A local limit theorem
for random walk maxima with heavy tails
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Abstract

For a random walk with negative mean and heavy-tailed increment distribution
F, it is well known that under suitable subexponential assumptions, the distribu-
tion 7 of the maximum has a tail 7(z, co) which is asymptotically proportional to
[.° F(y,00) dy. We supplement here this by a local result showing that 7 (z,z + 2]
is asymptotically proportional to zF'(z, c0).
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Let X, X5, ... bei.i.d. with common distribution F' with mean —oo < m < 0.
Set my = [;° F(z)dz and Fr(z) = [° F(y) dy. Let

Sp=X1+ - + X, M:mggcsn,

and 7(dx) = P(M € dz). Assume that G_ and G, are respectively the
descending and ascending ladder height distributions, i.e. the distributions of
Sr_ and S;,, where

_=inf{n>0:S5,<0}, 7 =inf{n>0:S5,>0}.

1" Corresponding author. E-mail: asmus@maths.lth.se

Preprint submitted to Elsevier Science 12 October 2001



Let u_ be the mean of S, .

We assume throughout that the right tail F(z) = 1 — F(z) = F(z,00) is
proportional to a tail in the class S* introduced by Kliippelberg (1988), which
is equivalent to

/F(w —y)F(y)dy ~ 2m,F(z), x— co. (1)

This implies that both F(z) and the integrated tail F;(z) are subexponential
and (1) is only marginally stronger than any of these assumptions. It is then
well-known (e.g. Embrechts and Veraverbeke (1982), Embrechts et al. (1997)
or Asmussen (2000) and references therein) that

o)~ L File), o)
G (2)~ |M—1_|Fl(x), Z = 00. (3)

The relation (2) is of basic importance in insurance risk and queueing the-
ory, and has been generalized to many models (see Asmussen (2000, Ch. IX)
for references to the insurance risk literature; some selected queueing papers
are Asmussen and Mgller (1999), Resnick and Samorodnitsky (1999), Whitt
(2000). In this note, we provide local versions of (2). For =

Theorem 1. Assume that F' is non-lattice satisfying (1). Then for each z > 0,

m(z, x4 2] ~ |—;|zf(x). (4)

In the lattice case, the same conclusion holds when z, z are restricted to values
of the lattice span. Further, there exist constants ¢y, ¢a such that for allz,z > 0

m(x,z + 2] < (1 + c22)F () (5)

This extends a result of Kliippelberg (1989) which requires, among others, the
existence of densities and a strong M/G/1 type condition, that the left tail of
F is of the form F(dy) = ce?, y < 0. We proceed to the proof.

Lemma 1. Let Hy, Hs be distributions on (0, 00) such that for each z > 0,
Hy(z,2 + 2] ~ d12F (), Hy(z,x + 2] ~ da2F(z). Then (Hy * Hy)(z,x + 2] ~
(dl + dg)ZF(w)



Proof. We use repeatedly that

F(r —
M — 1 uniformly in b < by (6)

by subexponentiality (see Embrechts et al. (1997, p. 577) or Asmussen (2000,
p. 253)). The first application is the relation

T

@/Fx— wdy = & [ Flo-yFy)dy = m, (7)

r—a

where (5 is the operator defined by l2g(z,a) = lim, .o limsup, .. g(z,a)/F(z),
which follows by dominated convergence. Write (Hy*Hs)(z, v+2] = Ji+Jo+J3
where Ji, J2, J3 are the integrals of Hy(z — y,x — y + 2| Hi(dy) over (0, al,
(a,z + z — al, resp. (x + z — a,x + z|, a > z. Then

J = /Hg(w—y,x—y+z]H1(dy) ~ dyzF(z)Hi(a), x — o0,

by dominated convergence and the assumption on Hs. Similarly,

J3 = /Hlx—vx—v+z]H2dv /Hla:—a+za:—v+z]H2(dv)

a—

It follows that

d1zF (z)Hy(a — z) ~ / Hi(z — v,z — v+ z] Hy(dv)

0

< J3 < /Hl(x — v,z — v+ 2] Hy(dv) ~ d12F(z)Hs(a).
0

As a can be taken arbitrarily large, it is left to show that ¢5J> = 0, and here
it suffices to restrict a to integer values. But letting #* = [z + z], it follows by
repeatedly using (6) and the assumptions on H;, Hs that we can bound ¢5.J5
by

z*—a

dyz Uy / F(z* — y) Hi(dy)



z*—a—1
k=a
x*fafl_ .
k=a

z*—a

~didyzty [ F(a" = y)F(y)dy,

which is 0 according to (1) and (7). O

Lemma 2. Let H be a distribution on (0,00) such that for each z > 0,
H(z,x + z] ~ dzF(z). Then for each § > 0 there is C5 < oo such that
an < Cs(1+46)"™ where a,, = sup,.o H™(z,z + 2]/ F(z).

Proof. We start by choosing a such that

T+z—a

Fle —y)H(dy) < 3F() Q

for all z.

The existence of a follows since the proof of Lemma 1 shows that (8) can be
obtained for all large z, say « > x;, and the validity for all  then follows
by replacing a by a larger a if necessary, say (z; + z)/2 (making the integral
non-positive for z < zy).

Next we choose xg such that F(z —a)/F(z) < 1+4/2 for all z > xzy. We write
H™(z,z + 2] = Ji(n,x) + Jo(n, z) + J3(n, z) where Ji(n,z), Jo(n, z), J3(n, x)
are the integrals over [0, al, (a, x4z —a), resp. (z+2z—a, z+2], of H*""Y(z —

y, x4z —y| wr.t. H(dy).

To bound Ji(n + 1, x), we first note that for some D; < oo and some n < 1
it holds that H**(x¢ + a + z) < Din", cf. Asmussen (1987, p. 113). Hence for
z < xy+ a,

hin+1a) < [H™a+z-y)H(dy) < H"(0+2)H(a) <
< H™zg+a+2z) < Din* < Don*F(z),

with Dy = D;/F(x¢ + a), whereas for z > zo + a



Jiln+1,z) < an/F(x—y)H(dy) < apF(r—a)H(a) < an(1+6/2)F(x).

All together we have

Jiln+1,2) < [Dan®™ + an(1 +6/2)]F(z). (9)

Further, by (8)

Jo(n+1,z) < a / F(x —y) H(dy) < F(z)a,d/2.

a

For Js(n + 1,z), we have as in the proof of Lemma 1 that Js(n + 1,z) <
Jo Hx —y,z + 2z — y) H"(dy). For x < x¢ + a, this yields the bound

Js(n+1,2) < H™(a) < Dsn" < Dyn"F(x),

with Dy = D3/F(x¢ + a), whereas for z > zy + a we get the bound
Js(n+1,2) < ar [Fla—y)H"(dy) < aa(1+8/2)F(@)H"(a)
0

so that all together

Js(n+1,2) < Dy + a1(146/2)H™(a)]F(z). (10)

Adding the obtained bounds for the J;(n + 1,z) and dividing by F(z) yields
Apt1 < ap(l+0)+ D,

with D = (Dy + Dy)n"™ + a1(1 + 6/2) H**(a). Now according to the treatment
of (¢) of Lemma 1.3.5 in Embrechts et al. (1997), we take that: for each 6 > 0
there exists some 0 < D = D(4§) < oo such that, uniformly for each integer n

A1 < ap(l+6) + D, (11)

then, by simple recursion treatment we obtain «, < (ay + D/d)(1 + §)" and
therefore Lemma 2 is proved.

O



Let ||H|| denote the total mass of a measure H.

nl|Gy["

Lemma 3. For each n > 1, G¥"(z, x4+ 2] ~ |
pe

2F ().

Proof. We consider only the non—lattice case, the lattice case being entirely
similar. With U_ = >5° G*", it is standard (e.g. the proof of (2) in Asmussen
(2000, Sect. IX.3)) that

Gi(z,z+ 2| = / Fx —y, v+ 2 —y|U_(dy)

:/U_(x—v,x—l—z—v]F(dv). (12)
By Blackwell’s renewal theorem, U_(—w, —w + z| has limit z/|u_| as w — oo

and is bounded by ¢; + coz uniformly in w. Since F(z +a)/F(x) — 1 for each
a, it follows by letting first + — oo and next a — oo in the inequality

Gi(z,z + 2] F(z +a)
B G A T
(o +C2Z)F(x) —Ff’x()a: +a)

that limsup, ,[G.(z,z + z]/F(z)] < 2/|u_|. The proof of liminf, ,,, >
z/|p—| is similar and gives the case n = 1 of the lemma. The case n > 1 follows
in a straigtforward way by induction and Lemma 1 applied to G, /||G+||. O

Proof of Theorem 1. As we have mentioned, U (—w, —w + 2| is bounded by
c1 + cpz uniformly in w. Therefore, G (z,z + 2| < (c1 + c22)F(x), so that
the assumptions of Lemma 2 hold for H = G, /||G4||. Choosing d such that
v=(1+0)||G+]| <1, we therefore have

Gz, z + 2] < Csy"F(x). (13)

Using 7 = (1 — ||G4||) X¢° G*" (Asmussen, 2000, formula (3.2) p. 261), domi-
nated convergence and Lemma 3 therefore yields

7r(a:,x+z] > G xx+z]
) 603
z z
1—||Gy|])— G|t = .
7 G 2 = L e



Now just note that m = (1—||G 4 ||)p— (see again Asmussen (2000, Sect. IX.3)).

The inequality (5) follows from (13). O

One application of Theorem 1 is

Corollary 1. Let g(t) be directly Riemann integrable on [0, 00). Then

Zog(y—w)ﬂ(dy) ~ |—7 Zog (14)

This follows by using Theorem 1 precisely as Blackwell’s renewal theorem is
used in the proof of the key renewal theorem (Asmussen (1987, p. 119)). In
Asmussen (1998) and Kalashnikov and Konstantinides (2000), an estimate
of the type (14) was stated to be an easy consequence of (2); however, a
supporting argument is required.

For the sake of completeness, we finally mention that one also easily obtains
a GI/G/1 version of the M/G/1 result of Kliippelberg (1989) on the density
of m (the proof is similar or as the proof of (2) in Asmussen (2000)):

Proposition 1. Assume instead of (1) that F" has a density f(z) for z > 0
such that the function f, (z) defined by f,(z) = f(z)/F(0), z > 0, f,(z) =0,
x < 0, satisfies fi"(x) ~ nfy(z) for all n and that to each € > 0 there exists
ce such that fi"(z) < c(1 +¢)"fi(x) for all n and z. Then 7 has a density

g(x) satisfying g(x) ~ f(z)/|m|.
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