
Steam Boiler:

Extended Focus Specification and

its Verification in Isabelle/HOL.

Maria Spichkova

January 19, 2007

Abstract

The main idea of this case study was taken from [1]. This paper rep-
resents an extension of the Focus specification [1] of the steam boiler, its
translation in Isabelle/HOL [2] and the corresponding formal Isabelle/HOL
proofs for the translated specifications, which show that the specified steam
boiler architecture fulfills the specified steam boiler requirements.

Contents

1 Introduction 3
1.1 Focus . 3
1.2 Isabelle . 4

2 Translation schema 4

3 Steam Boiler Specification in Focus 7
3.1 Data Types . 7
3.2 Requirement Specification . 7
3.3 Architecture Specification . 8
3.4 Steam Boiler Component . 8
3.5 Converter Component . 9
3.6 Controller Component . 10

4 Correctness of the Relations between Sets of Channels 12

5 Steam Boiler Specification in Isabelle/HOL 15

6 Proof of the Steam Boiler System Properties 16
6.1 Properties of Controller Component 17
6.2 Properties of the System . 18
6.3 Proof of the Refinement Relation . 20

7 Conclusions 20

2

1 Introduction

This paper represents the verification of the steam boiler specification. The original
version of the formalization of the steam boiler as the Focus specifications is rep-
resented in [1]. These Focus specifications were first of all extended according the
methodology “Focus on Isabelle/HOL”, after that the (extended) specifications of
all components of the system were translated schematically to Isabelle/HOL and
the refinement relation between the requirement and the architecture specification
of the system was proven. Thus, the extended Focus specifications of steam boiler
are equal modulo syntax to presented here Isabelle/HOL predicates that represent
they semantics.

In addition, the correctness of the input/output relations was proven for all
components of the system. This case study shows also how we can deal with local
variables (states) and in which way we can represent mutual recursive functions to
avoid problems in proofs.

1.1 Focus

In Focus any specification characterizes the relation between the communication
histories for the external input and output channels. The formal meaning of a
specification is exactly this external input/output relation. The Focus specifications
can be structured into a number of formulas each characterizing a different kind of
property, the most prominent classes of them are safety and liveness properties.

The central concept in Focus are streams, that represent communication histo-
ries of directed channels.

In Focus streams are represented as functions mapping natural numbers to
messages, where a message for the case of timed stream can be either a data message
or time tick.

In the Focus specification of steam boiler are used the following Focus opera-
tors together with standard logical operators:

X An empty stream is represented by 〈〉.

X 〈x 〉 denotes the stream (list) consisting of exactly one element, x .

X The nth message of a stream s can be denoted in Focus either by s(n) or by
s.n. We prefer the second kind of notation.

X #s yields the length of the stream to which is applied.

X s1 _s2 – concatenation of the streams s1 and s2 produces a stream that starts
with the messages of the stream s1 followed by the messages of the stream s2.

X The append function m & s results concatenation of the message m to the
head of stream s: m & s def= 〈m〉_s

X ft.s and rt.s yield the first element of the stream and the stream without the
first element respectively.

X s denotes in Focus the untimed stream obtained by removing all ticks in s.

X s↓t truncates a timed infinite stream s at time t .

X ts(s) holds for a timed stream s iff s is time-synchronous in the sense that
exactly one message is transmitted in each time unit.

X ti(s,n) denotes the sequence of messages that are present on the channel s at
the time interval between nth and (n + 1)th ticks.

3

For detailed description of Focus see [1].

We also introduce a new variant of the Focus tables – tiTable – to have more clear
representation of component assurances when one argues about a component in
time interval manner. The main difference of tiTable from the classical Focus table
is that argumentation about streams in a classical Focus table treads message-
by-message, where in a tiTable the argumentation about streams treads on time
intervals – the possible combinations of message sequences on component channels
at the time interval t between ticks t − 1 and t are treated.

1.2 Isabelle

Isabelle [2] is a specification and verification system implemented in the functional
programming language ML. Isabelle/HOL is the specialization of Isabelle for Higher
Order Logic. To specify a system with Isabelle means creating theories. A theory is
a named collection of types, functions (constants), and theorems (lemmas). Similar
to the module concept from Focus, we can understand a theory in Isabelle as a
module.

The base types in Isabelle/HOL are bool, the type of truth values and nat, the
type of natural numbers. The base type constructors are list, the type of lists,
and set, the type of sets. Function types are denoted by ⇒. The operator ⇒ is
right-associative. The type variables are denoted by ’a, ’b etc.

Terms in Isabelle/HOL are formed as in functional programming by applying
functions to arguments. Terms may also contain λ-abstractions.

For detailed description of Isabelle/HOL see [2] and [3].

2 Translation schema

In this section we present the translation schema only for the Focus operators and
expressions, that are used in the case study.

Focus operator, f Isabelle/HOL representation, [[f]]Isab
〈〉 [] (an empty list)

#s length [[s]]Isab
s.(n + 1) nth [[s]]Isab [[n]]Isab , [[s]]Isab ! [[n]]Isab
x _y [[x]]Isab @ [[y]]Isab
x ∈ s (s ∈ M ∗ for some M) [[x]]Isab mem [[s]]Isab
ft.s hd [[s]]Isab

Table 1: Isabelle/HOL representation of the FOCUS operators on finite untimed
streams

4

Focus operator, f Isabelle/HOL representation, [[f]]Isab
#s ∞
s.(n + 1) [[s]]Isab [[n]]Isab
x _y [[x]]Isab , x is infinite

x _y fin inf append [[x]]Isab [[y]]Isab (x ∈ M ∗, y ∈ M ∞)

Table 2: Isabelle/HOL representation of the FOCUS operators on infinite untimed
streams

Focus operator, f Isabelle/HOL representation, [[f]]Isab
〈〉 [] (an empty list)

#s fin length [[s]]Isab
s.n fin nth [[s]]Isab [[n]]Isab
x _y [[x]]Isab @ [[y]]Isab
s fin make untimed [[s]]Isab
ti(s,t) ti [[s]]Isab [[t]]Isab

Table 3: Isabelle/HOL representation of the FOCUS operators on finite timed
streams

Focus operator, f Isabelle/HOL representation, [[f]]Isab
s.n inf nth [[s]]Isab [[n]]Isab
x _y [[x]]Isab , x is infinite

x _y fin inf append [[x]]Isab [[y]]Isab (x ∈ M ∗, y ∈ M ∞)

s ↓t (∗) inf truncate [[s]]Isab [[t]]Isab (t ∈ N)

ts(s) ts [[s]]Isab
s make untimed (InfT [[s]]Isab)

ti(s,t) [[s]]Isab [[t]]Isab

Table 4: Isabelle/HOL representation of the FOCUS operators on infinite timed
streams

5

Focus expression E Isabelle/HOL representation, [[E]]Isab
true True

false False

A = B [[A]]Isab = [[B]]Isab
A 6= B [[A]]Isab 6= [[B]]Isab
A < B , B > A [[A]]Isab < [[B]]Isab
A ≤ B , B ≥ A [[A]]Isab ≤ [[B]]Isab
A < B < C , C > B > A [[A]]Isab < [[B]]Isab ∧ [[B]]Isab < [[C]]Isab
A ≤ B ≤ C , C ≥ B ≥ A [[A]]Isab ≤ [[B]]Isab ∧ [[B]]Isab ≤ [[C]]Isab
¬Q ¬[[Q]]Isab
Q1 ∨Q2 [[Q1]]Isab ∨ [[Q1]]Isab
Q1 ∧Q2 [[Q1]]Isab ∧ [[Q2]]Isab
Q1 ⇒ Q2 [[Q1]]Isab −→ [[Q2]]Isab
Q1 ⇔ Q2 [[Q2]]Isab = [[Q2]]Isab
x x (x is a variable)

∃ x : Q ∃ x . [[Q]]Isab
∀ x : Q ∀ x . [[Q]]Isab
if F then F1 else F2 fi (if [[F]]Isab then [[F1]]Isab else [[F2]]Isab)

let A in B let [[A]]Isab in ([[B]]Isab)

F (x1, . . . , xn) (F [[x1]]Isab . . . [[xn]]Isab)

Table 5: Isabelle/HOL representation of the FOCUS expressions

The where statement is in Focus of the form

F where v1, . . . , vn so that G

where v1, . . . , vn are logical variables and F , G are formulas (the formula G defines
the values of the variables v1, . . . , vn). The semantics of this statement is defined
in Focus by the formula

∃ v1, . . . , vn : F ∧G

The original Focus definition allows to have as vi (1 ≤ i ≤ n) also a function
name – the function is then specified by the formula G . To have more clear syntax,
we recommend to restrict the where statement the cases where v1, . . . , vn do not
represent functions. Having this assumption about where statement, we can say
that the where statement is dual to the let statement

let G in F

For this case we have

[[F where v1, . . . , vn so that G]]Isab = let [[G]]Isab in ([[F]]Isab)

6

3 Steam Boiler Specification in Focus

The steam boiler has a water tank, which contains a number of gallons of water,
and a pump, which adds 10 gallons of water per time unit to its water tank, if the
pump is on. At most 10 gallons of water are consumed per time unit by the steam
production, if the pump is off. The steam boiler has a sensor that measures the
water level.

In this section we discuss first of all the data types used in the case study.
Then the Focus specifications of the components and their translation into Is-
abelle/HOL using the schema from the methodology “Focus on Isabelle/HOL”
will be presented. The proof of the behavioral refinement relation between the re-
quirements specification and the architecture specification will be discussed, as well
as the resulting Isabelle/HOL theories SteamBoiler.thy and SteamBoiler proof.thy

are presented in Section 6.

3.1 Data Types

The original steam boiler specification [1] in Focus uses two additional datatypes:

type Gallons = {r ∈ R | 0 ≤ r ≤ 1000}
type Switch = {−1,+1}

We replace in the whole steam boiler specification [1] the type Gallons by the
type N, because representation the water level by a rational number as well as the
restriction of upper bound 1000 does not play an important role in this specification.

Introduction of the datatype Switch in the specification [1] aims to combine a
number with arithmetical operations (“+” and “−”) over it, to have shorter and
clearer representation. But the use thies type leads the problems with type checking.
We will replace the type Switch by the type Bit (1 for“+1”, 0 for “−1”). Thus,
instead of

o.j + (x .j) ∗ r ,

where x .j was of type Switch we will use

if r = 0 then o.j − r else o.j + r fi .

Because we use here not only time-synchronous specifications, but also timed ones,
we need to represent all of them in the timed frame and make corresponding changes
according the methodology “Focus on Isabelle/HOL” to avoid the type checking
mistakes.1

To have explicit difference between 0, 1 : N and 0, 1 : Bit we define in Is-
abelle/HOL the type Bit as follows:

datatype bit = Zero | One

3.2 Requirement Specification

The specification ControlSystem describes the interface and represents the require-
ments to the component: in each time unit the system outputs it current water
level in gallons and this level should always be between 200 and 800 gallons. The
original Focus specification of the control system component [1] is the following
one:

1Timed and time-synchronous streams have different syntax and cannot be combined together
directly.

7

ControlSystem time-synchronous

out o : Gallons

∀ j ∈ N+ : 200 ≤ o.j ≤ 800

We make a number of changes vs. original specification (according our methodol-
ogy), and get as result the following Focus specification of the component Con-
trolSystem:

ControlSystem timed

out s : N

ts(s)
∀ j ∈ N : 200 ≤ ft.ti(s, j) ≤ 800

3.3 Architecture Specification

The specification ControlSystemArch describes one possible architecture of the
steam boiler system. The system consists of three components: a steam boiler,
a converter, and a controller.

ControlSystemArch glass-box

The corresponding Focus representation of this specification as plane text (con-
straint style):

ControlSystemArch timed

out s : N
loc x , z : Bit; y : N

(s, y) := SteamBoiler(x)
(z) := Controller(y)
(x) := Converter(z)

3.4 Steam Boiler Component

The specification SteamBoiler describes steam boiler component. The steam boiler
works in time-synchronous manner: the current water level is controlled every time
unit. The boiler has two output channels with equal streams (y = s) and it fixes the
initial water level to be 500 gallons. For every point of time the following must be
true: if the pump is off, the boiler consumes a most 10 gallons of water, otherwise

8

(the pump is on) at most 10 gallons of water will be added to its water tank. The
original Focus specification of this component [1] is the following one:

SteamBoiler time-synchronous

in x : Switch

out y, o : Gallons

y = s ∧ s.1 = 500
∀ j ∈ N+ : ∃ r ∈ Gallons : 0 < r ≤ 10 ∧

s.(j + 1) = o.j + (x .j) ∗ r

We make a number of changes vs. original specification (according our methodol-
ogy), and get as result

SteamBoiler timed

in x : Bit

out y, s : N

asm ts(x)

gar ts(y)
ts(s)
y = s ∧ ft.ti(s, 0) = 500
∀ j ∈ N : ∃ r ∈ N : 0 < r ≤ 10 ∧

ft.ti(s, j + 1) = if ft.ti(x , j) = 0 then ft.ti(s, j)− r else ft.ti(s, j) + r fi

3.5 Converter Component

The specification Converter describes the converter component. It converts the
asynchronous output produced by the controller to time-synchronous input for the
steam boiler. Initially the pump is off, and at every later point of time (from the
receiving the first instruction from the controller) the output will be the latest
input from the controller (z↓t .(#z↓t)). The original Focus specification of this
component [1] is the following one:

Converter timed

in z : Switch

out x : Switch

ts(x) ∧ ∀ t ∈ N : x .(t + 1) = if z↓t = 〈〉 then − 1 else z↓t .(#z↓t) fi

Applying the rules of the methodology we get the following Focus specification:

Converter timed

in z : Bit

out x : Bit

ts(x) ∧ ∀ t ∈ N : ft.ti(x , t) = if z↓t = 〈〉 then 0 else z↓t .(#z↓t) fi

9

3.6 Controller Component

The specification Controller describes the controller component. Contrary to the
steam boiler the controller behaves in a purely asynchronous manner to keep the
number of control signals small, it means it might not be desirable to switch the
pump on and off more often than necessary. The controller is responsible for switch-
ing the steam boiler pump on and off.

If the pump is off (off (〈r〉_ y)): if the current water level is above 300 gallons the
pump stays be off (〈

√
〉_off(y)), otherwise the pump is started (〈+1〉_〈

√
〉_ on(y))

and will run until the water level reaches 700 gallons.
If the pump is on (on(〈r〉_ y)): if the current water level is below 700 gallons the

pump stays be on (〈
√
〉_on(y)), otherwise the pump is turned off (〈−1〉_〈

√
〉_ off (y))

and will be off until the water level reaches 300 gallons.
The original Focus specification of this component [1] is the following one:

Controller timed

in y : Gallons

out z : Switch

z = 〈−1〉_〈
√
〉_ off (y)

where off so that ∀ r ∈ Gallons; y ∈ Gallons ω :
off (〈r〉_ y) = if r > 300 then 〈

√
〉_ off (y) else 〈+1〉_〈

√
〉_ on(y) fi

on(〈r〉_ y) = if r < 700 then 〈
√
〉_ on(y) else 〈−1〉_〈

√
〉_ off (y) fi

The specification of the controller is be a timed one, but making a proof in Is-
abelle/HOL that the architecture specification ControlSystemArch is a behavioral
refinement of the requirement specification ControlSystem, we found out that to
argue about its properties we need an assumption about the input stream y – that
the stream y is a time-synchronous one: ts(y). In the steam boiler system specified
by ControlSystemArch this assumption for the component Controller will be always
true because the stream y is an output stream of the time-synchronous component
SteamBoiler, but if we look at the component2 Controller without taking into ac-
count its later combination with the component SteamBoiler, then we may have
some problems. More precisely, the specification Controller says, that when some
input message comes, the increment by 1 of the global digital clock (

√
in the output

stream) happens. This means following:

X If in some time interval there is no message in the input stream y , no increment
of the clock happens.

X If in some time interval a number of messages comes, the clock will be incre-
mented ones for each message.

Both cases lead to the wrong behavior of the component Controller, but for the
steam boiler controller system it never happens, because the stream y is an output
stream of the time-synchronous component SteamBoiler.

To argue about properties of controller and to have a possibility to reuse the
component later, we extend the specification Controller by assumption predicate
ts(y) to the specification ControllerExt (the data types Gallons and Switch are also
replaced by N and Bit respectively).

2This is true also for the case of service semantics.

10

Controller timed

in y : N
out z : Bit

asm ts(y)

gar
z = 〈0〉_〈

√
〉_ off (y)

where off so that ∀ r ∈ N; y ∈ N ω :
off (〈r〉_ y) = if r > 300 then 〈

√
〉_ off (y) else 〈1〉_〈

√
〉_ on(y) fi

on(〈r〉_ y) = if r < 700 then 〈
√
〉_ on(y) else 〈0〉_〈

√
〉_ off (y) fi

Remark: Please note, that the specification ControllerExt is not a behavioral re-
finement of component Controller.

The specification above uses mutually recursive functions on and off to specify the
local state of the component, more precisely, the state of the steam boiler pump.
Because the translation of such functions to Isabelle/HOL leads to problems, we
need to reformulate the specification ControllerExt into a semantically equal spec-
ification that uses local states instead of mutually recursive functions. Therefore,
we introduce a new local variable l ∈ Bit (0 corresponds to “off”, 1 corresponds to
“on”) and set it initially to 0. Thus, we get Focus specification Controller1 that
is semantically equal to the Focus specification ControllerExt.

Accordig to our methodology, we can rewrite the formula that represents seman-
tics of the tiTable ControllerT1 to the formula

if l = 0

then if 300 < r

then ti(z , t + 1) = 〈〉 ∧ l ′ = 0

else ti(z , t + 1) = 〈1〉 ∧ l ′ = 1 fi

else if r < 700

then ti(z , t + 1) = 〈〉 ∧ l ′ = 1

else ti(z , t + 1) = 〈0〉 ∧ l ′ = 0 fi

fi

where r = ft.ti(y , t)

The proof that the formula above describes the behavior of the mutually recur-
sive functions on and off from the specifications Controller and ControllerExt is
straightforward.

11

Controller1 timed

in y : N
out z : Bit

local l ∈ Bit
univ r ∈ N

init l = 0

asm
ts(y)

gar
ti(z , 0) = 〈0〉

tiTable ControllerT1: ∀ t ∈ N

y z ′ l ′ Assumption

1 〈r〉 〈〉 0 300 < r ∧ l = 0

2 〈r〉 〈1〉 1 r ≤ 300 ∧ l = 0

3 〈r〉 〈〉 1 r < 700 ∧ l = 1

4 〈r〉 〈0〉 0 700 ≤ r ∧ l = 1

4 Correctness of the Relations between Sets of
Channels

Correctness of the relations between the sets of input and output channels3, will be
shown in Isabelle/HOL separately: first of all for a specification group4 SGroup the
theory SGroup types.thy, which contains all user-defined datatypes (including the
names of single components and channel identifiers) used in the the specification
group. The Isabelle/HOL theory inout.thy is defined as a general one (part of
the deep embeding) and can be used without any changes (except the name of the
theory SGroup that can be seen as paramether). We define here the signatures of
the functions subcomponents, identifiers of input, output and local channels (or
sheafs of channels), as well as all predicates that specify the correctnes properties
of the relations between the sets of channels. The proof schema is standard, is part
of the methodology “Focus on Isabelle/HOL” and can be used automatically. If
the proof does not hold by this schema, the specification of corresponding set is
incorrect and must be changed.

In the specification group SteamBoiler will be used

X components ControlSystem (specification of requirements), ControlSystemArch
(specification of system architecture), SteamBoiler, Controller, and Controller ;

X channels s, x , y and z .

3For example, the sets of input, output and local channles must be pairwise disjoint, every local
stream l of the composite system S must be both an input stream of some its subcomponent Si ,
and at the same time an output stream of some its subcomponent Sj (i 6= j), etc.

4We will use the expression specification group to denote the set of specifications of the system
on all refinement steps (both requirements and architecture specifications), and specifications of
all subcomponents (or, more precisely, all subcomponents trees) on all refinement steps.

12

Thus, the steam boiler system is relative small, and all its components can be
specified as a joined Isabelle/HOL theory (see Section ??). We present the following
Isabelle/HOL theories for this system:

X SteamBoiler types.thy – the data type definitions,

X SteamBoiler inout.thy – the specification of component interfaces (relations
between the sets of input and output channels) and the corresponding cor-
rectness proofs,

X SteamBoiler.thy – the Isabelle/HOL specifications of the system components,

X SteamBoiler proof – the proof of refinement relation between the requirements
and the architecture specifications.

The Isabelle/HOL specification of these types and (component and channel) iden-
tifiers is presented below by the theory SteamBoiler types.thy. This theory does
not contain any other type definitions, because the specification group SteamBoiler
does not use any non-standard datatypes.

Remark: Please note, that the theory inout.thy (see Section ??) must be copied
into the same folder as the theory stream.thy, SteamBoiler types.thy, SteamBoiler inout.thy

etc. The “SpecificationGroupName” must be replaced by the name of specification
group – by SteamBoiler.
theory SteamBoiler_types = Main + stream:

datatype specID =

sControlSystem

| sControlSystemArch

| sSteamBoiler

| sController

| sConverter

datatype chanID = ch_s | ch_x | ch_y | ch_z

end

The theory SteamBoiler inout.thy is based only on the theory inout.thy. First of all
we specify the subcomponents relations for all components of the system by the func-
tion subcomponents. For all elementary components (specifications) the list of sub-
components must be empty. Then we specify the list of input, output and local chan-
nels for all components by the functions ins, out and loc respectively. After that we
prove that the predicates correctInOutLoc and correctComposition hold for all com-
ponents, and also that the predicates correctCompositionIn, correctCompositionOut
and correctCompositionLoc holds for composite components (specifications).

13

theory SteamBoiler_inout = Main + inout:

primrec
"subcomponents sControlSystem = []"

"subcomponents sControlSystemArch =

[sSteamBoiler, sController, sConverter]"

"subcomponents sSteamBoiler = []"

"subcomponents sController = []"

"subcomponents sConverter = [] "

primrec
"ins sControlSystem = []"

"ins sControlSystemArch = []"

"ins sSteamBoiler = [ch_x]"

"ins sController = [ch_y]"

"ins sConverter = [ch_z]"

primrec
"loc sControlSystem = []"

"loc sControlSystemArch = [ch_x, ch_y, ch_z]"

"loc sSteamBoiler = []"

"loc sController = []"

"loc sConverter = []"

primrec
"out sControlSystem = [ch_s]"

"out sControlSystemArch = [ch_s]"

"out sSteamBoiler = [ch_y, ch_s]"

"out sController = [ch_z]"

"out sConverter = [ch_x]"

Proofs for components

lemma spec_ControlSystem1:

"correctInOutLoc sControlSystem"

by (simp add: correctInOutLoc_def disjoint_def)

lemma spec_ControlSystem2:

"correctComposition sControlSystem"

by (simp add: correctComposition_def)

lemma spec_ControlSystemArch1:

"correctInOutLoc sControlSystemArch"

by (simp add: correctInOutLoc_def disjoint_def)

lemma spec_ControlSystemArch2:

"correctComposition sControlSystemArch"

by (simp add: correctComposition_def disjoint_def)

lemma spec_ControlSystemArch3:

"correctCompositionIn sControlSystemArch"

by (simp add: correctCompositionIn_def disjoint_def)

lemma spec_ControlSystemarch4:

"correctCompositionOut sControlSystemArch"

by (simp add: correctCompositionOut_def disjoint_def)

lemma spec_ControlSystemArch5:

"correctCompositionLoc sControlSystemArch"

by (simp add: correctCompositionLoc_def, auto)

14

lemma spec_SteamBoiler1:

"correctInOutLoc sSteamBoiler"

by (simp add: correctInOutLoc_def disjoint_def)

lemma spec_SteamBoiler2:

"correctComposition sSteamBoiler"

by (simp add: correctComposition_def)

lemma spec_Controller1:

"correctInOutLoc sController"

by (simp add: correctInOutLoc_def disjoint_def)

lemma spec_Controller2:

"correctComposition sController"

by (simp add: correctComposition_def)

lemma spec_Converter1:

"correctInOutLoc sConverter"

by (simp add: correctInOutLoc_def disjoint_def)

lemma spec_Converter2:

"correctComposition sConverter"

by (simp add: correctComposition_def)

end

5 Steam Boiler Specification in Isabelle/HOL

Translating the Focus specifications of all components from the specification group
SteamBoiler schematically (according the methodology), we get the Isabelle/HOL
theory below.

theory SteamBoiler = Main + stream + Bit:

constdefs ControlSystem :: "nat istream ⇒ bool"

"ControlSystem s ≡
(ts s) ∧
(∀ (j::nat). (200::nat) ≤ hd (s j) ∧ hd (s j) ≤ (800:: nat))"

constdefs
SteamBoiler :: "bit istream ⇒ nat istream ⇒ nat istream ⇒ bool"

"SteamBoiler x s y ≡
ts x

−→
((ts y) ∧ (ts s) ∧ (y = s) ∧
(hd (s 0) = (500::nat)) ∧
(∀ (j::nat). (∃ (r::nat).

(0::nat) < r ∧ r ≤ (10::nat) ∧
hd (s (Suc j)) =

(if hd (x j) = Zero

then (hd (s j)) - r

else (hd (s j)) + r))))"

constdefs
Converter :: "bit istream ⇒ bit istream ⇒ bool"

"Converter z x

≡

15

(ts x)

∧
(∀ (t::nat).

hd (x t) =

(if (fin_make_untimed (inf_truncate z t) = [])

then

Zero

else

(fin_make_untimed (inf_truncate z t)) !

((length (fin_make_untimed (inf_truncate z t))) - (1::nat))

))"

constdefs
Controller_L ::

"nat istream ⇒ bit iustream ⇒ bit iustream ⇒ bit istream ⇒ bool"

"Controller_L y lIn lOut z

≡
(z 0 = [Zero])

∧
(∀ (t::nat).

(if (lIn t) = Zero

then (if 300 < hd (y t)

then (z t) = [] ∧ (lOut t) = Zero

else (z t) = [One] ∧ (lOut t) = One

)

else (if hd (y t) < 700

then (z t) = [] ∧ (lOut t) = One

else (z t) = [Zero] ∧ (lOut t) = Zero)))"

constdefs
Controller :: "nat istream ⇒ bit istream ⇒ bool"

"Controller y z

≡
(ts y)

−→
(∃ l. Controller_L y (fin_inf_append [Zero] l) l z)"

constdefs
ControlSystemArch :: "nat istream ⇒ bool"

"ControlSystemArch s

≡
∃ x z :: bit istream. ∃ y :: nat istream.

(SteamBoiler x s y ∧ Controller y z ∧ Converter z x)"

end

6 Proof of the Steam Boiler System Properties

To show that the specified system fulfill the requirements we need to show that the
specification ControlSystemArch is a refinement of the specification ControlSystem.
It follows from the definition of behavioral refinement that in order to verify that

ControlSystem ; ControlSystemArch (1)

it is enough to prove that

16

[ControlSystemArch] ⇒ [ControlSystem] (2)

Therefore, we have to define and to prove a lemma (let us call it L0 ControlSystem),
that says the specification ControlSystemArch is a refinement of the specification
ControlSystem:

lemma L0_ControlSystem:

"
∧

s. [[ControlSystemArch s]] =⇒ ControlSystem s"

Proof of this lemma as well as proofs of all auxiliary lemmas are given in the Is-
abelle/HOL theory below.

theory SteamBoiler_proof = Main + SteamBoiler:

6.1 Properties of Controller Component

lemma L1_Controller:

"
∧

y l z.

[[Controller_L y (fin_inf_append [Zero] l) l z;

l t 6= Zero]]
=⇒ last (fin_make_untimed (inf_truncate z t)) = One"

apply (induct t)

apply (simp add: Controller_L_def)

apply clarify

apply (erule_tac x="0" in allE)

apply (simp split add: split_if_asm)

apply atomize

apply (erule_tac x="y" in allE)

apply (erule_tac x="l" in allE)

apply (erule_tac x="z" in allE)

apply simp

apply (subgoal_tac

"Controller_L y (fin_inf_append [Zero] l) l z")

prefer 2

apply simp

apply (simp add: Controller_L_def)

apply clarify

apply (erule_tac x="Suc t" in allE)

apply (erule_tac x="t" in allE)

apply (simp split add: split_if_asm)

apply clarify

apply (simp add: fin_make_untimed_append_empty fin_inf_append_def)

apply (simp add: fin_make_untimed_def)+

apply clarify

apply (simp add: fin_inf_append_def)

apply (simp add: fin_make_untimed_def)+

apply clarify

apply (simp add: fin_inf_append_def)

done

lemma L2_Controller:

"
∧

y lIn lOut z.

[[Controller_L y (fin_inf_append [Zero] l) l z;

l t = Zero]]

17

=⇒ last (fin_make_untimed (inf_truncate z t)) = Zero"

apply (induct t)

apply (simp add: Controller_L_def)

apply clarify

apply (erule_tac x="0" in allE)

apply (simp split add: split_if_asm)

apply (simp add: fin_make_untimed_def)+

apply atomize

apply (erule_tac x="z" in allE)

apply simp

apply (subgoal_tac

"Controller_L y (fin_inf_append [Zero] l) l z")

prefer 2

apply simp

apply (simp add: Controller_L_def)

apply clarify

apply (erule_tac x="Suc t" in allE)

apply (erule_tac x="t" in allE)

apply (simp split add: split_if_asm)

apply (simp add: correct_fin_inf_append1)+

done

lemma L3_Controller:

" [[Controller_L y (fin_inf_append [Zero] l) l z]]
=⇒
last (fin_make_untimed (inf_truncate z t)) = l t"

apply (case_tac "l t")

apply (simp add: L1_Controller L2_Controller)+

done

lemma L4_Controller:

" [[Controller_L s (fin_inf_append [Zero] l) l z]]
=⇒ fin_make_untimed (inf_truncate z i) 6= []"

apply (simp add: Controller_L_def)

apply (subgoal_tac "∀ i. 0 ≤ i −→ fin_make_untimed (inf_truncate z i) 6=
[]")

prefer 2

apply (simp add: fin_make_untimed_inf_truncate_Nonempty_all0a)

apply simp

done

6.2 Properties of the System

lemma L1_ControlSystem:

"
∧

s. ControlSystemArch s =⇒ (200::nat) ≤ hd (s i)"

apply (simp only: ControlSystemArch_def)

apply clarify

apply (induct i)

apply (simp add: SteamBoiler_def)

apply (simp add: Converter_def)

apply atomize

apply (erule_tac x="s" in allE)

apply (erule_tac x="x" in allE)

apply (erule_tac x="z" in allE)

apply (erule_tac x="y" in allE)

apply simp

apply (simp add: SteamBoiler_def Controller_def Converter_def)

18

apply clarify

apply (erule_tac x="i" in allE)+

apply clarify

apply (simp split add: split_if_asm)

apply (simp add: L4_Controller)

apply (subgoal_tac "last (fin_make_untimed (inf_truncate z i)) = l i")

prefer 2

apply (simp add: L3_Controller)

apply (simp add: Controller_L_def)

apply clarify

apply (erule_tac x="i" in allE)

apply (simp split add: split_if_asm)

apply arith

apply (simp add: fin_make_untimed_nth_length)

apply (simp add: last_nth_length)

apply arith

done

lemma L2_ControlSystem:

"
∧

s. ControlSystemArch s =⇒ hd (s i) ≤ (800:: nat)"

apply (simp only: ControlSystemArch_def)

apply clarify

apply (induct i)

apply (simp add: SteamBoiler_def)

apply (simp add: Converter_def)

apply atomize

apply (erule_tac x="s" in allE)

apply (erule_tac x="x" in allE)

apply (erule_tac x="z" in allE)

apply (erule_tac x="y" in allE)

apply simp

apply (simp add: SteamBoiler_def Controller_def Converter_def)

apply clarify

apply (erule_tac x="i" in allE)

apply (erule_tac x="i" in allE)

apply clarify

apply (simp split add: split_if_asm)

apply (simp add: L4_Controller)

apply (subgoal_tac "last (fin_make_untimed (inf_truncate z i)) = l i")

prefer 2

apply (simp add: L3_Controller)

apply (simp add: Controller_L_def)

apply clarify

apply (erule_tac x="i" in allE)

apply (simp split add: split_if_asm)

apply arith+

apply (subgoal_tac "last (fin_make_untimed (inf_truncate z i)) = l i")

prefer 2

apply (simp add: L3_Controller)

apply (simp add: Controller_L_def)

apply clarify

apply (erule_tac x="i" in allE)

19

apply (simp split add: split_if_asm)

apply (simp add: last_nth_length)+

done

6.3 Proof of the Refinement Relation

lemma L0_ControlSystem:

"
∧

s. [[ControlSystemArch s]] =⇒ ControlSystem s"

apply (simp add: ControlSystem_def)

apply auto

apply (simp add: ControlSystemArch_def)

apply (simp add: SteamBoiler_def)

apply (simp add: Converter_def)

apply auto

apply (simp add: L1_ControlSystem)

apply (simp add: L2_ControlSystem)

done

7 Conclusions

This paper represents the extension of the steam boiler specification from [1], its
translation in Isabelle/HOL [2] and its formal verification according to the method-
ology “Focus on Isabelle/HOL”.The case study has shown the feasibility of the
methodology “Focus on Isabelle/HOL”: the translation from a timed Focus spec-
ification to the specification in Isabelle/HOL can be done in the schematical way.
The corresponding proof in Isabelle/HOL has shown that the Focus specification of
the steam boiler architecture is a refinement of the steam boiler requirements spec-
ification and the proof that the architecture specification fulfill the requirements
specification, i.e. is its behavioral refinement.

Proving this relation in Isabelle/HOL, we found out that to argue about proper-
ties of the Controller component of the system we need an additional (vs. original
specification from [1]) assumption about the input stream y – that the stream y is
a time-synchronous one.

The correctness of the input/output relations was also proven for all components
of the system.

References

[1] Broy, M., and Stølen, K. Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. 2001.

[2] Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL – A Proof
Assistant for Higher-Order Logic, vol. 2283 of LNCS. Springer, 2002.

[3] Wenzel, M. The Isabelle/Isar Reference Manual. Technische Universität
München, 2004. Part of the Isabelle distribution.

20

