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Abstract

On the basis of the Merton model for the value of a firm’s debt we discuss the problem
of stress testing the effects of credit, market and foreign exchange risk on the portfolio of a
financial institution. There is no straightforward solution to this problem since the Merton
model links only equity and firm value for a single firm, but includes neither interest rate
volatility nor foreign exchange rates.

1 Introduction

Since 1996, when the Bank for International Settlements (BIS) allowed banks to use internal
market risk models to control their risk, such models have found widespread use. They are
generally considered to be quite reliable. This is not the case, however, for credit risk models
which the BIS is still reluctant to endorse (Basel Committee on Banking Supervision, 2000).
Nevertheless, there is a huge amount of literature on credit risk models, and also a number of
quite successful vendors of software for credit portfolio management – in contrast to the situation
for literature combining the quantitative aspects of modeling market and credit risks. This is
surprising in view of the fact that there is a wide consensus in the economic literature that
market and credit risk should not be regarded separately. For our purpose, papers by Iscoe et
al. (1999) and Jarrow and Turnbull (2000) seem mainly relevant.

Iscoe et al. suggest a joint market and credit risk model on the basis of the Merton model for the
evaluation of risky debt (Merton, 1974). This model and its modifications are sometimes called
the structural approach. The Merton approach has been criticized for several reasons (see section
2.2). Mainly, its assumption of constant risk-free interest rates might seem unrealistic and was
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one of the reasons for the development of the the so-called reduced form approach which identifies
the credit spread in a certain way with a default intensity. The potential of this approach for
integrating market and credit risk in one model has been discussed by Jarrow and Turnbull
(2000). In this paper, we will rely on the Merton model, both because of its mathematical
manageability and its suasive economic interpretation.

The paper is organized as follows: In section 2 we recall the Merton model and some of the
criticisms it has attracted. In section 3 we discuss some special estimation problems which appear
when the model is applied in the form of KMV-software (http://www.kmv.com). Moreover, in
this section we briefly discuss how the Merton model can be used to stress-test equity, interest
rate and volatility shocks. Section 4 is devoted to the integration of foreign exchange risk into
the Merton model. In section 5 we recall, in the spirit of Iscoe et al. (1999), how to extend
the Merton model to several firms. And, finally, in section 6, we discuss the impact of different
dependence structures in the portfolio on its riskiness.

2 Equity as a European call option on the value of the firm

(Merton, 1974)

2.1 The mathematics behind the Merton Model

We consider an economy over the time interval [0, T ] with uncertainty represented by a proba-
bility space (Ω,F , P). The flow of information is modeled by a filtration F = {Ft ⊂ F|t ∈ [0, T ]}
which satisfies the usual conditions of being complete, increasing and right continuous (cf.
Musiela and Rutkowski, 1997, section 10.1). Corporate debt is here assumed to be a single
zero coupon bond with face value B > 0 and maturity T . Then corporate equity may be inter-
preted as a European call option written on the value of the firm with strike B. Formally we
adopt the following notations:

• St = value of the firm’s equity at time t ∈ [0, T ],

• Ft = value of the bond at time t ∈ [0, T ],

• Vt = value of the firm at time t ∈ [0, T ].

We observe that at every epoch t ∈ [0, T ] we have

Vt = St + Ft . (2.1)

At time T the value of the firm’s equity is

ST = max(VT −B, 0). (2.2)
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At maturity the bond-holders receive T

FT = min(VT , B) = B −max(B − VT , 0). (2.3a)

By definition, the firm defaults if it does not completely meet its obligations at time T , i.e., if
VT < B. In case of default the bond-holders take over the firm. Its value at this event is called
recovery. Sometimes, it is convenient to take a rather pessimistic point of view and to assume
that there is no recovery. This assumption corresponds to

FT = B 1{VT≥B}. (2.3b)

In order to derive evaluation formulas for equity and debt we assume the framework of the
well-known Black-Scholes model for option pricing. This means:

• The statistical firm value process is modeled as a geometric Brownian motion with respect
to the probability measure P by

dVt = µV Vtdt + σV VtdWt, (2.4)

where Wt, t ∈ [0, T ], is a standard Brownian motion, µV is the instantaneous expected rate
of return on the firm per time unit, and σ2

V is the instantaneous variance of the firm value
per time unit. σV is called volatility of Vt. The value V0 is constant and fixed.

• The price of a risk-less zero coupon bond which pays one currency unit for sure at time t

in the future is P (t) = e−rt where r > 0 is the instantaneous risk-less rate of interest, the
same for all the time.

In particular, this market model is arbitrage-free and complete, or mathematically speaking,
there is a unique probability measure Q which is equivalent (i.e., has the same sets of measure
0) to P, such that the discounted firm value process Vt e−rt is a martingale under Q. In this paper
Q stands for the risk neutral probability measure, and P for the physical probability measure.
Under Q, the firm value process Vt can be described as a geometric Brownian motion with initial
value V0, a drift equal to the constant interest rate of r and a volatility of σV :

dVt = rVtdt + σV VtdW ∗
t . (2.5)

Here, (W ∗
t )t≥0 with W ∗

t = Wt− r−µV
σV

t by the Girsanov theorem is a standard Brownian motion
with respect to the probability measure Q. By Itô’s formula we obtain from (2.5) that

Vt = V0e
(r− 1

2
σ2

V )t+σV W ∗
t

EQ[VT ] = V0e
rT (2.6)

varQ[VT ] = V 2
0 e2rT (eσ2

V T − 1).
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The equity value St at time t is given by the Black-Scholes value of a European call option
(Musiela and Rutkowski, 1997, Theorem 5.1.1)

St = VtN(d1(Vt, T − t))−Be−rT N(d2(Vt, T − t)) (2.7)

d1(v, t) =
log v

B + (r + σ2
V
2 )t

σV

√
t

, d2(v, t) = d1(v, t)− σV

√
t,

where N(x) = 1√
2π

∫ x
−∞ e−

1
2
z2

dz denotes the distribution function of the standard normal dis-
tribution.

From (2.4) and (2.5) formulas follow for the unconditional probability of default at time 0 under
risk neutral and physical probability measures, respectively. Under the risk neutral probability
measure Q we get

Q(VT < B) = Q
[W ∗

T√
T

<
log B

V0
+ (σ2

V
2 − r)T

σV

√
T

]
= 1−N(d2(V0, T )) . (2.8a)

Under the physical probability measure P we have

P(VT < B) = P
[WT√

T
<

log B
V0

+ (σ2
V
2 − µV )T

σV

√
T

]
= 1−N [d2(V0, T ) +

µV − r

σV

√
T ] . (2.8b)

The quantity µV −r
σV

is called Market Price of Risk (MPR) as it can be considered the instanta-
neous premium per unit of risk to be paid to risk-averse investors for holding the firm’s assets.

In the case of no recovery the value of the bond can be considered as having the value of a digital
option. Hence, by the no-arbitrage pricing principle from (2.3b) we obtain

Ft = EQ[e−r(T−t) B 1{Vt≥B}| Ft]

= e−r(T−t) B Q[VT ≥ B|Ft]

= e−r(T−t) B N(d2(Vt, T − t)). (2.9)

In this case the yield spread (between risky and risk-less bonds) value Yt, defined by the relation
B e−(r+Yt) (T−t) = Ft is

Yt =
− log Ft

B

T − t
− r (2.10a)

=
− log Q[VT ≥ B|Ft]

T − t
(2.10b)

=
− log N(d2(Vt, T − t))

T − t
. (2.10c)
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In the case where positive recovery is possible we obtain from (2.3a) for the value of the debt

Ft = EQ[e−r(T−t) min(B, VT ) | Ft]

= e−r(T−t) B Q[VT ≥ B | Ft] + e−r(T−t) EQ[VT 1{VT <B} | Ft]

= e−r(T−t) B N(d2(Vt, T − t)) + VtN(−d1(Vt, T − t)). (2.11)

In this case the yield spread value Yt is again given by (2.10a). Observe that in case of possible
recovery the value of Yt is greater than in the case of no recovery.

In the sequel we consider only the case of no recovery because the recovery distribution deduced
from the Merton model is not a realistic distribution for practitioners. With a view towards
application in risk management it makes better sense to proceed on the pessimistic assumption
of no recovery at all.

2.2 Problems with the Merton approach in practice

(i) Direct observation of the firm value process is impossible. Even if the firm’s stocks are
traded on an exchange, one can only observe the equity value process.

(ii) The same applies to its volatility.

(iii) The Merton model for bond prices has the same theoretical deficiencies as the Black-
Scholes model for the price of a European call-option. In particular, it is unrealistic to
assume that volatility and risk-less interest rates remain constant over time.

(iv) Other deficiencies are specific to the Merton model. One concerns the interest spreads on
a risk-less interest rate. If spreads followed the dynamics given by the model, they would
tend to zero as the maturity of the bond approaches. In practice, experience shows that
this is not the case. Spreads are usually bounded away from zero over all the time to
maturity of the bond. This observation has stimulated the development of many other
default models for corporate bonds (cf. Lando, 1997).

(v) Another problem with the Merton model is the phenomenon that, in its view, the value of
the firm’s debt as given by (2.9) or (2.11) should decrease whenever the risk-less interest
rate increases. This is contrary to daily experience.

Despite the deficiencies enumerated above, the Merton model is popular because of its relative
simplicity. We will see that points (i), (ii) and (v) can at least be repaired to some extent.
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3 Parameter estimation and simple shock scenarios

3.1 Implicit firm value and firm value volatility

With the KMV (http://www.kmv.com) software Credit Monitorr, values are delivered for the
face value B of debt of a firm (weighted average of all the firm’s obligations), the physical
default probability EDF (“Expected Default Frequency”), where EDF = P[VT < B], and the
actual equity value of the firm under consideration is S0. The Merton model says that these
quantities are connected through equations (2.7) for t = 0 and (2.8b).

Values for the value V0 of the firm at time 0 and the volatility σV of the firm value are also
available in this software. Nevertheless, in order to get values which are better consistent with
the Merton model one can try to determine implicit values for V0 and σV . The problem here is
the simultaneous solution of equations (2.7), (2.8b) for V0 and σV . Observe that – assuming that
the risk-less interest rate r is known – by (2.7), (2.8b) we have two equations for the unknown
values V0, σV and µV .

One way to find a unique solution in this situation is to fix the Market Price of Risk MPR = µV −r
σV

– which seems reasonable by the CAPM – and to solve the resulting equation system for two
variables. This can be done effectively using the fact that (2.8b) can be analytically solved for
σV , i.e.,

σV = MPR− N−1(1− EDF)√
T

+

√(
MPR− N−1(1− EDF)√

T

)2
+ 2
(
r +

logV0
B

T

)
. (3.1)

If we insert this expression for σV into (2.7), equation (2.7) can be numerically solved for V0.
Now, inserting this value into equation (3.1) yields the exact solution of equation system (2.7),
(2.8b).

On the whole, this methodology for determining the volatility σV of the firm value is not com-
pletely satisfactory, as the same value for MPR is used for all firms. We suggest improving the
methodology by relying on supplementary market data, namely yield spreads of bonds with
ratings equal to those of the firms under consideration. If we denote the actual yield spread by
Y0, we have to simultaneously solve the two equations (2.7) and (2.10a). Again, we note that
(2.10a) can be solved analytically for σV in dependence of V0, i.e.,

σV = − N−1(e−Y T )√
T

+

√
N−1(e−Y T )2

T
+ 2
(
r +

logV0
B

T

)
. (3.2)

Proceeding as with equation (3.1) we arrive at an exact solution pair (V0, σV ) of equation system
(2.7), (2.10a).
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3.2 A simple approach to shock scenarios

As we have just seen in Section 3.1, a crucial point for fixing a model for the value of a firm’s
debt is to determine an implicit firm value V0. This suggests the following approach for combin-
ing equity, interest rate, and volatility shocks. We use equation (2.7) as a basis and calculate
numerically a changed value V0 when the values for S0, r, or σV have been changed. The way to
shock the firm value volatility is quite obvious. Simply define

σnew
V = σold

V (1 + ∆σV ). (3.3)

Concerning equity and interest rate shock, we suggest leaving the value of r unchanged and to
apply changes only to equity by setting

Snew
0 = Sold

0 (1 + ∆S) e−∆r T . (3.4)

We understand the shock value in (3.4) in the way that, ceteris paribus, the interest rates rise
if the equities rise, and vice versa. At the balance sheet level of a single firm we can say that its
equity grows if the interest rate rises because the debt of the firm will increase. That is why we
multiply by the factor e−∆r T .

4 Integrating foreign exchange risk into the credit default model

for a single firm

4.1 Modeling by decomposing the firm value process

In order to model the influence of foreign exchange rates on the value of a firm, in this section
we assume that the assets of the firm are spread over several countries with different currencies.
Nevertheless, the firm has a home country – say, the country where its headquarters are or the
country whose (domestic currency) it uses for the balance sheet. Let Vt denote the value of the
firm at time t as in section 2.1. Then our assumption means

Vt = V
(d)
t +

n∑
i=1

X
(f,i)
t V

(f,i)
t . (4.1)

Here V
(d)
t denotes the value of the domestic part of the firm’s assets, i.e., the value of that part

of the assets which is evaluated in the currency of the home country.
V

(f,i)
t , i = 1, . . . , n, is the value of the firm’s assets which are quoted in currency i.

X
(f,i)
t , i = 1, . . . , n, is the exchange rate of currency i, i.e., at time t one unit of currency i is

traded for X
(f,i)
t units of domestic currency. Thus

Ṽ
(f,i)
t = X

(f,i)
t V

(f,i)
t , i = 1, . . . , n, (4.2)

is the value of the firm’s assets converted from currency i to domestic currency.
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We assume here, as in section 2.1, that all the firm’s obligations are summarized in a single zero
bond in domestic currency, with face value B and maturity T . Of course (2.1) is still valid in
the present extended context. Hence, in order to derive an evaluation formula for the value Ft

at time t of the firm’s debt in domestic currency, we again face the problem of evaluating the
European call option (2.2) where Vt is now given by (4.1).

Again, we are going to work within the classic Black–Scholes framework. Hence, we rely on the
following assumptions (cf. Musiela and Rutkowski, 1997, sec. 7.1):

• The domestic risk-free interest rate rd and the foreign risk-free interest rates rf,i, i =
1, . . . , n, are positive constants.

• The domestic and foreign parts of the firm value, and the exchange rates are modeled by
correlated geometric Brownian motions.

• In order to avoid perfect correlation between the firm value processes and the exchange rate
processes, the underlying noise process will be modeled by means of a multidimensional
Brownian motion.

As a consequence of these assumptions we specify the dynamics of the model by fixing initial
values

V
(d)
0 , V

(f,i)
0 , X

(f,i)
0 , i = 1, . . . , n,

and by the following stochastic differential equation system

d V
(d)
t = V

(d)
t (µd dt + a0 · d Wt)

d V
(f,i)
t = V

(f,i)
t (µf,i dt + ai · d Wt) , i = 1, . . . , n

d X
(f,i)
t = X

(f,i)
t (νf,i dt + an+i · d Wt) , i = 1, . . . , n.

(4.3)

As in (2.4) the µd, µf,i, νf,i, n = 1, . . . , n, are the instantaneous expected rates of return.

Wt = (W (0)
t ,W

(1)
t , . . . ,W

(2n)
t )′

is a (column-)vector of independent standard Brownian Motions under the physical probability
P.

ai = (ai,0, ai,1, . . . , ai,2n), i = 0, . . . , 2n,

are the rows of a suitable dispersion matrix A used to describe the dependencies between the
asset value processes and the exchange rate processes.

Since the face value of the firm’s debt is denoted in domestic currency, we need a market model
in domestic currency. Note that one unit of currency i invested at time 0 in the assets of the
firm in country i will be worth Ṽ

(f,i)
t at time t. One unit of currency i invested at time 0 in a

risk-free asset in country i will be worth

X̃
(f,i)
t = erf,i t X

(f,i)
t (4.4)
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at time t. Applying Itô’s formula to the products X
(f,i)
t V

(f,i)
t and erf,i t X

(f,i)
t we now derive

from (4.3) the following modified stochastic differential system for the market model in domestic
currency:

d V
(d)
t = V

(d)
t (µd dt + a0 · d Wt)

d Ṽ
(f,i)
t = Ṽ

(f,i)
t

(
(µf,i + νf,i + ai · an+i) dt + (ai + an+i) · d Wt

)
, i = 1, . . . , n

d X̃
(f,i)
t = X̃

(f,i)
t

(
(νf,i + rf,i) dt + an+i · d Wt

)
, i = 1, . . . , n.

(4.5)

Recall that the market described by (4.5) is arbitrage-free and is complete if, and only if, the
underlying model admits a unique probability Q which is equivalent to P, and such that all asset
value and exchange rate processes discounted with the domestic risk-free rate are martingales
under Q. By Girsanov’s Theorem we see from (4.5) that this is the case if, and only if, the
equation system

a0 · η = rd − µd

(ai + an+i) · η = rd − (µf,i + νf,i + ai · an+i), i = 1, . . . , n

an+i · η = rd − (νf,i + rf,i), i = 1, . . . , n.

(4.6)

has a unique solution η ∈ R2n+1. Obviously, there is a unique solution to (4.6) if, and only if,
the dispersion matrix A has full rank. We will assume this for the rest of the section.

Denote by η∗ the unique solution to (4.6). Then by Girsanov’s Theorem the process

W ∗
t = Wt − t η∗

is a standard Brownian Motion under Q and the dynamics of the market is described by

d V
(d)
t = V

(d)
t (rd dt + a0 · d W ∗

t )

d Ṽ
(f,i)
t = Ṽ

(f,i)
t (rd dt + (ai + an+i) · d W ∗

t ) , i = 1, . . . , n

d X̃
(f,i)
t = X̃

(f,i)
t (rd dt + an+i · d W ∗

t ) , i = 1, . . . , n.

(4.7)

Since the market in this section is complete, by (4.1) and (4.2) we can determine the value St

of the firm’s equity at time t ≤ T with the formula

St = e−rd (T−t) EQ[max(VT −B, 0) | Ft]

= e−rd (T−t) EQ

[
max

(
V

(d)
t +

n∑
i=1

Ṽ
(f,i)
t −B, 0

) ∣∣∣Ft

] (4.8)

(see section 2.1 for the definition of Ft). In principle, by (4.7), we are in a position to evaluate
(4.8). Unfortunately, this leads to the problem of determining the distribution of a sum of jointly
log-normally distributed random variables – a problem for which no analytical solution is known.

Hence, we have to rely on numerical solutions or on an approximation. We will briefly discuss
here the approximation suggested by Gentle (1993) (see also Musiela and Rutkowski, 1997,
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sec. 9.9). The key to the application of Gentle’s result is the observation that by

max
(
V

(d)
t +

n∑
i=1

Ṽ
(f,i)
t −B, 0

)
=

(n + 1) max
(
(n + 1)−1

(
V

(d)
t +

n∑
i=1

Ṽ
(f,i)
t

)
− (n + 1)−1B, 0

)
(4.9)

equation (4.8) may be interpreted as the evaluation formula for a basket option, i.e., the under-
lying is a weighted sum of asset value processes where the positive weights sum up to 1.

Denote by (U (0)
t , U

(1)
t , . . . , U

(2n)
t ) a multidimensional Brownian Motion with standard marginals

such that with

σi =

‖ai‖, i = 0, n + 1, . . . , 2n

‖ai + an+i‖, i = 1, . . . , n
(4.10a)

we have for all t > 0

ρi,j = corr[U (i)
t , U

(j)
t ] =



ai·aj

σi σj
, i, j ∈ {0, n + 1, . . . , 2n}

ai·(aj+an+j)
σi σj

, i ∈ {0, n + 1, . . . , 2n}

and j ∈ {1, . . . , n}
(ai+an+i)·(aj+an+j)

σi σj
, i, j ∈ {1, . . . , n} .

(4.10b)

Then the solutions to the stochastic differential equations (4.7) and

d V
(d)
t = V

(d)
t (rd dt + σ0 d U

(0)
t )

d Ṽ
(f,i)
t = Ṽ

(f,i)
t (rd dt + σi d U

(i)
t ) , i = 1, . . . , n

d X̃
(f,i)
t = X̃

(f,i)
t (rd dt + σn+i d U

(n+i)
t ) , i = 1, . . . , n.

(4.11)

are identical in distribution as long as they are considered with the same initial conditions. In
comparison with (4.7) representation (4.11) has the advantage that the quantities σi and ρi,j

are observable volatilities and correlations.

In order to get an approximation formula for (4.8) – Gentle (1993, adapted to our context for
the case t = 0) suggested to replace the weights (n + 1)−1 from (4.9) by

ω̂(d) =
V

(d)
0

V
(d)
0 +

∑n
i=1 Ṽ

(f,i)
0

for V (d) (4.12a)

and

ω̂(f,i) =
V

(f,i)
0

V
(d)
0 +

∑n
i=1 Ṽ

(f,i)
0

for V (f,i), i = 1, . . . , n . (4.12b)
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He would then rewrite the left-hand side of (4.9) as

max
(
V

(d)
t +

n∑
i=1

Ṽ
(f,i)
t −B, 0

)
= er T

(
V

(d)
0 +

n∑
i=1

Ṽ
(f,i)
0

)
max

(
ÃT − B̃, 0

)
, (4.13a)

where

ÃT = e−r T
(
ω̂(d) V

(d)
T

V
(d)
0

+
n∑

i=1

ω̂(f,i) Ṽ
(f,i)
T

Ṽ
(f,i)
0

)
, (4.13b)

B̃ =
(n + 1)−1 e−r T B

V
(d)
0 +

∑n
i=1 Ṽ

(f,i)
0

. (4.13c)

Note that er T V
(d)
0 and er T Ṽ

(f,i)
0 are the forward prices at time 0 for the settlement date T of

V
(d)
t and Ṽ

(f,i)
t , respectively. Hence, by the transition from (4.9) to max(ÃT − B̃, 0) one does

not only change the weights in the basket portfolio but also replaces the asset value processes
by the ratios of the values and the corresponding forward prices.

The key step in the approximation now is to replace the arithmetic mean ÃT from (4.13b) with
the geometric mean

G̃T = e−r T

(
V

(d)
T

V
(d)
0

)ω̂(d)
n∏

i=1

(
Ṽ

(f,i)
T

Ṽ
(f,i)
0

)ω̂(f,i)

(4.14a)

and to correct the strike B̃ by the difference of the expected values, i.e.,

B̂ = B̃ + EQ[G̃T − ÃT ] . (4.14b)

Since the asset value processes under consideration are a multidimensional geometric Brownian
motion, the random variable G̃T has a logarithmic normal distribution. Thus the evaluation of

EQ[max(G̃T − B̂, 0)]

is a feasible task leading to the result

S0 ≈
(
V

(d)
0 +

n∑
i=1

Ṽ
(f,i)
0

)(
cN(l1(T ))− (B̃ + c− 1) N(l1(T ))

)
(4.15a)

with

c = exp
{

T
(
σ0 ω̂(d)

n∑
i=1

ρ0,i ω̂
(f,i) σi +

n∑
i=1

n∑
j=i+1

ρi,j ω̂(f,i) ω̂(f,j) σi σj − 1/2 v2
)}

, (4.15b)

v2 = σ2
0 (ω̂(d))2 +

n∑
i=1

σ2
i (ω̂(f,i))2 , (4.15c)

l1,2(T ) =
log c− log(B̃ + c− 1)± T/2 v2

√
T v

. (4.15d)
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Here B̃, σi, ρi,j , ω̂(d), ω̂(f,i) are given by (4.13c), (4.10a), (4.10b), (4.12a), and (4.12b), respec-
tively. The correlations between the foreign exchange rate returns could be taken as approxima-
tions for the correlations of the firm’s asset value processes in different countries. The value F0

of the firm’s debt can now be calculated by (2.1) and (4.15a).

4.2 Practical aspects of the decomposition

As in the classical model of the firm value, the domestic and the foreign asset values of the firm
from (4.1) will not usually be directly observable. As a pragmatic solution to this problem, we
suggest first calculating an induced total value of the firm’s assets V0 via the classical methodol-
ogy, as described in section 3.1. The problem then is to find reasonable weights w0, . . . , wn with∑n

i=0 wi = 1 such that the values

V
(d)
0 = w0 V0, Ṽ

(f,i)
0 = wi V0, i = 1, . . . , n, (4.16)

can be plugged in to the equations (4.15a), (4.15b), and (4.15c). One way to determine the
weights is to read them off from the balance sheet of the firm – as is done when the Credit
Monitorr software by KMV (http://www.kmv.com) is used.

Another approach would be to take the determination coefficients of the regression of the log-
arithmic return of the firm value on the logarithmic returns of the foreign exchange rates as
proxies for the weights wi. Here, we consider in more detail the case of only one foreign currency
influencing the firm value, i.e., the case n = 1 in (4.1). In this case, the foreign component
Ṽ

(f,1)
0 ≈ w1 V0 would be obtained by multiplying the total firm value V0 with the determination

coefficient w1 of the regression given in (4.17) of the firm’s equity log-returns st (as a proxy for
the firm value returns) on the log-returns xt of the foreign currency rate Xt:

st = a + b xt + εt,

w1 =
b2var(xt)
var(st)

.
(4.17)

A further problem arises if the firm’s debt is partially denominated in foreign currency. This
question calls for further research.

Once a model for the value of the firm’s equity and debt has been established shocks on the firm
value caused by shocks of the foreign exchange rates can be introduced by shocking the foreign
currency part of the assets in the spirit of section 3.2. Let us denote by V new

t the firm value after
a foreign exchange shock. This means that we compute the value of the firm after a shock by

V new
t = (1− w1)Vt + w1Vt(1 + ∆K) , (4.18)

where ∆K denotes the relative change in the foreign exchange rate.

We illustrate this approach with a data example. Some data studies on joint distributions for
Nestlé stock returns in USD (US-Dollar) and foreign exchange rate returns CHF (Swiss-francs)/
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USD were performed by Filip Lindskog from RiskLab Switzerland (http://www.risklab.ch).
He used a data set covering the time period 1990–2000.

The joint daily-log-return distribution of this data best fits a t11 distribution with linear cor-
relation coefficient between −0.15 and −0.17, a variance of the Nestlé returns between 1e− 04
and 1.5e − 04, and a variance of the exchange rate returns between 3.6e − 0.5 and 5.8e − 05.
The Nestlé returns have a skewness of about −0.25, the skewness of the exchange rate returns
is about 0.25.

The joint weekly-log-return distribution best fits a t17 distribution with linear correlation coeffi-
cient between −0.23 and −0.30, a variance of Nestlé returns between 5.9e−04 and 9.8e−04, and
an exchange rate variance between 2.2e− 04 and 2.9e− 04. The Nestlé returns have a skewness
of about −0.6, the skewness of the exchange rate returns is abaout 0.14.

By fitting a linear regression of the daily log-returns of Nestlé stock prices in CHF on to the
daily log-returns of the exchange rates CHF / USD we get a determination coefficient of 2%.
This means that about 2% of the variation of the daily equity log returns can be explained by
the variation of the daily log returns of the exchange rates.

4.3 Modeling by decomposing the firm value volatility

The approach described in sections 4.1 and 4.2 entails some problems, the most important of
which is probably the fixing of the weights in (4.16). This difficulty motivates the alternative
approach introduced in this subsection. The basic idea is to replace the decomposition of the
firm value process in a domestic part and some foreign parts by a decomposition of the firm
value volatility in a domestic part and some foreign parts.

Observe that by (4.7) and (4.11) the volatility of the domestic part of the firm value process
can be written alternatively as σ0 or

√∑2 n
i=0 a2

0,i. This suggests a natural decomposition of the

instantaneous variance of V (d) into a component a2
0,0 stemming from a white noise specific for

V (d) and further components a2
0,i from the white noises corresponding to the foreign parts of the

firm value and the foreign exchange rates.

To be more concrete: Denote as before by Vt the value of all the assets of the firm, quoted
in domestic currency. Define the value X̃

(f,i)
t at time t of one unit of currency i, i = 1, . . . , n,

invested at time 0 in a risk-free asset in country i by (4.4). We can then, analogously to (4.7),
describe the risk-neutral dynamics of the common evolution of Vt and the X̃

(f,i)
t by

d Vt = Vt (rd dt + a0 · d W ∗
t )

d X̃
(f,i)
t = X̃

(f,i)
t (rd dt + ai · d W ∗

t ) , i = 1, . . . , n,
(4.19a)

where W ∗
t = (W ∗,0, . . . ,W ∗,n)′ is a vector of independent standard Brownian motions, and

ai = (ai0, . . . , ain), i = 0, . . . , n are the rows of a dispersion matrix A. Another description,
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suggested by (4.11), is

d Vt = Vt (rd dt + σ0 d U
(0)
t )

d X̃
(f,i)
t = X̃

(f,i)
t (rd dt + σi d U

(i)
t ) , i = 1, . . . , n,

(4.19b)

with volatilities σ0, . . . , σn > 0 and an (n + 1)-dimensional Brownian motion (U (0), . . . , U (n))′

whose components are standard Brownian motions with correlations

corr[U (i)
t , U

(j)
t ] = ρij , i, j = 0, . . . , n, t > 0. (4.20)

Denote by Σ the covariance matrix of (σ1 U
(0)
1 , . . . , σn U

(n)
1 )′, namely

Σ = (Σij) = (σi σj ρij). (4.21)

Equations (4.19a) and (4.19b) – under the same initial conditions – give rise to the same distri-
bution for (V, X̃(f,0), . . . , X̃(f,n)) if and only if

A′ ·A = Σ. (4.22)

In particular, (4.22) implies

σ2
0 =

n∑
i=0

a2
0i . (4.23)

Of course, (4.22) does not uniquely determine A for given Σ. Nevertheless, we get a one-to-one
correspondence between A and Σ if we require A to be symmetric and positively definite. In
fact, this is a reasonable assumption that we fix for the sequel. Furthermore, we assume that
the covariance matrix Σ is non-degenerate, i.e., that it is positive definite.

Hence, we have to determine the positive square root of Σ, i.e., a symmetric, positive definite
(n + 1)× (n + 1)-matrix A such that

A ·A = Σ. (4.24)

Let v0, . . . , vn be a basis of Rn+1 consisting of eigenvectors of Σ and denote by D a diagonal
matrix whose diagonal elements are the eigenvalues of Σ, i.e. D = (dij)i,j=0,...,n with

dij =

λi, if i = j

0, otherwise,
(4.25)

where λ0, . . . , λn > 0 are the eigenvalues corresponding to v0, . . . , vn. We define
√

D as

√
D = (

√
dij)i,j=0,...,n. (4.26)

Denote by M the matrix whose columns are just the vectors v0, . . . , vn. Then the solution A to
(4.24) is given by

A = M ·
√

D ·M−1. (4.27)
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Once we have determined a representation (4.24) for Σ and therefore also a representation (4.23)
for σ0 we can model the effect of exchange rate volatility shocks on the firm value volatility σ0

as follows: If the volatility σi of the exchange rate Xf,i, i = 1, . . . , n, becomes

σnew
i = σold

i (1 + ∆σi), (4.28)

we calculate the changed value of σ0 as

σnew
0 =

√√√√(1 + ∆σi)2 a2
0i +

n∑
j=0, j 6=i

a2
0j . (4.29)

Note that the shock scenarios for exchange rate volatilities have to be defined with care (see
Wystup, 2001).

4.4 An example for the decomposition of the firm value volatility

We are now going to study the approach of section 4.3 in the case of n = 1 in more detail. Let
us assume that the volatility σ0 of the firm value process and volatility σ1 of a foreign exchange
rate, as well as their correlation ρ01 as in (4.19b) and (4.20), are given.

If we adminster a shock to the exchange rate volatility, according to (4.28) we obtain

σnew
1 = σold

1 (1 + ∆σ1). (4.30)

The individual components a11, a01 of σ1 will then also be shocked in the sense of (4.23) by the
factor 1 + ∆σ1, and the influence of this shock to σ0 can be modeled following (4.29) by

(σnew
0 )2 = a2

00 + (1 + ∆σ1)2a2
01. (4.31)

Equation (4.31) shows the dampened effect of a shock like that in (4.30) to the firm value
volatility. That means that a shock to the exchange rate and its volatility only influence a part
of the firm value volatility, because only a part of the firm value is in foreign currency.

In order to make this methodology work in practice, one first has to estimate the volatilities
σ1, σ0 and the correlation ρ01 between firm value returns and foreign exchange rate returns.
Given these estimates, the decomposition (4.24) can be computed as the positive square root
of the covariance matrix

(
σ2
1 σ1 σ0 ρ01

σ1 σ0 ρ01 σ2
0

)
. This means that we look for a symmetric matrix

( a11 a01
a01 a00 ) with positive eigenvalues such that(

a11 a01

a01 a00

)
·

(
a11 a01

a01 a00

)
=

(
σ2

1 σ1 σ0 ρ01

σ1 σ0 ρ01 σ2
0

)
. (4.32)
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Figure 1: ∆σ0 as function of ∆σ1 for different values of ρ01.

The solution to (4.32) is given by

H =
√

(σ2
1 − σ2

0)2 + 4 σ2
1 σ2

0 ρ2
01

a11 = 2−3/2 H−1

(√
σ2

1 + σ2
0 −H (σ2

0 − σ2
1 + H) +

√
σ2

1 + σ2
0 + H (σ2

1 − σ2
0 + H)

)

a01 =
√

2 σ1 σ0 ρ01√
σ2

1 + σ2
0 −H +

√
σ2

1 + σ2
0 + H

(4.33)

a00 = 2−3/2 H−1

(√
σ2

1 + σ2
0 −H (σ2

1 − σ2
0 + H) +

√
σ2

1 + σ2
0 + H (σ2

0 − σ2
1 + H)

)
.

Obviously, (4.33) is only valid where H > 0. Since we assume that the covariance matrix(
σ2
1 σ1 σ0 ρ01

σ1 σ0 ρ01 σ2
0

)
is non-degenerate, H = 0 can only occur if ρ01 = 0. In this case the so-

lution to (4.32) can be written as

a11 = σ1 a01 = 0 a00 = σ0 . (4.34)
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Define the relative difference ∆σ0 in the firm value volatility by

∆σ0 =
σnew

0

σold
0

− 1 = (σold
0 )−1

√
a2

00 + (1 + ∆σ1)2 a2
01 − 1 . (4.35)

Figure 1 demonstrates the effect of shocks to the exchange rate volatility on the firm value
volatility. The strength of damping depends perspicuously on the correlation between exchange
rate and firm value. The weaker the correlation, the stronger the damping of the exchange rate
volatility shock. Even for higher correlations the induced shocks in the firm value volatility are
far weaker than the currency volatility shocks we provoke.

Let us take a closer look on two special cases. First, assume that ρ01 = 0. It then follows from
(4.34) and (4.35) that ∆σ0 = 0 regardless of the value of ∆σ1, as indeed it should be since, in
this case, the firm value and foreign exchange rate are independent.

The other point of interest is |ρ01| = 1. From (4.33) we then obtain

H = σ2
1 + σ2

0

a01 = ±σ1 σ0√
H

a11 =
σ2

1√
H

a00 =
σ2

0√
H

.

(4.36)

Inserting (4.36) into (4.35) yields

∆σ0 =

√
σ2

0 + (1 + ∆σ1)2 σ2
1√

H
− 1 . (4.37)

In the case of an FX rate volatility σ1 reduced to 0 (i.e., ∆σ1 = −1) from (4.37) we obtain

∆σ0 =
σ0√
H
− 1 ∈ (−1, 0) . (4.38)

Hence, we still have a damping effect even if the log returns of the firm value and the FX rate
are linearly dependent.

Finally, we can conclude from (4.37) that

∆σ0 ≈ ∆σ1
σ2

1

H
, as ∆σ1 → 0 , (4.39)

∆σ0 ∼ ∆σ1
σ1√
H

, as ∆σ1 → ±∞ . (4.40)

5 The multi-firm Merton model

So far, we have considered the modeling of the value of a single firm’s debt, focusing on its
dependence on equity, risk-free interest, and foreign exchange rates. In this section we are going
to extend this methodology to the case of more than one firm. Note that this approach is quite
common. For instance, it is used in the Portfolio ManagerTM by KMV (http://www.kmv.com)

or in the CreditManager by RiskMetrics (http://www.creditmetrics.com) (cf. Iscoe et al.,
1999; Nyfeler, 2000).
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5.1 Extending the Merton model to several firms

We consider a portfolio of n firms. For a single firm, the extended model will coincide with the
model described in section 2.1. At first glance the new model looks exactly like that in section
2.1 with the only exception that almost all occurring quantities wear an index i ∈ {1, . . . , n}.
Nevertheless, we will face two new features: the firm values processes are driven by a multi-
dimensional Brownian motion with correlated components, and the debt maturities of the firms
may differ from one another. As, in actual fact, most quantities are defined in exactly the same
way as in section 2.1, we give only a short enumeration of them.

• We are interested in determining the value of the debt portfolio of firms i = 1, . . . , n at a
fixed time horizon T > 0.

• S
(i)
t is the value of the equity of firm i, i = 1, .., n at time t ∈ [0, T ].

• The liabilities of firm i are considered to consist of a single zero-bond with some maturity
Ti which may be less or greater than T , and some face value B(i). Obviously, this is not
realistic. But imagine the bond to be a summing-up of the firm’s liabilities by some mapping
procedure. For instance, Ti could be the duration (i.e. the average time to maturity) of
the liabilities and B(i) could be some weighted average of the due payments. Hence, F

(i)
t

denotes the value of this bond at time t ∈ [0, T ],

• F port
t =

∑n
i=1 F

(i)
t is the value of the debt portfolio at time t ∈ [0, T ]. The distribution of

the random variable F port
T is of primary interest.

• V
(i)
t = S

(i)
t + F

(i)
t is the value of firm i at time t ∈ [0, T ].

• As in section 2.1, the price of a risk-less zero coupon bond, which pays one currency unit
for sure at time t in the future, is P (t) = e−rt where r > 0 is the instantaneous risk-less
rate of interest and constant over time.

• S
(i)
Ti

:= max(V (i)
Ti
−B(i), 0) is the amount that the equity holders would receive at maturity

Ti in case of liquidation of firm i.

• F
(i)
Ti

:= min(V (i)
Ti

, B(i)) = B(i) −max(B(i) − V
(i)
Ti

, 0) is the amount that the bond holders

of firm i receive at maturity Ti. Default of firm i takes place if V
(i)
Ti

< B(i).

• The stochastic firm value processes are modeled as geometric Brownian motions with
respect to the physical probability measure P as

dV
(i)
t = µViV

(i)
t dt + σViV

(i)
t dW

(i)
t , i = 1, . . . , n, (5.1)

where µVi is the instantaneous expected rate of return to firm i per time unit, σ2
Vi

is the
instantaneous variance of the value of firm i per time unit, and Wt = (W (1)

t , . . . ,W
(n)
t )

is an n-dimensional Brownian motion. Each component of Wt = (W (1)
t , . . . ,W

(n)
t ) is a
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standard Brownian motion, but the correlations between them may be non-zero. σVi is
called volatility of V

(i)
t . The initial values V

(i)
0 are fixed.

We again assume that the market under consideration is complete, i.e., that there is a unique
probability measure Q, equivalent to P, such that all discounted firm value processes e−r t V

(i)
t

are martingales under Q. In particular, under Q the dynamics in the model can be described by
the stochastic differential system

dV
(i)
t = r V

(i)
t dt + σViV

(i)
t dW

∗,(i)
t , i = 1, . . . , n, (5.2)

where σ2
Vi

is as above and W ∗
t = (W ∗,(1)

t , . . . ,W
∗,(n)
t ) is again an n-dimensional Brownian motion

(not identical with W (t)) whose marginal distributions are standard.

The assumption of completeness implies that there are unique prices S
(i)
t and F

(i)
t for equities

and bonds respectively at every epoch t of time in [0, T ]. These prices are given by

S
(i)
t = er (t−Ti) EQ

[
S

(i)
Ti
| Ft

]
(5.3a)

and

F
(i)
t = er (t−Ti) EQ

[
F

(i)
Ti
| Ft

]
, (5.3b)

where Ft denotes the history up to time t of Wt = (W (1)
t , . . . ,W

(n)
t ). Note that for t ≥ Ti

equations (5.3a) and (5.3b) simplify to

S
(i)
t = er (t−Ti) S

(i)
Ti

(5.4a)

and

F
(i)
t = er (t−Ti) F

(i)
Ti

. (5.4b)

In fact, when using (5.3b) one implicitly assumes that there will be some recovery in case of
default of the firm. We take here the more pessimistic point of view of no recovery. This means
that we replace (5.3b) by

F
(i)
t = er (t−Ti) B(i) Q

[
V

(i)
Ti

≥ B(i) | Ft

]
. (5.5)

In particular, by (2.9), in case t = T equation (5.5) yields

F
(i)
T =


er (T−Ti) B(i) 1{V (i)

Ti
≥B(i)}, T ≥ Ti

er (T−Ti) B(i) N
( log

V
(i)
T

B(i)
+(r−

σ2
Vi
2

)(Ti−T )

σVi

√
Ti−T

)
, T < Ti.

(5.6)

Whether F
(i)
t be defined by (5.3b) or by (5.5), we can define for t < Ti the yield spread Y

(i)
t of

bond i by

F
(i)
t = e(Y

(i)
t +r) (t−Ti) B(i) (5.7a)
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or equivalently

Y
(i)
t =

log
(
F

(i)
t /B(i)

)
t− Ti

− r . (5.7b)

5.2 The distribution of the portfolio value

In section 5.1 we specified a model that uniquely determines the distribution of the debt portfolio
value

F port
T =

n∑
i=1

F
(i)
T (5.8)

under the physical probability measure P at time T , as soon the necessary initial values and
parameters are given, such as actual firm values, volatilities, and correlations between the driving
Brownian motions etc. Assuming that this is the case we can perform stress tests along the lines
of sections 3 and 4 in order to gain insight into the effects of changing marginal conditions on
the portfolio value distribution.

Unfortunately, due to (5.6) the random variables summed up to F port
T in (5.8) will usually be

fairly heterogenous. Moreover, they will be more or less dependent. Consequently, in general, it
will be impossible to arrive at an analytical formula for the distribution function of F port

T .

In the sequel, we discuss two ways to deal with this difficulty. First we examine how to estimate
the distribution of F port

T by means of Monte-Carlo simulations. In section 5.3 we then consider
an approximation approach.

Concerning the Monte-Carlo simulations, we observe that the stochastic differential equation
system (5.1) under P has the (pathwise) unique solution

V
(i)
t = V

(i)
0 exp

(
µVi t− (σVi)

2

2
t + σVi W

(i)
t

)
, t ≥ 0, i = 1, . . . , n, (5.9)

where the randomness is caused only by the Brownian motion W = (W (1), . . . ,W (n)) with
correlated components and marginals which are standard Brownian motions. By (5.9), (5.6), and
(5.8) all we have to do for the simulations is to generate realizations of Wmin(T1,T ), . . . ,Wmin(Tn,T ).
Without loss of generality we may assume that there are integers 1 ≤ k1 < k2 < . . . < kl ≤ n

such that

0 ≤ T1 = . . . = Tk1 < Tk1+1 = . . . = Tk2 < . . . < Tkl−1+1 = · · · = Tkl
≤ T < Tkl+1 ≤ . . . ≤ Tn.

Hence, by the independence of the increments of a Brownian motion, it is sufficient to generate
random vectors Y1, . . . , Yl, Yl+1 with

Y1 ∼ N (0, Tk1 C), Y2 ∼ N (0, (Tk2 − Tk1) C),

. . . , Yl ∼ N (0, (Tkl
− Tkl−1

) C), Yl+1 ∼ N (0, (T − Tkl
) C). (5.10)
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Here, C is the covariance matrix of Wt = (W (1)
t , . . . ,W

(n)
t ) at t = 1. Note that Yl+1 will be

constant 0 in case Tkl
= T .

Since
√

t Y ∼ N (0, t C) for t ≥ 0 and Y ∼ N (0, C), by (5.10) we must generate (l + 1)m

independent random vectors with distribution N (0, C) if we want to get a Monte-Carlo sample
of F port

T with size m.

For conceptual reasons, it can be useful to represent the Brownian motion W = (W (1), . . . ,W (n))
which drives (5.1) as

W
(i)
t =

k∑
j=1

aij U
(j)
t + bi ξ

(i)
t , t ≥ 0, i = 1, . . . , n. (5.11)

Here, aij and bi are constants such that

k∑
j=1

a2
ij + b2

i = 1, i = 1, . . . , n,

and U (1), . . . , U (k), ξ(1), . . . , ξ(n) are standard Brownian motions such that U = (U (1), . . . , U (k)),
ξ(1), . . . , ξ(n) are independent, whereas the components of U may be dependent. A representation
as in (5.11) – called factor model – could result from a regression of W on some normalized
economic index returns or from a principal component analysis of C.

In (5.11), U (1), . . . , U (k) are interpreted as systematic risk factors, common to all firms, whereas
ξ(1), . . . , ξ(n) are firm-specific risk factors. Note that, given U (1), . . . , U (k), the processes W (1), . . . ,

W (n) are conditionally independent.

On the one hand, this motivates the considerations noted below in section 5.3. On the other
hand, it offers the opportunity to define worst-case scenarios for the systematic risk factors. We
will consider a particular choice for the factor model (5.11) in more detail in section 6.

5.3 Approximating the portfolio value distribution

Assume that (5.8) can be written as

Fn =
n∑

i=1

win Xi , n ∈ N, (5.12)

where X1, X2, . . . are random variables on a probability space (Ω,F , P) and w1n, . . . , wnn are
constants for each n ∈ N. The factor model (5.11) suggests the following approximation result
which slightly generalizes a result in section 1.6 from Nyfeler (2000).

Proposition 5.1 Let X1, X2, . . . be a sequence of square integrable real random variables on
a probability space (Ω,F , P). Assume that there is a σ-algebra A ⊂ F such that, conditional
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on A, the sequence X1, X2, . . . is independent and identically distributed with a non-degenerate
distribution on an event of positive probability. Let for each n ∈ N numbers w1n, . . . , wnn be
given with

∑n
i=1 win = 1. Then, with Fn defined by (5.12), we have that

Fn
L2−−−→

n→∞
E[X1 | A] (5.13a)

if and only if

lim
n→∞

n∑
i=1

w2
in = 0 . (5.13b)

Proof. By the conditional independence and the identical distribution property of X1, X2, . . .

given A we obtain

E[(Fn − E[X1 | A])2] =
n∑

i=1

w2
in E[(Xi − E[Xi | A])2]

+ 2
n−1∑
i=1

n∑
j=i+1

win wjn E
[
E
[
Xi − E[Xi | A]

]
E
[
Xj − E[Xj | A]

]]
= E[(X1 − E[X1 | A])2]

n∑
i=1

w2
in .

Observe that E[(X1−E[X1 | A])2] > 0 since the distribution of X1 given A is non-degenerate on
a set of positive probability. This proves the result. �

Of course, the L2-convergence in Proposition 5.1 implies convergence in distribution. For the
purpose of illustration, consider the following special case of (5.11), (5.6), and (5.8).

As for (5.6), assume that Ti = T and B(i) = B for all i. This yields

F
(i)
T = B 1{V (i)

T ≥B}, i = 1, . . . , n. (5.14)

Concerning (5.11) and V
(i)
T assume that V

(i)
0 = V0, µVi = µ, and σVi = σ for all i and that the

W
(i)
T are given by

W
(i)
T =

√
ρ WT +

√
1− ρ ξ

(i)
T , (5.15)

where W and the ξ are independent standard Brownian motions and ρ ∈ (0, 1). A portfolio with
a factor model like (5.15) is called equi-correlated. From (5.14) and (5.15) we get

Xi = F
(i)
T = B 1{W √

ρ+ξi
√

1−ρ≥ c}, i = 1, . . . , n, (5.16)

where W, ξ1, . . . , ξn are independent standard normal variables and c is given by

c =
log(B/V0)− (µ− σ2/2) T

σ
√

T
. (5.17)
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With A = σ(W ) and win = B(i)∑n
j=1 B(j) = (n B)−1 we are in a position to apply Proposition 5.1

in order to get a limit for the distribution of the normalized portfolio values (n B)−1 F port
T . As

E[X1 |σ(W )] = B N
(√ρ W − c
√

1− ρ

)
we obtain

(n B)−1 F port
T

L2−−−→
n→∞

N
(√ρ W − c
√

1− ρ

)
, (5.18)

where N as usual denotes the distribution function of the standard normal distribution. Nyfeler
(2000, sec. 1.6), who follows KMV (http://www.kmv.com), calls the distribution of the limiting
variable N

(√
ρ W−c√
1−ρ

)
a Normal Inverse distribution. As this notion might be confounded with

inverse Gaussian distributions – which have a completely different meaning – the notion of
Probit-Normal mixture-distribution as introduced by Frey and McNeil (2001) is to be preferred.

With (5.6) in mind, it seems quite unreasonable to hope that a portfolio of bonds might be
homogeneous enough for an application of Proposition 5.1. Nevertheless, it might be possible
to split the portfolio into a number of sub-portfolios consisting of bonds which are similar in
maturity and face value. The proposition could then be applied to each of the sub-portfolios.
The resulting limit distribution for the portfolio itself would be that of a linear combination of
conditional expectations of the kind appearing in (5.13a).

6 Comparison of different portfolio structures

In this section we describe another construction of a factor model as an alternative to (5.11). It is
due to Nicole Bäuerle (University of Ulm, Germany, guest at RiskLab (http://www.risklab.ch)

in September 2000). This construction provides an additional useful result on the comparison of
different portfolio structures with respect to concentration effects. The idea of this model is to
allow the default of a counter-party to be caused by three factors:

(i) an individual factor or management factor which is different for each company.

(ii) a sector factor which may be geographical or related to the type of industry or a combi-
nation of both.

(iii) an economic global factor which influences all companies in the same way.

All factors are assumed to be independent. Let us now suppose that there are n counter-parties
in the portfolio classified into k different sectors. Then the vector of the correlated Brownian
motions W = (W (1), . . . ,W (n)) in (5.1) can be represented by

W (i) =
√

1− ρ∗ S(i) +
√

ρ∗ G, i = 1, . . . , n. (6.1)
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Here, G is a standard Brownian motion which models the global effect. S = (S(1), . . . , S(n)) is a
vector-valued Brownian motion with standard marginals whose correlation matrix at any point
in time is given by

Λ(n) =


Λ1

. . .

Λk

 , (6.2)

where Λu = (λij(u)) is a correlation matrix with λij(u) = ρu−ρ∗
1−ρ∗

if i 6= j and 1 if i = j. We
assume that 0 ≤ ρ∗ ≤ ρ1, . . . , ρk ≤ 1. Hence, the correlation matrix R(n) = (ρij(n)) of W at
any point in time is given by

ρij(n) =


1, if i = j

ρh, if i and j are both in sector h

ρ∗, if i and j are in different sectors.

(6.3)

ρh characterizes the dependence of the counter-parties in sector h, and ρ∗ rules the dependence
on the global economic situation, common to all counter-parties. Hence, ρh − ρ∗ is a measure
for the rise in dependence due to common membership in sector h.

For the remainder of the section we assume that

ρ1 = . . . = ρk (6.4)

even if the value of k may vary. We now want to compare two portfolio structures with different
concentrations specified by the number of counter-parties in sectors 1 to k. Let s and s′ be two
n-dimensional vectors with

s = (s1, . . . , sr, 0, . . . , 0), s′ = (s′1, . . . , s
′
l, 0, . . . , 0), (6.5)

where 1 ≤ r, l ≤ n are fixed. r and l denote the number of sectors in these two different portfolio
structures. si, s

′
j ∈ N are the numbers of firms in sector i of the first structure and in sector j of

the second structure, respectively. Of course, we require that

n∑
i=1

si =
n∑

i=1

s′i = n. (6.6)

The next thing we need is an appropriate order relation to compare the structures s and s′. The
following notion of majorization is best suited for this purpose.

Let s, s′ ∈ Nn
0 and denote by s[1] ≥ . . . ≥ s[n] the decreasing rearrangement of s, analogously for

s′. We say that s′ majorizes s (s ≺ s′) if and only if

m∑
i=1

s[i] ≤
m∑

i=1

s′[i], for m = 1, . . . , n. (6.7)

Intuitively speaking s ≺ s′ means that in s′ the sectors are larger. In order to assess how concen-
trations influence possible losses in a portfolio, we examine the size of the losses in homogeneous
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portfolios which only differ in their concentration structures. For given portfolio structures s

and s′ with numbers of sectors r and l, respectively, and a given non-increasing function f ≥ 0
define random variables X1, . . . , Xn and Y1, . . . , Yn by

Xi = f(W (i)
1 ), i = 1, . . . , n, (6.8a)

where W (i) is the Brownian motion specified by the structure s via (6.1), (6.2), (6.3), and (6.4),
and

Yi = f(W (i)
1 ), i = 1, . . . , n, (6.8b)

where W (i) is a different Brownian motion this time specified by s′ the same way as for (6.8a).
We interpret Xi and Yi as losses of firm i in the portfolio structures s and s′, respectively. With

L =
n∑

i=1

Xi and L′ =
n∑

i=1

Xi (6.9)

Theorem 3.2 from Bäuerle and Müller (1998) now states:

If s ≺ s′, then
E[max(L− c, 0)] ≤ E[max(L′ − c, 0)] (6.10)

for all thresholds c ≥ 0.

This means that well-balanced portfolios are less risky in the sense that the expectation of the
loss shortfall over a threshold c (c arbitrary) is lower. The least risky portfolio is given by the
one which contains only companies of different sectors, whereas the most risky portfolio is that
with all the firms in only one sector (Bäuerle and Müller, 1998, Corollary 3.3).

The following example is taken from Bäuerle and Müller (1998) and illustrates the effect of
dependencies. In order to keep the computation simple, we suppose that in (6.8a) and (6.8b) we
have f = a1(−∞,z] with a = 4 and z such that P[Xi = 1] = P[Yi = 1] = 0.06 for all i = 1, . . . , n.
The portfolio consists of 20 risks (n = 20). For the correlations in (6.3) and (6.4) we assume
ρ∗ = 0 and ρ1 = . . . = ρk = 1, i.e., there is no global influence but linear dependence within
the sectors. Bäuerle and Müller have computed the relative expected loss excesses for 8 different
scenarios which are given by their sector group structures s(m), m = 1, . . . , 8, listed in Table 1.
Scenario 1 in Table 1 corresponds to the safest portfolio with 20 independent risks in different
sectors. Scenario 8 is the most risky portfolio, where the same risk occurs 20 times. Note that
not all portfolios can be compared with respect to the majorization ordering.

Table 2 now contains the relative expected loss excesses (the expectations from (6.10) divided
by the value from the independent case m = 1) multiplied by 100 for several thresholds, i.e.,

100
E[max(L(m) − c, 0)]
E[max(L(1) − c, 0)]

. (6.11)

Note that the expectation of the total loss (threshold = 0) equals 4.8 and the outcomes range
between 0 and 80. We know that, given a threshold, the relative expected loss excess increases
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scenario m s(m)

1 (1, 1, 1, . . . , 1, 1, 1)
2 (4,3,3,2,2,1,1,1,1,1,1)
3 (8,2,2,2,2,2,2)
4 (4,4,4,3,3,2)
5 (15,2,1,1,1)
6 (5,5,5,5)
7 (10,5,5)
8 (20)

Table 1: Portfolio structures for comparison of concentration effects

scenario

threshold s(1) s(2) s(3) s(4) s(5) s(6) s(7) s(8)

0 100 100 100 100 100 100 100 100
1 100 105 109 110 111 112 113 116
2 100 113 121 124 126 129 132 139
3 100 124 140 145 150 155 161 173
4 100 144 173 182 191 200 210 233
6 100 174 210 229 272 272 295 347
8 100 270 330 385 537 506 572 717
10 100 327 478 480 830 700 834 1128

Table 2: Relative expected loss excesses for different portfolio structures

in s. Table 2 shows that the increase is moderate if s(i) and s(j) are, in some sense, nearby
as, for example, s(6) and s(7). In the cases where we were not able to establish the comparison
theoretically, as, for example, for scenarios 5 and 6, we find that the order can change when the
threshold increases.

An important conclusion to be drawn from the computation is that the increase in the relative
expected loss excess can be dramatic in the presence of positive dependence. Even a minor
occurrence of dependence, as in scenario 2, has a severe effect. Moreover, when a portfolio allows
for positive dependence between the risks, the larger the number of risks becomes the higher
will be the increase in relative expected loss excess.
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