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Zusammenfassung

This contribution introduces briefly subexponential distributions which consti-
tute a large class of heavy-tailed distributions. We investigate their (sometimes desa-
strous) influence within teletraffic models. Some of these models are reviewed w.r.t.
their capability to capture certain stylised features of the data, such as variability
of arrival rates, heavy-tailedness of on- and off-periods, and long-range dependence
in teletraffic transmission. Then we demonstrate some of the above effects in an
explorative data analysis of Munich Universities’ intranet data.

1.1 Background and Terminology

Recent measurements of traffic both on local and wide area communications networks
have shown some extraordinary behaviour which proves critical for understanding the
performance of broad-band networks: the data collected (e.g. packets on Ethernet net-
works) at Bellcore [LELAND ET AL., 1994], frames from Variable-Bit-Rate (VBR) video
service ([BERAN ET AL., 1995], [GARRETT & WILLINGER, 1994]), FTP data connecti-
ons, NNTP, and WWW arrivals in wide area traffic show enormous variability of arrival
rates indicating that a Poisson process may be an insufficient model for packet traffic, see
[PAxsoN & FrLoyD, 1995].

Moreover, time series of teletraffic data show a long-range dependence effect, meaning that
the current state of a time series has a strong dependency on the remote past. Definitions
vary from author to author, but a commonly accepted definition in a covariance stationary
time series is that a process (X,,) has long-range dependence, if the correlation coefficients
corr(Xy, X,,) decrease to 0 at a rate slower than exponential. Admittedly, many authors
even require that the autocorrelation coefficients are not summable, but we want some
more flexibility in modeling. The exponential as a reference rate is motivated by the fact
that for linear models as for instance causal and invertible ARMA (autoregressive-moving
average) models the correlation coefficients decrease to 0 exponentially fast, hence long-
range dependence in the above sense cannot be modeled by such traditional models.
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Various models have been suggested to capture these effects observed in teletraffic
data. They range from traditional queueing models to sophisticated on/off models
([HEATH ET AL., 19964], [HEATH ET AL., 1996B|, [JELENKOVIC & LAZAR, 1997]),

shot noise models ([Kurtz, 1996]), Markov modulated queues
([JELENKOVIC & LAZAR, 1996], [JELENKOVIC & LAZAR, 1998]), and  frac-
tional ~ Brownian  motion  ([LELAND ET AL., 1994|, [TAQQU & LEVY, 1986],

[WILLINGER ET AL., 1997]).

The aim of this article is

e to clarify the various notions of heavy-tailed distributions as used in the queueing
and network area,

e to describe the consequences of subexponential input distributions to the distribu-
tional behaviour of the output processes,

e to discuss possible models where heavy-tailed or dependent input may explain the
observed long-range dependence in teletraffic data.

Similar material can be found in a more detailed paper [GREINER ET AL., 1999] by the
same authors. This paper is organised as follows. In Section 1.2 we summarise various
notions and properties of heavy-tailed distributions, the outer frame being built by the
class of subexponential distributions.

In Section 1.3 we indicate what disasters heavy-tailed input can result in classical queueing
models. Such models have been taken as basis for more sophisticated models in teletraffic
data transmission. For instance, buffer sizes correspond to workload processes. We want
to gain some qualitative insight into the effect of heavy tails on performance measures
like waiting time distribution and queue length.

In Section 1.4 we discuss some models within the queueing context which have been sug-
gested as appropriate models for teletraffic data. We derive certain performance measures
within such models. Section 1.5 concludes the paper with an explorative data analysis of
Munich Universities’ intranet data, measured at a network access point of the German
Broadband Research Network (B-WiN).

1.2 Subexponential distributions

In an intuitive approach we consider heavy-tailed distributions as ideal models to allow for
very large values in a sample from such a distribution. It seems to be common agreement
that the tail of a heavy-tailed distribution function (df) decreases more slowly than any
exponential tail, i.e. for a heavy-tailed random variable (rv) X

P(X > 2)e®® - 00, x— 00,

for any positive €. This class includes for instance Pareto, lognormal, and heavy-tailed
Weibull distributions. In certain applications, in particular in queueing theory, some more
structure for the distribution tail is needed, which leads to the definition of subexponential
distributions.



In this section we summarise definitions and properties of subexponential dfs con-
centrating on those properties we shall need later in the paper. For further proper-
ties see [BACCELLI ET AL., 1999] in this volume. A more complete account on sub-
exponential dfs can be found in [EMBRECHTS ET AL., 1997] or the review article
(GOLDIE & KLUPPELBERG, 1998], from which results are quoted freely.

We present, two defining properties of subexponential dfs. The first, more analytic one, is
motivated by the Pollaczek—Khinchin formula (1.7) below, while the second probabilistic
one provides a more intuitive interpretation of subexponentiality.

Definition 1.2.1 (Subexponential distribution function)

Let (X;)ien be iid positive rvs with df F' such that F(x) < 1 for all x > 0. Denote
F(x)=1-F(z), x>0,

the tail of F' and

=M%k

Fz)=1-F"(z)=PX1+--+X,>2), x>0,

the tail of the n—fold convolution of F. F is a subexponential df (F' € S) if one of the
following equivalent conditions holds:

=1

o (2)

(a) lim ) =n for some (all) n > 2,
T—r00 T
P(X,+ -+ X, ‘
(b) lim X+ > 7) =1 for some (equivalently all) n > 2. 2

z—o0 P(max(Xy,...,X,) > 1)

Remark 1.2.2

(i) Definition 1.2.1(b) provides a physical interpretation of subexponentiality: the sum of
n iid subexponential rvs is likely to be large if and only if their maximum is. This accounts
for extremely large values in a subexponential sample.

(ii) In order to interchange limits and infinite sums or limits and integrals we need the
following uniform bound for the quotient in Definition 1.2.1(a). For every € > 0 there
exists some positive constant K () such that

=1

F%(S) <K(E)(1+e)

holds for all n € N and z > 0.

(iii) Definition 1.2.1(b) demonstrates the heavy-tailedness of subexponential dfs. It is
further substantiated by the implications

FesS — lim L8FY 1 yyen (1.1)
T—00 F(.’L‘)
— F(z)/e™® -0, x—00, Ve>0. (1.2)
— / ePdF(z) =00 Ye>0 (1.3)
0

Property (1.2) accounts for the name subexponential df: the tail of F' decreases more
slowly than any exponential tail. Property (1.3) shows that subexponential dfs have no
exponential moments. This prevents any method being applicable that requires the exi-
stence of exponential moments.



(iv) An important (though much smaller) subclass of S is the class of dfs with regularly
varying tail. We write F' € R(—a) if

F(t
T G
T—00 F(g;)

Since F' is non-increasing, the index « € [0,00). F € R(—a) is equivalent to F(z) =
z~*L(x) for some slowly varying function L; we write L € R(0). Examples for L are
constants, functions converging to a constant, logarithms, or iterated logarithms. If F' €
R(—«a) for @ < 1, then F' has infinite mean; if @ < 2, then F' has infinite variance. The
class of regularly varying functions has the advantage to allow the application of Abel-
Tauber theorems, quite a common tool in applied probability. Unfortunately, there is no
characterisation of a subexponential distribution in terms of its Laplace transforms apart
from (1.3). 2

The class of df given by property (1.1) is important in its own right and defines a special
class.

Definition 1.2.3 The df F' of a positive rv X such that F(z) < 1 for all > 0 belongs
to the class L if

F
limP(X—x>y|X>x):limM:1 VyeR. (1.4)

For positive y this is the df of the overshoot over a threshold x. For the class £ this
overshoot degenerates, i.e. it becomes infinite.

Define for a positive rv X with df F" having finite mean p its equilibrium distribution (or
integrated tail distribution) by

Fi(x) = —/ Fly)dy, >0, (1.5)
0
The following result is a consequence of the property (1.4).

Corollary 1.2.4 If F € L, then

lim — =0. |
T—00 FI(I')

We shall need the following result on convolution closure of S. In the sequel f(z) ~ g(z),
r — 00, means that lim, ., f(z)/g(z) = 1.

Theorem 1.2.1 Let F € § and Gi(x) ~ ¢;F(x) for i = 1,2, where ¢; € [0,00). Then
G+ Gy(x) ~ (¢1 + o) F(x). |

We conclude the section with some examples; more are to be found in
[EMBRECHTS ET AL., 1997] or [GOLDIE & KLUPPELBERG, 1998].

6



Example 1.2.5 (Subexponential dfs)

(i) If F(x) ~ cx™®, x — oo, for some o > 0 and ¢ > 0, then F' is called power-tailed df.
Notice that Pareto distributions themselves belong to this class.

(ii) If F(x) = 27*L(z) (i.e. regularly varying) for some o > 0 and L € R(0), then F is
also called Pareto-like.

(iii) The Weibull-like df with tail F(z) ~ r(x) exp(—2?) for 8 € (0,1) and regularly vary-
ing function r is subexponential.

(iv) The lognormal df with density f(z) = —=t— exp(—(Inz — u)?/(20?)) is subexponen-

2oz

tial. 2

1.3 Classical queueing models and subexponentials

The first papers to recognise the importance of subexponential dfs in queueing theory
were [COHEN, 1973], [PAKES, 1975], and [SMITH, 1972].

We consider an M/G/1 queue with arrival rate A > 0, service time df F' having finite
mean g and equilibrium df Fy(z) = [ F(y) dy/p. We assume that the queue is stable,
i.e. its traffic intensity p = Ap < 1.

Denote for n € Ny by W, the waiting time of the nth customer. Then the sequence (W)
satisfies Lindley’s equation which is given by the following recursion:

W1 =W+ X, —Upy1)™, n=0,1,2,... , Wy =0, (1.6)

where X, is the service time of the nth customer and U,,,, = T,,,; — T}, is the interarrival
time between nth and (n + 1)st customer. It can be shown (see e.g. [FELLER, 1971] or
[RESNICK, 1992]) that

k +

d

Wn: <OI£I?§XTL : O(Xi—UH_l)) X n:0,1,2,... X
1=

and

EXi—Uy)=p—A"=Xx"0pu—-1)<0, i=0,1,2,....

Then W, is distributed as the maximum of a random walk with negative drift. Hence
W, 23 W, where W, is a finite rv with df W(t), t > 0. For (U,) iid exponential rvs
the stationary waiting time distribution W (t), t > 0, is given by the Pollaczek-Khinchin
formula:

W(t)=(1—-p) Y p"F(t), t>0, (1.7)

where FP* = Ijg,o is the df of Dirac (unit) measure at 0. In this representation pFj is
the ladder height df of the embedded random walk. The infinite series on the rhs of (1.7)
defines a defective renewal measure (pFj(x) — p < 1 as v — o0), and the corresponding
renewal process is transient: the sequence of renewals (ladder heights) eventually stops,
and at each ladder height 1 — p is the probability of termination then and there. This is
a consequence of the negative drift of the embedded random walk, which is ensured by
p < 1. For details see [FELLER, 1971], Section VI.9.
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We rewrite formula (1.7) in terms of the tails,
W) =(0-0 S /0. 120.
n=1

Dividing both sides by F(t), we see that Definition 1.2.1(a) yields an asymptotic estimate
for W (t) provided that one can safely interchange the limit and the infinite sum. This is
ensured by Remark 1.2.2(ii) and Lebesgue’s dominated convergence theorem.

It turns out that this is not just a consequence of subexponentiality, but is characterised by
it, as follows from the following theorems (see [EMBRECHTS & VERAVERBEKE, 1982]).

Theorem 1.3.1 (Stationary waiting time in the M/G/1 queue)

t
W€S<:>FIES<:>limE/(): p . [ |
t—>ooFI(t) l—p

This theorem can be generalised to a GI/G/1 queue, where the arrival process is an
arbitrary renewal process.

Theorem 1.3.2 (Stationary waiting time in the GI/G/1 queue)

WES<:>F165:>limK/(t):L. [ |
t—)ooFI(t) l—p

The next question to ask is how and when high workloads (i.e. large buffer contents or
buffer overflows) happen in such a classical queueing system like M/G/1 or GI/G/1.

The waiting time process or workload process (V;)i>o denotes the sum of all service times
(whole or remaining) in the system.

Important information about a queueing system with heavy-tailed service time can be gai-
ned by considering high excursions of the workload process (V});>o after a buffer overflow
happened. This would be the traffic being lost or to be stored elsewhere. For mathematical
details and proofs we refer to [ASMUSSEN & KLUPPELBERG, 1997].

Another quantity of interest is the queue length in system (stationary number of customers
in system), we denote it by L. In an M/G/1 queue, under FIFO (first in first out) and
when the nth customer’s sojourn time D,, in the system (total time spent in the system
from arrival to departure) is independent of future interarrival times, then distributional
Little’s law holds, meaning that

LEN,, (1.8)

where (NN;) denotes a time stationary version of the renewal counting process (with first
arrival time distributed according to the equilibrium distribution) and D denotes the
stationary sojourn time. Notice that D = W, + X (independent sum) is the sum of the
stationary waiting time and the service time. If the service time X is subexponential, then



by Corollary 1.2.4 the tail of F is heavier than the tail of F'. Hence W, dominates X in
the sum and (see e.g. Theorem 5.1 of [GOLDIE & KLUPPELBERG, 1998])

P(D>zx)~P(Wyx>2x), x—o00.

For heavy-tailed service times, the following result has been proved in
[ASMUSSEN ET AL., 1998].

Theorem 1.3.3 Consider an M/G/1 queue with arrival rate A > 0 and traffic intensity
p < 1. Denote the service time df F and assume that the equilibrium df Fr € S. Let W,
denote the stationary waiting time. Assume that

F(zev/VT)

lim ——> =1, locally uniformly in y € R. (1.9)

Then the stationary queue length L satisfies
P(L> k)~ P(AWy > k) ~ %E(km . k—oo. (1.10)
[ |

The extra condition (1.9) is a tail condition guaranteeing that the tail decreases more
slowly than the Weibull tail exp(—+/Z), hence the result holds for any F € R(—a) for
a > 1, lognormal df, and Weibull distributions with tail F(z) ~ exp(—a”) for 3 < 0.5.
In these cases the queue length becomes large only by a large service time. The Poisson
arrivals do not contribute substantially to the queue length (only via the arrival rate in
p)-

When the service time is lighter than the tail of a Weibull distribution with parameter
B = 0.5, the number of customers arriving comes into the picture as well. Then the
combination of the number of customers and the likely large service time makes the
queue-length large, for explicit formulas see [ASMUSSEN ET AL., 1998|.

1.4 Long-range dependence and heavy tails in teletraffic data

In recent years the question has been raised whether classical queueing and network
models may not be too simplistic to model teletraffic networks. The heavy tails and
dependence structure exhibited in explorative data analysis of teletraffic data cannot
always be explained in the frame of such classical models, where heavy-tailed output is
only possible by heavy-tailed input as we have seen in the preceding section. However,
quite a variety of models have a regeneration structure leading to Lindley’s equation (1.6)
for certain quantities of interest and hence, as in Section 1.3, to asymptotic results.

As an example consider the Asynchronous Transfer Mode (ATM) based broadband net-
works with statistical multiplexing (SMUX). Most of the multiplexed entities are calls
originating from various sources. In order to operate properly, each of these calls has to
satisfy some quality of service requirements (QoS). QoS requirements are usually bounds
on performance measures characterising the dynamic behaviour of the multiplexed traffic.
The most basic model of a SMUX is an infinite buffer single server queue with a work
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conserving scheduler. The fundamental performance measure is the tail of the stationary
waiting time distribution P(Wy > z).

Numerous investigations have shown that the arrival processes that arise in ATM networks
(like voice and video) have a very complex statistical structure; an especially troublesome
characteristic is the high dependency. Modeling of this high dependency usually leads
to analytically very complex statistical characteristics, typically making the associated
evaluation of the queue length distribution intractable. However, because of the stringent
QoS requirements in ATM, in particular the tail of the stationary waiting time distribution
in the domain of very small probabilities is needed.

1.4.1 A simple on/off-model

A simple physical model is based on a sequence of points (7,)n,exn Which constitute a
stationary renewal process, i.e. P(T} > t) = F(t), t > 0, is the equilibrium df to F, where
F is the df of all interarrival times after the first one. Assume further that the interarrival
times are heavy-tailed in the sense that F' € £, which implies that F(2) = o(F(z)) (see
Corollary 1.2.4).

Suppose that each of the interarrivals is either an on-period, where traffic is transmitted,
or an off-period, where no traffic is transmitted. Assume furthermore that each interarrival
is randomly chosen as on- or off-period by a Markov mechanism. Define the continuous
time fluid process (A;);>o as being 1 during an on-period, and 0 during an off-period.
The process (A;) is sometimes called a “Markov chain embedded in a stationary renewal”
process. This process gives rise to long-range dependence, as is seen from the following
argument. Long-range dependence is defined by the property that corr(Ay, A;) decreases to
0 more slowly than exponentially. Observe that for large values of ¢, corr(Ay, A;) is linearly
related to the probability that the activity period that covers 0 is still going on at ¢. The
resulting distribution of the residual activity period has df F7j, i.e. has by Corollary 1.2.4
a heavier tail than the usual interarrival times. Consequently the autocorrelation function
decreases like F'7, implying long-range dependence. This can be made precise as follows.

Theorem 1.4.1 Let (T),)nen be a stationary renewal point process whose interarrival
times have df F' € L and Fy € S. Let furthermore (A;)i>o0 be the embedded Markov chain
with state space E = {0,1}, transition probabilities p;; for i,j = 0,1, and stationary
distribution m; for i =0,1. We consider the stationary version for (A;)i>o. Then

cov(Ag, A;) ~ var(Ag)Fy(t), t— o0, (1.11)

where Fr is the equilibrium df of F'.

Proof The proof is a special case of the argument given in
[JELENKOVIC & LAZAR, 1998], cf. [GREINER ET AL., 1999]. |

If F has regularly varying tail, then we can apply Karamata’s theorem and obtain the
following.
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Corollary 1.4.1 Let F(x) =2 “L(x), + > 0, for a > 1 and L € R(0). Then

1

cov(do, A1) ~ var(do) Ty

=@ VLE), t— 0.

For o € (1,2) the autocorrelation function is not integrable. [ |

This model is a simplified idealisation. It assumes that the tails for both, the on- and
off-periods, have the same relative heaviness. As [WILLINGER ET AL., 1997| point out,
this may not be consistent with telecommunication data. However, the example illustrates
in a simple way how heavy tails can induce long-range dependence.

1.4.2 On/off models with different on-time and off-time distributions

In this section we present a generalisation of the above model with alternating on- and off-
periods. We follow the presentation in [HEATH ET AL., 1996A]. The non-negative iid rvs
(Eons €n)nen, represent the on-periods, and the non-negative iid rvs (Nog, 7n)nen, the off-
periods. On- and off-periods are assumed to be independent, the on-periods have common
df Fy,, the off-periods have common df F, both have finite mean p,, and p.g and we

set f1 = fon + Hof-

There exists a stationary renewal process with interarrival times distributed as &, +
Non- This means that each renewal point is the starting point of an on-period, and each
interarrival time consists of exactly one on- and one off-period. In a stationary version
of the process we see in 0 either an on-period or an off-period. If we see an on-period,
then an off-period follows before the renewal point 77. If we see an off-period, then the
renewal point 717 follows immediately after this off-period. To capture the time interval
[0,7}) we define independent rvs &7, 1y, and B independent of (nog, &n, 1 )nen, Where &;
has df Fo, 1(z) = (1/fton) fox Fou(y)dy, nr has df Fog 1(x) = (1/ ptogr) fox Fog(y)dy, and B is
a Bernoulli rv with success probability P(B = 1) = pon/p. Then the stationary situation
is modeled by

Ty = B(& + o) + (L= B)m -

The corresponding on/off process (A;);>p which is equal to 1 if ¢ falls in an on-period and
0 if ¢ falls in an off-period can be defined in terms of (7},),en as follows:

Ay =BLjog )y () + > Iig, g,v600 (), > 0.
n=1

Thus if t > T}

A, = 1 ian§t<Tn+€n+17
b ian+€n+1§t<Tn+17

while for ¢ € [0,77) we have

A = 1 ifB=land 0<t<¢s,
71 0 otherwise.
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With this construction, (A;) is strictly stationary ((A4;) inherits the stationarity from the
stationary renewal sequence (7},)). Moreover, P(A; = 1) = pon/p. To see this, write

P(A,=1)= EA, = P(B=1)P(& > ) + iP(Tn <t<Tp+&npr).  (112)

n=1

Recall that the renewal function of the stationary sequence (75,) is equal to

t
—, t>0.

U(t) = iP(Tn <=1

Now we can evaluate the infinite sum in (1.12) as

Z/O Fou(t —u)dP(T, < u) = /OFon(t—U)dU(u)

1 [t 7
= —/ Fou(t —u)du = —Fu,r(t),t>0.
M Jo H

Hence,

BA = EE (PG > 1)+ Pl <) = .

The main theorem in [HEATH ET AL., 1996A] describes the autocovariance function of
the process (A;)i>0-

Theorem 1.4.2 Assume thaifon(t) =t"“L(t), t > 0, where L € R(0) and a € (1,2).
Assume also that Fog(t) = o(Fon(t)) ast — 0o and that Eon + 1o s non-degenerate. Then

2
cov(Ag, Ar) ~ (aﬁﬁt(a%(t), t— o0 m

The proof is rather technical and even a sketch of it would go beyond the scope of this
paper. The essential argument relies on the rate of convergence in Smith’s key renewal
theorem for heavy-tailed interarrival times.

Define .
A;‘:/Audu, t>0,
0

the cumulative input to the system up to time ¢. Since EA; = pion/ 1, we have A¥/t %%
Hon/ 1t as t — co. Assume the system has a constant release rate r > 0 if the buffer is not
empty. For stability we require po,/p < r < 1 (recall that 1 is the input rate of traffic
into the system). If the buffer is empty, we set r = 0.

Define the buffer contents process (V;)i>o (which corresponds to the workload process) by
the stochastic differential equation

dV, = dA* — r(V,)dt (1.13)
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for given initial rv V4. During an on-period traffic enters at net rate 1 — r and during an
off-period the buffer content is released at rate r. The (7},) are regeneration times of the
contents process (V;);>o which is stationary ergodic. Consider the change in the buffer
between 7;, and 7;,.,. We see that

Vi = Vo, + (1 = 1)&41 — MMs1)”, 1 €Ny, (1.14)
where the increments have mean
E((l — 1)1 — 7"77n+1) = (1 = 7)ton — Tflofi = Hon — 71 < 0.

Hence V7, satisfies Lindley’s equation (1.6) and the limit variable is determined by

" +
d
Vi, = Vi, = (IB%( g (1 =r)ns1 — rnn+1)) ) (1.15)
=" =0

In a subexponential regime the tail behaviour of the stationary waiting time distribution is
given by Theorem 1.3.2. The rvs (1 —7)&, correspond to the service times in this theorem.
The constant p is given by

rate of the arrival process (1 —7)ton

p = : =
rate of the service process T ot

Now we can reformulate Theorem 1.3.2 in our context and obtain the following result.

Proposition 1.4.2 Let W denote the df of Vi, and set p = (1 — r)pon/ (T pior). Then

— 1—r

W€S<:>FOH’I€S:>W(.’L')NLFOH’[< v ), T — 00. [ |

If Fi, has regularly varying tail, then we can apply Karamata’s theorem and obtain the
following.

Corollary 1.4.3 Let Fo,(z) = 2 *L(x), 2 >0, for a > 1 and L € R(0). Then

)a—l

= p (1—r —(a—1) —(a—1)
W(z) T oo 1)33 () =: bx (), x— o0

The buffer content process has its cycle maxima not at the points (7},), but at the points
(T, + &), hence the following result is not surprising. It shows that the distributional
limit of V;, the buffer contents at some time ¢, has an even heavier tail than that of Vi, |,
the buffer contents at renewal points.

Proposition 1.4.4 Let F,,(z) = 27 °L(z), > 0, for a > 1 and L € R(0). Define b as
in Corollary 1.4.3. Then V; < Ve and

(1—r)>t

f)(VZO >’1ﬂ ~ <b'+'7;(ai:fij—

> O VL), - 0. |
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Remark 1.4.5

(i) The buffer contents process as above has already been considered in [BoxMma, 1996],
also in the context of telecommunication traffic. He requires (as [HEATH ET AL., 19964
do) regularly varying tails for F,. Boxma’s model is more general in the sense that he
allows for several (N € N) sources transmitting data to one buffer. But as he states, the
analytical treatment becomes then rather complicated. Apart from the case of one source,
he treats some examples for N > 1.

(ii) The asymptotic distribution of cycle maxima in a more general, namely subexponen-
tial, queueing setting has been derived in [ASMUSSEN, 1996]. 2

1.5 An explorative data analysis

In this section we want to discuss whether real telecommunication traffic justifies the
application of on/off models as introduced in section 1.4 as source models. In particular,
does real telecommunication traffic exhibit bursty arrival patterns such that power-tailed
or Pareto-like distributions of the on/off periods are appropriate? The traffic we consider
in the sequel was observed at a network access point (Customer Service Switch) of the
Munich Universities’ intranet to the German Broadband Research Network (B-WiN) at
the Leibniz Research and Supercomputing Center of the Bavarian Academy of Sciences.
It consists of pure IP (Internet Protocol) data traffic restricted to the network applicati-
ons/protocols HTTP, FTP, NNTP, SMTP, and TELNET.

2500 3000

1000 1500 2000

500

0 50000 100000 150000 200000

Abbildung 1.1: Length of on-periods in us; i.e. lengths of cell bursts, extracted from
a total of 1690730 ATM cells. This comprises 247,995 IP packets which were captured
within approximately two minutes in the afternoon of December 23, 1997.

From that data traffic the lengths of on-periods were extracted with the burst analysis
described in [GOGL ET AL., 1999] in this volume (see there and also [GOGL, 1998] for
more details on how the data were collected). A plot of the lengths of the successive
on-periods is presented in Figure 1.1. The scatterness of the data and in particular the

14



frequency and size of the peaks (large on-periods) suggest that further investigation may
reveal heavy-tailedness of the on-periods.

Various graphical tools are presented in the literature to investigate the tail behavior of a
distribution. For details we refer to Section 6.2 of [EMBRECHTS ET AL., 1997]. For such
methods applied to telecommunication data see [RESNICK, 1997].

In order to check for infinite variance of the on- and off-periods, respectively, we start
with applying the limit distribution (LD) test (see e.g. [CROVELLA ET AL., 1998]) to

our datasets: each dataset (X;) of size N is aggregated over blocks k = 1,2,..., L%J of
size m with increasing m, i.e.
km
xm = X; .
i=(k—1)m+1

If the tail probabilities of the aggregated datasets, plotted on log-scale, decline exponenti-
ally for increasing m, the original dataset follows a finite-variance distribution (due to the
CLT). On the other hand, if the slopes « of the tail probability graphs remain (roughly)
constant and « < 2, the original dataset follows an infinite-variance distribution. This
statement is based on the central limit theorem. Under fairly general conditions, sums of
finite variance rvs converge properly normalised to a standardnormal distribution, where-
as sums of infinite variance rvs converge to a stable distribution. For large m one expects
to see exponential decay for the distribution tail of the sum, whose distributional limit
is the normal distribution, whereas the distribution tail of the sum with stable limit de-
creases like a power tail with index a € (0,2). In Figure 1.2 the LD-plots of the on- and
off-periods are shown. The upper graph for the on-periods starts for m = 1 with a linear
slope, which for larger m turns into a concave function. This could be explained by data
having regularly varying tail, however with index @ > 2. The linear function for m =1 is
based on the property of power-tailed distributions, namely

dlog(F(z))
eoo  dlogr

For larger m the aggregation takes over showing the normal limit distribution. The lower
graph for the off-periods exhibits even for m = 1 a light-tailed distribution. Hence we
may conclude that both, the on- and off-periods have finite variance, the on-periods are
obviously lighter tailed than the off-periods.

In order to reach at a clearer picture we furthermore apply the mean excess function

which is another excellent explorative method to discriminate distribution tails. For a
non-negative rv X the mean excess function is defined as

e(u) =E(X —ulX >u), u>0.
This function is constant for exponential X, it tends to 0 for light-tailed dfs and to oo for

heavy-tailed dfs. The Pareto distribution is characterised by a linearly increasing mean
excess function. More precisely, if P(X > z) = (14 J5)7* for @ > 1, § € R, then

e(u) = aff+u

a—1"
Figure 1.3 shows the empirical mean excess function of the on- and off-periods of the
above traffic. A Pareto tail (or regularly varying tail) seems to fit well to the on-periods,
whereas the off-periods have apparently a lighter tail than the on-periods.
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Abbildung 1.2: LD plots of the lengths of the on-periods (upper graph) and off-periods
(lower graph) on log-scale to the basis 10 for m = 1,10, 100, 500, and 1000.
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Abbildung 1.3: Mean excess function of the on-periods (lhs) and off-periods (rhs).
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This indicates that an on/off model as presented in Section 1.4.1 may be appropriate for
our data. Notice that for the moment we ignore the clusters around the peaks and assume
that the lengths of on-periods can be modeled by iid rvs. We investigate the corresponding
fluid process (A¢)i>0, which is defined as 1 during an on-period and 0 during an off-period.

Finally, we estimate the autocorrelation function of this process for our data. The result
is shown in Figure 1.4, where we plot the estimated autocorrelation function from lag 5 to
lag 7000. We only start from lag 5 to make the function visible at larger lags (of course the
estimated autocorrelation at lag 0 is equal to 1). Comparing the estimated autocorrelation
function to the 95% confidence bounds, we clearly see a long-range dependence effect.

0.02 0.03

0.01

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, b L H“\I\ WSkt ) A AR L

0.0

|
0 2000 4000 6000

Abbildung 1.4: The empirical autocorrelation function of (A;);>0 from lag 5 up to lag 7 000.

0.100 1.000

0.010

1 10 100 1000 10000
Abbildung 1.5: The log-log plot of the empirical autocovariance function of (A;). Both

axes have been log-transformed to the basis 10.

In Figure 1.5 we plot the estimated autocorrelation function on log-scale (to the basis 10).
Now we estimate the slope of the curve by linear regression for the lags in the interval
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(20,7000). The slope is estimated by —0.82 which — accordingly to Theorem 1.4.2 — means
a = 1.82, a value fairly lower than in the previous tests. Hence we estimate

—

corr(Ag, Ay) = ¢t

for some positive constant c. Notice that for this model we have estimated an autocorre-
lation function, which decays hyperbolically and which is not integrable over t.

We should like to say that this first very crude model fitting is by no means the end
of the story, on the contrary, we only consider it as a promising start. The data ex-
hibit many structural features which have to be explored in much greater detail. We
only mention here the clusters around the peaks in Figure 1.1. Whether these and other
data from the measurements of [GOGL, 1998] exhibit the much discussed and import-
ant feature of todays network traffic, namely self-similarity, needs more careful investi-
gations and will be done in future work. But remarkable enough, it is widely agreed
upon that on/off models are very appropriate as source models for self-similar network
traffic: the superposition of many strictly alternating independent and identically dis-
tributed on/off sources with heavy-tailed distributions with infinite variance results in
self-similar aggregate traffic ([TAQQU ET AL., 1997]). It is shown by the contributions
[LIPSKY & SCHWEFEL, 1999A] and [L1PSKY & SCHWEFEL, 1999B] in this volume that
— besides having this theoretical soundness — on/off models are additionally computatio-
nally very tractable and versatile.
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