
Asymptotic behavior of the sample autocovariance andautocorrelation function of the AR(1) process with ARCH(1)errorsMilan Borkovec�AbstractWe study the sample autocovariance and autocorrelation function of the stationary AR(1)process with ARCH(1) errors. In contrast to ARCH and GARCH processes, AR(1) processeswith ARCH(1) errors can not be transformed into solutions of linear stochastic recurrenceequations. However, we show that they still belong to the class of stationary sequenceswith regular varying �nite-dimensional distributions and therefore the theory of Davis andMikosch (1998) can be applied.AMS 1991 Subject Classi�cations: primary: 60H25secondary: 60G10, 60J05Keywords: ARCH model, autoregressive process, extremal index, geometric ergodicity, heavytail, multivariate regular variation, point processes, sample autocovariance function, strong mix-ing
�School of Operations Research and Engineering, 232 Rhodes Hall, Cornell University, Ithaca, New York 14853,USA, email: borkovec@orie.cornell.edu 1



1 IntroductionOver the last two decades, there has been a great deal of interest in modelling real data us-ing time series models which exhibit features such as long range dependence, nonlinearity andheavy tails. Many data sets in econometrics, �nance or telecommunications have these commoncharacteristics. In particular, they appear to be reconcilable with the assumption of heavy-tailedmarginal distributions. Examples are �le lengths, CPU time to complete a job or length of on/o�cycles in telecommunications and logreturns of stock indices, share prices or exchange rates in�nance.The feature of nonlinearity can be often detected by considering the sample autocorrelationfunctions (ACFs) of a time series, their absolute values and squares. The reason is the following.A heavy tailed time series that can be represented as an in�nite moving average process has theproperty that the sample ACF at lag h converges in probability to a constant �(h) although themathematical correlation typically does not exist (Davis and Resnick (1985),(1986)). However,for many nonlinear heavy tailed sequences the sample ACF at lag h converges in distribution toa nondegenerate random variable. In Resnick and Van den Berg (1998) a test for (non)linearityof a given in�nite variance time series is proposed, based on subsample stability of the sampleACF.The phenomenon of random limits of sample ACFs was observed �rst in the context ofin�nite variance bilinear processes by Davis and Resnick (1996) and Resnick (1997). Davisand Mikosch (1998) studied the weak limit behavior for a large variety of nonlinear processeswith regularly varying marginal distributions which satisfy a weak mixing condition and someadditional technical assumptions. It is shown in their article that the sample autocovariancefunction (ACVF) and ACF of such processes with in�nite 4th but �nite second moments havea rate of convergence to the true ACVF and ACF that become slower the closer the marginaldistributions are to an in�nite second moment. In cases of an in�nite second moment, the limitsof the sample ACVF and ACF are nondeterministic. Processes which belong to the framework ofDavis and Mikosch (1998) are the ARCH(1) processes, the simple bilinear processes with light-tail noise (Basrak, Davis and Mikosch (1999)) and the GARCH(1,1) processes (Mikosch andStarica (1999)). Finally, Davis, Mikosch and Basrak (1999) embedded the three aforementionedprocesses to a larger class of processes which still satisfy the conditions for the theory of Davisand Mikosch (1998). These processes have basically the property that they can be transformedto solutions of multivariate linear stochastic recurrence equations. Linear stochastic recurrence2



equations of this form were considered by Kesten (1973) and Vervaat (1979) and include theimportant family of the squares of GARCH processes.The aim of this paper is to apply the general theory of Davis and Mikosch (1998) to adi�erent type of processes with di�erent structure than considered in Davis, Mikosch and Bas-rak (1999), namely the autoregressive (AR) processes of order 1 with autoregressive conditionalheteroscedastic one (ARCH(1)) errors. The class of AR (or more general ARMA) models withARCH errors were �rst proposed by Weiss (1984). In the paper of Weiss, they were found tobe successful in modelling thirteen di�erent U.S. macroeconomic time series. AR models withARCH errors are one of the simplest examples of models that can be written by a randomrecurrence equation of the form Xt = �t + �t "t ; t 2 N ; (1.1)where "t are iid innovations with mean zero, �t is the conditional expectation of Xt (which mayor may not depend on t) and the volatility �t describes the change of (conditional) variance.Because of the nonconstant conditional variance models of the form (1.1) are often referred toas conditional heteroscedastic models. Empirical work has con�rmed that such models �t manytypes of �nancial data (log-returns, exchange rate, etc.). In this paper, we concentrate on theAR(1) process with ARCH(1) in order to have a Markov structure and hence make the modelanalytically tractable. It is de�ned by specifying �t and �t as follows:�t = �Xt�1 and �2t = � + �X2t�1 ; (1.2)where � 2 R and �; � > 0. Note that for � = 0 we get just the ARCH(1) model introduced byEngle (1982).The research of the sample ACVF and ACF of the AR(1) process with ARCH(1) errorsis motivated by the following. The AR(1) process with ARCH(1) errors is a natural mixturebetween an AR(1) and an ARCH(1) process. Therefore results of this paper can be seen as ageneralization of results for the aforementioned two processes. The weak limit behavior of theARCH(1) process was studied by Davis and Mikosch (1998). For � = 0, the process de�ned by(1.1) and (1.2) is an AR(1) process. A summary of results about the asymptotical theory of thesample ACFs of AR processes can be found for instance in Brockwell and Davis (1990), Chapter7.2 and 13.3, or Embrechts, Kl�uppelberg and Mikosch (1997), Chapter 7.3.AR(1) processes with ARCH(1) errors are not solutions of linear stochastic recurrence equa-tions and there is also no obvious way how to transform them to such equations. However, we3



show that the processes still belong to stationary weak dependent sequences which are jointlyregularly varying. One conclusion of this paper is that AR(1) processes with ARCH(1) errorsserve as one of the simplest examples of sequences which do not ful�ll the framework in Davis,Mikosch and Basrak (1999) but to which the theory of Davis and Mikosch (1998) can still beapplied.The paper is organized as follows. In Section2 we introduce the AR(1) model with ARCH(1)errors and consider some basic theoretical properties of it. The weak convergence of the pointprocesses associated with the sequences (Xt), (jXtj) and (X2t ) is investigated in Section 3. Finally,in Section 4 we present the results concerning the weak convergence of the sample ACVF andACF of the AR(1) process with ARCH(1) errors, the absolute and squared values.2 PreliminariesWe consider an autoregressive model of order 1 with autoregressive conditional heteroscedasticerrors of order 1 (AR(1) model with ARCH(1) errors) which is de�ned by the stochastic di�erenceequation Xt = �Xt�1 +q� + �X2t�1"t ; t 2 N ; (2.1)where ("t) are i.i.d. random variables, � 2 R; �; � > 0 and the parameters � and � satisfy inaddition the inequality E(ln j�+p� "j) < 0 : (2.2)This condition is necessary and su�cient for the existence and uniqueness of a stationary distri-bution. Here " is a generic random variable with the same distribution as "t. In what follows weassume the same conditions for " as in Borkovec and Kl�uppelberg (1998). These are the so-calledgeneral conditions:" is symmetric with continuous Lebesgue density p(x) ;" has full support R ;the second moment of " exists ; (2.3)and the technical conditions (D:1)� (D:3):(D.1) p(x) � p(x0) for any 0 � x < x0 . 4



(D.2) For any c � 0 there exists a constant q = q(c) 2 (0; 1) and functions f+(c; �); f�(c; �) withf+(c; x); f�(c; x)! 1 as x!1 such that for any x > 0 and t > xqp(x+ c+ �tp� + �t2 ) � p( x+ �tp� + �t2 ) f+(c; x) ;p(x+ c� �tp� + �t2 ) � p( x� �tp� + �t2 ) f�(c; x) :(D.3) There exists a constant � > 0 such thatp(x) = o(x�(N+1+�+3q)=(1�q)) ; as x!1 ;where N := inffu � 0 ; E(jp�"ju) > 2g and q is the constant in (D:2).There exists a wide class of distributions which satisfy these assumptions. Examples are thenormal distribution, the Laplace distribution or the Students distribution. Conditions (D:1)�(D:3) are necessary for determing the tail of the stationary distribution. For further detailsconcerning the conditions and examples we refer to Borkovec and Kl�uppelberg (1998). Notethat the process (Xn)n2N is evidently a homogeneous Markov chain with state space R equippedwith the Borel �-algebra. The next theorem collects some results on (Xt).Theorem 2.1 Consider the process (Xt) in (2.1) with ("t) satisfying the general conditions(2.3) and with parameters � and � satisfying (2.2). Then the following assertions hold:(a) (Xt) is geometric ergodic. In particular, (Xt) has a unique stationary distribution andsatis�es the strong mixing condition with geometric rate of convergence X(h), h � 0. Thestationary df is continuous and symmetric.(b) Let F (x) = P (X > x); x � 0; be the right tail of the stationary df and the conditions(D:1)� (D:3) are in addition ful�lled. ThenF (x) � c x�� ; x!1 ; (2.4)where c = 12� E �����jXj+p� + �X2"���� � ���(�+p�")jXj�����E �j�+p�"j� ln j�+p�"j� (2.5)and � is given as the unique positive solution toE(j�+p�"j�) = 1 : (2.6)Furthermore, the unique positive solution � is less than 2 if and only if �2 + �E("2) > 1.5



Remark 2.2 (a) Note that E(j�+p�"j�) is a function of �; � and �. It can be shown that for�xed �, the exponent � is decreasing in j�j. This means that the distribution of X gets heaviertails when j�j increases. In particular, the AR(1) process with ARCH(1) errors has for � 6= 0heavier tails than the ARCH(1) process.(b) The strong mixing property includes automatically that the sequence (Xt) satis�es theconditions A(an). The condition A(an) is a frequently used mixing condition in connection withpoint process theory and was introduced by Davis and Hsing (1995). See (3.7) for the de�nition.2In order to investigate the limit behavior of the sample ACVF and ACF of (Xt) we de�ne threeauxiliary processes (Yt), ( eXt) and ( eZt) as follows: let (Yt) and ( eXt) be the processes given bythe random recurrence equationsYt = �Yt�1 +q�Y 2t�1 "t ; t 2 N ; (2.7)and eXt = j� eXt�1 +q� + � eX2t�1"tj ; t 2 N ; (2.8)where the notation is the same as in (2.1), Y0 = X0, eX0 = jX0j a.s. and seteZt = ln( eX2t ) ; t 2 N :It is easy to see that the process (Yt) is not stationary (or at least not non-trivial stationary).However, for Yt � Xt large and M 2 N �xed, we will see that the sequence Yt; Yt+1; :::; Yt+Mbehaves approximately asXt;Xt+1; :::;Xt+M (see also Figure 1). This fact will be very importantin order to establish joint regular variation of X0;X1; :::;XM .Because of the symmetry of ("t), the independence of "t and Xt�1 in (2.1) and the homo-geneous Markov structure of (Xt) and ( eXt) it is readily seen that ( eXt) d= (jXtj). Studying theprocess ( eXt) instead of (jXtj) can be often much more convenient. In particular, since ( eXt)follows (2.8) the process ( eZt) satis�es the stochastic di�erence equationeZt = eZt�1 + ln�(�+q� e� eZt�1 + � "t)2� ; t 2 N ; (2.9)where eZ0 equals ln(X20) a.s.. Note that (eZt) d= (ln(X2t )). Moreover, (eZt) does not depend onthe sign of the parameter � since "t is symmetric. The following lemma shows that ( eZt) can bebounded above a high threshold by a random walk with negative drift. The proof of this result6
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Figure 1: Simulated sample path of (Xt) with initial value X0 = 50 and parameters � = 0:6; � = 1; � = 0:6 (left)and of (Yt) with the same initial value and parameters (right) in the case " � N(0; 1). Both simulations are basedon the same simulated noise sequence ("t). The pictures demonstrate that the processes behave similar for largevalues.can be found in Borkovec (2000) and is based basically on the recurrence structure of (eZt) in(2.9). The result is crucial for proving Proposition 3.1 .Lemma 2.3 Let a be large enough, Na := inff� � 1 j eZ� � ag and eZ0 > a. TheneZt � eZ0 + Sat for any t � Na a.s. ; (2.10)where Sat is random walk with negative drift given bySa0 = 0 and Sat = Sat�1 + ln�(�+p� e�a + � "t)2�+ ln�1� 2�p�e�a=2"t(�+p� e�a + � "t)2 1f"t<0g� :Moreover, for a " 1, we have Sat a:s:! St ;7



where S0 = 0 and St = St�1 + ln(�+p� "t)2 . 23 Weak convergence of some point processes associated withthe AR(1) process with ARCH(1) errorsIn this section we formulate results on the weak convergence of some point processes of the formNn = nXt=1 �X(m)t =an ; n = 1; 2; :::; (3.1)where X(m)t are random row vectors with dimension m+1 2 N arbitrary whose components arehighly related to the AR(1) process with ARCH(1) errors (Xt) de�ned in the previous sectionand (an) is a normalizing sequence of real-valued numbers. The main result in this section issummarized in Theorem 3.3. The proof of this result is basically an application of the theory inDavis and Mikosch (1998). Proposition 3.1 collects some properties of (X(m)t ) which we need forthe proof of Theorem 3.3.We follow the notation and the point process theory in Davis and Mikosch (1998) andKallenberg (1983), respectively. The state space of the point processes considered is Rm+1 nf0g.WriteM for the collection of Radon counting measures on Rm+1nf0g with null measure o. Thismeans that � 2 M if and only if � is of the form � = P1i=1 ni�xi, where ni 2 f1; 2; 3; :::g andxi 2 Rm+1 n f0g distinct and #fi j jxij > y g <1 for all y > 0 .In what follows we suppose that (Xt) is the stationary AR(1) process with ARCH(1) givenby (2.1). ("t) satis�es the general conditions (2.3) and (D:1)� (D:3) and the parameters � and� are chosen such that (2.2) holds. We start by specifying the random row vectors (X(m)t ) andthe normalising constants (an) in (3.1) and by introducing some auxilary quantities in order tobe in the framework of Davis and Mikosch (1998). For m 2 N0 , de�neX(m)t = (Xt;Xt+1; :::;Xt+m) ; t 2 Z;Z(m)0 = �r0; (�r0 +p�"1); :::; (�r0+p�"1)Qm�1s=1 (�+p�rs"s+1)�and Z(m)t = (�r0 +p�"1)  t�1Ys=1(�+p�rs"s+1); :::;m+t�1Ys=1 (�+p�rs"s+1)! ; t 2 N ;8



where rs = sign(Ys) is independent of jYsj, (Ys) is the process in (2.7) and Q0i=1 = 1 . Besides,for k 2 N0 arbitrary but �xed, de�ne the stochastic vectorsX(m)�k (2k + 1) = (X(m)�k ;X(m)�k+1; :::;X(m)k )and Z(m)0 (2k + 1) = (Z(m)0 ;Z(m)1 ; :::;Z(m)2k ) :Analogously to Davis and Mikosch (1998) we take j � j to be the max-norm in Rm+1, i.e.jxj = j(x0; :::; xm)j = maxi=0;:::;m jxij :Now we are able to de�ne the sequence (an) in (3.1). Let (a(k;m)n ) be a sequence of positivenumbers such thatP (jXj > a(k;m)n ) � (nE(jZ(m)0 (2k + 1)j�))�1 ; as n!1 : (3.2)For k = 0, we write an = a(0;m)n in the following. Note that because of (2.4) one can choosea(k;m)n as a(k;m)n = �2 cE(jZ(m)0 (2k + 1)j�)�1=� n1=� ; n � 1 : (3.3)With this notation we can state the following proposition.Proposition 3.1 Let (Xt) be the stationary AR(1) process with ARCH(1) given by (2.1) andand assume that the conditions of Theorem 2.1 hold. Then(a) (X(m)t ) is strongly mixing with a geometric rate of convergence. To be more speci�c, thereexist constants � 2 (0; 1) and C > 0 such that for any h � msupA2�(X(m)s ; s�0);B2�(X(m)s ; s�h) jP (A \ B)� P (A)P (B)j =: X(m)(h)= X(h�m) � C �h�m :(b) X(m)�k (2k + 1) is jointly regularly varying with index � > 0, more preciselynP (jX(m)�k (2k + 1)j > t a(k;m)n ;X(m)�k (2k + 1)=jX(m)�k (2k + 1)j 2 � ) (3.4)v! t��E(jZ(m)0 (2k + 1)j� 1fZ(m)0 (2k+1)=jZ(m)0 (2k+1)j2 � g)=E(jZ(m)0 (2k + 1)j�) ; t > 0 ;as n!1, where the symbol v! stands for vague convergence.9



(c) Let (pn) be an increasing sequence such thatpnn ! 0 and nX(m)(ppn)pn ! 0 as n!1 : (3.5)Then for any y > 0limp!1 lim supn!1 P 0@ _p�jtj�pn jX(m)t j > any ��� jX(m)0 j > any1A = 0 : (3.6)Remark 3.2 (a) In the spirit of Davis and Mikosch (1998) the jointly regular varying propertyof X(m)�k (2k + 1) can also be expressed in the more familiar waynP (jX(m)�k (2k + 1)j > t a(k;m)n ;X(m)�k (2k + 1)=jX(m)�k (2k + 1)j 2 � ) v! t�� P�( � ) ; as n!1 ;where P�( � ) = eP � (�(k)�k; :::; �(k)k )�1 , �(k)j = Z(m)k+j=jZ(m)0 (2k + 1)j, j = �k; :::; k, and d eP =jZ(m)0 (2k + 1)j�=E(jZ(m)0 (2k + 1)j�) dP : In the following we will basically use this notation.(b) Due to statement (b) in Proposition 3.1 the positive sequence (an) in (3.2) with k = 0 canbe also characterized by limn!1nP (jX(m)0 j > an) = 1 :Hence an can be interpreted as the (approximated) (1� n�1)-quantile of X(m)0 .(c) In the case of a strong mixing process, the conditions in (3.5) are su�cient to guarantee that(pn) is a A(an)-separating sequence, i.e.E exp � nXt=1 f(X(m)t =an)!� E exp � pnXt=1 f(X(m)t =an)!!kn ! 0 ; as n!1 ; (3.7)where kn = [n=pn] and f is an arbitrary bounded non-negative step function on Rm n f0g . Notethat (pn) is in the case of a strong mixing process independent of (an).Proof. (a) This is an immediate consequence of the strong mixing property of (Xn) andthe fact that strong mixing is a property of the underlying �-�eld.(b) Fix t > 0 and let � > 0 be small enough such that t � 2� > 0. Moreover, choose B 2B(S(2k+1)(m+1)�1) arbitrary, where S := S(2k+1)(m+1)�1 denotes the unit sphere in R(2k+1)(m+1)with respect to the max-norm j � j. De�ne B� = fx 2 S j 9y 2 B : jx� yj � 2�=(t� 2�)g andB�� = fx 2 B j jx� yj � 2�=(t� 2�) 8y 2 S n Bg. Note that B�� � B � B� .Next set Y(m)t := (Yt; Yt+1; :::; Yt+m) ; t 2 N0 ; and Y(m)0 (2k+1) = (Y(m)0 ;Y(m)1 ; :::;Y(m)2k ), where10



(Yt) is the process given in (2.7). Using the de�nition of the process (Yt) and of the stochasticvectors Z(m)t , it can be readily seen thatY(m)0 (2k + 1) = jX0jZ(m)0 (2k + 1) : (3.8)The basic idea of proving (3.4) is now to approximate X(m)�k (2k + 1) by Y(m)0 (2k + 1). Becauseof the stationarity of (Xt) it is su�cient to compare X(m)0 (2k + 1) with Y(m)0 (2k + 1). First webound the probability in the left hand side of (3.4) from above as follows.nP�jX(m)�k (2k + 1)j > t a(k;m)n ; X(m)�k (2k+ 1)=jX(m)�k (2k + 1)j 2 B �= nP�jX(m)0 (2k + 1)j > t a(k;m)n ; X(m)0 (2k + 1)=jX(m)0 (2k + 1)j 2 B �� nP�jX(m)0 (2k + 1)�Y(m)0 (2k + 1)j > � a(k;m)n �+ nP�jX(m)0 (2k+ 1)j > t a(k;m)n ; X(m)0 (2k + 1)=jX(m)0 (2k + 1)j 2 B ;jX(m)0 (2k+ 1)�Y(m)0 (2k + 1)j � � a(k;m)n �� nP�jX(m)0 (2k + 1)�Y(m)0 (2k + 1)j > � a(k;m)n �+ nP�jY(m)0 (2k + 1)j > (t� �) a(k;m)n ; Y(m)0 (2k + 1)=jY(m)0 (2k+ 1) 2 B� ;jY(m)0 (2k + 1)�Y(m)0 (2k + 1)j � � a(k;m)n �=: (I1) + (I2) ;where the last inequality follows from the fact that for any x;y 2 R(2k+1)(m+1) the inequali-ties jx � yj � �a(k;m)n and jxj > ta(k;m)n imply jyj > (t � �)a(k;m)n , jx=jxj � y=jxjj � �=t andjjyj=jxj � 1j � �=(t� 2�). The rest is a triangular argument.First, we consider (I1). By the de�nition of the max-norm and due to the Boolean andMarkov inequalities, we derive(I1) = nP ( max0�s�2k+m jXs � Ysj > �a(k;m)n )= nP ( max0�s�2k+m jq� + �X2s�1 �q�X2s�1j j"sj > �a(k;m)n )� nP ( max0�s�2k+m j"sj > �a(k;m)n =p�)� (2k+m+ 1) nE(j"j�+�)(�a(k;m)n =p�)�+� ;where � > 0 is chosen such that E(j"j�+�) < 1 . This is possible because of the assumption(D:3). Using (3.3) the right hand side converges to zero.11



Now we estimate (I2). By (3.8) , we have(I2) � nP�jX0j jZ(m)0 (2k+ 1)j > (t� �)a(k;m)n ; Z(m)0 (2k + 1)=jZ(m)0 (2k + 1)j 2 B��= nP�jX0j jZ(m)0 (2k+ 1)j 1fZ(m)0 (2k+1)=jZ(m)0 (2k+1)j2B�g > (t� �)a(k;m)n �Note that jX0j and Z(m)0 (2k + 1) are independent, nonnegative random variables. Moreover,jX0j is regularly varying with index � > 0 and E(jZ(m)0 (2k + 1)j�) < 1. Thus, a result ofBreiman (1965) yields that (I2) behaves asymptotically asnP�jX0j > (t� �)a(k;m)n )E(jZ(m)0 (2k + 1)j� 1fZ(m)0 (2k+1)=jZ(m)0 (2k+1)j2B�g�� (t� �)��E(jZ(m)0 (2k + 1)j� 1fZ(m)0 (2k+1)=jZ(m)0 (2k+1)j2B�)E(jZ(m)0 (2k + 1)j�) ; as n!1 ;where we used in the second line (3.2). Because � > 0 is arbitrary and B� # B as � # 0 we havefound thatlim supn!1 nP�jX(m)�k (2k + 1)j > t a(k;m)n ;X(m)�k (2k + 1)=jX(m)�k (2k + 1)j 2 ��� t��E�jZ(m)0 (2k + 1)j� 1fZ(m)0 (2k+1)=jZ(m)0 (2k+1)j2 � g)=E(jZ(m)0 (2k + 1)j�)� : (3.9)Next we proceed to establish that the inequality (3.9) also holds in the converse direction forlim inf. With similar arguments as above, we havenP�jX(m)�k (2k + 1)j > t a(k;m)n ; X(m)�k (2k + 1)=jX(m)�k (2k + 1)j 2 B �� nP�jY(m)0 (2k + 1)j > (t+ �) a(k;m)n ; Y(m)0 (2k + 1)=jY(m)0 (2k + 1) 2 B�� ;jX(m)0 (2k+ 1)�Y(m)0 (2k + 1)j � � a(k;m)n �� nP�jY(m)0 (2k + 1)j > (t+ �) a(k;m)n ; Y(m)0 (2k + 1)=jY(m)0 (2k + 1) 2 B���� nP�jX(m)0 (2k + 1)�Y(m)0 (2k+ 1)j > � a(k;m)n �� (t+ �)��E(jZ(m)0 (2k + 1)j� 1fZ(m)0 (2k+1)=jZ(m)0 (2k+1)j2B�g)E(jZ(m)0 (2k + 1)j�) ; as n!1 :Since again � > 0 is arbitrary the statement follows.(c) We start by rewriting the probability in statement (c).P� _p�jtj�pn jX(m)t (2k + 1)j > any ��� jX(m)0 (2k+ 1)j > any �= P� max�pn�t��p+2k+1 jXtj > any ��� max0�j�2k+1 jXj j > any�+ P� maxp�t�pn+2k+1 jXtj > any ��� max0�j�2k+1 jXjj > any�=: (J1) + (J2) : 12



In what follows we consider only (J1). (J2) can be treated in a similar way. First note that(J1) � 2k+1Xj=0 P (max�pn�t��p+2k+1 jXtj > any; jXjj > any)P (jXjj > any) P (jXj j > any)P (max0�j�2k+1 jXjj > any)� 2k+1Xj=0 P� max�pn�j�t��p+2k+1�j jXtj > any ��� jX0j > any�� 2(k + 1)P� max�pn�(2k+1)�t��p+2k+1 jXtj > any ��� jX0j > any�� 2(k + 1) �p+2k+1Xt=�pn�(2k+1)P�jXtj > any ��� jX0j > any� :Moreover, using again the property of conditional probability together with the stationarity of(Xt) and substituting t by �t, we get that (J1) is bounded by2(k + 1) �p+2k+1Xt=�pn�(2k+1)P�jX�tj > any ��� jX0j > any�= 2(k+ 1) pn+(2k+1)Xt=p�(2k+1)P�jXtj > any ��� jX0j > any� :Recalling that ( eZt) = (ln( eXt)2) d= (ln(Xt)2) it follows that the last expression can be alsoexpressed by 2(k + 1) pn+(2k+1)Xt=p�(2k+1)P� eZt > ln(any)2 ��� eZ0 > ln(any)2� :Next, set Na = inffs 2 N ; eZs � a g as in Lemma 2.3. Choose the threshold a large enoughin order to guarantee that E��(�+p� e�a + � ")2 � 2�p�e�a=2"1f"<0g��=4� � � for a �xed� 2 (0; 1). This is possible because of (2.2) which implies that E(j�+p� "ju) < 1 for all u 2 (0; �)and the fact thatE��(�+p�e�a + � ")2 � 2�p�e�a=2"1f"<0g��=4�! E�j�+p� "j�=2� ; a!1 ;by the dominated convergence theorem. We derive(J1) � 2(k + 1)�p�2(k+1)�1X�=1 pn+(2k+1)Xt=p�(2k+1)P ( eZt > ln(any)2; Na = � j eZ0 > ln(any)2)+ pn+2kX�=p�(2k+1) pn+(2k+1)Xt=p�(2k+1)P (eZt > ln(any)2; Na = � j ln eZ0 > ln(any)2)13



+ 1X�=pn+(2k+1) pn+(2k+1)Xt=p�(2k+1)P ( eZt > ln(any)2; Na = � j eZ0 > ln(any)2)�=: 2(k + 1)� (K1) + (K2) + (K3)�It can be shown now (see Borkovec (2000)) that the summands (K1), (K2) and (K3) tend tozero as n ! 1 and then p ! 1. The basic idea underlying this result is to use Lemma 2.3and the fact that the expression nP ( eZt > ln(any)2 j eZ0 = x) is uniformly bounded for anyn 2 N; x 2 [e�n; ea] and t 2 N . This �nishes the proof. 2Proposition 3.1 provides some properties for (X(m)t ) and (X(m)t (2k + 1)) which are just therequired assumptions in Davis and Mikosch (1998) for weak convergence of point processes ofthe form (3.1). If we de�nefM = f� 2 Mj�(fx j jxj > 1g) = 0 and �(fx jx 2 Smg) > 0g)and if we let B(fM) be the Borel �-�eld of fM then the following theorem is an immediateconsequence of Proposition 3.1.Theorem 3.3 Assume (Xt) is the stationary AR(1) process with ARCH(1) errors satisfyingthe conditions of Theorem 2.1. ThenNXn = nXt=1 �Xt=an �! NX = 1Xi=1 1Xj=1 �PiQij ; (3.10)where Xt = X(m)t , P1i=1 �Pi is a Poisson process on (0;1] with intensity�(dy) = �E(supk�1 kYs=1(�+p�"s) � P�1) y���1dyand P is a Pareto(�)-distributed random variable, independent of ("s). The process P1i=1 �Pi isindependent of the sequence of iid point processesP1j=1 �Qij , i � 1, with joint distribution Q on(fM;B(fM)), where Q is the weak limit ofeE��j�(k)0 j� � k_j=1 j�(k)j j��+ 1f � g�Xjtj�k ��(k)t ��= eE�j�(k)0 j� � k_j=1 j�(k)j j��+ (3.11)as k !1, and the limit exists. eE is the expectation with respect to the probability measure d ePde�ned in Remark 3.2(a). 14



Remark 3.4 Analogous results can be found for the vectorsjXtj = jX(m)t j = (jXtj; :::; jXt+mj) and X2t = X(m)t 2 = (X2t ; :::;X2t+m) ; t 2 Z; m 2 N ;by using (3.10) and the continuous mapping theorem. Thus, under the same assumptions as inTheorem 3.3, we have N jXjn = nXt=1 �jXtj=an �! 1Xi=1 1Xj=1 �PijQij jand NX2n = nXt=1 �X2t=an �! 1Xi=1 1Xj=1 �PiQ2ijwhere the sequences (Pi), (Qij) are the same as above andjQij jl = (jQ(0)ij jl; jQ(1)ij jl; :::; jQ(m)ij jl) ; l = 1; 2 :Proof. The proof is simply an application of Theorem 2.8 in Davis and Mikosch (1998). Theassumptions of this theorem are satis�ed because of Proposition 3.1. Finally, the extremal index = limk!1 E �j�(k)0 j� �Wkj=1 j�(k)j j��+ =Ej�(k)0 j� of the AR(1) process with ARCH(1) errors isnot zero and is speci�ed by the formula (see Borkovec (2000)) = E(supk�1 kYi=1(�+p�"i) � P�1) ;where P is a Pareto(�)-distributed random variable, independent of ("s). Hence the statementfollows. 24 Asymptotic behavior of the sample ACVF and ACFIn what follows we derive the limit behaviour of the sample ACVF and ACF of the stationaryAR(1) process with ARCH(1) considered in the previous sections. The point process results ofthe section 3 will be crucial.De�ne the sample ACVF of (Xt) byn;X(h) = 1n n�hXt=1 XtXt+h ; h = 0; 1; ::: ;15



and the corresponding sample ACF by�n;X(h) = n;X(h)=n;X(0) ; h = 0; 1; ::: :The sample ACVF and ACF for (jXtj) and (X2t ) are given in the same way. Moreover, we writeX(h) = E(X0Xh) ; jXjl(h) = E(jX0jljXhjl) ;and �X(h) = X(h)=X(0) ; �jXjl(h) = jXjl(h)=jXjl(0) ; l = 1; 2 h = 0; 1; :::if these quantities exist. If this is the case straightforward calculations yieldX(h) = �hX(0) = �h�=(1� �2 � �E("2))and X2(h) = (�2 + �E("2))hX2(0) + �E("2)X(0) h�1Xj=0(�2 + �E("2))j ; h � 0 ;where X2(0) = 2�X(0)(2�2E("2) + �E("4))=(1� �4 � 6�2�E("2)� �2E("4)) :Mean-corrected versions for the sample ACVF and ACF can also be investigated. However onecan show (with the same approach as in the proof of Theorem 4.1) that the limits stay the same(see also Remark 3.6 of Davis and Mikosch (1998)).In order to state our results we have to introduce several mappings. Let � > 0, xt =(x(0)t ; :::; x(m)t ) 2 Rm+1 n f0g and de�ne the mappingsTh;k;� : M ! Rby T�1;�1;��P1t=1 nt�xt� =P1t=1 nt1fjx(0)t j>�g ;Th;k;��P1t=1 nt�xt� =P1t=1 ntx(h)t x(k)t 1fjx(0)t j>�g ; h; k � 0 ;where nt 2 N0 for any t � 1. Since the set fx 2 Rm+1 n f0g j jx(h)j > �g is bounded for anyh = 0; :::;m the mappings are a.s. continuous with respect to the limit point processes NX, N jXjand NX2. Consequently, by the continuous mapping theorem, we have in particularT�1;�1;�(NXn ) = nXt=1 1fjX(0)t j>�g d! T�1;�1;�(NX) = 1Xi=1 1Xj=1 1fjPiQ(0)ij j>�g (4.1)16



and for any h; k � 0Th;k;�(NXn ) = nXt=1X(h)t X(k)t 1fjX(0)t j>�g d! Th;k;�(NX) = 1Xi=1 1Xj=1P 2i Q(h)ij Q(k)ij 1fjPiQ(0)ij j>�g : (4.2)Note that, with obvious modi�cations, (4.1) and (4.2) hold also for N jXjn and N jXj respectivelyNX2n and NX2. The following theorem collects the weak limit results of the sample ACVF andACF of (Xt), (jXtj) and (Xt) depending on the tail index � > 0. The weak limits turn to bein�nite variance stable random vectors. However, they are only functionals of point processesand have no explicit representation. Therefore, the results are only of qualitative nature andexplicit asymptotic con�dence bounds for the sample ACVFs and ACFs can't be constructed.Theorem 4.1 Assume (Xt) is the stationary AR(1) process with ARCH(1) errors satsifyingthe conditions of Theorem 2.1 with E("2) = 1. Let � > 0 be the tail index in (2.6) and (an) bethe sequence satisfying (3:3) for k = 0. Then the following statements hold:(1) (a) If � 2 (0; 2), then�na�2n n;X(h)�h=0;:::;m d! (V Xh )h=0;:::;m ;(�n;X(h))h=1;:::;m d! (V Xh =V X0 )h=1;:::;m ;and �na�2n n;jXj(h)�h=0;:::;m d! (V jXjh )h=0;:::;m ;��n;jXj(h)�h=1;:::;m d! (V jXjh =V jXj0 )h=1;:::;m ;where the vectors (V X0 ; :::; V Xm ) and (V jXj0 ; :::; V jXjm ) are jointly �=2-stable in Rm+1 with pointprocess representation V Xh = 1Xi=1 1Xj=1 P 2i Q(0)ij Q(h)ijand V jXjh = 1Xi=1 1Xj=1 P 2i jQ(0)ij jjQ(h)ij j ; h = 0; :::;m ; respectively .(b) If � 2 (0; 4), then�na�4n n;X2(h)�h=0;:::;m d! (V X2h )h=0;:::;m ;��n;X2(h)�h=1;:::;m d! (V X2h =V X20 )h=1;:::;m ;17



where (V X20 ; :::; V X2m ) is jointly �=4-stable in Rm+1 with point process representationV X2h = 1Xi=1 1Xj=1 P 4i (Q(0)ij Q(h)ij )2 ; h = 0; :::;m :respectively,(2) (a) If � 2 (2; 4) and E("4) <1, then�na�2n (n;X(h)� X(h))�h=0;:::;m d! (V Xh )h=0;:::;m ;�na�2n (�n;X(h)� �X(h))�h=1;:::;m d! �1X (0)(V Xh � �X(h)V X0 )h=1;:::;mand �na�2n (n;jXj(h)� jXj(h))�h=0;:::;m d! (V jXjh )h=0;:::;m ;�na�2n (�n;jXj(h)� �jXj(h))�h=1;:::;m d! �1jXj(0)(V jXjh � �jXj(h)V jXj0 )h=1;:::;m ;where the vectors (V X0 ; :::; V Xm ) and (V jXj0 ; :::; V jXjm ) are jointly �=2-stable in Rm+1 withV X0 = eV X0 �1� (�2 + �)��1 ; V Xm = eV Xm + �V Xm�1 ; m � 1 ;and V jXj0 = V X0 ; V jXjm = eV jXjm +E(j�+p�"j)V jXjm�1 ; m � 1 :Furthermore, (eV X0 ; :::; eV Xm ) and (eV jXj0 ; :::; eV jXjm ) are the distributional limits of�T1;1;�(NX)� (�2 + �)T0;0;�(NX);�T0;h;�(NX)� �T0;h�1;�(NX)�h=1;:::;m�and�T1;1;�(N jXj)� (�2 + �)T0;0;�(N jXj);�T0;h;�(N jXj)�E(j�+p�"j)T0;h�1;�(N jXj)�h=1;:::;m� ;respectively, as � ! 0.(b) If � 2 (4; 8) and E("8) <1, then�na�4n (n;X2(h)� X2(h))�h=0;:::;m d! (V X2h )h=0;:::;m ;�na�4n (�n;X2(h)� �X2(h))�h=1;:::;m d! �1X2(0)(V X2h � �X(h)V X20 )h=1;:::;m ;where (V X20 ; :::; V X2m ) is jointly �=4-stable in Rm+1 withV X20 = eV X20 �1� (�4 + 6�2�+ �2E("4))��1 ; V X2m = eV X2m + (�2 + �)V X2m�1 ; m � 1 ;18



and (eV X20 ; :::; eV X2m ) is the distributional limit of�T1;1;�(NX2)� (�4 + 6�2�+ �2E("4))T0;0;�(NX2);�T0;h;�(NX2)� (�2 + �)T0;h�1;�(NX2)�h=1;:::;m� ;as � ! 0.(3) (a) If � 2 (4;1), then �n1=2(n;X(h)� X(h))�h=0;:::;m d! (GXh )h=0;:::;m ;�n1=2(�n;X(h)� �X(h))�h=1;:::;m d! �1X (0)(GXh � �X(h)GX0 )h=1;:::;mand �n1=2(n;jXj(h)� jXj(h))�h=0;:::;m d! (GjXjh )h=0;:::;m ;�n1=2(�n;X(h)� �X(h))�h=1;:::;m d! �1X (0)(GjXjh � �X(h)GjXj0 )h=1;:::;m ;where the limits are multivariate Gaussian with mean zero.(b) If � 2 (8;1), then�n1=2(n;X2(h)� X2(h))�h=0;:::;m d! (GX2h )h=0;:::;m ;�n1=2(�n;X2(h)� �X2(h))�h=1;:::;m d! �1X2(0)(GX2h � �X2(h)GX20 )h=1;:::;m ;where the limits are multivariate Gaussian with mean zero.Remark 4.2 (a) Theorem 4.1 is a generalization of results for the ARCH(1) process (see Davisand Mikosch (1998)). They use a di�erent approach which does not extend to the general casebecause of the autoregressive part of (Xt).(b) The assumption �2 := E("2) = 1 in the theorem is not a restriction. In cases where thesecond moment is di�erent from one consider the process ( bXt) de�ned by the stochastic recurrenceequation bXt = � bXt�1 +q�=�2 + � bX2t�1 "t=� ; t 2 N ;where the notation is the same as for the process (Xt) in (2.1). Note that ( bXt) = (Xt=�2). Sincethe assumptions in the theorem do not dependent on the parameter � the results hold for ( bXt) andhence they also hold for (Xt) replacing the limits (V Xh ; V jXjh ;V X2h )h=0;:::;m by �4 (V Xh ; V jXjh ;V X2h )h=0;:::;mand (GXh ; GjXjh ;GX2h )h=0;:::;m by �4 (GXh ; GjXjh ;GX2h )h=0;:::;m, respectively.19



(c) Note that the description of the distributional limits in part (2) of Theorem 4.1 is di�erentthan in Theorem 3.5 of Davis and Mikosch (1998). In the latter theorem the conditionlim�#0 lim supn!1 var a�2n n�hXt=1 XtXt+h1fjXtXt+hj�a2n�g! = 0is required. However, this condition is very strong and does not seem to be in general ful�lled when(Xt) is correlated (see e.g. Theorem 1.1 of Rio (1993) for a possible justi�cation) . Therefore, wechoose another way and establish the convergence in distribution of the sample ACVF directlyfrom the point process convergence in Theorem 3.3.Proof. Statements (1a) and (1b) are immediate consequences of Theorem 3.5(1) of Davisand Mikosch (1998). Note that all conditions in this theorem are ful�lled because of Proposi-tion 3.1 and Theorem 3.3. Statements (3a) and (3b) for the sample ACVFs follows from standardlimit theorems for strongly mixing sequences (see e.g. Theorem 3.2.1 of Zhengyan and Chuan-rong (1996)). The limit behavior for the ACFs can be shown in the same way as e.g. in Davisand Mikosch (1998), p.2062 .It remains to show (2a) and (2b). We restrict ourselves to the case (jXtj) and only establish jointconvergence of (n;jXj(0); n;jXj(1)). All other cases can be treated similar or even easier. Recallthat ( eXt) d= (jXtj), where the process ( eXt) is de�ned in (2.8). Thus it is su�cient to study thesample ACVF of the process ( eXt).We start by rewriting n; eX(0) using the recurrence structure of ( eXt)na�2n �n; eX(0)�  eX(0)� = a�2n nXt=1 � eX2t+1 � E( eX2)�= (�2 + �)a�2n nXt=1 � eX2t � E( eX2)�+ a�2n nXt=1 �2� eXtq� + � eX2t "t+1 + (� + � eX2t )("2t+1 � 1)� :We conclude that for any � > 0 ,�1� (�2 + �)�na�2n �n; eX(0)�  eX(0)�= a�2n nXt=1(� + � eX2t )("2t+1 � 1)1f eXt�an�g+ 2�a�2n nXt=1 eXtq� + � eX2t "t+11f eXt�an�g20



+ a�2n nXt=1 � eXtq� + � eX2t "t+1 + (� + � eX2t )("2t+1 � 1)� 1f eXt>an�g + oP (1)=: (I1) + (I2) + (I3) + oP (1) :We show �rst that (I1) and (I2) converge in probability to zero. Note that the summands in (I1)are uncorrolated. Therefore,var(I1) = a�4n nXt=1 var�(� + � eX2t ) 1fj eXtj�an�g ("2t+1 � 1)�� a�4n nXt=1 E �(� + � eX2t )2 1fj eXtj�an�g� E �("2t+1 � 1)2�� const �4�� ; as n!1 ;! 0 ; as � # 0 ;where the asymptotic equivalence comes from Karamatas theorem on regular variation and thetail behavior of the stationary distribution of ( eXt). Note that the condition E("4) <1 is crucial.Analogously, one can show that lim�#0 limn!1 var(I2) = 0 :Now we consider (I3). (2.8) yields(I3) = a�2n nXt=1 eX2t+11f eXt>an�g � (�2 + �)a�2n nXt=1 eX2t 1f eXt>an�g � �a�2n nXt=1 1f eXt>an�gd= T1;1;�(N jXjn )� (�2 + �)T0;0;�(N jXjn )� �a�2n T�1;�1;�(N jXjn )d! T1;1;�(N jXj)� (�2 + �)T0;0;�(N jXj) ; (4.3)where the limit has expectation zero. Finally, following the same arguments as in Davis andHsing (1995), pp. 897-898, the right hand side in (4.3) converges in distribution to a �=2-stablerandom variable, as � ! 0 .Now consider n; eX(1). We proceed as above and writena�2n �n; eX(1)�  eX(1)� = a�2n n�1Xt=1 eXt eXt+1 � E( eX0 eX1)= a�2n n�1Xt=1 �f"t+1( eXt)� E(f"t+1( eXt))�+ a�2n n�1Xt=1 � eX2t j�+p�"t+1j � E( eX2)E(j�+p�"j)�=: (J1) + (J2) ; 21



where fz(y) = jyj�j�y +p� + �y2 zj � j�y +p�yzj� for any y; z 2 R. First, we show that (J1)converges in probability to zero. Observe for that purpose thatvar ja�2n n�1Xt=1 f"t+1( eXt)� E(f"t+1( eXt))j!� var a�2n nXt=1 jf"t+1( eXt)j! (4.4)= a�4n nXt=1 nXs=1 cov(jf"t+1( eXt)j; jf"s+1( eXs)j) :Now note that jfz(y)j � jyjp�jzj for any y; z 2 R. Therefore and since � > 2 there exists a� > 0 such that E(jf"( eX)j2+�) �p�E(j"j2+�)E(j eXj2+�) <1 : (4.5)Because of (4.5) and the geometric strong mixing property of ( eXt) all assumptions of Lemma 1.2.5of Zhengyan and Chuanrong (1996) are satis�ed and we can bound (4.4) byconst a�4n n nXs=1(�2=(2+�))s (4.6)which converges to zero as n!1 since � < 4. Next we rewrite (J2) and get(J2) = E(j�+p�"j)na�2n �n; eX(0)�  eX(0)�+ a�2n n�1Xt=1 eX2t 1f eXt�an�g �j�+p�"t+1j �E(j�+p�"j)�+ a�2n n�1Xt=1 eX2t 1f eXt>an�g �j�+p�"t+1j �E(j�+p�"j)�= (K1) + (K2) + (K3) :By (4.3), (K1) d! T1;1;�(N jXj) � (�2 + �)T0;0;�(N jXj). Moreover, using the same arguments asbefore one can show that lim�#0 limn!1 var(K2) = 0. Hence (K2) = oP (1). It remains to consider(K3). We begin with the decomposition(K3) = a�2n n�1Xt=1 eXt1f eXt>an�g�j� eXt +p� eXt"t+1j � j� eXt +q� + � eX2t "t+1j�+ a�2n n�1Xt=1 eXt+1 eXt1f eXt>an�g � a�2n n�1Xt=1 eX2t 1f eXt>an�gE(j�+p�"j) :Proceeding the same way as in (4.4)-(4.6) the �rst term converges in probability to zero. Thus,(K3) d= oP (1) + T0;1;�(N jXjn )� E(j�+p�"j)T0;0;�(N jXjn )d! T0;1;�(N jXj)� E(j�+p�"j)T0;0;�(N jXj) ;22
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Figure 2: ACFs of the AR(1) process with ARCH(1) errors with standard normal distributed innovations ("t)and parameters � = 0:2; � = 1 and � = 0:4 (top, left), � = 0:4, � = 1 and � = 0:6 (top, right) and � = 0:8,� = 1, � = 0:6 (bottom). In the �rst case � = 5:49, in the second � = 2:87 and in the last � = 1:35. The dottedlines indicate the 5%� and 95%-quantiles of the empirical distributions of the sample ACFs at di�erent lags. Theunderlying simulated sample paths have length 1000. The con�dence bands were derived from 1000 independentsimulations of the sample ACFs at these lags. The plots con�rm the di�erent limit behavior of the sample ACFsas described in this article.
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