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Fakultät für Informatik

Lehrstuhl VI Robotics and Embedded Systems

Modeling of Dynamical Systems with
Complex-Valued Recurrent Neural

Networks

Alexey S. Minin
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Abstract

This thesis aims in collecting and generalizing facts about complex
valued neural networks, extends feedforward neural networks to the
complex valued case and applies complex valued neural networks to
a set of real-world systems models. A brief review on real valued
neural networks is presented to introduce notations and terminology,
followed by a then a brief review of complex analysis. Complex valued
system identification is extensively addressed in this thesis and novel.
The difficulties of the complex valued minimization problem are ex-
plained and ways to overcome these problems are addressed. The
generalization of real-valued feedforward neural networks to complex
valued neural networks is introduced and this theory is then gener-
alized to recurrent complex valued neural network in general. New
interpretations of the error function are highlighted which lead to a
novel recurrent architecture, which allows for continuous time model-
ing.

The developed methods are applied to two artificial chaotic time se-
ries datasets (i.e., the logistics map and the Lorenz system) to bench-
mark the novel approach introduced in this thesis. Complex recurrent
neural networks are then applied to several real-world applications in-
cluding (i) nonlinear transformer modeling, (ii) financial time series
forecasting, (iii) the simulation of neuron synchronization in a real
brain model, and (iv) a novel approach to solve the Binding prob-
lem. These applications clearly demonstrate the advantages of com-
plex valued neural networks compared to the traditional real-valued
approach. For example, the advantages are (i) possibility for contin-
uous dynamics modeling, (ii) natural processing of complex-valued
data, (iii) beter training procedures. Practical aspects for the imple-
mentation of complex-valued neural networks and some fine points
to consider in benchmarking studies for regression problems are dis-
cussed.
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1

Introduction

Neural Networks form a modern discipline applicable to a variety of sciences, like
physics (see [65]), medicine, economics (see [57], [35], [26], [61]), robotics (see [50],
[24]) etc. There are thoutshands of applications for Neural Networks (NN)(e.g.,
see [64], [65], [47]) and therefore there is a lot of attention devoted to this topic.
Real-Valued NN (RVNN) have been studied extensively. There are numerous
papers on architectures (see [15], [37], [36]), types of training (see [15], [17]), in-
ternal semantics of neural networks (see [7], [5], [29]), benchmarking procedures
to estimate the quality of a network (see [45]) etc. All these papers have been
dealing with real-valued numbers and up to the moment it has been sufficient.
Thesis introduction is divided into two subsections, namely “Review on Real-
Valued Neural Networks” and “Advantages of Complex-Valued Neural Networks”.
When the study on complex-valued neural networks have been started I thought
that when one starts dealing with complex numbers everything related to real-
valued networks crashes. Since this is about 90 percent of the complete knowledge
on NN it was rather a disappointing prospect. After some time it turned out,
that all I knew about the real-valued networks can be still be applied to complex-
valued analogs. This thesis documents the transition from real-valued neural
networks to complex-valued neural networks to show, that the majority of the
knowledge in this domain can be extended and generalized for complex-valued
networks and even some new features and properties can appear. In addition
the most sophisticated and interesting part of the thesis will be elaborated in the
thesis about the extension of recurrent complex-valued neural networks to the
continuous time modeling. At the end of each chapter I will discuss the advan-
tages of the complex-valued networks in comparison to the real-valued ones.
The structure of the thesis is the following: first I make a review to discuss some
special chapters of complex-valued analysis, that it is easier for the reader to fol-
low the ideas, then I will make a smooth transition from the real-valued system
identification to the complex-valued one, after this I will discuss the problems
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1. INTRODUCTION

of the non linearities in complex-valued planes and how to overcome these prob-
lems, then I will discuss the complex-valued backpropagation algorithm. After
the theoretical aspects of the thesis are finished I will talk about feedforward
architectures, recurrent architectures and their applications for the real world
systems. Then I will discuss the implementation specifics and some informatics
topics related to the implementation of the complex-valued neural networks.

1.1 Review on Real-Valued Neural Networks

There were always some sets of applications where NN were obliged to work,
but there was no success in these areas despite tremendous efforts done by the
researchers. Examples of such applications can be found in economics [11], fi-
nance [13], some types of control applications [52]. Many problems in NN arise out
of the paradigms which serve as the foundation for the complete machine learning
area. Some of these foundations are based on mathematics; others are empirically
based. Several constraints arise out of the paradigms of neuro-computing. For
example, in case related to equidistant records of some systems behavior, only
given timestamps forecasting is possible, which means that only discrete time
modeling is possible. Another issue is that the transition (activation) functions
of the neurons of the neural networks must be bounded; otherwise any compu-
tation will become unstable. Thus, only a limited class of functions can be used
for NN modeling. In the past few decades, many scientists have paid much at-
tention to the “whitening of the black box”. Listed below are many references
related to the expert knowledge induction: Lang [12], Sill [41][42], Tarca [64],
Minin [5, 7]. The evidence of such “whitening” can be given with the monotonic-
ity example. Prior knowledge about the monotonicity, smoothness and upper
or lower bounds of inputs and/or targets can increase the robustness of neural
networks training procedures. Here the monotonicity will be adressed explic-
itly. Such simple rules like “if A increases, then B will increase as well” can be
transferred to the monotonicity constraint dB/dA > 0. Such behavior is often
known, so that one can extend the classical training approach, namely the min-
imization of cost functions. During the “whitening” of the “black box” several
cross-disciplinary methods emerged. Last decades the dozens of architectures ap-
peared as well as numerous methods for network training. One can find the list of
the training methods below. Training of neural networks is still one of the main
issues. Dozens of different training algorithms (i.e. optimization schemes) exist.
But the mechanism for error back propagation remains. Several authors consider
training algorithms apart from the inner structure of the network (“black box”
optimization). There are dozens of training methods in existance, based from
gradient descent optimization and to the Genetic Algorithm based optimization.
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The use of genetic algorithms (GA) for NN training is a promising development;
on the other hand the training of the human brains utilizes another algorithm
since GA requires much time for training. Sometimes, usage of the sequential
quadratic programming (SQP) algorithm is needed due to the constrained opti-
mization routine. The widely known methods for neural network training have
their advantages and disadvantages which are briefly described in this thesis. The
list of the training algorithm is provided below, along with their advantages and
disadvantages:

• Deterministic Algorithms: used when the initial parameters of the neural
network (weights) are close to the optimal values.

– Advantages: Fast and robust convergence.

– Advantages: Easy to explain and predict the behavior of the algorithm.

– Disadvantages: Can be trapped in a local optimum.

– Disadvantages: Very sensitive to the total number of variables.

• Stochastic Algorithms: used when the network parameters (weights) are far
from being optimal and the initialization is not possible.

– Advantages: Very robust for highly non linear data.

– Advantages: Depend only on the relevant variables, do not depend on
the total number of variables.

– Disadvantages: Brute force approach, time consuming.

Examples of the stochastic algorithms as well as deterministic algorithms are
given below:

• Stochastic algorithms

– Branch and bound (slow for big problems, easy to program, very gen-
eral).

– Evolutionary algorithms (EA) (do not get trapped in local minimum,
good for noisy functions, not stable, time consuming).

– Simulated annealing (heavily dependent on starting point, difficult to
establish the “temperature”, good for big problems and nice physical
meaning).

– Tabu search (do not get trapped, good convergence, loops are possible,
too many external parameters).

– Random Search (do not get trapped, good convergence).
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• Deterministic algorithms

– Gradient descent (GD) (fast convergence, stack in local optima, pos-
sible fluctuations around the optima).

– Conjugated Gradients (CG) methods (e.g. BFGS).

– Gauss-Newton (GN) (slow convergence, no fluctuations around the
optima).

– Levenberg-Marquardt (mixture of GD and GN, fast convergence).

Many advances in stochastic training and training in general can be found in
Zimmermann’s papers [32, 33, 55, 60, 70, 71, 72, 73, 74, 75, 76, 78]. All of these
algorithms have advantages and disadvantages, nevertheless one can see, that GD
and EA are the most commonly used methods NN training. Another important
issue related to the selection of the appropriate architecture for the given problem.

Architecture selection is a very important step when working with neural net-
works. There are two main types of NN architectures: FeedForward (FFNN)
and Recurrent (RNN). The main difference between the two is that FFNN be-
haves like forward path filter, (the information propagates directly through the
filter and produces the output), while the recurrent network has back connections
which propagate the information from the output back to the input. Obviously
the performance of each NN must be compared with a Linear Regression (further
LR), since this is the most basic model one can construct. If linear models pro-
vides a good enough result, there is no need for more sophisticated models.
Last but not least is the selection of the activation function inside the nodes. It is
clear that if the process one is trying to model is a Gaussian-like function, the ac-
tivation function of the neural networks should be Gaussian. On the other hand,
if the process function is unknown, the network should be able to approximate
any arbitrary nonlinear function. The list of references used below shows, that
major steps in this direction were done at the end of the 20th century. Together
with node pruning, early stopping almost all basis ideas were introdiced during
the 1985 − 1998 period. A lot of researchers are still developing the alternating
ideas for the discussed above, which means that the NN society pays much at-
tention to the architecture problem, but the problem remains unsolved. Here is
the short list of such papers: Moody [40], Gomez [37], Barron [1],Haykin [58] and
Fiszelew [2]. One should also admit, that there were a lot of attempts to auto-
mate the NN architecture selection with the different optimization algorithms:
genetic algorithms, simulated annealing, taboo search, ant optimization etc (e.g.,
see Kondo [62]).
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At some point, each neural network should be implemented at some real world
application. However, real world applications come with many different practical
constrains such as: amount of memory, CPU capacity, data type (float, double,
integer) etc. Some of these constraints are discussed in the papers below. One of
the major advances in this area was the creation of weightless machines compati-
ble with computer hardware without any add-ons. One can find more information
in the papers by Mayer [50], Erlhagen [24] and Alexander [36].
Moreover in order to perform NN training one needs linear algebra operations
and CPU capacity for these operations (consider matrix operations).

Last but not least is the comparison of the results provided by different ar-
chitectures, training methods etc. The philosophy and the semantics of NN have
faded into the background, while the purely scientific approach for data approx-
imation and data classification is gaining speed. Unfortunately, the neural net-
work community had not established any unique benchmarks, rules and stamps
for neural networks evaluation. Therefore dozens of architectures have appeared
and many papers have stated that their neural network is capable of solving
“the world’s problems”. On the other hand, some authors have specified the
benchmarks, which can be used by the community (at least as an attempt for
a comprehensive benchmarking). The most interesting fact is that most papers
were written long time ago. Here is a list of papers, which attempt to approach
the problem of benchmarking. One can find more information in the papers by
Prechelt [45],Waugh [59] [20] and Ciftcioglu [53]. Unfortunately, the suggested
datasets like “Proben 1” and some other collections were submitted long time ago
and do not cover the existing state of the art concepts for result validity checking.

One can see from the list above, that it is impossible to compare the net-
work with each other due to the wide range of data available in the internet. In
general, one can argue that well known benchmarks exist, like ELENA or IRIS
or WINE or BOSTON etc. These datasets are definately not new. The second
thing, which should be discussed are benchmarking procedures. Even when the
benchmark data are adequate, the benchmarking itself can be rather poor. Here
one should refer to the Prechelt [45] due to the fact that his four criteria approach
is not followed by most of the papers (Validity, Reproducibility, Comparability,
and Volume). Last but not least the statistical performance estimations. After
the forecast or classification has been comed out, one should estimate the quality
of the neural network. Here the most popular measures are RMSE, R2 (deter-
mination coefficient) and r (correlation coefficient). In general, there are other
much more interesting measures one would want to know: presence of delays,
border effects, how good the dynamics is coded into the weights etc.
Summarizing the discussion of the real-valued neural network one can say that
this area is well studied and well established. Unfortunately, a big part of this
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knowledge is no longer applicable when we change the algebra from real-valued
variables to a complex-valued variables and this discussion will continue in the
thesis.

1.2 Advantages of Complex-Valued Neural Net-

works

Complex-Valued Neural Network is a more complicated algorithm for complex-
valued data processing. To make the neuron model work with vector information
one has to implement complex-valued neuron, which must have all the proper-
ties of a real-valued neuron. Such proeprties are: boundness, differentiability of
errors etc. The problem is that due to a lot of constraints this does not held in
complex-valued case. Newertheless a complex-valued neural network construction
is still possible. The remaining part of the thesis will show that, under certain
conditions, one can use all the knowledge which exist for a real-valued theory.
The thesis will demonstrate a transition from a real-valued neural networks to a
complex-valued neural networks. Moreover, the thesis will present the evidence,
that complex-valued neural networks work better in some case and allow to solve
the problems which were not possible to solve with real-valued neural networks.
Thesis also demonstrates that usage of complex-valued networks with the data,
which is essentially complex is much more convenient and robust in terms of
things like approximation quality, error decay, etc. During the thesis preparation
author have published some papers about the complex-valued neural networks,
which describe how elegant and beatiful the models are:

1. Yury S. Chistyakov, Elena V. Kholodova, Alexey S. Minin, Hans-Georg
Zimmermann, Alois Knoll Modeling of electric power transformer using
complex-valued neural networks at the 2011 IEEE International Conference
on Smart Grid and Clean Energy Technologies, China, 2011, in press.

2. Zimmermann H.-G., Minin A., Kusherbaeva V., Historical consistent com-
plex valued recurrent neural network, ICANN 2011, Part I, LNCS 6791, pp.
185-192, 2011.

3. Zimmermann H.-G., Minin A., Kusherbaeva V., Comparison of the complex
valued and real valued neural networks trained with gradient descent and
random search algorithms, Proc. of ESANN 2011, pp. 216-222, 2011.

4. Minin A., Knoll A. and H.-G. Zimmermann, A Novel Approach to Solv-
ing the Binding Problem Using Complex Valued Spiking Neural Networks,
accepted to ESANN2012.

6



1.2 Advantages of Complex-Valued Neural Networks

5. Minin A., Knoll A. and H.-G. Zimmermann, Complex Valued Recurrent
Neural Network: From Architecture to Training, accepted to Journal of
Signal and Information Processing, Scientific Research, 2011.

6. Minin A., Chistiakov Yu., Knoll A., Zimmermann H.-G., Complex Valued
Open Recurrent Neural Network for Power Transformer Modeling, accepted
to Journal on Applied Mathematics, WSEAS, 2011.

All these papers summarize the advantages and disadvantages of the complex-
valued neural networks, one can see, that complex-valued networks open a new
era for the machine learning algorithms. During the thesis time I have published
7 papers at the leading machine learning conferences and journals related to the
machine learning and neural networks, where six out of them are devoted to the
complex-valued neural networks and present the recent success in this area. First
paper shows the transformer model and how good it can be modeled with CVNN.
Second and third papers are theoretical and devoted to the CVNN construction,
training and evaluation. Fifth paper is related to the novel approach for solving
the Binding Problem with the use of the RCVNN. Sixth paper is devoted to the
theoretical aspects of the RCVNN, e.g. architectural questions, training issues
and error function behavior discussion. By having this papers one can efficiently
utilize the RCVNN and exploit it for personal needs.
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2

Mathematical Basis for
Complex-Valued Neural
Networks

This chapter is very important since the notations and theorems developed in
it will be used throughout the thesis. Complex analysis, typically known as the
theory of functions of complex variables, is the branch of mathematics which in-
vestigates functions of complex variables. It is useful in many branches of mathe-
matics, physics, including quantum mechanics, hydrodynamics, thermodynamics
and electrical engineering.

2.1 Brief Review of Complex Analysis

A complex function is a function in which the independent variable and the de-
pendent variable are both complex numbers. More precisely, a complex function
is a function, which values and range are subsets of the complex plane [68]. For
any complex function, both the independent variable and the dependent variable
can be split into real and imaginary parts according to:

z = x+ iy = rei∗φ (2.1)

where r is an absolute value and φ is an angle. This is the so-called Euler notation.
A general definition for a complex function can now be formulated as follows:

w = f (z) = u (x, y) + iv (x, y) = f
(
rei∗φ

)
(2.2)

where x, y ∈ < and u(x, y), v(x, y) are real valued functions [68].
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2. MATHEMATICAL BASIS FOR COMPLEX-VALUED NEURAL
NETWORKS

Definition.Holomorphic functions are complex functions defined on an open sub-
set of the complex plane which are differentiable.

Definition.In complex analysis, an entire function, also called an integral func-
tion, is a complex-valued function that is holomorphic over the whole complex
plane.

Complex differentiability has much stronger requirements than real differentia-
bility. For example, holomorphic functions are infinitely differentiable; this is not
true for real differentiable functions. Most elementary functions, trigonometric
functions, exponential function, and all polynomial functions, are holomorphic.

Definition.The derivative of the complex valued function can be defined in the
following way:

f ′(z) = lim
δz→0

f(z + δz)− f(z)

δz
(2.3)

Let us now discuss the line integral. The integral around a closed path of a func-
tion which is holomorphic everywhere inside the area bounded by the closed path
is always zero; this is the Cauchy integral theorem. The values of a holomorphic
function inside a disk can be computed by a certain path integral on the disk’s
boundary (Cauchy’s integral formula, see eq.2.4).∮

γ

f(z) dz = 0 (2.4)

Cauchy’s integral formula (named after Augustine-Louis Cauchy) is a fundamen-
tal statement in complex analysis. It explains the fact that a holomorphic function
defined on a disk is completely determined by its values on the boundary of the
disk. It provides integral formulas for all derivatives of a holomorphic function.
Cauchy’s formula shows that, in complex planes, “differentiation is equivalent to
integration”: complex differentiation, like integration, behaves well under uni-
form limits - a result which is not achievable in real analysis.
Suppose U is an open subset of the complex plane C, f : U → C is a holomorphic
function and the closed disk D = [z : |z − z0| ≤ r] is completely contained in U .
Let γ be the circle making the boundary of D. Then for every z0 in the interior
of D:

f(z0) =
1

2πi

∮
γ

f(z)

z − z0

dz (2.5)

where the contour integral is taken counter-clockwise.
The proof of this statement uses the Cauchy integral theorem and requires func-

10
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tion f to be complex differentiable. In particular f is actually infinitely differen-
tiable:

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − z0)n+1
dz. (2.6)

This formula is sometimes referred to as Cauchy’s differentiation formula. The
circle γ can be replaced by any closed curve in U which has winding number one
around z0. After the small overview of the complex number derivatives one should
proceed with the practical things, namely activation functions and derivatives for
the nonlinear functions. The derivative definition is presented below:

df (z)

dz

∣∣∣∣
y=const

=
∂u (x, y)

∂x
+ i

∂v (x, y)

∂x
(2.7)

This is a correct definition of the complex valued derivative in case one is taking
into account the Cauchy-Riemann equations given below:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
(2.8)

In case that eq. ?? and eq.2.8 are applicable, one can say that this function is
analytic and complex differentiable.

2.2 System Identification

System Identification is fundamental for the study of neural networks. Real-
valued system identification has been widely adressed in the literature and is
therefore only briefly discussed in the following subsection. Challenges for the
identification of the complex valued systems will be adressed in the corresponding
subsection.

2.2.1 Real-Valued System Identification

For real-valued systems, system identification is a well-known. Consider the fol-
lowing cost function:

E =
1

T

T∑
t=1

1

2

(
yt (wxt)− ydt

)2

→ min
w

(2.9)

where w are system parameters, xt are system inputs and ydt is the desired system
output, T is the number of input patterns and E is the RMS error. Then, in
order to find the parameters w which delivering the system to its desired values,
one should be able to perform a system parameters optimization. One can use a
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gradient descent for this purpose. In order to be able to apply gradient descent,
one should be able to calculate the derivatives for the cost function with respect
to its parameters.

∂E

∂w
=

1

T

T∑
t=1

(
yt − ydt

) ∂y
∂w

=: g (2.10)

After the gradients are known, it is possible to establish a simple optimization
rule, which can be derived from the following Taylor expansion.

E(w + ∆w) = E(w) + gT∆w + 1
2
∆wTG∆w (2.11)

A very simple rule in order to minimize the cost function now can be presented
as:

∆w = −η · g (2.12)

Thus, for a small η, which is sometimes called “learning rate”, one can easily find
the optimal parameters w for the system.

2.2.2 Challenges for Complex-Valued System Identifica-
tion

Complex valued system identification is hardly possible due to the following rea-
sons. First of all, one must establish a cost function, which in the complex-valued
case must be analytic in order to have existing derivatives. On the other hand,
minimization in the complex planes cannot be defined due to the lack of relations
such as “bigger” or “smaller”. The question arises how to proceed with the sys-
tem identification, when the system parameters are complex numbers and which
cost function to use to make system identification possible? The answer is given
by the Wirtinger calculus. On the other hand, authors often use the following
cost function in several papers:

E = z · z̄ =
1

T

T∑
t=1

(
yt − ydt

) (
yt − ydt

)
(2.13)

where (·) means conjunction. This cost function operates with complex numbers
and has the following property f : = → <. Unfortunately this cost function is
not analytic, which means that ∂E

∂w
is not defined for the complete =. This fact

is easy to prove. Let us consider z = yt − ydt . Then:

∂z · z̄
∂z

= z̄ + z
∂z̄

∂z
(2.14)
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2.2 System Identification

One can see that, namely, ∂z̄
∂z

is not defined in mathematical sense because:

∂z̄

∂z
= lim

h→0

(z + h)− z̄
h

= lim
h→0

h

h
=

{
1 h ∈ <
−1 h ∈ i<

}
(2.15)

To overcome problems with the cost function derivative as well as problems with
the transition function derivatives, one should use Wirtinger calculus discussed
below.

2.2.3 Wirtinger Calculus

In order to have a defined derivative, the function must be analytic (the require-
ments for analyticity were discussed above). Then the complex function f(z) must
be decomposed into two functions dealing with the real and imaginary parts sep-
arately, namely f(z) = u(x, y) + iv(x, y), here z = x + iy. As discussed above,
the requirements for the analytic functions are given by the Cauchy-Riemann
equations 2.29. Following the introduced notations, this would mean, that:

df (z)

dz

∣∣∣∣
y=const

=
∂u (x, y)

∂x
+ i

∂v (x, y)

∂x
(2.16)

if one wants to deal with the complex cost function f the following problem is to
be faced: in the complex plane ordering relations like “bigger” or “smaller” are
not valid. Therefore optimization of such function makes no sense. The only way
to proceed is to construct the real-valued cost function which depends on several
complex arguments. Instead of treating the f(z) as a real function of the complex
variable one can treat f(z) = u(x, y) as a real function of two real variables.

Remark. v(x, y) must be equal to zero. The only function in its class is

f(z, z̄) = z×z̄. The output of this function is a real number, therefore v(x, y) = 0.
One can see that such a function is not analytic.Therefore there is no defined
derivative.
The advantage of such a function is that for such functions (f(z) = u(x, y)) one

can pose the minimization problem in the following manner:

f (z)→ opt ≡ u (x, y)→ opt (2.17)

which means that: 
∂u (x, y)

∂x
= 0

∂u (x, y)

∂y
= 0

(2.18)
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First of all, one should not consider the real-valued function as a non differentiable
mapping from = → < but should rather consider it as a mapping from <2 →
<. When one wants to minimize the real-valued function, one should consider
the “normal” gradient of the function, thus causing the mapping to occur from
<2 → <, even if the complex valued derivative does not exist. Wirtinger calculus
can help in differentiation of the nonholomorphic functions and to find a way to
minimize the real functions of the complex variables.

Definition. According to Wirtinger, the partial derivatives of a complex function
f(z) of a complex variable z with respect to the z and z̄ can be calculated in the
following way: 

∂f

∂z
,

1

2

(
∂f

∂x
− i∂f

∂y

)
, z = x+ iy

∂f

∂z
,

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, z = x− iy

(2.19)

The so-called Wirtinger calculus approach allows us to calculate the derivatives

of non analytic functions. Lets discuss it in more details.
One can derive the following equations for the Wirtinger derivatives:

df (z)

dz
=

1

2

(
∂u (x, y)

∂x
+
∂v (x, y)

∂y
+ i

(
∂v (x, y)

∂x
− ∂u (x, y)

∂y

))
df (z)

dz
=

1

2

(
∂u (x, y)

∂x
− ∂v (x, y)

∂y
+ i

(
∂v (x, y)

∂x
+
∂u (x, y)

∂y

)) (2.20)

Taking the above conditions into account, we can calculate the derivative, which
indicates the optimal direction for the parameters. For the Cauchy-Riemann
equations, one can rewrite eq.2.20 in the following manner:

∂f

∂z
=
∂u (x, y)

∂x
+ i

∂v (x, y)

∂x
∂f

∂z
= 0

(2.21)

For nonanalytic functions, ∂f
∂z
6= 0, and thus the optimization can be carried out

in both directions, namely z or z̄.
The necessary and sufficient condition for the function f(z) to have the stationary
point with respect to its real parameters is the equality of the <̄-Derivative (see
[43]) to zero and vice versa. Following Johnson, (see [19]) one should consider
two useful theorems:

Theorem 1. If the function f(z, z̄) is real-valued and analytic with respect to z
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and z̄, all stationary points can be found by setting the derivative with respect
to either z or z̄ to zero.

Theorem 2. Let f(z, z̄) be a real-valued function of the vector-valued complex
variable z where the dependence on the variable and its conjugate is explicit. By
treating z and z̄ as independent variables, the quantity pointing in the direction
of the maximum rate of change of f(z, z̄) is ∇z̄(f(z)).

Proof. To prove this theorem one should consider δf :

δf =
∑
i

(
∂f

∂zi
δzi +

∂f

∂z̄i
δz̄i

)
= ∇z(f)T δz +∇z̄(f)T δz̄ (2.22)

This quantity is concisely expressed as δf = 2Re (∇z̄(f)δz). Due to the exis-
tence of the Schwarz inequality [18] (|

∑n
i=1 xiȳi|

2 ≤
∑n

j=1 |xj|2
∑n

k=1 |yk|2.), the
maximum value of δf occurs when δz and ∇z̄ have the same direction. Therefore
the direction corresponding to the largest change in the quantity of f(z, z̄) is the
direction of z̄. To implement the steepest descent method, one should use the
gradient with respect to the conjugated z. To find the minima for the solution
of the equation ∇z̄(f(z)) = 0, the Hessian matrix of the second order partial
derivatives must be positive definite (∇z(∇z̄(f(z))) > 0). Here the discussion
on complex analysis terminates and the discussion on complex-valued system
identification starts.

2.2.4 Complex-Valued System Identification

Having carried out Wirtinger calculus, one can easily identify the complex valued
system. The cost function for the complex arguments is defined in the following
manner:

E =
1

T

T∑
t=1

1

2

(
yt(w, xt)− ydt

) (
yt(w, xt)− ydt

)
→ min

w
(2.23)

where yt is a model output, ydt is a desired model output, T is the number of data
points and w is model parameter. Such cost function is doing the mapping from
C to R (therefore the function is not analytic) and thus the Wirtinger calculus
has to be applied to calculate the derivatives. According to Wirtinger we can
make the following assumption. Let:

∂E

∂w
= 0 (2.24)
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Then using the Theorem 2, one can calculate the following derivative:

∂E

∂w
=

1

T

T∑
t=1

(
yt − ydt

) ∂y
∂w

=: g (2.25)

One can now proceed the same way with the Taylor expansion. Keep in mind,that
dealing with the Taylor expansion requires the calculation of real numbers calcu-
lations. Thus the optimization rule for the ∆w which provides conjugates for the
derivatives of the error has to be guaranteed. See the following equation:

E(w + ∆w) = E(w) + gT∆w + 1
2
∆wTG∆ (2.26)

Using the previous equation, we can easily define the training rule:

∆w = −η · ḡ (2.27)

Thus the Taylor expansion can be rewritten as follows:

E(w + ∆w) = E(w)− ηgT ḡ + η2

2
gTGḡ 6 E(w) (2.28)

This optimization rule can now be used for complex system identification.

2.3 Analytical Functions and Their Derivatives

The selection of the activation function for the artificial neurons is an important
issue in artificial neural networks. Activation functions play an important role
in neural network theory. The main conditions with real-valued functions are
that the function must be continuous and differentiable, an ideal case if it is
bounded (in order to be robust against outliers in the input data). Examples of
the bounded, differentiable and continuous functions are the logistic, sin, cos or
tanh functions. Fig.2.1 shows the example of such real valued functions and their
derivatives. In the complex-valued case, everything is different. Let’s start with
the requirements of differentiability. One of the strongest requirements for the
complex-valued functions are the so called Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y

∂v

∂x
= −∂u

∂y
(2.29)

if these requirements are correct, we are dealing with a function which is analytic
meaning that u(x, y) and v(x, y) are harmonic. To summarize the properties of
the complex derivative we can write the following:

• f ′(z) exists and is continuous
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2.3 Analytical Functions and Their Derivatives

Figure 2.1: Different types of activation functions and their derivatives.

• f(z) is holomorphic

• f(z) should satisfy the Cauchy-Riemann conditions

• f(z) should be representable as a converging power series expansion.

If the function f(z) = u(x, y)+ iv(x, y) then u(x, y) and v(x, y) should satisfy the
Laplace equation:

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= 0 and

∂2v(x, y)

∂x2
+
∂2v(x, y)

∂y2
= 0 (2.30)

From the Laplace equation one can see that both real valued functions are to be
harmonic (sin, cos etc). Some examples of analytic funtions are: zn, ez, ln(z),
sin(z), cos(z). Some examples of nonanalytic functions are: z̄, Re(z), Im(z), |z|2
etc.

Discussion on the nonlinearity and boundedness of complex functions.
After having discussed the requirements of differentiability, we will discuss the
requirements for the bounded functions. The requirements for the bounded func-
tion are set be the Liouville theorem below.
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Liouville theorem. For every holomorphic function f , there exists a positive
number M such that |f(z)| ≤M for all z in C is constant.

Proof.The theorem follows from the fact that holomorphic functions are ana-
lytic. Since f is entire, it can be represented by its Taylor series around zero.

f(z) =
∑∞

k=0 akz
k. where (by Cauchy’s integral formula 2.5): ak = f (k)(0)

k!
=

1
2πi

∮
Cr

f(ζ)
ζk+1 dζ and Cr is the circle around 0 of radius r > 0. We can estimate

directly:
|ak| ≤ 1

2π

∮
Cr

|f(ζ)|
|ζ|k+1 |dζ| ≤ 1

2π

∮
Cr

M
rk+1 |dζ| = M

2πrk+1

∮
Cr
|dζ| = M

2πrk+1 2πr = M
rk
,

where in the second inequality we have invoked the assumption that |f(z) ≤ M
for all z and the fact that |z| = r on the circle Cr. But the choice of r in the
above is an arbitrary positive number. Therefore, letting r tend to infinity gives
ak = 0 for all k ≥ 1. Thus, f(z) = a0 proving the theorem.

The much stronger requirements for the functions are given by the Piccard’s the-
orem below.

“Little” Picard Theorem. If a complex function f(z) is entire and non-
constant, then the set of values that f(z) assumes is either the whole complex
plane or the plane minus a single point.

Definition. A real-valued or complex-valued function f defined on some topolog-
ical space X is reffered to as locally bounded if for any x0 in X there exists a
neighborhood A of x0 such that f(A) is a bounded set, that is, for some number
M > 0 one has |f(x)| ≤M for all x in A.

Obviously, if a function is bounded, it is also locally bounded. This definition can
be extended to the case where f takes its values in some metric space. Then the
inequality above needs to be replaced with d (f(x), a) ≤M for all x in A, where
d is the distance function in the metric space, and a is some point in the metric
space. The choice of a does not affect the definition. Choosing a different a will
at most increase the constant M for which this inequality is true.
The remarkable behavior of holomorphic functions near essential singularities is
described by the “Great” Picard’s Theorem.

Discussion of the singularities of the complex functions.
Other problems of the complex functions are related to the singularities. The
example one can see at the figure 2.2 for the tanh function. Let us introduce
some definitions related to singularities and its types.
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Figure 2.2: The complex-valued case of the hyperbolic tangent activation func-
tion.
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Definition.If f(z) has a single point singularity at z0, the singularity is named
as removable if lim

z→z0
f (z) exists.

Definition.If lim
z→z0
|f (z)| −→ ∞ and f(z) is analytic in the neighborhood of z0,

then the singularity is non removable and called isolated. Example is tanh func-
tion. See fig 2.2.

Definition.If a singularity is neither removable nor isolated, then it is known as
an (isolated) essential singularity.

Having defined singular points of the functions can be rather dangerous due to
the unlimited values the network output can take and thus destroy the computa-
tions. Therefore we should not allow the functions to have singular points at the
solution range. Concluding the discussion about possible values of the complex
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Figure 2.3: An example of the engineered function

function one can say, that any holomorphic function (and in this thesis we are
interested in functions which do have derivative) will be unbounded or vise versa,
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2.3 Analytical Functions and Their Derivatives

if the function is bounded then it is not holomorphic. But what to do if we still
need the bounded and nonlinear function? The answer is to try to go through
the Liouville theorem. At some point one can say, that the Liouville theorem
is the deadlock for the neural computations. Hopefully the Liouville theorem is
valid only for the entire complex plane. Therefore if one constrains the possible
solution range, the Liouville theorem will not apply.

Proposition. In a bounded domain of the complex plane =, a fully complex non-
linear activation function f(z) needs to be analytic and bounded.

Therefore, if one considers the solution to be at some bounded region of the com-
plex plane, we might find the function, which is differentiable and bounded. Let
us present an example of such functions. One can see from the figure 2.2 that
singularities may occur periodically, making the function unbounded in some re-
gion. Since the optimization algorithms used in the current thesis do not allow
constraints setting, it cannot be guaranteed that the parameters will not cause
the unlimited growth during the optimization.

Discussion of the engineered complex functions.
To overcome the problems discussed above, one can construct the so-called engi-
neered function (will be discussed in depth later). The main idea is that in order
to get rid of the “bad” properties of a function, one has to replace the singularity
of the function with some other function. Then one should “sew” the functions
at the border. For more information see eq. 2.31 and fig. 2.3.


f1(z) = tanh (z) , z ∈ C\

[
−π

2
− ε;−π

2
+ ε
]
∪ [−ε; ε]

f2(z) = tanh (Re (z)) eiφ(z), z ∈
[
−π

2
− ε;−π

2
+ ε
]

f3(z) = log cosh (z) , z ∈ [−ε; ε]

f ′1 (z) = f ′2 (z) ; z ∈
[
−π

2
− ε;−π

2
+ ε
]

f ′1 (z) = f ′3 (z) ; z ∈ [−ε; ε]

(2.31)

Other examples of the engineered functions are:

• f(z) = u(Re(z))+ iv(Im(z)), where u and v are some real valued functions.

• f(z) = f(abs(z)) expiφ(z) where abs(z) is the absolute part of the complex
variable z and the φ(z) is the phase part of the complex-valued z.
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2.4 Discussion on the Error Function

One should pay more attention to the error function [27]. As already discussed, we
have to deal with nonanalytic error function with core of z×z̄ due to optimization
reasons. Other combinations are also possible, for example log(z)× log(z). One
can show, that this is not an “easy” error function, and that it has very unique
properties. Let us describe these properties in more detail. E = z× z̄, where Y -
network output (observation), Ŷ - network target (expectation). Now z = Y − Ŷ .

Thus E(z, z̄) = (Y − Ŷ ) × (
¯

Y − Ŷ ). Let us now switch to the Euler notation

to make the calculations easier. E = r2 + r̂2 − rr̂
(
ei(φ−φ̂) + ei(φ̂−φ)

)
. This

is the quadratic equation. The discriminator is D =
√
b2 − 4ac, where b =

ei(φ−φ̂) +ei(φ̂−φ) and a = c = 1. In order to make sure, that our equation has only

one root (roots x1,2 = −b±
√
D

2a
)(one minima) one should make discriminator D = 0.

This happens only if φ = φ̂. In case, the following equation to minimize (r − r̂)2

which obviously only occurs if r = r̂ must be used. But the necessary condition
is the equality of the phases of the expectation and the observation. Thus upon
optimizing the radius of the complex number, the phase will be optimized.{

(r − r̂)2 → 0

φ = φ̂
(2.32)

This property is very important for reasons which will become apparent later. To
have a better impression about the ideas discussed above, consider an example
below.
One can consider the following problem from a different perspective. This error
function has very unique and desirable properties. Let us describe these properties
more in detail. We rewrite 2.23 into Euler notation:

E = r2 + r̂2 − rr̂
(
ei(φ−φ̂) + ei(φ̂−φ)

)
︸ ︷︷ ︸

2 cos(φ)

(2.33)

The discriminant of 2.33 is negative and only can be equal to zero that the
equation has 1 root: D =

√
4r̂2cos2 (∆φ)− 4r̂2 = 2r̂

√
−sin2 (∆φ) = 0.Therefore

if ∆φ = 0 then r = r̂.We can also rewrite (4) in the following way: E (y, ŷ) =

a2 + b2 + â2 + b̂2 − 2aâ− 2bb̂ = (a− â)2 +
(
b− b̂

)2

. One can see that such error

function minimizes both real and imaginary parts of the complex number. This is
a very important result which can be explained in the follwoing way. The phase
has to be synchronised for all neurons during the training. In case there is no
phase equality, there is no training, since the error function does not have the
minima at zero. It means that the error for radius can converge, but the phase
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2.5 Complex-Valued Linear Regression

inequality means there is no global minima for the error function. The global
minima occurs only with phase equality. This explains the success in the real
world applications, where the effect of phase synchronization plays an important
role.
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Figure 2.4: Error function behavior of the absolute error (solid line) and angle
error (dotted line). Both errors decay to zero.

In Fig.2.4 one can see that absolute error, which consists of z × ẑ and the

angle error, Eangle =
∣∣∣arctan

(
Re (y)/Im (y)

)
− arctan

(
Re (ŷ)/Im (ŷ)

)∣∣∣.
2.5 Complex-Valued Linear Regression

The real-valued case of the linear regression was widely discussed in the bench-
marking section 4, where the definitions for the linear regression and basic nota-
tions which will be used in the discussion of the complex-valued linear regression
have been introduced.
Complex-Valued Linear Regression (CV LR) is the simplest case of data approx-
imation. Consider a linear model with n inputs. Let X be the data which is to
be approximated and let w and b be linear regression parameters. Y is the linear
regression output. Then the model can be presented as follows:

Y =
T∑
j=1

wjXj + bj (2.34)
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The error which we can introduce, analogous to the mean squared error is the
following expression:

E =
(
Y − Y d

)
(Y − Y d) (2.35)

To estimate the parameters of the linear regression one should calculate the
derivatives of the error with respect to the parameters of the linear regression:
Training rule from the gradient descent can be derived as follows (following The-
orem 2 the optimization is to be conducted in the direction of w̄):

wnew = wold − η
dE

dw

The task now is to define the dE
dw

. This term is to be calculated using the Wirtinger
calculus discussed above.

dE

dw
=
dE

dY

dY

dw
+
dE

dY

dY

dw

Following Wirtinger
dY

dw
= 0 and

dE

dY
= Y,

dY

dw
= X

then the training rule for the linear regression can be written as follows:

wnew = wold − ηY X (2.36)

Using this simple rule one can train the linear regression with relatively small η.
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3

Neural Networks

3.1 Real-Valued Feedforward Neural Network

3.1.1 General Introduction to Neural Networks

Neural Networks are a well-known approach for the data approximation and
data classification. There are variety of architectures and training algorithms
discussed in the literature. Unfortunately there is still no unique architecture
which will prove to be suitable for all problems. Artificial Neural Networks are
a bio inspired concepts, which is related to neuroscience. In order to make this
algorithm understandable the real picture of the brain has been significantly
simplified, keeping the main data processing elements, like axons and dendrites
as well as neuron cell itself. One well-known extension of the traditional neural
network is so-called spiking neural network which has more analogous to a real
world neuron, nevertheless even this model is far from being realistic. Even the
simple model of the neuron, which will be discussed further, can demonstrate an
interesting behavior. The cell, which we are going to model, is the nucleus, it
has dendrites which bring the information to the cell, nucleus, which weights up
the incoming information with locally stored weights, compares this sum against
its bias and amplifies this information sending it to other neurons with axon
connection. Networks modeled with such approach can be used to map complex
relationships between inputs and outputs or to find patterns in data. Artificial
neuron visualization can find in the figure 3.1 below.

yt = f

(
n∑
i=1

(Xi,twi) + w0

)
, t = 1...number of patterns (3.1)

Where X is a matrix of inputs, wi are synaptic weights (nodes), f is an activa-
tion function and yt is an output. Using such nodes one can construct different
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3. NEURAL NETWORKS

Figure 3.1: Graphical representation of a Mc.Cullough-Pitts artificial neuron
(first described in 1942). Here x are inputs, w are weights, w0 is bias and f is
activation function. It sums its inputs with weights substracts the bias and applies
the activation function to the product producing the activated output.

architectures to solve different problems. In general, it is possible to divide all
architectures into two classes: Feedforward NNs propagates information from in-
put to the output and Recurrent NNs which propagates information in a closed
loop.
In many industrial areas such as medicine, finance and various control applica-
tions, one has to predict the next state of the system in order to prevent break-
downs, production losses, money losses, etc. Many of these problems are very
difficult to model or even impossible to model a priori. The only possible solu-
tion is to measure data with the sensors and try to adapt a process model based
on these measurements. Typically, original data have data gaps, outliers, noise,
etc. In order to make better forecasts, one should preprocess the data. For exam-
ple, one can use a filter to accomplish this (e.g. an adaptive filter). The problem
arising is that the value to be forecasted with the use of this filtered data will
also be filtered in some sense. Therefore the forecasted value cannot be used in
terms of the initial problem. Moreover, in many cases the “operator” (the person
who operates some complicated machines) does not care about exact value of the
forecast, but only about whether the forecasted value belonged to the “good”
condition or to the “bad” condition of the system. In order to overcome this dif-
ficulty, one should use one side classification to classify whether predicted value
belongs to the “good” or to the “bad” condition of the system under investiga-
tion. A lot of papers in this area have been already published: [8],[46],[51],[6],[13].
Before starting with NN the simplest case - linear regression has to be considered.
One should always follow the Occam’s razor rule - which is to use the simplest
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3.1 Real-Valued Feedforward Neural Network

Figure 3.2: A feedforward multi-layer perceptron (MLP) neural network. Circles
represent neurons. Arrows show information flow from inputs to output.

model out of the whole set of models. The simplest model one can find, is linear
regression. In statistics, linear regression is a regression method that models the
relationship between a dependent variable Y independent variables Xi=1..p and a
random term ε. The model can be written as:

Y = β0 + β1X1 + ...+ βPXP + ε (3.2)

where β0 is the intercept (“constant” parameter - bias), the βi are the respective
parameters of independent variables, and p is the number of parameters to be
estimated in the linear regression. Linear regression can be contrasted with non-
linear regression. Methods for parameters estimation for the linear regression are
well-known and we will not discuss them.

3.1.2 Real-Valued Feedforward Path

Feedforward Neural Network (further FFNN) consist of neurons structured in
layers (see [38],[55]). The neurons in each layer are not connected to one another.
However the neurons between the layers are fully connected (neurons might not
be fully connected, if sparse matrices are used). Each neuron from the ith layer
is connected to all neurons in the neighboring neurons in the (i− 1)th layer and
(i+1)th layer. The information flow in such networks is straightforward; therefore
it is called feedforward. It goes from the input layer to the output layer through
the hidden layers. A neural network architecture is presented at the fig. 3.2. The
architecture in the picture is the so-called multi-layer perceptron (MLP). Each
neuron in this architecture is working according to the 3.1. A fully connected
multi-layer perceptron network (MLP, see Fig. 3.2) with I inputs, a first hidden
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layer with H nodes, a second hidden layer with L nodes and in this case a single
output is defined by:

y(x) = wb +
L∑
l=1

wl tanh (wb,l +
H∑
h=1

wlh tanh(wb,h +
I∑
i=1

whixi)︸ ︷︷ ︸
θ2

)

︸ ︷︷ ︸
yMLP3︸ ︷︷ ︸
θ1

. (3.3)

This architecture (or architectures similar to this one) are well-known universal
approximators. Moreover one can extend the network by embedding the ex-
pert knowledge into the network weights. In the current subsection “black box”
whitening will be showed. This will not be done for the complex-valued case,
since the procedure is similar. In order to do the knowledge incorporation one
should apply special rules to NN training, namely to the derivatives of the NN.
The values of the weights do not tell anything about the process which they
model. Therefore for a long time NNs have been considered as a “black box”
modeling approach. One of the ways to overcome this difficulty is to induce the
monotonic behavior for the input-output (I/O) relations. Consider the exam-
ple of the monotonic dependency. Imagine one has to model the Ideal Gas law
(PV = RT ), here P is pressure, V is volume, T is temperature and R is the ideal
gas constant. In case P increases in a fixed volume (V = const), temperature
T has to increase as well. Imagine P and V are available and T behavior has
to be modeled. In this case one can induce the training constraints in order to
make the network obey the monotonicity rules. The MLP can insure a mono-
tonically increasing (decreasing) behavior with respect to the inputs xj ∈ x, if
set the derivative of the output with respect to the input as positive or negative
(depending on the relationships). Finally, the constraints will be translated to
the weights (see eq.3.4).

∂y

∂xj
=

L∑
l=1

wl · (1− θ2
1)︸ ︷︷ ︸

>0

·
H∑
h=1

wlh · (1− θ2
2)︸ ︷︷ ︸

>0

·whj ≥ 0 (3.4)

An MLP is known as a universal approximator [12]. However, the constraints
defined above reduce the degrees of freedom for the weights so that the capability
to approximate arbitrary, partially monotonic functions has to be shown again.
Detailed proof was presented in [12]. The four-layer feedforward network (see
eq. 3.3) is an extension of a three-layer standard MLP. Since the three-layer
topology is already sufficient for an universal approximator, the extension by a
monotonic second hidden layer to a four-layer network respectively additional

28



3.1 Real-Valued Feedforward Neural Network

calculations by hyperbolic tangents and the multiplications with positive weights
wl do not affect this property. Limitations in the sign of the weights wlh can be
eliminated by appropriate weights whi since tanh(x) = − tanh(−x). To sum up,
a four-layer feed-forward network under the weights constraints continues to be
a universal approximator.

3.1.3 Real-Valued Backward Path

After the feedforward path is performed, the network output can be obtained.
After the network output is obtained, the error between the network output and
the desired output of the network can be calculated. The target is the desired
(observable) value to which the network should map its inputs. Ideally, network
maps its inputs to the desired targets (observables should meet the expectations,
meaning that expectation versus observation has to be the same). In practice,
the network output is never perfect to its target values; there is always an error
in the approximation of the target values. In order to reduce and minimize the
error training for an acceptable set of weights is necessary. To do the training
one should calculate the backward path which allows calculating the impact of
each neuron in the overall error. Using the ladder algorithm described below,
the derivatives of the error with respect to the weights (dE

dw
) can be obtained. To

calculate the backward path one should consider the error as an input for the
network and use it from the back to the beginning of the network. Thus the
impact of each neuron in the overall error can be computed.

3.1.4 Real-Valued Neural Network Training

Once a network has been structured for a particular application, it is ready to be
trained. To start this process the initial weights are chosen randomly (uniformly
distributed). Then the training, or learning, begins. There are two approaches
to training - supervised and unsupervised. Supervised training involves a mecha-
nism of providing the network with the desired output either by manual “grading”
the network’s performance or by providing the desired outputs with the inputs.
In supervised training, both the inputs and the outputs are provided. Then the
network processes the inputs and compares its resulting outputs against the de-
sired ones. Later the errors are propagated back through the system, causing
the system to adjust the weights which control the network. This process occurs
over and over as the weights are tweaked continuously. The set of data which
enables the training, is called the “training set”. During the training of a net-
work, the same set of data is processed many times as the connection weights
are continuously refined. A single presentation of the training patterns in to a
neural network is called an epoch of training. Unsupervised training is when the
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network has to make sense of the inputs without outside help. In unsupervised
training, the network is provided with inputs but not with desired outputs. Then
the system must decide itself what features it will use to group the input data.
This is often referred to a self-organization or an adaption. In the present work
authors will focus on supervised learning. In case of supervised training, the main
idea of training is to minimize the error between target output and real output
E (w) = E {xα, yα, y (xα,w)}, where {xα,yα} is a set of patterns,{y (xα,w)}
is an actual output of the network. Following [4], the most general case of neural
network optimization is iteration procedure of weight selection (so called “learn-
ing” with tutor {xα,yα}). When the functional for the error is selected, then
the problem is to minimize this functional. It is possible to use the next way of
weight selection:

wτ+1
ij = wτij − ητ

∂E

∂wij
(3.5)

where ητ is the rate of learning for step τ . It is possible to show that reducing
the step, according to the simple law ητ ∝ 1/τ , the procedure described above
will lead to finding the local minimum. Historically, the problem was in effective
computing the ∂E

∂wij
. The error of the network can be computed at the output,

so we have the link only to the output layer. The question arises here how to
compute the weights changes in hidden layers? There was a problem how to
propagate the error through the network in backward direction. Such algorithm
was found and it is called now as backpropagation algorithm (see [58]). The
idea of this algorithm is based on the differentiation rule for the composition of
functions. Following the work [4], x

[n]
j denotes the inputs of nth layer of nodes.

Neurons of this layer compute the following linear combinations:

a
[n]
i =

∑
j
w

[n]
ij x

[n]
j (3.6)

Then one should propagate this to the next layer through the non linear acti-
vation function. Nonlinearity of the activation function is very important since
superposition of linear function is still a linear function:

x
[n+1]
i = f

(
a

[n]
i

)
(3.7)

To create the training algorithm, one has to know the derivative of the error with
respect to the nodes weights:

∂E

∂w
[n]
ij

=
∂E

∂a
[n]
i

∂a
[n]
i

∂w
[n]
ij

≡ δ
[n]
i x

[n]
j (3.8)

Therefore the impact of each node to the overall error can be computed locally,
by multiplying the discrepancy δ

[n]
i with the value of concrete input. The inputs
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of each layer are computed sequentially while the feed forward propagation:

x
[n+1]
i = f

(∑
j
w

[n]
ij x

[n]
j

)
(3.9)

The discrepancy is calculated while backward propagation of the error:

δ
[n]
i = f ′

(
a

[n]
i

)∑
k
w

[n+1]
ki δ

[n+1]
k (3.10)

Using the chain rule for the derivative it is possible to obtain the next equation:

∂E

∂a
[n]
i

=
∑

k

∂E

∂a
[n+1]
k

∂a
[n+1]
k

∂x
[n+1]
i

∂x
[n+1]
i

∂a
[n]
i

(3.11)

hence the larger the activation of the concrete node in the following layer, the
larger the resulting error. Using this algorithm it is possible to train any feed-
forward architecture in a supervised mode. Let W be the overall number of
nodes. Then the complexity of the algorithm is O(W ), where W is overall num-
ber of nodes. The straightforward algorithm for the computation of the derivative

∂E

∂w
[n]
ij

=
E
(
w

[n]
ij +ε

)
−E

(
w

[n]
ij

)
ε

the complexity here is O(W 2).

3.1.5 Real-Valued Ladder Algorithm

The idea of the ladder algorithm, proposed by Zimmermann [55] is that there is a
very good connection between the architectural representation of the NN and the
algorithmic part of the forward and backward paths. Using this algorithm one
can construct nearly any architecture and implement elegantly the back propa-
gation for a particular architecture. Moreover, the ladder algorithm shows that
backpropagation is a local algorithm (see Fig.3.3). At the figure one can see the
main idea of it. The notations are the following: netini is ith layer input (vector
containing the inputs of the neurons in the layer), netouti is ith layer output, devi
is the error which is produced by the ith layer, δi is the derivative of the error
produced by the ith layer. At the end of the algorithm the task is to calculate
the derivative of the error with respect to the network weights. One can see that
using the ladder algorithm one can easily compute these things multiplying the
i − 1 layer output and the derivative of the ith layer. This is the best feature of
the algorithm. The back propagation calculations are local and do not depend on
the network architecture. The overall procedure can be described in the following
way. The input netin0 goes through the input layer and becomes the output func-
tion out0. This output is then transported to the first hidden layer and for this
purpose it should be multiplied by the matrix of weights W1. After multiplication,
the new input netin1 = W1 × out0 comes to the first hidden layer one where it
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Figure 3.3: Ladder algorithm for a three-layer perceptron (see [55]).
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3.2 Complex-Valued Feedforward Neural Network

is transformed with the nonlinearity f . After the transformation the first hidden
output produces its output out1 and so on. Then the last hidden output should
be compared with the desired output. Here we calculate the error and start the
backward path. The derivative of the MSE error is the difference between the last
hidden output and the desired output, we mark it as dev2. Doing the backward
path according to the discussions in subsection 3.1.4 one should calculate δ. For
the last hidden one it will be the derivative of the nonlinearity multiplied with
the derivative of the output dev2. Thus δ2 can be obtained. Now one has to
explain why the algorith is associated with the word - ladder. One can obtain the
derivatives of the error with respect to the hidden weights absolutely for “free”,
having only those variables which were calculated before. Taking and multiply-
ing δ2 with the out1 the derivatives can be obtained for “free”. For “free” means
that one will calculate these members to proceed with the error backpropagation
anyway. Then by taking some members of the calculations discussed above, the
derivatives can be calculated automatically. This procedure is to be done several
times and it does not depend on the architecture of the neural network (see. fig.
3.3).

3.2 Complex-Valued Feedforward Neural Net-

work

3.2.1 General Discussions

Complex-Valued Neural Network (CVNN) (see Haykin [30] and Kreutz [43]) is
one of the recent new topics in the machine learning. One of the advantages of
the complex-valued neural networks is their intrinsic capability to deal with the
complex-valued input-output relations instead of just real ones. This property
allows to broaden the range of applications for the neural networks overall. Un-
fortunately, the price for the complexity of the complex-valued neural networks
(CVNN), is sometimes too high. One should clearly understand wether there is
a need to go into more complicated complex-valued networks or can be satis-
fied with the real-valued networks (RVNN) (see [1, 40, 58]). This section briefly
goes through the feedforward case of the real-valued neural network, then it dis-
cusses the differences between complex-valued and real-valued neural networks
and at the end it considers the set of real world examples in order to answer
the question: which networks are more appropriate for the considered exam-
ples. Moreover, this section tris to break through the problems of the complex
version of the backpropagation algorithm using the Random Search Algorithm
(RSA) and then it compares the complex-valued backpropagation (CVBP) with
the real-valued backpropagation and the RSA for the definite examples. The out-

33
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come of the current research is the combined RSA-CVBP algorithm for training
the complex-valued neural networks which seems to be very promising for solving
the considered examples.

3.2.2 Complex-Valued Feedforward and Backward Path

The current chapter aims to show the bridge between the real-valued and complex-
valued neural networks. RVNN consists of neurons, which can be described with
the following equation:

yi = tanh

(
J∑
j=1

wijXj + wj

)
, [Xj, wij, wj] ∈ R, tanh : R→ R (3.12)

Where Yi is the output of the ith neuron, Xj - is the jth element of the input
vector, T is the number of elements in the input vector, wij is the connection
weights matrix, wj is the vector of bias parameters and function tanh is the
activation function. All the weights, bias parameters and inputs are real numbers.
The activation function maps its arguments into the real numbers as well. The
limitation on the activation function is that it should be differentiable at every
point and should be bounded (boundedness is not mandatory, but preferable).
One can construct different architectures using the neurons mentioned above.
Structuring neurons in layers and connecting the layers in a way that each neuron
in the layer does not receive the information from the layer neighboring neurons
within the layer, but receives the information from all previous layers neurons,
one can end up with the feedforward architecture, displayed in Fig. 3.4. In the
Complex-Valued Neural Network the description remains the same. Now the
inputs are complex numbers and the weights are complex numbers as well as
the bias parameters and outputs. Linear algebra operations in the eq.3.12 are
well defined in complex-valued case. The only difference between the RVNN and
CVNN can be found by inspecting eq.3.13.

yi = tanh

(
J∑
j=1

wijXj + wj

)
, [Xj, wij, wj] ∈ C, tanh : C→ C (3.13)

The first problems, arise in the complex representation of the activation func-
tions. Using the Liouville theorem, one can show that if a function is bounded
and differentiable at the complete complex space, it is also constant. Thus any
differentiable and bounded funciton is a constant. For example, the tanh function
has periodically occuring singularity points. At these points the function goes to
infinity resulting an invalid computations. In addition, there is the problem of
the error function, but the solution has been described in the section related to
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3.2 Complex-Valued Feedforward Neural Network

Wirtinger calculus. Many papers discuss the tricks how to overcome the nondif-
ferentiability of the complex functions. One of the most common way to do that
is to apply engineering functions as presented in the eq. 3.16 below.
Conventional signs:

l – layer number
netinl, outl – input and output vectors accordingly for the current layer l
W l[nh, nh] – matrix of weights, Bl[nh, 1] – bias vector at the l-th layer
f – activation function at a current layer
sl – state of the network at a layer l.
Error function:

E =
T∑
k=1

(yk − ydk)(yk − ydk)→ min
W,B

,

where y – network output, yd – desired output. The structure of the network is
described in the picture 3.4. Let us specify the architecture of the neural network

Figure 3.4: An example of the three-layer network.

using few arrays. One array Architecture contains the needed information about
the architecture of the neural network, another array Nonlinearities contains an
information about the transition function at each layer.

Architecture = [number of inputs (3.14)

number of neurons at hidden layers

number of outputs]

Nonlinearities = [activation functions at each layer]
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with the activation functions:

1 : f(z) = tanh(zr) + i · tanh(zim) (3.15)

2 : f(z) = tanh(z)

3 : f(z) = sin(z)

4 : f(z) = tanh(r)eiϕ

Denote netinl, outl are input and output vectors accordingly for the current layer
l, devl, dl are input and output accordingly for the backpropagation algorithm.
W l is matrix of weights and bl is bias vector at the l-th layer, f is activation
function at a current layer. One should take into account that tanh is preferable.
This is because tanh has periodical singularities which are known and can be
avoided by a special control in the training loop. In the rest part the function
behaves in a way we need and there is no need to change it. Moreover, it does not
have any singularities close to zero and while training the weights are normally
in the region between zero and one for real and imaginary parts.
The feedforward path can be described using the ladder algorithm and the
following notations:

l – layer number (3.16)

sl : netinsl = Woutsl−1 + bl

outsl = f(netinsl)

The backward path can be described with the ladder algorithm and following

notations:

sl : devsl = Wdsl+1 (3.17)

dsl = f ′(netinsl)devsl

∂E

∂w
= dsloutsl−1

∂E

∂b
= dsl

The feedforward and backward paths can be efficiently computed using the ladder
algorithm described above. The very good point is that the ladder algorithm
does not change with the complexity of the inputs and outputs. Moreover it
does not depend on the architecture; therefore it can also be translated to the
recurrent neural networks which will be discussed later. Moreover, one can show
that ladder algorithm remains the same for complex numbers (in comparison to
the real-valued ladder algorithm), implying a nice correspondence between the
locality of algorithms, equations and architectures.
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3.2 Complex-Valued Feedforward Neural Network

3.2.3 Complex-Valued Ladder Algorithm

Consider the Complex Valued Neural Network (CVNN) which deals with complex
inputs, weights, bias parameters and outputs. The ladder algorithm (proposed

Figure 3.5: Complex Valued Backpropagation. The figure depicts the locality of
the CVBP algorithm and independence of the BP from the network architecture.
Notations: netin - layer inputs, netout - layer outputs, din -layer derivative input,
dout -layer derivative output, Wi are network weights, arrows show the information
flow, (̄·) - means complex conjunction.

by Zimmermann in [55]) notations written as follows:

• netinl, outl – input and output vectors according to the current layer l

• devl, dl – input and output according to the backpropagaton algorithm

• W l– matrix of weights and bl – bias vector at the l-th layer
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• f – activation function at a current layer

One can see that the ladder algorithm for the complex-valued network is
absolutely the same as it was for the real-valued case despite some changes which
came from the Wirtinger calculus, namely conjunctions. As it was noted in the
section related to the real value networks the ladder algorithm provides a unique
correspondence between the architecture, equations and locality of the algorithms.
This can be easily seen at the figure (3.5).

3.3 Real-Valued Recurrent Neural Network

Recurrent Neural Networks (see [15, 17, 33, 39, 58]) have been an important topic
in machine learning community for the past years. One of the natural extensions
of recurrent neural networks is a complex-valued recurrent neural network, since
modeling of complex-valued dynamics is needed in many application areas. First
real-valued case of the general recurrent neural network is to be discussed. Then
complex-valued case will be discussed. After the complex-valued case the most
interesting case, namely Historical Consistent Neural Network and its real-valued
and complex-valued cases respectively will be discussed.
However, first the systems to be modelled will be described. The system is
described by its internal state s, its input signals u and its outputs y. The main
property of this system is that it has the recurrent connection of the output to
its input. This connection allows recurrent processing of information and results
in a dynamical system. Therefore in case one needs to model dynamical system,
recurrent architecture is to be used. The dynamical system can be described by
the eq. 3.18 below: {

st = f (st−1, ut)

yt = g (st)
(3.18)

where u is a model input, s is an internal state of the model and y is the model
output, f and g are some transition functions (recurrent connection is modelled
by the states). One of the most appropriate architectures is so-called Elman ar-
chitecture [39]. The Elman architecture considered in the current section has the
following structure. The recurrent architecture is mapped into the feedforward
network with three layers: an input layer, a hidden layer and an output layer
(see Fig.3.6 below). This type is different from traditional ones is that the input
layer has a recurrent connection with the hidden (denoted by the dotted lines
and marked as “weight U” in the Fig.3.6). Therefore, at each time step the out-
put values of the hidden units are copied to the input ones, which store them
and use them for the next time step. This process allows the network to store
some information from the past in the way to detect temporal properties of the
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3.3 Real-Valued Recurrent Neural Network

patterns better. In the original experiments presented by Jeff Elman, so-called

Figure 3.6: An Elman recurrent neural network. Connections between layers are
represented by lines.“Copy(delayed)” stands to show that network makes the copy
of the hidden layer and presents it with some weights on the next iteration of the
training (see [39] ).

truncated backpropagation was used. This basically means that yj(t − 1) was
simply regarded as an additional input. Any error at the state layer (marked
as “Previous state” in the Fig.3.6), δj(t) was used to modify weights from this
additional input slot (see Fig.3.6). Errors can be back propagated even further.
This is so-called backpropagation through time (BPTT; see Fig.3.7 and Rumel-
hart [21]) and is a simple extension of the traditional one, which can be easily
done with the ladder algorithm. The only difference is that now one should use
so-called shared weights paradigm (see Zimmermann [33]). The main idea is that
the weights between the layers remain the same, thus they take part in all equa-
tions which arise during the forward or backward paths (The basic principle of
BPTT is that of “unfolding” due to the feedforward architecture. All recurrent
weights can be duplicated spatially for an arbitrary number of time steps τ . Each
node which sends activation along a recurrent connection has τ number of copies
as well (see Fig.3.7). Errors are back propagated according to the next simple

rule δpj (t− 1) =
m∑
h

δph(t)uhjf
′ (ypj (t− 1)) where h is the index of the recieving

neuron and j is sender index. Such processing allows to calculate the error at time
moment t for output neurons. Below are definitions for permanent notations:
l – layer number,
netinl, outl – input and output vectors accordingly for the current layer l
f – activation function at a current layer
ul – state of the network at an input layer
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Figure 3.7: Backpropagation through time. Connections between layers are rep-
resented by lines.

sl – state of the network at a hidden layer
yl – state of the network at the output layer
The weights matrices are of the following dimensionality: A [nh× nh], B [nh× ni]
and C [no× nh] .

st = f(Ast−1 +But);

yy = Cst;

E =
T∑
t=1

(yt − ydt )2 → min
A,B,C

,

where y – output vector, yd – target vector. The structure of the network is
described in the Fig. 3.8. The core point of the complete discussion is so-called
“Shared Weights” concept proposed by Zimmermann [33], states that all three
weight matrices: A,B and C remain constant between layers, thus causing the
recurrent procedure. The architecture itself is just unfolding in time, while the
matrices remain constant among the layers. Matrix A compresses the data from
the dimensionality of the input layer to the dimensionality of the state layer,
matrix C makes the decompression from the dimensionality of the state layer to
the dimensionality of the output layer. Matrix B makes the transition from one
state to another, thus causing the complete story to be recurrent. In order to
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make the architecture definition faster, let me introduce the architecture array.
This array describes the architecture in a structured way.

NetworkArcitecture = [1− number of states

2− number of hidden neurons in the state

3− number of forecasting states

4− number of inputs

5− number of outputs

6− activation functions]

where activation functions are presented as numbers:

Figure 3.8: Open recurrent system. For more information see Zimmermann [33].

1 : f(z) = tanh(zr) + i · tanh(zim),

2 : f(z) = tanh(z),

3 : f(z) = sin(z),

4 : f(z) = tanh(r)eiϕ

Denote:
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• netinut , outut – input and output vectors accordingly for the current state
u and layer t

• devut , dut – input and output accordingly for the backpropagaton algorithm

• A,B,C– shared matrices of weights

• f – activation function

Forward path - is done to obtain the network outputs which have given inputs.
This is one way procedure, which can be described with ladder algorithm given
above. Using the ladder algorithm, it is possible to obtain the following set of
equations, describing the forward path:

ut−1 : netinut−1 = xt−1,

outut−1 = netinut−1 ,

st−1 : netinst−1 = Aoutst−2 +Boutut−1 ,

outst−1 = f(netinst−1),

yt−1 : netinyt−1 = Coutst−1 ,

outyt−1 = netinyt−1 ,

ut : netinut = xt,

outut = netinut ,

st : netinst = Aoutst−1 +Boutut ,

outst = f(netinst),

yt−1 : netinyt = Coutst ,

outyt = netinyt ,

st+1 : netinst+1 = Aoutst ,

outst+1 = f(netinst+1),

yt+1 : netinyt+1 = Coutst+1 ,

outyt+1 = netinyt+1 .

The backward path is to be used to find out each weight responsibility in the
overall error. The impact of each weight has to be calculated. Since the shared
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weights concept therefore the last statement has to be updated. Error back-
propagation is to be calculated in a usual way, as all matrixes of weights would
be different. Then after the backward compuatations are done the impacts for
each shared weights matrix are to be avaraged and applied to the shared weight
matrix. One can see these ideas are implemented in the equations below:

yt : devyt = dEyt = yt − ydt ,
yt+1 : devyt+1 = dEyt+1 = yt+1 − ydt+1,

dyt+1 = devyt+1 ,

st+1 : dev
st+1

= Ctdyt+1 ,

dst+1 = f ′(netinst+1)devst+1 ,

dyt = devyt ,

st : dev
st

= Ctdyt + Atdst+1 ,

dst = f ′(netinst)devst ,

for all t

∂E

∂A
=

1

T

∑
t

dstoutst−1 ,

∂E

∂B
=

1

T

∑
t

dstoutst ,

∂E

∂C
=

1

T

∑
t

dytoutst .

Once the backward path has been computed, the weights can be updated accord-
ing to the simple gradient descent rules:

Anew = Aold − η
∂E

∂A

Bnew = Bold − η
∂E

∂B

Cnew = Cold − η
∂E

∂C

(3.19)

Using this set of equations,the open recurrent architecture [57] can be trained.
For the results of this architecture the author refers to the “Implementation” in
Chapter 4.
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3.4 Complex-Valued Recurrent Neural Network

Complex-valued neural network can be extended to complex-valued recurrent
neural networks, with few modifications. Complex-valued recurrent neural net-
works are very difficult to train. Current thesis discusses the unfolding in time,
then the networks utilizing this feature, last but not least the Historical Con-
sistent Recurrent Neural Network and its extension to the complex-valued case
will be introduced. It was called “Historical Consistent” due to the historical
consistent data flow it uses for training to model the time series dynamics. The
current chapter gives some insights into the complex-valued backpropagation and
its application to the complex-valued recurrent neural network training. It shows
that training error exponentially converges to a minimum. Finallythe results for
some real world examples will be presented.
First of all the complex-valued ladder algorithm is to be used to compute the for-
ward and backward paths. Then inputs and desired outputs are represented as
complex numbers. This type of network can do the unfolding in time and use any
inputs to produce any outputs. To proceed with the equations and explanations
on this network some conventional signs has to be introduced:
l – layer number
netinl, outl – input and output vectors accordingly for the current layer l
f – activation function at a current layer
ul – state of the network at an input layer
sl – state of the network at a hidden layer
yl – state of the network at the output layer
The weights matrices are of the following dimensionality: A [nh× nh], B [nh× ni],
C [no× nh].

st = f(Ast−1 +But);

yy = Cst;

E =
T∑
t=1

(yt − ydt )(yt − ydt )→ min
A,B,C

,

where y – output vector, yd – target vector. The architecture has been displayed
before at the Fig. 3.8. Let us specify the array, which describes the architecture
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the same way it was done for the real-valued network:

architecture = [1− number of states

2− number of hidden neurons

3− number of forecasting states

4− number of inputs

5− number of outputs

6− activation functions]

where activation functions are the following:

1 : f(z) = tanh(zr) + i · tanh(zim),

2 : f(z) = tanh(z),

3 : f(z) = sin(z),

4 : f(z) = tanh(r)eiϕ.

Denote:

• netinut , outut – input and output vectors accordingly for the current state
u and layer t

• devut , dut – input and output accordingly for the back propagation algo-
rithm

• A,B,C - matrices of weights

• f - activation function

To calculate the forward path of the complex-valued recurrent neural network
one should use the ladder algorithm. The equations below were calculated by
using this algorithm. Fortunately, there is no difference in calculation between
the real-valued and the complex-valued cases.

ut−1 : netinut−1 = xt−1,

outut−1 = netinut−1 ,

st−1 : netinst−1 = Aoutst−2 +Boutut−1 ,

outst−1 = f(netinst−1),

yt−1 : netinyt−1 = Coutst−1 ,

outyt−1 = netinyt−1 ,
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ut : netinut = xt,

outut = netinut ,

st : netinst = Aoutst−1 +Boutut ,

outst = f(netinst),

yt−1 : netinyt = Coutst ,

outyt = netinyt ,

st+1 : netinst+1 = Aoutst ,

outst+1 = f(netinst+1),

yt+1 : netinyt+1 = Coutst+1 ,

outyt+1 = netinyt+1 .

The backward path is needed to calculate the responsibility of each weight in
the overall error. The shared weights concept suggested by Zimmermann [33]
was used in this case as well. The overall structure of equations remains the
same as that of the real-valued example. The only difference is that now the
functions are considered in much more wide class of functions, which are having
the properties discussed in the “Brief Review of the Complex Analysis” chapter
2. Some conjunctions appear due to the Wirtinger calculus used to compute the
derivatives:

yt : devyt = dEyt = yt − ydt ,
yt+1 : devyt+1 = dEyt+1 = yt+1 − ydt+1,

dyt+1 = devyt+1 ,

st+1 : dev
st+1

= C̄dyt+1 ,

dst+1 = f ′(netinst+1)∗devst+1 ,

dyt = devyt ,

st : dev
st

= C̄dyt + Ādst+1 ,

dst = f ′(netinst)∗devst ,

for all t
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∂E

∂A
=

1

T

∑
t

dstoutst−1 ,

∂E

∂B
=

1

T

∑
t

dstoutst ,

∂E

∂C
=

1

T

∑
t

dytoutst .

The results of the Complex-Valued Recurrent Neural Network (CVRNN) are
discussed and presented in the “Implementation” in Chapter 4. One should admit
that this network can forecast only by its forecasting layers. The forecast can be
obtained by iterative application of the matrix B to the output of the state. Then,
after the needed forecasting horizon has been obtained, one should use the matrix
C to convert the state output into the network output. Normally, the network is
to be trained with only one forecasting unit. Note, that this unit does not have
any inputs, as they are not available. At some point the network struggles due to
the absence of inputs since it was trained with inputs. This property decreases
the quality of the forecast. This was the reason to look for another architecture
which does not have such “nasty” property. This network is so-called Historical
Consistent Neural Network (HCNN).

3.5 Historical Consistent Complex-Valued Re-

current Neural Networks

3.5.1 Complex-Valued Historical Consistent Neural Net-
work

Historical Consistent Neural Networks (further HCNN) were first described by
Zimmermann [77]. This architecture is very interesting due to the stability of
training and simplicity of the construction. It allows for a unique correspondence
between the dynamical equations, neural network architecture and the locality of
the learning algorithms. This architecture models the behavior of the dynamical
system which can further be described by eq. 3.18. Modeling of such systems is
of interest for many application areas. But what if there is a need in complex-
valued neural network inputs or in case if continuous time modeling is needed?
Even with real-valued dynamics modeling there are many unsolved problems with
the things with regard to stability of training, learning itself and stopping cri-
teria. The following section stands to show the transition from the real-valued
HCNN (RVHCNN) to the complex-valued HCNN (CVHCNN). Some insights for
the complex-valued backpropagation and its application to the CVHCNN will
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be considered. Continuous time modeling and the so-called time teacher forcing
technique will be presented.
The core idea of this type of network is that there are no inputs, only outputs.
For the first sight it can look strange, but the thing is that there is no difference
between the inputs and the outputs for this model. Consider the example. Imag-
ine, there are just data vectors which contain recorded values of some system
which works according to the Ideal Gas law PV = RT , where P is pressure, V is
volume and T is temperature (R is the ideal gas constant). Let us consider such
system S. The system S can be totally explained with 2 variables, namely P
and V . The normal setup for such system would be to use the pressure and the
volume as an input and the temperature as an output (or vice versa). For such
problem we could use the FFNN or the RNN discussed above. On the other hand,
there is no need to define explicitly what the system inputs and what the system
outputs are, since for the system S the temperature is not an output, this is just
one of the systems parameters. An even harder example would be in case one is
trying to model the whole world. It can be rather difficult to devide the data into
the inputs and outputs. This is very essential for the autonomous systems. There
is nothing coming from outside into the system. Therefore, for the system S, it
would be natural to use P, V, T as the outputs which express the condition of the
system. The network should use these variables to model the system itself. Then
if the system is modeled, one can use some extraction mechanism to extract the
values of some parameters, like temperature or pressure. That is how HCNN is
working. It models the system with its realizations and then uses the extraction
mechanism to take the needed variables values out of the system. First of all we
should start from the forward path of the network and its general representation.
The Historical Consistent Neural Network can do the modeling of the systems
which correspond to the eq.3.18. This architecture is functioning in the following

Figure 3.9: HCNN architecture. Notations: Y T is the target, Rt is the teacher
forcing block, Si is the state vector, W is the shared weights matrix,[Id] is the
identity matrix, (·)T stands for the matrix transpose (see [77] for more details).

manner (see fig. 3.9): some bias signal is coming to the left most state of the
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network (often it is a random noise distributed normally). Here the bias sigmal
will be discussed in more detail for clarification purposes.
HCVNN is a closed dynamic architecture, whith no inputs, only a limited amount
of outputs according to its architecture. Therefore there is no input information
flow. However something should start the feedforward process, since in case there
is no information flow to the left hand side. For this purpose a bias signal can
be introduced, which compensates absence of the rest of the HCVNN. Ideally,
HCVNN should be of an unlimited length covering the history of the time series.
Since such approach is not possible we normally have to reduce the HCVNN to
some finite number of states. Following Zimmermann [77], one can use the adap-
tive noise to simulate abscense of information flow from the left. Noise cleaning is
such an approach. Noise plays an important role in the model uncertainty. This
uncertainty exists in the beginning of the network training. After some epochs of
training, the model will have less uncertainty and thus the level of noise will be
reduced. One can see the figure, which explains the basic on the noise cleaning,
see Fig. 3.10. One can represent the cleaning with the manifold, shown at the
Fig.3.11.

Once the cleaning noise issues have been resolved one can proceed with the
model description.
As has been noticed, HCVNN network does not have inputs (in the usual sense
of this word, states transfer the information from one state to the next one,
doing unfolding in time), which means it is autonomous. To train the network
one should use the so called Teacher Forcing (Zimmermann [77]) for the time
moments from t − n to t (see fig.3.9), where n is the number of network layers
(recurrence layers). The following system of equations is to be used to describe
the teacher forcing training:

τ ≤ t : sτ+1 = f(W (sτ − [Id; 0] (yτ − ydτ ))),
τ > t : sτ+1 = f(Wsτ ),

∀t : yτ = [Id, 0]sτ ,

(3.20)

where [Id, 0] =

 Ns︷ ︸︸ ︷
1, 1, ..., 1︸ ︷︷ ︸

No

, 0, 0, ..., 0

 , No is number of network outputs, Ns is

number of network states (number of hidden neurons), f is non linear transition
function, W is the weights matrix. Note, that matrix W and function f are every
time (at each state of the model) the same matrix and function yτ is the network
output, ydτ is the network desired output. To have the forecast one should ap-
ply matrix W and then transition function f to the state vector, to obtain the
network outputs the matrix [Id; 0] is to be applied to the obtained state vector.
Iteratively applying a matrix W and a function f for the needed horizon the
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Figure 3.10: Representation of the backpropagation with cleaning. N(0, σ) means
adaptive uniform noise, where σ is dispersion of the netin0.
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Figure 3.11: Representation of the cleaning idea. The level of noise reduces
from the left to the right part of the HCVNN. This hardens the model against the
uncertainty in training data.

needed forecast can be obtained.
Definition.N steps forecast means that network uses its own 1 step forecasts to

predict for N steps ahead (iterative forecasting).
Note that with such an approach the error is accumulated relatively fast (de-

pending on the problem).
Using the teacher forcing training and the CVBP algorithm the CVHCNN can
be trained. The stability of CVHCNN during the training is to be underlined
separately. The explanation to this fact is like following. Due to the teacher
forcing,the network avoids uncontrolled behavior of the information flow. This
uncontrolled behavior can be rather dangerous for the stability of computations.
Remember, that such effects can be caused by the unlimited functions or function
singularities.

3.5.2 Complex-Valued Recurrent Network Forward Path

The forward path can be easily computed using the Ladder Algorithm which
is unique in a sense, that it can be applied to nearly any architecture we can
imagine. Therefore the HCNN is not exclusion. The equations which describe
the forward path of the HCNN are presented below.
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Time moment [t− 1, t]:

st−1 : netinst−1 = Ws0,

outst−1 = f(netinst−1),

yt−1 : netinyt−1 = [Id, 0]outst−1 ,

outyt−1 = netinyt−1 ,

rt−1 : netinrt−1 = outst−1 + [−Id, 0](outyt−1 − ydt−1),

outrt−1 = netinrt−1 ,

st : netinst = Woutrt−1 ,

outst = f(netinst),

Time moment [t, t+ 1]:

yt : netinyt = [Id, 0]outst ,

outyt = netinyt ,

rt : netinrt = outst + [−Id, 0](outyt − ydt ),
outrt = netinrt ,

st+1 : netinst+1 = Woutrt ,

outst+1 = f(netinst+1),

Time moment [t+ 1, t+ 2]:

yt+1 : netinyt+1 = [Id, 0]outst+1 ,

outyt+1 = netinyt+1 ,

st+2 : netinst+2 = Woutst+1 ,

outst+2 = f(netinst+2),

yt+2 : netinyt+2 = [Id, 0]outst+2 ,

outyt+2 = netinyt+2 .

After the feedforward path is calculated we can proceed with the backward path
to spread the error to the matrix W . One should take into account that he can
easily produce the forecast by applying the matrix W iteratively to the state
output and obtain the forecast. After one reached the needed forecast horizon
he should just apply the identity matrix and take the needed variables out of the
system (see fig.3.9).
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3.5.3 Complex-Valued Recurrent Network Backward Path

The backward path aims to spread the overall approximation error to the network
weights, to calculate the responsibility of each neuron in the overall error. For
this purpose one should use the backward path. The efficient computation of
the backward path can be done through the ladder algorithm discussed in detail
above. The only difference from the real-valued case of the network is some
conjunctions which arise out of the Wirtinger calculus. All the rest, the sequence
and the logic remain the same. Time moment [t+ 2]:

yt+2 : devyt+1 = dEyt+2 = yt+2 − ydt+2,

dyt+2 = devyt+2 ,

st+2 : dev
st+2

= [Id, 0]dyt+2 ,

Time moment [t, t+ 1]:

dst+2 = f ′(netinst+2)devst+2 ,

yt+1 : devyt+1 = dEyt+1 = yt+1 − ydt+1,

dyt+1 = devyt+1 ,

st+1 : dev
st+1

= [Id, 0]dyt+1 +Wdst+2 ,

dst+1 = f ′(netinst+1)devst+1 ,

rt : dev
rt

= Wdst+1 ,

drt = devrt ,

Time moment [t− 1, t]:

yt : devyt = dEyt + [−Id, 0]drt ,

dyt = devyt ,

st : dev
st

= [Id, 0]dyt + drt ,

dst = f ′(netinst)devst ,

rt−1 : dev
rt−1

= Wdst ,

drt−1 = devrt−1 ,

yt−1 : devyt−1 = dEyt−1 + [−Id, 0]drt−1 ,

dyt−1 = devyt−1 ,

for all t

∂E

∂W
=

1

T

∑
t

dstoutst−1 .
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After the backward path is done one should think about training of the net-
work. Here some problems arise, due to the network initialization, bias signal,
rate of gradient descent, etc. These issues will be widely discussed in the next
subsection.

3.5.4 Complex-Valued Recurrent Neural Network Train-
ing with Complex-Valued Random Search

Random Search Algorithm for Complex-Valued Case

Due to the problems with the nonanalytical functions and the derivatives of these
functions (the error functions) the training typically begins with the global search
algorithm, which does not require any gradient information. After the region for
the local minimum has been found, the gradient descent algorithm is applied to
converge to this minimum.
According to Kusherbaeva [66] and Sushkov [69], the adaptive random search
method is a global stochastic optimization technique which does not require any
priori information about its optimization problems. Let the global optimization
problem be formulated as follows: Φ(x) → minx∈X where X = [0, 1]n ⊂ Rn is a
non-empty set of feasible solutions, x = (x1, . . . , xn) ∈ X, and Φ : Rn → R is a
continuous objective function. Let Ii ⊂ X be a perspective interval for variable
xi, i ∈ 1 : n; a Cartesian product of sets Ii, i ∈ 1 : n a perspective domain with
center point x0

i , i ∈ 1 : n. Then, in general, the algorithm of random search can
be described in the following way. The process of random search is divided into
Ns steps (also known as epochs). On every step of the vector xj, j ∈ 1 : Ns is ran-
domly selected and the value of the objective function Φj = Φ(xj) is calculated.
By using the following equation: Φj

min = min{Φj,Φj
min} a minimal value of the

objective function in the step j, j ∈ 1 : Ns is calculated. A wide set of experi-
ments have been conducted in order to show adaptive random search algorithm’s
effectiveness and to make recommendations for choosing heuristic parameter val-
ues [66] and [69]. In the case of the CV NN the algorithm works independently
with real and imaginary parts of the complex number, thus, expanding the di-
mensions of the optimization space twice. The objective function in this case can
be described as follows:

E (w) = Re
(
yt − ydt

)2
+ i Im

(
yt − ydt

)2
(3.21)

Combination of the Complex-Valued Backpropagation and the Ran-
dom Search Algorithm
In the previous chapters it became apparent that calculation of gradients presents

54



3.5 Historical Consistent Complex-Valued Recurrent Neural
Networks

100 200 300 400 500 600 700 800

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch#;Best E=0.24178, epoch #891

E
rr

or

RSA training error decay

 

 
Training Error

Figure 3.12: Random Search Algorithm training set error decay.

a problem in the complex-valued case. In order to simplify this problem the non
gradient global optimization method (here Random Search Algorithm) is used
as an initialization method in order to find the local minima region. In order
to converge to the minima itself, the gradient descent method is applied with
very small learning rate in order to reach the minima. Therefore several hundred
epochs of RSA and then the CVGD were applied. This combination proved to
be better than separate usage of both algorithms for the considered problem.
(the concidered problem will be described in details in the Results chapter). The
typical behaviour of the training error can be seen in fig. 3.12.

3.5.5 Time Teacher Forcing with Complex-Valued Histor-
ically Consistent Neural Network

There is also a possibility to enforce the time of the network outputs by doing
a special architecture, note that this is only possible with the complex-valued
case of the HCNN. The trick is the following. Let us assume we have trained the
CVHCNN. Now we have to make the forecast into the future direction. Thus we
have to apply matrix W iteratively to the states of the HCNN. But one can see
that the error is accumulating through the iterative application of the matrix W
since at the production side of the CVHCNN there is no more teacher forcing.
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One can use so-caled time teacher forcing block. The idea is that one does not

Figure 3.13: Time Forcing historical consistent neural network

know the values of the data he is trying to predict, but he knows the time mo-
ments for the prediction. Thus one can take out the time of the network output,
substitute it with the correct time and replace the uncorrected state values with
the correct ones (in case time has been putted into the exponent degree).
One can see at the Fig.3.13 that in the forecasting part of the network the states
are marked with TF which means Teacher Forcing. The idea is like the follow-
ing: each state knows to which time moment it should be related, therefore it
replaces the recieved time moment with the correct one, leaving the absolute part
unchanged. This artificial change in the states makes it possible to reduce the
error while iterative application of matrix W and function tanh.

3.5.6 Shared Weights Matrix for the CVHCNN

One should say a few words about the weights matrix W which is to be used in
case of CVHCNN. In all experiments a sparse weights matrix has been used.
From the biology it is became known that humans brains have very sparse
connections, see Fig.3.14 and Hooney [34]. The figure has been taken from:
www.scholarpedia.org/article/Brain-connectivity. By doing the sparse matrices a
faster calculations (due to many zeros in the matrix W ) can be done. Moreover
the information channels of neurons will not be overloaded with the useless in-
formation (which means the computations will not go to singularity points of the
transition functions due to a large amount of uncontrolled sums while calculat-
ing the feedforward path of the CVHCNN). One can see the sparse matrix of
weights with about 5% of live (non zero) weights at Fig.3.15.
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Figure 3.14: Sparsity of human brain. Matrixes on the left-hand side show binary
structural connections, symmetric mutual information (middle) and non-symmetric
transfer entropy (right). Data was obtained from a large-scale simulation of cortical
dynamics.
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Figure 3.15: HCNN matrix of weights. The color represents the absolute part of
the weight value.

3.5.7 Continuous Dynamics Modeling with HCVNN

This subsection describes the unique properties of the HCVNN. This subsec-
tion was missing in previous chapters because the other architectures have well-
documented properties. Much information on MLP networks or Elman (Unfold-
ing in time) recurrent architectures can be found in the literature. The disad-
vantage of these networks is that the data used for NN training must be strictly
discrete with equal time stamps. If the data is recorded with unequal time stamps
(a common situation in the industry) the data must be somehow approximated
to make the time stamps equidistant. Only then the NN can be trained and used.
This is so-called discrete time modeling. But what if continuous dynamics must
be modelled? At the moment there is no answer to this question. In this sub-
section an attempt to solve the problems of continuous dynamic modeling using
neural networks will be carried out.
Continuous Dynamics System
An example of the continuous system will first be presented. To make it simple,
real-valued sin function, a continuous and infinitely differentiable function will be
presented. One must first assume the network to be trained with t time stamps.
But what happens if the forecast for this function with time stamps t/2 is re-
quired? This is impossible using “traditional” neural networks. One should note
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that in complex numbers the number can be presented in Euler notation, namely
as A expiφ. It would be logical to raise the time stamp to the exponent degree
in the following manner: sin(t) expt. Then the output of the CVNN contains
the absolute value sin(t) and angular value t. Coding the system values using
the Euler notations can be rather useful since one can then obtain not only the
absolute value of the forecast, but also the time moment to which this number
is related. Forcing the time moment into the network output allows the network
to more easily produce an output. This “time forcing” is partial teacher forc-
ing which can be used for the part of the network, which does not participate
in the neural network training. The interesting thing is that one can continue
forcing the network at the test set simply because he knows the time moment in
the future to which his forecast is to be related. The result for tanh function is
presented.
Experimental Results for Time Forcing in HCV NN
First the network was trained using the training set. The training set consisted of
the sin function, which had four periods for 100 equidistant points. The resulting

Figure 3.16: Training Set. This set was used to train the network. Lower picture
shows how good the network was trained (absolute value). The phase of the error
should come to zero, but this is not obligatory.

training error quickly converged to zero. However from the test set results it
became apparent that the phase of the output was uncorrelated with the desired
phase (see fig. 3.18). In order to compensate for the lack of correlation between
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Figure 3.17: Test set.

Figure 3.18: Effect of the uncorrelated phase for the test set.

Figure 3.19: The absolute value of the network output for the test set

60



3.5 Historical Consistent Complex-Valued Recurrent Neural
Networks

phases, time forcing is to be applied to the HCVNN outputs for the recurrent
part of the network. Therefore the procedure is the following: one has to force
the outputs at the recurrent part of the HCVNN with the correct time moment.
The results can be seen in the figures below ( fig.3.20) The figure for the phase at

Figure 3.20: The prediction corrected with time teacher forcing.

the production set, since it is equal to the desired phase. As can be seen from the
fig. 3.20, the situation is ideal. More than 300 prediction steps can be made on
the same network, note that the network was trained with different time stamps.
Some more interesting properties of the CVHNN arise in the topic of brain syn-
chronization, which can be found in the corresponding “Implementation and Ap-
plication” chapter. In the following chapter the well-known binding problem will
be addressed. Moreover it will be shown that brain memory can be modeled with
the described architecture. It will be shown that it is easier to solve the binding
problem when using the complex numbers than when using real ones.
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4

Benchmarking

Benchmarking is important to validate new methods and algorithms and its value
cannot be underestimated. The aim of this chapter is to simplify the benchmark-
ing procedure and apply this process to benchmarking of complex-valued neural
networks. All results presented in this thesis should be considered using the tools
given in this section because one cannot state the progress in the area of neural
networks without accurate benchmarking. One can always find a dataset (with
some prior knowledge about the process) that any particular method is ”‘better”’
than all other methods. In general, this discussion is applicable to the majority of
the papers. First, real-valued statistics will be discussed in order to verify the no-
tations, then a few existing artificial and real world datasets will be described and
two methods of benchmarking for the complex-valued models will be presented.
At the end of the section, an Internet based database with embedded properties
for the benchmarking of complex-valued regression models will be suggested.
The importance of the philosophy and semantics of neural networks seems to be
walking to the background, while the pure scientific approach for data approxima-
tion and data classification is gaining more attention. Unfortunately, the neural
network community has not established a standard for benchmarking in general,
and obviouslysuch a standard is lacking for complex-valued neural networks in
particular. Consequently dozens of architectures have appeared and many papers
have stated that their neural network is capable of solving “all the problems of
the world”. On the other hand, other authors have tried to find benchmarks,
which could be used by the community to at least attempt a comparison of re-
sults. The current level of understanding of complex models is quite poor. This
thesis attempts to suggest some ways to improve this situation. The real-valued
benchmarking case will be discussed before the complex-valued one.
The literature that adresses benchmarking problems is presented further: Prechelt [45],
Waugh [59], Wolpert [20] and Ciftcioglu [53]. The list of the datasets was taken
from the following website [14].
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Some well known benchmark datasets include the following ones:

• Neural Networks Databases - Benchmarks

• Database of Machine Learning Group

• Universal Problem Solvers, Inc., Machine Learning Data Sets

• ELENA Database . The databases are splitted into two parts: artificial
(’Gaussian’, ’Clouds’ and ’Concentric’) and real (’Satimage’, ’Texture’, ’Iris’
and ’Phoneme’).

• The CMU Learning Benchmark Archive

• Data at UCLA Stat. Dept.

• StatLib at CMU

• NIST databases

One can see from the list above, that it is impossible to objectively compare
networks due to the wide range of data available on the Internet. In general, it
is possible to argue that there are some well known benchmark e.g.e Elena, Iris,
Wine or Boston datasets. However, these datasets are not new, do not reflect
modern problems, and do not meet industrial needs.
The second thing, which should be discussed, are benchmarking procedures. Even
when the benchmark data is good enough, the benchmarking itself can be rather
poor. Here, one can refer to Prechelt [45]. He has established a four criteria
approach which is not always obeyed (Validity, Reproducibility, Compara-
bility and Volume). Last but not least, the performance of the statistical esti-
mations is discussed. After the forecast or the classification is done, one should
estimate the performance of networks. Here, the most popular performance mea-
sures are RMSE - root mean squared error, R2 - determination coefficient, the
correlation r and some other statistical values. In general, it is possible to show,
that there are many much more interesting things that can be determined: the
presence of a delay, border effects, how good the dynamics coded into the weights
of the algorithms are and so on. All these things will be discussed in depth in
the following subsection.

4.1 Statistics Review

“... it is only the manipulation of uncertainty that interests us.
We are not concerned with matter that is uncertain. Thus we do
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not study the mechanism of rain; only whether it will rain.” -Dennis
Lindley, “The Philosophy of Statistics”, The Statistician (2000).

According to Dodge [54], statistics is the science of effectivly using numerical
data relating to groups of individuals or experiments. It deals with all aspects
of this, including the collection, analysis and interpretation of such data, as well
as planning of the collection of data, in terms of the design of surveys and ex-
periments. Statistics is a very important science when one is talking about the
benchmarking. Each benchmark is based on statistical measures like MSE or R2,
which describe the quality of the constructed models. Every one is fighting for
a higher R2 (we will discuss this coefficient later) and a smaller RMS. However
the R2, correlation and RMS are not sufficient in all cases. When one deals with
only a subset of the measures, he or she is using some assumptions which start
working in the background of the research. Sometimes these assumptions are
incorrect, while people use the measures which serve different assumptions about
the data. Assume the dataset D ,which contains p patterns and v variables, so

that D =


D11 . . . D1v

D21 . . . D2v
...

. . .
...

Dp1 . . . Dpv

, where Di,j ∈ <, i = [1..p] , j = [1..v]. Then the

dataset should be divided into the training set DTR, the validation set DV and
the test set DT .
The goal is to build a model (Neural Network) using training data, that validates
the model parameters using the validation data, and then to test the model using
the test data.

Definition 1. The training set is a subset of D, on which the model is trained.
This subset is not used for validation of the model and not used for testing of the
model.

Definition 2. The validation set is a subset of D, on which the model is vali-
dated. This subset is not used for training the model and not used for the testing
the model. This subset should be used for the tuning of model parameters.

Definition 3. The test set is a subset of D, on which the model is tested. This
subset is not used for training the model and not used for model validation. This
subset should only be used for model tests. No parameter tuning and no model
training is possible with this subset.
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Remark. Sometimes the validation set and the test set are united. In the present
work, the validation set and the test set are split.

Therefore the general rule, for dividing the D into 3 subsets is:

DTR ∩DT ∩DV = �
DTR ∪DT ∪DV = D. (4.1)

Equations 4.1 make subsets absolutely independent from each other. However
these datasets can intersect, depending on the problem. This is an important
step in the way towards model verification and statistical data analysis.
Remark.Please note that the current subsection considers only the supervised
learning of neural networks in which target data are available. After the model
is trained with the DTR , the parameters of NN are to be fixed with the DV .
Only after the validation is done and the network parameters are fixed one can
perform the statistical tests for DT .

Problem formulation. Compare two vectors of length t, where t is the length
of the DT and then conclude whether the approximation made by the model data
is correct or not. Vector T = [1..t] is a vector of target values, to be later used for
comparison. The model M produces the output of length t according to eq.4.2:

P t
1 = M (ω,DT ) (4.2)

where ω contains model parameters.

The problem is: Define the explanatory variables based on experimental data
(observation data) . Considering the random components of the data as a ran-
dom variable influence, obtain estimations for the data distribution parame-
ters. Denoting the dependent variable as y, and its explanatory part by X =
(x1, x2, ..., xk), k ≤ v can be written as f(X). The random component will be
denoted as ε. Then the model can be defined as:

y = f (X) + ε (4.3)

As an explained part of the f(X) it is obvious to select its average (expected)
value with given X. Then one can write:

Ex(y) = f(X) (4.4)
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where Ex(y) is the mathematical expectation. One can rewrite eq. 4.3 in the
following manner:

y = Ex(y) + ε (4.5)

Eq. 4.3 is known as the theoretical equation for the regression, f(X) is theoretical
function of the regression and eq. 4.5 is the equation for the regression model. One
should note that one of the main conditions for this equations is that Ex(ε) = 0.
This condition for noise is sometimes crucial. One of the most crucial points
of this research is to select the observations y and their explanatory variables
xj, j = 1..k. Denote such observations in the following manner: xi1, xi2, ..., xxi, yi,
where i = 1, ..., n is the number of observation and k is number of explanatory
variables.
Typically, there are two types of observation selection:

• Cross-sectional data. Independent samples of data, received at specific point
in time (no cause and effect relation).

• Time series data. Data where not only the samples are important but also
the time that these observations were taken.

After the set of explanatory variables have been defined and the data has been
received, the next task is to find the f(X). This function cannot be derived
explicitly, therefore an estimation to the function must be built. The standard
procedure for function estimation consists of two steps:

1. One should select the type (the family group) of the function f(X).

2. Using the mathematical statistics estimate the parameters of this function.

Unfortunately, there is no formal procedure on how to properly select the function
in step 1. One of the most oftenly used function families is linear function. The
usage of the linear function has many statistical advantages. Below is the simplest
case:

ŷ = f̂(X, ~B) (4.6)

where ŷ is the estimation of y with a given X. Here ~B is the parameters vector
for f̂ which is an approximation of f . For the construction of f̂(x), one should
use the least-squares method. According to this method the parameters for f̂(x)
should be selected such in a way that:

n∑
i=1

(
yi − f̂(xi)

)2

−→︸︷︷︸
par

min (4.7)

where par are the function parameters. The parameters should deliver the min-
imum for the sum. The parameters, which can be found with this method are
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called parameter estimations. The error of the approximation can be defined as
ei = yi − ŷi. The error explicitly shows the quality of the approximation. The
analytical method can be interpreted with the following example: if y represents
the costs of production, x is the volume of the needed resource, then the depen-
dency should look like: y = α + βx + ε, where α are the fixed costs, and βx are
the variable costs.

Main assumptions of regression analysis.
The main issue of regression analysis is the estimation of ε. In the classical model
of regression analysis, the following conditions are assumed:

1. εi should be random

2. The mathematical raise expectation is equal to zero. E(ε) = 0

3. εi and εj are uncorrelated: E(εi)E(εj) = 0, i 6= j

4. The dispersion of the noise εi is constant for each i:D(εi) = σ2

5. Noise is not correlated with any explanatory variables.

These assumptions are so-called first group of assumptions. They provide indis-
pensable conditions. So-called sufficient conditions are given by the second group
of assumptions:

1. The joint distribution of random values ε1, ..., εn should be normal (Gaus-
sian).

Statistical properties of estimations. Gauss-Markov theorem.
Theorem (Gauss-Markov). If the regression model y = α+βx+ε satisfies the
groups of conditions above-mentioned, then least squares estimations of model
parameters (a and b) will have the minimum dispersion in the class of linear
unbiased estimations.

Note that after constructing the sample regression, the observed variables yi can
be presented as yi = ŷi + ei, where ŷi = a+ bxi, in which a and b are parameters.
The residuals ei with respect to the noise εi are explicitly observed values. It is
possible to say, that ei is sample estimation of the noise εi. The statistics (sample
residue dispersion) is defined with the residuals ei:

S2
res =

∑n
i=1 (yi − ŷi)2

n− 2
=

∑n
i=1 ei
n− 2

(4.8)
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This is the unbiased estimation of σ2 , the dispersion of the noise.

How to estimate the quality of the approximation.
The determination coefficient is one of the most effective estimations regression
model accuracy and serves as a measure of the quality of the regression model.
The equation yi = ŷi + ei, ei however can not be explained with the selected re-
gression. It is possible to show that the dispersion consists of D(y) = D(ŷ)+D(e),

where D(y) is the explained part of the data and D((̂y)) is the unexplained part
of the data. The second task is to influence the unrecorded variables. Therefore,
it is possible to write the following equation:

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷ)2

R2 = 1−
∑n

i=1 (yi − ŷ)2∑n
i=1 (yi − ȳ)2

(4.9)

The properties of R2 are clear from the equation. One can estimate the quality
of the approximation along with the average error, which can be computed with
the following equation:

Ā =
1

n

n∑
i=1

|yi − ŷi|
|yi|

100% (4.10)

If the error is in the range of 5-7%, the model can be considered to be a good
one.
The next measure should be correlation coefficient:

rx,y =
n
∑n

i=1 xi, yi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 ·
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
(4.11)

here x and y are two observed variables.

How to apply these measures to complex numbers.
In order to apply these statistics to complex variables, the complex number z =
a+ib should be represented in the so-called Euler notations z =

√
a2 + b2 exparctan( b

a
).

Then the information in the absolute part of the complex number
√
a2 + b2, can

be encoded into the phase or angle part, arctan
(
b
a

)
. In order to calculate the

quality of the model and apply the statistics, R2 (see eq. 4.9) must be divided into
R2 for the abolute and phase parts.R2

absolute corresponds to the absolute part and
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to R2
phase corresponds to the phase part. The average R2

Generalized =
R2

absolute+R2
phase

2

is then taken. In the second method the error can be calculated using the same
method as it was discussed in the Chapter 2 “Brief review of complex analysis”.
Thus the approximation error is equal to E (y, ŷ) = (y − ŷ) (y − ŷ). Many differ-
ent error functions can be introduced. Each of them have their advantages and
disadvantages which are not in the scope of the current chapter. One can see
Gangal [27] for more error functions.

Important remark. Very often in case of multiple regression, R2 automatically
increases with increase in the new explanatory variables. However this does not
guarantee an increase in the quality of the regression. In order to overcome this
problem, one should use the corrected determination coefficient:

R̃2 = 1− n− 1

n− k − 1

∑n
i=1 (yi − ŷ)2∑n
i=1 (yi − ȳ)2

(4.12)

If the added explanatory variable does not give the needed effect for the depen-
dent variable R̃2 could decrease .
While analyzing the multiple linear regression, it is sometimes required to calcu-
late not only R2 but also the so-called coefficient of the partial correlation between
y and xi and not the rest of x to know the “pure” influence of the variable. This
coefficient can be defined according to the equation below:

ry,xi|x1...xi−1..xk = − Ayi√
AyyAii

(4.13)

where Ayi is the algebraic adjunction for the element ryxi . If two variables are
considered the above presented equation can be rewritten as:

ry,x1|x2 =
ry,x1 − ry,x2rx1,x2√

(1− r2
y,x2

)(1− r2
x1,x2

)
, ry,x2|x1 =

ry,x2 − ry,x1rx2x1√
(1− r2

y,x1
)(1− r2

x2,x1
)

(4.14)

where ry,x1 , ry,x2 , rx2,x1 are the coefficients of the traditional (pair) correlation.
There is also a connection between the partial correlation and determination:

ry,x1|x2 =
R2 − r2

y,x2

1− r2
y,x2

(4.15)

Average The average can be the simple average or the weighted average. The
simple average is:

x̄ =

∑n
i=1 xi
n

(4.16)
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where xi is the ith value of the series, and n is the volume of series. If the
frequencies vary, the weighted average should be used:

x̄ =

∑k
i=1 mi · xi∑k
i=1mi

(4.17)

Dispersion. This value characterizes the volatility of the series:

D(X) =

∑n
i=1 (xi − x̄)2

n
=

∑k
i=1 (xi − x̄)2mi∑k

i=1mi

(4.18)

Then the Root Mean Squared Deviation (further RMS) can be defined in the
following manner:

σ(X) =
√
D(X) (4.19)

The variation coefficient can be defined as:

V (X) =
σ(X)

x
· 100% (4.20)

Everything discussed above is valid for the complex regression as well, the
sole difference being that all procedures should be now done twice (until a better
procedure is developed), for the absolute part and the phase part of the complex
number.

4.2 Benchmarking Methods

4.2.1 Incorrect Benchmarking

Below are some examples of incorrect benchmarking. The most typical errors
occur during the data preparation stage. The most common error is incorrect
data filtering. It is known that all filters have border effects. Therefore let us
denote the filter as F (·). Now the natural experiment setting would be taken
the training data DTR, adjust and apply the filter to this data D(DTR) with
filter parameters FP and then the train the neural network. After the neural
network is trained, the filter can be applied to the validation set F (DV , FP ) and
the neural network is applied to DV . If the quality of the model is satisfactory,
the model should be trained with the DV , where the starting point for Neural
Network training (the weights) is taken from the training on the training set DTR.
The last step is to apply the filter to the test set DT and to apply the Neural
Network to the filtered test data. This is the most common mistake of many
research papers and occurs with time series forecasting very often. The thing
is that filters have side effects and cannot be so easily applied. Therefore the
comparison of the solutions is just not possible in case filters have been applied
differently.
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4.2.2 Correct Benchmarking

It is impossible to discuss new issues in training and neural networks understand-
ing without discussing model evaluation.
Any model can be evaluated according to several criteria. Two are cited below:

• The “cleverness” of the method. Many methods to compare cleverness exist.
One the most advanced is IQ test. However, these methods always result
in relative values. For example, if only model A underwent an IQ test, one
cannot claim, that A is more clever than B until B has undergone the same
test. The main point is that B can be compared only with respect to A or
some other maximum possible result. The result can be interpreted with a
number, for example A is 40% more clever than B.

• The “beauty” of the model. This measure is absolutely relevant and can be
considered only by a committee of experts. This estimation can be ranked
with numbers. The results should not depend on the personal opinion of
one expert. Therefore, the bigger the committee, the better the evaluation.

One can find many parameters for model comparison. Some limits on evaluations
are:
- Any measure should be numeric or converted into a numeric.
- Any model can be evaluated only with respect to other models.
The question arises what to do if there is only one model to evaluate? In this pa-
per, a scoring system, typically used by economists for credit rating analysis (the
so-called Altman model [10]) is recommended. The idea of the Altman model is
to take several parameters (in our study it can be R2, r , RMS, σ etc) and to
construct a linear regression, giving the final score to the model. The parameters
of the linear regression should be tuned on a training set of different model re-
sults. The details about Z-benchmarking can be found in the subsection below.
The history of benchmarking starts with attempts to compare model quality. It
is obvious, that one can only compare methods ‘ceteris paribus’ (common condi-
tions). Obviously, if one must compare the training speed for neural networks,
and takes the Gauss-Newton and Gradient-Descent algorithms and tries to com-
pare these two with 1.4 GHZ and 2.2 GHZ CPU the results will be different even
if the methods give the same quality and speed. Therefore only one parameter
should be varied at a time during the course of the experiment (here training
algorithms, as well as dataset, model type, environment, and anything else which
can influence the result will be fixed). Listed below are 10 parameters which
obviously influence the final quality of the model (here “+” denotes, that the
parameter was discussed in the majority of publications, “-” denotes the oppo-
site case): type of model(+), training algorithm (+), number of training epochs
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(+), division of dataset during training, test and validation sets (+) number of
parameters for tuning (number of hidden units)(+), dataset (+), the computa-
tional environment (+-), hardware and the operational system (+-), the accuracy
of computations (+-),etc. In case one only fixes one parameter, the experiment
can not be repeated. Thus the reproducibility of the result can be lost. This is
one of the main concerns in the Prechelt [45]. The problem here arises that there
is no such settlement of an experiment on any PC, that all parameters except one
are fixed. Therefore, the results, achieved on different machines cannot be con-
sidered or proved. Therefore, only to evaluate model quality, relative measures
should be taken into account. The measure should be known to all scientists.
In the current work, the author will divide the parameters above mentioned into
two classes: internal (further int) and external ones (further ext).
The internal parameters of the experiment (CPU power, RAM volume, mother-
board frequency, RAM frequency, operational system) are all dependent parame-
ters on the PC being used, and training algorithm, number of hidden, number of
epochs, accuracy of computations are all related to the model construction and
training. The external parameters are needed to evaluate the model. They are
the training, test and validation sets, and statistical measures for the forecast
quality (to be discussed later) such as R2, r, RMS, σ.
Many researchers in neural networks use well-known datasets in their papers,
and then simply cite the dataset used. Sometimes more advanced information
is available, such as the training algorithm used for training. Therefore, in the
majority of papers, one can find several statistical coefficients and references to
publicly available datasets. These datasets are quite old and do not cover all
the advantages of these models. Some advantages, which arose in the past few
decades should clearly be taken into account. The main problem faced by the
scientific community is that scientific methods are far scientific benchmarking
techniques. This gap makes it impossible to verify more advanced results then
and makes benchmarking impossible. The aim of the current subsection is to find
an autonomous method for correct benchmarking, so that researchers can easily
test their models and can compare them with other models.
The whole NN community should use the same formulas, statistical measures,
and external parameters for the same datasets. People introducing new datasets
should provide as much information as possible about the datasets, but also select
statistical measures for these datasets, so that others can compare their models
with a “perfect” models.
Such a system has been created using PHP scripts, a database, containing datasets
with descriptions, the results of all scientists, and Altman model coefficient model
evaluation. The general idea is to have an one world database, which can perform
simple calculations in two different regimes: blind and open. For each dataset
some coefficients might me more important, e.g. for regression modeling onw
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owuld prefer higher R2 then smaller RMS. For this purpose an Altman model can
be suggested to weight factors (different statistical coefficients), see Altman [10].
The blind regime does not show the Altman coefficients. The open regime shows
the model coefficients. Scientists can then see what parameters make their work
worse than that of some one else. If the author of the dataset hides the Alt-
man coefficients, it is impossible to tell how the model lacks up the other model.
Each case has advantages and disadvantages to be discussed later. The underlying
model for the Z-score Altman model is the linear regression Z =

∑n
i=1 αiCi where

n is the number of statistical measures, Ci is the value of the statistical measure
like R2 and αi are the Altman coefficients, which deliver the importance of each
statistical coefficient to the final estimation. Therefore, in order to evaluate the
maximum possible Z-score, one should deliver the ideal forecast, approximation
and classification to the Altman model, calculate all needed statistical measures
and then use the number which will give the maximum possible score for this
dataset. The same should be done for the average of the training set. These two
numbers will serve as guiding lights for model evaluation. Any model used for
the training set should not be worse than average. A detailed description of the
Altman model construction for approximation and classification problems will be
given in the subsection - Statistical Benchmarking.

4.2.3 Databases for statistical regression benchmarking

To overcome the difficulties of complex-valued benchmarking, an attempt will
be made to create a database, able to store the results and data for the given
dataset, and evaluate the results.
Technically, the database was created using Microsoft Access Tool. It consists of
two interconnected tables, capable of storing the benchmarking results and author
information. Then there is a web page written with PHP technology which makes
SQL calls via ODBC driver to the SQL database.
The user web page consists of a login and a registration page. After the login a
“Bench-It Now” (further BIN) page appears. First part of the page shows the
login information. This information will be used to create labels in the database.
External users can only see the login name of the author, but not his or her
affiliations and real names. The second part consists of several subsections:

1. The dataset selection pop up menu gives the link to the needed dataset.
After the dataset is selected, the user can see the results of previous re-
searchers. Then the user can download the description file, the training set
with a target and the test set without a target (absolute and angle parts
listed separately).

The absolute and angle parts of the complex numbers must be gained “by
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hand” due to the fact that the automatic processing of complex numbers was
not possible with the PHP on the web site (in the future this obstacle could
be improved through the use of a special data parser). In order to obtain
complex input, the absolute part of the number must be multiplied with
the exponent which degree is angle part of the number ((absolutepart) ×
expi∗(anglepart))

2. If the user wishes to add his or her own dataset to the system, then he or
she should upload the description file, the training set plus the target file,
the test set without the target file and the test set target in a separate file.
After these four files have been uploaded, the dataset will appear in the list
of datasets and will be available for other users. Note, that other users can
download only three files out of four (the description file, training set with
test set file and test set without the target file).

The last part of the system to be discussed is benchmarking itself. After the
active dataset has been selected from the list, the user can upload his or her
result (test set model output) into the system. The system will automatically
calculate RMS,R2,r,R̃2 for the phase and angle parts respectively, and then will
give the BIN-score , which is a linear combination of the previous values. For
each dataset all user results are ranked with respecct to their BIN-score. The
BIN-Score.
is described below. First data is normalized with respect to minimal and maximal
values. This can be easily done with the next formula: XN = X−Min(X)

Min(X)−Max(X)
,

where X is not normalized value, XN is normalized value, Min(X) and Max(X)
are minimal and maximal values of X.
The score is calculated through the use of statistical numbers according to one
rule: the better the approximation, the higher its statistical significance, the
higher the score. First we calculate the BIN for only the absolute parts of the
network output and target:

BIN =
1

−R̃2 (y, ŷ) + RMS(y, ŷ)/2 + 2
100% (4.21)

Then we do the same for the angle parts of the neural network output and tar-
get. After the BIN-score has been found for both parts of the neural network
output and target, they should be summed using the 0.75 and 0.25 coefficients,
respectively.

BIN =
0.75 ∗BINabs + 0.25 ∗BINang

2
(4.22)

The benchmarking data base was created using the SQL engines and PHP pro-
gramming language. One can find the database at www.benchitnow.de. The
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manual uploaded on the database explains how to prepare the data and use the
system.
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Implementation and Applications

The following section contains the numerical results obtained from the networks
simulation in application to different datasets. First the CVHCNN against the
CVFFNN in application to the Logistics map and Lorenz chaotic system will
be considered. Then CVHCNN will be applied to the real world problems, e.g.
Transformer modeling, Stock Market modeling, Neurons Synchronization model-
ing and Binding effects modeling. All these results are based upon the applica-
tion of the CVAIT toolbox implemented in MATLAB using an object oriented
approach.

5.1 MATLAB Object Oriented Implementation

In order to perfom the experiments a MATLAB toolbox which implements all the-
ory discussed above has been implemented. The toolbox has been written using
the Object Oriented Programming. Toolbox contains three classes of type Layer,
Network and Weights. The hierarchy of objects is presented at the fig.5.1 below.
The main description of the network is contained in the define-architecture.m
file. This file can be briefly described here in the thesis:

%%Network architecture definition

function [network_layer, weight,lag]=cvffnn()

disp(’Creating architecture from architecture file’);

%% NN PARAMETERS (MANDATORY)

number_of_inputs=3;

number_of_outputs=3;

number_of_hidden1=20;

number_of_hidden2=10;

This block describes the variables which will be used in the rest of the file: i.e.
the definition of variables like number of inputs, number of hidden and number
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Figure 5.1: Structure of the implementation

of outputs. The next block describes the architecture: i.e. general description of
the layer class. The philosophy of the description is the next. Each layer has ID,
which must be unique. This ID recieves data through weights from the concrete
senders and sends it via transition functions. Inputs have additional fields like
data columns which whould be used as inputs and lag which tells about time
sift of the data column if any. Output layer must have additional fields like
error type, whether output layer should induce dE into the network during the
backpropagation path and type of the output layer, which means what the layer
dataset belongs to, namely training set, validation set or production set.

%% LAYERS PARAMETERS (MANDATORY) (you may use loops)

%IMPORTANT:: the structure of IDS MUST BE CONSISTENT 1 to n

%EXAMPLE FOR GENERAL LAYER (all possible parameters of the layer):

% network_layer{ID}=layer(’layer_type’,’type’,...

% ’recieves_from’,ID,...

% ’connection_weigths’,W_ID,...

% ’layer_size’,n,...

% ’activation’,’sin’,...

% ’io_data_columns’,1:n,...

% ’io_lag’,lag,...

% ’time_data_column’,n+1,...

% ’injects_dE’,true,...

% ’error_type’,’MSE’,...

% ’output_type’,’TR’);

lag=1;

The MATLAB code for the network definition for the training set is listed below.

%training set description
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for k=1:6:100

network_layer{k}=layer(’layer_type’,’input’,...

’io_data_columns’,1:3,...

’io_lag’,lag);

lag=lag+1;

network_layer{k+1}=layer(’layer_type’,’bias’);

network_layer{k+2}=layer(’layer_type’,’bias’);

network_layer{k+3}=layer(’layer_type’,’hidden’,...

’recieves_from’,[k;k+1],...

’connection_weigths’,[3;1],...

’layer_size’,number_of_hidden1,...

’activation’,’tanh’);

network_layer{k+4}=layer(’layer_type’,’hidden’,...

’recieves_from’,[k+3;k+2],...

’connection_weigths’,[5;2],...

’layer_size’,number_of_hidden2,...

’activation’,’tanh’);

network_layer{k+5}=layer(’layer_type’,’output’,...

’recieves_from’,k+4,...

’connection_weigths’,4,...

’activation’,’tanhtanh’,...

’io_data_columns’,4:6,...

’io_lag’,lag,...

’injects_dE’,true,...

’error_type’,’MSE’,...

’output_type’,’TR’);

end

k=k+6;

The MATLAB code for the network definition for the validation set is listed
below.

%validation set description

for j=k:5:k+100

network_layer{j}=layer(’layer_type’,’bias’);

network_layer{j+1}=layer(’layer_type’,’bias’);

network_layer{j+2}=layer(’layer_type’,’hidden’,...

’recieves_from’,[j-1,j],...

’connection_weigths’,[3;1],...
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’layer_size’,number_of_hidden1,...

’activation’,’tanh’);

network_layer{j+3}=layer(’layer_type’,’hidden’,...

’recieves_from’,[j+2,j+1],...

’connection_weigths’,[5;2],...

’layer_size’,number_of_hidden2,...

’activation’,’tanh’);

network_layer{j+4}=layer(’layer_type’,’output’,...

’recieves_from’,j+3,...

’connection_weigths’,4,...

’activation’,’tanhtanh’,...

’io_data_columns’,4:6,...

’io_lag’,lag,...

’injects_dE’,false,...

’error_type’,’MSE’,...

’output_type’,’V’);

lag=lag+1;

end

After the network is described one has to describe the weights. All weights must
have unique ID. Each weight has to be sugned as “shared” or “nonshared” and
the mask for training has to be defined. The mask contains ones and zeros for the
weights which have to be modified during the training and not correspondingly.
See the weight definition below:

%% SPECIAL WEIGHTS DESCRIPTION (MANDATORY),...

IT IS POSSIBLE TO LOAD FROM THE DISK

temp1=sprandn(number_of_hidden,...

number_of_inputs,0.4)/10+...

1i*sprandn(number_of_hidden,...

number_of_inputs,0.4)/10;

temp3=(sprandn(number_of_outputs,number_of_hidden,0.4))/10+...

1i*(sprandn(number_of_outputs,number_of_hidden,0.4))/10;

temp4=(randn(number_of_hidden,1))/10+...

1i*(randn(number_of_hidden,1))/10;

weight{1}=weights(’values’,temp1,’mask’,...

iszero(temp1),’shared’,false);

weight{3}=weights(’values’,temp3,’mask’,...

iszero(temp3),’shared’,false);

weight{4}=weights(’values’,temp4,’mask’,...

ones(size(temp4)),’shared’,false);
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%% END OF DEFINITION

By changing this code one can create any architecture. Currently a feedforward
architecture is shown. A detailed explanation about all parameters and features is
given in the Tutorial to the toolbox. The code shown to point out the complexity
for the definition of the network architecture. The complete scheme of the system
is presented at the Fig.5.2.

Figure 5.2: Complete system representation

5.2 Artificial Datasets Used to Test Models.

1. Logistic map
This function is a famous example of the chaotic data generation. This map
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was very popular in 1976 paper by R. May, see [49]. Before this publication a
discrete-time demographic model has been suggested by P.F. Verhulst (see [28]).
The model itself can be presented with the following equation:{

x(t+ 1) = λx(t)(1− x(t))

λ > 0
(5.1)

where λ is a positive constant sometimes known as the “biotic potential” gives
the so-called logistic map. Complex values can be obtained by multiplying x(t)
by ei·sin(t), where t – time. The development of the chaotic behavior of the logistic
sequence as the parameter λ varies from approximately 3.5 to approximately 3.8
is characterized by a periodic phase interrupted by bursts of aperiodic behavior.
For λ slightly less than 4 we are in the chaotic regime. Beyond λ = 4, the values
eventually leave the interval [0, 1] and diverge for almost all initial values. In the
current thesis λ = 3.9 has been taken. In the pictures below 5.3-5.5 one can see
the behavior of the mapping for different values of λ. Denote rx = abs(x).
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Figure 5.3: Logistic map sequence of rx for λ = 3.2.

2. Lorenz Attractor
The Lorenz attractor (see Lorenz [23]) is an example of a nonlinear dynamic
system corresponding to the long-term behavior of the Lorenz oscillator. The
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Figure 5.4: Logistic map sequence of rx for λ = 3.6.
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Figure 5.5: Logistic map sequence of rx for λ = 3.9.
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Lorenz oscillator is a three dimensional dynamical system:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz,

(5.2)

here x, y, z are variables, and the parameters were chosen to be:{
β = 8/3; ρ = 28;

σ = 10; h = 0.005,

where h – the step in Runge-Kutta 4th order scheme of differential equation
system solving.

Complex values can be obtained by multiplying x, y, z by ei·sin(t), where t –
time.

In the Fig.5.6-5.8 we can see the Lorenz attractor for different values of step
of the solver h. Denote rx = |x|, ry = |y|, rz = |z|.

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8
0

0.2

0.4

0.6

0.8

x

The Lorenz system data, step=0.0005

y

z

Figure 5.6: Lorenz attractor (rx, ry, rz) for h = 0.0005.
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Figure 5.7: Lorenz attractor (rx, ry, rz) for h = 0.005.
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Figure 5.8: Lorenz attractor (rx, ry, rz) for h = 0.01.
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Further experiments are described for these two tasks. These two tasks are
used to give the reader the impression regarding the performance of the complex-
valued networks and to make the conclusion that CVNN are of the same perfor-
mance as RVNN.

5.3 Modeling with Feedforward Neural Networks

In the following section the advantages and disadvantages of different approaches
to the logistics map and Lorenz system modeling with the FFCVNN will be
shown.
First the architecture have been used for the Logistics map modeling has to be pre-
sented. The first architecture is a well-known FFCVNN. It can be parametrized
in the following way:

Architecture = [number of inputs,

number of neurons at hidden layers,

number of outputs],

Nonlinearities = [activation functions at each layer].

where activation functions:

1 : f(z) = tanh(zr) + i · tanh(zim),

2 : f(z) = tanh(z),

3 : f(z) = z,

4 : f(z) = tanh(r)eiϕ,

The described architecture is presented at the Fig.5.9 and its zoomed part at the
Fig.5.10. One can see that at the validation set the outputs of the network as its
inputs have been used. In order to see the structure of the network better, one
can find a zoomed picture of it (see Fig.5.10). From this picture one can see that
starting from the validation set the network uses its outputs as inputs.

Logistic map modeling results
Selected architecture can be expressed by the following set of parameters:

FFCVNN Parameters:

Number_epochs = 300;

Architecture = [3, 20, 3];

Nonlinearities=[linear, tanh, tanh];

Weights_Sparsity=0.4;

learning_rate = 0.05;
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Figure 5.9: CVFFNN architecture
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5. IMPLEMENTATION AND APPLICATIONS

Now the experiment starts. First the FFCVNN to the logistics map with λ = 3.6
has to be applied. In order to simplify the discussion a little bit, the Test set DT in
this task will not be used.Training set DTR and Validation set DV are in the focus
of the current research. For the Logistics map DTR = 200 patterns and DV = 100
patterns. The network uses three previous values of the logistics map as inputs
t− 2, t− 1, t and produces three outputs t− 1, t, t + 1. These outputs are to be
used as inputs for the validation set. Each experiment will be conducted with 4
statistical measures for the absolute part, angle part, real part and imaginary part
of the complex-valued output. One can see the explanation of all 4 coefficents in
the Benchmarking chapter. There is only one coefficient introduced here, which
is a relative standard deviation: Relative Standart Deviation:

Std =

(√
1

N

(
ŷi − ¯̂y

)2 −
√

1

N
(yi − ȳ)2

)/√
1

N
(yi − ȳ)2 (5.3)

where N is the total number of patterns. Now, the results of numerical experi-
ments follow.

First on should start with neural network training. The error decays in a
stable way as it should do, see Fig. 5.11.

Therefore training has finished smoothly and one can proceed with the checks
of the network for the training set and for the validation set. First the training set
results are to considered and analyzed. One can see the results for the training
set below. One can analyze the data by looking at the real-imaginary parts of
the complex-valued numbers. To estimate the quality of the training we also can
look at the absolute-phase parts of the complex numbers. As one can see the
resutls at the training set are quite promising. Absolute part as well as angle
parts fit perfectly and therefore we can proceed with the Validation set. The
results for the validation set are presented below. Statistics on DTR and DV is
presented in the Tables 5.1-5.2 below. The results at the validation set are quite
good (according to the personal authors opinion). The forecast is stable and can
be used for more than 10 points ahead. Obtained results are quite reasonable due
to several reasons. One of them is that according to the Logistics map equation
5.1 new value of the system depends on the nonlinear combination of the previos
value. Thus FFCVNN is an ideal tool to model such mapping. There is no need
in more sophisticated recurrent models. Further one has to show what happens
in case such network is applied to a recurrent problem, which is Lorenz problem.

One can see that statistics for the validation set is rather poor, but this
happens because of high forecasting horizons. Therefore the results are to be
inspected visually by the figures provided. In case one looks at the figures he
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Figure 5.11: Training error decay for the logistics map modeling. One can see
two curves at the error plots. These curves correspond to the absolute and angle
errors respectively.

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1
Re

Pattern #

O
ut

pu
t V

al
ue

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1
Im

Pattern #

O
ut

pu
t V

al
ue

 

 

Figure 5.12: Training set results for the Real vs Imaginary parts of the observa-
tion (x marked line) against expectation (dotted line).
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Figure 5.13: Regression plot for the absolute part of the expectation vs observa-
tion for the training set. Here target - expectation and output - observation. R -
correlation coefficient.
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Figure 5.14: Training set results for the absolute part vs angle part of the expec-
tation vs observation
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Figure 5.15: Plot for the validations set for the absolute parts of the expectations
(line with circles) vs observations (line with triangles)

Table 5.1: Integrated table with the results concerning the Logistic map λ = 3.6

h = 0.005 Architecture type FFCVNN FFCVNN
Coefficient Data Set DTR DV

R2 Abs/Ang 0.66/0.99 < 0/ < 0
Re/Im 0.99/0.99 < 0/ < 0

r Abs/Ang 0.98/0.84 0.21/0.18
Re/Im 0.98/0.98 0.12/0.08

Std Abs/Ang -0.09/0.00 -0.43/0.007
Re/Im -0.01/-0.01 0.24/0.25

RMS Abs/Ang 0.01/0.002 0.09/5.48
Re/Im 0.008/0.008 0.51/0.56
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Table 5.2: Integrated table with the results concerning the Logistic map λ = 3.9

h = 0.005 Architecture type FFCVNN FFCVNN
Coefficient Data Set DTR DV

R2 Abs/Ang 0.23/0.38 -0.22/0.69
Re/Im 0.82/0.84 0.73/0.68

r Abs/Ang 0.51/0.71 0.24/0.84
Re/Im 0.90/0.92 0.88/0.86

Std Abs/Ang -0.33/0.01 -0.48/-0.00
Re/Im -0.09/-0.07 0.12/0.10

RMS Abs/Ang 0.06/2.0 0.09/0.94
Re/Im 0.03/0.03 0.05/0.07

will see that this network can do a stable prediction for nearly 10 points ahead
or even more. See Fig.5.16.

Lorenz system modeling results
Further the the Lorenz system is under the consideration, see Eq.5.2 (solved for
the step h = 0.01). This is a chaotic system which strongly depends on its
previous values. The experiment setup will try to imitate this dependence by
giving the previous values of the Lorenz system to the neural network. Such
approach follows the Takens theorem (in the follwoing the theorem is modified
and uses the conclusions out of the theorem itself), which says that one can
reconstruct a phase attractor of the chaotic system inside the weights of the
neural network by using the historical values of the system. Further the neural
network itself will be described. Selected architecture can be expressed with the
following set of parameters:

FFCVNN Parameters:

Number_epochs = 300;

Architecture = [3, 20, 3];

Nonlinearities=[linear, tanh, tanh];

Weights_Sparsity=0.4;

learning_rate = 0.05;

The error decay for the particular problem is presented at the Fig. 5.18. One
can see the results at the DTR - training set at the Fig. 5.19 (real and imaginary
parts of the network output). Now it becomes evident, that FFCVNN cannot
solve this problem. In order to make sure it is the case one has to apply this
network to the validation set DV .
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Figure 5.16: Regression plot for the validation set of the logistics map modeling
with λ = 3.9.

As one can see at the Fig. 5.20 and Fig. 5.21 the network cannot predict the
next values for the Lorenz system. It was not able to predict the Lorenz system
even for several points. It means that a more sophisticated neural network of
the recurrent type is to be used.The next section considers the mentioned case.
One can see the table with the Lorenz modeling statistical results below. The
tables are presented for different Lorenz of different solver step 0.005 and 0.01
respectively.

5.4 Modeling with Complex Valued Open Re-

current Neural Network

This architecture can be represented in the following way:

Architecture = [number of inputs,

number of states,

number of neurons at state layer,

number of outputs],

Nonlinearitis = [input activation, state activation, output activation].
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Figure 5.17: Absolute part of the expectation vs observation for the logistics map
modeling with λ = 3.9. Line with circles was made by expectations, triangles line
- are observations.

Table 5.3: Integrated table with the results concerning the Lorenz taskh = 0.005

h = 0.005 Architecture type FFCVNN FFCVNN
Coefficient Data Set DTR DV

R2 Abs/Ang 0.79/0.73 < 0/ < 0
Re/Im 0.75/0.68 < 0/ < 0

r Abs/Ang 0.96/0.87 -0.02/0.02
Re/Im 0.94/0.86 0/-0.02

Std Abs/Ang -0.40/0.05 0.85/0.77
Re/Im -0.42/0.05 0.32/1.15

RMS Abs/Ang 0.002/0.02 0.01/1.17
Re/Im 0.003/0.001 0.04/0.027
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Figure 5.18: Error decay for the Lorenz problem modeling with the FFCVNN.
One can see two lines in the error decay pictures. One (solid) corresponds to the
absolue part of the error, another (dotted) corresponds to the angle of the error.

Table 5.4: Integrated table with the results concerning the Lorenz taskh = 0.01

h = 0.005 Architecture type FFCVNN FFCVNN
Coefficient Data Set DTR DV

R2 Abs/Ang 0.53/< 0 < 0/ < 0
Re/Im 0.24/0.44 < 0/ < 0

r Abs/Ang 0.75/0.90 -0.05/-0.07
Re/Im 0.96/0.91 0.38/-0.24

Std Abs/Ang -0.42/-0.32 -0.78/-0.99
Re/Im -0.29/-0.41 -0.91/-0.93

RMS Abs/Ang 0.003/0.34 0.004/10
Re/Im 0.01/0.003 0.006/0.07
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Figure 5.19: Real and Imaginary parts of the observations and expectations (x,y
and z coordinates). Note that Lorenz system values have been put into the absolute
part of the complex number. The phase part contained linear time.
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Figure 5.20: Absolute and phase parts of the expectations against observations
for the training set.

96



5.4 Modeling with Complex Valued Open Recurrent Neural Network

2 4 6 8 10 12 14 16
0

0.2

0.4

Abs

Pattern #

O
ut

pu
t V

al
ue

 

 

0 50 100 150 200 250
−5

0

5
Ang

Pattern #

O
ut

pu
t V

al
ue

 

 
Observation1
Observation2
Observation3
Expectation1
Expectation2
Expectation3

Figure 5.21: Absolute and phase parts of the expectation vs observation for the
validation set.

where activation functions:

1 : f(z) = tanh(zr) + i · tanh(zim),

2 : f(z) = tanh(z),

3 : f(z) = z,

4 : f(z) = tanh(r)eiϕ,

At the Fig.5.22. One can also see a zoomed region for the CVHCNN at the
Fig. 5.23. It is clear from the picture, that teacher forcing is not used for the
validation set. Now the point where the data is to be discussed comes.

Logistic map.
Experiment 1.
In this experiment 10 recurrence states with 10 hidden neurons at each state have
nbeen used. Activation function was selected to be tanh and tanhtanh. Learning
rate is 0.05. Number of inputs is 3, number of outputs is 3. The set of parameters
can be described in the following way:

Number_epochs = 500;

Architecture =[3,200,10,3];

Nonlinearity =[linear,tanh,tanhtanh];
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Figure 5.22: CVORNN network visualization
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Figure 5.23: Zoomed part of the CVORNN network visualization
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5.4 Modeling with Complex Valued Open Recurrent Neural Network

Weight_Sparsity=0.4;

learning_rate = 0.05;

Training set results.
After the training has been performed and all necessary checks were done one
can see the picture for the error convergence and training error. The network
was trained using the training set data DTR. Since training has been successful
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Figure 5.24: Training set error decay at the training and validation sets. Angle
(dotted line) vs Absolute error (line marked with x). The approximation results
for the absolute part of the expectation vs observation for the training set can be
seen.

and the error converged to small values we can now perform model testing and
forecast with the trained network for some values ahead. The results for the test
set DT are presented below.
Test set results. First the statistics for the test set has to be calculated. For the
test set R2 and RMS are acceptable (according to the authors private opinion).
To see the calues check the tabular 5.5. After one has checked that the test set
statistics is very good, he can now perform the production set and check whether
the network can realy predict the next values of the logistics map. Here the
exclusion is to be done and test set (DT ) will be performed.
Test set results. In order to create the test set the predicted values are to be
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5. IMPLEMENTATION AND APPLICATIONS

Table 5.5: Test set statistics for the RCVNN, logistics map.

RMS for the test set
absolute angle

0.00 0.00

R2 for the test set
absolute angle

0.99 0.99

used iteratively instead of the inputs (target values). Thus one can see whether
the network can really predict. For this purpose one can use the following data -
DT . The results are presented at the Fig.5.25-5.26 and in the Table 5.6.
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Figure 5.25: Real and Imaginary parts of the expectations (circles) vs observa-
tions (triangles).

Measures R2, RMS are the following, see Table 5.6. One can see that the
statistics is perfect for the complete test set, which means that the selected net-
work is great in modeling the Logistics map.
Lorenz task
Experiment 1. In this experiment 200 recurrence states with 20 hidden neu-
rons at each state have been used. Activation function was selected to be tanh.
Learning rate is 0.05. Number of inputs is 3, number of outputs is 3. The set of
parameters can be described in the following way:

Number_epochs = 500;

Architecture =[3,200,6,3];
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Figure 5.26: Absolute and phase parts of the expectations (circles) vs observa-
tions (triangles) for the test set.

Table 5.6: Statistical results of the RCVNN for the test set, logistics map.

RMS for the test set
absolute angle

0.00 0.00

R2 for the test set
absolute angle

0.99 0.99
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5. IMPLEMENTATION AND APPLICATIONS

Nonlinearity =[linear,tanh,tanhtanh];

Weight_Sparsity=0.3;

learning_rate = 0.05;

textbfTraining set results. The network has been trained for 500 epochs and the
error convergence was smooth during the training. The final error is less than
10−3 which means we can perform the models tests for the test set DT .
The error convergence is presented at the Fig. 5.27. The results of the validation

0 100 200 300 400 500
0

2
Training Error display

E
rr

or

0 100 200 300 400 500
10

−5

10
0

0 100 200 300 400 500
0

5
Validation Error display

E
rr

or

0 100 200 300 400 500
10

−5

10
0

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8
Training set: Target vs NN display

time

x,
y,

z 
va

lu
es

Figure 5.27: Training error decay - absolute (line marked with x) vs angle error
(dotted line) for training and validation sets. Below one can see absolute part of
the expectation vs obervation for the training set.

set are quite promising, all statistics is close to its best limits (see Table 5.7, which
means that the network can explain up to the 90% of the data behavior. Thus
one can start the real testing of the network which is test set.
Test set results. After the model applicability at the validation set have been
cheked one has to produce the real test which is application of the RCVNN to
the test set data DP . The results are presented at the Fig. 5.28-5.29 and in the
Table 5.8 The values of R2 and RMS for the forecast are poor as the forecast
horizon is too large. The negative R2 values arise because of the smooth behavior
of the system (desired outputs are close to their average values, which make R2

negative despite network outputs). For other transition functions results are not
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5.4 Modeling with Complex Valued Open Recurrent Neural Network

Table 5.7: Statistical results of the RCVNN for the validation set, Lorenz problem.

RMS for the validation set
output # absolute angle

x 1 0.0002 0.0002
y 2 0.0001 0.0001
z 3 0.0001 0.0001

R2 for the validation set
output # absolute angle

x1 0.9770 0.9992
y 2 0.9870 0.9998
z 3 0.9887 0.9998
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Figure 5.28: Predictions for Lorenz task for the CVORNN. One can see the
absolute part of the expectation (lines with circles) against observation (lines with
triangles) as well as phase part for the same series.

Table 5.8: Statistical results of the RCVNN for the test set for the Lorenz system.

RMS for the test set
output # absolute angle
output 1 0.0005 0.0.0004
output 2 0.0005 0.0012
output 3 0.0002 0.0026

R2 for the test set
output # absolute angle
output 1 0.98 0.99
output 2 0.99 0.99
output 3 0.98 0.99
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Figure 5.29: Regression plot for the absolute part of the expectation against
observation.

very different. Therefore one can see that CVORNN is a universal network for
the given problems. One should note that the noise has not been used to make
the learning more complicated, therefore one can argue that the systems are to
simple without the noise in them. The contrargument is that the task was to show
the general applicability of the models for some datasets and how the networks
behave. Further neural networks will be applied to a real world problems which
obviously have all data artefacts.

5.5 Modeling with Historical Consistent Complex-

Valued Neural Network

HCCVRNN architecture can be represented in the following way:

Architecture = [number of states,

number of neurons at state layer,

number of outputs],

Nonlinearity = [activation function].
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Network

where possible activation functions are:

1 : f(z) = tanh(zr) + i · tanh(zim),

2 : f(z) = tanh(z),

3 : f(z) = z,

4 : f(z) = tanh(r)eiϕ,

At the Fig.5.30. One can also see a zoomed region for the CVHCNN at the Fig.
5.31. It is clear from the picture, that teacher forcing is not used for the validation
set. Now comes the point where the data is to be considered.
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Figure 5.30: HCNN network visualization

Logistic map modeling results
Experiment 1. In this experiment the HCVNN is to be applied to the logistic
map data with the following parameters:

Number_epochs = 1000;

Architecture =[200, 50,3];

Nonlinearity =[tanh];

Weight_Sparsity: 0.2;

learning_rate = 0.05;

Training set. One can see the results of the network at the training set DTR at
the Fig. 5.32. The error convergence is smooth and the final error is relatively
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Figure 5.31: Zoomed part of the HCNN network visualization
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Figure 5.32: Training error decay for the logistics map example. One can see
absolute and angle errors for both training and validation datasets. Below one can
see the target error for HCNN.
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Network

small, see Fig. 5.32. Since the error converged during the training, one has
to calculate the statistics at the DV . Measures R2, RMS are presented in the
Table 5.9. After the statistics at the validation set DV has been calculated, the

Table 5.9: Statistical results for the validation set, logistic map problem.

RMS for the validation set
absolute angle

0.01 0.00

R2 for the validation set
absolute angle

0.92 0.99

HCVNN has to be applied to the test set DT . Test set. One can see the results
of the network at the Fig. 5.33 and in the Table 5.10
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Figure 5.33: Real and Imaginary parts of expectations vs observations for the
test set

Such poor results for the logistics map can be explained by some points.
First of all, this network is perfect for modeling of the closed dynamical systems,
which develop in an autonomous way, while for the logistics map it is driven by
its previous values. There is no long memory in this system, therefore CVORN
appeared to be better than HCVNN. In any case the prediction for one step was
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Figure 5.34: Absolute and angle parts of the expectations vs observations at the
test set

Table 5.10: Statistical results for the test set for the logistic map.

RMS for the test set
absolute angle

0.12 5.6

R2 for the test set
absolute angle
< 0 < 0

108



5.5 Modeling with Historical Consistent Complex-Valued Neural
Network

still possible and was conducted with a very good statistics.
Now one has to apply a very interesting trick which is possible with this type
of network. Since the prediction for nearly 100 steps ahead are available and
predictions are always delaying for one step (this can bee seen from the phase
part of the predictions). One can shift the obtained forecast in time by one step
back. It is possible to do, since it is known in advance to which time the forecast
has to be related, HCVNN gives the time of the forecast in the phase part of it.
This is unique property of this neural network. One can see the updated results
at the Fig.5.35 and in the Table 5.11 below.
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Figure 5.35: Absolute and angle parts of the shifted observations vs expectations,
production set.

This approach is unqie in a way and has been called Time Teacher Forcing
(TTF). One cannot do TTF with any other neural networks, only with CVHCNN.
Time forcing is a very important feature of particulary this neural network. From
this experiment one can see clearly, that network has learned the dynamics of the
logistics map. This is a unique result of the thesis which is called historical
consistent complex-valued time teacher forcing neural network (HCCVTTFNN)!
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Table 5.11: Statistical results for the Production Set, Logistics Map problem.

RMS for the test set
absolute angle

0.03 0.00

R2 for the test set
absolute angle

0.4 1

Lorenz system modeling results
Now HCVNN has to be applied to a more interesting example, which is generated
by a dynamical system, namely Lorenz system.
Experiment 1. The parameters of the network used for the Lorenz modeling
are shown below:

Number_epochs = 1000;

Architecture =[200, 50,3];

Nonlinearity =[tanh];

Weight_Sparsity: 0.2;

learning_rate = 0.05;

Here the step in Runge-Kutta 4th order scheme is h = 0.005. As it was done in
the previous section one has to start the neural network training using the DTR.
The results of the training are shown below. Training set. As one can see from
the Fig. 5.36 the error decay is smooth and converges to a small number. Thus
we can perform the Test Set calculations and see, how good the statistics is at
DT .

Validation set. The statistics for the validation set 1 step iterative predic-
tions is calculated and presented in the Table 5.12. In this case the values of R2

and RMS for the validation set are close to their good values and then test set
calculations are to be performed, which were done below. Test set. The Test

Table 5.12: Validation set results for the HCVNN for the Lorenz system.

RMS for the test set
output # absolute angle
output 1 0.0005 0.0002
output 2 0.0011 0.0001
output 3 0.0008 0.0001

R2 for the test set
output # absolute angle
output 1 0.9773 0.9993
output 2 0.9022 0.9995
output 3 0.8802 0.9996
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Figure 5.36: Training error decay. One can see absolute and phase values for
training and validation errors. Below one can see the error of the HCVNN at the
training set.
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set DT calculations were performed and the results can be seen at the Fig.5.37
and in the Table 5.13.

2 4 6 8 10 12 14 16 18 20

0.18

0.2

0.22

0.24

0.26

 

 

2 4 6 8 10 12 14 16 18 20
0.24

0.26

0.28

0.3

0.32

 

 

2 4 6 8 10 12 14 16 18 20

0.48
0.5

0.52
0.54
0.56

 

 

Target output, absolute
CVHCNN output, absolute

Target output, absolute
CVHCNN output, absolute

Target output, absolute
CVHCNN output, absolute

Figure 5.37: Forecast for the absolute part for 20 steps of the Lorenz system.

The values of R2 and RMS for the forecast are quite good. The negative
R2 values arise because of the smooth behavior of the system (desired outputs
are close to their average values, which make R2 negative despite the network
outputs).

Since the visual inspection of the test set results shows, that HCVNN can

perform better, it has been decided to apply it once more, but with a different
topology.

Experiment 2.
In this experiment the neural network will be trained for a significant anount of
epochs. One should take into account, that CVHCNN requires a lot of training
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Figure 5.38: Forecast for the phase part for 20 steps of the Lorenz system.

Table 5.13: Production Set results for the HCVNN, Lorenz problem.

RMS for the test set
output # absolute angle
output 1 0.0001 0.0201
output 2 0.0001 0.0059
output 3 0.0007 0.0004

R2 for the test set
output # absolute angle
output 1 0.8615 < 0
output 2 0.7019 < 0
output 3 < 0 < 0
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due to a teacher forcing training algorithm. The new neural network parameters
for this experiment were selected in the next way:

Number_epochs = 10000;

Architecture =[1000, 50,3];

Nonlinearity =[tanh];

Weight_Sparsity: 0.05;

learning_rate = 0.03;

Each experiment (here experiment 2) was repeated ten times and the results were
averaged except the best and the worst result.
Error function for all three outputs is decreasing exponentially and is close to
10−4.
The test set results are presented for the absolute and angle parts of the CVHCNN
output. One can see a set of training error decay stages at the Figures below.
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Figure 5.39: Training error for the first 1000 epochs. One can see absolute and
phase values for training and validation errors. Below one can see the error of the
HCVNN at the training set.

One can see that error is fluctuating very much. This occures due to the pattern
by pattern training which is stochastic. One can see the stochasticity of the error.
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Figure 5.40: Training error for the second 1000-2000 epochs. One can see absolute
and phase values for training and validation errors. Below one can see the error of
the HCVNN at the training set.
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Figure 5.41: Absolute and phase parts of the expectations vs observations for
the validation set.
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5.5 Modeling with Historical Consistent Complex-Valued Neural
Network

Resutls for the valuidation set are presented below. One can see the error decay
after 10000 epochs of training below. From the tables below one can see that
the test set results are very promising: all RMS values are close to 0, R2 values
are close to 1. After the network has been validated and tested one can try to

Table 5.14: Test set results.Output 1 is x coordinate, Output 2 is y coordinate
etc.

RMS for the test set
output # absolute angle
output 1 0.0005 0.0002
output 2 0.0011 0.0001
output 3 0.0008 0.0001

R2 for the test set
output # absolute angle
output 1 0.97 0.99
output 2 0.90 0.99
output 3 0.88 0.99

apply it for the completely different set. One can call this set as Test set, but in
order not to mix the notations it will be called Forecasting set (this set is similar
to the test set in its logic, but different in numbers). Forecast set results are
presented for the absolute part (see fig. 5.42) and for the angle (phase) part (see
fig. 5.43) of the CVHCNN output. Tables below (see 5.15) show the statistics for
the 20 steps prediction. One should be very careful while treating the R2 < 0.
In case desired outputs do not change significantly, the denominator of the R2

is very small, which makes the complete fraction very big. Subtracting this big
value from 1 makes the R2 negative. One should admit that the CVHCNN
gives not only the forecast for the absolute part of the complex output, which
contains Lorenz system values, but also predicts the sin of time, which stands
at the angle (phase) part of the complex-valued output. Therefore by looking at
the angle value one can say to which moment in time the prediction is relates.
In case the prediction of the time (phase of the complex-valued output) starts
behaving incorrectly (remember, that time is changing in a linear manner), one

Table 5.15: Forecast set results. Output 1 is x coordinate, Output 2 is y coordi-
nate etc.

RMS for 20 steps forecast
output # absolute angle
output 1 0.0000 0.0201
output 2 0.0000 0.0059
output 3 0.0007 0.0004

R2 for 20 steps forecast
output # absolute angle
output 1 0.86 < 0
output 2 0.70 < 0
output 3 < 0 < 0
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5. IMPLEMENTATION AND APPLICATIONS

Figure 5.42: Forecast for 20 steps, absolute parts of the CVHCNN outputs.

Figure 5.43: Forecast for 20 steps, angle parts of the CVHCNN outputs.
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cannot trust the absolute part of the predictions. The last statement is not proven
statistically or theoretically, therefore it should be checked for consistency. These
results have been published in ICANN 2011 in the work by Zimmermann [31].

5.6 Transformer Modeling

Detailed modeling of electrical power network’s elements is necessary for receiving
accurate model data. At the same time, element’s model complication may lead
to the significant increase of calculation time, the memory overrun and other
computation problems. Proposed modeling with Complex-Valued Neural Net-
works (CVNN) makes it possible for easy model equipment nonlinearities and
uniqueness to keep model complexity on the appropriate level. As power grid
element for CVNN-based modeling, power transformer has been chosen. Model
was performed with the use of two methods - conventional analytical model and
CVNN-based model. The modeling results of transformer simulation were used
for CVNN training. Distinctive feature of introduced complex-valued neural net-
work is its intrinsic capability to deal with the complex numbers instead of the real
ones. This feature is quite useful in the frame of power grid elements modeling.
This chapter shows promising results for further research in this direction.

Analytical Modeling of the Transformer

In a basic transformer one of the winding, named a primary winding, is energized
by an external voltage source. The alternating current, flowing through a primary
winding, creates a variable magnetic flux in the magnetic core. The variable mag-
netic flux in the magnetic core creates electromotive force (EMF) in all windings,
including primary one. When current sinusoidal absolute value of EMF is equal
to the first derivative of a magnetic flux, EMF induces current in the secondary
winding. Ideal transformer without losses is shown in Fig.5.44 Equivalent circuit
of generic transformer is shown in 5.45. Power losses are represented as resistances
R1 (primary) and R2 (secondary), flux leakage - as reactances X1 (primary) and
X2 (secondary). Iron losses caused by hysteresis and eddy currents in the core
are proportional to the core flux and thus to the applied voltage. Therefore they
can be represented by resistance Rm. To maintain the mutual flux in the core
magnetizing current Iµ is required. Magnetizing current is in phase with the flux.
Since the supply is sinusoidal, the core flux lags the induced EMF by 90 degrees
can be modeled as a magnetizing reactance Xm in parallel with the resistance
Rm. Rm together with Xm are called magnetizing branch of the model. In case
of open-circuit, current I0 represents the transformer’s no load current as it was
shown in the works of Voldek[9] and Galkin [56].
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Figure 5.44: Ideal transformer (http://en.wikipedia.org/wiki/Transformer)

Analysis of circuit simplifies significantly if the circuit with magnetically con-

Figure 5.45: Transformer OMP-10

nected windings will be replaced by an equivalent circuit, elements of which are
electrically connected with each other (see Fig.5.46). Here the number of turns in
primary (N1) and secondary (N2) is equal, so the parameters of the transformer
have to be changed in order to maintain all energy relations. The secondary
winding is moved (or ‘referred’) to the primary side utilizing scaling factor:

N2 =

(
N1

N2

)2

(5.4)

Finally, transformer equations can be written as follows[9]:
U1 = E1 + I1(R1 + jX1) = E1 + I1Z1

E1 = R′2I
′
2 + jX ′2I

′
2 + U ′2

I1 = I0 + I ′2

(5.5)

where U1, E1, I1, R1, X1, Z1 - primary winding voltage, EMF, current, resistance,
reactance and impedance respectively. Secondary winding is described with sim-
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Figure 5.46: Equivalent circuit of a transformer referred to the primary winding

ilar values, but already referred to the first winding:

U ′2 = U2N, I
′
2 =

I2

N
,R′2 = R2N

2, X ′2 = X2N
2 (5.6)

Given transformer model is based on the real transformer data of Russian
transformer OMP-10/10 (see [67]). All the parameters and more detailed de-
scriptions of the model are available in the paper by Minin [16]
Analytical modeling has been carried out in MATLAB. Consequence of model-
ing is the following: with given source voltage U1, primary winding current I1 is
calculated:

I1 =
U1

Z1 + Zm · (Z ′load + Z ′2))/(Zm + (Z ′load + Z ′2))
(5.7)

Then E1 is found. After that, magnetizing current is computed and according
to the Kirchhoff’s law current in the secondary winding (I2) is obtained. Then,
with use of main transformer eq. 5.5, U2 is calculated. Results, obtained from
transformer simulation are presented in eq. 5.47. As it can be seen, variation of
temperature leads to adequate voltage and current response. The rise of temper-
ature increases load impedance, which decreases primary current (I1), secondary
current (I2) and secondary voltage (U2) by-turn. One should note that the aim
of the simulation was to generate the data which will show general possibility of
CVNN to model such a device. Range of temperature changed within the sim-
ulated time period (0.4 s) is not physical, but it does not matter in the neural
network training business.
CVORNN modeling. For the transformer modeling recurrent archietcture will
be used. The network is recurrent through its weights, therefore shared weights
concept is to be used. The weights A, B and C are shared weights. This means
that A, B and C are always the same at each iteration of the network. The net-
work is called open since it has external drives. One can see that such network
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Figure 5.47: Results of the simulation. Due to introduced temperature dependen-
cies changing temperature change of windings and load impedances occur. Finally,
voltages and currents are affected.

is perfectly suited for the time series modeling. Time series, obtained from the
modeling, are to be used at the input side of the neural network (I1, U1, T , Z,
OLTC) and U2 and I2 are used at the output side. Then the training of the net-
work with the complex-valued gradient descent minimization discussed above is
to be initiated. To obtain the prediction of the U2 and I2 pne has to continue the
feedforward path of the network by iterative application of matrix A, B and C
to the states and inputs respectively. In case the system is autonomous (develops
on its own) B = 0; such architecture is called Complex-Valued Closed Recurrent
Neural Network (CVCRNN).
NN Training for the Given Problem
The inputs for the network are the following parameters: input current, input
voltage, load and temperature, the outputs (desired values), but here we are in-
terested in the output current (I2) and the output voltage (U2). According to
the transformer model described above a set of 60000 patterns is generated. One
can see that there are two peaks at the generated data, which correspond to the
short circuits. For the training 2000 data points around the first peak (this is
so-called Training set) have been taken. Then a set of 1000 data points around
the second peak is to be used to see how well the network generalizes (valida-
tion set). For this experiment the network had 50 state neurons, 5 inputs and 2
outputs. Learning rate has been chosen to be η = 0.05. The amount of epochs
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5.6 Transformer Modeling

for training is equal to 2000. 1 epoch of training means the network has been
applied in forward direction, derivative of the error has been calculated and back
propagated. Then gradients have been calculated and weights matrixes A, B and
C have been updated. 1000 epochs meaning that one has to do it 1000 times. At
the Fig. 5.48 one can see the error decay while learning. One can see how good
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Figure 5.48: Error decay for the absolute part of the error function and for the
angle part of the error function.

the network is learned at the training set at the Fig. 5.49
Then one has to apply the trained network to the validation set and see

how good the network generalizes. At the Fig. 5.51 one can see the absolute
part of the network output and at the Fig. 5.50 real and imaginary parts of the
neural network outputs, since these outputs are more important for the particular
problem. Here one can see that expectation values almost coincide with the
observation ones and only differ slightly at the bump area; statistical coefficients
are also close to their corresponding best values. One can see that stistics for the
validation set DV below 5.16.

Table 5.16: Statistical results for the transformer modeling at the Validation set

Real/Imaginary parts RMSE R R2

I2 6 · 10−3/8 · 10−3 0.99/0.99 0.98/0.97
U2 2 · 10−3/2 · 10−3 0.99/0.99 0.99/0.98
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5. IMPLEMENTATION AND APPLICATIONS

Figure 5.49: Results of the transformer modeling for the subset of data containing
leaps. One can see the real part of the network outputs and the actual values of
I2, U2 on the training set. Zoomed image, since otherwise one cannot see the short
circuit moment. One can see that network reacted perfectly, but this is training
set.
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Figure 5.50: Results of the transformer modeling for the subset of data containing
leaps. One can see the real (imaginary) part of the network outputs and the actual
values of I2, U2 on the Validation set. Zoomed region to see the short circuit
moment better. Real and Imaginary values for voltage and current.
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Figure 5.51: Results of the transformer modeling for the subset of data containing
leaps. One can see the absolute (phase) part of the network outputs and the actual
values of I2, U2 on the Validation set. Zoomed region to see the short circuit
moment better.

Conclusion

From obtained results the following conclusions can be formulated:

• General possibility of CVORNN to model dynamics of advanced trans-
former model has been shown.

• Further tests with enhanced model have to be carried out in order to prove
the preliminary simulation results. Injection of appropriate nonlinearities
and adding noise in the analytical model for generating data will make the
task more realistic.

• Tests with data from real devices have to be implemented. The attractive
feature is that it is possible to model each grid device individually, just
teaching the CVNN with measured data from the particular device.

• CVORNN could be applied to another power engineering equipment simu-
lation.
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5. IMPLEMENTATION AND APPLICATIONS

5.7 Binding Problem

Brains are constantly faced with the problem of grouping together features of the
objects they perceive so as to arrive at a coherent representation of these objects.
Such features are shape, motion, color, depth and other aspects of perception.
There is experimental evidence and a large body of theoretical work that support
the hypothesis that brain solves this so-called binding problem by synchronizing
the temporal firing patterns in neuronal assemblies with neurons that are sen-
sitive to different features. According to this hypothesis, temporal correlations
between neuronal impulses on the order of milliseconds would represent the fact
that different object features have to be associated with one and the same per-
ceived object.
In this subsection a new model for solving the binding problem will be suggested.
This will be done by introducing complex-valued recurrent networks. These net-
works can represent sinusoidal oscillations and their phase, i.e., they can model
the binding problem of neuronal assemblies by adjusting the relative phase of
the oscillations of different feature detectors. As feature examples, we use color
and shape, but the network would also function with any combination of other
features.
The suggested network architecture performs image generalization but can also be
used as the image memory. The information about object color is represented in
the phase of the network weights, while the spatial distribution of neurons codes
the object’s shape. It is possible to show that the architecture can generalize
object shapes and recognize object color with very low computational overhead.
The Binding Problem is a well-known problem for the object - color recognition.
Imagine one sees a green car. Before that, he has seen only different colored cars.
He has never seen the green car before, but how he knows that he still sees a
car and that its color is green? The answer to this question was given in a set
of papers [1, 2, 3] and this is well-known Binding Problem. The thing is that
our brain has a basic idea about the car, which contains only the general shape
information and this information generates the basic idea about the cars class.
This is what ancient Greek philosopher Plato called the “basic idea” about the
object. But how does the man recognize that he sees namely a green car? The
answer is that the human has cortex neurons which can absorb only a certain
wave length diapason of the light. Thus, different neurons are sensitive to differ-
ent colors. When a man sees the green color, the neurons, which are responsible
for storing the information about the cars class, start oscillating and providing
the information about the cars class. On the other hand the neurons which are
sensitive to the green color start oscillating when the light scattered by the car is
coming to the human eyes. After some time the neurons, sensitive to the green
color as well as neurons which are devoted to the cars class start oscillating with
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5.7 Binding Problem

the same phase, which means they are devoted to the same object. Thus the car
obtains its green color in the “recognition imagination”.
The architecture used in the following work is described at the figure 5.52 below:
The only thing one should ensure is that the weights A, B, C are always the

Figure 5.52: Complex-Valued Recurrent Neural Network used in the paper for
the image recognition. A,B and C are weight matrixes. Lines show the connection
between the layers. The figure is simplified version of the used architecture to show
the connection. In the experiments the amount of states has been equal to 50.

same. For this purpose the shared weights concept proposed by H.-G. Zimmer-
mann [33] discussed in the chapter related to the Recurrent Neural Networks has
been used. This means that the matrixes A, B and C are always the same in all
parts of algorithms while training and using the trained network. One should be
very careful with the nonlinearities (functions) since due to the Liouville theorem
(this issue has been widely discussed by Brandwood and in the current thesis)
they are unbounded. In the present work the function has been used for the states
interaction and for the state - output interaction. The input layer propagates the
information with the linear function. Matrixes A, B and C are sparse matrixes
with the amount of zeros about 70 percent. Sparsity is very important to have
faster and more reliable computation. The network has been trained using the
pattern of pattern complex-valued gradient descent training.

Complex-Valued Recurrent Neural Network Simulates Network of Os-
cillating Units

Since CVRNN deals with complex inputs it has been decided to code the images
in a more “physical” way, which means each pixel of an image (images 50 by 50
pixels have been used) is now presented by two numbers which are the amplitude
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(strength of the light wave) and the phase (color of the light wave) according to
the following table: Current work used images of 4 colors, namely red, green,

Table 5.17: The table presents the color coding of the shapes

Color Red Green Blue Yellow

Coding 0.3eiπ/6 0.3eiπ/3 0.3ei2π/3 0.3ei5π/6

blue and yellow. In order to see how good the network can generalize test images
of yellow color (see figure below) have been used. Current thesis section relies

Figure 5.53: The training set for the CVRNN (upper row of the table). From
left to right: red rectangle, green rectangle, blue circle, red circle, green triangle
and yellow circle (this is a limited set of figures to be shown in the paper, training
set contains 15 images of such type). All images were 20% corrupted by Gaussian
noise (while dots at the input images). The background of all images is black.
Target output for CVRNN is lower row of the figure. Last image is absent due to
generalization reasons. The CVRNN should be able to recognize last yellow circle
from the upper row.

upon the fact, that brain has some basis ideas about the objects following Plato
(Greek Philosopher) in the book by Perlovsky [[44]]. That means one should first
train the network to generalize some objects to the predefined classes (objects
are in different colors (see Fig. 5.53) and then try to show the image which the
RCVNN has not seen before and looks whether it can generalize the object if the
color of the object changes.
Therefore the experiment consists of two parts. First part is to see how the color
will be represented in the network at the training set in order to show that neurons
of the output layer, which correspond to some image, will be synchronized in phase
to represent the color and spatially to represent the shape. In the second part
the network will be presented with some objects from the class it should know
but with a changed color. The task is to see which neurons will be synchronized
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5.7 Binding Problem

and which phase the output neurons will have. Moreover for all experiments
all outputs of the CVRNN will be tracked. This is done in order to see how
the memory works in case of image recognition (note that RCVNN should have
memory due to its structure). In the current work the images used for the training
were static while in general to form the training set one should use the dynamic
images with always the same target;e.g. one should create different images of
triangle (under the different angles and sizes) with always same target triangle.
Thus the network will be able to generalize any triangle to the triangles class and
give the color by the synchronization of the neurons in the triangle class with the
color of the input image.

Results on Image Recognition

The RCVNN has been trained for 10000 epochs using the extended training file
similar to the Fig. 5.53. The size of each image was pixels. The learning has
been conducted with the complex-valued back propagation and gradient descent
method. The learning rate is η = 0.02. Final training error after the training step
(see eq. 2) has been equal to 10−11. The hidden dimensionality was equal to 50.
Therefore the size of matrix A was 50× 50, size of matrix B was 2500× 50 and
the size of matrix C has been 50 × 2500. All matrixes have been initialized by
random weights and have been selected to be sparse analogous to the real world
neurons (the sparsity of the real world network is about 20%). In the current
work the sparsity of matrixes B and C have been 60%, the sparsity of the matrix
A was 30%.

Neurons synchronization results

In the current subsection an attempt to simulate the synchronization of the neu-
rons is going to be done. The image at the input is a corrupted image of some
shape (e.g. rectangle) which is smaller than the target and stands at some ran-
dom place of the input image. Output image is a generalized shape of the object
(see Fig. 5.53) of the same color. The training set contains same objects of differ-
ent colors to make the task more complicated. Overall the training set contained
20 different objects of different color located in the different places of an image.
The experiment is to present the network the object which it has seen during
the training with the color it has seen during the training but it has never seen
both at the same time. In case the input signal can produce the output from the
needed class and of the input color one can say that he has a binding. One can
see the synchronization simulation results below at the Fig. 5.54. One can see
from the Fig.5.54 that neurons synchronize not only in a phase, but also in the
spatial distribution representing the color and the shape of the object. Here we
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Figure 5.54: Example of the neurons synchronization for the pattern from the
training set. Upper row left to right: angle of the input pattern, angle of the
network output from the 5th state, phase of the network output from the last 50th
state. Lower row, left to right: absolute part of the input pattern, absolute part
of the output from the 6th state, absolute part of the output from the 50th state.
Bar to the right hand side displays the color ranges for all pictures in a row.
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can see the coupling of the phase and the spatial distribution. This means that
the particular input which is from the training set can excite the correct target
object (the shape of the target object) with the color of the input object. This
allows us to think that CVNN offers a nice and elegant solution to the binding
problem.

Capability of the network to recognize known object with unknown
color

After it has been shown that neurons do really synchronize for the same color,
moreover the spatial structure of the synchronized neurons represented the shapes
one can proceed and try to force the network to generalize objects, which means
that the present image has not been seen during the training. The task is to see
whether neural network will be able to recognize the shape and the color. For
the results see the Fig. 5.55 below. The network receives the yellow noised circle.
One can see from the Fig. 5.55 that network have been still possible to recognize
the shape but not the color (same experiments have been conducted for different
shapes which are not in the training set) which answers the question whether the
network can generalize, the answer is affirmative, but without the color in case it
has not seen the color before (see Fig.5.55). Since there is no possibility to show
all pictures in the paper we have to note, that if the image at the generalization
set will have a new shape (not from the training set) and a new color the network
will not recognize the object at all.

Capability of network to recognize unknown object with unknown color

Now one should consider what happens if an unknown object paired with the
unknown color is presented to the network. Input object is yellow rhomb. As it
can be seen from the Fig. 5.56 obtained from the simulation, the neural network
has very much noisy output which consists of two shapes, namely a circle (with
maximum possible phase) and a triangle with minimum possible phase. Absolute
part of the output is nearly noise with some shadows of the circle and the triangle
from the training set. The phase picture is more definite. The interpretation of
two shapes appearance is that the network tries to remember the most topolog-
ically equal objects from the memory which exists due to the states interaction.
The triangle and the circle appear due to the fact, that if to look to the structure
of the data matrix containing the triangle or the circle, these structures are very
similar to the rhombus (in the case very low resolution which is 50 by 50 have
been used), therefore these both shapes appear as an output. In the case rhomb
has been used for training the network can reproduce it with its color.
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Figure 5.55: Example of the neurons synchronization for the pattern from the
training set. Upper row left to right: input pattern - angle, network output from
the 5th state - angle, network output from the last 10th state - angle. Lower row,
left to right: absolute part of the input pattern, absolute part of the output from
the 6th state, absolute part of the output from the 10th state. Bar to the right
hand side displays the color ranges for all pictures in a row.
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Figure 5.56: Example of the neurons synchronization for the pattern from the
training set. Upper row left to right: input pattern - angle, network output from
the 5th state - angle, network output from the last 10th state - angle. Lower row,
left to right: absolute part of the input pattern, absolute part of the output from
the 6th state, absolute part of the output from the 10th state. Bar to the right
hand side displays the color ranges for all pictures in a row.
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Summary and Outlook

It has been shown that CVORNN can simulate the synchronization of weight
coupling the information about the shape of the object together with its phase.
Moreover the memory, the generalization and the synchronization can be simu-
lated by the interaction of the phases of complex values by using the CVORNN.
The future work in this direction would be online training of the CVORNN in
order to use the information about the object by looking on it from different
sides (the way a little child does it in the beginning). This will allow creating
the big data base of images. Then one will be able to show the generalization
capabilities of the CVORNN for more classes of objects and the memory capacity
of the CVORNN then could be estimated.

5.8 Advantages on Brain Synchronization Mod-

eling, Biological example

The brain is constantly faced with the task of grouping together features of objects
that it perceives. Such features, for example, are shape, motion, color and depth.
There is experimental evidence that supports the hypothesis that the brain solves
this so-called “binding” problem by synchronizing the temporal firing patterns
in neuronal assemblies. Mathematically, this phenomenon can be modeled by a
system of differential equations for the oscillating spiking neural network. In this
paper we suggest a new model for solving the binding problem by introducing
complex-valued recurrent networks. These networks can represent sinusoidal os-
cillations and their phase, i.e., they can model the binding problem of neuronal
assemblies by adjusting the relative phase of the oscillations of different feature
detectors. Specifically, it can be shown that these networks solve the binding for
color and intensity if, for example, the information about color is represented by
the phase and the intensity by the modulus of the neuronal oscillation. We also
show that neurons are synchronized with respect to their phase - and not their
amplitude (as is the case for the real-valued spiking neural network). The ampli-
tude plays the important role of a spiking barrier. The section can be concluded
by showing some useful properties of the complex-valued approach for modeling
the oscillating spiking neural network and by showing how to model the memory
of such a network.
Cortical oscillations (see, e.g., [25]) can be described by their frequency, amplitude
and phase. In large-scale oscillations (meaning a large number of neurons taking
part in the oscillations), amplitude changes caused by changes in synchronization
within a neural committee (zone in the brain, where neurons are oscillating in a
sin phase way), also called as local synchronization, have been considered as a
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basis for cognitive features, such as perception or pattern recognition. Moreover,
for the case of local synchronization, changes in the phase synchronization among
oscillatory development of remote neural committees were found in the real world
experiments. This may be considered as a neural process for information commu-
nication. The research into neural oscillations is a sub-area of “neurodynamics”,
the area of neuroscience that focuses on the dynamic character of neural activity
in describing brain functions). In the suggested approach the differential equa-
tions to describe how neural activity evolves over time will be used. The aim of
the research is at relating cognitive functions to specific dynamic patterns in the
brain.

This part of the research is based on the works and results obtained by of A.
Maye [3], Shillen [63] and Li [48] where the authors propose an oscillator network
for modeling the work of cortical neurons. The idea of these papers is like follows.
The work of two connected groups of excitatory (x) and inhibitory (y) neurons
can be described by the dynamical system:{

ẋ = −τxx− gy(y) + Lxx0 gx(x) + Ix + ηx

ẏ = −τyy + gx(x)− Iy + ηy
(5.8)

Here τα (α ∈ {x, y}) are constants that can be chosen to match refractory times of
biological neurons, Lxx0 describes self-excitation of the excitatory population and
ηα white noise, that models fluctuations within the populations. With external
input Iα above threshold, the solutions of (5.8) are limit-cycle oscillations.

The transfer function is typically modeled by sigmoid-shaped functions. From
a metabolistic viewpoint it is not desirable for real neurons to reach saturating
activity in every cycle. In this model a semi-linear transfer function,

gα(x) =

{
mα(x− θα), if x > θα

0, else
(5.9)

The external input Iα = I0+Iαlat consists of static input from the feature detectors
I0 and input from neighboring oscillators via lateral connections Iαlat. According
to the author, the excitatory coupling Ixlat =

∑
s∈S L

xx
s xs synchronizes oscillators,

whereas the inhibitory coupling Iylat =
∑

s∈S L
yy
s ys desynchronizes them. S is the

local neighborhood of the oscillator under consideration and Lαβ (α, β ∈ {x, y})
positive weights. As it was found, connections originating from excitatory neu-
rons have a synchronizing and those from inhibitory neurons a desynchronizing
effect, so all connection types could have been used.
Parameters selection.In this subsection the input signal will be represented as
a complex number characterizing the light; it has the following form: inp = Aeiφ,
where A – intensity, φ – phase of the signal. The light divides into a number
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of parts corresponding to the dimension of space of color representation (RGB,
CMYK color models etc.). Two dimensional space representing the color (with
corresponding φ1, φ2) was used. Thus, for every light k – external input to the
system we have φ = (φk1, φ

k
2). The intensity has to be taken equally for each

dimension of color and is to be transfered between neurons as the parameter θ
which is used as a threshold in the function g (eq.:5.9).
The work represents the system as a recurrent network with characteristics de-
pending on time. While the input signal is represented as a complex number, the
system is solved for only the phase part of the signals, that is, it works with real
numbers.
The network is presented in Fig. 5.57. For each input color we have the same
picture.

Figure 5.57: Recurrent network for oscillations modeling

Experiments. For the network structure in Fig. 5.57 the results are displayed
later in the thesis. The selected parameters for the system or equations are
presented below: τx = τy = 1, mx = 16, my = 8, Lxx0 = 0.1,

∑
s∈S L

xx
s = 1.1,∑

s∈S L
yy
s = 0.3, ηx ∼ 0.2N(0, 1), ηy ∼ 0.2N(0, 1), φ1, φ2. Two lights come into

the system: the first with φ1 = π/2, the second with φ2 = π/3. The lights
divide into two parts with intensities θx = 2, θy = 1, φk1 = 3φk/2, φk2 = 3φk/3
for each light k ∈ 1..2 on input. As the output of the network we take x(t)
corresponding to the first coordinate of color representation. Denote recurrency
– number of iterations. The output values correspond to the last iteration –
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recurrency. CCor – matrix of correlations between x-outputs of neurons, CCoravg
– average matrix of correlations between x-outputs of neurons for all iterations.
The weights of inputs from neighbors are randomly selected so that the conditions∑

s∈S L
xx
s = 1.1,

∑
s∈S L

yy
s = 0.3 are satisfied. So we use 10 iterations to get

average measures (correlation). If the weights are equal, the resulting outputs
corresponding to the same input light are equal (see fig. 5.58). One can see that
at the beginning of x(t) the outputs are almost the same for the neighboring
oscillators.

Observation 1. For different recurrency different results have been obtained.
Observation 2. With the recurrency increasing the influence of noise in the

system on the solution x decreases. The results for different input parameters
will be presented. The inputs parameters and corresponding correlation matrixes
paired with pictures of oscilaltions at the last iteration will be shown. To describe
different experiments the following notations are to be used:

Input=[Weights=...;

Noise=true;

Recurrency=...;

Colors={...};

Number of iterations = ...];

Where: “Weights=” have the following possibilities: Equal, Random, Different;
“Noise=true” it means that there is presence of small noise in the system, “Re-
currency” is amount of states used in the RCVNN model, “Colors” means inputs
of the network can have Red, Green and both Red and Green, “Number of iter-
ations” means the amount of times the system of Eq. 5.8 iterated. Now let me
start with experiments.

Experiment 1. Experiment setup:

Input=[Weights=Equal;

Noise=true;

Recurrency=2;

Colors={Red, Green};

Number of iterations = 10];

results are presented at the Fig. 5.58. Matrix of correlations between outputs.

CCor =


1.0000 0.7128 0.5065 0.5160
0.7128 1.0000 0.5390 0.5196
0.5065 0.5390 1.0000 0.9432
0.5160 0.5196 0.9432 1.0000


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Figure 5.58: x(t) for recurrency = 2 when weights from neighboring oscillators
are equal.

Matrix of average correlations between outputs for equal weights of neighboring
oscillators. The randomness arises from noise in the system 5.8.

CCoravg =


1.0000 0.8922 0.5109 0.5108
0.8922 1.0000 0.5269 0.5266
0.5109 0.5269 1.0000 0.9380
0.5108 0.5266 0.9380 1.0000


With recurrency increasing the amplitude of oscillation increases too (see Fig.
5.58-5.61). The outputs for neighboring oscillators coincide.
Experiment 2. Experiment setup:

Input=[Weights=Different;

Noise=true;

Recurrency=6;

Colors={Red};

Number of iterations = 10];

Results are presented at the Fig.5.59.
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Figure 5.59: x(t) for recurrency = 6, for the system without noise.

CCor =


1.0000 1.0000 0.3563 0.3563
1.0000 1.0000 0.3563 0.3563
0.3563 0.3563 1.0000 1.0000
0.3563 0.3563 1.0000 1.0000


In the case when weights coming from neighboring oscillators are not equal the
result is similar but discrepancies in outputs start earlier (see fig. 5.63 and corre-
sponding matrix of correlations).
Experiment 3. Experiment setup:

Input=[Weights=Equal;

Noise=true;

Recurrency=10;

Colors={Red;Green};

Number of iterations = 10];

Results are presented at the Fig.5.60.

CCor =


1.0000 1.00000.2748 0.2748
1.0000 1.00000.2748 0.2748
0.2748 0.27481.0000 1.0000
0.2748 0.27481.0000 1.0000


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Figure 5.60: x(t) for recurrency = 10, for the system without noise.

Experiment 4. Experiment setup:

Input=[Weights=Equal;

Noise=true;

Recurrency=6;

Colors={Red;Green};

Number of iterations = 20];

Results are presented at the Fig. 5.61.

CCor =


1.0000 1.0000 0.2154 0.2154
1.0000 1.0000 0.2154 0.2154
0.2154 0.2154 1.0000 1.0000
0.2154 0.2154 1.0000 1.0000


If the same light comes into the system in which there are two pairs of neigh-
boring oscillators then we have the following picture 5.62. As we see here the
outputs coincide at the beginning which gives high correlations between them.
Thus, the oscillators which are not neighbours but have the same input signal
(light or color) synchronize in both amplitude and phase.
Experiment 5. Experiment setup:
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Figure 5.61: x(t) for recurrency = 20, for the system without noise.

Input=[Weights=Equal;

Noise=true;

Recurrency=6;

Colors={Red};

Number of iterations = 10];

Results are presented at the Fig.5.62

CCor =


1.0000 0.8450 0.8600 0.8411
0.8450 1.0000 0.8112 0.8442
0.8600 0.8112 1.0000 0.8189
0.8411 0.8442 0.8189 1.0000


Experiment 6. Experiment setup:

Input=[Weights=Equal;

Noise=true;

Recurrency=6;

Colors={Red};

Number of iterations = 10];

Results are presented at the Fig.5.63
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Figure 5.62: x(t) for recurrency = 6, for the system with equal weights from
neighboring oscillators.
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Figure 5.63: x(t) for recurrency = 6, for the system with different weights from
neighboring oscillators.
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CCor =


1.0000 0.4895 0.6845 0.7465
0.4895 1.0000 0.4283 0.4969
0.6845 0.4283 1.0000 0.8432
0.7465 0.4969 0.8432 1.0000


Experiment 7. In the case when weights of neighboring oscillators are randomly
chosen, the results are the following. Experiment setup:

Input=[Weights=Random;

Noise=true;

Recurrency=2;

Colors={Red;Green};

Number of iterations = 10];

Results are presnted at the Fig.5.64. Matrix of correlations between outputs.
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Figure 5.64: x(t) for recurrency = 2.

CCor =


1.0000 0.4479 0.4664 0.5103
0.4479 1.0000 0.6303 0.4965
0.4664 0.6303 1.0000 0.7153
0.5103 0.4965 0.7153 1.0000


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Matrix of average correlations between outputs in case when weights of neighbor-
ing oscillators are randomly chosen.

CCoravg =


1.0000 0.4722 0.5169 0.5335
0.4722 1.0000 0.5786 0.5498
0.5169 0.5786 1.0000 0.7380
0.5335 0.5498 0.7380 1.0000


Experiment 8.

Experiment setup:

Input=[Weights=Random;

Noise=true;

Recurrency=6;

Colors={Red;Green};

Number of iterations = 10];

Results are presented at the Fig.5.65. Matrix of correlations between outputs.
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Figure 5.65: x(t) for recurrency = 6.
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CCor =


1.0000 0.2705 0.6526 0.5768
0.2705 1.0000 0.3646 0.4840
0.6526 0.3646 1.0000 0.6154
0.5768 0.4840 0.6154 1.0000


Matrix of average correlations between outputs in case when weights of neighbor-
ing oscillators are randomly chosen.

CCoravg =


1.0000 0.4349 0.4284 0.4227
0.4349 1.0000 0.3963 0.4049
0.4284 0.3963 1.0000 0.6359
0.4227 0.4049 0.6359 1.0000


Experiment 9.

Experiment setup:

Input=[Weights=Random;

Noise=true;

Recurrency=20;

Colors={Red;Green};

Number of iterations = 10];

Results are presented at the Fig.5.66. Matrix of correlations between outputs.

CCor =


1.0000 0.4653 0.5122 0.5554
0.4653 1.0000 0.3833 0.2354
0.5122 0.3833 1.0000 0.5788
0.5554 0.2354 0.5788 1.0000


Matrix of average correlations between outputs in case when weights of neighbor-
ing oscillators are randomly chosen.

CCoravg =


1.0000 0.5597 0.3447 0.3953
0.5597 1.0000 0.2906 0.3089
0.3447 0.2906 1.0000 0.6967
0.3953 0.3089 0.6967 1.0000


Experiment 10. Experiment setup:

Input=[Weights=Random;

Noise=true;

Recurrency=50;

Colors={Red;Green};

Number of iterations = 10];
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Figure 5.66: x(t) for recurrency = 20.
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Figure 5.67: x(t) for recurrency = 50.
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Results are presented at the Fig. 5.67 Matrix of correlations between outputs.

CCor =


1.0000 0.6637 0.2400 0.3263
0.6637 1.0000 0.1725 0.4310
0.2400 0.1725 1.0000 0.5724
0.3263 0.4310 0.5724 1.0000


Matrix of average correlations between outputs in case when weights of neighbor-
ing oscillators are randomly chosen.

CCoravg =


1.0000 0.3615 0.3850 0.4569
0.3615 1.0000 0.3691 0.4236
0.3850 0.3691 1.0000 0.6602
0.4569 0.4236 0.6602 1.0000


Results.
The results of this work are similar to the ones in the work of Maye, but for
complex-valued inputs. Oscillators that represent the same segment (neighboring
oscillators) produce similar outputs in terms of phase. Correlations are close to
unity when the weights between neighboring oscillators are equal. If the weights
are different, the outputs can differ from each other in both amplitude and phase,
but in general they have the similar behavior. If the same light signal enters
the system (when there are two pairs of neighboring oscillators), the outputs
have high correlation at the beginning (coincide). Thus, the oscillators, which
are not neighbors but have the same input signal (light or color), synchronize.
The further work is to find the architecture of the neural network based on the
recurrent complex-valued neural network, which will simulate the synchronization
by the interaction of complex numbers instead of solving the system of differential
equations as stated above.

5.9 Financial Time Series Forecasting

Prediction of the financial time series, forecasting of the leading indexes is a
very important topic for the investment companies and can play an important
role in the modern economics. The econophysics is a relatively new direction
which is trying to build the physical models for the econometrical tasks. The
main idea of econophysics is to apply the physical models to the economic data
which is numerous. One of the examples of the application of the HCVNN is the
prediction of the leading USA index - Dow Jones Industrial Average (DJIA). For
this purpose the data in this index was taken from DJIA website [22]. This web
resource allows downloading the data for free and using it for private needs. The
data used for the DJIA modeling was taken for the period 01 AUG 2007 - 01
AUG 2011.
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Market modeling with State Space Models

In order to predict the market one should believe that the market itself is a
dynamical system which develops based on internal and external influences. The
external reasons should be ‘weak’ in comparison to the internal ones. Thus market
is a closed dynamical system which can be learned with state space models. Since
the amount of the variables which drive the market is unknown one should make
some assumptions or take rather big network to model the market. According
to Zimmermann [73] each agent (trader) at the market plays as a neuron in the
neural network which is summing the information flow with some weights and
then makes biased decision in order to maximize its profit. Thus neural network
is an ideal tool for the market modeling, which is a huge neural network of neurons
that interact in a random way (kind of reservoir computing, which is a different
topic and is enough for another thesis). State Space Models like the HCVNN can
learn the market and then try to predict it for several iterations ahead, making
the time teacher forcing we can correct the forecast in its angle part thus making
the overall error smaller.

Results

The network was trained for 5000 epochs. The size of the HCVNN was the
following: 30 states, each state has 30 hidden neurons. Activation function was
selected to be tanh. Network had 3 outputs. All DJIA values were normalized
for [0, 1] interval. All results are presented for the normalized values. The figure
below 5.68 shows the training set results. The figure below 5.69 shows the results

Figure 5.68: Ideal transformer (http://en.wikipedia.org/wiki/Transformer)

for the 20 steps prediction. At each prediction iteration previous predicted value
was used, which means that this is pure 20 steps prediction ahead. At each
iteration of prediction time teacher forcing has been applied. The Fig. 5.69
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Figure 5.69: DJIA prediction for 20 steps ahead.

shows the results for the 20 steps prediction for another period of the DJIA. In

Figure 5.70: DJIA prediction for 20 steps ahead.

order to estimate the statistics the RMS and R2 values have been used. The
statistics is presented below:

• R2 is (angle)): 1

• RMS is (angle): 0

• R2 is (abs): 0.35

• RMS is (abs): 0.0002

The ideal statistics for the angle means that the teacher forcing was used, since
we substitute the phase information on time with the target one. The statistics
for the absolute part of the output shows that we have explained 35% of the data
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behavior, which is a good result for the financial time series.
Conclusions.
The results above show that it is possible to explain 35% of the data behavior with
a relatively simple and small model. One should admit that in order to predict
the data better one should take into account all the variables which influence the
resulting data. In our case for the prediction of the DJIA one would need the
data on all its shares process, combine them in one dataset and try to predict
all 30 shares prices. Such approach would simplify the prediction for the Neural
Network.
Another important issue is the presence of the teacher forcing, since without the
teacher forcing the models gives R2 = 0.25 and RMS = 0.0004, which means
that time teacher forcing improves the prediction by 30% which is quite much,
especially for the financial predictions.
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Conclusions and Outlook

This thesis can be used as a guide to people willing to apply complex-valued neu-
ral networks. This thesis contains a strictly mathematical description of network
initialization as well as a complete description of the system identification for
complex-valued networks in comparison to real-valued networks. This thesis con-
tains a solution to the nasty function properties of traditional complex functions.
This thesis also contains several receipts on how to overcome the majority of
problems faced by complex networks. At the end of this thesis several real world
examples of the complex-valued networks are given along with the advantages of
complex-valued neural networks.

6.1 Feed-Forward Architectures

As it was shown in the paper by H.-G. Zimmermann, A. Minin, V. Kusherbaeva,
Comparison of the Complex-Valued and Real-Valued Neural Networks Trained
with Gradient Descent and Random Search Algorithms, ESANN2011, Computa-
tional Intelligence and Machine Learning, Bruges, Belgium, 2011,pp. 213-218.,
complex-valued neural networks have no advantages ever in comparison to the
real ones. Both produce the same statistical results and can be used depending
on the input data. Both networks have very good convergence and experience
similar problems such as over fitting. In this thesis these networks were com-
pared. It was shown that the error back-propagation in such networks is much
similar, despite the fact that all transpose operations must be replaced by a con-
jugated transpose. The activation functions remain the same. However, due to
unboundness and singularities of these functions, great care must be taken with
the complex representations of the functions.
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6.2 Recurrent Architectures

It has been shown in H.-G. Zimmermann, A. Minin, V. Kusherbaeva, Historical
Consistent Complex-Valued Recurrent Neural Network, Artificial Neural Net-
works and Machine Learning - ICANN 2011 - 21st International Conference on
Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part
I. Volume 6791 of Lecture Notes in Computer Science, pages 185-192, Springer,
2011, that recurrent complex-valued architectures have clear advantages over the
real-valued recurrent ones. Especially interesting is the complex-valued historical
consistent neural network (HCVNN). In the paper by Minin A., Knoll A., Zim-
mermann H.-G.,Complex-Valued Recurrent Neural Network: From Architecture
to Training, submitted to the Journal of Signal and Information Processing, it
has been shown that complex-valued architectures have higher forecasting hori-
zons and moreover the technique called time teacher forcing (further TTF), was
invented in the following thesis. This TTF allows the control of the forecasting
time, which allows the forecast to be corrected at each forecasting iteration and
thus reduces the overall output error. One can also force the network to do the
continuous time modeling. For this purpose, the TTF method should be used in
a different manner. After the network has been trained with some data steps, the
TTF should be used on the production set to “force” the network to produce a
forecast for the needed time stamp. The network will need some time to adopt
to the new time stamp, after some iterations it will tag in producing valuable
results.

6.3 Brain modeling

In the paper of Minin A., Knoll A., Zimmermann H.-G., Complex-Valued Ar-
tificial Recurrent Neural Network as a Novel Approach to Model the Percep-
tual Binding Problem, submitted to ESANN2012 conference, it was shown that
CVNN can solve the classical binding problem for oscillating units. It has also
been shown that RCVNN can simulate the synchronization of weight coupling
the information about the shape of the object together with its phase. Moreover,
the memory, the generalization and the synchronization can be simulated by the
interaction of the complex value phases via CVRNN.
In the future, more work will be done in this direction. In the future, the goal
is to be able to carry out online training of the CVRNN so that information on
the object can be collected by inspecting the object from several vantage points
similarly to how small children learn objects. This will allow to create a big
data base of images. It will then be possible to demonstrate the generalization
capabilities of RCVNN for multiple object classes and to estimate the memory
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capacity of the RCVNN.

6.4 Outlook

In sumary, Complex-Valued Neural Networks have a wide range of applications
due to the unique properties arising from their more physical way of data pro-
cessing. Time Teacher Forcing enables the modeling of continuous time systems.
Recurrent architectures can model the human memory and the ability of the
human brain to generalize objects. Further research must be done to establish
new architectures to construct more complicated models of the human brains.
Moreover, the suggested networks allow neural networks to be physically mod-
elled. Complex Neural Networks have the potential to drastically change the way
artificial intellegence is done.
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