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1 Introduction

Over the last two decades, there has been a great deal of interest in modelling real data us-
ing time series models which exhibit features such as long range dependence, nonlinearity and
heavy tails. Many data sets in econometrics, finance or telecommunications have these common
characteristics. In particular, they appear to be reconcilable with the assumption of heavy-tailed
marginal distributions. Examples are file lengths, CPU time to complete a job or length of on/off
cycles in telecommunications and logreturns of stock indices, share prices or exchange rates in
finance.

The feature of nonlinearity can be often detected by considering the sample autocorrelation
functions (ACF's) of a time series, their absolute values and squares. The reason is the following.
A heavy tailed time series that can be represented as an infinite moving average process has the
property that the sample ACF at lag h converges in probability to a constant p(h) although the
mathematical correlation typically does not exist (Davis and Resnick (1985),(1986)). However,
for many nonlinear heavy tailed sequences the sample ACF at lag h converges in distribution to
a nondegenerate random variable. In Resnick and Van den Berg (1998) a test for (non)linearity
of a given infinite variance time series is proposed, based on subsample stability of the sample
ACF.

The phenomenon of random limits of sample ACFs was observed first in the context of
infinite variance bilinear processes by Davis and Resnick (1996) and Resnick (1997). Davis
and Mikosch (1998) studied the weak limit behavior for a large variety of nonlinear processes
with regularly varying marginal distributions which satisfy a weak mixing condition and some
additional technical assumptions. It is shown in their article that the sample autocovariance
function (ACVF) and ACF of such processes with infinite 4th but finite second moments have
a rate of convergence to the true ACVFEF and ACF that become slower the closer the marginal
distributions are to an infinite second moment. In cases of an infinite second moment, the limits
of the sample ACVF and ACF are nondeterministic. Processes which belong to the framework of
Davis and Mikosch (1998) are the ARCH(1) processes, the simple bilinear processes with light-
tail noise (Basrak, Davis and Mikosch (1999)) and the GARCH(1,1) processes (Mikosch and
Starica (1999)). Finally, Davis, Mikosch and Basrak (1999) embedded the three aforementioned
processes to a larger class of processes which still satisfy the conditions for the theory of Davis
and Mikosch (1998). These processes have basically the property that they can be transformed

to solutions of multivariate linear stochastic recurrence equations. Linear stochastic recurrence



equations of this form were considered by Kesten (1973) and Vervaat (1979) and include the
important family of the squares of GARCH processes.

The aim of this paper is to apply the general theory of Davis and Mikosch (1998) to a
different type of processes with different structure than considered in Davis, Mikosch and Bas-
rak (1999), namely the autoregressive (AR) processes of order 1 with autoregressive conditional
heteroscedastic one (ARCH(1)) errors. The class of AR (or more general ARMA) models with
ARCH errors were first proposed by Weiss (1984). In the paper of Weiss, they were found to
be successful in modelling thirteen different U.S. macroeconomic time series. AR models with
ARCH errors are one of the simplest examples of models that can be written by a random

recurrence equation of the form
Xt:Mt+0t6t, tGN, (11)

where ¢; are iid innovations with mean zero, u; is the conditional expectation of X; (which may
or may not depend on t) and the volatility o; describes the change of (conditional) variance.
Because of the nonconstant conditional variance models of the form (1.1) are often referred to
as conditional heteroscedastic models. Empirical work has confirmed that such models fit many
types of financial data (log-returns, exchange rate, etc.). In this paper, we concentrate on the
AR(1) process with ARCH(1) in order to have a Markov structure and hence make the model

analytically tractable. It is defined by specifying u; and oy as follows:
ur =aXy_ 1 and 0;2 =06+ )‘th—la (1.2)

where o € R and 3, A > 0. Note that for & = 0 we get just the ARCH(1) model introduced by
Engle (1982).

The research of the sample ACVF and ACF of the AR(1) process with ARCH(1) errors
is motivated by the following. The AR(1) process with ARCH(1) errors is a natural mixture
between an AR(1) and an ARCH(1) process. Therefore results of this paper can be seen as a
generalization of results for the aforementioned two processes. The weak limit behavior of the
ARCH(1) process was studied by Davis and Mikosch (1998). For A = 0, the process defined by
(1.1) and (1.2) is an AR(1) process. A summary of results about the asymptotical theory of the
sample ACFs of AR processes can be found for instance in Brockwell and Davis (1990), Chapter
7.2 and 13.3, or Embrechts, Kliippelberg and Mikosch (1997), Chapter 7.3.

AR(1) processes with ARCH(1) errors are not solutions of linear stochastic recurrence equa-

tions and there is also no obvious way how to transform them to such equations. However, we



show that the processes still belong to stationary weak dependent sequences which are jointly
regularly varying. One conclusion of this paper is that AR(1) processes with ARCH(1) errors
serve as one of the simplest examples of sequences which do not fulfill the framework in Davis,
Mikosch and Basrak (1999) but to which the theory of Davis and Mikosch (1998) can still be
applied.

The paper is organized as follows. In Section2 we introduce the AR(1) model with ARCH(1)
errors and consider some basic theoretical properties of it. The weak convergence of the point
processes associated with the sequences (X;), (| X;|) and (X?) is investigated in Section 3. Finally,

in Section 4 we present the results concerning the weak convergence of the sample ACVF and

ACF of the AR(1) process with ARCH(1) errors, the absolute and squared values.

2 Preliminaries

We consider an autoregressive model of order 1 with autoregressive conditional heteroscedastic
errors of order 1 (AR(1) model with ARCH(1) errors) which is defined by the stochastic difference

equation

Xy =aX;_1+4/B+AX}2 8, teN, (2.1)

where (g¢) are i.i.d. random variables, o € R, 3, A > 0 and the parameters « and A satisfy in

addition the inequality
E(ln]a+ vVe|) <0. (2.2)

This condition is necessary and sufficient for the existence and uniqueness of a stationary distri-
bution. Here ¢ is a generic random variable with the same distribution as &;. In what follows we
assume the same conditions for ¢ as in Borkovec and Kliippelberg (1998). These are the so-called

general conditions:

¢ is symmetric with continuous Lebesgue density p(z),
¢ has full support R, (2.3)
the second moment of ¢ exists,

and the technical conditions (D.1) — (D.3):

(D.1) p(z) > p(z') forany 0 < z < z'.



(D.2)

(D.3)

For any ¢ > 0 there exists a constant ¢ = ¢(c) € (0,1) and functions fy(c,-), f-(c,-) with
file,z), f-(c,x) = 1 as @ — oo such that for any z > 0 and ¢ > z?

r+c+at ( x + ot )f ( )
_— _— c, ),
P B+ A2 P B+ M2 -

z+c—at T —at

There exists a constant 7 > 0 such that

Vv

p(@) = o(z~WHITnH30/(=a)y * 55 5 5 o0,

where N := inf{u > 0; E(|vA¢|*) > 2} and g is the constant in (D.2).

There exists a wide class of distributions which satisfy these assumptions. Examples are the

normal distribution, the Laplace distribution or the Students distribution. Conditions (D.1) —

(D.3) are necessary for determing the tail of the stationary distribution. For further details

concerning the conditions and examples we refer to Borkovec and Kliippelberg (1998). Note

that the process (X, )nen is evidently a homogeneous Markov chain with state space R equipped

with the Borel o-algebra. The next theorem collects some results on (X;).

Theorem 2.1 Consider the process (X;) in (2.1) with (g¢) satisfying the general conditions

(2.3) and with parameters a and \ satisfying (2.2). Then the following assertions hold:

(a)

(b)

(Xy) is geometric ergodic. In particular, (X;) has a unique stationary distribution and
satisfies the strong mizing condition with geometric rate of convergence yx(h), h > 0. The

stationary df s continuous and symmetric.

Let F(z) = P(X > z), & > 0, be the right tail of the stationary df and the conditions
(D.1) — (D.3) are in addition fulfilled. Then

F(x)~cz " T — 00 2.4
(z) ; , (2.4)

where

1 E (‘oz|X| + /B 4+ AX2%e

. ‘(oz-l— \/Xs)|X|‘”')

2K E(|a+\/§6|"ln|a+\/§5|)
and k 1s giwen as the unique positive solution to
E(la+Ve|®) =1. (2.6)

Purthermore, the unique positive solution k is less than 2 if and only if a® + X E(g?) > 1.



Remark 2.2 (a) Note that E(|a+ v/ Ae|®) is a function of k, and A. It can be shown that for
fixed A, the exponent x is decreasing in |«|. This means that the distribution of X gets heavier
tails when |o| increases. In particular, the AR(1) process with ARCH(1) errors has for a # 0

heavier tails than the ARCH(1) process.

(b) The strong mixing property includes automatically that the sequence (X;) satisfies the
conditions A(a,,). The condition A(a,,) is a frequently used mixing condition in connection with
point process theory and was introduced by Davis and Hsing (1995). See (3.7) for the definition.
O

In order to investigate the limit behavior of the sample ACVF and ACF of (X;) we define three
auxiliary processes (Y;), (X;) and (Z;) as follows: let (V;) and (X;) be the processes given by

the random recurrence equations

Y, =aY; 14+ /AY2 5, teN, (2.7)

and

Xi=|aX, 1 +/B+AX2 o], teEN, (2.8)

where the notation is the same as in (2.1), Yy = Xo, )?0 = | Xo| a.s. and set

Zt:ln(NE)7 teN.

It is easy to see that the process (Y;) is not stationary (or at least not non-trivial stationary).
However, for ¥; = X; large and M € N fixed, we will see that the sequence Yy, Yit1, ..., Yeym
behaves approximately as Xy, X¢11, ..., Xt+ 1 (see also Figure 1). This fact will be very important
in order to establish joint regular variation of Xy, X1, ..., Xr.

Because of the symmetry of (¢¢), the independence of £; and X; 1 in (2.1) and the homo-
geneous Markov structure of (X;) and (X;) it is readily seen that (X;) 4 (]X¢|). Studying the
process (X;) instead of (]Xt|) can be often much more convenient. In particular, since (X3)

follows (2.8) the process (Z;) satisfies the stochastic difference equation
2; = Zt—l —+ ln((a —+ ﬂe—2171 —+ )\Et)2) ) t e N, (29)

where Z equals In(X?) a.s.. Note that (Z) 4 (In(X2)). Moreover, (Z;) does not depend on
the sign of the parameter o since €; is symmetric. The following lemma shows that (Zt) can be

bounded above a high threshold by a random walk with negative drift. The proof of this result
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Figure 1: Simulated sample path of (X;) with initial value Xo = 50 and parameters o = 0.6, = 1, A\ = 0.6 (left)
and of (Y:) with the same initial value and parameters (right) in the case ¢ ~ N(0,1). Both simulations are based
on the same simulated noise sequence (e4). The pictures demonstrate that the processes behave similar for large

values.

can be found in Borkovec (2000) and is based basically on the recurrence structure of (Et) in

(2.9). The result is crucial for proving Proposition 3.1.
Lemma 2.3 Let a be large enough, N, := inf{v > 1|2, < a} and Zy > a. Then
Zy < Zoy+ Sy for anyt < N, a.s., (2.10)

where S¢ s random walk with negative drift given by

2ay/Be Y2,
1{5t<0}) .
(a+/Be 2+ Aey)?

Sg =0 and Sf’:Sf’_1+ln((a+ ,6’6_“+/\5t)2)+1n(1—

Moreover, for a 1 co, we have



where Sy =0 and Sy = S;—1 + In(a + \/X&t)Q .

3 Weak convergence of some point processes associated with

the AR(1) process with ARCH(1) errors

In this section we formulate results on the weak convergence of some point processes of the form
T
N, = Z‘ng"ﬂ/an ., n=1,2, .., (3.1)
t=1

where Xim) are random row vectors with dimension m + 1 € N arbitrary whose components are
highly related to the AR(1) process with ARCH(1) errors (X;) defined in the previous section
and (a,) is a normalizing sequence of real-valued numbers. The main result in this section is
summarized in Theorem 3.3. The proof of this result is basically an application of the theory in
Davis and Mikosch (1998). Proposition 3.1 collects some properties of (Xim)) which we need for
the proof of Theorem 3.3.

We follow the notation and the point process theory in Davis and Mikosch (1998) and
Kallenberg (1983), respectively. The state space of the point processes considered is R \ {0}.

—m+1

Write M for the collection of Radon counting measures on R \ {0} with null measure o. This

means that p € M if and only if x is of the form p = > ;2 n;0x,, where n; € {1,2,3,...} and

—=m-+1
XiERm-I—

\ {0} distinct and #{i||xi| >y} < oo forally >0.

In what follows we suppose that (X;) is the stationary AR(1) process with ARCH(1) given
by (2.1). (g¢) satisfies the general conditions (2.3) and (D.1) — (D.3) and the parameters o and
A are chosen such that (2.2) holds. We start by specifying the random row vectors (Xim)) and

the normalising constants (a,) in (3.1) and by introducing some auxilary quantities in order to

be in the framework of Davis and Mikosch (1998). For m € Ny, define

Xim) = (XtaXH»l) "'7Xt+'/n) , t€ Z 5
Z(()M) = (7‘[), (O”‘U + \/X‘Sl)a ey (O”‘U + \/XE:[) H:L:ill (O[ + \/XT‘355+1))

and

t—1 m+t—1
Z\"™ = (arg + Ve1) (H(a + V1), ] @+ ﬁr555+1)> , tEN,
s=1

s=1



where 7y = sign(Yj) is independent of |Yy|, (Ys) is the process in (2.7) and H?:l = 1. Besides,

for k € Ny arbitrary but fixed, define the stochastic vectors

X"k 4+ 1) = (x") xt L xm)y

— k10
and
z" 2k +1) = (8,2, .., 25 .
Analogously to Davis and Mikosch (1998) we take | - | to be the max-norm in R™1 i.e.

|X| = |(x07"'7$7n)| = max |$l| .
1=0,....m

(k,m)

Now we are able to define the sequence (a,) in (3.1). Let (an "~ ') be a sequence of positive

numbers such that

P(X| > a®™) ~ (nE(|Z 2k +1)[7) 1, asn — oo, (3.2)
For k = 0, we write a, = a.ﬁ?"'”) in the following. Note that because of (2.4) one can choose
a7(1km) as
(kym) (m) L\ /R 1/k
q k) — (20E(|z0 (2k+1)|"")) E >, (3.3)

With this notation we can state the following proposition.

Proposition 3.1 Let (X;) be the stationary AR(1) process with ARCH(1) given by (2.1) and

and assume that the conditions of Theorem 2.1 hold. Then

(a) (Xim)) 18 strongly maixzing with a geometric rate of convergence. To be more specific, there

exist constants p € (0,1) and C > 0 such that for any h > m

s |[PANB) = P(A)P(B)| =t vxim(h)
Aco(X{™ 5<0), Bea(X{™  s>h)

_ '}’X(h_m) S Cphfm‘

(b) X(:Z)(Zk + 1) is jointly regularly varying with index k > 0, more precisely

nP(IX" 2k + 1)) > ta®™ X" 2k +1)/|X") 2k +1)| € -) (3.4)

S E(|ZM (2k + 1)1 (128" 2k + 1)), t>0,

(2 ey /2 ke ) E

as n — 0o, where the symbol — stands for vague convergence.



(c) Let (p,) be an increasing sequence such that

n m
@ 0 and 7X( ) (\/pn)

n Pn

=0 asn— 0. (3.5)

Then for any y > 0

lim limsup P \/ |X§m)| > any |X[()m)| >a,y | =0. (3.6)
P—0 pooo
PSWS]M
Remark 3.2 (a) In the spirit of Davis and Mikosch (1998) the jointly regular varying property

ofX (2k + 1) can also be expressed in the more familiar way
POX"™ 2k +1)| > talP™ X" 2k + 1) /X" 2k + 1) € <) Bt " Po(-), asn— oo,

where Po(-) = Po (0N, 0f)~1, o =z /|20 2k + 1)|, j = —k,....k, and dP =
|Z[()m)(2k + 1)|”/E(|ZU (2k + 1)|®)dP. In the following we will basically use this notation.
(b) Due to statement (b) in Proposition 3.1 the positive sequence (a,) in (3.2) with k =0 can

be also characterized by
. (m) _
711;11;71P(|X0 | >an) =1.

Hence a,, can be interpreted as the (approzimated) (1 — n~1)-quantile of X(m).
c) In the case of a strong mizing process, the conditions in (3.5) are sufficitent to quarantee that
g gp s g

(pn) is a A(ay,)-separating sequence, i.e.

n kn
Eexp (—Zf(Xyn)/an)) — (Eexp( Zf /an )) —0, asn—o0, (3.7)
t=1

where k,, = [n/pn] and f is an arbitrary bounded non-negative step function on R\ {0} . Note

that (py,) is in the case of a strong mizing process independent of (ay,).

Proof. (a) This is an immediate consequence of the strong mixing property of (X,,) and
the fact that strong mixing is a property of the underlying o-field.
(b) Fix t > 0 and let § > 0 be small enough such that ¢t — 26 > 0. Moreover, choose B €
B(SEA1(m+1) =1y arbitrary, where S := S*+H1m+1)-1 denotes the unit sphere in R(ZF+1)0m+1)
with respect to the max-norm | - |. Define Bs = {x € S|dy € B: |x—y| <26/(t —26)} and
B s={xeB||x—y|>2§/(t—25) Yy €S\ B}. Note that B_; C B C B;.
Next set Y™ := (Y1, Viy1, s Virm) £ € Ny, and Y™ (26 +1) = (Y™, Y™, ., YI™), where

10



(Y2) is the process given in (2.7). Using the definition of the process (Y;) and of the stochastic
(m)

vectors Z; ', it can be readily seen that

Y™ 2k + 1) = | Xo| Z0 (2% + 1) (3.8)

The basic idea of proving (3.4) is now to approximate X (‘"L)(Qk +1) by Y(()‘"L)(Zk + 1). Because
of the stationarity of (X}) it is sufficient to compare X (2k + 1) with YO (2k +1). First we

bound the probability in the left hand side of (3.4) from above as follows.

nP<|X "2k + 1) > ta®™ | X (2% +1) /X" (2% +1)| € B)
_ np(|x0””(2k+1)| > tal™ XU 2k 4+ 1) /X 2k + 1)| € B)
< nP(|X‘”")(2k +1) =Y (2k + 1) > §albm )
+ nP(|X "2k +1)| > tal™ | XM (2% + 1)/ X" 2k +1)| € B,
X§™ 2k +1) = Y§ 2Kk +1)] < Salf))
< nP(IXEMEE+1) = Y 2R+ 1)) > daftm) )
+ np(|Y§,"" 2k +1)| > (t — &) ot Y 2k +1)/|Y™ 2k + 1) € By,
Y™ @2k +1) — Y™ (2k + 1)] < §akm) )

= (I1) + (I),

where the last inequality follows from the fact that for any x,y € RZ*+1Dm+1) the inequali-
ties |x — y| < a'F™ and x| > tal™ imply |y| > (¢t — 8)alF™, |x/|x| - y/[x|| < §/t and
[ly|/1x] = 1| < §/(t — 25). The rest is a triangular argument.

First, we consider (I1). By the definition of the max-norm and due to the Boolean and

Markov inequalities, we derive

— _V. (k,m)
(11) nP()_max = |X, =Yl > da,™)

= 2 (kym)
B nP((]<bn;lE2"Z<+m |\/ﬂ + AXsfl \/AX 1| |Es| > 5CL )

< nP ¢ > g k)
n (0§£;?+171 |ES| a’n /\//5)

nE(|EI”+”)
k m)
JVByH

where v > 0 is chosen such that E(|¢|*") < oco. This is possible because of the assumption

< (2k—|—m—|—1)

(D.3). Using (3.3) the right hand side converges to zero.

11



Now we estimate ([2). By (3.8) , we have

() < nP(1X]|Z8" 2k + D] > (¢ = 6)all™), 28" 2k +1)/124" 2k + 1)] € By)

IN

. (m) /¢ ) o (kym)
= P (Xl 2620+ DL g 51y o ey > (€= Dail™)

Note that |Xg| and ng)(2/<: + 1) are independent, nonnegative random variables. Moreover,
| Xo| is regularly varying with index x > 0 and E(|Zl()m)(2k + 1)|") < oo. Thus, a result of

Breiman (1965) yields that (I2) behaves asymptotically as

k. (m ;
nP(|X0| > (t = 8)al™) B(Z§"™ (2k +1)|° 1{zg’")(2k+1)/\zg”">(2k+1)\635}>
(m) 5
E(|Z0 (Qk + 1)|h 1{ng)(2]\7+1)/‘Zém)(2k+1)‘6B6)
B(|2y") (2% + 1))

where we used in the second line (3.2). Because § > 0 is arbitrary and Bs | B as § | 0 we have

~ (t—0)"" as n — 0o,

7

found that

timsupn P(IXO (2 +1)] > talf), X" 2k + 1)/ X" 2k +1) € )

n—,oo

< ron(jz 2k + ) JE(ZEM 2k + 1)) . (3.9)

(27 (k1) 20" 2k 1) )
Next we proceed to establish that the inequality (3.9) also holds in the converse direction for

lim inf. With similar arguments as above, we have

np(|xﬁ“,’;)(zk +1)] > taltm, X 2k 4+ 1)/ X" (2K +1)| € B)
> nP(|Y((]m)(2k +1)] > (t+8)aFm Y 2k +1)/|Y 2k +1) € By,
XU (2K +1) — Y™ (2k + 1)] < §alkm) )
> np(|ng>(2k + )] >+ 8)a®™, Y 2k + 1) /Y™ 2k + 1) € B_5)
- nP(|X§;”>(2k +1) = Y™ @2k + 1) > §albm) )
E(|Zt()m)(2k + 1" 1{zgm> (2k+1)/|zg"”(2k+1)|635})
E(Z0™ 2k + 1)]%)

Since again § > 0 is arbitrary the statement follows.

as n — o0.

~ (t+6)7"

b

(c) We start by rewriting the probability in statement (c).

P\ X @E+1)] > any |1X5 2k + 1] > ay )
P<[t[<pn

|Xt| > a'ny’ OS?E%)/;LI |XJ| > auy)

P( max
—Pn<t<—p+2k+1

+ P( max | X > any’ max | X;| > any)
p§t§P77,+2k+1 0§J§2k+1

= (J1) + (J2).

12



In what follows we consider only (Ji). (J2) can be treated in a similar way. First note that

2k+1
<y P(max_p, <t<—ptoe+1 [ Xe| > any, | X > any) P(|X;] > any)
= P(1Xj| > any) P(maxg<j<or+1 | X;] > any)
2k+1

< Y p( Xil > any |1Xo] > any)

B ,z—% i<t a1 > oy | Xl > oy

< 2(k+1) P( max | Xy > any‘ | Xo| > any)
—pn—(2k+1)<t<—p+2k+1
—p+2k+1

< 2(k+1) Z P<|Xt| > any‘ | Xo| > any) .

t=—pn—(2k+1)
Moreover, using again the property of conditional probability together with the stationarity of
(X:) and substituting ¢ by —t, we get that (J1) is bounded by

—p+2k+1
2(k+1) Z P(|X_t| > any‘ | Xo| > any>
t=—pn—(2k+1)
pn+(2k+1)
= 20k+1) Y P> any‘ [Xol > any) -
t=p—(2k+1)
Recalling that (Z) = (111()~(t)2) 4 (In(X;)2) it follows that the last expression can be also

expressed by

pathtl) B
2k+1) > P(Zf > In(any)” ‘ Zy > ln(any)z) :
t=p—(2k+1)

Next, set N, = inf{s € N; Z, < a} as in Lemma 2.3. Choose the threshold a large enough

K/4
in order to guarantee that E(((a +/Be a4 Xe)? — 2a\/ﬁe*“/251{5<0}) ) < n for a fixed
n € (0,1). This is possible because of (2.2) which implies that E(|a++v/Xe|*) < 1 for allu € (0, k)
and the fact that

E(((a +V/Be o+ Xe)? - 201\/567“/251{6@})“/4) — E<|oz + \/X€|"'/2> , a— o0,

by the dominated convergence theorem. We derive

p—2(k+1)—1 pn+(2k+1)

() < 2Ak+1)( Z Y P(Z > n(any):, Na = v| Zo > In(any)?)
t=p—(2k+1)
pn+2]v Pnt 2L+1) » "
+ Z Z P(Z; > ln(any)z,Na =v|InZy > ln(any)z)

v=p—(2k+1) t=p—(2k+1)

13



0o Pr+(2k4+1)

. > P(Zi>W(aw) No=v|Z > n(ay)?)
V:Pn+(2k+1) t:P*(2k+1)

= 2k +1) () + (Ko) + (K))

It can be shown now (see Borkovec (2000)) that the summands (K7), (K2) and (K3) tend to
zero as n — oo and then p — co. The basic idea underlying this result is to use Lemma 2.3
and the fact that the expression n P(Z; > In(any)?|Zy = z) is uniformly bounded for any
neN, ¢ € e, e’ and t € N. This finishes the proof. O

Proposition 3.1 provides some properties for (Xim)) and (Xim)(Qk + 1)) which are just the
required assumptions in Davis and Mikosch (1998) for weak convergence of point processes of

the form (3.1). If we define
M={peM|p({x||x|>1}) =0 and pu({x|x€S™}) >0})

and if we let B(Mv) be the Borel o-field of M then the following theorem is an immediate

consequence of Proposition 3.1.

Theorem 3.3 Assume (X;) is the stationary AR(1) process with ARCH(1) errors satisfying
the conditions of Theorem 2.1. Then

Nz( = Z 5Xt/an l> NX = Z ZaPin‘] 5 (310)
t=1

i=1j=1

where Xy = X,(fm), Y2y 6p, is a Poisson process on (0,00] with intensity

k
v(dy) =k B(sup [[(a+ Ve,) < Py~ 1y
k>1 s—1

and P is a Pareto(k )-distributed random variable, independent of (). The processy .o, dp, is
independent of the sequence of 11d point processes 21011 0Q,;» ¢ = 1, with joint distribution Q on
(M, B(M)), where Q is the weak limit of

E((wff”w _ \L/ |9J<.‘“')|“)+ 10 (Z aew))/ﬁ(wg")w . \L/ |9}<.">|“)+ (3.11)
=1 j=1

[t|<k

as k — oo, and the limit exuists. E is the expectation with respect to the probability measure dpP

defined in Remark 3.2(a).
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Remark 3.4 Analogous results can be found for the vectors
2
X = X)) = (1Ko ooy | Xigml) and XF =X = (X2, XP\), tE€EZ,mEN,

by using (3.10) and the continuous mapping theorem. Thus, under the same assumptions as in
Theorem 3.3, we have
n o oo
NI =D 0l an = D22 8riay)
t=1 i=1 j=1
and
, n co o0
NX = ; 82 jay 2 z; z; Spqe,
— i=1 j=

where the sequences (P;), (Q;j) are the same as above and
0 1 m c
Q' = (1R 1RGN 15, 1=1,2

Proof. The proof is simply an application of Theorem 2.8 in Davis and Mikosch (1998). The
assumptions of this theorem are satisfied because of Proposition 3.1. Finally, the extremal index
v =limgoo £ (|9[()k) | — \/;”7:1 |0](.k) |"”)+ /E|9[()k) | of the AR(1) process with ARCH(1) errors is
not zero and is specified by the formula (see Borkovec (2000))

k
y = B(sup [[(a+ Ves) < P71,

k=174

where P is a Pareto(k)-distributed random variable, independent of (). Hence the statement

follows. O

4 Asymptotic behavior of the sample ACVF and ACF

In what follows we derive the limit behaviour of the sample ACVF and ACF of the stationary
AR(1) process with ARCH(1) considered in the previous sections. The point process results of
the section 3 will be crucial.

Define the sample ACVF of (X;) by

n—h

ZXtXt+h7 h:O,l,...,
t=1

1

n h) = —
ux(h) = —

15



and the corresponding sample ACF by

pn,X(h) = 'Yn,X(h)/'Y'n,X (O) , h=0,1,...

The sample ACVF and ACF for (|X;|) and (X?) are given in the same way. Moreover, we write
vx(h) = B(XoXn), yxp(h) = E(Xol'|Xnl"),

and

px (h) =vx(h)/vx(0), pxi(h) =nxi(h)/vxp(0), 1=1,2 h=0,1,..

if these quantities exist. If this is the case straightforward calculations yield

1x (h) = oyx (0) = a"B/(1 — o® — AE(¢?))

and
h—1
vxz(h) = (& + AB () yx2(0) + BE(e?)yx(0) Y (0® + AE(})), k>0,
=0
where

vx2(0) = 26vx (0)(202E(e%) + AE(sY)) /(1 — a* — 602 E(e%) — N2E(eY)).

Mean-corrected versions for the sample ACVF and ACF can also be investigated. However one
can show (with the same approach as in the proof of Theorem 4.1) that the limits stay the same
(see also Remark 3.6 of Davis and Mikosch (1998)).

In order to state our results we have to introduce several mappings. Let § > 0, x; =

(z (0) (m)

—m-+1
p ey ) ER

\ {0} and define the mappings

ﬂt,k:,d : M = @

Tfl,fl,b‘(Ztoil ”t5Xt) = sl oy

o oo h k
Th ks (Et:l nt5xt) =2 im1 nt«'B)(f ')951(5 )1 (0) » hk 20,
{l=,71>d}

—m-+1

where ny € Ny for any ¢t > 1. Since the set {x € R \ {0} ||z™]| > 6} is bounded for any

h =0, ...,m the mappings are a.s. continuous with respect to the limit point processes NX, NX|

and NX°. Consequently, by the continuous mapping theorem, we have in particular

x n p x 0o 0
Tfl-,*l,(s(Nn ) - Z 1{‘Xt(0)|>§} - Tfl.fl,(y(N ) - ZZ 1{|P7Q£?)|>§} (41)
=1 =1 j=1

16



and for any h,k >0

Xy _ N () o (B) d Xy S 2 () AR) ‘
Th,l\‘r,(s(sz )= ; 1: Xy ' Xy 1{|Xt(0)‘>‘5} - Thvk,ﬁ(N ) = Zl § 1: P; Q?] Q7] 1{‘piQ§?)|>5} - (4.2)
= =1 5=

Note that, with obvious modifications, (4.1) and (4.2) hold also for NXl and NIXI respectively
Ng(z and NX*_ The following theorem collects the weak limit results of the sample ACVFEF and
ACF of (Xy), (|X¢|) and (X;) depending on the tail index x > 0. The weak limits turn to be
infinite variance stable random vectors. However, they are only functionals of point processes
and have no explicit representation. Therefore, the results are only of qualitative nature and

explicit asymptotic confidence bounds for the sample ACVFs and ACFs can’t be constructed.

Theorem 4.1 Assume (X;) is the stationary AR(1) process with ARCH(1) errors satsifying
the conditions of Theorem 2.1 with E(e%) = 1. Let x > 0 be the tail index in (2.6) and (a,,) be
the sequence satisfying (3.3) for k = 0. Then the following statements hold:

(1) (a) If k € (0,2), then

(na;Q'Yn,X(h))hzow.’m - (W{X)lw,:() ..... m

and

d X X
(oug 210> V™ Ve Dz

where the vectors (ViX,...,V.X) and (V(JX‘,...,MLXU are jointly k/2-stable in R™TY with point

process representation

= 2 ~(0 h
D IPINelion
i=1 j=1
and
VAX' - Z Z Pz2|Qi;))||QZ(;I)| , h=0,...,m, respectively.
=1 j=1

(b) If k € (0,4), then

17



where (VUXZ, ey Vn‘§2) is jointly r/4-stable in R™ 1 with point process representation

ZZP4(Q71 7;L) ’ h :0,...,m.

=1 7=1

respectively,

(2) (a) If k € (2,4) and E(s*) < oo, then

(ntg > (o x (1) = 1 (W) e > (VD=0

(nay2(pn,x (h) — px (h))), _, ,,iv;(owff—px<h>vUX>h:1 .....

and

(na#(v.n,m(h) x> (VD nms

(nay(pnx|(R) = px|(R)), _, |X‘(0)(V;l - P|X|(h)V(lX‘>h:1 ..... m s

.....

where the vectors (ViX,...,V.X) and (Vb'X‘, cey V,l;)ﬂ) are jointly k/2-stable in R™H1 with

V’(IX:‘/}I)X(I_(O[2+)‘))_17 VnX VX_FOA/m 1> m21,

and

1] 1]
VO

=i, v =VX 4 E(la+V2)V)EL m>1.

Furthermore, (\A/IDX, ,17;;() and (170|X|, ,‘77‘,,X|) are the distributional limits of

and

(Tl,l,ﬁ(le) — (& +N)Tpos(NX), (To,h,s(N‘Xl) — E(la+ \/X5|)To,h_1,5(N‘X|))h:1 _____ m) ;

respectwely, as § — 0.

(b) If k € (4,8) and E(e®) < oo, then

(na;4(7n,X2 (h) Yx2 (h)))h ..... m

(na;4(pn,X2 (h) PXxz (h)))h 1, _> ’YX% (0) (Vvh - pX(h)VOXz)hZI ..... mo

where (VOX . ) is jointly k/4-stable in R™T1 with

* "L

VUX2 = f/iUXz (]_ — (Oé4 +6a2/\ + )\ZE(EZI)))il , VX = VX (Oé + >\) m— 17 m > ]-7

m m
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and (Vi , ..., VXY is the distributional limit of

.....

as § — 0.
(8) (a) If k € (4,00), then

<n1/2(,yan(h) —vx (h)))} — (Gi()h:U,....ma

1=0,...,m

d _
(n2(pnx (B) = px () S OGE = px (G it

and

(nl/Q('Yn,\X\(h) - ’Yle(h))>

(n"2(oux(B) = px (k) Sz OG = px (WG et

where the limits are multivariate Gaussian with mean zero.

(b) If k € (8,00), then

d
(nl/Z (’)/71,,X2 (h) — Yx2 (h))) h=0....m — (Gi@)h—[) ..... m
3 b d a )
(nl/Q(Pn,X2(h) — pPx2 (h)))h:1 " — VX%(O)(G,)EZ — sz(h)GOXZ)h:l ..... s

where the limits are multivariate Gaussian with mean zero.

Remark 4.2 (a) Theorem 4.1 is a generalization of results for the ARCH(1) process (see Davis
and Mikosch (1998)). They use a different approach which does not extend to the general case
because of the autoregressive part of (Xy).

(b) The assumption o := E(g2) = 1 in the theorem is not a restriction. In cases where the
second moment 1s different from one consider the process ()?1) defined by the stochastic recurrence

equation

)?t:()é)?tf]_‘k\/5/0'24—)\5(12715}/0', tEN,

where the notation is the same as for the process (X;) in (2.1). Note that (X;) = (Xi/0?). Since

the assumptions in the theorem do not dependent on the parameter (3 the results hold for ()?t) and

..........

X 2 X 2 .
and (Gi{uG‘h ‘7Gi,( Vh=0,...m by o* (GX,G| | Gf Yh=0,....m, respectively.

h
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(c) Note that the description of the distributional limits in part (2) of Theorem 4.1 is different
than in Theorem 3.5 of Davis and Mikosch (1998). In the latter theorem the condition

n—h
lim lim sup var a;2 E XeXernlqx,x, . n<az6}y | =0
30 pooo —1 -

18 required. However, this condition is very strong and does not seem to be in general fulfilled when
(Xy) is correlated (see e.g. Theorem 1.1 of Rio (1993) for a possible justification). Therefore, we
choose another way and establish the convergence wn distribution of the sample ACVF directly

from the point process convergence in Theorem 3.3.

Proof. Statements (1a) and (1b) are immediate consequences of Theorem 3.5(1) of Davis
and Mikosch (1998). Note that all conditions in this theorem are fulfilled because of Proposi-
tion 3.1 and Theorem 3.3. Statements (3a) and (3b) for the sample ACVFs follows from standard
limit theorems for strongly mixing sequences (see e.g. Theorem 3.2.1 of Zhengyan and Chuan-
rong (1996)). The limit behavior for the ACFs can be shown in the same way as e.g. in Davis
and Mikosch (1998), p.2062 .

It remains to show (2a) and (2b). We restrict ourselves to the case (| X}|) and only establish joint
convergence of (v, x((0),¥n,x|(1)). All other cases can be treated similar or even easier. Recall
that (X;) 4 (|Xt|), where the process (X;) is defined in (2.8). Thus it is sufficient to study the
sample ACVF of the process (X;).

We start by rewriting v, 5(0) using the recurrence structure of (Xy)

n

na? (7, £(0) = 7%(0)) = a,? > (X2 - B(DY)

= (@ +\)a;? Z (X2 - B(X?)
t=1

+ CL;2 Z (20()?”/5 + )\)?7526t+1 =+ (5 + )\X?)(Ea_l - 1)) .

t=1

We conclude that for any § > 0,

(1= (a®+ 1) na,? (7, 5(0) = 75 (0))

t=1

+ 2aa;? Z)zt\/ B+ A)zfgtﬂl{)?tgané}

t=1
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+ a? Z ()?“/5 +AX o1+ (B4 AXD) (2 — 1)) L %,5a.5) T op(1)
t=1
=: (I1) + (I2) + (I3) + op(1).

We show first that (I1) and (I2) converge in probability to zero. Note that the summands in (I3)

are uncorrolated. Therefore,

var(1h) = a,* " var (B4 AX) 1z, <05 (€21 — 1)
t=1
< et BB+ 5 1c0y) B (= 1DP)
t=1
~ constd*", asn— oo,

— 0, asdlO,

where the asymptotic equivalence comes from Karamatas theorem on regular variation and the
tail behavior of the stationary distribution of ()N(t) Note that the condition E(s*) < oo is crucial.

Analogously, one can show that

lim lim var(lz2) =0.

()‘l() n—o00
Now we consider (I3). (2.8) yields
-2 ) 2 -2 2 -2
(I3) = ) Xfalizus — @+ e Y X505 =000 Y Lz
t=1 t=1 t=1
d _
< Ty s(NX) = (0 + N To0s(NX) = Bay Ty 1 5(N)
d
5 Tias (VX)) = (@ + 0Ty o s (N (4.3)

where the limit has expectation zero. Finally, following the same arguments as in Davis and
Hsing (1995), pp. 897-898, the right hand side in (4.3) converges in distribution to a x/2-stable

random variable, as § — 0.

Now consider v, 3(1). We proceed as above and write

n—1
na;,”? ('Vn,)?(l) - 7)2(1)) = agzzjztfi#l — B(X(X1)
t=1
n—1 n—1
= a’;Z Z <f61+1 ()?t) - E(f61+1 ()?t))> + (l;2 Z ()A(:,?la + \/X5t+1| - E()A(:Z)E(la + \/X{:‘D)
t=1 t=1

= (1) + (),
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where f,(y) = |y| <|ay + B+ A2z — oy + \/Xyz|) for any y, z € R. First, we show that (Jy)

converges in probability to zero. Observe for that purpose that
n—1
var <|(L;2 Z f€t+1 (Xt) - E(fft+1 (Xt)) |>
=1

< var (an2 Z |f6t+1(jzt)|>
t=1

n n

742 ZCOV(|f5t+1 ()?1‘)|7 |f55+1 (Xs)l) .

= an

(4.4)

t=1 s=1
Now note that |f.(y)| < |y|v/B|z| for any y,z € R. Therefore and since x > 2 there exists a

i > 0 such that
(4.5)

E([(X)P*) < VBE(eME(X ) < 0.
Because of (4.5) and the geometric strong mixing property of (Xf) all assumptions of Lemma 1.2.5

of Zhengyan and Chuanrong (1996) are satisfied and we can bound (4.4) by
(4.6)

consta, *n Z(pZ/(2+5))S

s=1

which converges to zero as n — oo since k < 4. Next we rewrite (J2) and get

(J2) = B(joc+ Vel )naz (v, £(0) = 7(0))
n—1

+ o Z)’Zf?]‘{fﬂganﬁ} <|a +Ver1| - B(la + \/XED)

t=1

n—1
+ 02> Xz s (le+ Vs - B(la+ ﬁg|))
t=1

(K + (K2) + (K).

By (4.3), (K1) LA Ty1.5(NIX) — (o + \)Tp0.5(NXl). Moreover, using the same arguments as

before one can show that lims | lim,, . var(K2) = 0. Hence (K2) = op(1). It remains to consider

(K3). We begin with the decomposition

n—1
(K3) = a;Q Zth{X1>U'n,(5} <|OéXt + \/XXt€t+1| — |Q{Xt + \/ ,6 + AX3€t+1|>
t=1

1 -1
+a,” nz Xt"'l)zfl{)?pané} - a,’ nz )E?l{)}pan(s}Eqa + \/XED .
t=1 t=1
Proceeding the same way as in (4.4)-(4.6) the first term converges in probability to zero. Thus,
(K3) £ op()+ This(V) = Blle+ Ve Too s (M)
5 Toas(VX) = Bjor+ VA Th0s(VX),
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where the limit has zero mean and converges again to a x/2-stable random variable as ¢ | 0.
Since for the distributional convergence only the point process convergence and the continuous
mapping theorem has been used, it is immediate that the same kind of argument yields the joint
convergence of the sample autocovariances to a r/2-stable limit as described in the statement.

Finally, the asymptotic behavior of the sample ACF can be shown in the same way as in Davis

and Mikosch (1998), p.2062 . O
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Figure 2: ACFs of the AR(1) process with ARCH(1) errors with standard normal distributed innovations (&)

and parameters o = 0.2, = 1 and A = 0.4 (top, left), « = 04, 8 = 1 and A = 0.6 (top, right) and « = 0.8,
B =1, A=0.6 (bottom). In the first case x = 5.49, in the second x = 2.87 and in the last x = 1.35. The dotted
lines indicate the 5%— and 95%-quantiles of the empirical distributions of the sample ACFs at different lags. The
underlying simulated sample paths have length 1000. The confidence bands were derived from 1000 independent

simulations of the sample ACFs at these lags. The plots confirm the different limit behavior of the sample ACFs

as described in this article.
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