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Abstract

Let (Xt)t≥0 be a Rn-valued stationary reversible diffusion process. We investigate the

asymptotic behavior of MT := max0≤t≤T |Xt|, where | · | is the Euclidean norm in Rn. The

aim of this paper is to characterize the tail asymptotics of MT for fixed T > 0 as well as

the long time behavior of MT as T → ∞. This is related to spectral asymptotics of the

generator of (Xt)t≥0 subject to Dirichlet boundary conditions on the ball around the origin

with radius R in the limit as R→∞. We give conditions when sharp spectral asymptotics

can be obtained testing with rotationally symmetric functions. Examples include not only

rotationally symmetric but also highly non-symmetric processes.

Keywords: absorption probability, diffusion process, Dirichlet form, Dirichlet

problem, eigenvalue asymptotics, extreme value theory, generator, semigroup, tail

behavior, Temple’s inequality, variational principle.

AMS (2000) Subject Classification: primary: 60J60, 35P15, 60J35;

secondary: 47D07, 60G10, 60G70, 35P20, 35K20.

∗Center of Mathematical Sciences, Technische Universität München, D-80290 München, Germany.

E-mail: kunz@ma.tum.de, Homepage: www-m4.ma.tum.de/m4/pers/kunz. This work was supported by

the “Deutsche Forschungsgemeinschaft” through the graduate program “Angewandte Algorithmische

Mathematik”, Technische Universität München.

1



1 Introduction

We consider a diffusion process (Xt)t≥0 with values in Rn, n ∈ N, solving the system

of SDEs

dX i
t = bi(Xt)dt+

n∑
j=1

σij(Xt)dB
j
t i = 1, . . . , n .(1.1)

where bi, σij : Rn → R, i, j = 1, . . . , n, and (Bj
t )t≥0, j = 1, . . . , n, are independent

one-dimensional standard Brownian motions. We suppose further that the process

(Xt)t≥0 is reversible with respect to a probability measure µ on Rn; µ is then the

stationary (or invariant) measure of the process. We will concentrate on diffusion

processes of gradient field type. In this case the drift is given by the gradient of a

potential function Φ and the diffusion term is a constant σ ∈ Rn \ {0}, i.e. (Xt)t≥0

solves a SDE the form

dX i
t = −∂xiΦ(Xt)dt+ σdBi

t i = 1, . . . , n .(1.2)

The main interest of this paper is to characterize the running maxima of the

process (Xt)t≥0 with respect to the Euclidean norm | · | in Rn, i.e. we study the

random variable

MT := max
0≤t≤T

|Xt| T ≥ 0 .

MT is related to absorption at the boundary of the open ballBR := {x ∈ Rn : |x| < R}

in the following way. We denote by

τR := inf{s > 0 : Xs ∈ Rn \BR}(1.3)

the first exit time off BR of the process (Xt)t≥0 and by Pµ the law of the process

(Xt)t≥0 starting with its stationary measure µ. Then for every R > 0 and T > 0

Pµ(MT ≤ R) = Pµ(τR > T ) .(1.4)

For one-dimensional stationary diffusion processes, the problem of the charac-

terization of the asymptotic behavior of the maximum has been solved by various

authors. An analytic approach was chosen by Newell [New62] using the Focker-

Planck equation and a formal eigenvalue expansion of the associated Sturm-Liouville

problem. Mandl [Man68] derived the asymptotic distribution of the maximum of a
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one-dimensional stationary diffusion process within the framework of Laplace trans-

forms. Berman [Ber64] gave an probabilistic proof with the help of discrete approx-

imation techniques. For Gaussian processes we refer to the articles of Qualls and

Watanabe [QW72], Pickands [Pic69], and Berman [Ber71]. Davis [Dav82] reduced

the asymptotic distribution of the maximum of a general one-dimensional stationary

diffusion process to that of an Ornstein-Uhlenbeck process by the method of random

time change. A good survey for the characterization of the long time behavior of

the running maxima of one-dimensional stationary diffusions, which is essentially

the classical extreme value theory approach, is given in Leadbetter et al. [LLR83].

In the multidimensional case however the characterization of the asymptotic

behavior of the maximum of general stationary diffusion processes is an open prob-

lem. For a multidimensional and even l2-valued Ornstein-Uhlenbeck process, Iscoe

and McDonald [IM92, IM89] evaluated the tail behavior of MT for fixed T > 0. In

Lindgren [Lin80a, Lin80b] the long term behavior of extremes of some functions of

multidimensional Gaussian processes is considered. For the characterization of ex-

tremes of more general Gaussian processes we refer to the books of Berman [Ber92]

and Piterbarg [Pit96] and the references therein.

Note the connection with the exit problem of Freidlin-Wentzell and the associ-

ated large deviation principle, see Freidlin and Wentzell [FW84] and Dembo and

Zeitouni [DZ98]. Instead of considering the probability of the exit off BR of the

process (Xt)t≥0, one can rescale the process by XR,t := R−1Xt, t ≥ 0, R > 0, and

analyze the exit probability of (XR,t)t≥0 off the unit ball. If (Xt)t≥0 is of gradient

field type, then (XR,t)t≥0 satisfies for every R > 0 the SDE

dX i
R,t = −∂xiΦR(XR,t)dt+R−1σdBi

t i = 1, . . . , n ,

where ΦR(x) := R−2Φ(Rx), x ∈ Rn. For the Ornstein-Uhlenbeck process, Φ is

invariant under this scaling. In this case the Freidlin-Wentzell theory provides the

asymptotics of the probability that (XR,t)t≥0 does not leave the unit ball before

time T as R → ∞ on a logarithmic scale. These asymptotics is determined by the

minimum of Φ on the unit sphere.

Our results do not assume that the diffusion process is Gaussian. Further we are

able to give not only the asymptotics on a logarithmic scale for the tail of MT for
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fixed T > 0, but also the fine asymptotics. Our approach is inspired by the articles of

Newell [New62] and Iscoe and McDonald [IM89, IM92]. The key idea of this approach

is to express the probability Pµ(MT ≤ R) in terms of the backward semigroup

associated to the part of the underlying diffusion process on the ball BR, i.e. to the

process killed when it leaves BR. The generator of this semigroup, denoted by LR, is

given by the generator of the full process subject to Dirichlet boundary conditions

on the ball BR. The asymptotic behavior of the probability Pµ(MT ≤ R) as R→∞

is essentially determined by the asymptotics of the bottom eigenvalue λR of −LR in

the limit when the radius R of the ball BR tends to infinity. Restricting to the case

of diffusion processes of gradient field type solving the SDE (1.2) with potential

Φ, an asymptotic expression of λR as R → ∞ can be obtained in the following

way: we approximate Φ by a rotationally symmetric potential x 7→ φ(|x|). If the

potential Φ is already rotationally symmetric, the process can be identified with

a one-dimensional process for which the eigenvalue asymptotics is known, see e.g.

Newell [New62]. We give conditions such that the terms caused by the asymmetric

part of the potential do not destroy the eigenvalue asymptotics for the process

associated to the rotationally symmetric potential.

As an example we present a class of diffusion processes of gradient field type,

where the asymmetric part of the potential Φ factorizes in radial and spherical com-

ponents. This class includes the (non-symmetric) Ornstein-Uhlenbeck process and

we evaluate explicitly in one and two dimensions the eigenvalue asymptotics and the

long term behavior the maximum of this process in Euclidean norm emphasizing the

effects of symmetry breaking. Further a diffusion process of gradient field type can

be treated with this methods having a bivariate gamma distribution as stationary

measure.

The structure of this paper is as follows. The results are stated in section 2.

In section 3 we recall some facts from the theory of Markov processes an operator

theory. The proofs of the results are given in section 4 and some examples are

presented in section 5.
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2 Results

The proofs of the theorems and corollaries can be found in sections 4.

Let us first restrict to the case of diffusion processes of gradient field type solving

the SDE (1.2). We assume that the reversible (stationary) measure µ has a density

w.r.t. the Lebesgue measure on Rn. This density is also denoted by µ. Note that the

density µ and the potential Φ are related formally by the relation µ(x) = e−2Φ(x)/σ2
,

x ∈ Rn. We will allow that the zero set of the density µ is not empty. This implies

that the potential Φ can take the value +∞. Set

Z := {x ∈ Rn : Φ(x) = +∞} , Zc := R
n \ Z .(2.1)

We formulate conditions on Φ that guaranty the existence of a weak solution of the

SDE (1.2). Assume

Φ ∈ C(Rn,R ∪ {∞}) , Φ|Zc ∈ C1(Zc) ,(2.2)

where Φ|Zc denotes the restriction of Φ to the set Zc. Further assume∫
Zc
e−2Φ(x)/σ2 |∇Φ(x)|2dx <∞ ,(2.3)

where ∇ denotes the gradient. Proposition 3.1 states that under these conditions

there exists a process (Xt)t≥0 that is a weak solution of the SDE (1.2) and is

reversible w.r.t. the measure µ with density

µ(x) =

 e−2Φ(x)/σ2
x ∈ Zc ,

0 x ∈ Z .
(2.4)

Further assume that the stationary measure µ is finite, i.e.

Zσ :=
∫
Rn

e−2Φ(x)/σ2
dx <∞ .(2.5)

It will turn out that the asymptotic distribution of MT := max0≤t≤T |Xt| is

determined by spectral properties of the generator of the process (Xt)t≥0. This

generator reads formally

Lu =
σ2

2
∆u−

n∑
i=1

∂xiΦ ∂xiu =
σ2

2
e2Φ/σ2

n∑
i=1

∂xi

(
e−2Φ/σ2

∂xiu
)
.(2.6)

For R ∈ (0,∞], the operator L acting on L2(BR, µ) with Dirichlet boundary condi-

tions on BR is denoted by LR (if R =∞ set B∞ := R
n and no boundary conditions
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are present, see section 3 for a proper definition). LR generates a strongly contin-

uous contraction semigroup (eLRt)t≥0 on L2(BR, µ). Assume that −L∞ enjoys the

spectral gap property in the sense that

Λ := inf Σ(−L∞) ∩ (0,∞) > 0 ,(2.7)

where Σ denotes the spectrum of the operator. In Proposition 3.7 we state a sufficient

condition for (2.7) to hold. For R ∈ (0,∞], the bottom eigenvalue of the operator

−LR is denoted by λR := inf Σ(−LR).

The reason for the above definitions is that the probability Pµ(MT ≤ R) can be

expressed in terms of the semigroup (eLRt)t≥0. The next proposition provides upper

and lower bounds on Pµ(MT ≤ R) in terms of λR and Λ. A sketch of the proof can

be found in section 3.

Proposition 2.1 Let (Xt)t≥0 be a diffusion process of gradient field type as in

Proposition 3.1. Assume that (2.5) and (2.7) hold. Then for every T > 0 and

sufficiently large R > 0

(1− λR/Λ)e−λRT ≤ Pµ(MT ≤ R) ≤ e−λRT .

Proof. Combine Lemma 3.3.(ii) with Lemma 3.4, having (1.4) in mind. �

Remark 2.2 (1) Without loss of generality is suffices to prove Proposition 2.1

under the following additional assumptions: σ2 = 2 and the potential Φ is

normalized in the sense that the stationary measure µ(dx) = e−Φ(x)dx is a

probability measure on Rn. To recover the general case, the result for nor-

malized potentials has to be applied to the potential Φσ := (2/σ2)Φ + lnZσ.

Further the bottom eigenvalue λR for the normalized problem has to be mul-

tiplied by 2/σ2, since the same holds for the generator, see (2.6). The same

simplification is applicable for the proof of Theorem 2.8.

(2) Proposition 2.1 is taken from Iscoe and McDonald [IM94], theorem 2.13. In

their approach the spectral gap property plays an important role to get lower

bounds on Pµ(MT ≤ R) = Pµ(τR > T ). Lower bounds without assuming
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spectral gap can be obtained using capacity inequalities as in Iscoe and Mc-

Donald [IM90]. More precisely, for every R, T > 0 and arbitrary θ > 0 setting

θ1 := θ/T

Pµ(τR > T ) ≥ 1− θ−1eθT Capθ1(Rn \BR)

where the latter is the θ1-capacity of the set Rn \BR w.r.t. the process (Xt)t≥0

(see e.g. Fukushima et al. [FOT94] for a definition). But this lower bound

turns out to be not good enough to yield sharp asymptotics for the long term

behavior of MT as T →∞ (see Theorem 2.3 and Theorem 2.4).

(3) Proposition 2.1 remains valid if the balls BR around the origin with radius

R are replaced by a more general exhausting family (OR)R>R0 of Rn. Such a

family is defined as follows: OR is an open bounded subset of Rn with smooth

boundary for every R > R0, OR1 ⊂ OR2 if R1 ≤ R2 and
⋃
R>R0

OR = R
n.

Invoking (1.4), the maximum MT of (Xt)t≥0 w.r.t. Euclidean norm has to be

replaced by the maximum w.r.t. the distance function q(x) := inf{R : x ∈ OR}.

This means that the maximum of (Xt)t≥0 has the form MT = max0≤t≤T q(Xt).

Proposition 2.1 tells us that the asymptotics of Pµ(MT ≤ R) as R→∞ is given

by the behavior of the bottom eigenvalue λR in the limit R→∞. Evidently λR → 0

as R → ∞. Unfortunately λR is not directly available. It suffices however to have

an explicit expression for the convergence λR → 0 as R→∞.

We make use of the following asymptotic notations: given two real functions a and

b, we write a(t) ∼ b(t) resp. a(t) . b(t) as t→ t0 ∈ R∪{±∞} if limt→t0 a(t)/b(t) = 1

resp. limt→t0 a(t)/b(t) ≤ 1 and a(t) = o(b(t)) as t→ t0 if limt→t0 |a(t)/b(t)| = 0.

We have to find a function l : R+ → R
+, given in terms of the potential Φ and

the diffusion coefficient σ, such that

λR ∼ l(R) (R→∞) .(2.8)

The main part of this paper consists of giving conditions which allow to find a

function l satisfying (2.8). This will be done in Theorem 2.8.

Assume for the moment that such a function l is already given. Replacing in

Proposition 2.1 λR by the asymptotic expression l(R), sharp asymptotic upper and

lower bounds can be obtained for the tail of the maximum MT for fixed T .
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Theorem 2.3 Assume the situation of Proposition 2.1. Let l be a function satisfy-

ing (2.8). Then for every T > 0

T l(R) . Pµ(MT > R) . (T + 1/Λ) l(R) (R→∞) .

Next the long term behavior ofMT as T →∞ is analyzed. Passing in Theorem 2.3

to the limit T →∞, the difference between asymptotic upper and lower bound tends

to zero, since the term 1/Λ vanishes in this limit. Doing this more formally we obtain

the following theorem.

Theorem 2.4 Assume the situation of Proposition 2.1. Let l be a function satisfy-

ing (2.8). Then for every sequence RT ↗∞ as T →∞

|Pµ(MT ≤ RT )− e−l(RT )T | → 0 (T →∞) .

Remark 2.5 Theorem 2.4 is a multi-dimensional extension of Davis [Dav82].

Theorem 2.4 allows to analyze the the long term behavior of the maximum MT

in the spirit of classical extreme value theory. More precisely, the possibly non-

degenerated limit distribution of the properly normalized maximum MT can be

obtained in the limit T →∞. We recall some facts of this theory (see e.g. chapter 3

of Embrechts et al. [EKM97]). Let F be the cumulative distribution function of some

real random variable. F is said to be in the domain of attraction of a distribution

function H (F ∈ DA(H)), if there exist norming sequences (cT )T>0 and (dT )T>0

such that

lim
T→∞

F (cTx+ dT )T = H(x) x ∈ R .(2.9)

By the theorem of Fisher and Tippett, H is an extreme value distribution, i.e.

H ∈ {Λ,Φα,Ψα} where Λ is the Gumbel distribution, and Φα resp. Ψα is the Frechet

resp. Weibull distribution with index α. Property (2.9) is preserved under tail equiv-

alence, i.e. F can be replaced by a distribution function F1 with the same norming

constants provided 1 − F (R) ∼ 1 − F1(R) as R → ∞. The connection with the

long term behavior of running maxima is as follows: let (X̃t)t=1,2,... be a sequence

of i.i.d. random variables distributed according a distribution function F and set

M̃T := max{X̃t : t = 1, . . . , T}. Suppose F ∈ DA(H) for some extreme value

distribution H. Note that by the i.i.d. assumption for every x ∈ R

P (c−1
T (M̃T − dT ) ≤ x) = P (X̃t ≤ cTx+ dT ; t = 1, . . . , T ) = F (cTx+ dT )T .
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Using (2.9), we obtain the following long term limit, where d→ denotes convergence

in distribution

c−1
T (M̃T − dT ) d→ H (T →∞) .

By Theorem 2.4, the long term behavior of the maximum MT of the process (Xt)t≥0

in Euclidean norm can be reduced to that of the maximum of an i.i.d. sequence.

Corollary 2.6 Assume the situation of Theorem 2.4. Set F (R) := e−l(R), R > 0.

If F ∈ DA(H) for an extreme value distribution H with norming constants (cT )T>0,

(dT )T>0 according to (2.9), then

c−1
T (MT − dT ) d→ H (T →∞) .

Remark 2.7 Classical extreme value theory characterizes the maximal domain of

attraction of each extreme value distribution (see e.g. section 3.3 of Embrechts et al.

[EKM97]) and provides methods to calculate the norming constants. In Example 5.4

it is shown that for the two-dimensional Ornstein-Uhlenbeck process F ∈ DA(Λ) and

the norming sequences (cT )T>0, (dT )T>0 are computed explicitly. See also Borkovec

and Klüppelberg [BK01] where the long time behavior of one-dimensional stationary

diffusions appearing in financial mathematics is studied.

We come back to the evaluation of the eigenvalue asymptotics, which is the main

result of this paper. We will give conditions, when an asymptotic expression l for

λR can be found satisfying (2.8). The idea is to approximate the potential Φ by a

rotationally symmetric potential x 7→ φ(|x|), where φ ∈ C1(R+,R). If the potential

Φ is already rotationally symmetric, the process (Xt)t≥0 can be identified with a

one-dimensional process for which the eigenvalue asymptotics is known, see e.g.

Newell [New62]. The terms caused by the asymmetric part of the potential

Φas(x) := Φ(x)− φ(|x|) (∈ R ∪ {∞}) x ∈ Rn

need to be small in a certain sense. The evaluation of the eigenvalue asymptotics is

reduced to find a rotationally symmetric potential φ satisfying conditions described

in the sequel.

Let us introduce the following spherical integral: for a function f : Rn → R set

mR[f ] :=
∫
Sn−1

f(Rξ)dσ(ξ) ,
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where Sn−1 is the unit sphere in Rn and dσ the surface measure of Sn−1. Note that

this corresponds to the integral over the sphere with radius R normalized to the

volume γn of the unit sphere Sn−1. We define two terms measuring the asymmetry

of Φ w.r.t. φ. The term

δas(R) := mR[e−2Φas/σ2
] = e2φ(R)/σ2

mR[e−2Φ/σ2
] R > 0

can be interpreted as the spherical mean of the stationary measure of (Xt)t≥0 relative

to the stationary measure corresponding to the rotationally symmetric potential.

Note that δas(R) ≡ γn, R > 0, if Φ is already rotationally symmetric. Also the

derivative of Φas must be controlled. Set

∆as(x) :=

 1
|x|
∑n

i=1 xi ∂xiΦ(x)− φ′(|x|) x ∈ Zc \ {0} ,

0 x ∈ Z \ {0} ,

Das(R) := mR[e−2Φas/σ2
∆2
as] R > 0 .

Note that ∆as is essentially the derivative of Φas in radial direction. Further if Φ

is already rotationally symmetric, ∆as and hence Das vanish identically. The term

Das can be interpreted as the spherical mean of the square of the radial derivative

of the asymmetric part Φas of the potential weighted with the stationary measure

corresponding to Φas.

The crucial condition on φ is the asymptotic relation

Das(R) = o (δas(R)) (R→∞) .(2.10)

If Φ is already rotationally symmetric, this condition is trivially satisfied, since

Das(R) ≡ 0, R > 0. For some non-symmetric potentials, condition (2.10) can be

shown to hold with the help of Laplace’s method, see Lemma 5.1 and also some

examples in section 5.

Further some weak growth conditions need to be imposed on φ. To this aim we

define for a measurable real function g

ν[g](R) :=
∫ R

1
r1−ng(r)e2φ(r)/σ2

dr ,(2.11)

whenever the integral exists. Moreover set ν(R) := ν[1](R), where 1 is the constant

function 1. Note that the integrand is essentially the reciprocal of the stationary
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measure associated to the rotationally symmetric potential already integrated w.r.t.

to the spherical components. Hence ν is expected to grow exponentially. The growth

conditions on φ are as follows:

ν(R), ν[δas](R)↗∞ , ν[δas](R) = o
(
ν(R)2

)
(R→∞) .(2.12)

The second condition implies that δas does not decay too fast such that the ex-

ponential growth of e2φ/σ2
, the reciprocal of the stationary measure, is destroyed,

whereas the third condition forbids δas to grow faster than e2φ/σ2
.

Theorem 2.8 Assume the situation of Proposition 2.1. Further suppose that there

exists a function φ ∈ C1(R+,R) satisfying (2.10) and (2.12). Set

l(R) :=
σ2

2Zσ
δas(R) ν(R)−1 R > 0 ,

where Zσ the total mass of the stationary measure defined in (2.5). Then the function

l satisfies (2.8).

Remark 2.9 (1) Heuristically large fluctuations of the process (Xt)t≥0 occur

in regions where the potential Φ is flat. Hence the asymptotic behavior of

Pµ(MT ≤ R) and also of λR as R → ∞ should be determined by the mini-

mal slope of the potential Φ. Thus φ in Theorem 2.8 should be given by the

spherical minimum of Φ, i.e. φ(R) := min{Φ(y) : |y| = R}. However this is

not always the right choice for φ. For a counterexample, where φ is not the

spherical minimum, see Example 5.5.

(2) If φ is the spherical minimum as in (1), the condition ν[δas](R) ↗ ∞ as

R → ∞ also implies the two other conditions in (2.12). This is due to the

fact that 0 ≤ δas(R) ≤ 1 for every R > 0 by the choice of φ. Hence also

0 ≤ ν[δas](R) ≤ ν(R) for every R > 0.

(3) The condition φ ∈ C1(R+,R) of Theorem 2.8 is not necessarily satisfied if

φ is the spherical minimum as in (1). A counterexample can be constructed

by means of the potential Φ(x1, x2) := 1 + x1(x2
1 + x2

2 − 1)(x2
1 + x2

2 + 1)−1.

Obviously Φ ∈ C1(R2,R) but φ is not differentiable at R = 1.

(4) Since ν(R)↗∞ as R→∞ by (2.12), the definition of ν in (2.11) is indepen-

dent of the lower limit of the integral (here chosen to be 1). This is an easy

consequence of Hopital’s rule.
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(5) We use the spectral gap assumption (2.7) to simplify the control of the asymp-

totics of the lower bound on λR in Temple’s inequality (see Proposition 3.5

and Remark 3.6). The spectral gap assumption can be abandoned if one can

show that λR = o(λR,2) as R→∞, where λR,2 is the second eigenvalue of the

operator −LR (see also (3.3)).

(6) Theorem 2.8 gives conditions when sharp eigenvalue asymptotics can be ob-

tained testing with rotationally symmetric test-functions (see step 1 in the

proof of Theorem 2.8 in section 4). If these conditions fail or if we replace the

balls (BR)R>0 by an arbitrary exhausting family of Rn as in Remark 2.2.(3), we

can not use rotationally symmetric test-functions any more. In Kunz [Kun02b]

the case is treated where the exhausting family (OR)R>R0 of Rn is given by the

level sets of the potential itself, i.e. OR := {x ∈ Rn : Φ(x) < R}. This choice of

the exhausting family of Rn is more adapted to the geometry of the problem.

In this case we use test-functions for the eigenvalue asymptotics, which are

constant on the iso-level sets of the potential Φ.

Up to now we have restricted ourselves to diffusion processes of gradient field

type. There is a straight forward generalization towards uniformly elliptic reversible

diffusions. Set aij(x) := (1/2)(σ(x)σ(x)T )ij , where (σij)ij is the diffusion matrix

in the SDE (1.1). Assume the following uniform ellipticity condition: there exist

constants 0 < α∗ < α∗ such that

α∗|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ α∗|ξ|2 x, ξ ∈ Rn .(2.13)

The reversibility of the process implies that there exists a positive function µ such

that the drift in the SDE (1.1) reads formally for i = 1, . . . , n

bi(x) =
1

µ(x)

n∑
j=1

∂xj
(
aij(x)µ(x)

)
x ∈ {x ∈ Rn : µ(x) > 0} .(2.14)

To an uniformly elliptic reversible diffusion we associate a diffusion process of gra-

dient field type solving the SDE (1.2) with Φ = − lnµ and σ =
√

2. Assume that Φ

satisfies the conditions (2.2)-(2.5). An extension of Proposition 3.1 guarantees the

existence of a weak solution of the SDE (1.1) which is reversible w.r.t. the measure

with Lebesgue density µ on Rn (see also the last paragraph of section 3). There is

a generalization of Theorem 2.3
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Corollary 2.10 Let (Xt)t≥0 be a uniformly elliptic reversible diffusion process.

Suppose there exists a function l satisfying λR ∼ l(R) as R → ∞, where λR corre-

sponds to the associated process of gradient field type. Then for every T > 0

α∗T l(R) . Pµ(MT > R) . α∗(T + 1/Λ) l(R) (R→∞) .

Remark 2.11 For Theorem 2.4, which allows to analyze the long term behavior of

the maximum MT , there is no straight forward generalization to uniformly elliptic

reversible diffusions. This is due to the fact that in the limit T →∞, the difference

between asymptotic upper and lower bound in Corollary 2.10 does not tend to zero

(see also the motivation to Theorem 2.4).

3 Preliminaries: Markov Processes and Oper-

ator Theory

The behavior of the maximum MT in Euclidean norm up to time T of a reversible

diffusion process is related to spectral properties of its generator. These properties

are better to handle working with Hilbert spaces. We concentrate on diffusion pro-

cesses of gradient field type solving a SDE of the form (1.2). According to Remark

2.2.(1) we assume that σ2 = 2 and that the measure µ with Lebesgue density (also

denoted by µ) defined in (2.4) is a probability measure on Rn.

We use the following notations: for R ∈ (0,∞] we denote by µR the restriction

of µ to the ball BR with radius R (where we set B∞ := R
n). We write for short

L2
µR

for L2(BR, µR) and ‖ · ‖2,R resp. (·, ·)R for norm resp. scalar product in L2
µR

.

Further the characteristic function of a set A is denoted by IA.

We construct a weak solution of the SDE (1.2) which is symmetric (and hence

reversible) w.r.t. the measure µ. Recall that for a µ-symmetric process (Xt)t≥0 the

associated backward semigroup (Pt)t≥0 with Ptf(x) := Ex[f(Xt)], x ∈ Rn, t ≥ 0,

extends (under some regularity conditions) to a strongly contraction semigroup on

L2
µ∞ . The generator of this semigroup stands in one-to-one correspondence with a

Dirichlet form, see e.g. chapter 1.4 of Fukushima et al. [FOT94].
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We define the following operators and quadratic forms: for R ∈ (0,∞] set

E ′R(u, v) :=
n∑
i=1

∫
BR

∂xiu ∂xiv µ dx u, v ∈ C2
0 (BR) ,(3.1)

where C2
0 (BR) is the set of two times continuously differentiable functions having

value 0 at the boundary of BR. Note that µ−1 = eΦ is continuous in Zc by con-

dition (2.2) and hence is an element of L1
loc(Zc). Thus for every R ∈ (0,∞], the

quadratic form (E ′R, C2
0 (BR)) is closable in L2

µR
and its closure (ER,D(ER)) is a

symmetric Dirichlet form, see e.g. section II.2.(a) in Ma and Röckner [MR92]. Let

(−LR,D(LR)) be the positive, selfadjoint operator on L2
µR

associated to (ER,D(ER)).

Using the continuity of µ = e−Φ in Rn and the differentiability in Zc (stated in con-

dition (2.2)) we have for a function u ∈ C2
0 (BR)

u ∈ D(LR) if Lu · IZc ∈ L2
µR
,(3.2)

where L is the differential operator defined in (2.6). For every R ∈ (0,∞] the

operator LR induces a strongly continuous contraction semigroup (eLRt)t≥0 on L2
µR

.

The connection between the semigroup (eL∞t)t≥0 and weak solutions of the SDE

(1.2) is provided in the next proposition. A proof can be found in Meyer and Zheng

[MZ85], see also section 6.3 of Fukushima et al. [FOT94]. Set Ω := C([0,∞),Rn),

equipped with the canonical projections (Xt)t≥0 and the natural filtration (Ft)t≥0.

Proposition 3.1 Assume that the potential Φ satisfies (2.2) and (2.3). There ex-

ists a µ-symmetric diffusion process X := (Ω, (Ft), (Xt), (Px)x∈Rn) with life time

ζ satisfying Pµ(ζ < ∞) = 0, where µ is defined in (2.4) and Pµ :=
∫
Rn
Pxµ(x)dx.

Moreover X never hits the set Z defined in (2.1) in the sense that Pµ(σ̇Z <∞) = 0,

where σ̇Z := inf{t ≥ 0 : Xt ∈ Z}. X is associated to the Dirichlet form E∞, i.e.

the L2
µ∞-extension of its backward semigroup (Pt)t≥0 coincides with the semigroup

(eL∞t)t≥0. X solves the SDE (1.2) in the following sense: there exists an increasing

sequence (Tn)n∈N of stopping times with T∞ := limn Tn such that Pµ(T∞ <∞) = 0

and X is a weak solution of the SDE (1.2) on [0, Tn) for every n ∈ N.

Remark 3.2 A slightly stronger formulation of X being a weak solution of the

SDE (1.2) is the following, see section II of Meyer and Zheng [MZ85]: there exists

a polar set N such that for every x /∈ N the process (Xt −X0 +
∫ t

0 ∇Φ(Xs)ds)t≥0
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is a standard Brownian motion for the law Px. Recall that a set N ⊂ Rn is polar

if there exists a Borel set N ′ ⊂ Rn with N ⊂ N ′ such that Px(σN ′ < ∞) = 0 for

every x ∈ Rn, where σN ′ := inf{t > 0 : Xt ∈ N ′}.

For R ∈ (0,∞), we denote by (XR
t )t≥0 the part of (Xt)t≥0 on BR, i.e. the

process (Xt)t≥0 killed when it hits the set Rn\BR. (XR
t )t≥0 is µR-symmetric and the

backward semigroup (PRt )t≥0 of (XR
t )t≥0 is given by PRt f(x) := Ex[f(Xt)I{τR>t}],

x ∈ Rn, t ≥ 0, where τR is defined in (1.3). We denote by 1 the constant function 1.

Lemma 3.3 Let R ∈ (0,∞).

(i) (XR
t )t≥0 is associated to the Dirichlet form ER in the sense that the L2

µR
-

extension of the backward semigroup (PRt )t≥0 of (XR
t )t≥0 coincides with the semi-

group (eLRt)t≥0.

(ii) Pµ(τR > T ) = (eLRT1,1)R for every T > 0.

Proof. (i) Since BR is open, this follows e.g. from Theorem 4.4.2 and Theorem

4.4.3(i) of Fukushima et al. [FOT94]. (ii) Obviously 1 ∈ L2
µR

. Hence

Pµ(τR > T ) =
∫
BR

Px(τR > T )µ(x)dx =
∫
BR

Ex[I{τR>T}]µ(x)dx

=
∫
BR

PRT 1(x)µ(x)dx = (eLRT1,1)R . �

Next we analyze some spectral properties of LR. Recall the definition of the

bottom eigenvalue λR := inf Σ(−LR), R ∈ (0,∞], where Σ(−LR) is the spectrum

of the operator −LR (with respect to L2
µR

). Obviously Σ(−LR) ⊂ [0,∞) for every

R ∈ (0,∞] and λ∞ = 0. Further we set

λR,2 := inf Σ(−LR) ∩ (λR,∞) R ∈ (0,∞] .(3.3)

For R ∈ (0,∞), the operator −LR has discrete spectrum, since the domain BR

is bounded, and hence λR is an eigenvalue and is known to be simple. Further

λR,2 > λR ≥ 0 for every R ∈ (0,∞]. Since D(ER) ⊂ D(E∞) for R ∈ (0,∞] we get

by the min-max principle that λR,2 ≥ λ∞,2 and also that λR ↘ 0 as R→∞. Note

that the spectral gap property (2.7) just states that Λ = λ∞,2 > 0.
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We cite a result of Iscoe and McDonalds [IM94], theorem 2.13, giving upper and

lower bounds for the quantity (eLRT1,1)R (appearing in Lemma 3.3.(ii)). Since it

is of some importance here, a sketch of the proof is given.

Lemma 3.4 Assume (2.7) and that µ is a probability measure on Rn. Then for

every T > 0 and sufficiently large R > 0

(1− λR/Λ)e−λRT ≤ (eLRT1,1)R ≤ e−λRT .

Sketch of the Proof. For the upper bound we estimate using Cauchy-

Schwartz inequality and the fact that µ is a probability measure on Rn

(eLRT1,1)R ≤ ‖eLRT1‖2,R ‖1‖2,R ≤ ‖eLRT ‖L2
µR
→L2

µR
‖1‖22,∞ ≤ e−λRT .

For the last inequality note that the norm of the operator eLRT can be estimated

by inf{e−λT : λ ∈ Σ(−LR)} = e−λRT using the spectral theorem.

To obtain the lower bound, let φ ∈ L2
µR

be an eigenfunction of −LR correspond-

ing to the simple eigenvalue λR (extended to be 0 outside BR). 1 ∈ L2
µ∞ and hence

there exists ψ ∈ L2
µ∞ such that 1 = φ+ψ and (φ, ψ)∞ = 0. Since eLRT is a positive

operator we obtain

(eLRT1,1)R = ‖φ‖22,Re−λRT + (eLRTψ,ψ)R

≥ ‖φ‖22,∞e−λRT = (1− ‖ψ‖22,∞)e−λRT .

We need an upper bound for ‖ψ‖22,∞. Let {Eλ : λ ∈ Σ(−L∞)} be the family of

spectral projections associated to −L∞ and set µψ(dλ) = d(Eλψ,ψ)∞. With the

simplifying assumption that −L∞ is bounded (which can be abandoned) we obtain

‖ψ‖22,∞ =
∫

Σ(−L∞)
µψ(dλ) = (E{0}ψ,ψ)∞ +

∫ ∞
Λ

µψ(dλ)

≤ (ψ,1)2
∞ +

1
Λ

∫ ∞
Λ

λµψ(dλ) = ‖ψ‖42,∞ +
1
Λ
E∞(ψ,ψ) .(3.4)

Further E∞(ψ,ψ) = E∞(φ, φ) = λR‖φ‖22,R = λR(1− ‖ψ‖22,R). Plugging this in (3.4),

we obtain a quadratic inequality in ‖ψ‖22,∞, which yields ‖ψ‖22,∞ ≤ min(λR/Λ, 1).

�

16



To estimate the bottom of the spectrum λR of −LR we use the variation principle

for upper bounds and Temple’s inequality for lower bounds. For R ∈ (0,∞] and a

function v ∈ D(LR) we define the Rayleigh quotient ρR and the expression lR by

ρR(v) := ‖v‖−2
2,RER(v, v) , lR(v) := ‖v‖−2

2,R‖LRv‖
2
2,R .(3.5)

We summarize the bounds on λR in the following proposition (for a proof see e.g.

theorems XIII.2 and XIII.5 of Reed and Simon [RS78]).

Proposition 3.5 Let R ∈ (0,∞]. Then for every v ∈ D(LR) with ρR(v) < λR,2

ρR(v)− lR(v)− ρR(v)2

λR,2 − ρR(v)
≤ λR ≤ ρR(v) .

Remark 3.6 For the lower bound we need to show that ρR(v) < λR,2. The situation

simplifies if we assume the spectral gap property (2.7). Since λR,2 ≥ λ∞,2 = Λ for

every R ∈ (0,∞), we can replace λR,2 by Λ in Proposition 3.5.

Next we state a condition on the potential Φ, such that the spectral gap assump-

tion (2.7) holds. We will make use of the fact, that the operator −L∞ is unitarily

equivalent to the Schrödinger operator −∆ + VΦ on Rn with potential

VΦ(x) := 1
4 |∇Φ(x)|2 − 1

2∆Φ(x) x ∈ Rn ,(3.6)

provided Φ ∈ C2(Rn,R). We use the notation lim inf |x|→∞ V (x) := limR→∞ inf |x|>R V (x),

where V : Rn → R.

Proposition 3.7 Suppose Φ ∈ C2(Rn,R) and lim inf |x|→∞ VΦ(x) > 0. Then the

spectral gap property (2.7) holds.

Proof. Consider the unitary transform

U : L2(Rn, dx)→ L2(Rn, dµ), f 7→ eΦ/2f ,

where dx is the Lebesgue measure on Rn. For functions u, v ∈ C2
0 (Rn) we get after

some simple calculations using the integration by parts theorem

E∞(Uu,Uv) =
n∑
i=1

∫
Rn

(∂xiu ∂xiv + VΦuv) dx =: QΦ(u, v) .(3.7)

QΦ is the quadratic form of the Schrödinger operator HΦ := −∆+VΦ on L2(Rn, dx).

A standard result in the theory of Schrödinger operators (see e.g. theorem 3.1 of
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Berezin and Shubin [BS91]) tells us that c := lim inf |x|→∞ VΦ(x) > 0 implies that

HΦ has discrete spectrum in (−∞, c). Since the transform U is unitary we deduce

from (3.7) that the spectrum of HΦ on L2(Rn, dx) and the spectrum of −L∞ on

L2
µR

coincide. Hence −L∞ has also discrete spectrum in (−∞, c). Thus λ∞ = 0 is

an eigenvalue and since c > 0, the result follows. �

This section is closed with a few remarks on the extension towards uniformly

elliptic reversible diffusion process. The same techniques are working for this class

of processes. We analyze a process (Xt)t≥0 solving the SDE (1.1), where we assume

the uniform ellipticity condition (2.13) and suppose that the drift in the SDE (1.1)

is of the form (2.14). Let us define the associated operators and quadratic forms.

Set

E ′a,R(u, v) :=
n∑

i,j=1

∫
BR

aij∂xiu ∂xjv µ dx , u, v ∈ C2
0 (BR), R ∈ (0,∞] ,

where the functions µ and aij , i, j = 1, . . . , n are defined in (2.13) and (2.14). This

quadratic form is also closable in L2
µR

(see e.g. section II.2.(b) in Ma and Röckner

[MR92]) and extends to a symmetric Dirichlet form (Ea,R,D(Ea,R)) with associated

positive, selfadjoint operator (−La,R,D(La,R)) and strongly continuous contraction

semigroup (eLa,Rt)t≥0 on L2
µR

.

Assume in addition that Φ := − lnµ satisfies the condition (2.2)-(2.5). By a

modification of Proposition 3.1 it can be shown that there exists a weak solution

of the SDE (1.1) which is µ-symmetric. Further the L2
µ∞-extension of the associ-

ated backward semigroup coincides with the semigroup (eLa,∞t)t≥0 (just replace the

Brownian motion W in the proof of Proposition 3.1 by the strong solution V of

the SDE dV i
t =

∑
j σ

ij(Vt)dW i
t , i = 1, . . . , n). Lemma 3.3, Lemma 3.4, and hence

Proposition 2.1 remain valid if we replace the operator LR by La,R and λR by

λaR := inf Σ(−La,R). Comparing Ea,R with the Dirichlet form ER (defined in (3.1))

of the associated diffusion process of gradient field type solving the SDE (1.2) with

Φ = − lnµ and σ =
√

2, we obtain

α∗ER(u, v) ≤ Ea,R(u, v) ≤ α∗ER(u, v) u, v ∈ D(ER), R ∈ (0,∞] .
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Hence we deduce that

α∗λR ≤ λaR ≤ α∗λR R ∈ (0,∞] ,(3.8)

where λR := inf Σ(−LR) and −LR is the self adjoint operator associated to ER.

4 Proofs

In this section we prove the results stated in section 2. Assume the situation of

Proposition 3.1 that guarantees the existence of a diffusion process (Xt)t≥0 of

gradient field type solving the SDE (1.2). Suppose that there exists a function l

satisfying (2.8).

Proof of Theorem 2.3. Fix T > 0. Using Proposition 2.1 and the inequality

1− x ≤ e−x for every x ∈ R, we get for sufficiently large R > 0

1− e−λRT ≤ Pµ(MT > R) ≤ 1− (1− λR/Λ)e−λRT(4.1)

≤ 1− (1− λR/Λ)(1− TλR)

= (T + 1/Λ)λR + (T/Λ)λ2
R .(4.2)

We deduce that

T λR . Pµ(MT > R) . (T + 1/Λ)λR (R→∞) .(4.3)

The left asymptotic inequality follows since TλRPµ(MT > R)−1 ≤ TλR(1−e−λRT )−1

by (4.1). The latter converges to 1 as R→∞. Dividing inequality (4.2) by the term

(T + 1/Λ)λR and passing to the limit yields the right asymptotic inequality. Since

by assumption limR→∞ λR/l(R) = 1, the result follows. �

Proof of Theorem 2.4. By assumption λR ∼ l(R) as R → ∞ and hence

λR = l(R) + ε(R) where ε(R) = o(l(R)) as R → ∞. Using Proposition 2.1 and the

inequality |ex − 1| ≤ |x|(1 + e|x|) for every x ∈ R, we estimate for fixed R, T > 0

with λR ≥ 0 for every R > 0 in mind∣∣∣Pµ(MT ≤ R)− e−l(R)T
∣∣∣ ≤ e−l(R)T max

{∣∣∣e−ε(R)T − 1
∣∣∣ , ∣∣∣∣(1− λR

Λ

)
e−ε(R)T − 1

∣∣∣∣}
≤ e−l(R)T

(
|e−ε(R)T − 1|+ λR

Λ
e−ε(R)T

)
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= e−λRT
(
|1− eε(R)T |+ λR

Λ

)
≤ e−λRT |ε(R)|T

∣∣∣1 + e|ε(R)|T
∣∣∣+

λR
Λ

=: I(R) +
λR
Λ
.

Now let (RT )T≥0 be an arbitrary sequence with RT ↗ ∞ as R → ∞ and we

replace in the above estimations R by RT . Since limR→∞ λR = 0 we also have

limT→∞ λRT = 0.

It remains to show that also limT→∞ I(RT ) = 0. We choose an arbitrary sequence

(Ti)i∈N with Ti ↗ ∞ as i → ∞ and we write for short λi := λRTi , εi := εRTi , and

Ii := I(RTi). Assume for the moment that {λiTi}i∈N ⊂ R
+ is bounded. Then

limi→∞ εiTi = 0, since limi→∞ λ
−1
i εi = 0 by definition of ε(R). Since λiTi ≥ 0, it

follows

Ii ≤ |εiTi|(1 + e|εiTi|)→ 0 (i→∞) .

If {λiTi}i∈N ⊂ R+ is unbounded, then λiTi ↗ ∞ as i → ∞ after extraction of a

subsequence. Since limi→∞ λ
−1
i εi = 0, we have |εi| ≤ λi/2 for large i. Hence for

large i

Ii ≤ (λi/2)Ti(e−λiTi + e−(λi/2)Ti) ≤ λiTie−(λi/2)Ti → 0 (i→∞) .

Since the choice of the sequence (Ti)i∈N was arbitrary, the result follows. �

Proof of Corollary 2.6. Assume that F := e−l ∈ DA(H) for an extreme

value distribution H with norming constants (cT )T>0, (dT )T>0 according to (2.9).

We have for every x ∈ R setting RT := cTx+ dT∣∣Pµ (c−1
T (MT − dT ) ≤ x

)
−H(x)

∣∣
≤
∣∣∣Pµ(MT ≤ RT )− F (RT )T

∣∣∣+
∣∣F (RT )T −H(x)

∣∣ .
The first term vanishes by Theorem 2.4 and the second by (2.9) as T →∞. �

The main result of this paper, Theorem 2.8, determines the fine asymptotics

of λR as R → ∞ in the sense that a function l is given satisfying (2.8). To this

aim suitable test-functions (vR)R>0 must be found such that the bounds on λR in

Proposition 3.5 get sharp in the limit R→∞. We work with rotationally symmetric
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test-functions. According to Remark 2.2.(1) we may assume w.l.o.g. that

σ2 = 2 and µ(dx) = e−Φ(x)dx is a probability measure on Rn.(4.4)

For a function v ∈ D(ER) we write for short ER(v) for ER(v, v) and the norm in

L2
µR

:= L2(BR, µR) is again denoted by ‖ · ‖2,R.

Proof of Theorem 2.8.

Step 1: Construction of the test-functions. By assumption φ ∈ C1(R+,R) and

we deduce from definition (2.11) that ν ∈ C2((1,∞),R+). ν can be extended to a

function ν̃ ∈ C2
c ((0,∞),R+) with compact support in (0,∞). For R > 1 we define

the test-functions by

vR(x) := 1− ν̃(|x|)/ν(R) |x| ≤ R .

Note that ν(R) > 0 for R > 1 and hence vR is well defined. By the above construc-

tion we have obviously vR ∈ C2
0 (BR) for every R > 1. In step 4 it is shown that

LvR · IZc ∈ L2
µR

. Hence vR ∈ D(LR) for R > 1 by (3.2).

Step 2: ER(vR) ∼ ν[δas](R) ν(R)−2 → 0 as R →∞. Using step 1 and definition

(2.11) of ν we calculate for R > 1

ν(R)2ER(vR) = ν(R)2
n∑
i=1

∫
BR

|∂xivR|2e−Φdx

=
∫ R

0
rn−1ν̃ ′(r)2mr[e−Φ] dr

=
(
κ1 +

∫ R

1
r1−ne2φ(r)mr[e−Φ] dr

)
= (κ1 + ν[δas](R)) ,

where κ1 =
∫ 1

0 r
n−1ν̃ ′(r)2mr[e−Φ]dr <∞. Further κ1+ν[δas](R) ∼ ν[δas](R) as R→

∞ since ν[δas](R)↗∞ as R→∞ by assumption (2.12). This proves the asymptotic

equivalence and the convergence to 0 also follows from assumption (2.12).

Step 3: It suffices to show

‖LvR‖22,R = o (ER(vR)) (R→∞) .(4.5)

We need to prove that ρR(vR)→ 0 as R →∞, where ρR is defined in (3.5). Then,

using Remark 3.6 (having in mind that the spectral gap condition (2.7) holds),
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Proposition 3.5 is applicable for large R. We can deduce that λR ∼ ρR(vR) as

R→∞ if we can show (using again Remark 3.6)

lR(vR)− ρR(vR)2

Λ− ρR(vR)
= o (ρR(vR)) (R→∞) .(4.6)

Since ν(R)↗∞ as R→∞ by assumption (2.12), we deduce that vR ↗ 1 µ-a.s. as

R→∞ (where vR is extended to a function on Rn by setting 0 on Rn \BR). Since

µ is a probability measure on Rn, we have

‖vR‖22,R → 1 (R→∞) .(4.7)

Hence we get together with step 2 and the definition of ρR that ρR(vR) → 0 as

R → ∞. Further (4.7) allows to replace in (4.6) in the limit R → ∞ the terms

lR(vR) resp. ρR(vR) (defined in (3.5)) by ‖LvR‖22,R resp. ER(vR). But then (4.6)

follows from (4.5) using again ρR(vR) → 0 as R → ∞ and we get λR ∼ ER(vR)

as R → ∞. In order to obtain the asymptotic expression l(R) for λR we use step

2 and the fact that ν[δas](R) ν(R)−1 ∼ δas(R) as R → ∞ (which is a consequence

of Hopital’s rule, applicable since ν(R) ↗ ∞ as R → ∞ by assumption (2.12)).

To obtain the general asymptotic expression l(R) without assuming the simplifying

condition (4.4) see Remark 2.2.(1).

Step 4: Condition (4.5) holds. We evaluate the term ‖LvR‖22,R. Recalling the

alternative form of the operator L defined in (2.6), we calculate for x ∈ Zc with

1 < |x| < R

ν(R)2LvR(x) = ν(R)2eΦ(x)
n∑
i=1

∂xi
(
e−Φ∂xivR

)
(x)

= eΦ(x)
n∑
i=1

∂xi

(
e−Φ(x)|x|−neφ(|x|)xi

)
= eφ(|x|)

{ n

|x|n
+

n∑
i=1

xi

[
− n

|x|n+1

xi
|x|

+
1
|x|n

(
φ′(|x|) xi

|x|
− ∂xiΦ(x)

)]}
= −|x|1−neφ(|x|)∆as(x) .

Setting κ2 := ‖Lν̃‖22,1 <∞ (the function x 7→ ν̃(|x|) is also denoted by ν̃), we have

for R > 1

ν(R)2‖LvRIZc‖22,R = κ2 +
∫
BR\B1

|x|2(1−n)e2φ(|x|)−Φ(x)∆as(x)2dx
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= κ2 +
∫ R

1
r1−ne2φ(r)mr[e−Φ∆2

as] dr

= κ2 + ν[Das](R) .

Using step 2 we see that condition (4.5) is satisfied if ν[Das](R) = o (ν[δas](R)) as

R →∞. Since ν[δas](R)↗∞ as R →∞ by assumption (2.12), this follows imme-

diately from the crucial condition (2.10) by an application of Hopital’s rule. �

Corollary 2.10 extends Theorem 2.3 to the case, where (Xt)t≥0 is a uniformly

elliptic reversible diffusion process. We use the notation of the last paragraph of

section 3. Suppose there exists a function l satisfying λR ∼ l(R) as R →∞, where

λR corresponds to the associated process of gradient field type.

Proof of Corollary 2.10. In this situation the asymptotic estimation (4.3)

reads

T λaR . Pµ(MT > R) . (T + 1/Λ)λaR (R→∞) .

The result follows from (3.8), since by assumption λR ∼ l(R) as R→∞. �

5 Examples

We give some examples of diffusion processes of gradient field type for which the

sharp eigenvalue asymptotics can be evaluated by Theorem 2.8 and hence the asymp-

totics of the maximum MT of the process in Euclidean norm is given by Theorem

2.3 and Theorem 2.4. The long term behavior of the normalized maximum is explic-

itly given for the Ornstein-Uhlenbeck process, as mentioned in Corollary 2.6. We

present also a situation where the eigenvalue asymptotics is not determined by the

spherical minimum of the potential.

In some concrete cases, the crucial condition (2.10) of Theorem 2.8 can be

shown by means of Laplace’s method stated in the next lemma (for a proof see

e.g. theorem 7.1 of Olver [Olv74])

Lemma 5.1 (Laplace’s method) Let I ⊂ R be an open interval containing 0 and

p ∈ C1(I), q ∈ C(I), where p attains its minimum only at 0. Assume further that

there exist constants P,$, η > 0 and Q ∈ R such that p(θ) − p(0) ∼ Pθ$, p′(θ) ∼
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$Pθ$−1, and q(θ) ∼ Qθη−1 as θ → ±0. If J(x) :=
∫
I e
−xp(θ)q(θ) dθ converges

absolutely for large x, then J(x) ∼ 2Q$−1Γ(η/$)(Px)−η/$e−xp(0) as x→∞.

Remark 5.2 Laplace’s method is also applicable if the only minimum of p occurs

at an endpoint of the interval I. Then the term J has to be multiplied by 1/2.

The following lemma is used for the asymptotic evaluation of integrals over

exponential terms appearing in the function ν defined in (2.11).

Lemma 5.3 Let A, γ > 0 and δ ∈ R. Then∫ R

1
rδeAr

γ
dr ∼ (γA)−1Rδ−γ+1eAR

γ
(R→∞) .

Proof. Apply Hopital’s rule to the quotient. �

5.1 Rotationally Symmetric Case

Assume that the potential Φ in the SDE (1.2) has the property that there exist

R0 > 0 and φ ∈ C2([R0,∞),R) such that

Φ(x) = φ(|x|) |x| > R0 .(5.1)

Suppose further that Φ satisfies (2.2) and (2.3). Then Proposition 3.1 guarantees

the existence of a weak solution (Xt)t≥0 of the SDE (1.2).

Set V (R) := (1/4)φ′(R)2 − (1/2)(φ′′(R) + (n− 1)R−1φ′(R)), R > R0. To satisfy

the spectral gap condition, we assume

lim inf
R→∞

V (R) > 0 .(5.2)

Note that this condition is satisfied if φ has polynomial form φ(R) = Rα where

α ≥ 1. The volume of the unit sphere Sn−1 in Rn is denoted by γn.

Theorem 5.4 Let (Xt)t≥0 be a diffusion process of gradient field type solving the

SDE (1.2) with potential Φ of the form (5.1). Assume (2.5) and (5.2). Then the

result of Theorem 2.8 holds with φ defined in (5.1) and δas(R) ≡ γn for every

R > R0.
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Remark 5.5 (a) The lower integration limit in the definition of ν in (2.11) is

replaced by R0 (see Remark 2.9.(4)).

(b) This result has already been established in articles analyzing the extreme

behavior of one-dimensional diffusions (see e.g. [New62, Man68, Ber64, Dav82]).

Note that condition (5.2), insuring the spectral gap property, was not needed in

this context (see also Remark 2.2.(2) and Remark 2.9.(5)).

Proof. We have to show that conditions (2.7), (2.12), and (2.10) are satisfied.

The spectral gap condition (2.7) holds by Proposition 3.7 and assumption (5.2).

As stated already in section 2 in the motivation for Theorem 2.8, δas(R) ≡ γn and

Das(R) ≡ 0 for R > R0. Hence the crucial condition (2.10) holds immediately. Since

rn−1e−2φ(r)/σ2 → 0 as r →∞ by (2.5), the growth condition (2.12) is also satisfied

(see Remark 2.9.(2)). �

5.2 Special Non-Symmetric Process

We consider a situation where the potential Φ in the SDE (1.2) is not finally ro-

tationally symmetric. For notational convenience we restrict ourselves to the two-

dimensional case and use polar coordinates writing R2 \ {0} 3 x = Reθ where

R = |x| > 0 and eθ = (cos θ, sin θ), θ ∈ [θ0, θ0 + 2π). Assume Φ ∈ C2(R2,R). If

Φ satisfies also (2.2) and (2.3), Proposition 3.1 guarantees the existence of a weak

solution (Xt)t≥0 of the SDE (1.2).

We set φ(R) := min{Φ(y) : |y| = R} as in Remark 2.9.(1). Assume further that

the asymmetric part of the potential factorizes in radial and spherical component,

i.e. there exist R > R0 and functions ψ ∈ C2((R0,∞),R+) and p ∈ C2(S1,R+) such

that

Φas(R, θ) = Φ(R, θ)− φ(R) = p(θ)ψ(R) R > R0, θ ∈ [θ0, θ0 + 2π) .(5.3)

Note that Φas ≥ 0 by definition and the minimum in the definition of φ is

attained. Hence ψ ≥ 0, p ≥ 0 and the zero-set N (p) of p is not empty. We assume

that N (p) is finite, i.e.

N (p) = {θ1, . . . , θN} ,(5.4)
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where w.l.o.g. θ0 < θ1 < . . . < θN < θ0 + 2π. By assumption (5.4) we can find open

disjoint intervals Ii containing θi such that [θ0, θ0 + 2π] =
⋃N
i=1 Īi, where Īi denotes

the closure of Ii. Further we assume that for every i = 1, . . . , N

p(·+ θi) satisfies the conditions of Lemma 5.1 on {θ : θ + θi ∈ Ii}

with corresponding constants Pi, $i > 0.
(5.5)

We set $∗ := max{$i : i = 1, . . . , N} and J∗ := {i : $∗ = $i}. Further we need

that

ψ(R)→∞ (R→∞) .(5.6)

To assure the spectral gap condition (2.7) we assume that

lim infR→∞ φ′(R) > 0 ,{
φ′′(R), ψ′′(R), R−1ψ′(R), R−2ψ(R)

}
are o

(
φ′(R)2

)
(R→∞) .

(5.7)

In this setting, the crucial condition (2.10) of Theorem 2.8 takes the form of a

regularity condition on ψ

ψ′(R) = o (ψ(R)) (R→∞) .(5.8)

The growth conditions (2.12) read in our situation∫ R

R0

r−1ψ(r)−1/$∗e2φ(r)/σ2
dr ↗∞ (R→∞) .(5.9)

Theorem 5.6 Let (Xt)t≥0 be a diffusion process of gradient field type solving the

SDE (1.2), where Φ is of the form (5.3). Assume (2.5) and (5.4)-(5.8). Set

l(R) := Cψ(R)−1/$∗

(∫ R

R0

r−1e2φ(r)/σ2
dr

)−1

R > R0 ,

where C := 2(Zσ$∗)−1(σ2/2)1+1/$∗Γ(1/$∗)
∑

i∈J∗ P
−1/$∗
i . Then l satisfies (2.8).

Remark 5.7 (a) Assume that φ, ψ are of polynomial form, i.e. φ(R) = Rα, ψ(R) =

Rβ for large R. Then conditions (5.7) and (5.9) are satisfied if α ≥ 1 and β ∈ (0, 2α).

(b) If ψ is regularly varying with index γ > 0 as R → ∞, then ψ satisfies

condition (5.8), since by Karamatas theorem Rψ′(R)ψ(R)−1 → 1 + γ as R → ∞.

Especially (5.8) holds, if ψ is of polynomial form.
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Proof. We have to show that conditions (2.7), (2.12), and (2.10) are satisfied.

First we evaluate the term δas. Invoking (5.5) and Laplace’s method (Lemma 5.1),

where by (5.6) the limes x → ∞ can be replaced by ψ(R) → ∞ as R → ∞, we

calculate

δas(R) = mR[e−2Φas/σ2
]

=
N∑
i=1

∫
Ii

e−2p(θ+θi)ψ(R)/σ2
dθ

∼
N∑
i=1

2
$i

Γ
(

1
$i

)(
2Pi
σ2

ψ(R)
)−1/$i

∼ 1
$∗

(
σ2

2

)1/$∗

Γ
(

1
$i

)(∑
i∈J∗

P
−1/$∗
i

)
ψ(R)−1/$∗ (R→∞) .(5.10)

The growth condition (2.12) follows immediately from assumption (5.9) and Remark

2.9.(2). To show the crucial condition (2.10), we need to evaluate asymptotically the

term Das(R). ∆as reads in polar coordinates

∆as(R, θ) = ∂RΦ(R, θ)− φ′(R) = p(θ)ψ′(R) .

Using Laplace’s method (Lemma 5.1) and (5.6) we calculate

Das(R) = mR[e−2Φas/σ2
∆2
as]

= ψ′(R)2
N∑
i=1

∫
Ii

e−2p(θ+θi)ψ(R)/σ2
p(θ + θi)2dθ

∼ ψ′(R)2
N∑
i=1

Kiψ(R)−(2$i+1)/$i

∼ K
(

(ψ′/ψ)2ψ−1/$∗
)

(R) (R→∞) ,

where K and Ki are positive constants. Having (5.10) in mind, condition (5.8) im-

plies the crucial condition (2.10). It remains to show that the spectral gap condition

(2.7) holds. We will do this with the help of Proposition 3.7. To obtain lower bonds

on the function VΦ defined in (3.6), we can estimate |∇Φ(R, θ)| ≥ φ′(R)2 uniformly

in θ. Using the fact that p and p′′ are bounded on S1, we can find a constant K > 0

such that the following estimation holds uniformly in θ for every R > 0

|∆Φ(R, θ)| ≤ K
{
|φ′′(R)|+ |ψ′′(R)|+ |φ

′(R)|+ |ψ′(R)|
R

+
|ψ(R)|
R2

}
.
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By condition (5.7) the terms in braces are all o
(
φ′(R)2

)
as R → ∞. Since also

lim infR→∞ φ′(R) > 0 by condition (5.7), we have lim inf |x|→∞ VΦ(x) > 0 and the

spectral gap condition (2.7) holds by Proposition 3.7. Thus the result of Theorem

2.8 holds and by (5.10) we also obtain the desired form of the asymptotic expression

l(R) for the eigenvalue asymptotics. �

5.3 Diffusion Process with Gamma Distribution

We present a two-dimensional stationary diffusion process living only in the positive

quadrant. The stationary measure µ of this process is given by the product measure

of two gamma distributions with density

µ(x) :=


∏2
i=1 (βαii Γ(αi))

−1 xαi−1
i e−xi/βi x1, x2 > 0 ,

0 otherwise,
(5.11)

where α1, α2 ≥ 1 and 0 < β2 ≤ β1. In order to construct a stationary diffusion

process of gradient field type with σ2 = 2 having stationary measure µ as above,

the potential Φ needs to be set

Φ(x1, x2) :=


∑2

i=1 xi/βi − (αi − 1) lnxi x1, x2 > 0,

∞ otherwise.
(5.12)

If α1, α2 > 3/2, Φ satisfies (2.2) and (2.3). By Proposition 3.1 there exists a weak

solution (Xt)t≥0 of the SDE (1.2) with Φ as above and σ =
√

2. In polar coordinates

Φ reads for R > 0

Φ(R, θ) = R

(
cos θ
β1

+
sin θ
β2

)
− (α1 + α2 − 2) lnR− ln

(
(cos θ)α1−1(sin θ)α2−1

)
for θ ∈ (0, π/2) and ∞ otherwise. We choose φ as the spherical minimum of the

non-logarithmic term of Φ, i.e.

φ(R) := R/β1 R > 0 .

Note that φ coincides at least asymptotically with the spherical minimum of Φ, see

also Remark 2.9.(1).
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Theorem 5.8 Let (Xt)t≥0 be the two-dimensional stationary diffusion process of

gradient field type with σ2 = 2 and Φ defined in (5.12) where 0 < β2 ≤ β1 and

α1, α2 > 3. Set

l(R) := β
−(α1+1)
1

(
Rα1−1

Γ(α1)
+ δβ1β2β

α1−α2
1

Rα2−1

Γ(α2)

)
e−R/β1 ,

where δβ1β2 = 1 if β1 = β2 and = 0 otherwise. Then l satisfies (2.8).

Remark 5.9 (a) The condition α1, α2 > 3 insures the spectral gap property (2.7).

This condition may be relaxed, see also Remark 2.2.(2) and Remark 2.9.(5).

(b) The stationary measure of this process is the product measure of two inde-

pendent gamma distributions. This measure can be replaced by a bivariate distri-

bution with gamma distributed marginals implementing spatial depencence. Such a

distrubution can be created by means of copula techniques, we refer to Joe [Joe97].

In Kunz [Kun02a] the asymptotic behavior of the maximum in Euclidean norm of

the diffusion process of gradient field type is analyzed, which has the above distri-

bution as stationary measure. In this case, the crucial condition (2.10) is shown by

numerical methods.

Proof. We show that conditions (2.5), (2.7), (2.12), and (2.10) are satisfied.

Condition (2.5) clearly holds with Zσ =
∏2
i=1 β

αi
i Γ(αi), see (5.11). First we evaluate

the term δas.

δas(R) =
∫ π/2

0
Rα1+α2−2(cos θ)α1−1(sin θ)α2−1e

−R
(

cos θ
β1

+ sin θ
β2
− 1
β1

)
dθ

= Rα1+α2−2

∫ π/2

0
(cos θ)α1−1(sin θ)α2−1e−Rp(θ)dθ ,

where p(θ) := β−1
1 (cos θ − 1) + β−1

2 sin θ, θ ∈ [0, π/2]. To evaluate this integral

asymptotically using Laplace’s method (Lemma 5.1), we need to know the zero

points N (p) of p. It can be seen that N (p) = {0, π/2} if β1 = β2 and N (p) = {0} if

β1 > β2. Note that as θ ↘ 0

p(θ) ∼ θ/β2 , (cos θ)α1−1(sin θ)α2−1 ∼ θα2−1 ,

p(π2 − θ) ∼ θ/β1 ,
(
cos(π2 − θ)

)α1−1 (sin(π2 − θ)
)α2−1 ∼ θα1−1 ,

if β1 = β2 is the latter case. We obtain invoking Laplace’s method (Lemma 5.1 and

Remark 5.2)

δas(R) ∼ Rα1+α2−2

(
Γ(α2)

(
R

β2

)−α2

+ δβ1β2Γ(α1)
(
R

β1

)−α1
)
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= βα2
2 Γ(α2)Rα1−2 + δβ1β2β

α1
1 Γ(α1)Rα2−2 (R→∞) .(5.13)

It is easily seen by the definition of φ that the growth condition (2.12) holds, see

also Remark 2.9.(2). To show the crucial condition (2.10), the term Das(R) must

be evaluated asymptotically. ∆as reads in polar coordinates

∆as(R, θ) =
cos θ
β1

+
sin θ
β2
− α1 + α2 − 2

R
− 1
β1

= p(θ)− α1 + α2 − 2
R

.

Hence we get analogously to the calculation in (5.13)

Das(R) =
∫ π/2

0
Rα1+α2−2(cos θ)α1−1(sin θ)α2−1×

×e−Rp(θ)
(
p(θ)− α1 + α2 − 2

R

)2

dθ

≤ κ1

{
δas(R)
R2

+Rα1+α2−2

∫ π/2

0
(cos θ)α1−1(sin θ)α2−1p(θ)2e−Rp(θ)dθ

}

. κ2

{
δas(R)
R2

+Rα1+α2−2
(
R−(α2+2) + δβ1β2R

−(α1+2)
)}

= κ2

{
δas(R)
R2

+Rα1−4 + δβ1β2R
α2−4

}
(R→∞) ,

where κ1, κ2 are positive constants. Comparing this with (5.13) we see that the

crucial condition (2.10) is satisfied. It remains to show that the spectral gap con-

dition (2.7) holds. Since the two components of (Xt)t≥0 are independent, it suffices

to prove the spectral gap condition for the generator L(1) of the first component of

the process. As in the proof of Proposition 3.7, −L(1) is unitarily equivalent to the

Schrödinger operator Hu := −u′′ + V u on R with

V (x) =


1
4( 1
β1
− α1−1

x )2 − α1−1
2x2 = 1

4β2
1
− α1−1

2x + (α1−1
2 − 1)α1−1

2x2 x > 0,

∞ x ≤ 0.

Note that limx→∞ V (x) = (2β1)−2 > 0 and limx↘0 V (x) =∞ since α1 > 3. Hence H

and also −L(1) have spectral gap by Proposition 3.7. Thus Theorem 2.8 is applicable

and we obtain the eigenvalue asymptotics using (5.13) and Lemma 5.3

λR ∼ Z−1
σ δas(R)

(∫ R

1
r−1er/β1dr

)−1

∼
(

Rα1−2

βα1
1 Γ(α1)

+ δβ1β2

Rα2−2

βα2
2 Γ(α2)

)(
β1R

−1eR/β1

)−1

= β
−(α1+1)
1

(
Rα1−1

Γ(α1)
+ δβ1β2β

α1−α2
1

Rα2−1

Γ(α2)

)
e−R/β1 (R→∞) .

�
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5.4 Ornstein-Uhlenbeck Process

The eigenvalue asymptotics is evaluated explicitly for an Ornstein-Uhlenbeck pro-

cess (OU process) in one and two dimensions emphasizing the different behavior in

the rotationally symmetric and non-symmetric case. In addition the long term be-

havior of the normalized maxima in Euclidean norm is presented (see Corollary 2.6).

The OU process is of gradient field type, where the potential Φ is given in two

dimensions by

Φ(x1, x2) = 1
2(αx2

1 + βx2
2) x1, x2 ∈ R, 0 < α ≤ β ,

and in one dimension by Φ(x) = (α/2)x2, x ∈ R.

• The symmetric case, i.e. the one-dimensional and the two-dimensional case

for α = β. Setting φ(R) = (α/2)R2, the conditions of Theorem 5.4 are obviously

satisfied (for dimension n = 1, 2). For n = 1 we obtain form Theorem 5.4 using

Lemma 5.3 (here γ1 = 2, Zσ =
√
σ2πα−1)

λR ∼ σ2

√
α

σ2π

(∫ R

1
eαr

2/σ2
dr

)−1

∼
√
σ2α

π

(
σ2

2α
R−1eαR

2/σ2

)−1

= 2

√
α3

σ2π
Re−αR

2/σ2
(R→∞) .

Hence the function lα satisfying (2.8) can be chosen

lα(R) = CαRe
−αR2/σ2

, where Cα = 2

√
α3

σ2π
.(5.14)

Note that this characterizes the maximum of the absolute value of a one-dimensional

OU process. Similarly for n = 2 and α = β (here γ2 = 2π, Zσ = σ2πα−1)

λR ∼ 2π
σ2

2
α

σ2π

(∫ R

1
r−1eαr

2/σ2
dr

)−1

∼ α

(
σ2

2α
R−2eαR

2/σ2

)−1

=
2α2

σ2
R2e−αR

2/σ2
(R→∞) .

Hence the function lαα satisfying (2.8) can be chosen

lαα(R) = CααR
2e−αR

2/σ2
, where Cαα =

2α2

σ2
.(5.15)

• The non-symmetric case, i.e. the two-dimensional case for α < β. The potential

Φ in the present setting written in polar coordinates is of the form (5.3) with

φ(R) =
α

2
R2, ψ(R) =

β − α
2

R2, p(θ) = sin2 θ R > 0, θ ∈
[
−π

2 ,
3π
2

)
.
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We show that the conditions of Theorem 5.6 are satisfied. Condition (2.5) holds

with Zσ = σ2π(αβ)−1/2 and (5.4) is also satisfied since N (p) = {0, π}. (5.5) holds

with $i = 2, Pi = 1 for i = 1, 2 and hence $∗ = 2. (5.6) is obvious and (5.7)-(5.8)

also hold (see Remark 5.7). Thus we get from Theorem 5.6 using Lemma 5.3

λR ∼ π−1

√
σ2αβ

2
Γ
(

1
2

)(
β − α

2
R2

)−1/2(∫ R

1
r−1eαr

2/σ2
dr

)−1

∼

√
σ2αβ

π(β − α)
R−1

(
σ2

2α
R−2eαR

2/σ2

)−1

= 2

√
α3β

σ2π(β − α)
Re−αR

2/σ2
(R→∞) .

Hence the function lαβ satisfying (2.8) can be chosen

lαβ(R) = CαβRe
−αR2/σ2

, where Cαβ = 2

√
α3β

σ2π(β − α)
.(5.16)

• Effects of symmetry breaking: Comparing the two-dimensional rotationally

symmetric and non-symmetric OU process, we see that lαα and lαβ differs in the pre-

exponential factor and the constant. Especially the pre-exponential factor is reduced

from R2 to R. On the other hand, the extreme fluctuation of a two-dimensional non-

symmetric OU process behave like those of an one-dimensional OU process (compare

(5.16) with (5.14)), just the constant is different. But in the limit β → ∞, i.e. if

we make the steeper direction of Φ infinitely steep, we get the expected conver-

gence Cαβ → Cα as β → ∞ of the constants in (5.16) and (5.14). In the contrary,

if the asymmetric potential tends to the symmetric one (i.e. β ↘ α), there is no

convergence lαα → lαβ as β ↘ α.

A similar effect of symmetry breaking can be observed looking at the tail of the

Euclidean norm of a bivariate normally distributed random variable. More precisely,

given a bivariate normal random variable X ∼ N(0,Σ), where Σ = diag(α, β) with

0 < α ≤ β, the asymptotic behavior of P (|X| > R) as R → ∞ is different in the

symmetric case (α = β) and in the non-symmetric case (α < β).

• Long term behavior of normalized maxima: In view of Corollary 2.6 we show

that F := e−l ∈ DA(Λ), l ∈ {lα, lαβ , lαα}, where Λ is the Gumbel distribution. Note

that every l ∈ {lα, lαβ , lαα} is of the form CRγe−αR
2/σ2

, where C > 0 is a constant

and γ ∈ {1, 2}. For results of classical extreme value theory used in the sequel we
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refer to §3.3.3 of Embrechts et al. [EKM97]. It can be shown that F is a so called

Van Mises function (this follows e.g. from limR→∞(1−F (R))F ′′(R)/(F ′(R))2 = −1)

and hence F ∈ DA(Λ). The norming constants in (2.9) can be obtained from the

relations

F (dT ) = 1− 1/T , cT = (1− F (dT ))/F ′(dT ) .

Careful asymptotic expansion of these relations as T → ∞ leads to the following

choice of the norming constants

cT =
1
2

√
σ2

α lnT
, dT =

√
σ2 lnT
α

+
γ

4

√
σ2

α lnT

(
ln lnT + ln(C2/γσ2/α)

)
.

Hence we get from Corollary 2.6 that Pµ(c−1
T (MT − dT ) ≤ x) → Λ(x) for every

x ∈ R as T →∞ with cT and dT as above, where in dT the right values have to be

plugged in for the the constants γ and C depending on l ∈ {lα, lαβ , lαα}.

5.5 A Counterexample

We present a two-dimensional situationfor which the eigenvalue asymptotics is not

governed by the spherical minimum of the potential.

Set σ =
√

2 in the SDE (1.2) and choose the potential Φ as follows. Using polar

coordinates, Φ is constructed in a similar way as in (5.3), but here the function

p is no longer independent of R. Let g ∈ C∞c ((−1, 1), [0, 1]) be a function with

g(θ) = 1 − θ2 in a neighborhood of 0 and the maximum of g is only attained in 0.

We set for R > 0

p(R, θ) :=

 g(eR
2
θ) |θ| < e−R

2

0 e−R
2 ≤ |θ| ≤ π

Note that p(R, ·) ∈ C∞(S1) for every R > 0. We define the potential by

Φ(R, θ) := R2 − (R2 −R)p(R, θ) R > 1, θ ∈ [−π, π) ,

and Φ can be extended to C∞(R2,R). Observe that

min
θ∈[−π,π]

Φ(R, θ) = R max
θ∈[−π,π]

Φ(R, θ) = R2 R > 1 .

We will show that the corresponding eigenvalue asymptotics is governed by the

spherical maximum of Φ, i.e. we have to choose φ(R) = R2 in Theorem 2.8. The
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interpretation of this fact is that the gap, where the minimum of Φ occurs, becomes

too narrow as R→∞ to influence large fluctuation of the process.

Obviously condition (2.5) is satisfied since
∫
|x|>1 e

−Φdx ≤
∫∞

1 re−rdr < ∞. We

evaluate the term δas(R) using Laplace’s method (Lemma 5.1)

δas(R) =
∫ π

−π
e(R2−R)p(R,θ)dθ

= (2π − 2e−R
2
) +

∫ e−R
2

−e−R2
e(R2−R)g(eR

2
θ)dθ

= (2π − 2e−R
2
) + e−R

2

∫ 1

−1
e(R2−R)g(η)dη

= (2π − 2e−R
2
) + e−R

∫ 1

−1
e−(R2−R)(1−g(η))dη

∼ 2π + e−R
√

π

R2 −R
∼ 2π (R→∞) .(5.17)

Hence the growth conditions (2.12) holds since we obviously have ν(R) ↗ ∞ as

R→∞ by the choice of φ. Further we have to evaluate the term Das(R). Note that

∆as(R, θ) =

 −(2R− 1)g(eR
2
θ)− 2R(R2 −R)eR

2
g′(eR

2
θ)θ |θ| < e−R

2

0 e−R
2 ≤ |θ| ≤ π

Hence we can calculate

Das(R) =
∫ e−R

2

−e−R2
e(R2−R)g(eR

2
θ)∆as(R, θ)2dθ

≤ K1e
−R2

∫ 1

−1
e(R2−R)g(θ)

[
(2R− 1)2g(η)2 +R2(R2 −R)2e2R2

g′(η)2e−2R2
η2
]
dη

≤ K2R
6e−R

∫ 1

−1
e−(R2−R)(1−g(θ)) [g(η)2 + g′(η)2η2

]
dη ,

where K1, K2 are suitable positive constants. By Laplace’s method (Lemma 5.1) the

last integral is asymptotically equivalent to Γ(5/2)(R2 −R)−5/2 as R →∞. Hence

Das(R)→ 0 as R→∞ and invoking (5.17) the crucial condition (2.10) of Theorem

2.8 is satisfied.
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[EKM97] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal

Events for Insurance and Finance. Springer, Heidelberg, 1997.

[FOT94] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet forms and symmet-

ric Markov processes. de Gruyter, Berlin, 1994.

[FW84] M.I. Freidlin and A.D. Wentzell. Random perturbations of dynamical

systems. Springer-Verlag, New York, 1984.

[IM89] I. Iscoe and D. McDonald. Large deviations for l2-valued Ornstein-

Uhlenbeck processes. Ann. Probab., 17(1):58–73, 1989.

[IM90] I. Iscoe and D. McDonald. Induced Dirichlet forms and capacitary in-

equalities. Ann. Probab., 18(3):1195–1221, 1990.

[IM92] I. Iscoe and D. McDonald. Asymptotics of absorption probabilities for

Ornstein-Uhlenbeck processes. Stoch. Stoch. Rep., 39(1):143–51, 1992.

[IM94] I. Iscoe and D. McDonald. Asymptotics of exit times for Markov jump

processes. I. Ann. Probab., 22(1):372–397, 1994.

35



[Joe97] H. Joe. Multivariate models and dependence concepts. Chapman & Hall,

London, 1997.

[Kun02a] A. Kunz. Extremes of Multivariate Stationary Diffusions in Finance: A

Data Analysis. Preprint, www-m4.ma.tum.de/m4/pers/kunz/pub/, 2002.

[Kun02b] A. Kunz. Maximum of Diffusion Processes of Gradient Field Type

with respect to the Level Sets of the Potential. Preprint, www-

m4.ma.tum.de/m4/pers/kunz/pub/, 2002.

[Lin80a] G. Lindgren. Extreme values and crossings for the χ2-process and other

functions of multidimensional Gaussian processes, with reliability appli-

cations. Adv. in Appl. Probab., 12(3):746–774, 1980.

[Lin80b] G. Lindgren. Point processes of exits by bivariate Gaussian processes and

extremal theory for the χ2-process and its concomitants. J. Multivariate

Anal., 10(2):181–206, 1980.

[LLR83] M.R. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and Related

Properties of Random Sequences and Processes. Springer, Berlin, 1983.

[Man68] P. Mandl. Analytical Treatment of One-Dimensional Markov Processes.

Springer, New York, 1968.
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