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Let �� be the mean of S�� .We assume throughout that the right tail F (x) = 1 � F (x) = F (x;1) isproportional to a tail in the lass S� introdued by Kl�uppelberg (1988), whihis equivalent toxZ0 F (x� y)F (y) dy � 2m+F (x); x!1 : (1)This implies that both F (x) and the integrated tail F I(x) are subexponentialand (1) is only marginally stronger than any of these assumptions. It is thenwell{known (e.g. Embrehts and Veraverbeke (1982), Embrehts et al. (1997)or Asmussen (2000) and referenes therein) that�(x)� 1jmjF I(x); (2)G+(x)� 1j��jF I(x); x!1 : (3)The relation (2) is of basi importane in insurane risk and queueing the-ory, and has been generalized to many models (see Asmussen (2000, Ch. IX)for referenes to the insurane risk literature; some seleted queueing papersare Asmussen and M�ller (1999), Resnik and Samorodnitsky (1999), Whitt(2000). In this note, we provide loal versions of (2). For �:Theorem 1. Assume that F is non{lattie satisfying (1). Then for eah z > 0,�(x; x + z℄ � 1jmjzF (x): (4)In the lattie ase, the same onlusion holds when x; z are restrited to valuesof the lattie span. Further, there exist onstants 1; 2 suh that for all x; z � 0�(x; x + z℄ � (1 + 2z)F (x) (5)This extends a result of Kl�uppelberg (1989) whih requires, among others, theexistene of densities and a strong M/G/1 type ondition, that the left tail ofF is of the form F (dy) = e�y, y < 0. We proeed to the proof.Lemma 1. Let H1, H2 be distributions on (0;1) suh that for eah z > 0,H1(x; x + z℄ � d1zF (x), H2(x; x + z℄ � d2zF (x). Then (H1 �H2)(x; x + z℄ �(d1 + d2)zF (x). 2



Proof. We use repeatedly thatF (x� b)F (x) ! 1 uniformly in b � b0 (6)by subexponentiality (see Embrehts et al. (1997, p. 577) or Asmussen (2000,p. 253)). The �rst appliation is the relation`2 aZ0 F (x� y)F (y) dy = `2 xZx�a F (x� y)F (y) dy = m+ (7)where `2 is the operator de�ned by `2g(x; a) = lima!1 lim supx!1 g(x; a)=F (x),whih follows by dominated onvergene. Write (H1�H2)(x; x+z℄ = J1+J2+J3where J1; J2; J3 are the integrals of H2(x � y; x � y + z℄H1(dy) over (0; a℄,(a; x+ z � a℄, resp. (x + z � a; x+ z℄, a > z. ThenJ1 = aZ0 H2(x� y; x� y + z℄H1(dy) � d2zF (x)H1(a); x!1;by dominated onvergene and the assumption on H2. Similarly,J3 = a�zZ0 H1(x� v; x� v + z℄H2(dv) + aZa�z H1(x� a + z; x� v + z℄H2(dv):It follows thatd1zF (x)H2(a� z) � a�zZ0 H1(x� v; x� v + z℄H2(dv)� J3 � aZ0 H1(x� v; x� v + z℄H2(dv) � d1zF (x)H2(a) :As a an be taken arbitrarily large, it is left to show that `2J2 = 0, and hereit suÆes to restrit a to integer values. But letting x� = dx+ ze, it follows byrepeatedly using (6) and the assumptions on H1, H2 that we an bound `2J2by d2z `2 x��aZa F (x� � y)H1(dy) 3



= d2z `2 x��a�1Xk=a F (x� � k � 1)H1(k; k + 1℄= d1d2z `2 x��a�1Xk=a F (x� � k � 1)F (k)= d1d2z `2 x��aZa F (x� � y)F (y) dy ;whih is 0 aording to (1) and (7).Lemma 2. Let H be a distribution on (0;1) suh that for eah z > 0,H(x; x + z℄ � dzF (x). Then for eah Æ > 0 there is CÆ < 1 suh that�n � CÆ(1 + Æ)n where �n = supx>0H�n(x; x + z℄=F (x).Proof. We start by hoosing a suh thatx+z�aZa F (x� y)H(dy) � Æ2F (x) (8)for all x.The existene of a follows sine the proof of Lemma 1 shows that (8) an beobtained for all large x, say x � x1, and the validity for all x then followsby replaing a by a larger a if neessary, say (x1 + z)=2 (making the integralnon-positive for x � x1).Next we hoose x0 suh that F (x�a)=F (x) � 1+Æ=2 for all x � x0. We writeH�n(x; x+ z℄ = J1(n; x) + J2(n; x) + J3(n; x) where J1(n; x); J2(n; x); J3(n; x)are the integrals over [0; a℄, (a; x+z�a℄, resp. (x+z�a; x+z℄, of H�(n�1)(x�y; x+ z � y℄ w.r.t. H(dy).To bound J1(n + 1; x), we �rst note that for some D1 < 1 and some � < 1it holds that H�n(x0 + a+ z) � D1�n, f. Asmussen (1987, p. 113). Hene forx � x0 + a,J1(n + 1; x) � aZ0 H�n(x + z � y)H(dy) � H�n(x + z)H(a) �� H�n(x0 + a+ z) � D1�n � D2�nF (x);with D2 = D1=F (x0 + a), whereas for x > x0 + a4



J1(n+1; x) � �n aZ0 F (x�y)H(dy) � �nF (x�a)H(a) � �n(1+Æ=2)F (x):All together we haveJ1(n + 1; x) � [D2�n + �n(1 + Æ=2)℄F (x): (9)Further, by (8)J2(n+ 1; x) � �n x+z�aZa F (x� y)H(dy) � F (x)�nÆ=2:For J3(n + 1; x), we have as in the proof of Lemma 1 that J3(n + 1; x) �R a0 H(x� y; x+ z � y)H�n(dy). For x � x0 + a, this yields the boundJ3(n+ 1; x) � H�n(a) � D3�n � D4�nF (x);with D4 = D3=F (x0 + a), whereas for x > x0 + a we get the boundJ3(n+ 1; x) � �1 aZ0 F (x� y)H�n(dy) � �1(1 + Æ=2)F (x)H�n(a)so that all togetherJ3(n + 1; x) � [D4�n + �1(1 + Æ=2)H�n(a)℄F (x): (10)Adding the obtained bounds for the Ji(n+ 1; x) and dividing by F (x) yields�n+1 � �n(1 + Æ) +D;with D = (D2 +D4)�n + �1(1 + Æ=2)H�n(a). Now aording to the treatmentof () of Lemma 1.3.5 in Embrehts et al. (1997), we take that: for eah Æ > 0there exists some 0 � D = D(Æ) <1 suh that, uniformly for eah integer n�n+1 � �n(1 + Æ) +D; (11)then, by simple reursion treatment we obtain �n � (�1 +D=Æ)(1 + Æ)n andtherefore Lemma 2 is proved.
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Let kHk denote the total mass of a measure H.Lemma 3. For eah n � 1, G�n+ (x; x+ z℄ � nkG+kn�1j��j zF (x).Proof. We onsider only the non{lattie ase, the lattie ase being entirelysimilar. With U� = P10 G�n� , it is standard (e.g. the proof of (2) in Asmussen(2000, Set. IX.3)) thatG+(x; x + z℄ = 0Z�1 F (x� y; x+ z � y℄U�(dy)= 1Zx U�(x� v; x+ z � v℄F (dv): (12)By Blakwell's renewal theorem, U�(�w;�w+ z℄ has limit z=j��j as w !1and is bounded by 1+ 2z uniformly in w. Sine F (x+ a)=F (x)! 1 for eaha, it follows by letting �rst x!1 and next a!1 in the inequalityG+(x; x + z℄F (x) � supw�aU�(�w;�w + z℄F (x + a)F (x)+ (1 + 2z)F (x)� F (x + a)F (x)that lim supx!1[G+(x; x + z℄=F (x)℄ � z=j��j. The proof of lim infx!1 �z=j��j is similar and gives the ase n = 1 of the lemma. The ase n > 1 followsin a straigtforward way by indution and Lemma 1 applied to G+=kG+k.Proof of Theorem 1. As we have mentioned, U�(�w;�w + z℄ is bounded by1 + 2z uniformly in w. Therefore, G+(x; x + z℄ � (1 + 2z)F (x), so thatthe assumptions of Lemma 2 hold for H = G+=kG+k. Choosing Æ suh that = (1 + Æ)kG+k < 1, we therefore haveG�n+ (x; x + z℄ � CÆnF (x): (13)Using � = (1� kG+k)P10 G�n+ (Asmussen, 2000, formula (3.2) p. 261), domi-nated onvergene and Lemma 3 therefore yields�(x; x + z℄F (x) = (1� kG+k) 1X0 G�n+ (x; x+ z℄F (x)! (1� kG+k) zj��j 1X0 nkG+kn�1 = zj��j(1� kG+k) :6



Now just note thatm = (1�kG+k)�� (see again Asmussen (2000, Set. IX.3)).The inequality (5) follows from (13). 2One appliation of Theorem 1 isCorollary 1. Let g(t) be diretly Riemann integrable on [0;1). Then1Zx g(y � x) �(dy) � 1jmjF (x) 1Z0 g(t) dt (14)This follows by using Theorem 1 preisely as Blakwell's renewal theorem isused in the proof of the key renewal theorem (Asmussen (1987, p. 119)). InAsmussen (1998) and Kalashnikov and Konstantinides (2000), an estimateof the type (14) was stated to be an easy onsequene of (2); however, asupporting argument is required.For the sake of ompleteness, we �nally mention that one also easily obtainsa GI/G/1 version of the M/G/1 result of Kl�uppelberg (1989) on the densityof � (the proof is similar or as the proof of (2) in Asmussen (2000)):Proposition 1. Assume instead of (1) that F has a density f(x) for x > 0suh that the funtion f+(x) de�ned by f+(x) = f(x)=F (0), x > 0, f+(x) = 0,x � 0, satis�es f �n+ (x) � nf+(x) for all n and that to eah � > 0 there exists� suh that f �n+ (x) � �(1 + �)nf+(x) for all n and x. Then � has a densityg(x) satisfying g(x) � f(x)=jmj.Aknowledgment. After the submission of this work, Professor V.V. Kalsh-nikov sadly passed away. His devotion as well as his inspiration and enthusiasmlive on in the memories of the oauthors of the paper.
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