform, i.e. via the symbol of the process. We
define the Sobolev index of a Lévy process by a certain growth condition on the symbol. It
follows that for Lévy processes with Sobolev index α the corresponding evolution problem
has a unique weak solution in the Sobolev-Slobodeckii space Hα/2. We show that this clas-
sification applies to a wide range of processes. Examples are the Brownian motion with or
without drift, generalised hyperbolic (GH), CGMY and (semi) stable Lévy processes.

A comparison of the Sobolev index with the Blumenthal-Getoor index sheds light on the
structural implication of the classification. More precisely, we discuss the Sobolev index as
an indicator of the smoothness of the distribution and of the variation of the paths of the
process. This highlights the relation between the p-variation of the paths and the degree of
smoothing effect that stems from the distribution.

In order to illustrate the significance of the Sobolev index for option pricing, we discuss the
weak formulation of the pricing equation related to European and barrier options in Lévy
models. The analysis of the equation shows a higher regularity of the solution for higher
Sobolev indeces of the underlying driving Lévy process. Besides the theoretical evidence,
the precise regularity of the solution has an impact on the numerical schemes: The rate of
convergence of the finite element schemes depends on the regularity of the solution. This
suggests a higher rate of convergence of the numerical schemes for higher Sobolev indeces of
the underlying driving Lévy process, which is confirmed by numerical experiments for prices
of barrier options.

1. Introduction

The Feynman-Kac formula provides a fundamental link between conditional expectations and
solutions to PDEs. Under suitable regularity assumptions, a Feynman-Kac representation
relates certain conditional expectations to weak solutions of parabolic equations. In financial
mathematics this fact is used to compute option prices by solving parabolic equations.

In the context of Lévy processes, conditional expectations are linked to solutions of Partial
Integro Differential Equations (PIDEs). In (Matache, von Petersdorff, and Schwab 2004),
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(Matache, Schwab, and Wihler 2005), (Matache, Nitsche, and Schwab 2005) wavelet-Galerkin
methods for pricing European and American options have been developed. The methods have
been extended to multivariate models, see (Reich, Schwab, and Winter 2010), (Winter 2009)
and the references therein. Also standard finite element methods are efficiently used for pricing
basket options, even in high dimensional models using dimension reduction techniques, see
(Hepperger 2010) and (Hepperger 2012). (Achdou 2008) provides a calibration procedure of a
Lévy model based on PIDEs. Essential for those finite element methods is the existence and
uniqueness of a weak solution of the PIDE, related to the underlying process, in a certain
Sobolev-Slobodeckii space, see (Reich and Schwab 2010).

In other words, a relation between Lévy processes and Sobolev-Slobodeckii spaces is semi-
nal. More precisely, Lévy processes of a certain type are linked to Sobolev-Slobodeckii spaces
Hs with a certain index s > 0. This index is important since it classifies the nature of the
related evolution problems, resp. of its weak solutions. It turns out that if the symbol of the
Lévy process satisfies certain polynomial growth conditions with degree 2s, then the evolution
problem has a weak solution in the space Hs. The structural connection between certain types
of Lévy processes and Sobolev-Slobodeckii spaces is thus reflected by the index s. This leads
us to the definition the Sobolev index of the Lévy process.

It is worth mentioning that in the classical theory on weak solutions of evolution prob-
lems, existence and uniqueness of a weak solution are related to the so-called G̊arding and
continuity inequalities of the bilinear form. The bilinear form is given via the operator of the
equation. While PIDEs are classified via their operators, Lévy processes are determined by
their characteristic functions due to the famous Lévy-Khintchine formula. Various classes of
Lévy processes, as e.g. the CGMY processes, are directly defined by specifying their char-
acteristic functions. The symbol of a Lévy process is given via the exponent of the Fourier
transform of the process, resp. in terms of the cumulant generating function, see e.g. (Jacob
2001). Therefore properties of the symbol can be canonically derived for a wide range of Lévy
processes.

Crucial for connecting both approaches is Parseval’s equality that allows to express the
bilinear form associated to the infinitesimal generator via the symbol; details are provided
in Section 2, where the notation and this connection is formally shown. In Section 3 the
argument is outlined in detail.

For various classes of Lévy processes we compute the Sobolev index in Section 4. The
Brownian motion with and without drift has Sobolev index 2. We show that the generalised
hyperbolic (GH) processes, Cauchy processes, Student-t processes, and the multivariate NIG
processes have Sobolev index 1. The Sobolev index is additionally discussed for CGMY pro-
cesses, and for Lévy processes without continuous martingale part which have an absolutely
continuous Lévy measure.

The symbol of a generic α-stable Lévy process is of the form c|u|α with a positive constant
c, hence it is polynomial and the Sobolev index can be deduced in an obvious way. In Section
5, we will shed light on the Sobolev index for the wider class of α-semi-stable Lévy processes.

Section 6 is dedicated to the examination of the Sobolev index in connection to the
Blumenthal-Getoor index. For Lévy processes that have a Sobolev index smaller than 2,
we derive that the Blumenthal-Getoor index is bigger or equal to the Sobolev index. Thereby
a link is established between path properties of the process and the smoothing effect of the
related evolution problem. Moreover, in view of the Feynman-Kac representation a link to
the smoothing effect of the distribution is provided.
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The last section is devoted to applications in mathematical finance. We briefly discuss
the weak formulation of the pricing equation for European options in Lévy models. We then
concentrate on the example of barrier options where the Sobolev index has an impact on the
pricing algorithm: The analysis of the equation shows a higher regularity of the solution for
higher Sobolev indeces of the underlying driving Lévy process. This suggests a difference in the
rate of convergence of the numerical schemes which is confirmed by numerical experiments,
where we use a wavelet-Galerkin scheme to numerically evaluate the pricing equation in a
CGMY model for different values of Y .

2. The infinitesimal generator and the symbol of a Lévy process

Let L be a Lévy process with values in Rd and characteristics (b, σ, F ) with respect to a
truncation function h. Here, a measurable function h : Rd → R is called a truncation function
if h(x) = x in a neighbourhood of 0.

The distribution of the process is uniquely determined by the distribution µt := PLt for
any (for some) t > 0 and hence by the characteristic function µ̂t of Lt,

µ̂t(ξ) = E ei〈ξ,Lt〉 = etθ(iξ) . (1)

with cumulant generating function

θ(iξ) = −1

2
〈ξ, σξ〉 + i〈ξ, b〉 +

∫ (
ei〈ξ,y〉−1 − i〈ξ, h(y)〉

)
F (dy) , (2)

where we denote by 〈·, ·〉 the Euclidean scalar product in Rd. The matrix σ is a symmetric,
positive semidefinite d × d-matrix, b ∈ Rd and F is a Lévy measure i.e. a Borel measure on
Rd with

∫
(|x|2 ∧ 1)F (dx) <∞.

Furthermore we denote by G the infinitesimal generator of the process L, i.e.

G f(x) =
1

2

d∑

j,k=1

σj,k
∂2f

∂xj∂xk
(x) +

d∑

j=1

bj
∂f

∂xj
(x) (3)

+

∫

Rd

(
f(x+ y) − f(x) −

d∑

j=1

∂f

∂xj
(x)
(
h(y)

)
j

)
F (dy)

for f ∈ C2
0 (Rd). We define

A := −G .

The symbol A of the process L is defined by

A(ξ) :=
1

2
〈ξ, σ ξ〉 + i〈ξ, b〉 −

∫ (
e−i〈ξ,y〉−1 + i〈ξ, h(y)〉

)
F (dy)

= −θ(−iξ) ,
compare e.g. (Jacob 2001). We have

µ̂t(ξ) = E ei〈ξ,Lt〉 = e−tA(−ξ) . (4)

Let us further denote by S(Rd) the Schwartz space i.e. the set of smooth functions ϕ ∈
C∞(Rd,C) with

(1 + |x|m)|Dαϕ(x)| → 0 , |x| → ∞
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for every multi index α = (α1, . . . , αd) ∈ Nd
0 and every m ∈ N0, where Dα denotes the

multiple partial derivative

Dαϕ(x) :=
∂α1 · · · ∂αd

∂xα1
1 · · · ∂xαd

d

ϕ(x) .

Let us sketch a relation between the Fourier transform of the distribution, the symbol of
the process and a partial integro differential equation. Let u ∈ S(Rd) and

Ttu(x) := Ex
(
u(Lt)

)
:= E

(
u(Lt + x)

)

If the absolute value of the characteristic function µ̂ : Rd → C is bounded by a polynomial,
then Parseval’s equality yields

Ttu(x) =
1

(2π)d

∫
e−i〈ξ,x〉 µ̂t(−ξ)û(ξ) dξ .

In particular, (Tt)t≥0 is a family of pseudo differential operators Tt with symbol µ̂t(−·).
Changing the order of integration and differentiation, we obtain

G u(x) = lim
t→0

Ttu− u

t
(x) = ∂t

(
Ttu(x)

)∣∣
t=0

= − 1

(2π)d

∫
e−i〈x,ξ〉A(ξ)û(ξ) dξ ,

where û denotes the Fourier transform of u. Hence the infinitesimal generator G , which
satisfies

G u = lim
t→0

Ttu− u

t
,

compare e.g. Dynkin (1965) and Jacob (2001, Chapter 4) is a pseudo differential operator
with symbol −A resp.

Au(x) = −G u(x) =
1

(2π)d

∫
e−i〈x,ξ〉A(ξ)û(ξ) dξ .

Let us first notice that the symbol A of a Lévy process is a Borel measurable function
A : Rd → C and there exists a positive constant C > 0 such that

|A(ξ)| ≤ C
(
1 + |ξ|

)2
(for all ξ ∈ R

d) , (5)

which is well-known and standard to verify. According to the notation in (Eskin 1981), we
say that A ∈ S0

2 . More generally, we write A ∈ S0
α, if |A(ξ)| ≤ C

(
1+ |ξ|

)α
for a certain α ∈ R

and a constant C ≥ 0.
Let g ∈ S(Rd) and

v(t, x) := E
(
g(LT )

∣∣Lt = x
)
,

then

v(t, x) = E
(
g(LT−t+x)

)
=

1

(2π)d

∫
e−i〈ξ,x〉 µ̂T−t(−ξ)ĝ(ξ) dξ (6)

and hence v̂(t, ξ) = e(T−t)A(ξ) ĝ(ξ). On the other hand we have

∂tv(t, x) = ∂t
(
TT−tg(x)

)
=

1

(2π)d

∫
e−i〈x,ξ〉

(
∂s e(T−s)A(ξ)

∣∣
s=t

)
ĝ(ξ) dξ

=
1

(2π)d

∫
e−i〈x,ξ〉A(ξ)v̂(t, ξ) dξ

= −G v(t, x) .
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In other words, the function v satisfies the PIDE

∂tv(t, x) + G v(t, x) = 0 for all (t, x) ∈ (0, T ) ×R
d

v(T, x) = g(x) for all x ∈ R
d .

For V (t, x) := v(T − t, x) = E
(
g(LT )

∣∣LT−t = x
)

we accordingly have

∂tV (t, x) + AV (t, x) = 0 for all (t, x) ∈ (0, T ) ×R
d (7)

V (0, x) = g(x) for all x ∈ R
d . (8)

In this case the function v solves the PIDE in the classical sense i.e. point wise. Beyond that,
in cases where a point wise solution may fail to exist, a Feynman-Kac formula ties together
weak solutions of certain PIDEs and conditional expectations, see (Bensoussan and Lions
1982).

3. Definition of the Sobolev index

According to inequality (5), the symbol A belongs to S0
2 , we have Aû ∈ L2(Rd) ∩ L1(Rd)

for every function u ∈ S(Rd) and the Fourier inverse of Aû is well defined. Moreover an
elementary calculation shows that

1

(2π)d

∫
A(ξ)û(ξ) e−i〈x,ξ〉 dξ = Au(x) for all x ∈ R

d and all u ∈ S(Rd) . (9)

Equation (9) coincides with the definition of a pseudo differential operator A with symbol
A ∈ S0

2 . In other words, we have checked that A is indeed the symbol of the so called pseudo
differential operator (PDO) A .

Remark 3.1. Let L be a Lévy process with infinitesimal generator G. Since the PDO A = −G
is real-valued the associated symbol A satisfies

A(ξ) = A(−ξ) for all ξ ∈ R
d .

In the sequel we will work with Sobolev-Slobodeckii spaces. These are defined by

Hs(Rd) =
{
u ∈ S′(Rd)

∣∣ û ∈ L1
loc(R

d,Cd) with ‖u‖2
s <∞

}

for s ∈ R with

‖u‖2
s =

∫
|û(ξ)|2

(
1 + |ξ|

)2s
dξ ,

where S′(Rd) denotes the space of generalised functions i.e. the dual space of the Schwartz
space S(Rd).

The following assertion is taken from (Eskin 1981, Lemma 4.4). To keep our presentation
self contained we include the short but crucial proof.

Lemma 3.2. Let A ∈ S0
α with PDO A . Then there exists a constant C ≥ 0, such that

‖Au‖s−α ≤ C‖u‖s for all u ∈ S(Rd)

for every s ∈ R. Furthermore the operator A : S(Rd) → C∞(Rd,C) has a unique linear and
continuous extension

A : Hs(Rd) → Hs−α(Rd) .
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Proof. From the definition of the norm and since A ∈ S0
α, we conclude

‖Au‖2
s−α =

∫
(1 + |ξ|)2(s−α)|A(ξ)û(ξ)|2 dξ

≤ C

∫
(1 + |ξ|)2s|û(ξ)|2 dξ

= C‖u‖2
s .

Obviously Au ∈ C∞ holds for every u ∈ S(Rd) and since S(Rd) is dense in Hs(Rd) there
exists a unique linear and continuous extension A : Hs(Rd) → Hs−α(Rd). �

For each s ∈ R the dual space (Hs(Rd))∗ of the Sobolev-Slobodeckii space Hs(Rd) is iso-
morphic to H−s(Rd), compare (Eskin 1981, S. 62, 63). Together with Lemma 3.2 this leads
to

Proposition 3.3. If A is a PDO with symbol A ∈ S0
α, then

A : Hs(Rd) −→
(
Hs(Rd)

)∗

is continuous for s = α/2 and the associated bilinear form a : Hs(Rd)×Hs(Rd) → C defined
by

a(u, v) := (Au)(v)

is continuous on Hs(Rd) i.e. there exists a constant c > 0 with
∣∣a(u, v)

∣∣ ≤ c‖u‖s‖v‖s for all u, v ∈ Hs(Rd) .

Let us now observe that for a PDO A with symbol A ∈ S0
α and bilinear form a we have

a(u, v) =

∫
(Au)(x)v(x) dx =

∫
A(ξ)û(ξ)v̂(ξ) dξ (10)

for every u, v ∈ S(Rd) by Parseval’s identity. Since the bilinear form is expressed in terms of
the symbol, the coercivity and the G̊arding inequality translate to properties of the symbol.
We will study coercivity and G̊arding inequality with respect to Sobolev-Slobodeckii spaces.

Let A ∈ S0
α and assume the existence of a positive constant c1 with

ℜ(A(ξ)) ≥ c1(1 + |ξ|)α for all ξ ∈ R
d . (11)

Then for any u ∈ S(Rd)

ℜ
(
a(u, u)

)
=

∫
ℜ
(
A(ξ)

)
|û(ξ)|2 dξ ≥ c1

∫
(1 + |ξ|)α|û(ξ)|2 dξ = c1‖u‖2

α/2 .

With the density of S(Rd) in Hα/2(Rd), the coercivity of the bilinear form a with respect

to the Hilbert space Hα/2(Rd) follows. Hence, if the symbol A ∈ S0
α of a Lévy process L

satisfies the coercivity condition (11), the infinitesimal operator of L is elliptic. Moreover
the corresponding parabolic equation has a unique solution in the Sobolev-Slobodeckii space
Hα/2(Rd), which will be discussed in detail in Theorem 3.8.

Let us point out that in contrast to the usual assumptions on a symbol, compare e.g.
estimate (B.2) in (Jacob 2005), we do not require any order of differentiability of the symbol.
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It is well known that the natural domain of the pseudo differential operator A is the ψ-Bessel
potential space

Hψ,2
p (Rd) =

{
u ∈ L2(Rd)

∣∣∣∣
∫

Rd

(
1 + ψ(ξ)

)2|û(ξ)|2 dξ <∞
}

for ψ(ξ) := θ(iξ) = −A(−ξ), that is studied in detail in (Farkas, Jacob, and Schilling 2001).
We are equally interested in the ellipticity of the operator, hence we investigate also the
G̊arding inequality.

Notice that the real part of the symbol of a Lévy process is nonnegative,

ℜ
(
A(ξ)

)
= 〈ξ, σξ〉 −

∫ (
cos(〈x, ξ〉) − 1

)
F (dy) ≥ 0. (12)

It is straightforward to verify that the space Hℜ(A) := C∞
0 (Rd)‖·‖ℜ(A) , that is the completion

of C∞
0 (Rd,R) with respect to the norm ‖ · ‖ℜ(A) given by

‖u‖ℜ(A) :=

∫

Rd

(
1 + ℜ

(
A(ξ)

))
|û(ξ)|2 dξ,

is a Hilbert space. Moreover, Hℜ(A) →֒ L2(Rd) →֒
(
Hℜ(A)

)∗
is a Gelfand triplet, where(

Hℜ(A)
)∗

denotes the dual space of Hℜ(A). For u ∈ C∞
0 (Rd,R) it follows

a(u, u) =

∫

Rd

A(ξ)|û(ξ)|2 dξ =

∫

Rd

ℜ
(
A(ξ)

)
|û(ξ)|2 dξ = ‖u‖2

ℜ(A) − ‖u‖2
L2 .

If we assume
∣∣ℑ
(
A(ξ)

)∣∣ ≤ c
(
1 + ℜ

(
A(ξ)

))
for all ξ ∈ R

d (13)

with some positive constant c ≥ 0, then we obtain for u, v ∈ C∞
0 (Rd,R)

|a(u, v)| =

∣∣∣∣∣∣

∫

Rd

A(ξ)û(ξ)v̂(ξ) dξ

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫

Rd

ℜ
(
A(ξ)

)
û(ξ)v̂(ξ) dξ

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

Rd

ℑ
(
A(ξ)

)
û(ξ)v̂(ξ) dξ

∣∣∣∣∣∣

≤ (1 + c)

∫

Rd

∣∣(1 + ℜ
(
A(ξ)

))∣∣
∣∣∣û(ξ)v̂(ξ)

∣∣∣ dξ

≤ (1 + c)‖u‖ℜ(A)‖v‖ℜ(A).

From the classical result on existence and uniqueness of solutions of parabolic differential
equations, compare e.g. (Wloka 1987), we obtain the following result.

Theorem 3.4. Let A be the symbol of the Lévy process L. Assume (13). Then, the bilinear

form a is continuous w.r.t. Hℜ(A) and satisfies a G̊arding inequality w.r.t. Hℜ(A), L2(Rd). In
particular, the PIDE

u̇+ Au = f

u(0) = g
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with f ∈ L2
(
0, T ;

(
Hℜ(A)(Rd)

)∗)
and initial condition g ∈ L2(Rd) has a unique solution

u ∈W 1
(
0, T ;Hℜ(A), L2(Rd)

)
.

For a given Gelfand triplet V →֒ H →֒ V ∗, the space W 1
(
0, T ;V,H

)
consists of those

functions u ∈ L2
(
0, T ;V

)
that have a derivative ∂tu with respect to time in a distributional

sense that belongs to the space L2
(
0, T ;V ∗

)
. For a Hilbert space H, the space L2

(
0, T ;H

)

denotes the space of functions u : [0, T ] → H, that are weakly measurable and that satisfy∫ T
0 ‖u(t)‖2

H dt < ∞. For the definition of weak measurability and for a detailed introduction

of the space W 1
(
0, T ;V,H

)
that relies on the Bochner integral, we refer to the book of (Wloka

1987).

In the following, we focus on the case that the space Hℜ(A) is a Sobolev-Slobodeckii space
Hs(Rd), i.e. to the case that the function ℜ(A) in the definition of the space Hℜ(A) can
be replaced by a polynomial |ξ|α with α ∈ (0, 1]. One major advantage of these more con-
crete spaces is that the index of a Sobolev-Slobodeckii space indicates a certain degree of
smoothness. This leads us to define the Sobolev index of a PDO resp. of a Lévy process.

Definition 3.5. Let A be a PDO with symbol A. We say α ∈ (0, 2] is the Sobolev index of
the symbol A, if for all ξ ∈ Rd

∣∣A(ξ)
∣∣ ≤ C1

(
1 + |ξ|2

)α/2
(Continuity condition) and

ℜ
(
A(ξ)

)
≥ C2|ξ|α − C3

(
1 + |ξ|2

)β/2
(G̊arding condition)

for some 0 ≤ β < α and constants C1, C3 ≥ 0 and C2 > 0.
If L is a Lévy process with symbol A and Sobolev index α, we call α the Sobolev index of

the Lévy process L.

Let us notice that the G̊arding condition is an assumption on the asymptotic behaviour
of the real part of the symbol for large values of ξ. In case of continuity of ξ → A(ξ), it is
equivalent to the existence of a number N > 0, such that

ℜ
(
A(ξ)

)
≥ C2|ξ|α for all |ξ| > N .

Not every Lévy process has a Sobolev index, compare Example 4.8. But for important
classes of Lévy processes we will show its existence in Section 4 and 5.

Proposition 3.6. If the Lévy process has Sobolev index α > 0, then for every t > 0, the
measure µt = PLt has a smooth and bounded density w.r.t. the Lebesgue measure.

Proof. The Fourier transform of the measure µt is given by µ̂t(ξ) = e−tA(−ξ) and

|µ̂t(ξ)| = e−tℜ(A(−ξ)) ≤ e−C2t|ξ|α+C3t(1+|ξ|2)
β/2

with C2 > 0, C3 ≥ 0 and 0 ≤ β < α by assumption. This shows that the term |µ̂t(ξ)| decays
exponentially fast for |ξ| → ∞. Together with the continuity of ξ 7→ ℜ (A(ξ)) finiteness of the
moments

∫
Rd |ξ|n |µ̂t(ξ)| dξ <∞ for every n ∈ N follows. The assertion now follows from Sato

(1999, Proposition 28.1). �

Proposition 3.6 shows that the existence of a Sobolev index indicates the smoothness of the
distribution of the process. Together with Proposition 6.6, the assertion establishes ties be-
tween the smoothness of the distribution and path properties of the process, see the comments
below Remark 6.7.
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Before proving that the G̊arding condition on the symbol entails a G̊arding inequality of the
associated bilinear form, we derive an elementary inequality:

For C1 > 0, C2 ≥ 0, 0 ≤ β < α and 0 < C3 < C1 there exits a constant C4 > 0 such that

C1x
α − C2x

β ≥ C3x
α − C4 for all x ≥ 0 . (14)

To show inequality (14), it is enough to realize that for given constants C1, C2, C3, α and β

as above, the point x0 =
(

βC2

α(C1−C3)

)1/(α−β)
is a global minimum of the function f(x) :=

(C1 − C3)x
α − C2x

β on R≥0.

Lemma 3.7. Let A ∈ S0
α. If there exist constants C2 > 0, C3 ≥ 0 and 0 ≤ β < α with

ℜ(A(ξ)) ≥ C2|ξ|α − C3(1 + |ξ|2)β/2 (ξ ∈ R
d) ,

then the corresponding bilinear form satisfies a G̊arding inequality with respect to Hα/2(Rd) →֒
L2(Rd), i.e. there exist constants c2 > 0 and c3 ≥ 0 with

ℜ
(
a(u, u)

)
≥ c2‖u‖2

α/2 − c3‖u‖2
L2 .

Proof. For u ∈ S(Rd) we have

ℜ
(
a(u, u)

)
≥
∫ (

C2|ξ|2α − C3(1 + |ξ|2)β
)
|û(ξ)|2 dξ .

Furthermore we have (1 + |x|2)β ≤ 2β(1 + |x|2β), since for f(x) = (1 + |x|2β) and g(x) =
(1 + |x|2)β we get

2βf(x)

g(x)
=

2β

(1 + |x|2)β +

(
2|x|2
1 + x

)β
.

The first summand is bigger or equal to 1 if x ≤ 1, whereas the second summand is bigger or
equal to 1 if x ≥ 1. As both summands are positive for x ≥ 0, we have 2βf(x) ≥ g(x) for all
x ≥ 0. Together with inequality (14) this yields

C2|ξ|2α − C3(1 + |ξ|2)β ≥ C2|ξ|2α − C ′
3(1 + |ξ|2β) ≥ c2(1 + |ξ|)2α − c3

with a strictly positive positive constant c2 and C ′
3, c3 ≥ 0, which yields the result.

�

As argued to conclude Theorem 3.4, from the classical result on existence and uniqueness
of solutions of parabolic differential equations, we obtain the following result.

Theorem 3.8. Let A be a PDO with symbol A and Sobolev index α for some α > 0. Then
the parabolic equation

∂tu+ Au =f

u(0) =g ,
(15)

for f ∈ L2
(
0, T ;H−α/2(Rd)

)
and g ∈ L2(Rd) has a unique weak solution u in the space

W 1
(
0, T ;Hα/2(Rd), L2(Rd)

)
.

Moreover the solution u depends continuously on the data g and f . The proof of the classical
theorem is based on a so-called Galerkin-approximation that yields a numerical scheme to
calculate the solution approximately, namely a finite element scheme, see e.g. (Zeidler 1990,
Theorem 23.A).



10 K. GLAU

In light of Theorem 3.8, the Sobolev index appears as a measure of the degree of the
smoothing effect of the related evolution problem. Under appropriate additional assump-
tions, a Feynman-Kac formula for weak solutions yields a stochastic representation. Thus,
the Sobolev index represents a measure for the smoothing effect of the distribution of the
Lévy process.

4. Sobolev indices of Lévy processes

Let us observe that for two Lévy processes Li with symbol Ai and Sobolev index αi for
i = 1, 2, the sum L := L1 + L2 is a Lévy process with symbol given by A := A1 + A2, and
obviously the process has a Sobolev index that equals max(α1, α2).

Example 4.1 (Lévy process with Brownian part). Rd-valued Lévy processes L with charac-
teristics (b, σ, F ) with a positive definite matrix σ have Sobolev index 2.

Proof. Let us observe that

ℜ
(
A(ξ)

)
=

1

2
〈ξ, σξ〉 +

∫ (
1 − cos

(
〈ξ, h(y)〉

))
F (dy) ≥ 1

2
〈ξ, σξ〉 .

Since the matrix σ is symmetric and positive definite σ|ξ|2 ≤ 〈ξ, σ ξ〉 for all ξ ∈ Rd, where
0 < σ is the smallest eigenvalue of the matrix σ. As a consequence we have σ|ξ|2 ≤ ℜ

(
A(ξ)

)
,

i.e. the G̊arding condition. Continuity follows immediately from inequality (5). �

Example 4.2. (Multivariate NIG-processes) Let L be an Rd-valued NIG-process, i.e.

L1 = (L1
1, . . . , L

d
1) ∼ NIGd(α, β, δ, µ,∆),

with parameters α, δ ∈ R>0, β, µ ∈ Rd and a symmetric positive definite matrix ∆ ∈ Rd×d

with α2 > 〈β,∆β〉. Then the characteristic function of L1 in u ∈ Rd is given by

Eei〈u,L1〉= exp
(
i〈u, µ〉 + δ

(√
α2 − 〈β,∆β〉 −

√
α2 − 〈β + iu,∆(β + iu)〉

))
,

where by 〈·, ·〉 we denote the product 〈z, z′〉 =
∑d

j=1 zjz
′
j for z ∈ Cd. Note that this is not

the Hermitian scalar product. In (Barndorff-Nielsen 1977) multivariate NIG-distributions are
derived as a subclass of multivariate GH-distributions via a mean variance mixture. We verify
that Rd-valued NIG-processes have Sobolev index 1.

Proof. Similar to the calculations in (Eberlein, Glau, and Papapantoleon 2010, Appendix B)
for real-valued NIG-processes,

z :=α2 − 〈β − iu,∆(β − iu)〉
=α2 − 〈β,∆β〉 + 〈u,∆u〉 + i〈β,∆u〉 + i〈u,∆β〉

and
√
z =

√
1
2(|z| + ℜ(z)) + i ℑ(z)

|ℑ(z)|

√
1
2(|z| − ℜ(z)) it follows |z| ≥ α2 − 〈β,∆β〉+ 〈u,∆u〉 > 0

and

ℜ
(
A(u)

)
= − δ

√
α2 − 〈β,∆β〉 + δℜ

(√
z
)

=
δ√
2

√
|z| + ℜ(z) − δ

√
α2 − 〈β,∆β〉

≥ δ
√
α2 − 〈β,∆β〉 + 〈u,∆u〉 − δ

√
α2 − 〈β,∆β〉

≥ δ
√
λmin|u| − δ

√
α2 − 〈β,∆β〉 ,
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where λmin denotes the smallest eigenvalue of the matrix ∆. Analogously it follows that
|ℜ(u)| ≤ C1(1 + |u|) and |ℑ(u)| ≤ C2(1 + |u|) with positive constants C1, C2, which yields
|A(u)| ≤ C(1 + |u|) with a positive constant C. �

Example 4.3 (Cauchy processes). Let L be a Cauchy process with values in Rd, then the
distribution µ := PL1 has the Lebesgue density

f(x) = c
Γ((d+ 1)/2)

π(d+1)/2

(
|x− γ|2 + c2

)−(d+1)/2

where µ ∈ Rd and c > 0, and its characteristic function is given in

µ̂(u) = e−c|u|+i〈γ,u〉 ,

see (Sato 1999, Example 2.12). It follows immediately that the process has Sobolev index 1.

Example 4.4 (Student-t processes). Let L be a Lévy process such that the distribution of L1

is student-t with parameters µ ∈ R, f > 0 and δ > 0 i.e.

PL1(dx) =
Γ
(
(f + 1)/2

)
√
πδ2 Γ(f/2)

(
1 +

x− µ

δ2

)−(f+1)/2
.

This generalisation of the student-t distribution is studied in (Eberlein and Hammerstein
2004), where it appears as limit of GH distributions for parameters α, β ↓ 0 with negative λ.

We show that L has Sobolev index 1.

Proof. The characteristic function µ̂ of the student-t distribution reads as follows

µ̂(u) =

(
f

4

)f/4 2K−f/4

(√
f |u|

)

Γ
(
f/2

) |u|f/4 eiµu .

with δ := f/4 and c := log
{
(f/4)f/4/Γ(f/2)

}
, compare (Eberlein and Hammerstein 2004).

We obtain the following representation of the associated symbol,

A(u) = −c− log
{
K−δ

(
2
√
δ|u|

)}
− log

{
|u|2δ

}
+ iµu . (16)

Since the mapping u 7→ A(u) is continuous, it is enough to verify the continuity and G̊arding
inequality for a function that is asymptotically equivalent to A. To this aim we insert the
asymptotic expansion of the Bessel function Kλ, see (Abramowitz and Stegun 1964, equation
(9.7.2)).

Kλ(z) ∼
√

π

2z
e−z

{
1 +

µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2

+
(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ · · ·

}

for | arg z| < 3
2π and |z| → ∞ with µ = 4λ2 with the usual notation f(x) ∼ g(x) for |x| → ∞

if f(x)
g(x) → 1 for |x| → ∞.

In particular

Kλ(z) ∼
√

π

2z
e−z =: g(z) for z real and z → ∞
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and Kλ(z) → 0 as well as g(z) → 0 for z → ∞. It follows

log
(
Kλ(z)

)

log
(
g(z)

) ∼ g′(z)

K ′
λ(z)

with K ′
λ(z) =

λ

z
Kλ(z) −Kλ+1(z) ,

compare p. 79 equation (4) in (Watson 1922). We conclude

log
(
K−δ(z)

)

log
(
g(z)

) ∼ −g(z) − 1
2zg(z)

−δ
z K−δ(z) −K−δ+1(z)

∼ g(z)

K−δ(z)
∼ 1 .

Therefore

log
{
K−δ

(
2
√
δ|u|

)}
∼ log

{√
π

4
√
δ|u|

}
− 2

√
δ|u| + log

{
1 +

∣∣∣∣O
(

1

|u|

)∣∣∣∣
}

(17)

for |u| → ∞, where O denotes Landau’s symbol, i.e. we write f(x) = O
(
g(x)

)
for |x| → ∞ if

there exists constants M,N s.t. |f(x)|
|g(x)| ≤M for all |x| > N . Inserting equation (17) in equation

(16) we obtain for the real part of the symbol

ℜ
(
A(u)

)
∼ −c− log

{√
π

4
√
δ|u|

}
+ 2

√
δ|u|

− log

{
1 +

∣∣∣∣O
(

1

|u|

)∣∣∣∣
}
− 2δ log |u| .

From the boundedness of the term log
{

1 +
∣∣∣O
(

1
|u|

)∣∣∣
}

for |u| → ∞ we further get

ℜ
(
A(u)

)
∼ 2

√
δ|u| −

(
1 + 2δ

)
log |u|

≥ 2
√
δ|u| −

(
1 + 2δ

)√
|u| ,

since | log |u|| ≤
√
|u|. This shows the G̊arding-condition and moreover that

∣∣ℜ
(
A(u)

)∣∣ ≤ c|u|
for some constant c ≥ 0. Furthermore the imaginary part equals ℑ

(
A(u)

)
= µu, hence the

continuity condition is also satisfied. �

4.1. Sobolev index for Lévy processes with absolutely continuous Lévy measure.

In this subsection, we study the Sobolev index for real-valued Lévy processes without Brown-
ian part whose Lévy measure has a Lebesgue density. If the process has no Brownian part, the
G̊arding condition only depends on the real part of the integral

∫ (
e−iux−1 + ih(x)u

)
F (dx),

which translates to properties of the symmetric part of the Lévy measure.
Let A be the symbol of a real-valued Lévy process that is a special semimartingale L

with operator A . Let (b, 0, F ) be the characteristic triplet of L w.r.t. h(x) = x. Furthermore
assume F (dx) = f(x) dx for the Lévy measure F . We denote by fs the symmetric and by
fas the antisymmetric part of the density function f , i.e. fs(x) = 1

2

(
f(x) + f(−x)

)
and

f(x) = fs(x) + fas(x) for every x ∈ R.
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For every u ∈ R we define

Afs(u) := −
∫ (

e−iux−1 + iux
)
fs(x) dx = −

∫
(cos(ux) − 1) fs(x) dx,

Afas(u) := −
∫ (

e−iux−1 + iux
)
fas(x) dx = i

∫
(sin(ux) − ux) fas(x) dx,

Af (u) := −
∫ (

e−iux−1 + iux
)
f(x) dx = Afs(u) +Afas(u).

Note the following equalities,

ℜ(Af ) = Afs , iℑ(Af ) = Afas , (18)

ℜ
(
A(u)

)
=

1

2
〈u, σu〉 +Afs(u) , (19)

ℑ
(
A(u)

)
= 〈u, b〉 − iAfas(u) = 〈u, b〉 +

∫ (
sin(ux) − ux

)
fas(x) dx . (20)

Let us further notice the following elementary assertion.

Lemma 4.5. If F is a nonnegative measure, absolutely continuous with respect to the Lebesgue
measure, it has a nonnegative density f ≥ 0 and |fas| ≤ fs.

Proof. If F (dx) = f(x) dx with a nonnegative measure F , then F (dx) = |f(x)|dx hence w.l.g.
f(x) ≥ 0.

Thus we have fs ≥ 0, since otherwise there would exist a number y ∈ R with fs(y) < 0
and fs(−y) = fs(y) < 0. However, since fas(y) ≤ 0 or fas(−y) ≤ 0 we would get f(y) < 0 or
f(−y) < 0 i.e. a contradiction.

Furthermore we have |fas| ≤ fs, since otherwise there would exist a number y ∈ R with
−fas(y) > fs(y) i.e. f(y) < 0 or fas(y) > fs(y), from where we would get f(−y) < 0. �

In the following proposition we derive the Sobolev index for Lévy processes without Brow-
nian part from the behaviour of the Lévy measure F around the origin. It uses a rather
technical lemma that is provided in appendix A.

Proposition 4.6. Let L be a real-valued Lévy process and a special semimartingale with
characteristic triplet (b, 0, F ) with respect to the truncation function h(x) = x.

Let

fs(x) = C
|x|1+Y + g(x) with g(x) = O

(
1

|x|1+Y −δ

)
for x→ 0 (21)

with 0 < δ. In the following cases, the Lévy process L has Sobolev index Y .

a) Let 0 < Y < 1 and

fas(x) = O

(
1

|x|α
)

for x→ 0

with α ≤ 1 + Y ,
∫ ∣∣xfas(x)

∣∣ dx <∞, and moreover b =
∫
xF (dx).

b) Let Y = 1 and

fas(x) = O

(
1

|x|α
)

for x→ 0

with α < 1 + Y = 2.
c) Let 1 < Y < 2.
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Proof. In each of the three cases, according to part b) of Lemma A.1, the G̊arding condition
follows directly from

ℜ (A(u)) = ℜ
(
Af (u)

)
= ℜ

(
Afs(u)

)
≥ C|u|Y − C1

(
1 + |u|Y ′

)

with C > 0 and C1 ≥ 0 and 0 < Y ′ < Y .
Splitting A in its real and its imaginary part, assertion a) and d) of Lemma A.1 yield the

continuity condition in case a) with index Y , since the assumption fas(x) = O
(

1
|x|α

)
for some

α ∈ (0, 1 + Y ] implies fas(x) = O
(

1
|x|1+Y

)
.

In order to verify the continuity conditions for b) and c), we first notice that
∣∣A(u)

∣∣ ≤
∣∣∣Afs(u)

∣∣∣+
∣∣∣ℑ
(
Af (u)

)∣∣∣+ |b||u| ≤ C2

(
1 + |u|Y

)
+
∣∣∣Afas(u)

∣∣∣+ |b||u|

follows from Lemma A.1 a).

Concerning case b), we notice that the assumption on fas implies fas(x) = O
(

1
|x|1+Y ′

)

with some 0 < Y ′ < 1. Lemma A.1 c) yields
∣∣Afas(u)

∣∣ ≤ C3 (1 + |u|). Together with Lemma
A.1 a) this yields

∣∣A(u)
∣∣ ≤ C2 (1 + |u|) + C ′

2

(
1 + |u|1−δ

)
+ C3 (1 + |u|) + |b||u| ≤ C (1 + |u|)

with nonnegative constants C2, C
′
2, C3 and C. In other words we have shown the continuity

condition for case b).
Finally, to verify the continuity condition for 1 < Y < 2, let us notice that from Lemma

4.5 we know |fas| ≤ fs so that

|fas(x)| = O

(
1

|x|1+Y
)

for |x| → 0. Due to Lemma A.1 c) we have
∣∣Afas(u)

∣∣ ≤ C3

(
1 + |u|Y

)
and altogether we obtain

∣∣A(u)
∣∣ ≤ C2

(
1 + |u|Y

)
+ C3

(
1 + |u|Y

)
+ |b||u| ≤ C ′

(
1 + |u|Y

)
.

�

Example 4.7. Generalised Hyperbolic (GH) processes have Sobolev index 1.

Proof. The Lévy measure FGH of a GH process has a Lebesgue density FGH(dx) = fGH(x) dx
with

fGH(x) = C1
1

x2
+ C2

1

|x| + C3
1

x
+
o(|x|)
x2

with o(|x|)
|x| → 0 for |x| → 0, see Raible (2000, Proposition 2.18). Hence the symmetric part of

fGH is of the form

fGHs (x) =
C

|x|2 +O

(
1

|x|

)
for x→ 0,

and the antisymmetric part is of the form

fGHas (x) = O

(
1

|x|

)
for x→ 0.

The assertion follows from part b) of Theorem 4.6. �
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Example 4.8. A CGMY Lévy process with parameters C, G, M > 0 and Y < 2, is a Lévy
process that has no Brownian part and its Lévy measure FCGMY is given by its Lebesgue
density

fCGMY(x) =

{
C

|x|1+Y eGx for x < 0
C

|x|1+Y e−Mx for x ≥ 0 ,

compare (Carr, Geman, Madan, and Yor 2002).

(i) A CGMY Lévy process with parameters C, G, M > 0 and Y ∈ (0, 1) and characteris-
tics

(
Y (MY−1 − GY−1), 0, FCGMY ) with respect to the truncation function h(x) = x

has Sobolev index Y .
(ii) A CGMY Lévy process with parameters C, G, M > 0 and Y ∈ [1, 2) has Sobolev index

Y .

Proof. For Y ∈ (0, 1), the assertion follows immediately from the explicit formula of the
characteristic exponent of the distribution. Namely for a CGMY process L with characteristics(
0, 0, FCGMY ) w.r.t. the truncation function h(x) = x we have

log
(
E eiuL1

)
= CΓ(−Y )

{
(M − iu)Y −MY + Y (MY−1 −GY−1)iu

+ (G+ iu)Y −GY
}
,

(22)

where Γ denotes the analytic extension of the Gamma function, see (Poirot and Tankov 2006).
For Y ≥ 1 no explicit formula is available, we therefore examine the density of the Lévy

measure. The following decomposition in a symmetric and an antisymmetric part of the
density is valid for any Y ∈ (0, 2),

fCGMY
s (x) =

C

2

e−G|x| + e−M |x|

|x|1+Y =
C

|x|1+Y − C
2 − e−G|x|− e−M |x|

2|x|1+Y

=
C

|x|1+Y +O

(
1

|x|Y
)

for |x| → 0 .

Furthermore we have

∣∣fCGMY
as (x)

∣∣ =
C

2

∣∣e−G|x|− e−M |x|
∣∣

|x|1+Y = O

(
1

|x|Y
)

for |x| → 0 .

For Y ≥ 1 we obtain from Proposition 4.6 b) and c) that L has Sobolev index Y . �

We conclude this section with the following observation.

Remark 4.9. Variance gamma (VG) processes are CGMY processes with parameter Y = 0,
and they do not have a Sobolev index.

5. Sobolev index of α-semi-stable Lévy processes

Remember that for an α-semi-stable Lévy process L there exists a deterministic function
t 7→ c(t) and a > 1 such that (Lat)t≥0 coincides with

(
a1/αLt + c(t)

)
t≥0

in distribution,

compare Section 13 in (Sato 1999).
The symbol of a generic real-valued strictly α-stable Lévy process is of the form A(u) =

c|u|α with a constant c > 0, see (Sato 1999, Theorem 14.9). In this case the Lévy process
obviously has Sobolev index α.
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In this section we show that any α-semi-stable Lévy process with 1 < α ≤ 2 has Sobolev
index α. For α-semi-stable Lévy processes with 0 < α < 1 we give additional sufficient
conditions under which the processes have Sobolev index α. Additionally, it turns out that
any real-valued strictly α-stable Lévy process has Sobolev index α.

Let us give a definition of (semi) stability and α-(semi) stability of Lévy processes in terms
of the symbol of the process according to Definition 13.1, Proposition 13.5, Definition 13.16,
and Theorem 13.11 in (Sato 1999).

Definition 5.1. A Lévy process with symbol A is called (semi) stable if for any 0 < a 6= 1
(for some 0 < a 6= 1) there exists a constant b > 0 and a vector c ∈ Rd with

aA(u) = A(bu) + i〈c, u〉 for all u ∈ R
d . (23)

A Lévy process is called α-semi-stable, if it is semi-stable and if

a = bα for all a ∈ Γ (24)

with Γ :=
{
a > 0

∣∣ ∃b > 0 , c ∈ Rd s.t. (23) is satisfied with a, b and c
}
. Accordingly, a Lévy

process is called α-stable, if it is stable and if

a = bα for all a ∈ Γ = (0,∞) . (25)

If c = 0 in equality (23), the process is called strictly semi-stable, strictly stable resp. strictly
α-(semi) stable.

From Definition 13.16, Theorem 13.15 and from Theorem 14.1 in (Sato 1999) we obtain
the following remark.

Remark 5.2. Let L be an α-semi-stable Lévy process with characteristic triplet (b, σ, F ), with
σ 6= 0 or F 6≡ 0.

a) We have 0 < α ≤ 2.
b) We have α = 2 iff σ 6= 0 and F ≡ 0.

Before focusing on the Sobolev index for α-semi stable Lévy processes, we briefly discuss
the notion of (non-)degeneracy of Lévy processes.

According to Definition 24.16 and 24.18 in (Sato 1999), an Rd-valued Lévy process L is
called degenerate, if PLt is degenerate for any (or equivalently for some) t > 0, i.e.

SPLt =
{
x ∈ R

d
∣∣PLt(G) > 0 for every open subset G ∈ R

d with x ∈ G
}

is contained in some affine subspace of Rd, i.e.

SPLt ⊂ y + V

for some y ∈ Rd and some linear (d− 1)-dimensional subspace of Rd.
A Lévy process that is not degenerate is said to be nondegenerate. Note that the definition

of degeneracy implies that non-constant real-valued Lévy processes are nondegenerate. Propo-
sition 24.17 (ii) shows that an Rd-valued Lévy process is nondegenerate, if its Lévy measure
is nondegenerate or if σ(Rd) = {σx|x ∈ Rd} is not contained in a (d− 1)-dimensional linear
subspace of Rd.

From (Sato 1999, Proposition 24.20), the following relation between the Sobolev index and
α-stability can be deduced.

Proposition 5.3. Every nondegenerate α-semi-stable Lévy process satisfies the G̊arding con-
dition with index α.
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Proof. The assertion follows directly from Proposition 24.20 in (Sato 1999). �

In view of Proposition 5.3, it is enough to study the continuity condition in the sequel. The
following proposition characterises the Sobolev index for α-semi-stable Lévy processes with
α 6= 1 and for real-valued 1-stable Lévy processes.

Proposition 5.4. Let L be a nondegenerate α-semi-stable Lévy process.

a) If 0 < α < 1, then L has Sobolev index α iff L is strictly α-semi-stable.
b) If 1 < α ≤ 2, then L has Sobolev index α.
c) The symbol of a real-valued strictly α-stable Lévy process with α = 1 and Sobolev index

1 is of the form

A(u) = c|u| + iτu

with c > 0 and τ ∈ R.
d) If the process L is real-valued and α-stable with α = 1, then L has Sobolev index 1 iff

L is strictly 1-stable.

Proof. In view of Remark 5.2 the assertion is obvious for α = 2.
For 0 < α < 2 with α 6= 1, Proposition 14.9 in Sato (1999) shows that the symbol

A = − log(µ̂) is of the form

A(u) = |u|α
(
η(u) + iγα(u)

)
+ i〈cα, u〉

with cα ∈ Rd, u 7→ η(u) nonnegative, continuous on Rd \ {0} and η(bu) = η(u) for all
u ∈ Rd, and γα real-valued, continuous on Rd \ {0} with γα(bu) = γα(u) for all u ∈ Rd with

b = a1/α > 1. Basic arguments show that the mappings u 7→ η(u) and u 7→ γα(u) are bounded.
We therefore have ℜ (A(u)) = |u|αη(u), where η is bounded, and hence |ℜ (A(u))| ≤ C|u|α. In
view of Proposition 5.3 it remains to derive an adequate upper bound of the imaginary part.

For 0 < α < 2, α 6= 1 we have

ℑ
(
A(u)

)
= |u|αγα(u) + 〈cα, u〉

with the bounded function γα.
For 0 < α < 1, this shows that

∣∣ℑ
(
A(u)

)∣∣ ≤ C (1 + |u|α) iff cα = 0. According to (Sato
1999, Theorem 14.7 (i)) the latter is the case if and only if the distribution resp. the Lévy
process is strictly α-semi-stable.

For 1 < α < 2, due to
∣∣〈cα, u〉

∣∣ ≤ |cα||u| ≤ |cα|
(
1 + |u|α

)
,

we obtain
∣∣ℑ
(
A(u)

)∣∣ ≤ C (1 + |u|α) without further restrictions.
Assertion c) and d) for α = 1 are a direct consequence of Theorem 14.15, equation (14.25)

in (Sato 1999), that states that the symbol of a real-valued non-trivial (i.e. a non-constant)
1-stable Lévy process is the form

A(u) = c|u|
(

1 − iβ
2

π

u

|u| log |u|
)

+ iτu

with c > 0, β ∈ [−1, 1] and τ ∈ R. From this representation of the symbol we can read that
L is strictly 1-stable iff β = 0. The representation given in assertion c) follows as well. �
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6. Connections with the Blumenthal-Getoor index

The index β, called Blumenthal-Getoor index, quantifies the intensity of small jumps of
a Lévy process. It is defined for every Lévy process, whereas not every Lévy process has a
Sobolev index. In this section we show for real-valued Lévy processes that if they have a
Sobolev index Y < 2, then this index is bigger or equal to the Blumenthal-Getoor index.

The following definition of the Blumenthal-Getoor index is taken from Sato (1999, p. 362).

Definition 6.1. Let L be a Lévy process with characteristics (b, c, F ). Then

β := inf




α > 0

∣∣∣
∫

[−1,1]

|x|αF (dx) <∞





is called the Blumenthal-Getoor index of the process.

It is well known that the Blumenthal-Getoor index is related to path properties of the
Lévy process. Theorem 21.9 in Sato (1999) shows the following relationship between the
Blumenthal-Getoor index and the variation of the paths of the Lévy process.

Proposition 6.2. Let L be a Lévy process without Brownian part with characteristics (b, 0, F )
and Blumenthal-Getoor index β.

(a) If β < 1, then P -a.e. path of L is of bounded variation on (0, t] for every t > 0.
(b) If β > 1, then P -a.e. path of L is of unbounded variation on (0, t] for every t > 0.
(c) If β = 1, then we have the following two cases.

(c1) If
∫ 1
−1 |x|F (dx) < ∞, then P -a.e. path of L is of bounded variation on (0, t] for

every t > 0.

(c2) If
∫ 1
−1 |x|F (dx) = ∞, then P -a.e. path of L is of unbounded variation on (0, t]

for every t > 0.

In Hudson and Mason (1976) and the references therein this assertion is generalised for the
so-called p-variation. In Woerner (2007) a normed p-variation is introduced and for the time-
changed processes a relation to the Blumenthal-Getoor index is derived.

In particular, for Lévy processes L it is shown under some assumptions on the characteristic
triplet, that the normed p-variation for 0 < p < β with p 6= β − 1, exists on a finite time
interval [0, T ],

∆1−p/β
n

n−1∑

i=1

∣∣L(i+1)∆n
− Li∆n

∣∣p P−→ Vp(L) , (26)

where Vp(L) is a finite number, β is the Blumenthal-Getoor index, and for n → ∞ the
partition of the time interval [0, T ] refines uniformly, ∆n ↓ 0, see (Woerner 2007, Theorem
1) and (Woerner 2003, Corollary 1). The additional assumptions made therein, concern the
Lévy-measure, that is assumed to have a density with a certain Taylor expansion around the
origin, and a special choice of the drift.

In order to compare the Sobolev index with the Blumenthal Getoor index, we introduce
another index γ that, similar to the Blumenthal-Getoor index, quantifies the intensity of small
jumps of the process.
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Lemma 6.3. Let L be a Lévy process with characteristics (b, c, F ) and with Blumenthal-
Getoor index β. We define the index

γ := sup




α > 0

∣∣∣ lim inf
r↓0

rα−2

∫

[−r,r]

|x|2F (dx) > 0




.

We have

β ≥ γ .

Proof. For 0 < α < 2 and 0 < r < 1 we have rα−2
∫ r
−r |x|2F (dx) ≤

∫ r
−r |x|αF (dx), since

r∫

−r

|x|2rα−2F (dx) ≤
r∫

−r

|x|αF (dx) .

If

lim inf
r↓0

rα−2

r∫

−r

|x|2F (dx) > 0 ,

then there exists a constant C > 0 with
∫ r
−r |x|αF (dx) > C for all 0 < r smaller than some

ǫ > 0. Hence
∫ 1
−1 |x|αF (dx) = ∞ follows from F ({0}) = 0. This means that for every α < γ

we have α ≤ β whence γ ≤ β. �

The index γ quantifies the intensity of small jumps of the Lévy process, hence it is also a
measure for the regularity of the underlying distribution. Sato (1999, Proposition 28.3) shows
the following remark.

Remark 6.4. If we have 0 < γ < 2, then the distribution µ1 = PL1 does possess a smooth
Lebesgue density.

The rest of the section is dedicated to the relation between the index γ, the Blumenthal
Getoor-index, and the Sobolev index of a real-valued Lévy process. We therefore restrict
ourselves to Lévy processes that take values in R.

Proposition 6.5. Let L be a real-valued Lévy process with characteristic triplet (b, 0, F ). If
the index γ satisfies γ ∈ (0, 2), then the symbol A of L satisfies a G̊arding-condition for any
index α < γ.

Proof. Let us write down the real part of the symbol,

ℜ
(
A(ξ)

)
=

∫ (
1 − cos(ξy)

)
F (dy) .
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As in the proof of Sato (1999, Proposition 28.3) we further conclude
∫

(1 − cos(vy))F (dy)

= 2

∫

|v||y|≤π

sin2
(vy

2

)
F (dy) + 2

∫

|v||y|>π

sin2
(vy

2

)
F (dy)

≥ 2

∫

|v||y|≤π

2

π2
v2y2F (dy) + 2

∫

|v||y|>π

sin2
(vy

2

)
F (dy)

≥ c′
∫

|v||y|≤π

v2y2F (dy) (27)

for a positive constant c′. On the other hand, for α < γ we have

lim inf
r↓0

rα−2

∫

[−r,r]

x2F (dx) > 0 ,

hence there exists a constant c1 > 0 and ǫ > 0, such that
∫

[−r,r]

x2F (dx) ≥ c1r
2−α for every r < ǫ .

That is, for every α < γ there exists an N > 0 and a constant cc > 0 with
∫

|v||y|≤π

v2y2F (dy) ≥ cc|v|α for all vwith |v| > N .

Altogether, we have

ℜ
(
A(ξ)

)
≥ c|ξ|α1|ξ|>N ≥ c|ξ|α − c2

with c > 0 and c2 = c|N |α. �

Proposition 6.6. Let L be a real-valued Lévy process with characteristics (b, 0, F ), and s.t.
its symbol satisfies the G̊arding-condition with 0 < Y < 2. Then

1∫

−1

|x|αF (dx) = ∞ for all α < Y < 2 .

In particular the Blumenthal-Getoor index β of the process is bigger or equal to Y (β ≥ Y ).

Proof. From the assumption we know that there exist constants C1 > 0 and C2 ≥ 0 and
indexes 0 < Y ′ < Y < 2 with∫ (

1 − cos(ux)
)
F (dx) ≥ C1|u|Y − C2

(
1 + |u|Y ′

)
.

Thus for every ǫ > 0, the inequality
ǫ∫

−ǫ

(
1 − cos(ux))

)
F (dx) ≥ C1|u|Y − C2|u|Y

′ − Cǫ
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holds for Cǫ = C2 + 2F
(
(−ǫ, ǫ)c

)
. Since for every 0 < α < 2 there exists a constant C(α) > 0

with 1 − cos(y) ≤ C(α)|y|α for all y ∈ R, we are able to conclude for any fixed ǫ > 0 that

C1|u|Y − C2|u|Y
′ − Cǫ ≤

ǫ∫

−ǫ

(
1 − cos(ux)

)
F (dx) ≤ C(α)

ǫ∫

−ǫ

|ux|αF (dx)

for all u ∈ R, resp.

C1

C(α)
|u|Y−α − C2

C(α)
|u|Y ′−α − Cǫ

C(α)
|u|−α ≤

ǫ∫

−ǫ

|x|αF (dx) for all u ∈ R \ {0} .

For every ǫ > 0 the left hand side of the inequality diverges for |u| → ∞, if α < Y . Thus we
can conclude ∞ =

∫ ǫ
−ǫ |x|αF (dx) for every ǫ > 0. �

Proposition 6.6 and Proposition 3.6 together yield the following result.

Remark 6.7. The relation between both indexes, the Blumenthal-Getoor and the Sobolev
index, bridges the path properties and the distribution of the process. If the Lévy process has
a Sobolev index, its distribution is smooth. Furthermore, its paths are of unbounded variation
if the Sobolev index is bigger or equal to 1.

This relation can be studied more extensively using a certain type of Feynman-Kac formula
and results on p-variations of the process. (Woerner 2007) shows convergence in probability
of the normed p-variation (26) under appropriate conditions on the Lévy process. This can be
interpreted as a result on the intensity of oscillations of the paths of the process. On the other
hand, Feynman-Kac formulas allow us to interpret the degree of smoothness of the solution
of the PIDE as an effect that directly stems from the distribution. A numerical illustration of
the influence of the Sobolev index on the regularity of the solution in terms of experimental
convergence rates is provided in the next section.

7. Application to option pricing in Lévy models.

It is well known that option prices of several options such as European, barrier and Amer-
ican options in Lévy and also more general Markov models can be calculated solving an
associated PIDE of a type similar to (7), see e.g. (Achdou 2008).

The weak formulation of the problem and numerical experiments for the pricing equations
provided in this section highlight a prominent role of the Sobolev index in the context of
option pricing: When regarding the Sobolev index as a model parameter, on the one hand it
has an influence on the model price, and on the other hand it directly influences the order
of convergence of finite element schemes solving the related parabolic value problem. This is
the case when the regularity of the solution depends on the Sobolev index. In other words,
the effect on the convergence rate stems from the precise regularity of the solution.

We first consider PIDEs related to European option prices in Lévy models. The weak
formulation of the PIDEs for prices of European options in time-inhomogeneous Lévy models
is discussed in detail in the article (Eberlein and Glau 2011). Compared to the approach
presented in the previous sections, there the framework generalized to exponentially weighted
Sobolev-Slobodeckii spaces in order to price typical European options such as call and put
options. Moreover the generalization to time-inhomogeneous driving processes leads to time-
dependent coefficients. The notion of the Sobolev index has an obvious extension to the case
of time-inhomogeneous Lévy process when one requires continuity and the G̊arding condition
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uniformly in time. We will briefly state some results on European option prices and then
concentrate on prices of barrier options. The solutions of the corresponding boundary value
problems are non-smooth and we observe a dependence of the convergence rate on the Sobolev
index.

Assume a multivariate stock price model of the form

St = S0 eLt = ex0+Lt , for t ≥ 0 (28)

with an Rd-valued Lévy process L with characteristic triplet (b, σ, F ) w.r.t. a truncation
function h, symbol A and infinitesimal generator G = −A . For simplicity we assume the
interest rate r = 0.

We want to express the time-t-value

Πt = E
[
G(ST )

∣∣Ft] = E
[
g(LT )

∣∣Ft] = E
[
g(LT−t + x)

]∣∣∣
Lt

=: u(T − t, Lt) (29)

of a European option with payoff G(ST ) = g(log(ST )) at maturity T by a weak solution to a
parabolic equation.

Since the payoff functions written as functions on the logarithm of the stock price typically
are not square integrable exponential weights are introduced: For any function u : Rd → R

we write

uη(x) := e〈η,x〉 g(x) for all x ∈ R
d. (30)

We call L2
η(R

d) the space of functions u : Rd → R with uη ∈ L2(Rd). The weighed Sobolev-
Slobodeckii spaces are defined accordingly, for the precise definition we refer to (Eberlein and
Glau 2011).

Exponentially weighting of the spaces translates to shifting the symbol in the complex
plane, we therefore introduce the following notation,

U−η = U−η1 × · · · × U−ηd , (31)

which is defined for η = (η1, . . . , ηd) ∈ Rd by the strips U−ηj := R − i sgn(ηj)[0, |ηj |) in the

complex plane for ηj 6= 0. For ηj = 0 we define U−ηj = U0 := R.
Let us state the following set of assumptions ensuring the existence of a Sobolev index

α > 0.

(A1) Assume ∫

|x|>1

| ei〈η′,x〉 |F (dx) ds <∞ ∀η′ ∈ U−η .

(A2) There exists a constant C1 > 0 with
∣∣A(z)

∣∣ ≤ C1

(
1 + |z|

)α

for all z ∈ U−η. (Continuity condition)
(A3) There exist constants C2 > 0 and C3 ≥ 0, such that for a certain 0 ≤ β < α

ℜ
(
A(z)

)
≥ C2

(
1 + |z|

)α − C3

(
1 + |z|

)β

for all z ∈ U−η. (G̊arding condition)

From Theorem 5.3 and Theorem 6.1 in (Eberlein and Glau 2011), we get the following
theorem, where we restrict ourselves to the case of time-homogeneous Lévy processes, since
we did not discuss time-inhomogeneous processes in the previous sections.
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Theorem 7.1. If the assumptions (A1)–(A3) are satisfied, the parabolic equation

∂tu+ Au = 0

u(0) = g ,
(32)

with initial condition g ∈ L2
η(R

d) has a unique weak solution u ∈W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)
,

and the estimate

‖u‖
W 1(0,T ;H

α/2
η (Rd),L2

η(Rd))
≤ C(T ) ‖g‖L2

η(Rd)

with a constant C(T ) > 0, only depending on T , is satisfied.
The time t-value of the European option with payoff G(ST ) = g(log(ST )) at maturity T is

given by

Πt = u(T − t, LT−t), (33)

the equation holds almost surely.

It is furthermore shown that the solution u is smooth, to be more precise it is shown that
u ∈ C

(
(0, T ), Cm(Rd)

)
for every m. Hence, in this case the solution is smooth –independently

of the Sobolev index α. In our next example, pricing equations for pricing barrier options,
regularity of the solutions will actually depend on the Sobolev index.

We assume the stock price model as above, (28). We express the price of barrier options
with payoff

g(LT )1{T<τ
D
}

where τD denotes the first exit time of the process L from D via a weak solution of a PIDE.
The precise mathematical formulation of the parabolic equation is achieved by introducing

the weighted Sobolev-Slobodeckii space H̃
α/2
η (D) which is the subspace of those functions

u ∈ H
α/2
η (R) that are vanishing on Dc, the complement of the set D; for the precise definition

of H
α/2
η (R) we refer to (Glau 2010).

We cite the following theorem from (Glau 2010, Theorem V.4 and Theorem IV.9), where
again we restrict ourselves here to the case of time-homogeneous Lévy processes.

Theorem 7.2. Let the assumptions (A1)–(A3) be satisfied for an α ∈ [1, 2] and an η ∈ R

with g ∈ L2
η(R). The fair price of the barrier option at time t ∈ [0, T ] is given by Πt =

u(T − t, Lt)1t<τ
D

where

u(T − t, Lt) = E
(
g(LT )1{T<τ

t,D
}

∣∣Ft
)

with τt,D = inf{s ≥ t|Ls /∈ D }. The function u is the unique weak solution in the space

u ∈W 1
(
0, T ; H̃

α/2
η (D);L2

η(D)
)

of

∂tu+ Au = 0

u(0) = g .

In contrast to the parabolic equation (32), the parabolic equation in Theorem 7.2 is a

boundary value problem. This fact can be seen in the choice of the space H̃
α/2
η (D) of those

functions u ∈ H
α/2
η (R) that are vanishing outside of the set D.

As numerical example we consider the digital up-and-out barrier option with barrier H =
S0 eB in a single stock price model. Then, the initial function is chosen as g(x) = 1(−∞,B)(x).

Observe that gη ∈ L2 for any η > 0. We therefore fix some η > 0. Note that U−η = R− i[0, η),
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hence in order to achieve (A1) it is enough to assume E[e−ηL1 ] <∞ resp.
∫
|x|>1 e−ηx F (dx) <

∞. If assumptions (A2) and (A3) are satisfied, the time-t-value of the digital barrier option
is

Πdigi,B
t = udigi,B(T − t, Lt)1{t<τ

(−∞,B)
} ,

where udigi,B is the unique solution u ∈W 1
(
0, T ; H̃

α/2
η (−∞, B);L2

η(−∞, B)
)

of the parabolic
boundary value problem

∂tu+ Au = 0

u(0) = 1(−∞,B) .
(34)

In order to observe the effect of the Sobolev index on the price of a digital barrier option in
terms of the performance of the algorithm, we choose a CGMY model, i.e. we specify (Lt)t≥0

as a CGMY process and vary the parameter Y . For the parameters, we start with the set of
parameters, C = 0.0156, G = 0.0767, M = 7.55 and Y = 1.2996, which are taken from the
calibration in Bu (2007) on call prices on S&P 500. The data for the calibration there was
taken from Yahoo Finance at the date 1.6.2007. Then we vary the parameter Y .

As numerical procedure, we use a wavelet Galerkin scheme programmed in Matlab. The
algorithm is described in (Glau 2010). A big part of the code was developed in the working
group of Prof. Schwab at ETH for pricing European options in a CGMY model.

In Matache, von Petersdorff, and Schwab (2004, Section 5, Theorem 5.4) and in (von
Petersdorff and Schwab 2003, Section 5, Theorem 5.4) a theoretical analysis of the convergence
of the algorithm is provided. Under additional regularity assumptions, an error bound of the
error measured in the norm of HY is derived. Their analysis suggests that the L2-error
decreases faster for higher values of Y and that it decreases proportional to the degrees of
freedom. An increase of the level from l to l + 1 corresponds to a doubling of the degrees of
freedom.

In order to calculate the experimental rate of convergence, we compute the error ǫl(L2) =
‖uL(T, ·) − ul(T, ·)‖L2 in the norm of L2((−R1, log(H)) of the numerical solutions ul for
different levels l with respect to the solution uL of the solution for the highest level L = 16
instead of the unknown exact solution. The relative error is

ǫl,Lrel(L
2) :=

‖uL(T, ·) − ul(T, ·)‖L2

‖uL(T, ·)‖L2

.

We calculate ǫl,Lrel(L
2) for the levels l = 4, . . . , L− 2 with L = 16. For each level l ≤ L− 4 we

then compute the value

α(l) := log2

(
ǫl,Lrel(L

2)/ǫl+1,L
rel (L2)

)
.

Figures 1 and 2 show the result of the experimental order of convergence αl with respect
to the L2-norm for different values of Y .

Both figures indicate a dependence of the order of convergence on the Sobolev index Y .
The figures indicate that the convergence is faster for higher values of Y , as it was expected
from the fact that the solution of u is more regular for higher values of the Sobolev index.
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Figure 1. Values of αl for different values of Y and different levels l with fixed level

L = 14, maturity 0.5.
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Appendix A

The following lemma relates the behaviour of the symbol A(u) for |u| → ∞ with the
behaviour of the Lévy measure F around the origin.

Again, we use Landau’s symbol O to indicate the asymptotic behaviour; here we look at
the behaviour of a function around the origin. More precisely we write f(x) = O

(
g(x)

)
for

x→ 0 if there exist positive constants M and N such that |f(x)|
|g(x)| ≤M for all |x| < 1/N .

As generally assumed in Section 4.1, let L be a real-valued Lévy process that is a spe-
cial semimartingale with characteristic triplet (b, 0, F ) w.r.t. h(x) = x. Furthermore assume
F (dx) = f(x) dx for the Lévy measure F and we denote by fs the symmetric and by fas the
antisymmetric part of the density function f .

Lemma A.1. Let 0 < Y < 2.

a) If fs(x) = O
(

1
|x|1+Y

)
for x→ 0, then there exists a constant C ≥ 0 with

0 ≤ ℜ
(
Af (u)

)
= Afs(u) ≤ C

(
1 + |u|Y

)
for all u ∈ R .

b) If fs(x) = C
|x|1+Y + g(x) with g(x) = O

(
1

|x|1+Y −δ

)
for x → 0 with some 0 < δ and

C > 0, then there exist constants C1 > 0, C2 ≥ 0 and Y ′ ∈ (0, Y ) such that

ℜ
(
Af (u)

)
= Afs(u) ≥ C1|u|Y − C2

(
1 + |u|Y ′)

for all u ∈ R .

c) If fas(x) = O
(

1
|x|1+Y

)
for x → 0 with 0 < Y and Y 6= 1, then there exist constants

C, C1 ≥ 0 with
∣∣∣ℑ
(
Af (u)

)∣∣∣ =
∣∣∣Afas(u)

∣∣∣ ≤ C
(
1 + |u| + |u|Y

)
≤ C1

(
1 + |u|max[1,Y ]

)

for every u ∈ R.

d) Let fas(x) = O
(

1
|x|1+Y

)
for x → 0 with Y ∈ (0, 1) and assume

∫
|x|f(x) dx < ∞ i.e.

the paths of the process are a.s. of finite variation.
If L is a Lévy process with characteristic triplet (

∫
xF (dx), 0, F ) w.r.t. the trunca-

tion function h(x) = x, then there exists a constant C ≥ 0 with
∣∣∣ℑ
(
A(u)

)∣∣∣ ≤ C
(
1 + |u|Y

)
for all u ∈ R .

Proof. Proof of a): For every ǫ > 0 and arbitrary u ∈ R we have

Afs(u) =

ǫ∫

−ǫ

(1 − cos(ux)) fs(x) dx+

∫

(−ǫ,ǫ)c

(1 − cos(ux)) fs(x) dx

with

0 ≤
∫

(−ǫ,ǫ)c

(1 − cos(ux)) fs(x) dx ≤ 2

∫

(−ǫ,ǫ)c

fs(x) dx =: C(ǫ) .
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If we choose ǫ > 0 small enough, we get

ǫ∫

−ǫ

(1 − cos(ux)) fs(x) dx

≤ C1(ǫ)

ǫ∫

−ǫ

(1 − cos(ux))
1

|x|1+Y dx

= C1(ǫ)|u|Y
ǫ|u|∫

−ǫ|u|

1 − cosx

|x|1+Y dx

= 2C1(ǫ)|u|Y




1∫

0

1 − cosx

|x|1+Y dx+

ǫ|u|∫

1

1 − cosx

|x|1+Y dx




with a constant C1(ǫ) > 0 only depending on ǫ. Furthermore,

1∫

0

1 − cosx

|x|1+Y dx ≤ 1

2

1∫

0

x2

|x|1+Y dx =
1

2

1∫

0

x1−Y dx =
1

2(2 − Y )
<∞ ,

since Y < 2. The second integral is negative for ǫ|u| < 1, and for 1 < ǫ|u| we get

0 ≤
ǫ|u|∫

1

1 − cosx

|x|1+Y dx ≤
ǫ|u|∫

1

2

|x|1+Y dx =
2

Y

(
−
(
ǫ|u|
)−Y

+ 1
)
≤ 2

Y
.

So there exist ǫ > 0 and C2(ǫ) ≥ 0 with

ǫ∫

−ǫ

(1 − cos(ux)) fs(x) dx ≤ C2(ǫ)|u|Y . (35)

For an appropriate choice of ǫ we directly obtain the assertion of a).
Proof of b): The first equality of the assertion is given by (19). For every ǫ > 0 we have

Afs(u) =

ǫ∫

−ǫ

(1 − cos(ux)) fs(x) dx+

∫

(−ǫ,ǫ)c

(1 − cos(ux)) fs(x) dx .

Since (1 − cos(ux)) ≥ 0 this yields Afs(u) ≥
∫ ǫ
−ǫ (1 − cos(ux)) fs(x) dx. By inserting the

assumption on fs, we obtain for ǫ small enough

Afs(u) ≥
ǫ∫

−ǫ

(1 − cos(ux))
C

|x|1+Y dx+

ǫ∫

−ǫ

(1 − cos(ux)) g(x) dx

≥ C

ǫ∫

−ǫ

1 − cos(ux)

|x|1+Y dx−

∣∣∣∣∣∣

ǫ∫

−ǫ

(1 − cos(ux)) g(x) dx

∣∣∣∣∣∣
.
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For the first integral, a computation similar to (27) in the proof of Proposition 6.5 yields

ǫ∫

−ǫ

1 − cos(ux)

|x|1+Y dx ≥ c′
∫

|ux|≤π

x2u2

|x|1+Y dx− C1(ǫ)

= c′|u|Y
∫

|x|≤π

|x|1−Y dx− C1(ǫ) = C2|u|Y − C1(ǫ)

with the positive constants C1 and C2(ǫ) given by C1(ǫ) = 2
∫
(−ǫ,ǫ)c

1
|x|1+Y dx and C2 :=

c′
∫
|x|≤π |x|1−Y dx. In order to find an upper bound for the second integral, let us assume

ǫ < 1. Then |x|−1−Y+δ ≤ |x|−1−Y+δ′ with δ′ := min{Y/2, δ} for |x| < ǫ. Arguing along the
same lines as in the proof of equation (35) yields since δ′ < Y

0 ≤
ǫ∫

−ǫ

1 − cos(ux)

|x|1+Y−δ
dx ≤

ǫ∫

−ǫ

1 − cos(ux)

|x|1+Y−δ′
dx ≤ C(ǫ)|u|Y−δ′

for some constant C(ǫ) > 0. Fixing some appropriate ǫ > 0 we have

Afs(u) ≥ C1|u|Y − C2

(
1 + |u|Y−δ′

)

for a strictly positive constant C1, C2 ≥ 0 and 0 < δ′ < Y .
Proof of c): The first equality of the assertion is given by equation (18). For every u ∈ R

we have
∣∣Afas(u)

∣∣ ≤
∫
|ux− sin(ux)| |fas(x)|dx and if we choose ǫ > 0 small enough, Lemma

4.5 allows us to conclude

∫

(−ǫ,ǫ)c

|ux− sin(ux)| |fas(x)|dx

≤ |u|
∫

(−ǫ,ǫ)c

|x| |fas(x)|dx+

∫

(−ǫ,ǫ)c

|fas(x)|dx

≤ |u|
∫

(−ǫ,ǫ)c

|x| |fs(x)| dx+

∫

(−ǫ,ǫ)c

|fs(x)| dx

= |u|
∫

(−ǫ,ǫ)c

|x|F (dx) +

∫

(−ǫ,ǫ)c

F (dx)

=: C1(ǫ)|u| + C2(ǫ)
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with nonnegative constants C1(ǫ) and C2(ǫ). From the assumption on fas we get
ǫ∫

−ǫ

|ux− sin(ux)| |fas(x)| dx

≤ C(ǫ)

ǫ∫

−ǫ

|ux− sin(ux)| 1

|x|1+Y dx

= C(ǫ)|u|Y
ǫ|u|∫

−ǫ|u|

|x− sin(x)|
|x|1+Y dx

= 2C(ǫ)|u|Y
( 1∫

0

x− sin(x)

|x|1+Y dx+

ǫ|u|∫

1

x− sin(x)

|x|1+Y dx

)
,

where the first integral is finite since Y < 2. As before, the second integral is negative for
ǫ|u| < 1 and for 1 < ǫ|u| we have

ǫ|u|∫

1

x

|x|1+Y dx =

ǫ|u|∫

1

x−Y dx =
ǫ1−Y

1 − Y
|u|1−Y − 1

1 − Y

since Y 6= 1 and

−
ǫ|u|∫

1

sin(x)

|x|1+Y dx ≤
ǫ|u|∫

1

x−1−Y dx = −|u|−Y
Y ǫY

+
1

Y
≤ C3(ǫ)

(
1 + |u|−Y

)

with some constant C3(ǫ) > 0. Combining these estimates and fixing some ǫ > 0, we obtain
the assertion of part c).

Proof of d): Since fas is antisymmetric and
∫
|xfas(x)|dx ≤

∫
|x|f(x) dx < ∞ by Lemma

4.5, we obtain

Afas(u) = iℑ
(
Af (u)

)
= i

∫
sin(ux)fas(x) dx− iu

∫
xf(x) dx .

Furthermore since the drift is given by
∫
xf(x) dx we have

∣∣∣ℑ
(
A(u)

)∣∣∣=
∣∣∣∣
∫

sin(ux)fas(x)dx

∣∣∣∣ ≤
∫

(−ǫ,ǫ)c

∣∣fas(x)
∣∣ dx+

ǫ∫

−ǫ

∣∣ sin(ux)
∣∣∣∣fas(x)

∣∣ dx

hence by the assumption on fas we obtain

∣∣∣ℑ
(
A(u)

)∣∣∣ ≤ F
(
(−ǫ, ǫ)c

)
+ C(ǫ)

ǫ∫

−ǫ

| sin(ux)|
|x|1+Y dx

≤ C1(ǫ) + C(ǫ)|u|Y
∞∫

−∞

| sin(x)|
|x|1+Y dx

= C1(ǫ) + C2(ǫ)|u|Y



30 K. GLAU

with positive constants C(ǫ), C1(ǫ) and C2(ǫ). Choosing ǫ > 0 yields the result. �
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