
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Dichotomy Results for Fixed Point Counting in
Boolean Dynamical Systems

Sven Kosub Christopher M. Homan

ABCDE
FGHIJ
KLMNO

TUM-I0706

Januar 07

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-01-I0706-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2007

Druck: Institut für Informatik der

Technischen Universität München

Dichotomy Results for Fixed Point Counting in Boolean
Dynamical Systems

Sven Kosub
Fakultät für Informatik

Technische Universität München,
D-85748 Garching, Germany

kosub@in.tum.de

Christopher M. Homan
Department of Computer Science
Rochester Institute of Technology

Rochester, NY 14623, USA
cmh@cs.rit.edu

Abstract

We present dichotomy theorems regarding the computational complexity of counting
fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems
over the domain {0, 1}. For a class F of boolean functions and a class G of graphs, an
(F ,G)-system is a boolean dynamical system with local transitions functions lying in F
and graph in G. We show that, if local transition functions are given by lookup tables,
then the following complexity classification holds: Let F be a class of boolean functions
closed under superposition and let G be a graph class closed under taking minors. If F
contains all min-functions, all max-functions, or all self-dual and monotone functions, and
G contains all planar graphs, then it is #P-complete to compute the number of fixed points
in an (F ,G)-system; otherwise it is computable in polynomial time. The theorem relies
on an evident conjecture for an open case. In contrast, we prove a dichotomy theorem
for the case that local transition functions are given by formulas (over logical bases). A
corresponding theorem for boolean circuits coincides with the theorem for formulas.

1 Introduction

Efforts to understand the behavior of complex systems have led to various models for finite
discrete dynamical systems, including (finite) cellular automata (see, e.g., [32, 33]), discrete
recurrent Hopfield networks (see, e.g., [17, 1]), and concurrent and communicating finite state
machines (see, e.g., [20, 23]). A fairly general class of systems was introduced in [6]. There, a
finite discrete dynamical system (over a finite domain D) is defined as: (a) a finite undirected
graph, where vertices correspond to variables and edges correspond to an interdependence
between the two connected variables, (b) for each vertex v, a local transition function that
maps tuples of values (belonging to D) of v and v’s neighbors to values of v, and (c) an update
schedule that governs which variables are allowed to update their values in which time steps.
Formal definitions can be found in Sect. 2.

A central goal in the study of dynamical systems is to classify them according to how easy it
is to predict their behavior. In a finite, discrete setting, a certain behavioral pattern is consid-
ered predictable if it can be decided in polynomial time whether a given system will show the

1

pattern [10]. Although the pattern reachability problem is, in general, an intractable problem,
i.e., at least NP-hard (see, e.g., [15, 26, 4]), many tractable classes of patterns and systems
have been identified. However, there is still a serious demand for exhaustive characterizations
of islands of predictability.

A fundamental behavioral pattern is the fixed point (a.k.a., homogeneous state, or equilib-
rium). A value assignment to the variables of a system is a fixed point if the values assigned
to the variables are left unchanged after the system updates them. Note that fixed points are
invariant under changes of the update regime. In this sense, they can be seen as a particu-
larly robust behavior. A series of recent papers has been devoted to the identification of finite
systems with tractable/intractable fixed-point analyses [5, 29, 27, 28, 18]. Precise boundaries
are known for which systems finding fixed points can be done in polynomial time. For the
fixed-point counting problem this is far less so.

Contributions of the paper. We prove dichotomy theorems on the computational complexity
of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical
systems over the domain {0, 1}. For a class F of boolean functions and a class G of graphs,
an (F ,G)-system is a boolean dynamical system with local transition functions lying in F and
a graph lying in G. Following [18], Post classes (a.k.a., clones) and forbidden-minor classes
are used to classify (F ,G)-systems. In Sect. 4 we state the following theorem (Theorem 8):
Let F be a class of boolean function closed under superposition and let G be a minor-closed
graph class. If F contains all min-functions, all max-functions, or all self-dual and monotone
functions, and G contains all planar graphs, then it is #P-complete to compute the number
of the fixed points in an (F ,G)-system; otherwise it is computable in polynomial time. Here,
the local transition functions are supposed to be given by lookup tables. In fact, we prove
a conditional version of the theorem requiring an evident conjecture for the only open case.
In addition, we prove a dichotomy theorem (Theorem 18) for the case that local transition
functions are given by formulas (over logical bases). Moreover, the corresponding theorem for
boolean circuits coincides with the theorem for formulas. The theorem has a significantly more
complicated structure than for lookup tables.

Related work. There is a series of work regarding the complexity of certain computational prob-
lems for finite discrete dynamical systems (see, e.g., [15, 26, 5, 2, 3, 29, 27, 4] and the references
therein). The problem of counting fixed points of boolean dynamical systems has been studied
in [29, 27, 28]. To summarize: counting the number of fixed points is in general #P-complete.
So is counting the number of fixed points for boolean dynamical systems with monotone local
transition functions over planar bipartite graphs or over uniformly sparse graphs. We note that
all system classes considered here are based on formula or circuit representations. That is, if
they fit into our scheme at all, then the intractability results fall into the scope of Theorem
18 (and are covered there). Detailed studies of computational problems related to fixed-point
existence have been reported in [5, 18]. In [18], a complete classification of the fixed-point
existence problem with respect to the analysis framework we use in this paper was shown.

2 The Dynamical Systems Framework

In this section we present a formal framework for dynamical systems. A fairly general approach
is motivated by the theoretical study of simulations. The following is based on [8, 6, 7, 18].

2

The underlying network structure of a dynamical system is given by an undirected graph
G = (V, E) without multi-edges and loops. We suppose that the set V of vertices is ordered.
So, without loss of generality, we assume V = {1, 2, . . . , n}. For any vertex set U ⊆ V , let
NG(U) denote the neighbors of U in G, i.e.,

NG(U) =def { j | j /∈ U and there is an i ∈ U such that {i, j} ∈ E }.
If U = {i} for some vertex i, then we use NG(i) as a shorthand for NG({i}). The degree di of
a vertex i is the number of its neighbors, i.e., di =def ‖NG(i)‖.

A dynamical system S over a domain D is a pair (G, F) where G = (V, E) is an undirected
graph (the network) and F = {fi | i ∈ V } is a set of local transition functions fi : Ddi+1 → D.
The intuition of the definition is that each vertex i corresponds to an active element (entity,
agent, actor etc.) which is always in some state xi and which is capable to change its state, if
necessary. The domain of S formalizes the set of possible states of all vertices of the network,
i.e., for all i ∈ V , it always holds that xi ∈ D. A vector ~x = (xi)i∈V such that xi ∈ D for all
i ∈ V is called a configuration of S. The local transition function fi for some vertex i describes
how i changes its state depending on the states of its neighbors NG(i) in the network and its
own state.

We are particularly interested in dynamical system operating on a discrete time-scale. A
discrete dynamical system S = (S, α) consists of a dynamical system S and a mapping α :
{1, . . . , T} → P(V), where V is a set of vertices of the network of S and T ∈ IN. The mapping
α is called the update schedule and specifies which states updates are realized at certain time-
steps: for t ∈ {1, . . . , T}, α(t) specifies those vertices that simultaneously update their states
in step t.

A discrete dynamical system S = (S, α) over domain D induces a global map FS : Dn → Dn

where n is the number of vertices of S. For each vertex i ∈ V , define an activity function ϕi

for a set U ⊆ V and ~x = (x1, . . . , xn) ∈ Dn by

ϕi[U](~x) =def

{
fi(xi1 , . . . , xidi+1

) if i ∈ U

xi if i /∈ U

where {i1, i2, . . . , idi+1} = {i} ∪ NG(i). For a set U ⊆ V , define the global transition function
FS[U] : Dn → Dn for all ~x ∈ Dn by

FS[U](~x) =def (ϕ1[U](~x), . . . , ϕn[U](~x)).

Note that the global transition function does not refer to the update schedule, i.e., it only
depends on the dynamical system S and not on S. The function FS : Dn → Dn computed by
the discrete dynamical system S, the global map of S, is defined by

FS =def

T∏
k=1

FS[α(k)].

The central notion for our study of dynamical systems is the concept of a fixed point,
i.e., a configuration which does not change under any global behavior of the system. Let
S = (G, {fi | i ∈ V }) be a dynamical system over domain D. A configuration ~x ∈ Dn is said
to be a local fixed point of S for U ⊆ V if and only if FS[U](~x) = ~x. A configuration ~x ∈ Dn is
said to be a fixed point of S if and only if ~x is a local fixed point of S for V . Note that a fixed
point does not depend on a concrete update schedule: a configuration ~x ∈ Dn is a fixed point
of S if and only if for all update schedules α : {1, . . . , T} → P(V), it holds that F(S,α)(~x) = ~x.

3

3 The Analysis Framework

In this section we specify our analysis framework for (F ,G)-systems. Following [18], local
transition functions are classified by Post classes, i.e., superpositionally closed classes of boolean
functions, and graphs are classified using the theory of graph minors as a tool. In the following
we gather relevant notation.

3.1 Transition Classes

We adopt notation from [9]. An n-ary boolean function f is a mapping f : {0, 1}n → {0, 1}. Let
BF denote the class of all boolean functions. There are two 0-ary boolean functions: c0 =def 0
and c1 =def 1 (which are denoted in formulas by the symbols 0 and 1). There are two 1-ary
boolean functions: id(x) =def x and not(x) =def 1− x (which are denoted in formulas by x for
id(x) and x for not(x)).

We say that a class F is Post if and only if F contains the function id and F is closed under
the introduction of fictive variables, permutations of variables, identification of variables, and
substitution (see, e.g., [9] for definitions). It is a famous theorem by Post [21] that the family
of all Post classes is a countable lattice with respect to set inclusion. In particular, each Post
class is the intersection of a finite set of meet-irreducible classes, which are the following:

• The classes R0 and R1. For b ∈ {0, 1}, a boolean function f is said to be b-reproducing if
and only if f(b, . . . , b) = b. Let Rb denote the class of all b-reproducing functions.

• The class M. For binary n-tuples ~a = (a1, . . . , an) and ~b = (b1, . . . , bn), we say that
(a1, . . . , an) ≤ (b1, . . . , bn) if and only if for all i ∈ {1, . . . , n}, it holds that ai ≤ bi. An
n-ary boolean function f is said to be monotone if and only if for all ~x, ~y ∈ {0, 1}n, ~x ≤ ~y
implies f(~x) ≤ f(~y). Let M denote the class of all monotone boolean functions.

• The class D. An n-ary boolean function f is said to be self-dual if and only if for all
(x1, . . . , xn) ∈ {0, 1}n, it holds that f(x1, . . . , xn) = not(f(not(x1), . . . , not(xn))). Let D
denote the class of all self-dual functions.

• The class L. A boolean function f is linear if and only if there exists constants a1, . . . , an ∈
{0, 1} such that f(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn. Note that ⊕ is understood as
addition modulo 2 and xy is understood as multiplication modulo 2. Let L denote the
class of all linear functions. The logical basis of L is {⊕, 0, 1}.

• The classes Sb and Sk
b . For b ∈ {0, 1}, a tuple set T ⊆ {0, 1}n is said to be b-separating if

and only if there is an i ∈ {1, . . . , n} such that for (t1, . . . , tn) ∈ T holds ti = b. A boolean
function f is b-separating if and only if f−1(b) is b-separating. A function f is called
b-separating of level k if and only if every T ⊆ f−1(b) such that ‖T‖ = k is b-separating.
Let Sb denote the class of b-separating functions and let Sk

b denote the class of all functions
which are b-separating of level k.

• The classes E and V. We denote by E the class of all AND functions, i.e., the class of all
functions f , the arity of which is n, such that for some set J ⊆ {1, . . . , n}, the equality
f(x1, . . . , xn) = mini∈J xi is satisfied for all x1, . . . , xn ∈ {0, 1}. The logical basis over E

4

is {∧, 0, 1}. Dually, we denote by V the class of all OR functions, i.e., the class of all
functions f , the arity of which is n, such that for some set J ⊆ {1, . . . , n}, the equality
f(x1, . . . , xn) = maxi∈J xi is satisfied for all x1, . . . , xn ∈ {0, 1}. The logical basis of V is
{∨, 0, 1}.

• The class N. An n-ary boolean function f is a projection if and only if there is an i ∈
{1, . . . , n} such that for all x1, . . . , xn ∈ {0, 1}, it holds that f(x1, . . . , xn) = xi. A boolean
function f is the negation of a projection if and only if there is an i ∈ {1, . . . , n} such
that for all x1, . . . , xn ∈ {0, 1}, it holds that f(x1, . . . , xn) = not(xi). A boolean function
f is constant if and only if there exists a b ∈ {0, 1} such that for all x1, . . . , xn ∈ {0, 1},
it holds that f(x1, . . . , xn) = b. Let N denote the class of boolean functions which are
projections, negations of projections, or constant functions.

Note that the classes possess the following inclusion structure (see, e.g., [9]):

• S0 ⊆ · · · ⊆ Sk
0 ⊆ Sk−1

0 ⊆ · · · ⊆ S2
0 ⊆ R1

• S1 ⊆ · · · ⊆ Sk
1 ⊆ Sk−1

1 ⊆ · · · ⊆ S2
1 ⊆ R0

• E ⊆ M and V ⊆ M

• N ⊆ L

No other inclusions hold among these classes. Moreover, all Post classes have a finite logical
basis. Particular relevance for our studies have the following classes:

D2 =def D ∩M with logical basis {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D1 =def D ∩ R0 ∩ R1 with logical basis {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
S00 =def S0 ∩M ∩ R0 with logical basis {x ∨ (y ∧ z)}
S10 =def S1 ∩M ∩ R1 with logical basis {x ∧ (y ∨ z)}
E2 =def E ∩ S10 with logical basis {∧}
V2 =def V ∩ S00 with logical basis {∨}

3.2 Network Classes

We adopt notation from [13]. Let X and Y be two undirected graphs. We say that X is minor
of Y if and only if there is a subgraph Y ′ of Y such that X can be obtained by contracting edges
of Y ′. Let � be the relation on graphs defined by X � Y if and only if X is a minor of Y . A
class G of graphs is said to be closed under taking minors if and only if for all graphs G and G′,
if G ∈ G and G′ � G, then G′ ∈ G. Let X be any set of graphs. Forb�(X) denotes the class of
all graphs without a minor in X (and which is closed under isomorphisms). More specifically,
Forb�(X) =def {G | G 6� X for all X ∈ X }. The set X is called the set of forbidden minors.
Note that Forb�(∅) is the class of all graphs. As usual, we write Forb�(X1, . . . , Xn) instead of
Forb�({X1, . . . , Xn}). Forbidden-minor classes are monotone with respect to �, i.e., X � Y
implies Forb�(X) ⊆ Forb�(Y). The celebrated Graph Minor Theorem, due to Robertson and
Seymour [25], shows that there are only countably many network classes closed under taking
minors: A class G of graphs is closed under taking minors if and only if there is a finite set X
such that G = Forb�(X).

5

Two graph classes are particularly relevant to our study: planar graphs and graphs having a
vertex cover of size one. Let Kn denote the complete graphs on n vertices and let Kn,m denote
the complete bipartite graph having n vertices in one component and m vertices in the other
component. The well-known Kuratowski-Wagner theorem (see, e.g., [13]) states that a graph
G is planar if and only if G belongs to Forb�(K3,3, K

5). Moreover, a graph X is planar if and
only if Forb�(X) has bounded treewidth [24]. As we use the treewidth of a graph only in a
black-box fashion, we refer to, e.g., [13] for a definition. A class G of graphs is said to have
bounded treewidth if and only if there is a k ∈ IN such that all graphs in the class have treewidth
at most k. Let G = (V, E) be a graph. We say that a subset U ⊆ V is a vertex cover of G if
and only if for all edges {u, v} ∈ E, it holds that {u, v} ∩ U 6= ∅. It is known that the class of
graphs having a vertex cover of size at most k is closed under taking minors [11]. Moreover, G
has a vertex cover of size one if and only if G belongs to Forb�(K3⊕K2) [11], where for graphs
G and G′, G ⊕ G′ denotes the graph obtained by the disjoint union of G and G′. A class of
graphs is said to have bounded degree if and only if there is a k ∈ IN such that all graphs in the
class have a maximum vertex-degree of at most k. It is known that a graph X has a vertex
cover of size one if and only if Forb�(X) has bounded degree (cf., e.g., [18]).

4 Islands of Tractability for Fixed Point Counting

In this section we are interested in the computational complexity of the following counting
problem. Let F be a class of boolean functions and let G be a class of graphs.

Problem: #FixedPoints(F ,G)
Input: An (F ,G)-system S, i.e., a boolean dynamical system S =

(G, {f1, . . . , fn}) such that G ∈ G and for all i ∈ {1, . . . , n}, fi ∈ F
Output: The number of fixed points of S

The complexity of the problem depends on how transition functions are represented. We
consider the cases of lookup table, formula, and circuit representations. The corresponding
problems are denoted by #FixedPointsT, #FixedPointsF, and #FixedPointsC. It is
obvious that all problem versions belong to #P. We say that a problem is intractable if it is
#P-hard (with respect to Turing reductions, as described in, e.g., [16]), and it is tractable if it
is solvable in polynomial time.

4.1 The Case of Local Transition Functions Given By Lookup Tables

We start by identifying tractable counting problems.

Lemma 1. #FixedPointsT(L, Forb�(∅)) is solvable in polynomial time.

Proof. Notice that for a linear function f(x1, . . . , xn) = a0 ⊕ a1x2 ⊕ a2x2 ⊕ · · · ⊕ anxn, the
proposition xi ↔ [a0 ⊕ a1x2 ⊕ a2x2 ⊕ · · · ⊕ anxn] is true if and only if a0 ⊕ a1x2 ⊕ a2x2 ⊕ · · · ⊕
anxn ⊕ xi ⊕ 1 is satisfiable. So, each dynamical system with linear, boolean local transition
functions constitutes a system of linear equations over Z2, for which the number of solutions
can be computed in polynomial time using Gaussian elimination (cf. [12]).

6

In [18], it has been shown that the decision version of #FixedPointsT(BF, Forb�(X)) for
planar graphs X can be solved in polynomial time. This result is obtained by a reduction to a
certain type of constraint satisfaction problems. Actually, the reduction establishes injections
between the fixed points of a dynamical system and the satisfying assignments of the corre-
sponding constraint satisfaction problem. Consequently, the numbers of fixed points and the
numbers of satisfying assignments are equal.

Lemma 2. Let X be a planar graph. Then, #FixedPoints(BF, Forb�(X)) is solvable in
polynomial time.

Proof. By inspection of [18] and noting that counting satisfying assignments for constraint
satisfaction problems having constraint graphs of bounded treewidth can be done in polynomial
time (cf. [14]).

We turn to the intractable fixed-point counting problems. Let H be a 2CNF such that
each clause consists of exactly one positive and one negative literal. H is called a Horn-2CNF
formula. Moreover, suppose H has a planar graph representation, i.e., the graph Γ(H) = (V, E)
with vertex set V = {x1, . . . , xn, C1, . . . , Cm}, where the xi’s are the variables and the Ci’s are
the clauses of H, and edge set E = {{xi, Cj} | xi is a variable in Cj} is planar. Then, H is
called a planar Horn 2-CNF formula. #Planar Horn-2SAT is the problem of counting all
satisfying assignments of a given planar Horn-2CNF formula.

Proposition 3. #Planar Horn-2SAT is #P-complete even if each variable is allowed to
occur in four clauses only.

Proof. In [30], it has been shown that the following problem is #P-complete: #4∆-Planar
Bipartite Independent Set, i.e., compute, on a given bipartite graph G = (V, E) with
maximum vertex-degree at most four, the number of independent sets U ⊆ V . Let G = (V, E)
be a bipartite graph, V = V1 ∪ V2 and E ⊆ V1× V2. Define H to be the 2CNF given by clauses
(xu ∨ xv) for all u ∈ V1, v ∈ V2 such that {u, v} ∈ E. Clearly, H is a Horn-2CNF formula.
Moreover, if G is planar and the maximum degree is at most four, the graph representation
of H is planar and each variable occurs at most four times in H. Finally, it is easily seen
that there is a bijection between the independent sets of G and the satisfying assignments
for H (cf., e.g., [22, 19]). Hence, #4∆-PlanarBipartite Independent Set reduces to
#Planar Horn-2SAT with each variable occuring in at most four clauses.

Lemma 4. #FixedPointsT(E2, Forb�(K3,3, K
5)) is #P-complete.

Proof. We reduce from #Planar Horn-2SAT assuming that each variable occurs only four
times in the formula. Let H = C1 ∧ · · · ∧ Cm be a planar Horn-2CNF formula. Define a
dynamical system S = (G, F) as follows. G = (V, E) is given by V =def {1, . . . , n} and E =def

{ {i, j} | (xi ∨ xj) = Cr for some r ∈ {1, . . . ,m} }. Since H has a planar graph representation,
G is planar, i.e., G ∈ Forb�(K3,3, K

5). The local transition functions are specified in the
following way. For a vertex i0 ∈ V let {i1, . . . , ir} be the set of all vertices such that (xij∨xi0) is a
clause in H. Then, fi0 is the function given by the formula Hi0 = xi0∧xi1∧· · ·∧xir . Notice that
all local transition functions belong to E2 and also notice that the maximum degree of a vertex
in G is four. Thus, we can compute the lookup tables in polynomial time depending on the size
of H. Moreover, it is easily seen that (xi0 ↔

∧r
j=1 xij) ≡

∧r
j=1(xij ∨ xi0). Hence, the number

7

of satisfying assignments of H is equal to the number of fixed-point configurations of SH . This
shows that #Planar Horn-2SAT reduces to #FixedPointsT(E2, Forb�(K3,3, K

5)).

Lemma 5. #FixedPointsT(V2, Forb�(K3,3, K
5)) is #P-complete.

Proof. Again we reduce from #Planar Horn-2SAT assuming that each variable occurs only
four times in the formula. Let H = C1∧· · ·∧Cm be a planar Horn-2CNF formula. We construct
the same network as in the proof of Lemma 4 on a given planar Horn-2CNF formula H having
the variables x1, . . . , xn. However, the local transition functions are specified as follows. For a
vertex i0 ∈ V , let {i1, . . . , ir} be the set of all vertices such that (xi0 ∨ xij) is a clause in H.
Then, fi0 is the function given by the formula Hi0 = xi0 ∨ xi1 ∨ · · · ∨ xir which clearly belongs
to V2. It remains to verify the number of satisfying assignments of H equals the number of
fixed-point configuration of SH . This follows from (xi0 ↔

∨r
j=1 xij) ≡

∧r
j=1(xi0 ∨ xij). Hence,

#Planar Horn-2SAT reduces to #FixedPointsT(V2, Forb�(K3,3, K
5)).

Proposition 6. #FixedPointsT(D1, Forb�(K3,3, K
5)) is #P-complete.

Proof. We reduce from the #Planar Horn-2SAT version where each variable occurs only
up to four times. Let H = C1 ∧ · · · ∧ Cm be a planar Horn 2CNF formula having variables
x1, . . . , xn. We define a dynamical system SH = (G, {f1, . . . , fn}) as follows. The network
G = (V, E) is given by

V =def {1, . . . , n, n + 1, . . . n + m}
E =def { {i, j } | (i ≤ n) and (j > n) and (xi is a variable in clause Cj−n)}.

That is, G is isomorphic to the graph representation of H. Hence, G is a planar graph.
Moreover, the maximum degree of G is at most four. First, assume that G is connected. The
local transition functions are specified as follows. For each i ∈ {1, . . . , n}, let {j1, . . . , jr} =
NG(i). Define

fi(xi, xj1 , . . . , xjr) =def

{
xi if xj1 = · · · = xjr

not(xi) otherwise

It is easily seen that for each i ∈ {1, . . . , n}, fi ∈ D1. Note that, since G is connected and
because each xj`

is an argument to exactly two of these functions, the above functions require
that all variables xj for j ∈ {n + 1, . . . , n + m}, i.e., all clauses, be equal in order to have a
fixed point. For each i ∈ {n + 1, . . . , n + m}, let (without loss of generality) Ci = (xi1 ∨ xi2).
Define a formula

Hi(xi, xi1 , xi2) =def

{
xi1 ∧ xi2 if xi = 0
xi1 ∨ xi2 if xi = 1

Let fi be the function represented by Hi. Truth-table inspection shows that for each i ∈
{n + 1, . . . , n + m}, fi ∈ D1. Note that the lookup tables for the local transition functions
have at most 25 entries. Also, it is easy to check that for every satisfying assignment of H
there are exactly two fixed points in SH , i.e, the number of fixed-point configurations of SH

is equal to 2 · #+(H), where #+(H) is the number of satisfying assignments of H. To see
this, note that a configuration ~x is a fixed point exactly when xn+1 = · · · = xn+m = 1 and
the values x1, . . . , xn are a satisfying assignment to H, or when xn+1 = · · · = xn+m = 0 and
x1, . . . , xn are a satisfying assignment to H ′, the formula that is the same as H except that each

8

literal is negated (so, e.g., literals with negations in H no longer have negations in H ′). Now,
assume that G is not connected. Then, the arguments apply independently to each connected
component of G, so the total number of fixed points becomes 2s ·#+(H), where s is the number
of connected components G has. All in all, this shows that #Planar Horn-2SAT reduces
to #FixedPointsT(D1, Forb�(K3,3, K

5)).

The remaining case of D2 functions is special. We conjecture that the fixed-point counting
problem for dynamical systems with local transition functions in D2 and planar networks is
intractable. This is based on the following weaker proposition.

Proposition 7. #FixedPointsT(D2, Forb�(∅)) is #P-complete.

Proof. We reduce from the #Planar Horn-2SAT version where each variable occurs only
up to four times. Let H = C1 ∧ · · · ∧ Cm be a planar Horn 2CNF formula having variables
x1, . . . , xn. We define a dynamical system SH = (G, {f1, . . . , fn}) as follows. The network
G = (V, E) is given by

V =def {1, . . . , n, n + 1, . . . , 2n}
E =def { {i, j } | (xi ∨ xj) or (xi ∨ xj) is a clause of H }

∪ { {i, i + n} | i ∈ {1, . . . , n} } ∪ { {j, j + 1} | j ∈ {n, . . . , 2n− 1}

The local transition functions are specified as follows. Set f2n(xn, x2n−1, x2n) =def x2n, fn+1(x1,
xn+1, xn+2) =def xn+2, and for n+1 < i < 2n, define fi(xi−n, xi−1, xi, xi+1) =def xi+1. For i ∈ U ,
let {0, i1, . . . , ir} = NG(i) ∪ {i} and let Ji denote the set of all vertices j ∈ NG(i) ∩ {1, . . . , n}
such that (xi ∨ xj) is a clause in H. We define a formula

Hi(xi1 , . . . , xir , xi+n) =def

{
xi ∧

∧
j∈Ji

xj if xi+n = 0

xi ∨
∨

j∈Ji
xj if xi+n = 1

Let fi be the boolean function represented by Hi. It is easily seen that for all i ∈ V , we
have fi ∈ D2. Note that the lookup tables for the local transition functions have at most 26

entries. Thus, SH is computable in time polynomial in the size of H. Moreover, a simple
analysis shows that the number of fixed-point configurations of SH is equal to 2 ·#+(H), where
#+(H) is the number of satisfying assignments of H. For this to obtain, observe that any
fixed-configuration ~x satisfies xn+1 = · · · = xn. Thus, #Planar Horn-2SAT reduces to
#FixedPointsT(D2, Forb�(∅)).

Finally, we combine the results to obtain the following conditional dichotomy theorem.

Theorem 8. Let F be a Post class of boolean functions and let G be a graph class closed un-
der taking minors. Under the assumption that #FixedPoints(D2, Forb�(K3,3, K

5)) is an
intractable problem, the following holds: If (F ⊇ V2 or F ⊇ E2 or F ⊇ D2) and G ⊇
Forb�(K3,3, K

5), then #FixedPointsT(F ,G) is intractable, otherwise #FixedPointsT(F ,G)
is tractable.

Proof. If (F ⊇ V2 or F ⊇ E2 or F ⊇ D2) and G ⊇ Forb�(K3,3, K
5), then #FixedPointsT

(F ,G) is #P-complete by Lemma 4, Lemma 5, and by the assumption made for D2. Suppose

9

the premise is not satisfied. First, assume that F 6⊆ V2, F 6⊆ E2, and F 6⊆ D2. The maximal
Post class having this property is L. By Lemma 1, #FixedPointsT(L, Forb�(∅)) is tractable.
It remains to consider the case G 6⊇ Forb�(K3,3, K

5). That is G ⊆ Forb�(X) for some planar
graph X. Lemma 2 shows that #FixedPointsT(BF,G) is solvable in polynomial time.

4.2 Succinctly Represented Local Transition Functions

In this section we prove a dichotomy theorem for the fixed-point counting problem when tran-
sition are given by formulas or circuits. As usual, the size of formula is the number of symbols
from the basis used to encode the formula, the size of a circuit is the number of gates (from
the basis) it consists of (including the input gates). Both succinct representations of functions
lead to the same result. We only prove special results for the case of formula representations.
The corresponding results for circuit representations follow easily.

Again we start with gathering the tractable cases.

Lemma 9. #FixedPointsF(L, Forb�(∅)) is solvable in polynomial time.

Proof. Similar to the proof of Lemma 1 by noting that each boolean circuit C over the base
{⊕, 1, 0} can be easily transformed (in polynomial time in the number of gates of C) into the
described system of linear equations over Z2.

Lemma 10. Let X be a planar graph. Then, #FixedPointsF(E, Forb�(X)) is solvable in
polynomial time.

Proof. Since X is planar, there exists a k ∈ IN such that for all G ∈ Forb�(X), the treewidth
of G is at most k. Let S = (G, {f1, . . . , fn}) be a dynamical system such that G = (V, E) ∈
Forb�(X) and for all i ∈ V , the local transition function fi is one of the constant functions c0

or c1, or is represented by a formula Hi =
∧

j∈Ji
xj, where Ji ⊆ NG(i) ∪ {i}. Without loss of

generality, we may assume that there is no i ∈ V such that fi ≡ c1 or fi ≡ c0. (Otherwise,
an obvious procedure exists to eliminate such vertices.) We define the directed graph A(S) to
consist of S’s vertex set V and the edge set E ′ =def { (i, j) | i, j ∈ V, i ∈ Jj }. Note that A(S) is
allowed to have loops. Observe that for all vertices i, j ∈ V and all fixed-point configurations ~x
it holds that if xi = 0 then xj = 0. An easy consequence is that if C = {i1, . . . , ir} is a strongly
connected component of A(S) and ~x is a fixed-point configuration, then xi1 = · · · = xir . Let
{C1, . . . , C`} be the set of all strongly connected components of A(S). Then, the number of
fixed-point configurations of S is equal to the number of satisfying assignments of the constraint
satisfaction problem CSP(S) = (W,D, C) defined by W =def {x1, . . . , x`}, D =def {0, 1}, and
C =def { Exixj | there are u ∈ Ci and v ∈ Cj such that (u, v) ∈ E ′ } where for all i, j such that
Exixj ∈ C, Eij =def { (0, 0), (1, 0), (1, 1) }1. Note that the constraint graph of CSP(S) (up to
being oriented) is a minor of the network of S. It follows that the constraint graph has treewidth
at most k. Hence, using the algorithms in [14], the number of fixed-point configurations can be

1A constraint satisfaction problem (CSP) consists of triples (X,D, C), where X = {x1, . . . , xn} is the set
of variables, D is the domain of the variables, C is a set of constraints Rxi1 , . . . , xik

having associated cor-
responding relations Ri1,...,ik

. The set C of constraints is listed by pairs 〈Rxi1 , . . . , xik
, Ri1,...,ik

〉. A solu-
tion for (X,D, C) is an assignment I : X → D such that (I(xi1), . . . , I(xik

)) ∈ Ri1,...,ik
for all constraints

Rxi1 , . . . , xik
∈ C. The (primal) constraint graph for (X,D, C) consists of the vertex set X and the edge set

{{xi, xj} | xi and xj occur in the same constraint of C}.

10

computed in polynomial time. Consequently, #FixedPointsF(E, Forb�(X)) can be solved in
polynomial time.

Lemma 11. Let X be a planar graph. Then, #FixedPointsF(V, Forb�(X)) is solvable in
polynomial time.

Proof. The case of V is dual to the case of E. Indeed, suppose we have a dynamical system
S = (G, {f1, . . . , fn}) such that G = (V, E) ∈ Forb�(X) and for all i ∈ V , fi is constant or rep-
resented by a formula Hi =

∨
j∈Ji

xj where Ji ⊆ NG(i)∪{i}. Replace each ∨ by ∧, 0 by 1, and 1
by 0. Obviously, this gives a dynamical system having the same number of fixed-point configura-
tions as S. Thus, #FixedPointsF(V, Forb�(X)) reduces to #FixedPointsF(E, Forb�(X)).
Hence, by Lemma 10, #FixedPointsF(V, Forb�(X)) can be solved in polynomial time.

Lemma 12. Let X be a graph with a vertex cover of size one. Then, #FixedPointsF

(BF, Forb�(X)) is solvable in polynomial time.

Proof. Let X have a vertex cover of size one, i.e., Forb�(X) has bounded degree. So, it is
easily seen that for all classes F of boolean functions, #FixedPointsF(F , Forb�(X)) reduces
to #FixedPointsT(F , Forb�(X)). As X is also a planar graph (note that K3 ⊕ K2 � K3,3

and K3 ⊕ K2 � K5), #FixedPointsF(BF, Forb�(X)) is solvable in polynomial time using
Lemma 2.

We turn to the #P-complete cases.

Lemma 13. #FixedPointsF(E2, Forb�(K3,3, K
5)) is #P-complete.

Proof. An inspection of the proof of Lemma 4 shows that the local transition functions specified
there are in fact, represented by formulas. Thus, the proposition follows from the proof of
Lemma 4.

Lemma 14. #FixedPointsF(V2, Forb�(K3,3, K
5)) is #P-complete.

Proof. Similar to Lemma 13 by inspecting the proof of Lemma 5.

Let H be a 2CNF formula such that each clause consists of positive literals only. H is called
a positive 2CNF. It is well known that the counting problem #Pos 2SAT , i.e., counting the
satisfying assignments of positive 2CNF, is #P-complete [31].

Lemma 15. #FixedPointsF(S10, Forb�(K3 ⊕K2)) is #P-complete.

Proof. We reduce from #Pos 2SAT. Let H = C1 ∧ · · · ∧ Cm be a positive 2CNF formula
having variables x1, . . . , xn. Let #+(H) denote the number of satisfying assignments of H. Let
S10(x, y, z) =def (x ∧ (y ∨ z)) denote the only element in the logical basis of S10. Define SH to
be the dynamical system consisting of the network G = (V, E), where V =def {1, . . . , n, n + 1}
and E =def { {i, n + 1} | i ∈ {1, . . . , n} }, and the local transition functions are specified as
follows. For i ∈ {1, . . . , n} set Pi(xi, xn+1) =def S10(xi, xi, xi) and let fi be represented by Pi.
For i = n + 1, we first define auxiliary formulas Aj for j ∈ {1, . . . ,m} by A1(x1, . . . , xn+1) =def

S10(xn+1, x11, x12) and for k > 1 by Ak(x1, . . . , xn+1) =def S10(Ak−1(x1, . . . , xn+1), xk1, xk2)
where Ck = (xk1 ∨ xk2). Finally, set Pn+1(x1, . . . , xn+1) =def Am(x1, . . . , xn+1) and let fn+1

be represented by Pn+1. Certainly, SH is an (S10, Forb�(K3⊕K2))-system computable in time

11

polynomial in the size of H. Moreover, note that Pn+1(x1, . . . , xn+1) ≡ xn+1 ∧
∧m

j=1 Cj. It fol-
lows that the number of fixed-point configurations of SH is #+(H) + 2n. Hence, #Pos 2SAT
reduces to #FixedPointsF(S10, Forb�(K3 ⊕K2)).

Lemma 16. #FixedPointsF(S00, Forb�(K3 ⊕K2)) is #P-complete.

Proof. Again we reduce from #Pos 2SAT. Let H = C1∧· · ·∧Cm be a positive 2CNF formula
having variables x1, . . . , xn. Let #+(H) denote the number of satisfying assignments of H.
Let S00(x, y, z) =def (x ∨ (y ∧ z)) denote the only element in the logical basis of S00. We
define SH to be the dynamical system consisting of the network G = (V, E), where V =def

{0, 1, . . . , n, n + 1} and E =def { {i, n + 1} | i ∈ {0, . . . , n} }, and the set of local transition
functions specified as follows: for i ∈ {0, . . . , n}, set Pi(xi, xn+1) =def S00(xi, xi, xi) and let fi

be the function represented by Pi. For i = n+1, i.e., the center of the star G, we first introduce
auxiliary formulas Aj1,...,jk

(x0, x1, . . . , xn) for k ∈ IN+ and j1 < · · · < jk inductively defined by
Ai(x0, x1, . . . , xn) =def S00(xi1 , xi2 , xi2), such that Ci = (xi1 ∨ xi2), and

Aj1,...,jk
(x0, . . . , xn) =def S00(x0, Aj1,...,jbk/2c(x0, . . . , xn), Ajbk/2c+1,...,jk

(x0, . . . , xn)).

We finally define Pn+1(x0, . . . , xn+1) =def S00(x0, A1,...,m(x0, . . . , xn), xn+1). Clearly, SH is an
(S00, Forb�(K3 ⊕K2))-system computable in time polynomial in the size of H. Moreover, as
is easily seen by induction it holds that

Aj1,...,jk
(c0, x1, . . . , xn) ≡

∧k
`=1 C` and Aj1,...,jk

(c1, x1, . . . , xn) ≡ c1.

This leads to the following numbers of fixed-point configurations of SH :

- there are 2n fixed-point configurations ~x such that x0 = 0 and xn+1 = 0,

- there are #+(H) fixed-point configurations ~x such that x0 = 0 and xn+1 = 1,

- there is no fixed-point configuration ~x such that x0 = 1 and xn+1 = 0, and

- there are 2n fixed-point configurations ~x such that x0 = 1 and xn+1 = 1.

Hence, the number of fixed-point configurations of SH is just #+(H) + 2n+1. Consequently,
#Pos 2SAT reduces to #FixedPointsF(S00, Forb�(K3 ⊕K2)).

Lemma 17. #FixedPointsF(D2, Forb�(K3 ⊕K2)) is #P-complete.

Proof. We reduce from #Pos 2SAT. We construct the same network as for the case S00 in
the proof Lemma 16 on a given positive 2CNF formula H = C1 ∧ · · · ∧ Cm having variables
x1, . . . , xn. Let #+(H) denote the number of satisfying assignments of H. The local transition
functions are specified as follows. Let D2(x, y, z) =def (x∧ y)∨ (x∧ z)∨ (y ∧ z) denote the only
element in the logical basis of D2. For i ∈ {0, . . . , n} set Pi(xi, xn+1) =def D2(xi, xi, xi) and let
fi be represented by Pi. For i = n+1, we again introduce auxiliary Aj1,...,jk

(x0, x1, . . . , xn, xn+1)
for k ∈ IN+ and j1 < · · · < jk inductively defined by Ai(x0, . . . , xn+1) =def D2(xi1 , xi2 , xn+1),
such that Ci = (xi1 ∨ xi2), and

Aj1,...,jk
(x0, . . . , xn+1) =def D2(Aj1,...,jbk/2c(x0, . . . , xn+1), Ajbk/2c+1,...,jk

(x0, . . . , xn+1), x0).

12

We finally define Pn+1 =def A1,...,m. Evidently, SH is a (D2, Forb�(K3 ⊕K2))-system and can
be computed in time polynomial in the size of H. Moreover, by induction over the formula
structure of Pn+1 we easily obtain the following equivalences:

Pn+1(0, x1, . . . , xn, 0) ≡
∧n

i=1 xi

Pn+1(0, x1, . . . , xn, 1) ≡
∧m

i=1(xi1 ∨ xi2)

Pn+1(1, x1, . . . , xn, 0) ≡
∨m

i=1(xi1 ∧ xi2)

Pn+1(1, x1, . . . , xn, 1) ≡
∨n

i=1 xi

Thus, the number of fixed-point configurations of SH is exactly 2#+(H) + 2n+1 − 2. Hence,
#Pos 2SAT reduces to #FixedPointsF(D2, Forb�(K3 ⊕K2)).

Finally, we combine all results to obtain the following dichotomy theorem.

Theorem 18. Let F be a Post class of boolean functions and let G be a graph class closed under
taking minors. Then, #FixedPointsF(F ,G)) is intractable if one of the following conditions
is satisfied.

1.
(
F ⊇ S00 or F ⊇ S10 or F ⊇ D2

)
and G ⊇ Forb�(K3 ⊕K2).

2.
(
F ⊇ V2 or F ⊇ E2

)
and G ⊇ Forb�(K3,3, K

5).

Otherwise, #FixedPointsF(F ,G) is tractable. Moreover, the same classification is true for
#FixedPointsC(F ,G).

Proof. If for F and G the first conditions is satisfied, then the intractability follows from Lemmas
15, 16, and 17. If G 6⊇ Forb�(K3 ⊕K2), then, as argued in [18], there is a graph X having a
vertex cover of size one such that G ∈ Forb�(X). Lemma 12 shows that #FixedPointsF(BF,
Forb�(G)) is solvable in polynomial time. Assume that F 6⊇ S00, F 6⊇ S10, and F 6⊇ D2. The
maximal Post classes satisfying this are V, E, and L. Thus, we only consider subclasses of these
three classes. If F and G satisfy the second condition, then the Lemmas 13 and 14 establish
the intractability. Suppose the second condition does not hold. The maximal class F such that
F 6⊇ V2 and F 6⊇ E2 is L. Lemma 9 states that for L counting fixed-points can be done in
polynomial time. If G 6⊇ Forb�(K3,3, K

5), then we know that G ∈ Forb�(X) for some planar
graph X. Lemmas 10 and 11 imply that #FixedPointsF(E,G) and #FixedPointsF(V,G)
are solvable in polynomial time.

5 Conclusion

Fixed points are an important and robust (in the sense that they exist independently of any
update schedule) feature of discrete dynamical systems. We presented two dichotomy theorems
on the complexity of counting the number of fixed points in such a system. Both results
demonstrate that the linear boolean functions are the only function class such that fixed point
counting is tractable independent of representations and of degrees of variable dependency.

The main open issue of this paper is resolving the intractability conjecture for fixed point
counting in systems with local transition functions from D2 over planar graphs. More gener-
ally, it is tempting to apply our analysis framework (Post classes and forbidden minors) to a
precise identification of islands of predictability for more schedule-based behavioral patterns,
e.g., gardens of Eden, predecessors, or fixed-point reachability.

13

References

[1] Y. Bar-Yam. Dynamics of Complex Systems. Studies in Nonlinearity. Addison-Wesley Publishing
Co., Reading, MA, 2003.

[2] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.
Predecessor and permutation existence problems for sequential dynamical systems. In Proceedings
of the Conference on Discrete Models for Complex Systems (DMCS’03), volume AB of Discrete
Mathematics and Theoretical Computer Science Proceedings, pages 69–80, 2003.

[3] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.
Reachabillity problems for sequential dynamical systems with threshold functions. Theoretical
Computer Science, 295(1–3):41–64, 2003.

[4] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.
Complexity of reachabillity problems for finite discrete dynamical systems. Journal of Computer
and System Sciences, 72(7):1317–1345, 2006.

[5] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, and
P. T. Tošić. Gardens of Eden and fixed points in sequential dynamical systems. In Proceedings
of the 1st International Conference on Discrete Models: Combinatorics, Computation and Ge-
ometry (DM-CCG’01), volume AA of Discrete Mathematics and Theoretical Computer Science
Proceedings, pages 241–259, 2001.

[6] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of computer simulation II:
Sequential dynamical systems. Applied Mathematics and Computation, 107(2–3):121–136, 2000.

[7] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of computer simulation
III: Equivalence of SDS. Applied Mathematics and Computation, 122(3):325–340, 2001.

[8] C. L. Barrett and C. M. Reidys. Elements of a theory of computer simulation I: Sequential CA
over random graphs. Applied Mathematics and Computation, 98(2–3):241–259, 1999.

[9] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part I: Post’s
lattice with applications to complexity theory. ACM SIGACT News, 34(4):38–52, 2003.

[10] S. R. Buss, C. H. Papadimitriou, and J. N. Tsitsiklis. On the predictability of coupled automata:
An allegory about chaos. Complex Systems, 5:525–539, 1991.

[11] K. Cattell and M. J. Dinneen. A characterization of graphs with vertex cover up to five. In
Proceeding of the International Workshop on Orders, Algorithms, and Applications (ORDAL’94),
volume 831 of Lecture Notes in Computer Science, pages 86–99. Springer-Verlag, Berlin, 1994.

[12] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems. Infor-
mation and Computation, 125(1):1–12, 1996.

[13] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-Verlag, Berlin, 3rd edition,
2003.

[14] J. Flum and M. Grohe. The parameterized complexity of counting problems. SIAM Journal on
Computing, 33(4):892–922, 2004.

[15] F. Green. NP-complete problems in cellular automata. Complex Systems, 1(3):453–474, 1987.

14

[16] L. A. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2002.

[17] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America,
79(8):2554–2558, 1982.

[18] S. Kosub. Dichotomy results for fixed-point existence problems for boolean dynamical systems.
Technical Report TUM-I0701, Fakultät für Informatik, Technische Universität München, January
2007.

[19] N. Linial. Hard enumeration problems in geometry and combinatorics. SIAM Journal on Algebraic
and Discrete Methods, 7(2):331–335, 1986.

[20] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press,
Cambridge, 1999.

[21] E. L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies, 5:1–122, 1941.

[22] J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability
that a graph is connected. SIAM Journal on Computing, 12(4):777–788, 1983.

[23] A. M. Rabinovich. Complexity of equivalence problems for concurrent systems of finite agents.
Information and Computation, 139(2):111–129, 1997.

[24] N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986.

[25] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Combi-
natorial Theory, Series B, 92(2):325–357, 2004.

[26] K. Sutner. On the computational complexity of finite cellular automata. Journal of Computer
and System Sciences, 50(1):87–97, 1995.

[27] P. T. Tošić. On complexity of counting fixed point configurations in certain classes of graph
automata. Electronic Colloquium on Computational Complexity, 12(51), 2005.

[28] P. T. Tošić. On the complexity of counting fixed points and gardens of Eden in sequential
dynamical systems on planar bipartite graphs. International Journal of Foundations of Computer
Science, 17(5):1179–1203, 2006.

[29] P. T. Tošić and G. A. Agha. On computational complexity of counting fixed points in symmet-
ric boolean graph automata. In Proceedings of the 4th International Conference on Unconven-
tional Computation (UC’05), volume 3699 of Lecture Notes in Computer Science, pages 191–205.
Springer-Verlag, Berlin, 2005.

[30] S. P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM Journal
on Computing, 31(2):398–427, 2002.

[31] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Com-
puting, 8(3):410–421, 1979.

15

[32] J. von Neumann. Theory of Self-Reproducing Automata. Arthur W. Burks (ed.). University of
Illinois Press, Champaign, IL, 1966.

[33] S. Wolfram. Cellular Automata and Complexity. Collected Papers. Addison-Wesley Publishing
Co., Reading, MA, 1994.

16

