
A lo
al limit theoremfor random walk maxima with heavy tailsS�ren Asmussen a;1, Vladimir Kalashnikov b,Dimitrios Konstantinides 
, Claudia Kl�uppelberg d andGurami Tsitsiashvili eaDepartment of Mathemati
al Statisti
s, Lund University, Box 119, S{221 00Lund, SwedenbDied at 19th of Mar
h 2001, aÆliated at the University of Copenhagen, Denmark
Department of Mathemati
s, University of Aegean, Samos 83200, Gree
edCenter for Mathemati
al S
ien
es, Muni
h University of Te
hnology, D{80290Muni
h, GermanyeInstitute of Applied Mathemati
s, Russian A
ad. S
i., 690041 Vladivostok, RussiaAbstra
tFor a random walk with negative mean and heavy{tailed in
rement distributionF , it is well known that under suitable subexponential assumptions, the distribu-tion � of the maximum has a tail �(x;1) whi
h is asymptoti
ally proportional toR1x F (y;1) dy. We supplement here this by a lo
al result showing that �(x; x+ z℄is asymptoti
ally proportional to zF (x;1).Key words: integrated tail, ladder height, subexponential distributionLet X1; X2; : : : be i.i.d. with 
ommon distribution F with mean �1 < m < 0.Set m+ = R10 F (x) dx and F I(x) = R1x F (y) dy. LetSn = X1 + � � � +Xn; M = maxn�0 Sn;and �(dx) = IP(M 2 dx). Assume that G� and G+ are respe
tively thedes
ending and as
ending ladder height distributions, i.e. the distributions ofS�� and S�+, where�� = inf fn > 0 : Sn � 0g ; �+ = inf fn > 0 : Sn > 0g :1 Corresponding author. E-mail: asmus�maths.lth.sePreprint submitted to Elsevier S
ien
e 12 O
tober 2001



Let �� be the mean of S�� .We assume throughout that the right tail F (x) = 1 � F (x) = F (x;1) isproportional to a tail in the 
lass S� introdu
ed by Kl�uppelberg (1988), whi
his equivalent toxZ0 F (x� y)F (y) dy � 2m+F (x); x!1 : (1)This implies that both F (x) and the integrated tail F I(x) are subexponentialand (1) is only marginally stronger than any of these assumptions. It is thenwell{known (e.g. Embre
hts and Veraverbeke (1982), Embre
hts et al. (1997)or Asmussen (2000) and referen
es therein) that�(x)� 1jmjF I(x); (2)G+(x)� 1j��jF I(x); x!1 : (3)The relation (2) is of basi
 importan
e in insuran
e risk and queueing the-ory, and has been generalized to many models (see Asmussen (2000, Ch. IX)for referen
es to the insuran
e risk literature; some sele
ted queueing papersare Asmussen and M�ller (1999), Resni
k and Samorodnitsky (1999), Whitt(2000). In this note, we provide lo
al versions of (2). For �:Theorem 1. Assume that F is non{latti
e satisfying (1). Then for ea
h z > 0,�(x; x + z℄ � 1jmjzF (x): (4)In the latti
e 
ase, the same 
on
lusion holds when x; z are restri
ted to valuesof the latti
e span. Further, there exist 
onstants 
1; 
2 su
h that for all x; z � 0�(x; x + z℄ � (
1 + 
2z)F (x) (5)This extends a result of Kl�uppelberg (1989) whi
h requires, among others, theexisten
e of densities and a strong M/G/1 type 
ondition, that the left tail ofF is of the form F (dy) = 
e�y, y < 0. We pro
eed to the proof.Lemma 1. Let H1, H2 be distributions on (0;1) su
h that for ea
h z > 0,H1(x; x + z℄ � d1zF (x), H2(x; x + z℄ � d2zF (x). Then (H1 �H2)(x; x + z℄ �(d1 + d2)zF (x). 2



Proof. We use repeatedly thatF (x� b)F (x) ! 1 uniformly in b � b0 (6)by subexponentiality (see Embre
hts et al. (1997, p. 577) or Asmussen (2000,p. 253)). The �rst appli
ation is the relation`2 aZ0 F (x� y)F (y) dy = `2 xZx�a F (x� y)F (y) dy = m+ (7)where `2 is the operator de�ned by `2g(x; a) = lima!1 lim supx!1 g(x; a)=F (x),whi
h follows by dominated 
onvergen
e. Write (H1�H2)(x; x+z℄ = J1+J2+J3where J1; J2; J3 are the integrals of H2(x � y; x � y + z℄H1(dy) over (0; a℄,(a; x+ z � a℄, resp. (x + z � a; x+ z℄, a > z. ThenJ1 = aZ0 H2(x� y; x� y + z℄H1(dy) � d2zF (x)H1(a); x!1;by dominated 
onvergen
e and the assumption on H2. Similarly,J3 = a�zZ0 H1(x� v; x� v + z℄H2(dv) + aZa�z H1(x� a + z; x� v + z℄H2(dv):It follows thatd1zF (x)H2(a� z) � a�zZ0 H1(x� v; x� v + z℄H2(dv)� J3 � aZ0 H1(x� v; x� v + z℄H2(dv) � d1zF (x)H2(a) :As a 
an be taken arbitrarily large, it is left to show that `2J2 = 0, and hereit suÆ
es to restri
t a to integer values. But letting x� = dx+ ze, it follows byrepeatedly using (6) and the assumptions on H1, H2 that we 
an bound `2J2by d2z `2 x��aZa F (x� � y)H1(dy) 3



= d2z `2 x��a�1Xk=a F (x� � k � 1)H1(k; k + 1℄= d1d2z `2 x��a�1Xk=a F (x� � k � 1)F (k)= d1d2z `2 x��aZa F (x� � y)F (y) dy ;whi
h is 0 a

ording to (1) and (7).Lemma 2. Let H be a distribution on (0;1) su
h that for ea
h z > 0,H(x; x + z℄ � dzF (x). Then for ea
h Æ > 0 there is CÆ < 1 su
h that�n � CÆ(1 + Æ)n where �n = supx>0H�n(x; x + z℄=F (x).Proof. We start by 
hoosing a su
h thatx+z�aZa F (x� y)H(dy) � Æ2F (x) (8)for all x.The existen
e of a follows sin
e the proof of Lemma 1 shows that (8) 
an beobtained for all large x, say x � x1, and the validity for all x then followsby repla
ing a by a larger a if ne
essary, say (x1 + z)=2 (making the integralnon-positive for x � x1).Next we 
hoose x0 su
h that F (x�a)=F (x) � 1+Æ=2 for all x � x0. We writeH�n(x; x+ z℄ = J1(n; x) + J2(n; x) + J3(n; x) where J1(n; x); J2(n; x); J3(n; x)are the integrals over [0; a℄, (a; x+z�a℄, resp. (x+z�a; x+z℄, of H�(n�1)(x�y; x+ z � y℄ w.r.t. H(dy).To bound J1(n + 1; x), we �rst note that for some D1 < 1 and some � < 1it holds that H�n(x0 + a+ z) � D1�n, 
f. Asmussen (1987, p. 113). Hen
e forx � x0 + a,J1(n + 1; x) � aZ0 H�n(x + z � y)H(dy) � H�n(x + z)H(a) �� H�n(x0 + a+ z) � D1�n � D2�nF (x);with D2 = D1=F (x0 + a), whereas for x > x0 + a4



J1(n+1; x) � �n aZ0 F (x�y)H(dy) � �nF (x�a)H(a) � �n(1+Æ=2)F (x):All together we haveJ1(n + 1; x) � [D2�n + �n(1 + Æ=2)℄F (x): (9)Further, by (8)J2(n+ 1; x) � �n x+z�aZa F (x� y)H(dy) � F (x)�nÆ=2:For J3(n + 1; x), we have as in the proof of Lemma 1 that J3(n + 1; x) �R a0 H(x� y; x+ z � y)H�n(dy). For x � x0 + a, this yields the boundJ3(n+ 1; x) � H�n(a) � D3�n � D4�nF (x);with D4 = D3=F (x0 + a), whereas for x > x0 + a we get the boundJ3(n+ 1; x) � �1 aZ0 F (x� y)H�n(dy) � �1(1 + Æ=2)F (x)H�n(a)so that all togetherJ3(n + 1; x) � [D4�n + �1(1 + Æ=2)H�n(a)℄F (x): (10)Adding the obtained bounds for the Ji(n+ 1; x) and dividing by F (x) yields�n+1 � �n(1 + Æ) +D;with D = (D2 +D4)�n + �1(1 + Æ=2)H�n(a). Now a

ording to the treatmentof (
) of Lemma 1.3.5 in Embre
hts et al. (1997), we take that: for ea
h Æ > 0there exists some 0 � D = D(Æ) <1 su
h that, uniformly for ea
h integer n�n+1 � �n(1 + Æ) +D; (11)then, by simple re
ursion treatment we obtain �n � (�1 +D=Æ)(1 + Æ)n andtherefore Lemma 2 is proved.
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Let kHk denote the total mass of a measure H.Lemma 3. For ea
h n � 1, G�n+ (x; x+ z℄ � nkG+kn�1j��j zF (x).Proof. We 
onsider only the non{latti
e 
ase, the latti
e 
ase being entirelysimilar. With U� = P10 G�n� , it is standard (e.g. the proof of (2) in Asmussen(2000, Se
t. IX.3)) thatG+(x; x + z℄ = 0Z�1 F (x� y; x+ z � y℄U�(dy)= 1Zx U�(x� v; x+ z � v℄F (dv): (12)By Bla
kwell's renewal theorem, U�(�w;�w+ z℄ has limit z=j��j as w !1and is bounded by 
1+ 
2z uniformly in w. Sin
e F (x+ a)=F (x)! 1 for ea
ha, it follows by letting �rst x!1 and next a!1 in the inequalityG+(x; x + z℄F (x) � supw�aU�(�w;�w + z℄F (x + a)F (x)+ (
1 + 
2z)F (x)� F (x + a)F (x)that lim supx!1[G+(x; x + z℄=F (x)℄ � z=j��j. The proof of lim infx!1 �z=j��j is similar and gives the 
ase n = 1 of the lemma. The 
ase n > 1 followsin a straigtforward way by indu
tion and Lemma 1 applied to G+=kG+k.Proof of Theorem 1. As we have mentioned, U�(�w;�w + z℄ is bounded by
1 + 
2z uniformly in w. Therefore, G+(x; x + z℄ � (
1 + 
2z)F (x), so thatthe assumptions of Lemma 2 hold for H = G+=kG+k. Choosing Æ su
h that
 = (1 + Æ)kG+k < 1, we therefore haveG�n+ (x; x + z℄ � CÆ
nF (x): (13)Using � = (1� kG+k)P10 G�n+ (Asmussen, 2000, formula (3.2) p. 261), domi-nated 
onvergen
e and Lemma 3 therefore yields�(x; x + z℄F (x) = (1� kG+k) 1X0 G�n+ (x; x+ z℄F (x)! (1� kG+k) zj��j 1X0 nkG+kn�1 = zj��j(1� kG+k) :6



Now just note thatm = (1�kG+k)�� (see again Asmussen (2000, Se
t. IX.3)).The inequality (5) follows from (13). 2One appli
ation of Theorem 1 isCorollary 1. Let g(t) be dire
tly Riemann integrable on [0;1). Then1Zx g(y � x) �(dy) � 1jmjF (x) 1Z0 g(t) dt (14)This follows by using Theorem 1 pre
isely as Bla
kwell's renewal theorem isused in the proof of the key renewal theorem (Asmussen (1987, p. 119)). InAsmussen (1998) and Kalashnikov and Konstantinides (2000), an estimateof the type (14) was stated to be an easy 
onsequen
e of (2); however, asupporting argument is required.For the sake of 
ompleteness, we �nally mention that one also easily obtainsa GI/G/1 version of the M/G/1 result of Kl�uppelberg (1989) on the densityof � (the proof is similar or as the proof of (2) in Asmussen (2000)):Proposition 1. Assume instead of (1) that F has a density f(x) for x > 0su
h that the fun
tion f+(x) de�ned by f+(x) = f(x)=F (0), x > 0, f+(x) = 0,x � 0, satis�es f �n+ (x) � nf+(x) for all n and that to ea
h � > 0 there exists
� su
h that f �n+ (x) � 
�(1 + �)nf+(x) for all n and x. Then � has a densityg(x) satisfying g(x) � f(x)=jmj.A
knowledgment. After the submission of this work, Professor V.V. Kalsh-nikov sadly passed away. His devotion as well as his inspiration and enthusiasmlive on in the memories of the 
oauthors of the paper.
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