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Abstract

In this paper we study the extremal behavior of stationary mixed moving

average processes Y (t) =
∫

R+×R
f(r, t − s) dΛ(r, s) for t ∈ R, where f is a

deterministic function and Λ is an infinitely divisible independently scattered

random measure, whose underlying driving Lévy process is regularly varying.

We give sufficient conditions for the stationarity of Y and compute the tail

behavior of certain functionals of Y . The extremal behavior is modelled by

marked point processes at a discrete-time skeleton chosen properly by the

jump times of the underlying driving Lévy process and the extremes of the

kernel function. The sequences of marked point processes converge weakly to

a cluster Poisson random measure and reflect extremes of Y on a high level.

We obtain also convergence of partial maxima to the Fréchet distribution. Our

models and results cover short and long range dependence regimes.
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1 Introduction

In this paper we investigate the extremal behavior of a stationary continuous-time

mixed moving average (MA) process of the form

Y (t) =

∫

R+×R

f(r, t− s) dΛ(r, s) for t ∈ R , (1.1)

where the kernel function f : R+×R → R is measurable and Λ is an infinitely divis-

ible independently scattered random measure (i. d. i. s. r. m.). We recall the definition

of an i. d. i. s. r. m. on R+ × R: let A be a δ-ring (i. e. a ring which is closed under

countable intersections) of R+ × R such that there exists an increasing sequence

{Sn}n∈N of sets in A with
⋃∞

n=1 Sn = R+ × R. Moreover, let Λ = {Λ(A) : A ∈ A}

be a real valued stochastic process defined on some probability space. We call Λ

an independently scattered random measure, if for every sequence {An}n∈N of dis-

joint sets in A, the random variables (r. v. s) Λ(An), n ∈ N, are independent and,

if
⋃∞

n=1An ∈ A, then Λ (
⋃∞

n=1An) =
∑∞

n=1 Λ(An) almost surely (a. s.). We call a

random measure infinitely divisible (i. d.), if Λ(A) is i. d. for every A ∈ A. The

reader is referred to Rajput and Rosinski [29], Urbanik [35] and Kwapieǹ and Woy-

czyzǹski [22] for more details on i. d. i. s. r. m. and integrals as given in (1.1).

In the following we consider only i. d. i. s. r. m., where the characteristic function

of Λ(A) has the representation E[exp (iuΛ(A))] = exp(λ(A)ψ(u)) for u ∈ R, A ∈ A.

Throughout the paper we assume that there exists a probability measure π on R+

such that λ(dω) = π(dr)× dt for ω = (r, t) ∈ R+ × R. Moreover, ψ is the cumulant

generating function of a Lévy process with

ψ(u) = ium−
1

2
u2σ2 +

∫

R

(
eiux − 1 − iuh(x)

)
ν(dx) for u ∈ R , (1.2)

and h(x) = 1[−1,1](x). The quantities (m,σ2, ν, π) are called the generating quadruple

of the i. d. i. s. r. m. Λ. Here m ∈ R, σ2 ≥ 0, and ν is a measure on R, called

Lévy measure, satisfying ν({0}) = 0 and
∫

R
(1 ∧ |x|2) ν(dx) < ∞. We denote by

L = {L(t)}t∈R the underlying driving Lévy process with

L(t) = Λ(R+ × [0, t]) for t ∈ R, (1.3)

whose generating triplet is (m,σ2, ν).

Typical examples for mixed MA processes are superpositions of Ornstein-Uhlen-

beck (supOU) processes studied by Barndorff-Nielsen [2] (see Example 3.4), which

are used for stochastic volatility modelling. If f(r, s) is independent of r, i. e.

f(r, s) = f̃(s) for every r ∈ R+, s ∈ R, and f̃ : R → R is measurable, then we
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interpret Y given by (1.1) as the classical Lévy driven MA process

Y (t) =

∫

R

f(t− s) dL(s) for t ∈ R, (1.4)

where we used the same symbol f for the kernel function f̃ . This class includes

CARMA, FICARMA processes (cf. Brockwell and Marquardt [9]) and stochastic

delay equations (cf. Gushchin and Küchler [17]).

In the present paper we investigate regularly varying Lévy driven mixed MA

processes with respect to their extremal behavior. We present the precise conditions

below. For details on extreme value theory we refer to the monograph of Embrechts

et al. [14]. We shall use the following standard notations: R = R ∪ {−∞} ∪ {∞},

R+ = (0,∞),
w

=⇒ denotes weak convergence and
υ

=⇒ denotes vague convergence.

For real functions g and h we abbreviate g(t) ∼ h(t) for t→ ∞, if g(t)/h(t) → 1 for

t→ ∞.

Condition (L). The marginal distribution L(1) of the underlying driving Lévy

process L as given in (1.3) is regularly varying of index α for some α > 0, i. e. there

exists a sequence 0 < an ↑ ∞ of constants such that

nP(a−1
n L(1) ∈ ·)

υ
=⇒ σ(·) on B(R\{0}) for n→ ∞, (1.5)

where for some p ∈ [0, 1] and q = 1 − p,

σ(dx) = pαx−α−1
1(0,∞)(x) dx+ qα(−x)−α−1

1(−∞,0)(x) dx. (1.6)

Regularly varying distribution functions (d. f. s) include, in particular, stable, Pareto,

loggamma and Burr distribution. Notice, that E|L(1)|δ < ∞ for δ < α and

E|L(1)|δ = ∞ for δ > α.

For studying the extremal behavior of Y we will impose the following condition

in Section 4. We define

L
δ(π) :=

{
f : R+ × R → R measurable,

∫

R+

∫

R

|f(r, s)|δ ds π(dr) <∞

}

for δ > 0. If f(r, s) is independent of r we write f ∈ L
δ instead of f ∈ L

δ(π).

Condition (M). Let Y as given in (1.1) be a stationary i. d. process and the un-

derlying driving Lévy process L as given in (1.3) satisfy (L). Let the kernel function

f ∈ L
δ(π) for some δ < α, or let L(1) be α-stable and f ∈ L

α(π). In both cases

assume that f+ := sup(r,t)∈R+×R
f+(r, t) < ∞ and f− := sup(r,t)∈R+×R

f−(r, t) < ∞

with f+(r, t) := max{f(r, t), 0}, f−(r, t) := max{−f(r, t), 0}. Furthermore, let∫
R+

∫
R
p(f+ (r, s))α + q(f−(r, s))α ds π(dr) > 0.
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We shall give sufficient conditions for Y to be a stationary i. d. process and also

regularly varying of index α; see Section 3.

Extreme value theory for stable MA processes was derived in Rootzén [31]. We

extend Rootzén’s results to the much richer class of regularly varying mixed MA

processes. Furthermore, we weaken his assumptions on the kernel function. Thus,

our model includes also heavy tailed long memory processes.

This paper is organized as follows. We start with preliminaries in Section 2

introducing multivariate regular variation (in Section 2.1) and point processes of

multivariate regularly varying sequences (in Section 2.2). An investigation of heavy

tailed mixed MA processes follows in Section 3. This includes sufficient conditions

for (M), followed by a study of the tail behavior of Y as well as the tail behavior of

M(h) = supt∈[0,h] Y (t) for h > 0. Finally, we introduce supOU processes as examples

for heavy tailed mixed MA processes, which can exhibit long range dependence.

The main results of this paper are presented in Section 4. In Section 4.1 our

investigation on the extremal behavior of Y is based on marked point processes at a

properly chosen discrete-time skeleton, namely by the jump times of the underlying

driving Lévy process in combination with extremes of the kernel function. The

marked point processes converge to a marked cluster Poisson random measure. In

the neighborhood of such an extreme event the behavior of the process is solely

determined by the kernel function. Finally, we obtain the limit distribution of

running maxima of Y in Section 4.2. The results are applied in particular to supOU

processes in Section 4.3. We conclude with the rather technical proofs of Lemma 2.4,

Proposition 3.3, Theorem 4.1 and Theorem 4.4 in Section 5.

Throughout the paper we use the following notation. We write X
d
= Y , if the

distributions of the r. v. s X and Y coincide. For a vector x ∈ R
d we denote by x

t

the transposed of x and by |x| = max{|x1|, . . . , |xd|} the maximum norm. For a

matrix A ∈ R
d×r we denote by ‖A‖ the row-sum-norm. For a measure π we denote

by supp(π) the support of π. Further,
∑0

k=1 := 0 and
∨0

k=1 := 0. As usual D(R) is

the space of càdlàg functions on R.

2 Preliminaries

2.1 Multivariate regular variation

In Section 4.1, we shall find that the finite dimensional distributions of Y are mul-

tivariate regularly varying. We start with the definition.

Definition 2.1 (Multivariate regular variation)

A random vector X = (X1, . . . , Xd) on R
d is said to be regularly varying with in-
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dex α, α > 0, if there exists a random vector Θ with values on the unit sphere

S
d−1 = {x ∈ R

d : |x| = 1} such that for every x > 0,

P(|X| > ux,X/|X| ∈ ·)

P(|X| > u)

w
=⇒ x−α

P(Θ ∈ ·) on B(Sd−1) for u→ ∞. (2.1)

The distribution of Θ is referred to as the spectral measure of X. It describes in

which direction we are likely to find extreme realizations of X. This definition of

regular variation is equivalent to the following:

There exists a Radon measure σ(·) on R
d
\{0} with σ(R

d
\Rd) = 0 and σ(E) > 0

for at least one relatively compact set E ⊆ R
d
\{0}, where 0 = (0, . . . , 0) ∈ R

d, and

a sequence 0 < an ↑ ∞ of constants such that

nP(a−1
n X ∈ ·)

υ
=⇒ σ(·) on B(R

d
\{0}) for n→ ∞. (2.2)

More about multivariate regular variation can be found e. g. in Basrak et al. [4],

Lindskøg [25] and Resnick [30], Chapter 5.

The following Lemma is a multivariate extension of Breiman’s [8] classical result

on regular variation of products and Proposition A.1 of Basrak et al. [5]. The explicit

representation of the spectral measure in Lemma 2.2 follows by straightforward

calculations.

Lemma 2.2 Let Z = (Z1, . . . , Zr) be a vector of independent r. v. s, which are

regularly varying of index α, such that for j = 1, . . . , r there exists a sequence

0 < an ↑ ∞ of constants satisfying

nP(a−1
n Zj ∈ ·)

υ
=⇒ σj(·) on B(R\{0}) for n→ ∞,

where σj(dx) = pjαx
−α−1

1(0,∞)(x) dx + qjα(−x)−α−1
1(−∞,0)(x) dx with pj, qj ≥

0, pj + qj > 0. Furthermore, let A = (a1, . . . , ar) be a random d × r-matrix,

independent of Z. If 0 < E‖A‖γ < ∞ for some γ > α, then Y = AZ is regularly

varying of index α and has spectral measure,

P(Θ ∈ ·) =

∑r
j=1

[
pjE(|aj|

α
1{aj/|aj |∈·}) + qjE(|aj|

α
1{−aj/|aj |∈·})

]
∑r

j=1(pj + qj)E|aj|α
. (2.3)

For x > 0 we have limn→∞ nP(|Y| > anx) = x−α
∑r

j=1(pj + qj)E|aj|
α, giving for

d = 1,

lim
n→∞

nP(Y > anx) = x−α

r∑

j=1

[pjEa
+ α
j + qjEa

−α
j ].

Remark 2.3 Let A be a deterministic matrix and ρ :=
∑r

j=1(pj + qj)E|aj|
α. An

interpretation of (2.3) is that the spectral measure Θ reaches the values aj/|aj| with

probability pj|aj|
α/ρ and −aj/|aj| with probability qj|aj|

α/ρ. Thus, only in the

directions aj/|aj| and −aj/|aj|, j = 1, . . . , r, extremes are likely to occur. �
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2.2 Point process convergence

We follow Resnick [30] and introduce point processes to describe the extremal behav-

ior of Y . In order to achieve distributional stability of a sequence of point processes,

it is necessary to allow for a build up of infinite mass at [s, t)×{0}. For our problem

this is achieved by defining the state space S = [0,∞) × R
d
\{0}, d ∈ N. Then S

can be metricized as a locally compact, complete and separable Hausdorff space.

Compact sets in S are closed sets, which are bounded away from 0 and ±∞. Fur-

thermore, B(S) denotes the Borel σ-field on S andMP (S) the class of point measures

on S, where MP (S) is equipped with the metric ρ that generates the topology of

vague convergence. The space (MP (S), ρ) is a complete and separable metric space

with Borel σ-field MP (S). The zero measure is denoted by 0. A point process in S

is a random element in (MP (S),MP (S)), i. e. a measurable map from a probability

space (Ω,F ,P) into (MP (S),MP (S)). A typical example for a point process in ex-

treme value theory is a Poisson random measure, i. e. given a Radon measure ϑ on

B(S), a point process κ is called Poisson random measure with intensity measure

ϑ, denoted by PRM(ϑ), if

(a) κ(A) is Poisson distributed with intensity ϑ(A) for every A ∈ B(S),

(b) for mutually disjoint sets A1, . . . , An ∈ B(S), n ∈ N, the r. v. s κ(A1), . . . , κ(An)

are independent.

More about point process theory can be found in Daley and Vere-Jones [10] and

Kallenberg [21]. Furthermore, results of Davis and Hsing [11] about the point process

behavior of a stationary sequence of regularly varying r. v. s under weak dependence

are of vital importance for our studies. Their results were generalized by Davis and

Mikosch [12] to multidimensional regularly varying stationary processes, which are

used in Section 4.1.

The following Lemma shows that adding a sequence of small random vectors to

a sequence of multivariate regularly varying random vectors has no influence on the

point process behavior. The meaning of “small random vector” is that the tail of the

norm value of the random vector decreases faster than the tail of the norm value of

the multivariate regularly varying random vectors. Let N be a point process with

jump times {Γk}k∈N labelled such that 0 < Γ1 < Γ2 < . . . < ∞. If the inter-arrival

times {Γk+1 − Γk}k∈N are i. i. d. the counting process N is said to be a renewal

process with intensity µ := E(Γ2 − Γ1).

Lemma 2.4 Let Z = {Zk}k∈N and Ψ = {Ψk}k∈N be sequences of random vectors

in R
d. Furthermore, let {Γk}k∈N be the jump times of a renewal process N with

intensity µ > 0, h ∈ R be arbitrary and sk ∈ [Γk−1 + h,Γk+1 + h) for k ∈ N, setting
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Γ0 := 0. Denote by 0 < an ↑ ∞ a sequence of constants and define the point

processes

κ̃n =
∞∑

k=1

ε(k/n,Zk/an), n ∈ N, and κT =
∞∑

k=1

ε(skµ/T,(Zk+Ψk)/abTc), T > 0, in MP (S).

Suppose there exists a point process κ in MP (S) with κ ([s, t) × {x}) = 0 a. s. for

x ∈ R
d
\{0}, t > s ≥ 0, such that κ̃n

w
=⇒ κ for n → ∞. Furthermore, assume that

for every ε, t > 0,

bntc∑

k=1

P(|Ψk| > anε)
n→∞
−→ 0. (2.4)

Moreover, we suppose that there exists a r. v. W such that

P(|Zk + Ψk| > x) ≤ P(W > x) for x > 0 and P(W > anx) = O(1/n) for n→ ∞.

Let I = [s, t) ×
∏d

i=1 (ci, di] ⊆ S be bounded away from 0 and ∞. Then

lim
T→∞

P(κT (I) 6= κ̃bT c(I)) = 0

and κT
w

=⇒ κ for T → ∞.

Note, that {Zk}k∈N and {Zk + Ψk}k∈N need not to be stationary sequences. To

provide some intuition for random vectors {Ψk}k∈N to satisfy (2.4), we give some

examples.

Example 2.5 (a) Assume there exists a r. v. ψ such that for some x0 ≥ 0 and any

ε > 0, k ∈ N,

P(|Ψk| > x) ≤ P(ψ > x) for x ≥ x0 and P(ψ > anε) = o(1/n) for n→ ∞,

then (2.4) is satisfied.

(b) Let {Z̃k}k∈N be a sequence of identically distributed r. v. s, which are regularly

varying of index α in the sense of (2.2) and with the same an as given in Lemma 2.4.

Suppose {Z̃k}k∈N is independent of the sequence of random vectors {Ψ̃k}k∈N in R
d,

which have support on [−f+, f+]d. Define Ψk := Ψ̃kZ̃k and assume that there exists

a 0 < δ < α, such that

∞∑

k=−∞

E|Ψ̃k|
δ <∞. (2.5)
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Denote by Fk the d. f. of Ψ̃k. By Potter’s Theorem (Bingham et al. [6], Theo-

rem 1.5.6) there exists an n0 ∈ N and K > 1, such that for k ∈ N, n ≥ n0,

P(|Ψ̃kZ̃k| > anε) =

∫

R
d
\{0}

P(f+|Z̃k| > anεf
+/|t|)Fk(dt)

≤ KP(f+|Z̃1| > anε)E|Ψ̃k|
δ. (2.6)

Regarding (2.6) and an → ∞ as n→ ∞, we obtain

lim
n→∞

bntc∑

k=1

P(|Ψk| > anε) ≤ K lim
n→∞

P(f+|Z̃1| > anε)
∞∑

k=1

E|Ψ̃k|
δ = 0. (2.7)

Thus, {Ψk}k∈N satisfies (2.4). �

3 Stationarity and tail behavior of Y

This paper is concerned with extremes of regularly varying mixed MA processes Y

as given in (1.1), which means that the underlying driving Lévy process satisfies (L).

Under certain conditions Y is well-defined as a limit in probability of integrals of

step functions approximating f . This has been shown by Rajput and Rosinski [29],

Theorem 2.7 (see also Kwapieǹ and Woyczyzǹski [22]). They give necessary and

sufficient conditions, which are formulated in terms of the kernel function f and the

generating quadruple (m,σ2, ν, π) of the i. d. i. s. r. m. Λ. Under these assumptions

Y is i. d., and by the structure of a mixed MA process Y is stationary. The following

Proposition gives sufficient conditions to ensure that these assumptions are satisfied.

For details of the proof, we refer to Fasen [15], Proposition 2.2.3.

Proposition 3.1 (Existence) Let Λ be an i. d. i. s. r. m. with generating quadruple

(m,σ2, ν, π), where the underlying driving Lévy process L as defined in (1.3) satisfies

(L), and let f be bounded. Then Y given by (1.1) is well-defined, i. d. and stationary,

if one of the following conditions is satisfied:

(a) L(1) is α-stable, α ∈ (0, 1) ∪ (1, 2), and f ∈ L
α(π).

(b) f ∈ L
δ(π) for some δ < α, δ ≤ 1.

(c) EL(1) = 0, α > 1, and f ∈ L
δ(π) for some δ < α, δ ≤ 2.

Remark 3.2 (i) For a Lévy driven MA process as given in (1.4), Proposition 3.1

provides sufficient conditions for Y to be stationary and the marginal distribution

to be i. d. Then L
δ(π) can be replaced by L

δ. Typical examples for functions in

L
δ are bounded functions f with f(t) ∼ K1t

−δ+ε, f(−t) ∼ K2t
−δ+ε for t → ∞ and
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for some ε ∈ (0, δ), K1, K2 ∈ R. OU-processes, CARMA processes and stochastic

delay equations, which have exponentially decreasing kernel functions, as well as

FICARMA processes satisfy this condition.

(ii) Let Y be a stationary mixed MA process given by (1.1) with kernel function

f and generating quadruple (m,σ2, ν, π) of Λ. Then f ∈ L
α+ε(π) for some ε > 0. �

Proposition 3.3 (Tail behavior) Let Y be a mixed MA process given by (1.1)

satisfying (M), and let x > 0. Then for t ∈ R,

lim
n→∞

nP(Y (t) > anx) = x−α

∫

R+

∫

R

p(f+ (r, s))α + q(f−(r, s))α ds π(dr). (3.1)

Moreover, for ti ∈ R, i = 1, . . . , k, k ∈ N,

lim
n→∞

nP

(
max

i=1,...,k
|Y (ti)| > anx

)
= x−α

∫

R+

∫

R

max
i=1,...,k

|f(r, ti − s)|α ds π(dr). (3.2)

Furthermore, let Y has a. s. sample paths in D(R), fh(r, s) := supt∈[0,h] |f(r, t+s)| ∈

L
α−ε(π) for some 0 < ε < α, and define M(h) = supt∈[0,h] Y (t). Then

lim
n→∞

nP(M(h) > anx) (3.3)

= x−α

∫

R+

∫

R

p sup
t∈[0,h]

(f+(r, t+ s))α + q sup
t∈[0,h]

(f−(r, t+ s))α ds π(dr).

From (3.1) we see that Y (t) is again regularly varying in the sense of (2.2).

Example 3.4 (supOU process) We consider the mixed MA process as given in

(1.1), where the kernel function is f(r, s) = 1[0,∞)(s)e
−rs for r ∈ R+, s ∈ R. Then

Y (t) =

∫

R+×R

1[0,∞)(t− s)e−r(t−s) dΛ(r, s) for t ∈ R (3.4)

is called supOU (superposition of Ornstein-Uhlenbeck) process. An important special

case of (3.4) is the OU (Ornstein-Uhlenbeck) process, for which π has only support

at some λ > 0, i. e. π({λ}) = 1.

For a general probability measure π and for some δ > 0 we have f ∈ L
δ(π) if

and only if ∫

R+

∫

R+

e−rsδ dsπ(dr) = δ−1

∫

R+

r−1 π(dr) <∞.

We assume in the following that λ−1 :=
∫

R+
r−1 π(dr) < ∞. Hence, f ∈ L

δ(π) for

every δ > 0. The necessary and sufficient conditions for supOU processes to exist

and be i. d. (see Rajput and Rosinski [29], Theorem 2.7) reduce to the necessary
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and sufficient conditions of a simple OU process with parameter λ to exist. Then

by Sato [34], Theorem 17.5, the supOU process exists and is i. d. if and only if∫
|x|>2

log |x| ν(dx) <∞. We obtain the generating triplet

mY =
1

λ

[
m+

∫

|y|>1

y

|y|
ν(dy)

]
, σ2

Y =
σ2

2λ
, (3.5)

νY [x,∞) =
1

λ

∫ ∞

x

ν [y,∞)

y
dy , x > 0.

Note, that the finite dimensional distributions of Y are that of an OU process with

parameter λ, whose driving Lévy process has characteristic triplet (m,σ2, ν), i. e.

the marginal distribution of Y is selfdecomposable. Furthermore, for any regularly

varying Lévy process satisfying (L), Y is a stationary i. d. process and

lim
n→∞

nP(Y (t) > anx) =
1

λα
x−α for t ∈ R.

Define the probability measure π(dr) := λr−1π(dr) and the i. d. i. s. r. m. Λ with

generating quadruple (m/λ, σ2/λ, ν/λ, π). Then the finite dimensional distributions

of the stochastic process

X(t) =

∫ ∞

−∞

e−rt

∫ rt

−∞

es dΛ(r, s) for t ∈ R (3.6)

coincide with those of Y , i. e. X
d
= Y (Barndorff-Nielsen [2], Theorem 3.1). Since

dX(t) =

∫

R+

{−rX(t, dr) dt+ dΛ(t, r)} for t ∈ R

with X(t, B) =
∫

B
ert
∫ rt

−∞
es dΛ(r, s) for t ∈ R, B ∈ B(R), the process X, respec-

tively Y , is called supOU process.

By a proper choice of π the correlation function ρ(h) = λ
∫∞

0
r−1e−hr π(dr)

for h ∈ R, can model long memory processes. For example, if π is gamma dis-

tributed with density π(dr) = Γ(2H + 1)−1r2He−r dr for r > 0, H > 0, then ρ(h) =

Γ(2H)−1
∫∞

0
r2H−1e−r(h+1) dr = (h + 1)−2H for h ∈ R. More about supOU models

and their relevance for applications to financial data can be found in Barndorff-

Nielsen and Shephard [3]. �

4 Extremal behavior

4.1 The point process of a discrete-time skeleton

In this section we study the extremal behavior of a regularly varying mixed MA

process. To this end we use a discrete-time skeleton for Y as given in (1.1) satisfying

10
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(M). This means we investigate the extremal behavior of a discrete-time sequence

{Y (tn)}n∈N, where the discrete-time random sequence {tn}n∈N is chosen properly by

the jump times of the underlying driving Lévy process L as given in (1.3) and the

extremes of the kernel function. We shall show that the extremes of {Y (tn)}n∈N

coincide with extremes of Y on high levels.

Therfore, we decompose Λ into two independent i. d. i. s. r. m. according to the

jump sizes of the underlying driving Lévy process L, which are represented by ν.

We define

Λ = Λ1 + Λ2 and Λ1(A) =

∫

R

x dÑ1(A, x) for A ∈ A, (4.1)

where Ñ1 is a Poisson random measure with intensity

ϑ(dr × dt× dx) = π(dr) × dt× ν1(dx),

(denoted by PRM(ϑ)), and ν1 is the Lévy measure

ν1 (A) = ν(A ∩ (1,∞)) + ν(A ∩ (−∞,−1)) for A ∈ B(R).

The generating quadruple of Λ1 is (0, 0, ν1, π). Furthermore, Λ1 is called com-

pound Poisson random measure. The i. d. i. s. r. m. Λ2 has the generating quadruple

(m,σ2, ν2, π) with Lévy measure ν2 = ν − ν1, i. e. it has finite support. We refer

to Pedersen [28] for the Lévy-Ito decomposition of i. d. i. s. r. m. s. The underlying

driving Lévy process of Λ1 with generating triplet (0, 0, ν1) has jumps with modu-

lus larger than one, and the underlying driving Lévy process of Λ2 with generating

triplet (m,σ2, ν2) has jumps with modulus smaller than one. Furthermore, Ñ1 has

the representation

Ñ1 =
∞∑

k=−∞

ε(Rk,Γk,Zk), (4.2)

where −∞ < . . . < Γ−1 < Γ0 ≤ 0 < Γ1 < . . . < ∞ are the jump times of a Poisson

process N = {N(t)}t∈R with intensity µ = ν1(R) > 0, Z = {Zk}k∈Z is an i. i. d.

sequence with d. f. P(Z1 ≤ x) = ν1 (−∞, x] /µ for x ∈ R and R = {Rk}k∈Z is an

i. i. d. sequence with d. f. π. The processes N,Z and R are independent. It is also

possible to choose a different decomposition in (4.1) by a Poisson random measure

and an i. d. i. s. r. m., whose underlying driving Lévy process has bounded support

in a neighborhood of the origin.

This decomposition of Λ induces a decomposition of Y = Y1 + Y2, where for

i = 1, 2,

Yi(t) =

∫

R+×R

f(r, t− s) dΛi(r, s) for t ∈ R, (4.3)

11
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are independent mixed MA processes. W. l. o. g. we assume Y1 and Y2 are stationary

i. d. processes, else we choose Λi, i = 1, 2, properly. We shall see that the extremal

behavior of a mixed MA process Y satisfying (M) is completely determined by the

extremes of the mixed Poisson shot noise process Y1 with representation

Y1(t) =
∞∑

k=−∞

f(Rk, t− Γk)Zk for t ∈ R. (4.4)

First we give a short motivation for the choice of the discrete-time random sequence

{tn}n∈N. Suppose there exists an η(1) ∈ R with f(r, η(1)) = f+ for every r ∈ supp(π).

Consider the mixed Poisson shot noise process Y1, then

Y1(Γk + t) = f(Rk, t)Zk +
∞∑

j=−∞
j 6=k

f(Rj, t+ Γk − Γj)Zj for k ∈ N, t ∈ R.

In the case that the {Zk}k∈Z are regularly varying one of the Zk is likely to be large

in comparison to {Zj}j∈Z\{k}. Then Y1(Γk + t) behaves roughly like f(Rk, t)Zk. The

process {f(Rk, t)Zk}t≥0 achieves a maximum in η(1). Similar results hold for large

negative jumps and a minimum of the kernel function η(2) with f(r, η(2)) = −f− for

every r ∈ supp(π). This suggests that Y1(tn) with

tn ∈ {Γk + η(1) : k ∈ N} ∪ {Γk + η(2) : k ∈ N}

is a local extreme value of Y1, if the absolute value of the jump of the underlying

driving Lévy process is large.

For the rest of the paper we use the following assumptions and notations: let

t1, . . . , td−1 ∈ R for d ∈ N be fixed and η(1) as above, then we define for t ∈ R,

f(r, t) := (f(r, t+ t1), . . . , f(r, t+ td−1), f(r, t+ η(1))), (4.5)

Y(t) := (Y (t+ t1), . . . , Y (t+ td−1), Y (t+ η(1))). (4.6)

The extremal behavior of Y is described by the multivariate point processes

κn =
∞∑

k=1

ε(Γk/n,Y(Γk)/an) in MP (S) for n ∈ N. (4.7)

Such point processes can be interpreted as marked point processes (Daley and Vere-

Jones [10], Section 6.4). Let Yk,i = Y (Γk + ti) for i ∈ {1, . . . , d} be the ith coordinate

of Y(Γk), where td := η1. Marked point process means that we consider the point

process behavior of
∑∞

k=1 ε(Γk/n,Yk,i/an) for some fixed i ∈ {1, . . . , d}, and the remain-

ing coordinates of Y(Γk) describe the behavior of the process, when an excess of Yk,i

12
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over a high threshold occurs. In our setting (Y (Γk + t1), . . . , Y (Γk + td−1))/an are

the marks, which describe the sample path behavior of the continuous-time process

Y , if Y (Γk + η(1)) exceeds a high level. They characterize clearly the location of

extremes on high levels.

Throughout the rest of this paper the support of f in its second coordinate

is [a, b], (−∞, a], [a,∞), respectively for a < b. Furthermore, f is in the second

coordinate continuous on its support and has one-sided limits at the boundaries.

We work with the sequence T = {Tk}k∈Z, where

Tk := Γk+1 − Γ1 and T−k := Γ−k − Γ0 for k ∈ N0. (4.8)

Hence {Tk − Tk−1}k∈Z\{0} is an i. i. d. sequence with Tk − Tk−1
d
= Γ1 and T0 = 0.

Theorem 4.1 Let Y be a mixed MA process as given in (1.1) satisfying (M) and

the kernel function f satisfies f(r, η(1)) = f+ ≥ f− for every r ∈ supp(π). Let∑∞
k=1 ε(sk,Pk) be a PRM(ϑ) with ϑ(dt × dx) = dt × αx−α−1

1(0,∞)(x) dx. Suppose

{T (k)}k∈N are i. i. d. with T (k) = {Tk,j}j∈Z

d
= T , where T is given by (4.8), and R =

{Rk}k∈N is an i. i. d. sequence with d. f. π. Let χ = {χk}k∈N be an i. i. d. sequence

with P(χk = 1) = p and P(χk = −1) = q. Furthermore, suppose the random

elements
∑∞

k=1 ε(sk,Pk), {T
(k)}k∈N, R and χ are independent. Then for T → ∞,

∞∑

k=1

ε(Γk/T,Y(Γk)/abTc)
w

=⇒
∞∑

k=1

∞∑

j=−∞

ε(sk,f(Rk,Tk,j)χkPk) =: κ in MP (S).

In particular, for t with f(r, t) 6= 0 for r ∈ supp(π) and T → ∞,

∞∑

k=1

ε(Γk/T,Y (Γk+t)/abTc)
w

=⇒
∞∑

k=1

∞∑

j=−∞

ε(sk,f(Rk,Tk,j+t)χkPk) in MP ([0,∞) × R\{0}).

The assumption f(r, η(1)) = f+ ≥ f− for every r ∈ supp(π) can be replaced by

f(r, η(2)) = −f− ≤ −f+ for every r ∈ supp(π).

Remark 4.2 (a) The properly chosen discrete-time points, where exceedances of

the underlying driving Lévy process occur in combination with extremes of the

kernel function, result in exceedances of the mixed MA process. These exceedances

are carried on in time by the kernel function and result in the limiting process in

clusters of exceedances. Furthermore, they reflect also local extremes of the process

on high levels.

(b) Regularly varying d. f. s are a subclass of subexponential d. f. s. Subexponential

models are typical models for situations, where extremely large values are likely to

occur in comparison to the mean size of the data. Regularly varying d. f. s agree

13
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with subexponential d. f. s in the maximum domain of attraction of the Fréchet

distribution. Extremes of subexponential Lévy driven MA processes, which are in

the maximum domain of attraction of the Gumbel distribution have been studied

in Fasen [16]. In both classes of subexponential distributions the large jumps of the

Lévy process affect the extremal behavior, which can be modelled by a properly

chosen discrete-time skeleton. But in contrast to the Fréchet case as described in

(a), in the Gumbel case exceedances over high thresholds collapse into single points,

which are described by the extremes of the kernel function, so that the marked point

processes converge to a cluster Poisson random measure with constant cluster sizes.

(c) We obtain in Theorem 4.1 also information about local minima of Y , since the

point process convergence is in MP ([0,∞) × R
d
\{0}). The interpretation of small

minima is analog to large maxima. They occur in clusters and are caused by large

jumps of the underlying driving Lévy process.

(d) It should be possible to extend Theorem 4.1 to an infinite-dimensional setting,

where we use as marks the stochastic processes {Y (Γk + t)}t∈[0,m] in D[0,m], m > 0,

instead of multi-dimensional random vectors Y(Γk) ∈ R
d for k ∈ N. The formulation

of such results requires the definition of regular variation of stochastic processes with

a. s. càdlàg sample paths as given in Hult and Lindskøg [20]. Moreover, since D is

not locally compact, a special definition of convergence (convergence on bounded

Borel sets) as given in Daley and Vere-Jones [10], Section A2.6 is needed.

Corollary 4.3 (Point process of exceedances) Let Y be given as in Theorem 4.1

with f+ ≤ 1. Suppose {s̃k}k∈N are the jump times of a Poisson process with intensity

x−α, x > 0, independent of the i. i. d. sequence {ζk}k∈Z with d. f.

πk = P(ζ1 = k) = p
[
Ef

(1) α
k − Ef

(1) α
k+1

]
+ (1 − p)

[
Ef

(2) α
k − Ef

(2) α
k+1

]
for k ∈ N,

where f
(1)
1 > f

(1)
2 > . . . are the order statistics of {f+(R1, Tj + t)}j∈Z and

f
(2)
1 > f

(2)
2 > . . . are the order statistics of {f−(R1, Tj + t)}j∈Z. Then for T → ∞,

∞∑

k=1

ε(Γk/T,Y (Γk+t)/abTc)(· × (x,∞))
w

=⇒
∞∑

k=1

ζkεs̃k
.

In the case of a positive shot noise process with non-increasing kernel function and

t = η(1), the last result represents the cluster intensities among local extremes of the

process.

4.2 Normalizing constants of running maxima

With the results of the previous section we calculate the normalizing constants of

running maxima. Already Lebedev [24] calculated the limit distribution of running
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maxima of subexponential positive shot noise processes restricting his attention to

non-decreasing kernel functions with unbounded support. In our result the assump-

tion of a positive process with non-increasing kernel function is not necessary.

Theorem 4.4 Let Y be a mixed MA process as given in (1.1) with a. s. càdlàg

sample paths, satisfying (M) and one of the following conditions:

(a) Let f be a positive kernel function. Assume there exists a measurable function

f̃ : R+×R → R+ with the following properties: f(r, s) ≤ f̃(r, s) for (r, s) ∈ R+×R,

where f̃(r, ·) is non-increasing on
[
η(1),∞

)
and f̃(r, η(1)) = f+ for every r ∈ supp(π).

Furthermore, let the support of f̃ be contained in R+ ×
[
η(1),∞

)
and f̃ ∈ L

δ(π) for

some δ < min{1, α}.

(b) Let Y be a Lévy driven MA process with
∫∞

−∞
sup0≤s≤1 |f(s+ t)|δ dt <∞ for

some δ < min{1, α}.

Define M(T ) := supt∈[0,T ] Y (t) for T > 0. Then

lim
T→∞

P

(
a−1
bT cM(T ) ≤ x

)
= exp

(
−x−α

[
pf+ α + qf−α

])
for x > 0. (4.9)

Notice, that by the integrability assumption on f this result rules out MA pro-

cesses, which exhibits long range dependence, only mixed MA processes with long

range dependence are included. In this case the long range dependence is caused by

the distribution of π and not by the asymptotically behavior of the kernel function

for fixed r.

Theorem 4.4 requires pf+ + qf− > 0 by condition (M) (otherwise the limit

in (4.9) is 1). More about the extremal behavior of totally skewed α-stable MA

processes, which satisfy pf+ +qf− = 0 (hence the right tail is not regularly varying)

can be found in Albin [1].

Remark 4.5 (a) The results of this paper can be extended to mixed MA processes

driven by a multivariate i. d. i. s. r. m. Λ in R
m
+ × R, whose stationary distribution

has the cumulant generating function ψA(u) = λ(A)ψ(u), where ψ is the cumulant

generating function of a Lévy process and λ(dω) = π1(dr1)× · · · × πm(drm)× dt for

ω = (r1, . . . , rm, t) ∈ R
m
+ × R and πi, i = 1, . . . ,m, are probability measures on R+.

(b) In particular the results hold for stationary renewal shot noise processes. This

processes have the structure of a Poisson shot noise process, but the jump times

of the Poisson process are replaced by the jump times of a stationary renewal shot

noise process; for more details we refer to Fasen [15]. The extremal behavior of heavy

tailed renewal shot noise processes, where f : [0, 1] → [0, 1] is strictly decreasing and

the jump sizes are positive, have been thoroughly investigated by McCormick [26].

�
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4.3 Examples

Example 4.6 (Discrete-time MA process) Let ξ = {ξk}k∈Z be an i. i. d. se-

quence of r. v. s, which are regularly varying in the sense of (2.2) with measure σ

given by (1.6), and let {ck}k∈Z be a sequence in R. Define the discrete-time MA

process Yn =
∑∞

k=−∞ cn−kξk for n ∈ Z. Suppose
∑∞

k=−∞ |ck|
δ < ∞ for δ < α,

δ ≤ 2, with either δ < 1, or α > 1 and Eξk = 0. This class includes MA processes

with the long memory property. By Mikosch and Samorodnitsky [27], Lemma A.3,

Y is a stationary process, whose one-dimensional marginal distribution is regularly

varying with

lim
n→∞

nP(Yk > anx) = x−α

[
p

∞∑

k=−∞

c+ α
k + q

∞∑

k=−∞

c−α
k

]
.

As in the proof of Theorem 4.1 we have for i1, . . . , id ∈ N and n→ ∞,

∞∑

k=1

ε(k/n,a−1
n (Yk,Yk+i1

,...,Yk+id
))

w
=⇒

∞∑

k=1

∞∑

j=−∞

ε(sk,(cj ,cj−i1
,...,cj−id

)Pk). (4.10)

This is a supplement of the well known result of Davis and Resnick [13], Theorem 2.4,

(Rootzén [31] for stable MA processes) in the case of long memory processes. �

Example 4.7 (Continuation of Example 3.4) We investigate the extremal be-

havior of the supOU process Y given by (3.4) driven by an i. d. i. s. r. m. Λ with

generating quadruple (m,σ2, ν, π), where
∫

R+
r−1 π(dr) < ∞ and (m,σ2, ν) is the

generating triplet of the underlying driving Lévy process L as given in (1.3), which

satisfies (L) with p > 0. Let 0 = t1 < · · · < td. Then by Theorem 4.1,

∞∑

k=1

ε(Γk/T,{Y (Γk+ti)/abTc}i=1,...,d)
w

=⇒
∞∑

k=1

∞∑

j=0

ε(sk,{exp(−Rk(Tk,j+ti))χkPk}i=1,...,d)

holds for T → ∞. If Y has an exceedance over a high level at the discrete-time

skeleton {Γk + ti : k ∈ N, i = 1, . . . , d}, then we have an extreme at Y (Γk) for

some k ∈ N. Furthermore, if Y has a. s. sample paths in D(R), e. g. if
∫∞

−∞
1 ∧

|x| ν(dx) < ∞, then by Theorem 4.4 the running maxima are in the maximum

domain of attraction of the Fréchet distribution with

lim
T→∞

P(a−1
bT cM(T ) ≤ x) = exp(−px−α) for x > 0. �
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5 Proofs

Proof of Lemma 2.4. Let ε > 0. Denote by ζn :=
∑∞

k=1 ε(k/n,a−1
n (Zk+Ψk)) a point

process in MP (S) for n ∈ N. Define the sets

I(1)
ε =

d∏

i=1

(ci − ε, di + ε] , I(2)
ε =

d∏

i=1

(ci + ε, di − ε] and Iε = I(1)
ε \I(2)

ε .

We obtain

{κ̃n(I) 6= ζn(I)} ⊆ {κ̃n(Iε) > 0} ∪
⋃

k∈(ns,nt]

{
a−1

n (Zk + Ψk) ∈ I, a−1
n Zk ∈ I(1) c

ε

}
∪

⋃

k∈(ns,nt]

{
a−1

n (Zk + Ψk) ∈ Ic, a−1
n Zk ∈ I(2)

ε

}
. (5.1)

On the one hand,

∑

k∈(ns,nt]

P
(
a−1

n (Zk + Ψk) ∈ I, a−1
n Zk ∈ I(1) c

ε

)
≤

∑

k∈(ns,nt]

P(|Ψk| > anε)
n→∞
−→ 0, (5.2)

∑

k∈(ns,nt]

P
(
a−1

n (Zk + Ψk) ∈ Ic, a−1
n Zk ∈ I(2)

ε

)
≤

∑

k∈(ns,nt]

P(|Ψk| > anε)
n→∞
−→ 0, (5.3)

and on the other hand,

lim
ε↓0

lim
n→∞

P(κ̃n(Iε) > 0) = lim
ε↓0

P(κ(Iε) > 0) = 0. (5.4)

Thus, by (5.1)-(5.4) we get limn→∞ P(κ̃n(I) 6= ζn(I)) = 0. Applying Rootzén [32],

Lemma 3.3, we conclude ζn
w

=⇒ κ as n → ∞. A modification of an argument of

Hsing and Teugels [19] (the proofs of their Theorem 4.2 and Lemma 2.1; see also

Fasen [15], Lemma 1.2.4) yields limT→∞ P(ζbT c(I) 6= κT (I)) = 0. Then

lim
T→∞

P(κT (I) 6= κ̃bT c(I)) ≤ lim
T→∞

P(κT (I) 6= ζbT c(I)) + lim
T→∞

P(ζbT c(I) 6= κ̃bT c(I)) = 0.

�

Proof of Proposition 3.3. By Rajput and Rosinski [29], Theorem 2.7, the Lévy

measure of Y is

νY (x,∞) =

∫

f(r,s)>0

ν

(
x

f(r, s)
,∞

)
ds π(dr) +

∫

f(r,s)<0

ν

(
−∞,

x

f(r, s)

)
ds π(dr) (5.5)

for x > 0. By Potter’s Theorem (Bingham et al. [6], Theorem 1.5.6) there exists

for every x > 0, K > 1 an n0(x) ∈ N such that ν(anxy,∞)/ν(anx,∞) ≤ Ky−δ
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for y ≥ 1, n ≥ n0. Taking f ∈ L
δ(π) into account, dominated convergence and the

boundedness of f yields for n→ ∞,

lim
x→∞

νY (x,∞)

ν(x,∞)
=

[∫

R+

∫

R

p(f+ (r, s))α + q(f−(r, s))α ds π(dr)

]
.

The result (3.1) follows then by the tail-equivalence of Lévy measure and probability

measure for regularly varying d. f. s. An application of Rosinski and Samorodnit-

sky [33], Theorem 3.1 (cf. Theorem 4.9 in Fasen [16]), and similar arguments as

above yields (3.2) and (3.3). �

Proof of Theorem 4.1. Step 1. We study the extremal behavior of

Ỹ
(m)
k =

k+m∑

j=k−m

f(Rj, Tk − Tj)Zj for k ∈ Z

and for m > 0 fixed. We show that {Ỹ
(m)
k }k∈Z satisfies the assumptions of Davis

and Mikosch [12], Theorem 2.8 and Corollary 2.4.

We apply Lemma 2.2 to obtain

lim
n→∞

nP(|Ỹ
(m)
k | > an) =

1

µ

m∑

j=−m

E|f(R1, Tj)|
α =: ρm. (5.6)

Observing that {Ỹ
(m)
k }k∈Z is (2m+ 1)-dependent and taking Lemma 2.4.2 in Lead-

better and Rootzén [23] into account, the mixing condition A(anρ
1/α
m ) (cf. Davis

and Mikosch [12], p. 2052) holds for {Ỹ
(m)
k }k∈Z, i. e. there exists a set of positive

integers {rn}n∈N such that rn → ∞, rn/n→ 0 as n→ ∞ and

E exp

(
−

n∑

j=1

f(Ỹ
(m)
j /an)

)
−

[
E exp

(
−

rn∑

j=1

f(Ỹ
(m)
j /an)

)]bn/rnc

n→∞
−→ 0

for every bounded non negative step function f on R
d
\{0} with bounded support.

Also by the (2m+ 1)-dependence of {Ỹ
(m)
k }k∈Z, (5.6) and rn = o(n) for n→ ∞,

we obtain for l > 2m+ 1,

P




∨

l≤|k|≤rn

|Ỹ
(m)
k | > anx

∣∣∣∣∣∣
|Ỹ

(m)
0 | > anx


 ≤ rnP(|Ỹ

(m)
k | > anx)

n→∞
−→ 0. (5.7)

Define the random vectors Z
(l) := (Z−l−m, . . . , Zl+m) ∈ R

2(l+m)+1, l ∈ N, and the

random matrices

A
(l) :=

(
A

(l)
−l, . . . ,A

(l)
l

)t

∈ R
(2l+1)d×(2(l+m)+1),
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where A
(l)
k ∈ R

d×(2(l+m)+1) for k = −l, . . . , l, has entries (A
(l)
k )i,j in the ith row and

jth column with value (A
(l)
k )i,j = f(Rj, Tk − Tj + ti) for j = k − m, . . . , k + m,

i = 1, . . . , d, k = −l, . . . , l, and td := η(1). Furthermore, (A
(l)
k )i,j = 0 for |k− j| > m,

j = −l −m, . . . , l +m, i = 1, . . . , d, and k = −l, . . . , l. Thus we have

(Ỹ
(m)
−l , . . . , Ỹ

(m)
l )t = A

(l)
Z

(l) ∈ R
(2l+1)d.

The matrix A
(l) has at most (2m + 1) entries in a row and d(2m + 1) in a column

and the sequence of random matrices (A
(l)
k )k=−l,...,l is (2m+ 1)-dependent.

Since f+ ≤ ‖A(l)‖ ≤ (2m + 1)f+ we can apply Lemma 2.2 and conclude that

(Ỹ
(m)
−l , . . . , Ỹ

(m)
l ) is multivariate regularly varying of index α with spectral measure

P(Θ(l) ∈ ·) (5.8)

=
l+m∑

j=−l−m

p

µρ̃m

E

(
|a

(l)
j |α 1{

a
(l)
j /|a

(l)
j |∈ ·

}
)

+
q

µρ̃m

E

(
|a

(l)
j |α 1{

−a
(l)
j /|a

(l)
j |∈ ·

}
)
,

where a
(l)
j = A

(l)
ej with the jth unit vector ej = (0, . . . , 0, 1, 0, . . . , 0)t ∈ R

2(l+m)+1

and ρ̃m := µ−1
∑l+m

j=−l−m E|a
(l)
j |α. Therefore by A(anρ

1/α
m ), (5.7), (5.8) and Davis and

Mikosch [12], Theorem 2.8, the point processes
∑n

k=1 ε(Ỹ
(m)
k /an)

converge for n→ ∞

weakly to a point process. In the following we shall derive the explicit representation

of the limit. To obtain the limit distribution we compute θm and Q, where

θm := lim
l→∞

E

(
|Θ

(l)
0 |α −

l∨

j=1

|Θ
(l)
j |α

)+/
E|Θ

(l)
0 |α, (5.9)

E

([
|Θ

(l)
0 |α −

∨l
j=1 |Θ

(l)
j |α

]+
1

{∑
|j|≤l ε(Θ

(l)
j )

∈ ·
})

E

(
|Θ

(l)
0 |α −

∨l
j=1 |Θ

(l)
j |α

)+

w
=⇒ Q(·) (5.10)

for l → ∞, so that we can apply Corollary 2.4 of Davis and Mikosch [12].

First we derive (5.9). We consider l > 2m+ 1. For j = −m, . . . ,m we have

l∨

k=0

d∨

i=1

|(A
(l)
k )i,j|

α −

l∨

k=1

d∨

i=1

|(A
(l)
k )i,j|

α =

j+m∨

k=0

|f(Tk − Tj)|
α −

j+m∨

k=1

|f(Tk − Tj)|
α, (5.11)

and for m < |j| ≤ l +m we have

l∨

k=0

d∨

i=1

|(A
(l)
k )i,j|

α −
l∨

k=1

d∨

i=1

|(A
(l)
k )i,j|

α = 0. (5.12)
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Furthermore, for j = −m, . . . ,m,

l∨

k=−l

d∨

i=1

|(A
(l)
k )i,j|

α = |a
(l)
j |α =

j+m∨

k=j−m

|f(Tk − Tj)|
α = f+α. (5.13)

By taking the conditional probability under Γk, Rk, k = −l −m, . . . , l +m and Re-

mark 2.3, we can calculate with deterministic variables. We apply (5.8) to compute

E

(
l∨

k=0

|Θ
(l)
k |α −

l∨

k=1

|Θ
(l)
k |α

)

=
1

µρ̃m

l+m∑

j=−l−m

E

(
|a

(l)
j |α

[
l∨

k=0

d∨

i=1

|(A
(l)
k )i,j|

α

|a
(l)
j |α

−

l∨

k=1

d∨

i=1

|(A
(l)
k )i,j|

α

|a
(l)
j |α

])
.

Taking (5.11)-(5.12) into account we receive that the right hand side is equal to

1

µρ̃m

[
m∑

j=−m

E

(
j+m∨

k=0

|f(Rj, Tk − Tj)|
α

)
−

m∑

j=−m+1

E

(
j+m∨

k=1

|f(Rj, Tk − Tj)|
α

)]

=
1

µρ̃m

E

(
m∨

k=−m

|f(R1, Tk)|
α

)
=
f+ α

µρ̃m

. (5.14)

Similarly, as
∨d

i=1 |(A
(l)
0 )i,j|

α = 0 for |j| > m, we have by (5.6),

E|Θ
(l)
0 |α =

1

µρ̃m

E

(
l+m∑

j=−l−m

|a
(l)
j |α

d∨

i=1

|(A
(l)
0 )i,j|

α

|a
(l)
j |α

)
=

1

µρ̃m

E

(
m∑

j=−m

|f(R1, Tj)|
α

)

=
1

µρ̃m

µρm =
ρm

ρ̃m

. (5.15)

Applying (5.14)-(5.15) we obtain for the extremal index of {|Ỹ
(m)
k |}k∈Z in (5.9),

θm = f+α/(µρm). (5.16)

We shall compute Q of (5.10). Following the proof of (5.14) and taking l > 2m+1

and (5.13) into account we get for j = −m, . . . ,m,

E


|a

(l)
j |α




l∨

k=0

d∨

i=1

|(A
(l)
k )i,j|

α

|a
(l)
j |α

1




∑

|k|≤l

ε
((A

(l)
k )i,j/|a

(l)
j |)i=1,...,d

∈ ·










= E




m∨

k=−j

|f(R1, Tk)|
α
1




∑

|k|≤m

ε(f(R1,Tk)/f+) ∈ ·






 .
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Then analog the lines of (5.14) we obtain

E



[
|Θ

(l)
0 |α −

l∨

j=1

|Θ
(l)
j |α

]+

1




∑

|j|≤l

ε
Θ

(l)
j

∈ ·








=
f+ α

ρ̃m


 p
µ

E


1




∑

|j|≤m

ε(f(R1,Tj)/f+) ∈ ·






+

q

µ
E


1




∑

|j|≤m

ε(−f(R1,Tj)/f+) ∈ ·










=
f+ α

µρ̃m

E


1




∑

|j|<m

ε(f(R1,Tj)χ1/f+) ∈ ·






 . (5.17)

Hence by (5.14) and (5.17) the measure Q of (5.10) is defined by

Q(·) := P

(
m∑

j=−m

ε(f(R1,Tj)χ1/f+) ∈ ·

)
.

Regarding (5.16) we choose

ϑ̃(dx) := θmαx
−α−1

1(0,∞)(x) dx = αf+ α/(µρm)x−α−1
1(0,∞)(x) dx.

Taking (5.6) into account, we apply Davis and Mikosch [12], Theorem 2.8 and Corol-

lary 2.4, and obtain for n→ ∞,

n∑

k=1

ε(
ρ
1/α
m Ỹ

(m)
k /an

) w
=⇒

∞∑

k=1

m∑

j=−m

ε(f(Rk,Tk,j)χkP̃k/f+),

where
∑∞

k=1 εP̃k
is a PRM(ϑ̃) in MP (R

d
\{0}). By Hsing [18], Lemma 4.1.2, the

convergence of the sequence of point processes κn((0, 1] × ·) is equivalent to the

convergence of κn, if the so called ∆(an) condition is satisfied, which is similar to

condition A(an). Note, that by the (2m + 1)-dependence of {Ỹ
(m)
k }k∈Z the ∆(an)

condition holds. This implies, replacing ϑ̃ by ϑ, and {P̃k}k∈N by {Pk}k∈N, respec-

tively, that for n→ ∞,

∞∑

k=1

ε(
k/(nµ),Ỹ

(m)
k /an

) w
=⇒

∞∑

k=1

m∑

j=−m

ε(sk,(f(Rk,Tk,j)χk)Pk). (5.18)

Step 2. For fixed m > 0 we study the extremal behavior of

Y
(m)
k =

k+m∑

j=k−m

f(Rj,Γk − Γj)Zj for k ∈ Z.
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Note, that f(Rj, Tk − Tj) = f(Rj,Γk+1 − Γj+1) for k, j ∈ N0 by (4.8). Then also

{Ỹ
(m)
k }k≥m

d
= {Y

(m)
k+1}k≥m, although {Y

(m)
k+1}k∈Z is not stationary. Thus, the asymp-

totic point process behavior of {Ỹ
(m)
k }k∈N and {Y

(m)
k }k∈N is the same. Regarding

(5.18) we obtain for n→ ∞,

∞∑

k=1

ε(
k/(nµ),Y

(m)
k /an

) w
=⇒

∞∑

k=1

m∑

j=−m

ε(sk,f(Rk,Tk,j)χkPk). (5.19)

Step 3. We study the extremal behavior of {Yk}k∈Z given by

Yk =
∞∑

j=−∞

f(Rj,Γk − Γj)Zj.

We have to attend to the non-stationarity of the sequences {Yk}k∈Z, {Y
(m)
k }k∈Z and

{Yk − Y
(m)
k }k∈Z. With (4.8) we have

P

(
n∨

k=1

|Yk − Y
(m)
k | > anx

)
≤

d∑

i=1

n∑

k=1

P




∣∣∣∣∣∣

∑

|k−j|>m

f(Rj,Γk − Γj + ti)Zj

∣∣∣∣∣∣
> anx




≤

d∑

i=1

nP




∣∣∣∣∣∣

∑

|j|≥m

f(Rj,Γj + ti)Zj

∣∣∣∣∣∣
> anx/2


+

n∑

k=1

P(|f(R1,Γk + ti)Z1| > anx/2).

(5.20)

Since
∑∞

k=1 E|f(R1,Γk + ti)|
δ = µ

∫
R+

∫
R+

|f(r, s)|δ ds π(dr) <∞ we have by Exam-

ple 2.5 (b) that the last term of (5.20) tends to 0. For the first term of (5.20) we

have by a simple generalization of Proposition 3.3,

nP




∣∣∣∣∣∣

∑

|j|≥m

f(Rj,Γj + ti)Zj

∣∣∣∣∣∣
> anx/2


 n→∞

−→
(x/2)−α

µ

∑

|j|≥m

E|f(Rj,Γj + ti)|
α m→∞
−→ 0.

Thus, limm→∞ limn→∞ P

(∨n
k=1 |Yk − Y

(m)
k | > anx

)
= 0. Then following the proof

of Resnick [30], Proposition 4.2.7, along the lines, and regarding Step 2, gives for

n→ ∞,

∞∑

k=1

ε(k/(nµ),Yk/an)
w

=⇒ κ. (5.21)

Step 4. The point process behavior of κn.

We need to invoke the decomposition (4.3) in Y(t) = Y1(t)+Y2(t) for t ∈ R. Then

Y(Γk) = Yk + Y2(Γk) for k ∈ Z. (5.22)

22



Extremes of Regularly Varying Mixed MA Processes

Similarly as (5.20) we have

P(|Y(Γk)| > anx) ≤

d∑

i=1

P




∣∣∣∣∣∣∣

∞∑

j=−∞
j 6=k

f(Rj, Tj + ti)Zj

∣∣∣∣∣∣∣
> anx/2




+P(|Y2(Γk)| > anx/2). (5.23)

On the one hand, by Proposition 3.3,

P




∣∣∣∣∣∣∣

∞∑

j=−∞
j 6=k

f(Rj, Tj + ti)Zj

∣∣∣∣∣∣∣
> anx/2


 (5.24)

≤ P

(∣∣∣∣∣

∞∑

j=−∞

f(Rj,Γj + ti)Zj

∣∣∣∣∣ > anx/6

)
+ 2P

(
f+|Z1| > anx/6

)
= O(1/n)

for n → ∞. On the other hand, the Lévy measure of Y2 has bounded support, so

that by Sato [34], Theorem 26.1, and an ∈ R1/α, we have

P(|Y2(Γk)| > anx/2) ≤ dP(|Y2(0)| > anx/2) = o(1/n) for n→ ∞. (5.25)

Regarding (5.23)-(5.25) there exists a r.v. W such that

P(|Y(Γk)| > anx) ≤ P(W > anx) = O(1/n) for n→ ∞.

Thus, by (5.22), (5.25), Lemma 2.4 and Example 2.5 (a) the point process behavior

of the sequence {Y(Γk)}k∈Z is the same as that of {Yk}k∈Z. Furthermore, we can

shift the time scale. This completes the proof. �

Proof of Theorem 4.4. (a) Define the disjoint intervals

Ik =
[
η(1) + Γk, η

(1) + Γk+1

)
for k ∈ N. (5.26)

Let Ỹ (t) :=
∑∞

j=−∞ f̃(Rj, t− Γj)Z
+
j for t ∈ R be a mixed MA process, which is by

Proposition 3.1 stationary and i. d. Define Ỹ(t) = (Ỹ (t+ t1), . . . , Ỹ (t+ td−1), Ỹ (t+

η(1))). Applying Theorem 4.1 to Ỹ yields for T → ∞,

κ̃T :=
∞∑

k=1

ε(Γk/T,Ỹ(Γk)/aT )
w

=⇒
∞∑

k=1

∞∑

j=−∞

ε(sk ,̃f(Rk,Tk,j)Pkχ+
k ) =: κ̃. (5.27)

Moreover, define

Yk := Ỹ(Γk) + sup
s∈Ik

Y2(s), (5.28)
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where we understand sups∈Ik
Y2(s) computing the supremum coordinatenwise. Then

Y(t) ≤ Yk for t ∈ Ik, (5.29)

again coordinatenwise. Keep in mind that

P(|Yk| > anx) ≤ P(|Ỹ(Γk)| > anx/2) + P(sup
s∈Ik

|Y2(s)| > anx/2). (5.30)

On the one hand, we obtain

Ỹ(Γk) =
∞∑

j=−∞

f̃(Rj,Γk − Γj)Z
+
j

d
=

∞∑

j=−∞
j 6=k

f̃(Rj, Tj)Z
+
j ≤

∞∑

j=−∞

f̃(Rj, Tj)Z
+
j , (5.31)

where by Proposition 3.3 and the independence of
∞∑

j=−∞
j 6=0

f̃(Rj, Tj)Z
+
j and f̃(R1, 0)Z+

1 ,

lim
n→∞

nP

(∣∣∣∣∣

∞∑

j=−∞

f̃(Rj, Tj)Z
+
j

∣∣∣∣∣ > anx

)
= pµ−1x−α

∞∑

j=−∞

Ef̃(R1, Tj)
α. (5.32)

On the other hand, the Lévy measure of Y2 has bounded support. Using Markov’s

inequality, Braverman and Samorodnitsky [7], Lemma 2.1, an ∈ R1/α and the inde-

pendence of Ik and Y2 yields

P(sup
s∈Ik

|Y2(s)| > anx/2) ≤ d(1/µ+ 1)e−anx/2
E exp( sup

0≤s≤1
|Y2(s)|) = o(1/n) (5.33)

for n→ ∞. Regarding (5.30)-(5.33), we obtain that there exists a r.v. W such that

P(|Yk| > anx) ≤ P(W > anx) = O(1/n) for n→ ∞.

Thus, by (5.28), (5.33), Lemma 2.4 and Example 2.5 (a) the point process behavior

of the sequence {Yk}k∈Z is the same as that of {Ỹ(Γk)}k∈Z. Furthermore, we can

shift the time scale. This together with (5.27) yields for T → ∞,

κ̃T :=
∞∑

k=1

ε(
Γk/T,Yk/a

bTc

) w
=⇒ κ̃.

Taking (5.29) into account, we obtain on the one hand for I = [0, 1) × R
d
+\ (0, x]d,

lim
T→∞

P(a−1
bT cM(T ) ≤ x) ≥ P(κ̃(I) = 0) = exp

(
−f+ αpx−α

)
. (5.34)

On the other hand, Theorem 4.1 applied to Y yields

lim
T→∞

P(a−1
bT cM(T ) ≤ x) ≤ P(κ(I) = 0) = exp

(
−f+ αpx−α

)
. (5.35)
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The result follows from (5.34) and (5.35).

(b) The proof follows a long the lines of Fasen [16], Theorem 5.8, where the nor-

malizing constants for subexponential Lévy driven MA processes in MDA(Λ) are

calculated. The only difference is that the point process results for regularly varying

processes are applied here; in particular Theorem 4.1 and the results for discrete-

time MA processes (see Example 4.6). �
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