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Abstract. We present a solution for answering queries on XML streams. O
approach extends the class of queries for which streamedicst have been
proposed to the class of queries expressible by monadimdewrder logic. We
provide an algorithm which efficiently answers the queriespite their large ex-
pressiveness. We show that the algorithm reports matchbe atirliest possible
time during the scan of the input which implicitly leads tglhiadaptiveness in
terms of memory consumption. The efficiency is documented an experimen-
tal evaluation of our approach.

1 Introduction

Most of the XML applications build in memory the tree repmasgion of the manip-
ulated XML data before processing it. This approach is naable for handling very
large XML documents or settings in which the XML data is reeelilinearly via some
communication channel, rather than being completely aklilin advance. For these
applications, special algorithms have to be developed¢hvhiew the XML data as a
stream of events, rather than as a tree. An event containsla@ece of information,
e.g. astart-tagor anend-tag An application receiving the stream performs its task by
reacting to the events. The advantage of this event-drigproach is that it allows one
to buffer only the relevant parts of the input, saving thostand memory. In particular,
it allows the construction of the XML tree in memory and itbsequent processing,
being thus at least as expressive as the tree-based approach

A fundamental task in XML applications is locating nodes nf)dML input tree
which have a desired property. Here, we call these natshesand the process of
locating themquerying The most widely known query-language is XPath [1] , used
both standalone or as part of other important languages<ie Schema Language
[2], XSLT [3] or XQuery [4].

The research interest in querying XML streams has been veiy recently and
there is a very rich literature on this topic. The relatedkisreviewed in Section 8. The
proposed query languages are generally able to implemietatit subsets of XPath.
Most of them are subsumed by an XPath fragment callece XPath [5], mainly
featuring location paths and predicates using locationglatit without arithmetics and
data value comparisons, which is very relevant for the efficy of the evaluation of
full XPath queries.

Our main contribution is a novel solution for efficient ewdrasised evaluation of
queries which go beyond the capabilities of the languages/ffiich this problem was



addressed yet. Most of them can be expressed using firstlogle possibly extended
with regular expressions on vertical paths, but are lesgessjve than monadic second
order logic (MSO). In contrast, the queries that we condigee,grammar queriesare
defined by using forest grammars [6, 7] (also called elsesvhegular hedge grammars
[8]) which are equally expressive with the powerful MSO qeserGrammar queries ba-
sically cover all Core XPath queries, as opposed to most etlent-driven approaches,
which consider only fragments of it. Moreover, grammar dipseallow the convenient
specification of horizontal contextual conditions whick aot possible or are difficult
to express in XPath.

Grammar queries can be evaluated using pushdown foreshataas presented
in [9, 6]. The original construction generally requires tglth the whole input tree in
memory. The event-based query evaluation is addressedardyvery restricted class
of queries. These are the so calléght-ignoring queries for which all the information
needed to decide whether a node is a match has been seen bydhbe end-tag of
the node is encountered. The restriction of right-ignorjngries is very severe, as for
instance they do not capture simple XPath patterns withifigralon the nodes in the
path. In this paper we lift this restriction. Rather thanreoy (i.e. statically) handling
only a restricted subset of queries, we show here &dpitrary grammar queries can be
evaluated in an event-driven manner.
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Fig. 1: Input treet

Example 1.Consider an XML document whose tree representation is tepim

Fig. 1. Each location in the tree corresponds to an eventdrctitresponding stream

of events, as depicted below. We identify locations by gBiof numbers, s.t. the

time ordering of the events corresponds to the lexicogmphder of the locations:
1 11 111 1111 112 1121 113 12 121 1211 122 ......

<a> <a> <b> </b> <c> </c> </a> <a> <b> </b> </a> = ......

It should be clear that the amount of memory necessary toerewarbitrary query
inherently depends on the query and on the input documensi@er for example the
XPath patterri/a/b  locatingb nodes which have as father amode. The node 111
is a match in our input. This can be detected as early as atth&dn 111, as the events
following 111 can not change the fact of 111 being a match.

The query//ajc]/b locatesb nodes which have a node as father and &
sibling. The node 111 is again a match but this becomes cidgmiafter seeing that the
a parent has also a childat location 112. One has thus to remember 111 as a potential



match between the events 111 and 112. As the events to thefitth2 can not change
the fact of 111 being a match, 111 can be reported and distatdel 2.

Finally, as an extreme case consider the (MSO expressibRatiX pattern
[*[not(d)]//* locating all descendant nodes of the root element if thisrtas
child noded. Any node in the input is a potential match until seeing tis¢ ¢hild of the
root element. In our example all nodes have to be rememberpdtantial matches up
to the last event 14. Note thus that any algorithm evaluatiggery needs in the worst
case linear space in the input size. However, most of theipahqueries require a quite
small amount of memory as compared to the size of the input.

The contributions of this paper are as follows. We introdaceethod which allows
one to talk about the earliest detection location of a matctsdbme given query and
input tree. The main contribution is proving that matchegrainmar queries can be de-
tected at their earliest detection location by an autorbated construction and hereby
proving the following theorem:

Theorem 1. Matches of MSO definable queries are recognizable at thelresa de-
tection location.

Based on the construction used for proving Theorem 1 we giedfecient algorithm for
grammar query evaluation, which reports matches at thdiesadetection point. As a
consequence potential matches are remembered only asdorgessary, meaning that
our construction implicitly adapts its memory consumptiothe strict requirements of
the query on the input at hand. The algorithm has been cosatpietplemented in the
freely available XML querying tool Fxgrep [7]. We providepetimental evidence of
the practical performance of the algorithm.

The paper is organized as follows. In Section 2 we introdusetaf useful nota-
tions. In Section 3 we present the forest grammars and inddetthe grammar queries.
Section 5 introduces the pushdown forest automata whichtdeeto efficiently imple-
ment forest grammars. In Section 6 we briefly present how hgmwgn automaton can
be used to answer right-ignoring queries on streams. The omitribution on query
evaluation for XML streams is given in Section 7 where the&tgm is presented and
its correctness, optimality, complexity and performarneeaaldressed. Related work is
discussed in Section 8. We conclude in Section 9.

2 Preliminaries

Conceptually, an XML element istaee The content of an element is an ordered se-
guence of trees, which we callfarest An XML document is, again, a forest as the
root element might be preceded and followed by processisiguction trees. There-
fore, we start by introducing a couple of useful notationdifees and forests. Lét be
an alphabet. We formally define the s@ts of treest and Fx, of forestsf over X' as
follows:

t == a(f), aeX

f ou= e|ti.ty, n>0

wheree denotes thempty forestThe symbok denotes théabeland f the children of
an element. To denote the label afwe also writdab(t) = a.



Let f be a forest. The sdff (f) C N* contains all paths in f and is defined as
follows:

I(e) = {\}
IO(ty...ty) ={U{in |1 <i<n,m e II(f;) fort; = a;{fi)}

where) denotes the empty string.
N(f)=1II(f)\ {)} is the set of nodes ifi. A node identifies one of’s subtrees.
Form € N(f), f[r] is called thesubtree off located atr and is defined as follows:

. ti ) if =A
(tr.. . tn)[im] = {fi[ﬁ], f # Aandt; = a(fi)

For a pathr, we definelast s (7) as the number of children of the node
lastf(m) = maz({n | 7n € N(f)} U{0})

Note thatlast (7)) = 0 iff 7 identifies a leaf.
Let f be a forest. The sdi(f) C N* of locationsin f, is defined by:

L(e) = {1}
Lty ty)={i|1<i<n+1} U{il| 1<i<n,leL(f)

for t;, = az<fl>}

A location corresponds to the points in time at which eveméstaggered, with
the time ordering being the lexicographical order of theat@ns. According to the
definition above, the start-tag of a nade seen at the momehand the end-tag is seen
at the moment(n + 1), wheren = last s (1) (See Example 1).

Thepreceding nodesf a location/ € L(f) in a forestf are the seprec(l) = {r |
m € N(f),m <1}, where <" denotes lexicographical comparison.

A forest f5 is aright-completionof a forestf; at locationl € L(f1) iff f1 and fs
consists of the same events umtiFormally: prec , (1) = prec, (1) andlab( f2[7']) =
lab(f1[x']) forall " € precy, (1).

3 Forest Grammars

Forest grammars are a very expressive and theoreticallgtédrmalism for specifying
properties of forests. Schema languages like DTD, XML Scheanguage, DSD [10]
or RelaxNG [11] basically are more or less restricted forffeest grammars.

A forest grammarover an alphabel’ is a tupleG = (R, ry), whereR is a set
of productions using non-terminals from a sétand terminal symbols front, and
10 € Rx (the set of regular expressions ov€J is thestart expression

The productions iR have the formx — a(r) withz € X, a € Y andr € Rx.
Intuitively, and using the terminology from schema langemghis specifies that the
children of ana element derived using the production must conform todbmetent
modelr.



Example 2.The grammaG = (R, z1|z,) over{a,b, c} with R being the following
set of productions will be used in our running example:

(1) zr —ale) B) et —cl@r)  (5)xp = bzy) (7) 21 — aley(21|ra)rT)
(2) 2T = bzT) (4) za — afzpre) (6) xe — c(27)

The XML language specified by is the set of documents in which there is a path from
the root to a node labelad whose children are a node labelednd a node labeled

¢, and whose ancestors are all labeded he first three productions make- account

for trees with arbitrary content. As specified by productidh =, stands for the:
element with thé and thec children. Productions (5) and (6) say that these children
can have arbitrary content. Finally, production (7) says thea specified by (4) can
be at arbitrary depth in the input, and all its ancestors rbestabeleds. The start
expressiony |z, specifies that the root element is to be derived either frorar from

Tg-

The meaning of a grammar is formally defined as follows. A $giroductionsR
together with a distinguished non-terminale X or a regular expression € Rx
defines dree derivationrelationDerivgr , € Tx x Tx or aforest derivatiorrelation
Derivg,, € Fx x Fx, respectively, as follows:

(a{f),z(f")) € Derivg iff z — a(r) € Rand(f, /') € Derivg,,

(t1...tn, ty .. .t,) € Derivg, iff z1...2, € [r],
and(t;,t}) € Derivg,, fori=1,...,n

(e,€) € Derivp,, iff X € [r],
where[r],. is the string language specified by the regular expression

If (f,f") € Derivg, we say thatf’ is aderivationof f w.rt. R andr. For a
grammarG = (R,r) we write (f, f’) € Derivg and say thayf’ is a derivation off
w.r.t. the grammaé€ iff (f, f') € Derivg . Note that a derivatiori’ is a relabeling of
f and can be seen as a proof of the validityfaiccording to the scheng.

? ?

Fig. 2: Possible derivations df

Example 3.Let ¢ be the tree depicted in Fig. 1. Two possible derivationswir.t. G
are depicted in Fig. 2.

Themeaning R] of a set of production® assigns sets of trees to the non-terminals
x € X and sets of forests to regular expressiors R x and is defined by:



t € [R] ziff 3t' € Tx and(t,t') € Derivg,,
fe[R] riff 3f € Fx and(f, f') € Derivg,,

If t € [R] = or f € [R] r we say that can be derived from or f can be derived
from r, respectively.

A forest grammaiG = (R, ro) specifies aegular forest languageas the set of
forestsCq = [R] ro. This might be considered the XML language specifiedzby

4 Grammar Queries

Itis easy to see that a gramn@itogether with a distinguished non-terminadpecifies
a query, namely, all the nodesin the inputf for which there is a derivatiofi’ w.r.t. G
in which 7 is labeled withe.

More generally, aquery @ is a pair(G,T) consisting of a forest gramma&¥ =
(R, rp) and a set ofarget non-terminal§” C X whereX is the set of non-terminals in
R. Thematche®f @) in an input forestf are given by the seég s C N(f):

m e Mg, ¢ iff 3(f, f') € Derivg, 3z € T andlab(f'[r]) = =

Example 4.The query@, = (G, {z}) locates nodes having onlya ancestors and
only one siblinge to the right. The leftmodt is a match, as one can see by definition by
looking at the first derivation in Fig. 2. Similarly, the righostb is a match as defined
by the second derivation w.r(.

The query®: = (G, {z,}) locates the: nodes which have a childfollowed by a
child c. These are the leftmost and the rightmosiodes.

Note that we decided for aall-matchessemantics of our queries, i.e. all nodes
as in the definition are to be reported as matches. This ipmahte, because a user
query typically is aimed at findingll the locations with the specified properties, as for
instance in XPath. Furthermore we do not want to place ontbedyurden of specifying
the query via an unambiguous grammar, therefore the definitbove refers tany
derivation.

Forest grammars can basically be thought of as non-detistiniunranked) tree
automata. Non-terminals correspond to states of tree aitoand derivations to ac-
cepting runs of them. A grammar query can be thus seen as amatan with a set of
distinguished states. These queries were proven to belggxalressive with queries
definable in MSO on forests [12]. MSO queries are not prakt&cdue to their high
evaluation complexity, yet they have been used a convebienthmarks for com-
paring XML query languages [13] due to their large expresgiower. Indeed MSO
gueries, subsume most of fundamental features of the gaeguhges which have
been proposed for XML. Grammar queries have thus the samessipe power as
MSO queries, while being efficiently implementable, evearnevent-based setting as
we show in the next section.

While very expressive, grammar queries are not easily efabusers not-familiar
with grammar formalisms. Alternatively, queries can becdfied using the more intu-
itive Fxgrep [7] pattern language which is syntacticalipar with XPath, but allows



the specification of more precise horizontal contextuakt@mts on nodes in patterns.
In particular, any node in a pattern can be provided with tegufar expressions over
patterns to be fulfilled by the sequence of the node’s leftragid siblings, respectively.
This allows for example the identification of nodes by theMIXschema like types,
even in the absence of schema information. For an overvielaxgfep and how its
patterns are automatically translated to grammar quemefer to [6].

Earliest Detection Locations

A location! is anearly detection locatiof a match noder for a queryQ in input f;
iff 7 € Mgy, for all right-completionsf; of f; at!.

A location! is theearliest detection locationf a match noder iff [ is the smallest
early detection location aof in lexicographical order.

Example 5.Reconsider Example 1. Given the quéfa/b , the earliest detection lo-
cation of node 111 is 111. As for the quéfg[c]/b the earliest detection location
of node 111 is 112. Finally, for the quef§fnot(d)]//* , there is no early detec-
tion location for any of the match nodes. This matches cabaatetected until the last
location in the input has been reached.

5 Automata for Forest Grammars

It is well known that regular ranked tree languages are neicaple by the class of
bottom-up tree automata [14]. Also, every unranked treebmencoded to a unique
ranked tree representation and the notion of regular tregulge is invariant under
these encodings (see e.g. [6]). Therefore, bottom-up tremaata can be used to rec-
ognize regular forest languages.

Equally expressive with bottom-up automata but much moreise and efficient
to implement in practice are thpushdown forest automaf8, 6]. Any implementation
of a bottom-up automaton has to choose a traversal stradeglye input tree. The idea
of a pushdown forest automaton (PA) is based on the obsenvtdttat, when reaching
a node during the traversal, the information gained fromelheady visited part of the
tree can be used at the transitions of the automaton at thgt fidnis supplementary
information allows a significant reduction in the size of gtates and the number of
possible transitions to be considered by a deterministi@®&ompared with a corre-
sponding deterministic bottom-up automaton. Intuitivétythe case of a depth-first,
left-to-right traversal, which corresponds to XML evertsked processing, the advan-
tage is that information gained by visiting the left sibknas well as the ancestors and
their left siblings can be taken into account before prdogsthe current node. The
name of the automata (pushdown forest automata) is due tia¢chéhat information
from the visited part of the tree is stored on the stack (paaimd which is implicitly
used for the tree traversal.

Also, rather than working on ranked encodings of unrankeelstrthe PAs directly
recognize unranked trees and forests. Besides savingrieeteded for encoding, this
also has the advantage of making the construction of thereattomore straightforward
and intelligible.



5.1 Pushdown Forest Automata

In addition to the tree states of classical tree automata,al$® hadorest statesintu-

itively, a forest state contains the information gainedrfithe already visited part of the
tree Context informatiohat any point during the tree traversal. Let us consider &hdep
first, left-to-right traversal. The following notationseagssentially those introduced in

[6].

Down

dn+1
Side

Pn

Side

Fig. 3: The processing model of an LPA

The behaviour of deft-to-right PA(LPA) is depicted in Fig. 3. When arriving at
some noder labeleda, the context information is available in the forest statby
which the automaton reaches the node. The automaton hawévge the content af
and compute a tree stgtewhich describes within the contexy. In order to do so, the
children ofr are recursively processed. The context information foffilsechild, ¢,
is obtained (via @own transition) by refiningy by taking into account that the father
is labeleda. Subsequently thg, context information for the second child is obtained
(via a Side transition) fromg; and the informatiorp; gained from the traversal of.
Proceeding in this manner, after visiting als children, enough context-information is
collected ing,,+1 in order to compute (via an Up transition). After processing the
context information for the subsequent node is updatedjinto

Formally, an LPAA = (P, Q, I, F, Down, Up, Side) consists of a finite set dfee
statesP, a finite set oforest state€), a set ofinitial states! C @, a set offinal states
F C @, adown-relationDown C @ x X' x Q, anup-relationUp C Q x X' x P and a
side-relationSide C Q x P x Q. Based onDown, Up andSide, the behavior ofd is
described by the relatiost C Q x Fx x Q andéz C Q x Tx x P as follows, where
the notations correspond to those in Fig. 3:

O (q,alty...t,),p) € 04 iff (¢,a,q1) € Down, (q1,t1.. tn,qn+1) € 5}4_- and

(
(an,a p) e Up forsomeql,an € Q.
(

0 (q1,t1f,qns1) € 02 iff (q1,t1,p1) € 62, (q1,p1,q2) € Side and(ga, f, qnt1) €
62 for somep; € P, g2 € Q

U ((J1757(Z1) S 6‘1714— for all q1 € Q

The language accepted by the automatas given by:



La={feFs|3Iqucl, g F
and(q17f7q2) € 6574:}

Note thatA visits the nodes in the input in document order, which is isedg the
order in which the XML input is reported by an event-basedsearTherefore, there
is no need to build the document tree in memory. Runmingnly needs a stack to
remember the forest state(see Fig. 3) at each opened and not yet closed tag and
can be implemented in the event-based manndpodun transition is triggered by the
start tag eventa>. The corresponding/a> event triggers thd/p transition. ASide
transition is executed immediately after the precedipgransition.

5.2 From Forest Grammars to PA

A compilation schema from a forest gramn@r= (R, ry) into a deterministic LPA
(DLPA) (whereDown, Up andSide are functions rather than relations) accepting the
same regular forest language has been given in [6]. Thesdbatiat any time the DLPA
keeps track of all possible content models of the elementse/ktontent has not been
seen all yet. In the case of an XML stream these aref@nedelements, whose start-
tags have been seen and whose end-tags have not been réadyeing an imaginary
top element whose content is the whole document. The doduisnaccepted at the end
of the document if the sequence of top-level nodes confoomg t

Let X be the set of non-terminals @& and letry, .. ., r; be the regular expressions
occurring on the right-hand sides in the productidhysvherel is the number of pro-
ductions. For0 < j < [, let A; = (Yj,y0,5, F}j,d;) be the non-deterministic finite
automaton (NFA) accepting the regular string language défiry r; as obtained by
the Berry-Sethi construction [15]. HerE; is the set of NFA stateg_ ; the start state,
F; the set of final states ardd € Y; x X x Yj is the transition relation.

By possibly renaming the NFA states we can always ensureYihaty; =@for
i1#j. LetY =YyU...UY,andd = U...U ;. ADLPA Ag acceptingls can be
defined asAg =(2%,2Y, {q}, F, Down, Up, Side). A tree state synthesized for a node
is the set of non-terminals from which the node can be deriddrest state consists
of the NFA states reached within the possible content manfdlse current level and
can be computed as follows.

We start with the content modey, i.e. g0 = {yo,0}. We accept the top level
sequence of nodes if it conforms g, i.e. FF = {q | ¢ N Fy # @. The possi-
ble content models of a node are computed from the conteneimad which the
node may occurDown(q,a) = {yo; | v € ¢, (y,x,y1) € 6, x — a(rj)}.
When finishing a sequence of siblings we consider only thélléd content mod-
els in order to obtain the non-terminals from which the fathede may be derived:
Up(q,a) = {x | x — a(r;) andg N F; #&. The possible content models are updated
after finishing visiting the next node in a sequence of sdsirbide(q,p) = {y1 | v €
g,z € pand(y,z,y1) € d}. The resultingA¢ is obviously deterministic, since it has
one initial state and its transitions are functions rathantrelations.

As an example, the run of& on our input document is presented in Appendix A.



6 Right-ignoring Queries

left-

right-context
context | &

Fig. 4: The context and the content of a match

In this section we briefly present the ideas [9, 6] which alltv evaluation of a
right-ignoring queryQ = (G, T) using theAg LPA. Let us investigate what are the
requirements foQ to be right-ignoring. Consider a match nodeof ) as depicted
in Fig. 4. Since the query is right-ignoring, all the nodesnfrthe right-context are
irrelevant for the decision as to whethers a match. That isy is a match however the
right-siblings ofr and of every ancestor af might look like.

Let us consider that is the k-th out of m siblings, withm > k. Sincer is a
match, according to the definition, there is a derivatioelay the sequence of siblings
containingr with =1 ...z ... 2, andxy, € T. There is thus a content modegl s.t.
T1...Tk ... T, € [1j],. The fact that the right siblings af might be any trees implies
thatz; must be able to derive any tree, i[&] ©; = 7x foralli = k+1,...,m. Also,
as the number of right-siblings might be arbitrary, all of tlbove must hold for all
m € Nwithm > k.

To ensure the above there must exist an NFA spate Y; reached after seeing
the left siblings ofr with y, € F; and s.t. for allp € N, there areyi41,...,y, € F;
with (y;, z1,yi41) € §; fori =k +1,...,p, wherezt € X and[R] z1 = 7x. We
call such ay;, aright-ignoring NFA state The non-terminat is to be seen as a wild-
card non-terminal which can derive any tree and which is naadéable in any forest
grammar. The necessity of the above follows from the fadt tleaother non-terminal
x in the grammar can be sftR] x = 7y, as in general the alphabEtis neither finite
nor known in advance

Given an NFA statg, we use the predicatéghtlgn(y) to test whethey is a right
ignoring state. Testing whetheightIgn(y) holds, can be done statically by checking
in the NFA whether there are cycles visitipgnd consisting only af + edges, needing
thus time linear in the size of the NFA.

Similar considerations have to be made due to the rightreymze for all the nodes
lying on the path from the root to. Therefore we need to consider all the non-terminals
with which a derivation defining a match may label the nodésglyn the path from

1 We do not consider optimizations possible when the schertiieoXML data is available.

10



the match to the root. These are the so-catfedch-relevanhon-terminals, defined by:

x is match-relevant iff
zeTorz— alr;), (yi,z1,y) € §; andz; is match-relevant

We call a queny right-ignoring iff all y € Y with (y1,2,y) € 6 andz match-
relevant are right-ignoring. As presented above, testingther a query is right ignoring
can be done completely statically.

The right-ignorance of) ensures thus that if the left-context of a match is fulfilled,
then the right-context is also always satisfied. Hence, &rkhwhether a node is a
match, it suffices to look into the forest state in whi¢h leaves a node, which synthe-
sizes the information gained after visiting the left-cotitend the content of the node,
depicted in dark grey in Fig. 4:

Theorem 2. Let ¢, be the forest state in whicHg leaves a noder. If Q is right-
ignoring thenr € Mg f iff y € ¢x, (v1,%,y) € d forsomey,y; € Y andz € T

Proof. The theorem is proven as Theorem 7.4 in [6].

To answer queries on XML streams without building the docuintree in memory,
it remains to show how a left-to-right pushdown automatamtoa implemented in an
event-based manner.

Event-driven Runs of Pushdown Forest Automata

<a> </a>

Up

<al> </al> M <a2> </a2> s e o o <an> </an>

Dou/ t &) Dou% t YJ Dou/ t &7

Side

Fig. 5: Event-driven run of a pushdown forest automaton

Consider an LPMZ =(2X,2Y, {qo}, F, Down, Up, Side) as defined in Section 5.1
and its processing model as depicted in Fig. 3 (on page 8)oiide in whichAZ visits
the nodes of the input is the order of a depth-first, leftitgrsearch, which corresponds
exactly to the document-order.

11
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Compare Fig. 3 and Fig. 5. At every node Ag executes ondown transition at
the moment when it proceeds to the contentracdnd oneUp followed by oneSide
transitions at the moment when it finishes visiting the cohté 7. These moments
correspond to the start and end tags, respectively, of tHe noThe algorithm imple-
menting the event-driven run ofg is depicted in Listing 1.1.

We handle the following events:

1. startDoc , which is triggered before starting reading the stream;
2. endDoc, which is triggered after finishing reading the stream;

3. enterNode , which is triggered when a start-tag is read;

4. leaveNode , which is triggered when an end-tag is read.

Stack s;
ForestState q;

startDocHandler (§
q ‘= 4qo,

}

enterNodeHandler(Label {)
s.pushg);
q := Down(q,a) ;

}

leaveNodeHandler (Label {)
TreeStatep = Up(q,a) ;
q := Side(s.pop()a) ;

}

endDocHandler (§
if g€ F then output(”Input accepted.”)
else output(”Input rejected.”);

}

Listing 1.1. Skeleton for the event-driven run of a pushdown forest aatom

The stack declared in line 1 is needed in order to remembefotlest states used
for the traversal of the content of the elements opened ahgetelosed. The variable
q declared in line 2 stores the current forest state duringréversal of the document.

At the beginning,startDocHandler is called and it sets the current state
to the initial state of the automaton (line 5). A start taggders a call of
enterNodeHandler  which remembers the current state on the stack (line 9) and
updates the current state as result of executingtben transition (line 10). An end-
tag triggers the correspondirigp transition (line 14), followed by thé&ide transition
which uses as forest state the last remembered state orattie se. the forest state
before entering the element now ending (line 15).

The number of elements on the stack always equals the deftilke 6fML element
currently handled. Hence the maximal height of the stackésmiaximal depth of the
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handled XML document, which is in general rather small, ef@rvery large docu-
ments.

Depending on the purpose of the pushdown automaton, othienacan be per-
formed in the events handler. For the purpose of validattamust be checked at the
end of the document whether the current state is a final 3ta&1@8).

For the purpose of answering right-ignoring queries it nimesthecked whether the
forest state obtained after the side transition has theeptpgtated in Proposition 2.
Using the above presented implementatidg, is thus able to answer right-ignoring
queries on XML streams.

7 Arbitrary Queries

The previous section only shows how right-ignoring quecias be answered on XML
streams. In this section we lift this limitation by showingwharbitrary queries can be
answered on XML streams.

In the case of non right-ignoring queries, the decision awhether a node is a
match cannot be taken locally, i.e. at the time the node ts befcause there is still
match-relevant information in the part of the input not yedited. The decision can
only be taken after seeing all of the match-relevant infdioma

Fig. 6: Right completion of a forest

The general situation is depicted schematicallyfinn Fig. 6 (i). The noder is
a potential match considering its left context and its coh{depicted in dark grey)
which can be checked by the time the end-tag of the node is 3&endecision as to
whether this is indeed a match node must be postponed uatiigs¢éhe relevant part
of the right context (depicted in light grey), which was egnjpt the particular case of
right-ignoring queries. The location which must be readhestder to recognize as a
match is denoted dsWe call such a locatioh earliest detection locationf the match
m, formally defined below.
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Earliest Detection Locations

A forest f, is aright-completionof a forestf; at location! € L(f;) iff f; and f»
consists of the same events unti{The tree representation ¢f and f> are depicted in
Fig. 6). Formally:

J2 € RightIgny, i iff prec; (1) = precy, (1) andlab( f2[7']) = lab(f1[7'])
forall " € precy, (1).

with prec (1) denoting thepreceding nodesf a location/ € L(f) in a forestf, defined
asprec(l) = {m | m € N(f),m < I}, where "<” denotes lexicographical comparison.
A location! is anearly detection locatiolf a match noder for a queryQ in input
fiiff 1€ Mg, 4, for all right-completionsf, of f; atl.
A location! is theearliest detection locatioof a match noder iff [ is the smallest
early detection location af in lexicographic order.

Example 6.Reconsider Example 1 and the accompanying input depictEdyirl (on
page 2). Given the querja/b , the earliest detection location of node 111 is 111. As
for the queryf/a[c]/b the earliest detection location of node 111 is 112. Finédly,
the query*[not(d)]//* , there is no early detection location for any of the match
nodes. This matches cannot be detected until the last dwcatithe input has been
reached.

7.1 Idea

We proceed now to the description of the computation peréarivy our algorithm for
evaluating grammar queries on XML streams. This can be seaman of a pushdown
automaton changing its state on every XML event.

For the purpose of evaluation we use the stack to remembésltbeing informa-
tion for a locatior] at some nesting level :

1. ¢, denoting the progress within the content models to be densd on the level
containingl. This is exactly the forest state in whietg: (the DLPA acceptind.¢)
reaches,;

2. ri, needed for the early detection of matches as presentedbelo

3. m, storing potential matches which might be confirmed on theecu level, as well
as the potential matches accumulated while traversingutrerat level up td.

For 1, we remember the states of the finite automata correspgio the content
models which are reached considering the content seen so fae current level. They
are obtained as by performing the transitionsief.

For 2, we need to know which of the content models considemg¢t@current level
occur in right-ignoring contexts. A content model for anmeéte occurs in a right
ignoring context iff there is no content model of an enclggfement whose fulfillment
depends on the right context ef We call such content modedght-ignoring content
models

For 3, we associate potential matches with NFA states fyos potential match
is associated with a stageat location! iff the match may be defined w.r.t. derivations
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in which the word of non-terminals on the current level isegated by the NFA run
reachingl in statey. The informationm can be thus represented as a partial mapping
from NFA stateg, to the corresponding potential matchesy).

Consider our query) = (G, T) with a forest grammatr = (R, 7). Letry,...,
be the regular expressions occurring on the right-hand siie production&, where
p is the number of productions. For< j < p, let A; = (Y;, o, F;, d;) be the non-
deterministic finite automaton (NFA) accepting the regstaing language defined by
r; as obtained by the Berry-Sethi construction. By possibitameing the NFA states we
can always ensure thi} N Y; =dfori # j. LetY = YyU...UY, andd = dpU. ..UJ,.

Initial State Initially, we start with the NFA start statg, ¢ of the start content model
ro. The content modet, is right-ignoring as there are no enclosing elements. Also,
there are no potential matches detected yet, thus the iatoominitially remembered
on the stack consists of:

g0 = {vo,0}, rio = {ro}, mo =0

Start-Tag Transitions On a start-tag eventa> at locationl, new information
(g1, 741, m1) is pushed on the stack, depending on the information in tietitop
of the stack(g, i, m) as follows.

The possible content models of the current element are ctadftom the content
models in which the element may occur (as in the case Rban transition inAg).
Before seeing any of the children of the current element werathe initial NFA state
of these content models:

o ={v,jlveaq (yz,y1) €06, x — alrj)}

A content modet; considered for the current eleménis right-ignoring if (1) the
surrounding content model, is right ignoring and (2);, is fulfilled independently of
how the right siblings of might look like. Condition (1) can be looked up if. To
ensure (2) there must be an right-ignoring NFA stateeachable after seeing the left
siblings ofi. Thus:

riv ={r;j ly € ¢, (y,x,y1) € O, x — alr;),ri € ri,rightIgn(y1)}

As for the potential matches which might be confirmed whikgtirig the content of
[, these are the matches propagated so far for which the daftére current level is
fulfilled whatever follows aftet. We add to these potential matches if it can be derived
from a target non-terminal considering its left-contert &s right-context is irrelevant
(that isl’s confirmation as a match depends thus only on its content).

mi1(yo;) =U{m) |y € ¢, (y,x,y1) € Ok, © — a(rj),rr € ri,rightIgn(y:)}
U

{lly€aq (y,z,y1) € O, x — alry),rx € ri,rightIgn(y1),z € T}
(1)
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End-Tag Transitions An end-tag event/a> at locationri(n + 1) signals that the
processing of the sequence of children, . . ., win is completed and the computation
has to return to the nesting level and advance over the fathée:. The top two
elements on the stack at this momdat:ri, m) and(q1, ri1, m1) store the state of the
computation after seeing the children and the left siblinigs:, respectively(q, ri, m)
and(q1, i1, m1) are consumed from the stack and used to compute the new tbp of t
stack(qz, riz, m2), reflecting the state after finishing seeing as follows.

A content modet; is fulfilled by the children ofr: iff there is somey, € ¢ N F},
i.e. a NFA final state for; is reached after traversing them. It follows thdtcan be
derived from symbols: for which there is a productiom — a(r;). The advance in
the content models on the level of, after seeingri is obtained by considering NFA
transitions with symbols from which7i may be derived. This is completely similar to
an Up transition followed by &'ide transition inAg and is summarized by:

e={yly€qnFjx—alr),y€q,(yzy)cd}

As the set of right ignoring content models only depends ersthrrounding content
models, it remains unchanged for a whole nesting level,ishat

T’ig = T’il

As for the potential matches, we have to aggregate the patematches from the
left-context ofrri with those from its content. More precisely, potential rhadefined
by an NFA run on the children level are joined with potentiadtoihes from the left
context associated with NFA states which are reached imngelNFA runs after seeing
the father node. The father node, is added as a potential match if it can be derived
from a target non-terminal:

ma(y1) = {m(y2) Umi(y) | y2 € ¢N Fj,z — a(r;),y € q1, (y,z,91) €5} U (2)
{TF’L' | Y2 € qij,.T - a<7’j>7y S qh(yamayl) € 6,.%' S T}

7.2 Recognizing Matches

The construction above allows the location of matches asdstay the following theo-
rem:

Theorem 3. Alocation! is an early detection location for a match nodéf = € m(y),
r; € ri andrightIgn(y) for somey € ¢ N'Y; with (¢, m, i) being the top of the stack
atevent.

Proof. The complete proof is given in Appendix B. The idea of the pisalescribed
next.

Let [ be an early detection location far. Let f> be a right-completion obtained
from f; by adding on every level from the roott@n arbitrary number of right siblings
*() (as depicted in Fig. 7), whereis a symbol not occurring in any of the rules in
the grammar. By the definition of early detection locatidmare is a derivatiorfs of
f2 in which 7 is labeledz: for somex € T'. Also, sincex does not occur in any rule,
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Fig. 7: Right completion at and corresponding derivation

1% must label all thex nodes withz. The y with the properties as required by this
theorem is the NFA state in which the locatibis reached within the NFA accepting
run corresponding tg;.

Conversely, letg, m, ri) be the top of the stack at evérdnd letr € m(y), r; € ri
andrightIgn(y) for somey € ¢ NY;. Fromnm € m(y) it follows that there is a
relabeling of the nodes visited so far in whiehis labeled with some: € T and
which might be completed to a whole derivation accordindgyogrammarz usingx
symbols for the not yet visited nodes. The existence of thmepdetion on the current
level follows fromrightIgn(y), while the existence of the completions on the enclosing
levels is ensured by the condition € 4.

As locations are visited in lexicographic order, testing ttondition in Theorem
3 ensures that every matehis detected when reaching its earliest detection location.
This proves Theorem 1.

7.3 Implementation

The algorithm implementing the event-driven evaluatiothefqueries as above is given

in Listing 1.2. We assume thahterNodeHandler  andleaveNodeHandler re-
ceive as an argument, besides the label of the currentlymedd, also the currently
reached location. For the case in which the current locasomot provided by the
event-based parser, note that it can be easily propagaied #ie event handlers in
the internal parse-state. The algorithm basically folldhes computation rules given
above while sharing the commonalities in the rulesgfari andm. As an abbreviation

we use the operatap to add a new entry or update an existing set entry in a mapping
m via set union.

Listing 1.2. Algorithm for event-driven query answering
1Stack s;

2

senterNodeHandler(Locatiord, Label a)
+ (g,vi,m) := s.top();

qu = ri1 = my = @;
forall yeq with (y,z,y1) € 0 and z — a(ry)

a1 = qU{yo;}
if rightIgn(y1) and ri € ri then

© ® N o o
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20

21

22

23

24

25

26

27

28

41

42

43

44

45

51

re1 L= Ti1U{’r’j};
if rightIgn(yo,;) then
reportMatchesf(y));
if €T then reportMatches{{}) endif
else
m1 = m1 @ {yo,; — my)};
if €T then mi 1= mi1 @ {yo,; — {{}} endif
endif
endif
endfor

s.push (@ ,7i1,m1));

}

leaveNodeHandler (Locatiorn, Label a)
(g,ri,m) 1= s.pop();
(q1,7i1,m1) 1= s.pop();
g2 = m2 = A
rig .= T’il;

forall y€qi,y2 €q,y2 € F; ,x — a(r;) and (y,z,y1) €

g = @®{y};
if r;eri then reportMatchesf(yz))

else
mz 1= m2 @ {y1 — m(y2)};
mz 1= ma2 @ {y1 — m(y)};

if z€T then ma := ma® {y1 — {l}} endif
endif
endfor

s.push (g2 ,riz ,m2));

}

startDocHandler (Js.push (g ,{ro} @));}

endDocHandler (§
(¢,ri,m) := s.pop();

forall yeqgnFy
reportMatches#.(y));
endfor

}

Matches are detected when their earliest detection lataioeached, i.e. at the
event-handler executed at the immediately precedingitotathis might be the case
either at start or at end tags. At start tags (line 12) we ttepotential matches for
which we know that (a) the right siblings at the current leae¢ irrelevant (condi-
tion rightIgn(y:) tested in line 9); (b) the right siblings of the ancestorsiarde-
vant (conditionr, € ri tested in line 9) and (c) the content is irrelevant (conditio
rightIgn(yo ;) inline 11).
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At end tags (line 32) we report potential matches for whighabntent was fulfilled
(conditiony, € F; in line 30) and the upper-right context is irrelevant (cdiotir; €
ri).

Note that there is no need to propagate a confirmed matbhyond its earliest
detection locatiori where it is reported. (see tests in lines 11 and 32).

Also, potential matches are discarded implicitly pregised soon as enough infor-
mation is seen in order to reject them. Potential matehég) at a location/ are no
longer propagated whepis not involved in the NFA transitions. This happens at end
tag events if there is no transitidp, =, y1 ) in any of the possible content models. Also
at end tag events, potential matchewify) are discarded if is not a final state in any
of the considered content-models on the finished level. 8thematches are remem-
bered only as long as the strictly necessary portion of thatihas been seen in order
to confirm them.

Finally, at the end of the input potential matches not yeficored and conforming
to the top-level content model (conditigne ¢ N Fy in line 48) are reported as matches
in line 49.

7.4 Complexity

Let | D| be the size of the input data, i.e. the number of nodes in &.Site of a query
@ can be estimated as the number of NFA st@t@splus the number of non-terminals
| X|. Let potq. be the maximum number of potential match nodes at any givee ti
during the traversal.

For every node in the inp@nterNodeHandler  andleaveNodeHandler s
called once. IrenterNodeHandler  atmi, the loop starting at line 7 is executed for
everyy € g, for every outgoing NFA transitiofy, x, y1) and for all content models;
for z. The size of; is in O(|¢maz|), Whereg,,... is the forest state with the maximum
number of elements. Letn,,,.. be the maximum number of content models considered
on a level and lebut,, ., be the maximum number of outgoing NFA transitions from
an NFA state. The loop is executed thus Up#Qq. | - Outmaz - CMmas tiMes.

The set union in line 8 can be computed in tiMg,,q.|). The set union in line 10
needs timeO(cmmq.). Reporting the confirmed matches additionally requireetim
O(potmaz)- Finally the set unions in lines 15 and 16 necessitate a@gint,, .. ) time.

A calltoenterNodeHandler  amounts thus t®(|¢mnaz| - 0utmaz - cMmaz - (|¢maz| +
CMmaz + POtmaz)) ime.

In leaveNodeHandler , the loop starting at line 30 is executed in the worst
case, for every € ¢; and everyys € g, i.e. Up 10|¢maz|? times. The set union in
line 31 is computed in timé&(|g...|). Reporting the confirmed matches possibly adds
O(potmaz) time. The set unions in lines 34, 35 and 36 nédgdot ... ) time. A call to
leaveNodeHandler  amounts thus t®(|¢mnaz | - (|¢maz| + Potmaz)) ime.

As leaveNodeHandler  andenterNodeHandler  are called each once for
every node, the overall time complexity of event driven ea#ibn of queries is thus in
O(|D| ' (|Qmax| cOUlmaz * CMimaz (|qmaz| + cMmax +p0tmaz) + |Qmax|2 : (|Qmax| +
POtmaz))). The values ofgmaz|, otutma.: @aNdema,q. are bounded by values which do
not depend onD|. Experimental evidence show them to be small, and correspgly
the algorithm scales well with the size of the query as priegktin the next section.
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The worst complexity in the size of the document is obtair@hbt, ... = |D|,
in the case where all the nodes are potential matches uetédnd of the document. In
general, however, the number of potential matches is mwsshthean the total number
of nodes pot ... < |D|) and can be assimilated with a constant. In this case werobtai
atime linear in the size of the document, as suggested byxperienental results.

As for the space complexity, let be the depth of the input document. During the
scan of the document we store at each location(the:, m) tuples for all ancestor
locations up to the root, which correspond to the opened anget closed elements
at the current location. For every levelhas up t0|g.....| elementsyn stores up to
|@maz| + POtmas lOCations and-i up to cm.,q.. content models. As all these elements
can be stored in constant space and the height of the statknigsad, we obtain the
worst case space complext®(d - (|¢maz| + |Gmaz| - POtmaz + ¢Mmaz)). Most of the
practical queries need only a small amount of memory, asrtteemation relevant to
whether a node is a match is typically located in the relgiheximity of the node (that
IS potmae 1S SMall).

7.5 Experimental Results

The algorithm presented here has been completely impledénExgrep. Even though
many proposals for evaluating XML queries on streams ekiste are surprisingly few
tools publicly available. Furthermore, most of the propega which public implemen-
tations exist impose serious limitations on Core XPath &asion 8 on related work).
A more mature implementation we were able to experimentwith SPEX [16] which
covers a large subset of XPath. As a reference for the in-memDOM approach we
used Xalan-Java 2.6.0 [17] one of the most popular XSLT meas, which also pro-
vides a command line XPath processor.

We used for our experiments the Protein Sequence Datab8kafilXML docu-
ment of over 700 MB size, containing around 25 million nodéthwa maximal depth
of 7 and an average depth of approximately 5. The experinveants performed on an
Athlon XP 3000+ with 1GB of memory running under Linux (kekaersion 2.6.8).

Even though the querying capabilities of Fxgrep go beyonddtof Core XPath ,
for the comparison with other query tools for XML streams veel lto limit ourselves
to queries expressible in Core XPath. We used the followireyigs:

Q1: As a representative of simple queries, specifying only trethpto the
matches, we chos&); looking for protein entries containing a reference
with an author element. The query is expressible with the tXRaattern
/IProteinEntry//refinfo/author

Q2. A slightly more complex query, contammg simple structqralifiers is@Q-. The
guery locates authors of entries, the description of whartains the word “iron”
and s.t. the year “2000” is mentioned among its referencestie XPath pattern
/IProteinEntry[//description[contains(.,’iron’)]]

[Irefinfo[//year[contains(.,’2000")]]//author

Qs3: Finally we use a more complex que€ys locating authors of proteins contain-
ing a reference to the year 2000, which are followed by twdginoentries, the
descriptions of which contain the word "iron”.
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Fxgrep Spex Xalan
T]P[R TIP[R T |[P[R
Q11298/8.7|34| 91(4.1| 22| 15.8|25|6.3
Q2]31.9|8.7(3.6|21.2|4.1| 51| 22.0|2.5|8.8
Q3 ]33.5/8.7/3.8|50.9|4.1|12.4| 178.8| 25| 71

Table 1: Evaluation times (in seconds) for increasingly complexrase

Table 1 presents the evaluation times @r, Q2 and @3 on a fragment of the
database of 16 MB size. Absolute times are difficult to corapathe case of tools im-
plemented in different programming languages. Fxgrep endriderlying parser Fxp
are written in SML, while SPEX and Xalan are written in JavAeTSML parser is
significantly slower than the Java parsers in the case o€ ldoguments as in our ex-
periment. That is, the events are delivered at differenepdy the parsers used in the
three applications. It is a situation similar to comparihg@ute time measurements
obtained using CPUs with different tact frequencies. A gBasvay to account for this
is to divide the absolute times by the frequency. Therefbesjdes the total time in
column T, we list the parsing time in column P, as well as thatiree speed in column
R obtained by dividing the total time by the parsing time.
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Fig. 8: Absolute evaluation times for increasingly complex guerie

The absolute times are depicted in Fig. 8. One remarkabterfeaf Fxgrep is that
the evaluation time does not significantly depend on the d¢exitg of the query as op-
posed to the other tools. The reason is the expressivendiss ahderlying grammar
formalism in which adding supplementary contextual cdndg does not significantly
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change the size of the underlying grammar. Interestingbyigh, Fxgrep performs bet-
ter even in absolute terms as the query complexity increases
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Fig. 9: Relative evaluation times for increasingly complex querie

The relative times are depicted in Fig. 9. The numbers dehote many times
slower the query evaluation is as compared to the generafitine event stream. In
Fxgrep around 30 percent of the evaluation time is needegifioerating the stream of
events. Fxgrep’s throughput is comparable on average Wwéhelative throughput of
SPEX and better than what is achieved in Xalan.

| [FxgredSpexXXalan]
3MB| 9.8 |10.2| 10.1
16 MB| 33.5|50.9(178.8
32 MB| 61.8 {96.8/614.6
159 MB| 338 |446| n/a

Table 2: Evaluation times (in seconds) f@; for increasing document sizes

Table 2 presents the dependency of the evaluation timeseosizk of the docu-
ment. We chose fragments of the input of increasing sizeseaatliated queryys.
As depicted in Fig. 10 (containing the results for 3MB, 16Mida32 MB size, re-
spectively) the evaluation time increases linearly forfepgand SPEX, as opposed to
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Fig. 10: Scalability with the input size

Xalan. This shows that the event-based processing modegoépscales well with the
input size, as presented in the complexity assessmentyeesa Section 7.4.

As for the memory usage, Fxgrep and SPEX need a constantfepatieuns of up
to 10 and 15 MB, respectively, including the SML runtime systand the Java Virtual
Machine. As opposed to this, Xalan needs a multiple of the sfzhe handled input
document. Even a memory space of 1 GB was not enough for Xalkarler to process
the 159 MB large input.

8 Bibliographical Notes

A basic task in XML processing is XML validation. The problexhvalidating XML
streams is addressed by Segoufin and Vianu in [19] and CimtidRsu in [20]. XML
schema languages are basically regular forest langtidgasce conformance to such a
schema can be checked by a pushdown forest automaton. Asnprdsn this chapter
this can be performed efficiently on XML streams in the evesded manner.

Many research works deal with querying of XML streams. Mdghem consider
subsets of XPath. Some of them deal with XQuery, which inifattore than a querying
language as it allows the transformation of the input. Inftilewing we are mainly
interested in the querying capabilities of the consideaagliages.

Conventional attribute grammars (AG) and compositionsetbieare proposed by
Nakano and Nishimura in [22] as a means of specifying treesfoamations. An algo-
rithm is presented which allows an event-driven evaluadioaitribute values. Specify-
ing transformations, or in particular queries, using AGasvaver quite elaborate even

2 The correlation between the most popular available schangubges and regular forest lan-
guages has been studied by Muratal.[21].

23



for simple context-dependent queries and AG are restritadse attributes of non-
terminal symbols at most once in a rule. Also as no stack id irgait trees have to be
restricted to a maximum nesting depth.

More suited for XML are attribute grammars based on foreatrgnars as con-
sidered in XML Stream Attribute Grammars (XSAGSs) [23] an@dsformX [24}. A
restricted form of attribute forest grammars is considevbith allows the evaluation
of attributes on XML streams. The attribute grammars haveetd -attributed, i.e. to
allow their evaluation in a single pass in document-ordaother necessary restriction
is that the regular expressions in productionsiar@mbiguousas in the case of DTDs.
This ensures that every parsed element corresponds tdyegaetsymbol in the con-
tent model of the corresponding production, which allowes thambiguous specifica-
tion and evaluation of attributes. While XSAGs are targeteensuring scalability and
have the expressiveness of deterministic pushdown traesslithe TransformX AGs
allow the specification of the attribution functions in a ifig-complete programming
language (Java). In both cases, for the evaluation of thibwat grammars pushdown
transducers are used. The pushdown transducers used sfdrraiX [24] validate the
input according to the grammar in a similar manner to the gagim forest automata.
Additionally, a sequence of attribution functions is geaied as specified by the at-
tribute grammar. A second transducer uses this sequencpeafatms the specified
computation. For the identification of the non-terminaésirwhich nodes are derived
in the (unique) parse tree, as needed for the evaluatiord®s in [23, 24], pushdown
forest automata can be used. The unambiguousness restridtthe attribute forest
grammars allows one to proceed as in the case of right-iggayueries presented in
Section 6. That is, the non-terminal corresponding to threetti node can be directly
determined from the (single) NFA state in the current foséste, as it does not depend
on the events after the current one.

A number of approaches handle the problem of querying XMésstrs in the con-
text of selective dissemination of information (SDI), alsmwn as XML message bro-
kering [25—32]. In this scenario a large number of users @iliEs to a dissemination
system by specifying a query which acts like a filter for thewuoents of interest.
Given an input document, the system simultaneously evediadt user queries and dis-
tributes it to the users whose queries lead to at least onehm@trictly speaking, the
gueries are not answered. The documents which contain esteh dispatched but the
location of the matches is not reported. XFilter [26] harallaple XPath patterns, i.e.
without nested XPath patterns as filters. These can be esqutedth regular expres-
sions, hence they are implemented using finite string autmnydilter [27] improves
on XFilter by eliminating redundant processing by sharinghmon paths in expres-
sions. More recently, in [28], the querying capabilitiee axtended to handle filters
comparing attributes or text data of elements with constant nested path expres-
sions are allowed to occur basically only for the last lomatstep. Greemt al. [30]
consider regular path expressions without filters. It issghthat a lazy construction of
the DFA resulting from multiple XPath expressions can atb&exponential blow-up
in the number of states for a large number of queries. XPushdl8o handles nested
path expressions and addresses the problem of sharing &thtihhavigation and predi-

3 In these works forest grammars are called extended regakgtammars.
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cate evaluation among multiple patterns. XTrie [32] coassda query language which
allows the specification of nested path expressions anijé®sn order in which they
are to be satisfied. Even though Fxgrep is not targeted at 18idé, that it basically
exceeds the essential capabilities of all previously noaeti query languages.

There are a number of approaches in which queries on XMLregeae answered
by constructing a network of transducers [33, 34,16, 35].ukry is there compiled
into a number of interconnected transducers, each of theimgtas input one or more
streams and producing one or more output streams by possiblg a local buffer.
The XML input is delivered to one start transducer and thechres are collected from
one output transducer. The query language of XSM [33] hanaltdy XPath patterns,
without filters and deep matching (), but allows instead value-based joins. XSQ [34]
deals with XPath patterns in which at most one filter can beifpd for a node and
filters cannot occur inside another filter. The filters onlpwlthe comparison of the
text content of a child element or an attribute with a const&8REX [16] basically
covers Core XPath. Each transducer in the network proceksemput stream and
transmits it augmented with computed information to itscassors. The number of
transducers is linear in the query size. The complexity afring queries depends on
whether filters are allowed and is polynomial in both the sikéhe query and of the
input. XStreamQuery [35] is an XQuery engine based on a ipipelf SAX-like event
handlers augmented with the possibility of returning fesa#bto the producer. The
strengths of this construction are its simplicity and thiditgtio ignore irrelevant events
as soon as possible. However, the approach only handlehittdeand descendant axes
as yet.

FluXQuery [36] extends a subset of XQuery with constructiciviguide an event-
based processing of the queries using the DTD of the inpuX®uery is used within
the StreamGlobe project which is concerned with query exalo on data streams
in distributed, heterogeneous environments [37]. STX [8&]asically a restriction of
the XSLT transformation language to what can be handledljologp considering only
the visited part of the tree and selecting nodes from the iréngapart of the tree.
Sequential XPath [39] presents a quite restricted subs¢Path, handling only right-
ignoring XPath patterns, which can be implemented withbetrteed of any buffering.
TurboXPath [40] introduces an algorithm for answering XRgeries containing both
arithmetic and structural predicates and which is neithesctly based on finite au-
tomata nor on transducer networks. The dynamic data steseti (work array), used
to match the document nodes has certain similarities wittconstruction. Entries are
added in the WA upon each start-tag event for each sub-patievhich the children
must conform, which roughly correspond tawn transition of the LPA. Matches
of the sub-patterns are detected upon end-tag events by iablEke fulfillment of
the sub-patterns by the children, similarly to &p transition.Side transitions are not
needed as the pattern language does not impose any order chiltfren nodes. In this
perspective the context information is optimally usedasur case, by a combination
of top-down and bottom-up transitions. Recent work by Basséfet al.[41], indicates
that the space requirement for the TurboXPath approactaisthe theoretical optimum
for XPath queries.
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Conclusion

We have introduced a construction which allows the evadnati grammar queries on
unranked ordered trees in an event-based manner. The sixpresss of the queries ex-
ceeds the XML querying capabilities of languages for whitkaamed evaluation has
been proposed yet. In particular it allows the evaluatioreC¢Path queries, while al-

lowing to express also much more sophisticated contextualitions. The construction

allows to detect matches at the provably earliest time ptesgihile scanning the input.

We provide an algorithm which efficiently implements the stoaction and which has

been used in the freely available Fxgrep language. Theasffiyi of our approach has
been proved in practice as shown by experimental results.
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A Example Run of Ag

Example 7.The NFAs for the regular expressions occurring in our gramghare de-
picted in Fig. 11. As input consider the XML document depidite Fig. 1. The run of
Ag on the tree representation of the input is shown in Fig. 1Zrethe sets containing
x-S are tree states and the sets contaigisgare forest states. The order in which the
tree and forest states are computed is denoted by the indlegiatight. Observe that
the input tree, which is in the regular forest language digecby G, is accepted byl

as it stops in the statfy; }, which is a final state of the LPA.

1= TpTe ro=x7"
=)= @ @ @

r3 = o1* (21 |va)zT* 1 @
T IT ((:1:7))

Fig. 11: NFAs obtained by Berry-Sethi construction for regular egsions in Exam-
ple 1

B Proof of Theorem 3

In the following we use the notation from Section 7 where Teen3 was stated.
Alternative Definition of Matches

In order to proof Theorem 3 a more refined definition of matéiheseded in which the
NFA states reached while checking the content models ofei¢srare given explicitely.
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Fig.12: The run ofAg on the input tree

Let R be a set of forest grammar productiong,be a regular expression over non-
terminals andf an input forest. Anon-deterministic, accepting) rufyz over f for R
andrg, denotedfr € Runs,, ; is defined as follows:

Yo(f1) -+ YUn—1(fr) Un() € Runs,a, () ... an(f,) iff

Yo = Y0,0,Yn € F07 and

(Yio1, i, Yi) € 00,2 — ai{ri), fi € Runs,, s, foralli=1,...,n
Y € Runsy, iff y =yo,0,y € Fo

An example run is given immediately below.
It is straightforward to see that a derivatighwith (f, /') € Deriv,, (defined on
page 5) exists iff a rutfr € Runs,,, ¢ exists.

Example 8.Let G = (R, ro) with R being the set of rules as below:
(1) xt — alx

i‘l_
(2) 27 — b{a*
(3) 1 — cla%

)
) (4) 21 — a2y (21]za)2T) (6) 7y — b(2T)
; (5) Za — alzpe) (7) xe = c(x7)

The NFAs for the regular expressions occurring in graméavith the set are repro-
duced in Fig. 13.

Consider the input tree depictedeproduced for convenience in Fig. 14 and one
derivation oft’ w.r.t. rq depicted in Fig. 15. A run corresponding #ois depicted in
Fig. 16 via dotted lines.

The derivation corresponding to a run can be obtained byggtkie incoming tran-
sitions of the NFA states of the nodes which are not the firteir siblings sequence as
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1= Tpxe ro =x1"

@@

xrT

Fig. 13: NFAs obtained by Berry-Sethi construction for regular egsions in Exam-
ple 8

Fig. 14: Input treet

¢

Fig. 15: Derivationt’ of ¢ w.r.trg

hn

Yo @

@ Yn Y12 @ Y12
Ys y4 Ys yf) Y7 y0y7 @ Yy

Yo Yo Yo Yo Yo

Fig. 16: Run corresponding td
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one can see in Fig. 16. Formally, the following expressesélation betweenleriva-
tionsandruns

(f, f) € Deriv,
iff 3fr € Runs, y with L(f’) = N(fr)
andlab(f'[rp]) = in(lab(fr[r(p + 1)])) forall 7p € N(f7).

Let f be an input forest and) = ((R,r),T) a grammar query. Matches ¢f,
which were originally defined in terms aferivations can be equivalently defined in
terms of runs as it follows:

™ € Mg, iff 3fr € Runsy, 5 S.tin(lab(frir(p +1)])) € T.

Notations

Before proceeding with the proof we further introduce a dewp useful notations. The
set ofmatches defined by runs with lahght location/ is defined as:

p € /\/llef iff 3fr € Runsyy,rs.tiin(lab(fr[r(p+1)])) €T
andlab(fr[l]) =y

The set of-right-ignoring matches defined by a run with laheht [ is defined as:
meri- Mg, iff m e Mg, Vfs € RightIgn g,

A noder’ is ami-upper-right ignoring match defined by a run with laleht 77 iff
for any right-completiorys at the parent ofri there is a run defining’ as a match of
Q in f5 which labelsri with y, formally:

€ uri-/\/la"]? iff 7’ ¢ ./\/lgi”nyVfQ € Rightlgny
Given a locationri and an NFA statg, a sequence of states isaffix run fromy

at i iff the last state in the sequence is a final state and the sequ siblings to the
right of 74 allows to visit the sequence of states, formally:

Yiy- -y Yn S Sufwi,y
iff (ye—1,2k,yx) € 0j, f1[mk] € [R] x With 2, = in(yx),Vk €4,...,nand
Yi—1 =Y, Yn € Fj wheren = lasty, ()

To denote the information on top of the stack at the some momeme writeri.q,
mi.m andmi.ri in analogy to attributes of attribute grammars. Similadyattribute
grammars, these are computed by local rules as presentegtios7.1.

Proof
Theorem 3 is a straightforward corollary of the followingtrem:
Theorem 4. The construction presented in Section 7.1 keeps the foitpinivariant:

n'p € mi.m(y),y € mi.qNY;,3c € Sufri,y andr; € wi.rs

iff #'p < mi andn’p € uri-Mg"} (3)

Proof. We proof the two directions of Theorem 4 separately.
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Left-to-right We show that (3) holds at all locations in the input by indoictusing
the lexicographic order on locations.

Base caselnitially, at locationl, 1.m(y) = @Vy € 1.q, thusz’p € 1.m(y) is false,
and the left-to-right direction trivially holds.

Induction stepSupposing that (3) holds at all locations up to some locdtiwa show
that it also holds at the immediately next location.

Start-tag transitionWe first show that if (3) holds ati € N(f), so does it atril.
Let 'p € mil.m(yo), yo € Y; and supposélc € Sufri1y, andr; € mil.ri.
Sincer’p € wil.m(yp), it follows by our construction (conform to (1) on page 15itth
Jy € mi.q with (y,z,y") € 0k, x — a(ry), rightIgn(y’), r, € wi.ri and either (i)
7'p € wi.m(y) or (i) #’p = mi andx € T. _
In case (i) it follows from (3) atri that7'p < mi and«’p € uri-Mg/. Thus,
obviouslyr’p < mi < il and it remains to show thatp € uri- M,;*°. This follows

Y

directly fromz'p € uri-Mp'f, ¢ € Sufrity, andrightIgn(y’) by grafting the run

over the children ofri corresponding te into the run corresponding wi—/\/l”f’y.
In case (ii),7'p = mi < wil. The proof will use in this case the following lemma
(also used later on):

Lemma 1.1: If there is a suffix run within a right ignoring content modéhen,
independently of what follows in the input after the enahgsielement, there is a
run over the input forest containing that suffix. Formallyyi € wi.q N Yy, r €
mi.ri and 3¢ € Sufriy thenVfy € Rightlgns, Ifr € Runsy,, s With ¢ =

lab(fr[mi]), ..., lab(fr[m last ¢, (7)]).

Proof. The proof is by straightforward induction on the locationglie input forest.
The assertion trivially holds at locatian For the induction step, leti € N(f). We
show that if the assertion holds at the locatianit also holds at (i)ri1 and (i) atr (i +

1). In case (i)3y € mi.g with (y,z,y’) € 0k,  — a(r;), rightIgn(y’), ri € mi.ri.
The required run is obtained by grafting the run over thedehit of i corresponding

to ¢ into the runy, v/, ... corresponding to the induction hypothesis. In case (ii) the
existence of the suffix run at(i + 1) implies the existence of a run at and our
conclusion follows by the induction hypothesis.

We continue now with the proof of Theorem 4.

Sincec € Sufri,y, it follows (straightforwardly by definition) that[ni] € [R] x.
Given that(y, z,y’) € d, andrightIgn(y’) it follows that there is thus a suffix run
¢ € Sufriy With ¢ = y,y/,.... With 7, € mi.ri it follows by Lemma 1.1 that
Vfs € RightIgns . 3fr € Runsy,, s, With lab(fr[mi]) = y'. SincerightIgn(y’)
it follows that3fr € Runs,,, s, for any fo € RightIgny .; andlab(fr[mi]) = y'.
With ¢ € Sufri1,y, it follows that 3f;, € Runs,, s, (oObtained by grafting the
run over the children ofri corresponding ta into fz) with lab(f;[7i]) = ¥’ and

mil,yo0

lab(fg[wil]) = yo. Thus'p € uri- Mg
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End-tag transition We next show that if (3) holds &tvi < = (i + 1), so does it at
(i +1).

Letn'p € n(i +1).m(y"”), y" € Yi and supposélc € Sufr(it1),, andry €
mw(i+1).ri. Sincer’p € w(i+1).m(y"), it follows by our construction (conform to (2)
on page 16) thaty € mi.q, v’ € mi(n + 1).qwithy’ € F;, x — a(r;), (y,z,y") € ok
and either (iyr'p € wi.m(y), or (i) 7’'p € wi(n + 1).m(y’), or (ii) #’p = =i and
zel.

In case (i) our conclusion follows directly from (3) at.

We continue with the cases (ii) and (iii). Giverandr € «(i 4+ 1).ri it follows by
Lemma 1.1 thaV/fo € Rightlgns . 3fr € Runsy,, s, S.t.lab(frlm(i + 1)]) = y".
Further we use the following lemma (also employed later on):

Lemma 1.2:If y € mn.qN F; then3fr € Runs,, tix1)...¢(xn) With lab(fr[m(n +

D)) =v.
Proof. The proof is straightforward by induction on the depthfaf].

In case (ii),7'p was found either before or while visiting the contentwf that is
eithern’p < miormi < @'p < w(i + 1), respectively. In the first case our conclusion
follows directly from (3) atr:. In the second cas€p < = (i + 1) we further need the
following lemma:

Lemma 1.3:If y € mn.q N Fj, 7’p € mn.m(y) andwl < 7'p < 7n then3fr €
Runs,, ¢ir1)...flan] With lab(frlm(n + 1)]) = y andin(lab(fr[7'(p + 1)])) € T
wheren = last (7).

Proof. The proof is by induction on the depth offx]. By Lemma 1.23f}, <
Runs,, fix1]...flxn) With lab(f5[m(n +1)]) = y.

For depth1 it directly follows thatx’p = =i for somel < i < n and
in(lab(fR[7'(p + 1)])) € T. Thereforefr = f}, is the sought after run. If the depth is
more than 1, then either (&)p = mi for somel < i < nandin(lab(fr[7'(p+1)])) €
T as above or (BYy' € win'.qNFy, 7'p € win’.m(y) andril < n'p < win’ for some
1 <i<nandn' = last;(ni). In case (B)fr in our conclusion can be constructed by
grafting the run over the children af existent by the induction hypothesis intg.

Our conclusion results now for the case i) < 7'p < 7(i + 1) by grafting the
run corresponding to the children which defines the matclngptied by Lemma 1.3)
into fg.

In case (jii)7’p = mi < w(i+ 1) and it remains to show thatp € uri- M
We have by Lemma 1.2 thalf;, € Runs,, fixi1)...f[rin] andin(lab(fl’%[ﬂ'(p—ii 1)) €
T. From fr and f7, it results (by graftingf;, into fr atn) that3f;; € Runs,, s, S.t.

in(lab(f3[x' (p+ 1)) € T andlab(fp[x(i + 1)]) = ", thusw’p € uri- M5V,

m(i+1),y"

Right-to-left Letn'p < wi andn’p € uri-/\/lgi”}’. Let f> be a right-completion of at
7 obtained by adding on every level from the roott@nclusively an arbitrary number
of right siblingsx(), as depicted in Fig. 17, whexes a symbol not occurring in any of
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Fig. 17: Right completion off atw

the rules in the grammar. Sineép € uri-/\/lgf’]? it follows that3fr € Runsg,y, S.t.
in(lab(fr[x’(p+ 1)])) € T andlab(fr[xi]) = y.

Also, sincex does not occur in any rulg; must label all the ancestors of thénode
with right-ignoring states, i.exightIgn(lab(frmi (k + 1)]))Vmk € ancestors ;(mi),
whereancestors : N(f) — N(f) is defined as follows:

ancestorsg(i) = @
ancestorsyp(mi) = {m} U ancestors(m)

It follows that3f}, € Runsg,s S.t.in(lab(fi[n'(p +1)])) € T andlab( f[7i]) =
y. Suppose thay € Y;. Sincey is part of a run f},), it obviously holds thaBc €
Sufﬂi,y-

Also, sincerightIgn(lab(fr[mi(k + 1)]))Vmk € ancestorss(mi), we obtain by
using the NFA transitions irf7, at the corresponding steps in our construction that all
content models of the elements enclosirigire right ignoring, thus; € mi.ri.

Given thatr’p < mi it follows that there is an ancestor afp which is either (i)
a sibling of an ancestar of 7 or (ii) an ancestor: of 7i. In any case it follows by
using the NFA transitions itf; at the corresponding steps in our construction tHat
is propagated down at locatianuntil 7i, thusz’p € wi.m(y).

We have proven thus thatp € mi.m(y), y € mi.qNY;, e € Sufqi, andr; €
LT

This completes the proof of Theorem 4.

Theorem 3 follows now directly from Theorem 4.
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