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Abstract. We present a solution for answering queries on XML streams. Our
approach extends the class of queries for which streamed solutions have been
proposed to the class of queries expressible by monadic second order logic. We
provide an algorithm which efficiently answers the queries despite their large ex-
pressiveness. We show that the algorithm reports matches atthe earliest possible
time during the scan of the input which implicitly leads to high adaptiveness in
terms of memory consumption. The efficiency is documented with an experimen-
tal evaluation of our approach.

1 Introduction

Most of the XML applications build in memory the tree representation of the manip-
ulated XML data before processing it. This approach is not suitable for handling very
large XML documents or settings in which the XML data is received linearly via some
communication channel, rather than being completely available in advance. For these
applications, special algorithms have to be developed, which view the XML data as a
stream of events, rather than as a tree. An event contains a small piece of information,
e.g. astart-tagor anend-tag. An application receiving the stream performs its task by
reacting to the events. The advantage of this event-driven approach is that it allows one
to buffer only the relevant parts of the input, saving thus time and memory. In particular,
it allows the construction of the XML tree in memory and its subsequent processing,
being thus at least as expressive as the tree-based approach.

A fundamental task in XML applications is locating nodes of an XML input tree
which have a desired property. Here, we call these nodesmatchesand the process of
locating themquerying. The most widely known query-language is XPath [1] , used
both standalone or as part of other important languages likeXML Schema Language
[2] , XSLT [3] or XQuery [4].

The research interest in querying XML streams has been very vivid recently and
there is a very rich literature on this topic. The related work is reviewed in Section 8. The
proposed query languages are generally able to implement different subsets of XPath.
Most of them are subsumed by an XPath fragment calledCore XPath [5], mainly
featuring location paths and predicates using location paths but without arithmetics and
data value comparisons, which is very relevant for the efficiency of the evaluation of
full XPath queries.

Our main contribution is a novel solution for efficient event-based evaluation of
queries which go beyond the capabilities of the languages for which this problem was



addressed yet. Most of them can be expressed using first-order logic possibly extended
with regular expressions on vertical paths, but are less expressive than monadic second
order logic (MSO). In contrast, the queries that we considerhere,grammar queries, are
defined by using forest grammars [6, 7] (also called elsewhere regular hedge grammars
[8]) which are equally expressive with the powerful MSO queries. Grammar queries ba-
sically cover all Core XPath queries, as opposed to most other event-driven approaches,
which consider only fragments of it. Moreover, grammar queries allow the convenient
specification of horizontal contextual conditions which are not possible or are difficult
to express in XPath.

Grammar queries can be evaluated using pushdown forest automata as presented
in [9, 6]. The original construction generally requires to build the whole input tree in
memory. The event-based query evaluation is addressed onlyfor a very restricted class
of queries. These are the so calledright-ignoringqueries for which all the information
needed to decide whether a node is a match has been seen by the time the end-tag of
the node is encountered. The restriction of right-ignoringqueries is very severe, as for
instance they do not capture simple XPath patterns with qualifiers on the nodes in the
path. In this paper we lift this restriction. Rather than a-priori (i.e. statically) handling
only a restricted subset of queries, we show here howarbitrary grammar queries can be
evaluated in an event-driven manner.
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Fig. 1: Input treet

Example 1.Consider an XML document whose tree representation is depicted in
Fig. 1. Each location in the tree corresponds to an event in the corresponding stream
of events, as depicted below. We identify locations by strings of numbers, s.t. the
time ordering of the events corresponds to the lexicographic order of the locations:

1 11 111 1111 112 1121 113 12 121 1211 122 . . . . . .

<a> <a> <b> </b> <c> </c> </a> <a> <b> </b> </a> . . . . . .

It should be clear that the amount of memory necessary to answer an arbitrary query
inherently depends on the query and on the input document. Consider for example the
XPath pattern//a/b locatingb nodes which have as father ana node. The node 111
is a match in our input. This can be detected as early as at the location 111, as the events
following 111 can not change the fact of 111 being a match.

The query//a[c]/b locatesb nodes which have a nodea as father and ac
sibling. The node 111 is again a match but this becomes clear only after seeing that the
a parent has also a childc at location 112. One has thus to remember 111 as a potential
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match between the events 111 and 112. As the events to the right of 112 can not change
the fact of 111 being a match, 111 can be reported and discarded at 112.

Finally, as an extreme case consider the (MSO expressible) XPath pattern
/*[not(d)]//* locating all descendant nodes of the root element if this hasno
child noded. Any node in the input is a potential match until seeing the last child of the
root element. In our example all nodes have to be remembered as potential matches up
to the last event 14. Note thus that any algorithm evaluatinga query needs in the worst
case linear space in the input size. However, most of the practical queries require a quite
small amount of memory as compared to the size of the input.

The contributions of this paper are as follows. We introducea method which allows
one to talk about the earliest detection location of a match for some given query and
input tree. The main contribution is proving that matches ofgrammar queries can be de-
tected at their earliest detection location by an automata-based construction and hereby
proving the following theorem:

Theorem 1. Matches of MSO definable queries are recognizable at their earliest de-
tection location.

Based on the construction used for proving Theorem 1 we give an efficient algorithm for
grammar query evaluation, which reports matches at their earliest detection point. As a
consequence potential matches are remembered only as long as necessary, meaning that
our construction implicitly adapts its memory consumptionto the strict requirements of
the query on the input at hand. The algorithm has been completely implemented in the
freely available XML querying tool Fxgrep [7]. We provide experimental evidence of
the practical performance of the algorithm.

The paper is organized as follows. In Section 2 we introduce aset of useful nota-
tions. In Section 3 we present the forest grammars and in Section 4 the grammar queries.
Section 5 introduces the pushdown forest automata which areable to efficiently imple-
ment forest grammars. In Section 6 we briefly present how a pushdown automaton can
be used to answer right-ignoring queries on streams. The main contribution on query
evaluation for XML streams is given in Section 7 where the algorithm is presented and
its correctness, optimality, complexity and performance are addressed. Related work is
discussed in Section 8. We conclude in Section 9.

2 Preliminaries

Conceptually, an XML element is atree. The content of an element is an ordered se-
quence of trees, which we call aforest. An XML document is, again, a forest as the
root element might be preceded and followed by processing instruction trees. There-
fore, we start by introducing a couple of useful notations for trees and forests. LetΣ be
an alphabet. We formally define the setsTΣ of treest andFΣ of forestsf overΣ as
follows:

t ::= a〈f〉, a ∈ Σ

f ::= ε | t1. . . tn, n > 0

whereε denotes theempty forest. The symbola denotes thelabelandf the children of
an elementt. To denote the label oft we also writelab(t) = a.
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Let f be a forest. The setΠ(f) ⊆ N
∗ contains all pathsπ in f and is defined as

follows:

Π(ε) = {λ}
Π(t1. . . tn) = {λ} ∪ {iπ | 1 ≤ i ≤ n, π ∈ Π(fi) for ti = ai〈fi〉}

whereλ denotes the empty string.
N(f) = Π(f) \ {λ} is the set of nodes inf . A node identifies one off ’s subtrees.

Forπ ∈ N(f), f [π] is called thesubtree off located atπ and is defined as follows:

(t1. . . tn)[iπ] =

{

ti , if π = λ

fi[π], if π 6= λ andti = a〈fi〉

For a pathπ, we definelastf (π) as the number of children of the nodeπ:

lastf (π) = max ({n | πn ∈ N(f)} ∪ {0})

Note thatlastf (π) = 0 iff π identifies a leaf.
Let f be a forest. The setL(f) ⊆ N

∗ of locationsin f , is defined by:

L(ε) = {1}
L(t1. . . tn) = {i | 1 ≤ i ≤ n + 1} ∪ {il | 1 ≤ i ≤ n, l ∈ L(fi)

for ti = ai〈fi〉}

A location corresponds to the points in time at which events are triggered, with
the time ordering being the lexicographical order of the locations. According to the
definition above, the start-tag of a nodel is seen at the momentl and the end-tag is seen
at the momentl(n + 1), wheren = lastf (l) (see Example 1).

Thepreceding nodesof a locationl ∈ L(f) in a forestf are the setprecf (l) = {π |
π ∈ N(f), π < l}, where ”<” denotes lexicographical comparison.

A forestf2 is a right-completionof a forestf1 at locationl ∈ L(f1) iff f1 andf2

consists of the same events untill. Formally:precf1
(l) = precf2

(l) andlab(f2[π
′]) =

lab(f1[π
′]) for all π′ ∈ precf1

(l).

3 Forest Grammars

Forest grammars are a very expressive and theoretically robust formalism for specifying
properties of forests. Schema languages like DTD, XML Schema Language, DSD [10]
or RelaxNG [11] basically are more or less restricted forms of forest grammars.

A forest grammarover an alphabetΣ is a tupleG = (R, r0), whereR is a set
of productions using non-terminals from a setX and terminal symbols fromΣ, and
r0 ∈ RX (the set of regular expressions overX) is thestart expression.

The productions inR have the formx → a〈r〉 with x ∈ X , a ∈ Σ andr ∈ RX .
Intuitively, and using the terminology from schema languages, this specifies that the
children of ana element derived using the production must conform to thecontent
modelr .
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Example 2.The grammarG = (R, x1|xa) over{a, b, c} with R being the following
set of productions will be used in our running example:

(1) x⊤ → a〈x∗
⊤〉

(2) x⊤ → b〈x∗
⊤〉

(3) x⊤ → c〈x∗
⊤〉

(4) xa → a〈xbxc〉
(5) xb → b〈x∗

⊤〉
(6) xc → c〈x∗

⊤〉
(7) x1 → a〈x∗

⊤(x1|xa)x∗
⊤〉

The XML language specified byG is the set of documents in which there is a path from
the root to a node labeleda, whose children are a node labeledb and a node labeled
c, and whose ancestors are all labeleda. The first three productions makex⊤ account
for trees with arbitrary content. As specified by production(4), xa stands for thea
element with theb and thec children. Productions (5) and (6) say that these children
can have arbitrary content. Finally, production (7) says that thea specified by (4) can
be at arbitrary depth in the input, and all its ancestors mustbe labeleda. The start
expressionx1|xa specifies that the root element is to be derived either fromx1 or from
xa.

The meaning of a grammar is formally defined as follows. A set of productionsR
together with a distinguished non-terminalx ∈ X or a regular expressionr ∈ RX

defines atree derivationrelationDerivR,x ∈ TΣ × TX or a forest derivationrelation
DerivR,r ∈ FΣ ×FX , respectively, as follows:

(a〈f〉, x〈f ′〉) ∈ DerivR,x iff x → a〈r〉 ∈ R and(f, f ′) ∈ DerivR,r

(t1 . . . tn, t′1 . . . t′n) ∈ DerivR,r iff x1 . . . xn ∈ [[r ]]
R

and(ti, t
′
i) ∈ DerivR,xi

for i = 1, . . . , n

(ε, ε) ∈ DerivR,r iff λ ∈ [[r ]]
R

where[[r ]]
R

is the string language specified by the regular expressionr .
If (f, f ′) ∈ DerivR,r we say thatf ′ is a derivation of f w.r.t. R and r. For a

grammarG = (R, r) we write (f, f ′) ∈ DerivG and say thatf ′ is a derivation off
w.r.t. the grammarG iff (f, f ′) ∈ DerivR,r . Note that a derivationf ′ is a relabeling of
f and can be seen as a proof of the validity off according to the schemaG.

x⊤ xcx⊤

x⊤ x⊤ xa

x⊤

x1

xbx⊤ x⊤

xa x⊤ x⊤

xc

x1

x⊤xb

Fig. 2: Possible derivations oft

Example 3.Let t be the tree depicted in Fig. 1. Two possible derivations oft w.r.t. G

are depicted in Fig. 2.

Themeaning[[R]] of a set of productionsR assigns sets of trees to the non-terminals
x ∈ X and sets of forests to regular expressionsr ∈ RX and is defined by:
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t ∈ [[R]] x iff ∃t′ ∈ TX and(t, t′) ∈ DerivR,x

f ∈ [[R]] r iff ∃f ′ ∈ FX and(f, f ′) ∈ DerivR,r

If t ∈ [[R]] x or f ∈ [[R]] r we say thatt can be derived fromx or f can be derived
from r, respectively.

A forest grammarG = (R, r0) specifies aregular forest languageas the set of
forestsLG = [[R]] r0. This might be considered the XML language specified byG.

4 Grammar Queries

It is easy to see that a grammarG together with a distinguished non-terminalx specifies
a query, namely, all the nodesπ in the inputf for which there is a derivationf ′ w.r.t.G
in whichπ is labeled withx.

More generally, aqueryQ is a pair(G, T ) consisting of a forest grammarG =
(R, r0) and a set oftarget non-terminalsT ⊆ X whereX is the set of non-terminals in
R. Thematchesof Q in an input forestf are given by the setMQ,f ⊆ N(f):

π ∈ MQ,f iff ∃(f, f ′) ∈ DerivG, ∃x ∈ T andlab(f ′[π]) = x

Example 4.The queryQ1 = (G, {xb}) locates nodesb having onlya ancestors and
only one siblingc to the right. The leftmostb is a match, as one can see by definition by
looking at the first derivation in Fig. 2. Similarly, the rightmostb is a match as defined
by the second derivation w.r.t.G.

The queryQ2 = (G, {xa}) locates thea nodes which have a childb followed by a
child c. These are the leftmost and the rightmosta nodes.

Note that we decided for anall-matchessemantics of our queries, i.e. all nodesπ

as in the definition are to be reported as matches. This is reasonable, because a user
query typically is aimed at findingall the locations with the specified properties, as for
instance in XPath. Furthermore we do not want to place on userthe burden of specifying
the query via an unambiguous grammar, therefore the definition above refers toany
derivation.

Forest grammars can basically be thought of as non-deterministic (unranked) tree
automata. Non-terminals correspond to states of tree automata and derivations to ac-
cepting runs of them. A grammar query can be thus seen as an automaton with a set of
distinguished states. These queries were proven to be equally expressive with queries
definable in MSO on forests [12]. MSO queries are not practicable due to their high
evaluation complexity, yet they have been used a convenientbenchmarks for com-
paring XML query languages [13] due to their large expressive power. Indeed MSO
queries, subsume most of fundamental features of the query languages which have
been proposed for XML. Grammar queries have thus the same expressive power as
MSO queries, while being efficiently implementable, even inan event-based setting as
we show in the next section.

While very expressive, grammar queries are not easily usable for users not-familiar
with grammar formalisms. Alternatively, queries can be specified using the more intu-
itive Fxgrep [7] pattern language which is syntactically similar with XPath, but allows
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the specification of more precise horizontal contextual constraints on nodes in patterns.
In particular, any node in a pattern can be provided with two regular expressions over
patterns to be fulfilled by the sequence of the node’s left andright siblings, respectively.
This allows for example the identification of nodes by their XML schema like types,
even in the absence of schema information. For an overview ofFxgrep and how its
patterns are automatically translated to grammar queries we refer to [6].

Earliest Detection Locations

A locationl is anearly detection locationof a match nodeπ for a queryQ in inputf1

iff π ∈ MQ,f2
for all right-completionsf2 of f1 at l.

A locationl is theearliest detection locationof a match nodeπ iff l is the smallest
early detection location ofπ in lexicographical order.

Example 5.Reconsider Example 1. Given the query//a/b , the earliest detection lo-
cation of node 111 is 111. As for the query//a[c]/b the earliest detection location
of node 111 is 112. Finally, for the query/*[not(d)]//* , there is no early detec-
tion location for any of the match nodes. This matches can notbe detected until the last
location in the input has been reached.

5 Automata for Forest Grammars

It is well known that regular ranked tree languages are recognizable by the class of
bottom-up tree automata [14]. Also, every unranked tree canbe encoded to a unique
ranked tree representation and the notion of regular tree language is invariant under
these encodings (see e.g. [6]). Therefore, bottom-up tree automata can be used to rec-
ognize regular forest languages.

Equally expressive with bottom-up automata but much more concise and efficient
to implement in practice are thepushdown forest automata[9, 6]. Any implementation
of a bottom-up automaton has to choose a traversal strategy for the input tree. The idea
of a pushdown forest automaton (PA) is based on the observation that, when reaching
a node during the traversal, the information gained from thealready visited part of the
tree can be used at the transitions of the automaton at that node. This supplementary
information allows a significant reduction in the size of thestates and the number of
possible transitions to be considered by a deterministic PAas compared with a corre-
sponding deterministic bottom-up automaton. Intuitively, in the case of a depth-first,
left-to-right traversal, which corresponds to XML event-based processing, the advan-
tage is that information gained by visiting the left siblings as well as the ancestors and
their left siblings can be taken into account before processing the current node. The
name of the automata (pushdown forest automata) is due to thefact that information
from the visited part of the tree is stored on the stack (pushdown) which is implicitly
used for the tree traversal.

Also, rather than working on ranked encodings of unranked trees, the PAs directly
recognize unranked trees and forests. Besides saving the time needed for encoding, this
also has the advantage of making the construction of the automata more straightforward
and intelligible.
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5.1 Pushdown Forest Automata

In addition to the tree states of classical tree automata, a PA also hasforest states. Intu-
itively, a forest state contains the information gained from the already visited part of the
tree (context information) at any point during the tree traversal. Let us consider a depth-
first, left-to-right traversal. The following notations are essentially those introduced in
[6].

...

...

tnt1 t2

a

Side Side Side Side

Side

Up
Down

qn

pn

q2

p2

q1 qn+1

q q′

p

p1

π

Fig. 3: The processing model of an LPA

The behaviour of aleft-to-right PA (LPA) is depicted in Fig. 3. When arriving at
some nodeπ labeleda, the context information is available in the forest stateq by
which the automaton reaches the node. The automaton has to traverse the content ofπ
and compute a tree statep, which describesπ within the contextq. In order to do so, the
children ofπ are recursively processed. The context information for thefirst child,q1,
is obtained (via aDown transition) by refiningq by taking into account that the father
is labeleda. Subsequently theq2 context information for the second child is obtained
(via aSide transition) fromq1 and the informationp1 gained from the traversal oft1.
Proceeding in this manner, after visiting allπ’s children, enough context-information is
collected inqn+1 in order to computep (via anUp transition). After processingπ the
context information for the subsequent node is updated intoq′.

Formally, an LPAA = (P, Q, I, F,Down , Up,Side) consists of a finite set oftree
statesP , a finite set offorest statesQ, a set ofinitial statesI ⊆ Q, a set offinal states
F ⊆ Q, adown-relationDown ⊆ Q×Σ ×Q, anup-relationUp ⊆ Q×Σ ×P and a
side-relationSide ⊆ Q × P × Q. Based onDown, Up andSide, the behavior ofA is
described by the relationsδA

F ⊆ Q×FΣ ×Q andδA
T ⊆ Q×TΣ ×P as follows, where

the notations correspond to those in Fig. 3:

✧ (q, a〈t1 . . . tn〉, p) ∈ δA
T iff (q, a, q1) ∈ Down , (q1, t1 . . . tn, qn+1) ∈ δA

F and
(qn+1, a, p) ∈ Up for someq1, qn+1 ∈ Q.

✧ (q1, t1f, qn+1) ∈ δA
F iff (q1, t1, p1) ∈ δA

T , (q1, p1, q2) ∈ Side and(q2, f, qn+1) ∈
δA
F for somep1 ∈ P, q2 ∈ Q

✧ (q1, ε, q1) ∈ δA
F for all q1 ∈ Q

The language accepted by the automatonA is given by:
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LA = {f ∈ FΣ | ∃ q1 ∈ I, q2 ∈ F

and(q1, f, q2) ∈ δA
F}

Note thatA visits the nodes in the input in document order, which is precisely the
order in which the XML input is reported by an event-based parser. Therefore, there
is no need to build the document tree in memory. RunningA only needs a stack to
remember the forest stateq (see Fig. 3) at each opened and not yet closed tag and
can be implemented in the event-based manner. ADown transition is triggered by the
start tag event<a>. The corresponding</a> event triggers theUp transition. ASide

transition is executed immediately after the precedingUp transition.

5.2 From Forest Grammars to PA

A compilation schema from a forest grammarG = (R, r0) into a deterministic LPA
(DLPA) (whereDown , Up andSide are functions rather than relations) accepting the
same regular forest language has been given in [6]. The idea is that at any time the DLPA
keeps track of all possible content models of the elements whose content has not been
seen all yet. In the case of an XML stream these are theopenedelements, whose start-
tags have been seen and whose end-tags have not been read yet,including an imaginary
top element whose content is the whole document. The document is accepted at the end
of the document if the sequence of top-level nodes conforms to r0.

Let X be the set of non-terminals inG and letr1, . . . , rl be the regular expressions
occurring on the right-hand sides in the productionsR, wherel is the number of pro-
ductions. For0 ≤ j ≤ l, let Aj = (Yj , y0,j, Fj , δj) be the non-deterministic finite
automaton (NFA) accepting the regular string language defined byrj as obtained by
the Berry-Sethi construction [15]. Here,Yj is the set of NFA states,y0,j the start state,
Fj the set of final states andδj ∈ Yj × X × Yj is the transition relation.

By possibly renaming the NFA states we can always ensure thatYi ∩ Yj = /O for
i 6= j. Let Y = Y0 ∪ . . . ∪ Yl andδ = δ0 ∪ . . . ∪ δl. A DLPA A~G acceptingLG can be
defined asA~G =(2X , 2Y , {q0}, F,Down,Up,Side). A tree state synthesized for a node
is the set of non-terminals from which the node can be derived. A forest state consists
of the NFA states reached within the possible content modelsof the current level and
can be computed as follows.

We start with the content modelr0, i.e. q0 = {y0,0}. We accept the top level
sequence of nodes if it conforms tor0, i.e. F = {q | q ∩ F0 6= /O}. The possi-
ble content models of a node are computed from the content models in which the
node may occur:Down(q, a) = {y0,j | y ∈ q, (y, x, y1) ∈ δ, x → a〈rj〉}.
When finishing a sequence of siblings we consider only the fulfilled content mod-
els in order to obtain the non-terminals from which the father node may be derived:
Up(q, a) = {x | x → a〈rj〉 andq ∩ Fj 6= /O}. The possible content models are updated
after finishing visiting the next node in a sequence of siblings:Side(q, p) = {y1 | y ∈
q, x ∈ p and(y, x, y1) ∈ δ}. The resultingA~G is obviously deterministic, since it has
one initial state and its transitions are functions rather than relations.

As an example, the run ofA~G on our input document is presented in Appendix A.
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6 Right-ignoring Queries

left-
context

right-context

content

π

Fig. 4: The context and the content of a match

In this section we briefly present the ideas [9, 6] which allowthe evaluation of a
right-ignoring queryQ = (G, T ) using theA~G LPA. Let us investigate what are the
requirements forQ to be right-ignoring. Consider a match nodeπ of Q as depicted
in Fig. 4. Since the query is right-ignoring, all the nodes from the right-context are
irrelevant for the decision as to whetherπ is a match. That is,π is a match however the
right-siblings ofπ and of every ancestor ofπ might look like.

Let us consider thatπ is thek-th out of m siblings, withm ≥ k. Sinceπ is a
match, according to the definition, there is a derivation labeling the sequence of siblings
containingπ with x1 . . . xk . . . xm andxk ∈ T . There is thus a content modelrj s.t.
x1 . . . xk . . . xm ∈ [[rj ]]R . The fact that the right siblings ofπ might be any trees implies
thatxi must be able to derive any tree, i.e.[[R]] xi = TX for all i = k + 1, . . . , m. Also,
as the number of right-siblings might be arbitrary, all of the above must hold for all
m ∈ N with m ≥ k.

To ensure the above there must exist an NFA stateyk ∈ Yj reached after seeing
the left siblings ofπ with yk ∈ Fj and s.t. for allp ∈ N, there areyk+1, . . . , yp ∈ Fj

with (yi, x⊤, yi+1) ∈ δj for i = k + 1, . . . , p, wherex⊤ ∈ X and[[R]] x⊤ = TΣ . We
call such ayk a right-ignoring NFA state. The non-terminalx⊤ is to be seen as a wild-
card non-terminal which can derive any tree and which is madeavailable in any forest
grammar. The necessity of the above follows from the fact that no other non-terminal
x in the grammar can be s.t.[[R]] x = TΣ , as in general the alphabetΣ is neither finite
nor known in advance1.

Given an NFA statey, we use the predicaterightIgn(y) to test whethery is a right
ignoring state. Testing whetherrightIgn(y) holds, can be done statically by checking
in the NFA whether there are cycles visitingy and consisting only ofx⊤ edges, needing
thus time linear in the size of the NFA.

Similar considerations have to be made due to the right-ignorance for all the nodes
lying on the path from the root toπ. Therefore we need to consider all the non-terminals
with which a derivation defining a match may label the nodes lying on the path from

1 We do not consider optimizations possible when the schema ofthe XML data is available.
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the match to the root. These are the so-calledmatch-relevantnon-terminals, defined by:

x is match-relevant iff
x ∈ T or x → a〈rj〉, (y1, x1, y) ∈ δj andx1 is match-relevant

We call a queryQ right-ignoring iff all y ∈ Y with (y1, x, y) ∈ δ andx match-
relevant are right-ignoring. As presented above, testing whether a query is right ignoring
can be done completely statically.

The right-ignorance ofQ ensures thus that if the left-context of a match is fulfilled,
then the right-context is also always satisfied. Hence, to check whether a node is a
match, it suffices to look into the forest state in whichA~G leaves a node, which synthe-
sizes the information gained after visiting the left-context and the content of the node,
depicted in dark grey in Fig. 4:

Theorem 2. Let qπ be the forest state in whichA~G leaves a nodeπ. If Q is right-
ignoring thenπ ∈ MQ,f iff y ∈ qπ , (y1, x, y) ∈ δ for somey, y1 ∈ Y andx ∈ T .

Proof. The theorem is proven as Theorem 7.4 in [6].

To answer queries on XML streams without building the document tree in memory,
it remains to show how a left-to-right pushdown automaton can be implemented in an
event-based manner.

Event-driven Runs of Pushdown Forest Automata

<a2> </a2>

Down Up
t2

Side Side
<an> </an>

Down Up
t
n

<a1> </a1>

Down Up
t1

</a><a>

Down Up

Fig. 5: Event-driven run of a pushdown forest automaton

Consider an LPAA~G =(2X , 2Y , {q0}, F,Down ,Up,Side) as defined in Section 5.1
and its processing model as depicted in Fig. 3 (on page 8). Theorder in whichA~G visits
the nodes of the input is the order of a depth-first, left-to-right search, which corresponds
exactly to the document-order.
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Compare Fig. 3 and Fig. 5. At every nodeπ, A~G executes oneDown transition at
the moment when it proceeds to the content ofπ and oneUp followed by oneSide

transitions at the moment when it finishes visiting the content of π. These moments
correspond to the start and end tags, respectively, of the nodeπ. The algorithm imple-
menting the event-driven run ofA~G is depicted in Listing 1.1.

We handle the following events:

1. startDoc , which is triggered before starting reading the stream;
2. endDoc , which is triggered after finishing reading the stream;
3. enterNode , which is triggered when a start-tag is read;
4. leaveNode , which is triggered when an end-tag is read.

1 S tack s ;
2 F o r e s t S t a t e q ;
3

4 s t a r t D o c H a n d l e r ( ){
5 q : = q0 ;
6 }
7

8 en te rNodeHand le r ( Labe l a ){
9 s . push (q ) ;

10 q : = Down(q, a) ;
11 }
12

13 l eaveNodeHandler ( Labe l a ){
14 T r e e S t a t e p = Up(q, a) ;
15 q : = Side(s.pop(), a) ;
16 }
17

18 endDocHandler ( ){
19 i f q ∈ F t hen o u t p u t ( ” I n p u t a c c e p t e d . ” )
20 e l s e o u t p u t ( ” I n p u t r e j e c t e d . ” ) ;
21 }

Listing 1.1. Skeleton for the event-driven run of a pushdown forest automaton

The stack declared in line 1 is needed in order to remember theforest states used
for the traversal of the content of the elements opened and not yet closed. The variable
q declared in line 2 stores the current forest state during thetraversal of the document.

At the beginning,startDocHandler is called and it sets the current state
to the initial state of the automaton (line 5). A start tag triggers a call of
enterNodeHandler which remembers the current state on the stack (line 9) and
updates the current state as result of executing theDown transition (line 10). An end-
tag triggers the correspondingUp transition (line 14), followed by theSide transition
which uses as forest state the last remembered state on the stack, i.e. the forest state
before entering the element now ending (line 15).

The number of elements on the stack always equals the depth ofthe XML element
currently handled. Hence the maximal height of the stack is the maximal depth of the

12



handled XML document, which is in general rather small, evenfor very large docu-
ments.

Depending on the purpose of the pushdown automaton, other actions can be per-
formed in the events handler. For the purpose of validation,it must be checked at the
end of the document whether the current state is a final state (line 18).

For the purpose of answering right-ignoring queries it mustbe checked whether the
forest state obtained after the side transition has the property stated in Proposition 2.
Using the above presented implementation,A~G is thus able to answer right-ignoring
queries on XML streams.

7 Arbitrary Queries

The previous section only shows how right-ignoring queriescan be answered on XML
streams. In this section we lift this limitation by showing how arbitrary queries can be
answered on XML streams.

In the case of non right-ignoring queries, the decision as towhether a node is a
match cannot be taken locally, i.e. at the time the node is left, because there is still
match-relevant information in the part of the input not yet visited. The decision can
only be taken after seeing all of the match-relevant information.
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Fig. 6: Right completion of a forest

The general situation is depicted schematically inf1 in Fig. 6 (i). The nodeπ is
a potential match considering its left context and its content (depicted in dark grey)
which can be checked by the time the end-tag of the node is seen. The decision as to
whether this is indeed a match node must be postponed until seeing the relevant part
of the right context (depicted in light grey), which was empty in the particular case of
right-ignoring queries. The location which must be reachedin order to recognizeπ as a
match is denoted asl. We call such a locationl, earliest detection locationof the match
π, formally defined below.
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Earliest Detection Locations

A forest f2 is a right-completionof a forestf1 at locationl ∈ L(f1) iff f1 andf2

consists of the same events untill. (The tree representation off1 andf2 are depicted in
Fig. 6). Formally:

f2 ∈ RightIgnf1,l iff precf1
(l) = precf2

(l) andlab(f2[π
′]) = lab(f1[π

′])
for all π′ ∈ precf1

(l).

with precf (l) denoting thepreceding nodesof a locationl ∈ L(f) in a forestf , defined
asprecf (l) = {π | π ∈ N(f), π < l}, where ”<” denotes lexicographical comparison.

A locationl is anearly detection locationof a match nodeπ for a queryQ in input
f1 iff π ∈ MQ,f2

for all right-completionsf2 of f1 at l.
A locationl is theearliest detection locationof a match nodeπ iff l is the smallest

early detection location ofπ in lexicographic order.

Example 6.Reconsider Example 1 and the accompanying input depicted inFig. 1 (on
page 2). Given the query//a/b , the earliest detection location of node 111 is 111. As
for the query//a[c]/b the earliest detection location of node 111 is 112. Finally,for
the query/*[not(d)]//* , there is no early detection location for any of the match
nodes. This matches cannot be detected until the last location in the input has been
reached.

7.1 Idea

We proceed now to the description of the computation performed by our algorithm for
evaluating grammar queries on XML streams. This can be seen as a run of a pushdown
automaton changing its state on every XML event.

For the purpose of evaluation we use the stack to remember thefollowing informa-
tion for a locationl at some nesting level :

1. q, denoting the progress within the content models to be considered on the level
containingl. This is exactly the forest state in whichA~G (the DLPA acceptingLG)
reachesl;

2. ri, needed for the early detection of matches as presented below;
3. m, storing potential matches which might be confirmed on the current level, as well

as the potential matches accumulated while traversing the current level up tol.

For 1, we remember the states of the finite automata corresponding to the content
models which are reached considering the content seen so faron the current level. They
are obtained as by performing the transitions ofA~G .

For 2, we need to know which of the content models considered on the current level
occur in right-ignoring contexts. A content model for an elemente occurs in a right
ignoring context iff there is no content model of an enclosing element whose fulfillment
depends on the right context ofe. We call such content modelsright-ignoring content
models.

For 3, we associate potential matches with NFA states fromq. A potential match
is associated with a statey at locationl iff the match may be defined w.r.t. derivations
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in which the word of non-terminals on the current level is accepted by the NFA run
reachingl in statey. The informationm can be thus represented as a partial mapping
from NFA statesy to the corresponding potential matchesm(y).

Consider our queryQ = (G, T ) with a forest grammarG = (R, r0). Let r1, . . . , rp

be the regular expressions occurring on the right-hand sides in the productionsR, where
p is the number of productions. For0 ≤ j ≤ p, let Aj = (Yj , y0,j , Fj , δj) be the non-
deterministic finite automaton (NFA) accepting the regularstring language defined by
rj as obtained by the Berry-Sethi construction. By possibly renaming the NFA states we
can always ensure thatYi ∩ Yj = /Ofor i 6= j. LetY = Y0∪. . .∪Yp andδ = δ0∪. . .∪δp.

Initial State Initially, we start with the NFA start statey0,0 of the start content model
r0. The content modelr0 is right-ignoring as there are no enclosing elements. Also,
there are no potential matches detected yet, thus the information initially remembered
on the stack consists of:

q0 = {y0,0}, ri0 = {r0}, m0 = /O

Start-Tag Transitions On a start-tag event<a> at location l, new information
(q1, ri1, m1) is pushed on the stack, depending on the information in the current top
of the stack(q, ri, m) as follows.

The possible content models of the current element are computed from the content
models in which the element may occur (as in the case of aDown transition inA~G ).
Before seeing any of the children of the current element we are in the initial NFA state
of these content models:

q1 = {y0,j | y ∈ q, (y, x, y1) ∈ δ, x → a〈rj〉}

A content modelrj considered for the current elementl is right-ignoring if (1) the
surrounding content modelrk is right ignoring and (2)rk is fulfilled independently of
how the right siblings ofl might look like. Condition (1) can be looked up inri. To
ensure (2) there must be an right-ignoring NFA statey1 reachable after seeing the left
siblings ofl. Thus:

ri1 = {rj |y ∈ q, (y, x, y1) ∈ δk, x → a〈rj〉, rk ∈ ri, rightIgn(y1)}

As for the potential matches which might be confirmed while visiting the content of
l, these are the matches propagated so far for which the content of the current level is
fulfilled whatever follows afterl. We addl to these potential matches if it can be derived
from a target non-terminal considering its left-context, and its right-context is irrelevant
(that isl’s confirmation as a match depends thus only on its content).

m1(y0,j) =
⋃

{m(y) | y ∈ q, (y, x, y1) ∈ δk, x → a〈rj〉, rk ∈ ri, rightIgn(y1)}

∪

{l | y ∈ q, (y, x, y1) ∈ δk, x → a〈rj〉, rk ∈ ri, rightIgn(y1), x ∈ T }
(1)
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End-Tag Transitions An end-tag event</a> at locationπi(n + 1) signals that the
processing of the sequence of childrenπi1, . . . , πin is completed and the computation
has to return to the nesting level and advance over the fathernodeπi. The top two
elements on the stack at this moment:(q, ri, m) and(q1, ri1, m1) store the state of the
computation after seeing the children and the left siblingsof πi, respectively.(q, ri, m)
and(q1, ri1, m1) are consumed from the stack and used to compute the new top of the
stack(q2, ri2, m2), reflecting the state after finishing seeingπi, as follows.

A content modelrj is fulfilled by the children ofπi iff there is somey2 ∈ q ∩ Fj ,
i.e. a NFA final state forrj is reached after traversing them. It follows thatπi can be
derived from symbolsx for which there is a productionx → a〈rj〉. The advance in
the content models on the level ofπi, after seeingπi is obtained by considering NFA
transitions with symbolsx from whichπi may be derived. This is completely similar to
anUp transition followed by aSide transition inA~G and is summarized by:

q2 = {y1 | y2 ∈ q ∩ Fj , x → a〈rj〉, y ∈ q1, (y, x, y1) ∈ δ}

As the set of right ignoring content models only depends on the surrounding content
models, it remains unchanged for a whole nesting level, thatis :

ri2 = ri1

As for the potential matches, we have to aggregate the potential matches from the
left-context ofπi with those from its content. More precisely, potential matches defined
by an NFA run on the children level are joined with potential matches from the left
context associated with NFA states which are reached in nesting NFA runs after seeing
the father node. The father node,πi is added as a potential match if it can be derived
from a target non-terminal:

m2(y1) = {m(y2) ∪ m1(y) | y2 ∈ q ∩ Fj , x → a〈rj〉, y ∈ q1, (y, x, y1) ∈ δ} ∪
{πi | y2 ∈ q ∩ Fj , x → a〈rj〉, y ∈ q1, (y, x, y1) ∈ δ, x ∈ T }

(2)

7.2 Recognizing Matches

The construction above allows the location of matches as stated by the following theo-
rem:

Theorem 3. A locationl is an early detection location for a match nodeπ iff π ∈ m(y),
rj ∈ ri andrightIgn(y) for somey ∈ q ∩ Yj with (q, m, ri) being the top of the stack
at eventl.

Proof. The complete proof is given in Appendix B. The idea of the proof is described
next.

Let l be an early detection location forπ. Let f2 be a right-completion obtained
from f1 by adding on every level from the root tol an arbitrary number of right siblings
⋆〈〉 (as depicted in Fig. 7), where⋆ is a symbol not occurring in any of the rules in
the grammar. By the definition of early detection locations there is a derivationf ′

2 of
f2 in which π is labeledx for somex ∈ T . Also, since⋆ does not occur in any rule,
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f ′
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x⊤

x⊤x⊤

x⊤l

f2

xπ
π

Fig. 7: Right completion atl and corresponding derivation

f ′
2 must label all the⋆ nodes withx⊤. They with the properties as required by this

theorem is the NFA state in which the locationl is reached within the NFA accepting
run corresponding tof ′

2.
Conversely, let(q, m, ri) be the top of the stack at eventl and letπ ∈ m(y), rj ∈ ri

and rightIgn(y) for somey ∈ q ∩ Yj . From π ∈ m(y) it follows that there is a
relabeling of the nodes visited so far in whichπ is labeled with somex ∈ T and
which might be completed to a whole derivation according to the grammarG usingx⊤

symbols for the not yet visited nodes. The existence of the completion on the current
level follows fromrightIgn(y), while the existence of the completions on the enclosing
levels is ensured by the conditionrj ∈ ri.

As locations are visited in lexicographic order, testing the condition in Theorem
3 ensures that every matchπ is detected when reaching its earliest detection location.
This proves Theorem 1.

7.3 Implementation

The algorithm implementing the event-driven evaluation ofthe queries as above is given
in Listing 1.2. We assume thatenterNodeHandler andleaveNodeHandler re-
ceive as an argument, besides the label of the currently readnode, also the currently
reached location. For the case in which the current locationis not provided by the
event-based parser, note that it can be easily propagated along the event handlers in
the internal parse-state. The algorithm basically followsthe computation rules given
above while sharing the commonalities in the rules forq, ri andm. As an abbreviation
we use the operator⊕ to add a new entry or update an existing set entry in a mapping
m via set union.

Listing 1.2. Algorithm for event-driven query answering
1 S tack s ;
2

3 en te rNodeHand le r ( Loca t i onl , Labe l a ){
4 (q ,ri ,m ) : = s . t op ( ) ;
5 q1 : = ri1 : = m1 : = /O;
6

7 f o r a l l y ∈ q wi th (y, x, y1) ∈ δk and x → a〈rj〉
8 q1 : = q1 ∪ {y0,j}
9 i f rightIgn(y1) and rk ∈ ri t hen
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10 ri1 : = ri1 ∪ {rj} ;
11 i f rightIgn(y0,j) t hen
12 r e p o r t M a t c h e s (m(y) ) ;
13 i f x ∈ T t hen r e p o r t M a t c h e s ({l} ) e n d i f
14 e l s e
15 m1 : = m1 ⊕ {y0,j 7→ m(y)} ;
16 i f x ∈ T t hen m1 : = m1 ⊕ {y0,j 7→ {l}} e n d i f
17 e n d i f
18 e n d i f
19 e n d f o r
20

21 s . push ( (q1 ,ri1 ,m1 ) ) ;
22 }
23

24 l eaveNodeHandler ( Loca t i onln , Labe l a ){
25 (q ,ri ,m ) : = s . pop ( ) ;
26 (q1 ,ri1 ,m1 ) : = s . pop ( ) ;
27 q2 : = m2 : = /O;
28 ri2 : = ri1 ;
29

30 f o r a l l y ∈ q1 ,y2 ∈ q ,y2 ∈ Fj ,x → a〈rj〉 and (y, x, y1) ∈ δk

31 q2 : = q2 ⊕ {y1} ;
32 i f rj ∈ ri t hen r e p o r t M a t c h e s (m(y2) )
33 e l s e
34 m2 : = m2 ⊕ {y1 7→ m(y2)} ;
35 m2 : = m2 ⊕ {y1 7→ m(y)} ;
36 i f x ∈ T t hen m2 : = m2 ⊕ {y1 7→ {l}} e n d i f
37 e n d i f
38 e n d f o r
39

40 s . push ( (q2 ,ri2 ,m2 ) ) ;
41 }
42

43 s t a r t D o c H a n d l e r ( ){ s . push ( (q0 ,{r0} ,/O) ) ; }
44

45 endDocHandler ( ){
46 (q ,ri ,m ) : = s . pop ( ) ;
47

48 f o r a l l y ∈ q ∩ F0

49 r e p o r t M a t c h e s (m(y) ) ;
50 e n d f o r
51 }

Matches are detected when their earliest detection location is reached, i.e. at the
event-handler executed at the immediately preceding location. This might be the case
either at start or at end tags. At start tags (line 12) we report potential matches for
which we know that (a) the right siblings at the current levelare irrelevant (condi-
tion rightIgn(y1) tested in line 9); (b) the right siblings of the ancestors areirrele-
vant (conditionrk ∈ ri tested in line 9) and (c) the content is irrelevant (condition
rightIgn(y0,j) in line 11).
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At end tags (line 32) we report potential matches for which the content was fulfilled
(conditiony2 ∈ Fj in line 30) and the upper-right context is irrelevant (condition rj ∈
ri ).

Note that there is no need to propagate a confirmed matchπ beyond its earliest
detection locationl where it is reported. (see tests in lines 11 and 32).

Also, potential matches are discarded implicitly precisely as soon as enough infor-
mation is seen in order to reject them. Potential matchesm(y) at a locationl are no
longer propagated wheny is not involved in the NFA transitions. This happens at end
tag events if there is no transition(y, x, y1) in any of the possible content models. Also
at end tag events, potential matches inm(y) are discarded ify is not a final state in any
of the considered content-models on the finished level. Thereby matches are remem-
bered only as long as the strictly necessary portion of the input has been seen in order
to confirm them.

Finally, at the end of the input potential matches not yet confirmed and conforming
to the top-level content model (conditiony ∈ q ∩F0 in line 48) are reported as matches
in line 49.

7.4 Complexity

Let |D| be the size of the input data, i.e. the number of nodes in it. The size of a query
Q can be estimated as the number of NFA states|Y | plus the number of non-terminals
|X |. Let potmax be the maximum number of potential match nodes at any given time
during the traversal.

For every node in the inputenterNodeHandler andleaveNodeHandler is
called once. InenterNodeHandler atπi, the loop starting at line 7 is executed for
everyy ∈ q, for every outgoing NFA transition(y, x, y1) and for all content modelsrj

for x. The size ofq is in O(|qmax|), whereqmax is the forest stateq with the maximum
number of elements. Letcmmax be the maximum number of content models considered
on a level and letoutmax be the maximum number of outgoing NFA transitions from
an NFA state. The loop is executed thus up to|qmax| · outmax · cmmax times.

The set union in line 8 can be computed in timeO(|qmax|). The set union in line 10
needs timeO(cmmax). Reporting the confirmed matches additionally requires time
O(potmax). Finally the set unions in lines 15 and 16 necessitate againO(potmax) time.
A call to enterNodeHandler amounts thus toO(|qmax|·outmax ·cmmax ·(|qmax|+
cmmax + potmax)) time.

In leaveNodeHandler , the loop starting at line 30 is executed in the worst
case, for everyy ∈ q1 and everyy2 ∈ q, i.e. up to|qmax|

2 times. The set union in
line 31 is computed in timeO(|qmax|). Reporting the confirmed matches possibly adds
O(potmax) time. The set unions in lines 34, 35 and 36 needO(potmax) time. A call to
leaveNodeHandler amounts thus toO(|qmax|

2 · (|qmax| + potmax)) time.
As leaveNodeHandler and enterNodeHandler are called each once for

every node, the overall time complexity of event driven evaluation of queries is thus in
O(|D| · (|qmax| · outmax · cmmax · (|qmax|+ cmmax + potmax) + |qmax|

2 · (|qmax|+
potmax))). The values of|qmax|, outmax andcmmax are bounded by values which do
not depend on|D|. Experimental evidence show them to be small, and correspondingly
the algorithm scales well with the size of the query as presented in the next section.
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The worst complexity in the size of the document is obtained for potmax = |D|,
in the case where all the nodes are potential matches until the end of the document. In
general, however, the number of potential matches is much less than the total number
of nodes (potmax ≪ |D|) and can be assimilated with a constant. In this case we obtain
a time linear in the size of the document, as suggested by our experimental results.

As for the space complexity, letd be the depth of the input document. During the
scan of the document we store at each location the(q, ri, m) tuples for all ancestor
locations up to the root, which correspond to the opened and not yet closed elements
at the current location. For every level,q has up to|qmax| elements,m stores up to
|qmax| · potmax locations andri up to cmmax content models. As all these elements
can be stored in constant space and the height of the stack is at mostd, we obtain the
worst case space complexityO(d · (|qmax| + |qmax| · potmax + cmmax)). Most of the
practical queries need only a small amount of memory, as the information relevant to
whether a node is a match is typically located in the relativeproximity of the node (that
is potmax is small).

7.5 Experimental Results

The algorithm presented here has been completely implemented in Fxgrep. Even though
many proposals for evaluating XML queries on streams exist,there are surprisingly few
tools publicly available. Furthermore, most of the proposals for which public implemen-
tations exist impose serious limitations on Core XPath (seeSection 8 on related work).
A more mature implementation we were able to experiment withwas SPEX [16] which
covers a large subset of XPath. As a reference for the in-memory DOM approach we
used Xalan-Java 2.6.0 [17] one of the most popular XSLT processors, which also pro-
vides a command line XPath processor.

We used for our experiments the Protein Sequence Database [18], an XML docu-
ment of over 700 MB size, containing around 25 million nodes with a maximal depth
of 7 and an average depth of approximately 5. The experimentswere performed on an
Athlon XP 3000+ with 1GB of memory running under Linux (kernel version 2.6.8).

Even though the querying capabilities of Fxgrep go beyond those of Core XPath ,
for the comparison with other query tools for XML streams we had to limit ourselves
to queries expressible in Core XPath. We used the following queries:

Q1: As a representative of simple queries, specifying only the path to the
matches, we choseQ1 looking for protein entries containing a reference
with an author element. The query is expressible with the XPath pattern
//ProteinEntry//refinfo/author .

Q2: A slightly more complex query, containing simple structurequalifiers isQ2. The
query locates authors of entries, the description of which contains the word “iron”
and s.t. the year “2000” is mentioned among its references, i.e. the XPath pattern
//ProteinEntry[//description[contains(.,’iron’)]]

//refinfo[//year[contains(.,’2000’)]]//author .
Q3: Finally we use a more complex queryQ3 locating authors of proteins contain-

ing a reference to the year 2000, which are followed by two protein entries, the
descriptions of which contain the word ”iron”.
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Fxgrep Spex Xalan
T P R T P R T P R

Q1 29.8 8.7 3.4 9.1 4.1 2.2 15.8 2.5 6.3
Q2 31.9 8.7 3.6 21.2 4.1 5.1 22.0 2.5 8.8
Q3 33.5 8.7 3.8 50.9 4.1 12.4 178.8 2.5 71

Table 1: Evaluation times (in seconds) for increasingly complex queries

Table 1 presents the evaluation times forQ1, Q2 and Q3 on a fragment of the
database of 16 MB size. Absolute times are difficult to compare in the case of tools im-
plemented in different programming languages. Fxgrep and its underlying parser Fxp
are written in SML, while SPEX and Xalan are written in Java. The SML parser is
significantly slower than the Java parsers in the case of large documents as in our ex-
periment. That is, the events are delivered at different paces by the parsers used in the
three applications. It is a situation similar to comparing absolute time measurements
obtained using CPUs with different tact frequencies. A sensible way to account for this
is to divide the absolute times by the frequency. Therefore,besides the total time in
column T, we list the parsing time in column P, as well as the relative speed in column
R obtained by dividing the total time by the parsing time.
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Fig. 8: Absolute evaluation times for increasingly complex queries

The absolute times are depicted in Fig. 8. One remarkable feature of Fxgrep is that
the evaluation time does not significantly depend on the complexity of the query as op-
posed to the other tools. The reason is the expressiveness ofthe underlying grammar
formalism in which adding supplementary contextual conditions does not significantly
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change the size of the underlying grammar. Interestingly enough, Fxgrep performs bet-
ter even in absolute terms as the query complexity increases.
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Fig. 9: Relative evaluation times for increasingly complex queries

The relative times are depicted in Fig. 9. The numbers denotehow many times
slower the query evaluation is as compared to the generationof the event stream. In
Fxgrep around 30 percent of the evaluation time is needed forgenerating the stream of
events. Fxgrep’s throughput is comparable on average with the relative throughput of
SPEX and better than what is achieved in Xalan.

FxgrepSpexXalan

3 MB 9.8 10.2 10.1
16 MB 33.5 50.9 178.8
32 MB 61.8 96.8 614.6

159 MB 338 446 n/a

Table 2: Evaluation times (in seconds) forQ3 for increasing document sizes

Table 2 presents the dependency of the evaluation times on the size of the docu-
ment. We chose fragments of the input of increasing sizes andevaluated queryQ3.
As depicted in Fig. 10 (containing the results for 3MB, 16MB and 32 MB size, re-
spectively) the evaluation time increases linearly for Fxgrep and SPEX, as opposed to
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Fig. 10: Scalability with the input size

Xalan. This shows that the event-based processing mode of Fxgrep scales well with the
input size, as presented in the complexity assessment presented in Section 7.4.

As for the memory usage, Fxgrep and SPEX need a constant spacefor all runs of up
to 10 and 15 MB, respectively, including the SML runtime system and the Java Virtual
Machine. As opposed to this, Xalan needs a multiple of the size of the handled input
document. Even a memory space of 1 GB was not enough for Xalan in order to process
the 159 MB large input.

8 Bibliographical Notes

A basic task in XML processing is XML validation. The problemof validating XML
streams is addressed by Segoufin and Vianu in [19] and Chitic and Rosu in [20]. XML
schema languages are basically regular forest languages2, hence conformance to such a
schema can be checked by a pushdown forest automaton. As presented in this chapter
this can be performed efficiently on XML streams in the event-based manner.

Many research works deal with querying of XML streams. Most of them consider
subsets of XPath. Some of them deal with XQuery, which in factis more than a querying
language as it allows the transformation of the input. In thefollowing we are mainly
interested in the querying capabilities of the considered languages.

Conventional attribute grammars (AG) and compositions thereof are proposed by
Nakano and Nishimura in [22] as a means of specifying tree transformations. An algo-
rithm is presented which allows an event-driven evaluationof attribute values. Specify-
ing transformations, or in particular queries, using AG is however quite elaborate even

2 The correlation between the most popular available schema languages and regular forest lan-
guages has been studied by Murataet al. [21].
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for simple context-dependent queries and AG are restrictedto use attributes of non-
terminal symbols at most once in a rule. Also as no stack is used input trees have to be
restricted to a maximum nesting depth.

More suited for XML are attribute grammars based on forest grammars as con-
sidered in XML Stream Attribute Grammars (XSAGs) [23] and TransformX [24]3. A
restricted form of attribute forest grammars is consideredwhich allows the evaluation
of attributes on XML streams. The attribute grammars have tobe L-attributed, i.e. to
allow their evaluation in a single pass in document-order. Another necessary restriction
is that the regular expressions in productions areunambiguous, as in the case of DTDs.
This ensures that every parsed element corresponds to exactly one symbol in the con-
tent model of the corresponding production, which allows the unambiguous specifica-
tion and evaluation of attributes. While XSAGs are targetedat ensuring scalability and
have the expressiveness of deterministic pushdown transducers, the TransformX AGs
allow the specification of the attribution functions in a Turing-complete programming
language (Java). In both cases, for the evaluation of the attribute grammars pushdown
transducers are used. The pushdown transducers used in TransformX [24] validate the
input according to the grammar in a similar manner to the pushdown forest automata.
Additionally, a sequence of attribution functions is generated as specified by the at-
tribute grammar. A second transducer uses this sequence andperforms the specified
computation. For the identification of the non-terminals from which nodes are derived
in the (unique) parse tree, as needed for the evaluation of the AGs in [23, 24], pushdown
forest automata can be used. The unambiguousness restriction of the attribute forest
grammars allows one to proceed as in the case of right-ignoring queries presented in
Section 6. That is, the non-terminal corresponding to the current node can be directly
determined from the (single) NFA state in the current foreststate, as it does not depend
on the events after the current one.

A number of approaches handle the problem of querying XML streams in the con-
text of selective dissemination of information (SDI), alsoknown as XML message bro-
kering [25–32]. In this scenario a large number of users subscribe to a dissemination
system by specifying a query which acts like a filter for the documents of interest.
Given an input document, the system simultaneously evaluates all user queries and dis-
tributes it to the users whose queries lead to at least one match. Strictly speaking, the
queries are not answered. The documents which contain matches are dispatched but the
location of the matches is not reported. XFilter [26] handlesimple XPath patterns, i.e.
without nested XPath patterns as filters. These can be expressed with regular expres-
sions, hence they are implemented using finite string automata. YFilter [27] improves
on XFilter by eliminating redundant processing by sharing common paths in expres-
sions. More recently, in [28], the querying capabilities are extended to handle filters
comparing attributes or text data of elements with constants and nested path expres-
sions are allowed to occur basically only for the last location step. Greenet al. [30]
consider regular path expressions without filters. It is shown that a lazy construction of
the DFA resulting from multiple XPath expressions can avoidthe exponential blow-up
in the number of states for a large number of queries. XPush [31] also handles nested
path expressions and addresses the problem of sharing both path navigation and predi-

3 In these works forest grammars are called extended regular tree grammars.
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cate evaluation among multiple patterns. XTrie [32] considers a query language which
allows the specification of nested path expressions and, besides, an order in which they
are to be satisfied. Even though Fxgrep is not targeted at SDI,note that it basically
exceeds the essential capabilities of all previously mentioned query languages.

There are a number of approaches in which queries on XML streams are answered
by constructing a network of transducers [33, 34, 16, 35]. A query is there compiled
into a number of interconnected transducers, each of them taking as input one or more
streams and producing one or more output streams by possiblyusing a local buffer.
The XML input is delivered to one start transducer and the matches are collected from
one output transducer. The query language of XSM [33] handles only XPath patterns,
without filters and deep matching (// ), but allows instead value-based joins. XSQ [34]
deals with XPath patterns in which at most one filter can be specified for a node and
filters cannot occur inside another filter. The filters only allow the comparison of the
text content of a child element or an attribute with a constant. SPEX [16] basically
covers Core XPath. Each transducer in the network processesthe input stream and
transmits it augmented with computed information to its successors. The number of
transducers is linear in the query size. The complexity of answering queries depends on
whether filters are allowed and is polynomial in both the sizeof the query and of the
input. XStreamQuery [35] is an XQuery engine based on a pipeline of SAX-like event
handlers augmented with the possibility of returning feedback to the producer. The
strengths of this construction are its simplicity and the ability to ignore irrelevant events
as soon as possible. However, the approach only handles the child and descendant axes
as yet.

FluXQuery [36] extends a subset of XQuery with constructs which guide an event-
based processing of the queries using the DTD of the input. FluXQuery is used within
the StreamGlobe project which is concerned with query evaluation on data streams
in distributed, heterogeneous environments [37]. STX [38]is basically a restriction of
the XSLT transformation language to what can be handled locally by considering only
the visited part of the tree and selecting nodes from the remaining part of the tree.
Sequential XPath [39] presents a quite restricted subset ofXPath, handling only right-
ignoring XPath patterns, which can be implemented without the need of any buffering.
TurboXPath [40] introduces an algorithm for answering XPath queries containing both
arithmetic and structural predicates and which is neither directly based on finite au-
tomata nor on transducer networks. The dynamic data structure WA (work array), used
to match the document nodes has certain similarities with our construction. Entries are
added in the WA upon each start-tag event for each sub-pattern to which the children
must conform, which roughly correspond to aDown transition of the LPA. Matches
of the sub-patterns are detected upon end-tag events by AND-ing the fulfillment of
the sub-patterns by the children, similarly to anUp transition.Side transitions are not
needed as the pattern language does not impose any order on the children nodes. In this
perspective the context information is optimally used, as in our case, by a combination
of top-down and bottom-up transitions. Recent work by Bar-Yossefet al.[41], indicates
that the space requirement for the TurboXPath approach is near the theoretical optimum
for XPath queries.
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9 Conclusion

We have introduced a construction which allows the evaluation of grammar queries on
unranked ordered trees in an event-based manner. The expressiveness of the queries ex-
ceeds the XML querying capabilities of languages for which streamed evaluation has
been proposed yet. In particular it allows the evaluation Core XPath queries, while al-
lowing to express also much more sophisticated contextual conditions. The construction
allows to detect matches at the provably earliest time possible while scanning the input.
We provide an algorithm which efficiently implements the construction and which has
been used in the freely available Fxgrep language. The efficiency of our approach has
been proved in practice as shown by experimental results.
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A Example Run of A~G
Example 7.The NFAs for the regular expressions occurring in our grammar G are de-
picted in Fig. 11. As input consider the XML document depicted in Fig. 1. The run of
A~G on the tree representation of the input is shown in Fig. 12, where the sets containing
x-s are tree states and the sets containingy-s are forest states. The order in which the
tree and forest states are computed is denoted by the index attheir right. Observe that
the input tree, which is in the regular forest language specified byG, is accepted byA~G
as it stops in the state{y1}, which is a final state of the LPA.

r3 = x⊤
∗(x1|xa)x⊤

∗

r1 = xbxc r2 = x⊤
∗r0 = x1|xa

x⊤

x1

y9

xa y11

x⊤

x⊤

y12

y10

xa

x1

y8

x⊤

x⊤

xby3 y4 y5
xT

x⊤

y6 y7y0

y1

y2

xa

x1

xc

Fig. 11: NFAs obtained by Berry-Sethi construction for regular expressions in Exam-
ple 1

B Proof of Theorem 3

In the following we use the notation from Section 7 where Theorem 3 was stated.

Alternative Definition of Matches

In order to proof Theorem 3 a more refined definition of matchesis needed in which the
NFA states reached while checking the content models of elements are given explicitely.
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{y6}19 {y6}22

{y4, y7, y9}21

{x⊤, xc}23{x⊤, xb}20

b c

{y6}4 {y6}7

{y4, y7, y9}6

{x⊤, xc}8{x⊤, xb}5

b c

{y3, y6, y8}3

{y0}1

{y9, y12}17

{y5, y7, y9}24

{x⊤, xa}10

{y3, y8}2 {y9, y11}11

{y6}13

{x⊤, xb}14

{x1, x⊤}27

{x⊤}16 {x⊤, xa}25

{y1}28

{y9, y11, y12}26

a

a a a

{y5, y7, y9}9 {y3, y6, y8}12 {y3, y6, y8}18{y4, y7, y9}15

Fig. 12: The run ofA~G on the input tree

Let R be a set of forest grammar productions,r0 be a regular expression over non-
terminals andf an input forest. A(non-deterministic, accepting) runfR overf for R

andr0, denotedfR ∈ Runsr0,f is defined as follows:

y0〈f
′
1〉 . . . yn−1〈f

′
n〉 yn〈〉 ∈ Runsr0,a1〈f1〉 ... an〈fn〉 iff

y0 = y0,0, yn ∈ F0, and
(yi−1, xi, yi) ∈ δ0, xi → ai〈ri〉, f

′
i ∈ Runsri,fi

for all i = 1, . . . , n

y ∈ Runsr0,ε iff y = y0,0, y ∈ F0

An example run is given immediately below.
It is straightforward to see that a derivationf ′ with (f, f ′) ∈ Derivr0

(defined on
page 5) exists iff a runfR ∈ Runsr0,f exists.

Example 8.Let G = (R, r0) with R being the set of rules as below:

(1) x⊤ → a〈x∗
⊤〉

(2) x⊤ → b〈x∗
⊤〉

(3) x⊤ → c〈x∗
⊤〉

(4) x1 → a〈x∗
⊤(x1|xa)x∗

⊤〉
(5) xa → a〈xbxc〉

(6) xb → b〈x∗
⊤〉

(7) xc → c〈x∗
⊤〉

The NFAs for the regular expressions occurring in grammarG with the set are repro-
duced in Fig. 13.

Consider the input tree depictedt reproduced for convenience in Fig. 14 and one
derivation oft′ w.r.t. r0 depicted in Fig. 15. A run corresponding tot′ is depicted in
Fig. 16 via dotted lines.

The derivation corresponding to a run can be obtained by taking the incoming tran-
sitions of the NFA states of the nodes which are not the first intheir siblings sequence as
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r3 = x⊤
∗(x1|xa)x⊤

∗

r1 = xbxc r2 = x⊤
∗r0 = x1|xa
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Fig. 13: NFAs obtained by Berry-Sethi construction for regular expressions in Exam-
ple 8
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Fig. 14: Input treet
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Fig. 15: Derivationt′ of t w.r.t r0
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Fig. 16: Run corresponding tot′
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one can see in Fig. 16. Formally, the following expresses therelation betweenderiva-
tionsandruns:

(f, f ′) ∈ Derivr

iff ∃fR ∈ Runsr,f with L(f ′) = N(fR)
andlab(f ′[πp]) = in(lab(fR[π(p + 1)])) for all πp ∈ N(f ′).

Let f be an input forest andQ = ((R, r0), T ) a grammar query. Matches ofQ,
which were originally defined in terms ofderivations, can be equivalently defined in
terms of runs as it follows:

πp ∈ MQ,f iff ∃fR ∈ Runsr0,f s.t.in(lab(fR[π(p + 1)])) ∈ T.

Notations

Before proceeding with the proof we further introduce a couple of useful notations. The
set ofmatches defined by runs with labely at locationl is defined as:

πp ∈ Ml,y
Q,f iff ∃fR ∈ Runsr0,f s.t.in(lab(fR[π(p + 1)])) ∈ T

andlab(fR[l]) = y

The set ofl-right-ignoring matches defined by a run with labely at l is defined as:

π ∈ ri-Ml,y
Q,f iff π ∈ Ml,y

Q,f2
∀f2 ∈ RightIgnf,l

A nodeπ′ is aπi-upper-right ignoring match defined by a run with labely at πi iff
for any right-completionf2 at the parent ofπi there is a run definingπ′ as a match of
Q in f2 which labelsπi with y, formally:

π′ ∈ uri-Mπi,y
Q,f iff π′ ∈ Mπi,y

Q,f2
∀f2 ∈ RightIgnf,π

Given a locationπi and an NFA statey, a sequence of states is asuffix run fromy

at πi iff the last state in the sequence is a final state and the sequence of siblings to the
right of πi allows to visit the sequence of states, formally:

yi, . . . , yn ∈ Sufπi,y

iff (yk−1, xk, yk) ∈ δj , f1[πk] ∈ [[R]] xk with xk = in(yk), ∀k ∈ i, . . . , n and
yi−1 = y, yn ∈ Fj wheren = lastf1

(π)

To denote the information on top of the stack at the some moment πi we writeπi.q,
πi.m andπi.ri in analogy to attributes of attribute grammars. Similarly to attribute
grammars, these are computed by local rules as presented in Section 7.1.

Proof

Theorem 3 is a straightforward corollary of the following theorem:

Theorem 4. The construction presented in Section 7.1 keeps the following invariant:

π′p ∈ πi.m(y), y ∈ πi.q ∩ Yj , ∃c ∈ Sufπi,y andrj ∈ πi.ri

iff π′p < πi andπ′p ∈ uri-Mπi,y
Q,f

(3)

Proof. We proof the two directions of Theorem 4 separately.
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Left-to-right We show that (3) holds at all locations in the input by induction using
the lexicographic order on locations.

Base caseInitially, at location1, 1.m(y) = /O, ∀y ∈ 1.q, thusπ′p ∈ 1.m(y) is false,
and the left-to-right direction trivially holds.

Induction stepSupposing that (3) holds at all locations up to some locationl we show
that it also holds at the immediately next location.

Start-tag transitionWe first show that if (3) holds atπi ∈ N(f), so does it atπi1.
Let π′p ∈ πi1.m(y0), y0 ∈ Yj and suppose∃c ∈ Sufπi1,y0

andrj ∈ πi1.ri.
Sinceπ′p ∈ πi1.m(y0), it follows by our construction (conform to (1) on page 15) that
∃y ∈ πi.q with (y, x, y′) ∈ δk, x → a〈rj〉, rightIgn(y′), rk ∈ πi.ri and either (i)
π′p ∈ πi.m(y) or (ii) π′p = πi andx ∈ T .

In case (i) it follows from (3) atπi that π′p < πi andπ′p ∈ uri-Mπi,y
Q,f . Thus,

obviouslyπ′p < πi < πi1 and it remains to show thatπ′p ∈ uri-Mπi1,y0

Q,f . This follows

directly fromπ′p ∈ uri-Mπi,y
Q,f , c ∈ Sufπi1,y0

andrightIgn(y′) by grafting the run

over the children ofπi corresponding toc into the run corresponding touri-Mπi,y
Q,f .

In case (ii),π′p = πi < πi1. The proof will use in this case the following lemma
(also used later on):

Lemma 1.1: If there is a suffix run within a right ignoring content model,then,
independently of what follows in the input after the enclosing element, there is a
run over the input forest containing that suffix. Formally, if y ∈ πi.q ∩ Yk, rk ∈
πi.ri and ∃c ∈ Sufπi,y then ∀f2 ∈ RightIgnf,π ∃fR ∈ Runsr0,f2

with c =
lab(fR[πi]), . . . , lab(fR[π lastfR

(π)]).

Proof. The proof is by straightforward induction on the locations in the input forest.
The assertion trivially holds at location1. For the induction step, letπi ∈ N(f). We
show that if the assertion holds at the locationπi, it also holds at (i)πi1 and (ii) atπ(i+
1). In case (i)∃y ∈ πi.q with (y, x, y′) ∈ δk, x → a〈rj〉, rightIgn(y′), rk ∈ πi.ri.
The required run is obtained by grafting the run over the children ofπi corresponding
to c into the runy, y′, . . . corresponding to the induction hypothesis. In case (ii) the
existence of the suffix run atπ(i + 1) implies the existence of a run atπi and our
conclusion follows by the induction hypothesis.

We continue now with the proof of Theorem 4.
Sincec ∈ Sufπi1,y0

it follows (straightforwardly by definition) thatf [πi] ∈ [[R]] x.
Given that(y, x, y′) ∈ δk andrightIgn(y′) it follows that there is thus a suffix run
c ∈ Sufπi,y with c = y, y′, . . .. With rk ∈ πi.ri it follows by Lemma 1.1 that
∀f2 ∈ RightIgnf,π ∃fR ∈ Runsr0,f2

with lab(fR[πi]) = y′. SincerightIgn(y′)
it follows that∃fR ∈ Runsr0,f2

for anyf2 ∈ RightIgnf,πi and lab(fR[πi]) = y′.
With c ∈ Sufπi1,y0

it follows that ∃f ′
R ∈ Runsr0,f2

(obtained by grafting the
run over the children ofπi corresponding toc into fR) with lab(f ′

R[πi]) = y′ and
lab(f ′

R[πi1]) = y0. Thusπ′p ∈ uri-Mπi1,y0

Q,f .
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End-tag transitionWe next show that if (3) holds atl ∀l < π(i + 1), so does it at
π(i + 1).

Let π′p ∈ π(i + 1).m(y′′), y′′ ∈ Yk and suppose∃c ∈ Sufπ(i+1),y′′ andrk ∈
π(i+1).ri. Sinceπ′p ∈ π(i+1).m(y′′), it follows by our construction (conform to (2)
on page 16) that∃y ∈ πi.q, y′ ∈ πi(n + 1).q with y′ ∈ Fj , x → a〈rj〉, (y, x, y′′) ∈ δk

and either (i)π′p ∈ πi.m(y), or (ii) π′p ∈ πi(n + 1).m(y′), or (iii) π′p = πi and
x ∈ T .

In case (i) our conclusion follows directly from (3) atπi.
We continue with the cases (ii) and (iii). Givenc andrk ∈ π(i + 1).ri it follows by

Lemma 1.1 that∀f2 ∈ RightIgnf,π ∃fR ∈ Runsr0,f2
s.t. lab(fR[π(i + 1)]) = y′′.

Further we use the following lemma (also employed later on):

Lemma 1.2: If y ∈ πn.q ∩ Fj then∃fR ∈ Runsrj ,f [π1]...f [πn] with lab(fR[π(n +
1)]) = y.

Proof. The proof is straightforward by induction on the depth off [π].

In case (ii),π′p was found either before or while visiting the content ofπi, that is
eitherπ′p ≤ πi or πi < π′p < π(i + 1), respectively. In the first case our conclusion
follows directly from (3) atπi. In the second caseπ′p < π(i + 1) we further need the
following lemma:

Lemma 1.3: If y ∈ πn.q ∩ Fj , π′p ∈ πn.m(y) andπ1 ≤ π′p ≤ πn then∃fR ∈
Runsrj ,f [π1]...f [πn] with lab(fR[π(n + 1)]) = y and in(lab(fR[π′(p + 1)])) ∈ T

wheren = lastf (π).

Proof. The proof is by induction on the depth off [π]. By Lemma 1.2∃f ′
R ∈

Runsrj ,f [π1]...f [πn] with lab(f ′
R[π(n + 1)]) = y.

For depth1 it directly follows that π′p = πi for some 1 ≤ i ≤ n and
in(lab(f ′

R[π′(p + 1)])) ∈ T . ThereforefR = f ′
R is the sought after run. If the depth is

more than 1, then either (A)π′p = πi for some1 ≤ i ≤ n andin(lab(fR[π′(p+1)])) ∈
T as above or (B)∃y′ ∈ πin′.q∩Fk, π′p ∈ πin′.m(y) andπi1 ≤ π′p ≤ πin′ for some
1 ≤ i ≤ n andn′ = lastf (πi). In case (B)fR in our conclusion can be constructed by
grafting the run over the children ofπi existent by the induction hypothesis intof ′

R.

Our conclusion results now for the case (ii)πi < π′p < π(i + 1) by grafting the
run corresponding to the children which defines the match (asimplied by Lemma 1.3)
into fR.

In case (iii)π′p = πi < π(i+1) and it remains to show thatπ′p ∈ uri-Mπ(i+1),y′′

Q,f .
We have by Lemma 1.2 that∃f ′

R ∈ Runsrj ,f [πi1]...f [πin] andin(lab(f ′
R[π′(p+1)])) ∈

T . FromfR andf ′
R it results (by graftingf ′

R into fR at π) that∃f ′′
R ∈ Runsr0,f2

s.t.

in(lab(f ′′
R[π′(p + 1)])) ∈ T andlab(f ′′

R[π(i + 1)]) = y′′, thusπ′p ∈ uri-Mπ(i+1),y′′

Q,f .

Right-to-left Let π′p < πi andπ′p ∈ uri-Mπi,y
Q,f . Let f2 be a right-completion off at

π obtained by adding on every level from the root toπ inclusively an arbitrary number
of right siblings⋆〈〉, as depicted in Fig. 17, where⋆ is a symbol not occurring in any of
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⋆ ⋆. . .

⋆. . .⋆

f2

π

π′p

Fig. 17: Right completion off atπ

the rules in the grammar. Sinceπ′p ∈ uri-Mπi,y
Q,f it follows that∃fR ∈ RunsG,f2

s.t.
in(lab(fR[π′(p + 1)])) ∈ T andlab(fR[πi]) = y.

Also, since⋆ does not occur in any rulefR must label all the ancestors of theπi node
with right-ignoring states, i.e.rightIgn(lab(fR[π1(k + 1)]))∀π1k ∈ ancestorsf (πi),
whereancestorsf : N(f) 7→ N(f) is defined as follows:

ancestorsf (i) = /O
ancestorsf (πi) = {π} ∪ ancestorsf (π)

It follows that∃f ′
R ∈ RunsG,f s.t.in(lab(f ′

R[π′(p + 1)])) ∈ T andlab(f ′
R[πi]) =

y. Suppose thaty ∈ Yj . Sincey is part of a run (f ′
R), it obviously holds that∃c ∈

Sufπi,y.
Also, sincerightIgn(lab(fR[π1(k + 1)]))∀π1k ∈ ancestorsf (πi), we obtain by

using the NFA transitions inf ′
R at the corresponding steps in our construction that all

content models of the elements enclosingπi are right ignoring, thusrj ∈ πi.ri.
Given thatπ′p < πi it follows that there is an ancestor ofπ′p which is either (i)

a sibling of an ancestora of πi or (ii) an ancestora of πi. In any case it follows by
using the NFA transitions inf ′

R at the corresponding steps in our construction thatπ′p

is propagated down at locationa until πi, thusπ′p ∈ πi.m(y).
We have proven thus thatπ′p ∈ πi.m(y), y ∈ πi.q ∩ Yj , ∃c ∈ Sufπi,y andrj ∈

πi.ri.
This completes the proof of Theorem 4.

Theorem 3 follows now directly from Theorem 4.
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