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Abstract

An optimal tree contraction algorithm for the boolean hypercube and the con-
stant degree hypercubic networks, such as the shuffle exchange or the butterfly
network, is presented. The algorithm is based on novel routing techniques and, for
certain small subtrees, simulates optimal PRAM algorithms. For trees of size n,
stored on a p processor hypercube in in-order, the running time of the algorithm
is O( [ﬂ log p). The resulting speed-up of O(p/logp) is optimal due to logarithmic
communication overhead, as shown by a corresponding lower bound.

The same algorithmic ingredients can also be used to solve the term matching prob-
lem, one of the fundamental problems in logic programming.
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1 Introduction

Tree contraction is a fundamental technique for solving problems on trees. A given tree
is reduced to a single node by repeatedly contracting edges, resp., merging adjacent
nodes. This operation can be used for problems like top-down or bottom-up algebraic
tree computations [ADKP89], which themselves can be applied to solve the membership
problem for certain subclasses of languages in DCFL [GR86] or to evaluate expressions
consisting of rational operands and the operators +, —, -, /.

In the context of parallel processing the objective is to contract the tree using a small
number of stages. In a stage, a set of disjoint pairs of adjacent nodes in the current
tree is selected, and the edges connecting these pairs are contracted, i.e., each pair of
nodes is merged into a single node. The contractions are not allowed to produce a node
with more than two children. Brent [Bre74] was the first to show that a logarithmic
number of such stages is sufficient, and he applied this result to the restructuring of
algebraic expression trees, producing trees of logarithmic depth. Subsequent work [MR85,
GR86, GMTS88, KD83, ADKP89] concentrated on the efficient parallel computation of
contraction sequences, and eventually resulted in work optimal logarithmic time tree
contraction algorithms on the EREW PRAM.

We consider the tree contraction problem on the boolean hypercube and on similar
networks. In this model, computing a suitable contraction sequence is more difficult, and
the additional problem of routing pairs of nodes to be contracted to common processors
arises. For the contraction of (suitably represented) paths, both problems become trivial
and can be solved in logarithmic time by a parallel prefix operation [Sch80]. For arbitrary
trees, we combine two known (PRAM) contraction techniques with a recursive approach.
To achieve a logarithmic running time we separate the local communication operations
from the few long distance communication steps and perform them in appropriately sized
subcubes. The necessary routing steps are performed by new logarithmic time algorithms
designed for special classes of routings. Our algorithm contracts a tree of size n on a p
processor boolean hypercube in O( [%&‘ log p) steps, which we also show is asymptotically
optimal by a matching lower bound.

Term matching is an important special case of the unification problem. It is one of the
most time consuming tasks in logic programming and term rewriting systems. A termis an
expression composed of function symbols (with arbitrary arity), constants, and variables.
In the term matching problem, we are given two terms A and B, with B containing no
variable symbols. The task is to find a substitution of terms for the variables (in A)
making A syntactically identical to B. Consider, for example, A = F(G(x,y,a), F(x,b))
and B = F(G(b,F(a,b),a),F(b,b)); the desired substitution is x — b ; y — F(a,b).

In [PW78] Paterson and Wegman solve the general unification problem sequentially in
linear time. Later, this problem was shown P-complete in [DKM84]. The first parallel al-
gorithms for the term matching problem achieving optimal speed-up and logarithmic run-
ning time are due to Kedem and Palem [KP92]. Their algorithms use the CRCW PRAM
or the randomized CREW PRAM model. Employing a recursive approach conceptually
very similar to the one presented in this paper, Kosaraju and Delcher [KD90] developed
a work-optimal logarithmic time term matching algorithm for the CREW PRAM model.

Term matching naturally decomposes into two phases. First, all pairs of corresponding
symbols in A and B are determined, where this correspondence is defined by considering
the ordered trees T’y and T’g corresponding to the terms A and B respectively. For a node
v on level i of a k-ary tree T let pathy(v) € {1,...,k}" denote the path description of v in
T. Tt is pathp(v) = (J1, .., Ji=1,7:) iff v is the j;-th child of its parent w and pathy(w) =



(71,---,Ji=1). Two nodes u and v correspond to each other iff pathy, (u) = pathy, (v).
Since the symbols of A appear in the same order as the corresponding symbols in B, a
single monotone routing (respectively shift) of the symbols in both terms suffices to align
corresponding symbols with each other. In the following, this first part will be called the
term alignment problem. In the second phase of term matching, all pairs of corresponding
symbols and all subtrees of Ts corresponding to the same variable are tested for equality.
One contribution of this paper is an optimal hypercube algorithm for the term align-
ment problem. A p processor hypercube can compute and perform the desired routing
for terms of size n in O([ﬂ log p) steps. Applying our general approach, we first align
the terms A and B roughly, considering only their global structure, and postpone the
exact alignment to a recursive call in lower dimensional subcubes. The task of compar-
ing subtrees mapped to the same variable generally has to be performed by a standard
sorting algorithm. This can be done by a randomized sorting algorithm [VB81, ALMN90]

within the same time bound O( [ﬂ log p). The best known deterministic sorting algorithm

[CP90] exceeds this time bound by a factor of O((loglog p)?).

2 Fundamental Concepts and Notation

We first give a short description of our model of computation. A network of processors is
a set of processors, interconnected by bidirectional communication links. Each processor
has the capabilities of a RAM, a unique processor-id and additional instructions to send
or receive one machine word to respectively from a direct neighbor. We assume the word
length of the processors to be O(logp) bits where p is the number of processors. The
topological structure of the communication links can be described by an undirected graph
(V, E).

A d-dimensional (boolean) hypercube is a network of processors represented by the

graph G = (V, E) with

Vo= {0,137,
FE = {(u,v)|u and v differ in exactly one bit} .

A network with bounded degree and a structure very similar to the hypercube is the d-
dimensional shuffle-exchange. The processors are numbered as they are in the hypercube.
Two processors are connected by a link if their ids differ only in the last bit (exchange
edges) or if one id is a cyclic shift by one position of the other id (shuffle edges). A
compendium of results concerning hypercubes and shuffle-exchange networks can be found
in [Lei92].

For the tree contraction problem on networks of processors we assume that the data
comprising each node can be stored in a constant number of processor words and that two
adjacent nodes stored by the same processor can be merged in constant time. Note that
this implies in particular that the number of nodes must be polynomial in the number of
processors.

On networks the complexity of a problem may depend heavily on the distribution of
the input data over the processors of the network. For the tree contraction problem we
assume the in-order sequence of the nodes to be evenly distributed over the sequence of
processors ordered by processor-id. To uniquely describe the structure of the tree in this
way, each nontrivial subtree is assumed to be enclosed by a pair of parentheses. For the
term matching problem we assume that both terms — the pre-order representations of the
corresponding trees — are evenly distributed over the sequence of processors. Permitting



more general tree representations, like lists of edges, seems to imply that sorting and/or
list ranking subproblems have to be solved. The best known hypercube algorithms for
these problems would yield inferior complexity bounds for tree contraction.

On a hypercube or hypercubic network with p processors the representation of a tree of
size n can be transformed between pre-, in-, and post-order in time O( [%w log p) [MW92].
Thus the asymptotic complexity of both the tree contraction and the term matching
problem does not depend on whether the input data is given in pre-, in-, or post-order. If
the tree is given by an arbitrary, but balanced distribution of the nodes linked by pointers,
the nodes have to be rearranged into pre- or in-order before applying the algorithms
presented in this paper. This task can be performed by a list ranking on the Euler tour
of the tree and a corresponding routing operation. On a p processor hypercube, this
transformation can be carried out in Odﬂ log® p loglog log p log™* p) steps for trees of
size n [HM93]. The dominating part is the time required for the list-ranking. As already
mentioned, this running time is much higher than the running times of our tree contraction
and term matching algorithms designed for the in- or pre-order representation.

The algorithms given in the next sections use the following basic operations known to
be executable in logarithmic time on a hypercube or shuffle-exchange network:

e parallel-prefix-operation and segmented parallel-prefix-operation [Sch80];

e monotone routing (the relative ordering of the data items remains unchanged)

[NSS1];

e sparse enumeration sort (sorting p® data items on a p processor hypercube, for some

fixed a < 1) [NS82];

e parentheses-structured routing (routing between matching pairs in a well-formed
string of parentheses) [MW92].

3 Tree Contraction on the Hypercube

In this section we show how binary trees (i.e., each internal node has exactly two chil-
dren) of size n can be contracted on a p processor hypercube or hypercubic network in
Odﬂ log p) steps. It can easily be seen that, using standard techniques, more general
expressions trees can be transformed into binary trees without asymptotically increasing
the complexity. We concentrate on the contraction of trees with at most p nodes in loga-
rithmic time on the hypercube. For inputs of a size n > p, a hypercube of size ©(n) can
be simulated with a slowdown of ©(2). Because of the simple communication structure,
the hypercube algorithm can be simulated on a shuffle exchange network of the same size
with just constant slowdown. Furthermore, due to a general simulation result [Sch90],
any algorithm on the shuffle exchange network can be simulated with constant slowdown
on each of the other so called hypercubic networks, such as the de Bruijn network, the
cube connected cycles network, or the butterfly network.
We give an outline of the contraction algorithm. It proceeds in three phases:

1. We identify and contract small subtrees in a recursive call of the algorithm.

2. The remaining tree may still be quite large, but, if so, has a structure that allows
a significant further reduction by eliminating the leaves and contracting chains of

nodes with a single child each to one edge, an operation similar to the “compact”
operation in [MR85].
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Figure 1: The compact operation applied to T’

3. To contract the remaining tree, we emulate the PRAM algorithm of [KD88]. We
first compute the communication structure of this algorithm when executed on the
remaining tree. After rearranging the nodes of the tree accordingly in the hypercube,
each step of the PRAM tree contraction algorithm can then be simulated in constant
time.

3.1 Contraction of Subtrees

In the first phase, we divide the processors of the d-dimensional hypercube into contiguous

blocks of size 2L¥%] . These blocks are EdJ—dimensional subcubes, say C7,Cy, ..., Cyraa.
We determine those subtrees contained entirely within a single C;. For this purpose, we
first compute the height, i.e., the level of nesting, of the parentheses enclosing the subtrees.
An opening parenthesis with height h is part of a local subtree iff there is a parenthesis to
its right, but within its block, with a height < h. Performing a parallel-prefix-computation
within each block C;, we can for each parenthesis compute the minimum height of the
parentheses to its right within the block. Comparing this value with its own height, each
opening parenthesis can determine whether it is matched within its block. An analogous
computation is performed for the closing parentheses.

In a recursive call to the algorithm, for all subcubes C; in parallel, the subtrees within
blocks are contracted. Clearly, the resulting tree is again binary. In general, a subcube
C; may contain a sequence of several maximal local subtrees. This causes the need to
make the algorithm capable of contracting a sequence of trees. We only describe here how
to contract a single tree; the modifications required for dealing with a sequence of trees,
however, are quite straightforward, and are left to the reader.

3.2 Compaction

Denote by T', T', and T" the trees at the beginning of the algorithm, after the first phase,
and after the second phase, respectively. Let L be the set of pairs (u,v), with v a leaf
of T', u its parent, and v not the left sibling of another leaf. We reduce 7" to T by
eliminating all pairs of nodes in L (see Figure 1).

This reduction is equivalent to one “rake” operation (eliminating the leaves) and a



repeated “compress” operation (contracting the maximal chains of nodes with a single
child). Together, they were called a “compact” operation in [MR85]. The result, 7", is
again a binary tree.

We first prove that the resulting tree is small. Then we show how the compact oper-
ation can be carried out on the hypercube in logarithmic time.

Lemma 1 Starting with an expression tree of size at most 2%, applying the first and
second phase of our algorithm, the resulting tree T" is a binary tree with at most 21441 — 1
leaves.

Proof: Each leaf of T" corresponds to a maximal subtree of T initially stored totally
within one of the blocks Cy,Cy, ..., Cyrasa1. Assign to each leaf the index of its subcube.
Then the sequence of numbers assigned to the leaves in 1" is sorted and two leaves that
are siblings are assigned different numbers. As the only leaves of T” surviving in T are
those whose right sibling is also a leaf, they are all assigned distinct numbers. Since these
numbers are in the range from 1 to 2[%41 — 1 T" has at most 2[%/4 — 1 leaves.
|
To perform the compact operation efficiently on the hypercube we first swap some
siblings in the tree such that for all (u,v) € L, the leaf v is a right child of u. For our
in-order representation of the tree this means that we modify the tree according to the
following pattern:

where v is modified to u’ to denote that its children have been interchanged.

The routing required for the modification belongs to a special class of partial per-
mutations called parentheses structured routings [MW92]. To define this class consider
the following situation: Some of the processors are storing each an opening or closing
parenthesis. Together with some of the opening parentheses data items are stored. The
sequence of parentheses is well-formed, and each data item has to be routed from its
opening parenthesis to the processor storing the matching closing parenthesis. A partial
permutation that can be described in this way is called a parentheses structured rout-
ing. The algorithm proposed in [MW92] performs the routing in logarithmic time on the
hypercube, the shuffle exchange network or any other hypercubic network. In (1), the
routing of the data item (u,v) can be guided by the pair of parentheses enclosing the
subtree rooted at wu.

Let (uq,v1), (ug,v2),...,(u,,v,) be a maximal chain of tupels from L in 7", i.e., u; is
a child of w;4y for 1 <2 < r, and w, is either the root or the sibling of an internal node,
and vy’s sibling w is either a leaf or the parent of two internal nodes. After the above
routing step, this chain is, in in-order notation, a sequence

C ULV ) UV ) e UV

In each such chain, the edges (u;,v;) are contracted by routing the leaves v; one po-
sition to the left. The remaining path wuq,...,u, is contracted to a single node by a
segmented parallel-prefix-operation. Finally, the resulting node is routed to w by a sparse-
enumeration-sort, and the two nodes are merged.

3.3 Simulation of PRAM Contraction Algorithm

In the third and last phase, we simulate the logarithmic time PRAM tree contraction
algorithm proposed in [KD88] or [ADKP89]. Although Lemma 1 guarantees that there
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Figure 2: Contraction of 7"

are only very few nodes left, a step-by-step simulation of the PRAM algorithm, performing
a routing phase for each parallel random access step of the PRAM, would still result in a
suboptimal algorithm.

In our approach, we first compute the communication structure of the complete execu-
tion of the PRAM algorithm (without a complete simulation). Then, we route the nodes
that will have to communicate to adjacent hypercube processors. After rearranging the
data, we are able to simulate the PRAM tree contraction algorithm without slowdown.

In [KD88] the tree is reduced using the operation “rake”. This operation, applied to a
leaf [ of the tree, involves three nodes: the leaf [, its parent p, and its sibling s. The two
edges connecting these nodes are contracted and the nodes [ and p are eliminated while
node s survives.

If the given tree has m leaves, the contraction algorithm proceeds in 2- |logm| stages
called [1,1], [1,x], [2,1], [2,x], ..., [|[logm],1], [[logm],r]. The leaves are numbered left to
right from 1 to m. In stage [¢,1] (resp., [7,x]) the rake operation is applied to all leaves
numbered by odd multiples of 2°=! that are left (resp. right) children. In this fashion,
no node is involved in more than one rake operation in each stage (see Figure 2 for an
example).

We apply this contraction algorithm to the tree T”. For a stage x, let T, be the
reduced tree just before stage . The contraction of 7" can be represented by a tree T
(continuing the example, see Figure 3). For each stage x of the contraction procedure
there is one level of T containing exactly the nodes of T,.. In T, a node v with children
v1, V2, V5 corresponds to the contraction of vy, v, v3 to v. The depth of T is bounded by
|d/2] since T" has m < 2[%/41 leaves. Thus T can easily be embedded in a d-dimensional
cube with dilation 2. To contract 7", we compute this embedding of T', route the nodes of
T" to the corresponding leaves of 7', and perform the contraction along the (embedded)
edges of T. Note that the nodes of 7” can be routed in logarithmic time by a sparse



Figure 3: The top 4 levels of the corresponding T

enumeration sort followed by a monotone routing. The major problem is to compute
their destinations according to the embedding of 7.

For each node v of T, we define p(v) € {0,1,2,3}92] as the description of the path
from the root of T to v. The i-th element of p(v) is j € {1,2,3} if the ¢-th edge on
this path points to a j-th child, and an appropriate number of 0’s is appended to pad
p(v) to length |d/2]|. Substituting each number of p(v) by its two-bit-representation, the
hypercube address of v in the embedding of 7' can easily be obtained. It remains to show
how to compute p(v) efficiently for the leaves of T, i.e. the nodes of 1.

Investigating the tree contraction algorithm, the following facts can easily be derived:

(a) The nodes of T}y are the leaves of T” numbered by multiples of 2i=1 and their
lowest common ancestors in 7",

(b) Let v be a node of T on a level corresponding to some stage z of the contraction.
The descendants of v in T' are those nodes of 7" that have been contracted into wv.
These are v itself and those nodes u connected in 7" (considered as an undirected
tree) to the parent of v by a path (including v and v) containing no node of 7.

We show how to compute the strings p(v) for all nodes v of T”. The elements
of p(v) corresponding to the stages [7,1] and [7,r] are computed independently for all
i=1,2,...,logm]|. For each ¢, this computation is performed by one of |logm| disjoint
2 [d/4]-dimensional subcubes. The computation can be visualized by a two-dimensional
array of processors, with each row and column placed in a [d/4]-dimensional subcube.
Every column corresponds to a path from the root of 7" to a leaf and every row corre-
sponds to an internal node of 7". A processor is called active if its row corresponds to
a node on the path corresponding to its column. The essential steps in the computation
of the strings p(v) are performed by the active processors. The other processors are only
used for supporting prefix computations and broadcast operations along the rows and the
columns.

To initialize the computation of the arrays we have to assign the internal nodes and
the leaves of T to the rows and columns and we have to identify the active processors.



The leaves are assigned to the columns in in-order, and the internal nodes are assigned
to the rows in breadth-first-search-order which can be obtained by a stable sorting of the
nodes of 1" according to their depth. To identify the active processors, each internal
node v computes the set of its descendants in T7”. In the in-order representation of T,
these are the nodes in the maximal intervals to the left and to the right of v with a depth
greater than v. Some prefix operations are sufficient to find the intervals.

The i-th array computes the nodes of Tj; 1) using Fact (a) above and simulates two
stages of the contraction. For @ = [¢,1] and & = [¢,+] the behavior of each node v of T,
determines j € {1,2,3} so that v is a j-th child in T on the level corresponding to stage
z. This j is broadcast to those nodes u of 7" which are descendants of v in T since it is
part of their string p(u). Fact (b) tells how to find these descendants. First, v’s parent
broadcasts j along the path towards the root of T" until reaching a node of T,. Then,
the nodes reached on this segment broadcast j towards the leaves of T”, again stopping
the broadcast operation at nodes of T,.

From p(u) the destination of node u in the embedding of T is easily computed. After
routing the nodes of T to their destinations each stage of the contraction is simulated in
constant time. Thus, the three phases of our hypercube contraction algorithm for trees
of size p consist of a logarithmic number of parallel steps and a recursive call in EdJ—
dimensional subcubes. Considering the remark made at the beginning of this section we
obtain our main result:

Theorem 1 A tree of size n can be contracted on a hypercube with p processors in

O( [%w log p) steps.

The running time of this algorithm can be improved by a constant factor using the fact
that no s-node of some stage [¢,1] can be an [-node in the following stage [¢,r]. Hence,
the four address bits corresponding to two consecutive stages [¢,1] and [¢, r] can never be
0111 or 1111. The remaining 7 possibilities can be encoded into 3 bits, and the algorithm
can be modified making the recursive call for [d/3]-dimensional subcubes.

The primitive operations used in the algorithm and the final simulation of the PRAM
tree contraction algorithm can all be performed on the shuffle exchange network in loga-
rithmic time. Combined with a general simulation result in [Sch90], we have:

Corollary 1 A tree of size n can be contracted on any p processor hypercubic network in
O( [%w log p) steps.

The results of Theorem 1 and Corollary 1 can be shown to be asymptotically optimal for
any input size if we assume that the only operations allowed on the nodes of the tree is
copying, routing and contracting two nodes. In this case, the number of messages required
to contract a tree T with each node u of T stored in processor p(u) of a network G has
to be at least %Zlgkk distg(p(u;), p(wip1)), where uq, ..., ug is a simple path in 7" and
distg(p(u;), p(uip1)) is the distance between the processors p(u;) and p(u;41) in G.

[t is easy to construct a tree with n nodes where this lower bound is ©(n log p) assuming
a balanced distribution of the in-order sequence of nodes in a p processor hypercube.

We would like to mention that the technique of precomputing the communication
structure of the PRAM tree contraction algorithm, rearranging the nodes of the given
tree and embedding the corresponding tree 7' can also be used to construct N'C! circuits
for the evaluation of expressions over finite domains. Although this result has already
been obtained in [MP92] we briefly sketch our construction as an alternative to the rather
involved proof given there.



Similar to the circuit given in [MP92] our construction consists of three stages. To
contract a tree T of size m the third stage of the circuit is a ternary tree C' of depth
2 |logm| capable of performing the contraction of T" according to an embedding of the
corresponding tree T in C. The first stage computes for every node v its path description
p(v) € {1,2,3}2lem] i T. Tor this computation, the above algorithm can be imple-
mented by N'C' circuits for prefix and broadcast operations and sorting. In the second
stage, every node v of T is routed to that input of C' corresponding to p(v). This routing
can be done by sorting the nodes according to p(v), and by a monotone routing through
a butterfly network guided by the destination addresses p(v). The total size of the circuit
is dominated by the size of the second stage. Thus we have (also see [MP92]):

Theorem 2 Algebraic expressions of size m over a finite domain can be evaluated by an
NC' circuit of size O(log?m - m?1°83),

Applying the transformation given in [KD90] the size of our circuit for the evaluation of
algebraic expressions can be decreased to O(log®m -m) (for some constant k) maintaining
logarithmic depth.

4 Dynamic Expression Evaluation

As an application, the contraction algorithm given in the previous section can be used
to evaluate algebraic expressions of size n on a p processor hypercube in O([%w log p)
steps, provided that the operators in the expression satisfy certain closure properties
[ADKP89]. Furthermore, the value of each subexpression can be computed within the
same time bound: after contracting the tree, we reverse the contraction steps, starting
with a single node, ending up with the original tree, and maintaining an expression tree
with the values of all subexpressions already computed.

Tree contraction can be applied to the evaluation of algebraic expressions with rational
numbers and the operators +,—, -, /, but the model of computation has to be adjusted
appropriately. As the numbers computed in the evaluation may grow rapidly we have to
supply the network with the ability to communicate rational numbers and to perform the
basic arithmetic operations on rational numbers in constant time. We call this model of
computation a rational number network.

It can be shown that our expression evaluation algorithm on the rational number
hypercube is asymptotically optimal for each input size. Thus, the maximum speed-up
achievable for the expression evaluation problem on the hypercube is O(p/log p). Note
that, on the EREW-PRAM, the optimal speed-up of O(p) can be achieved for input sizes
in Q(plog p).

Intuitively, the lower bound for the rational number hypercube derives from the fact
that the initial distribution of the operands in the hypercube can be chosen in such a
way that nodes adjacent in the expression tree are stored in distant processors of the
hypercube. Consider, for example, expressions of the type

w1 (@2 (1 - (2 Yp) + Yp-1)) -+ +92)) + 1)

where the operands x; and y; are stored at maximal distance from each other. In our
proof, Abelson’s argument [Abe80] bounding the communication complexity from below
by the rank of a certain matrix is applied simultaneously to the d partitions dividing the
d-dimensional hypercube into two d — 1-dimensional subcubes. For the constant degree
hypercubic networks, the lower bound can be obtained considering a small bisector of the
network.
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Figure 4: Transformation into a binary tree

Theorem 3 FEzpressions containing n rational numbers and the operators +,—. -,/ can
be evaluated, including all subexpressions, on a rational number hypercube or hypercubic
network with p processors in O(fﬂ log p) steps, and this bound is optimal.

5 Term-Matching

Our term alignment algorithm is conceptually very similar to the tree contraction algo-
rithm presented above. Since both algorithms use the primitive operations listed in section
2 in a similar fashion, we will keep our presentation on a high level. We freely switch
between tree and linear (i.e., strings with parentheses) representations of the terms, de-
pending on which is more convenient for the discussion. In our term alignment algorithm
for the hypercube, we follow the general approach of Kosaraju and Delcher [KD90] for
the CREW PRAM model.

We only show how to solve the term alignment problem on a p processor hypercube
in O(log p) steps for terms A and B with a total length of n < p, stored in the first n
processors. For n > p the problem is solved by simulating a hypercube of size at least n
with a slowdown factor of ©(n/p).

We identify the terms A and B with their corresponding trees. Each matching pair
of parentheses in A and B corresponds to a node of Ty or Ts. In a preprocessing step,
we convert Ty and Ty into binary trees Ty and 7} maintaining the node correspondence
between the original nodes of T4 and Ts as shown in figure 4. This can easily be done
by introducing & new dummy nodes dy,...,d; for each original node v with &k children
v1,...,0;. We make d; the right child of d;_; it ¢ > 1, and we make d; the right child
of v. The node v; becomes the left child of d;,_; if + > 1, and v; continues to be the
left child of v. Each original path description pr,(v) = (j1,J2,-..,J:) is transformed into
pr,(v) = (2071 1,221 1 1,271 1), Note that Ty and Ty are binary trees, i.e., each
internal node has exactly two children.

To further simplify the problem we temporarily ignore the function symbols, constants
and variables in A and B. To indicate whether a node is a left or right child it is
represented by a pair of parentheses of type () or [] respectively (by default, the root
is represented by a pair ( ) ). Using the algorithmic techniques described in [MW92] to

11



transform algebraic expressions between pre-, in-, and post-order the transformation of A
and B into the representations of Ty and T by parentheses of two different types can be
perfomed in logarithmic time.

To compute all pairs of corresponding nodes for two trees Ty and Ty (which is the
term alignment problem) we use a divide-and-conquer approach. First we eliminate some
of the nodes of Ty and T} which are known to have no corresponding node in the other

tree. The remaining trees To and Ty are partitioned into binary trees Tél), Té2), ey TéT)
and Tl(l), T1(2), e TI(T) so that the root of each Téz) corresponds to the root of Tl(l). The
algorithm is called recursively for all pairs (Tél), Tl(l)) ey (TéT), TI(T)). After the recur-

sive call each node of T knows the address of its corresponding node in Ty provided that
such a node exists. In the conquer-step we finally reverse the routing of the divide-step
and reconstruct Ty and 7j. '

In the divide-step we are aiming at a bound of O(p*?) on the size of each Téz) and
Tl(i). The running time of the divide-step and the corresponding conquer-step will be
O(log p). By the result of [MW93] appropriately sized subcubes can be allocated to the
generated subproblems so that the total runing time of the divide-and-conquer algorithm
is O(log p).

The divide-step is performed in 3 phases:

1. After numbering the leaves of Ty and T} from left to right determine the sets V4 and
V1 of those leaves numbered by multiples of {pz/:&J . Determine Wy, the set of lowest
common ancestors of V5 in Ty and W7, the set of lowest common ancestors of V; in

Ty.

2. Compute My, the set of nodes from Wy corresponding to an inner node of 77 and
Ny, the set of nodes in T} corresponding to the nodes of My. Analogously compute
M and Ny. Let Cy be the nodes of My U Ny and their lowest common ancestors in
To. Analogously define .

3. In Ty delete all descendants of nodes in Wy \ My. Let Tg be the remaining tree.
Divide Ty into the subtrees Tél), TéZ), e ,TST) (r = 2|Co| + 1) by cutting for each
v € () the edges between v and its children.

Analogously compute the trees Tl(l), 1(2), cees Tl(r). Note that the nodes of Cy corre-
spond exactly to the nodes of (;. Arrange the separated subtrees in corresponding

pairs (Tél), Tl(l)) by (TéT), TI(T)) for which the problem is solved recursively.

The set of nodes of a Téi) satisfies one of the following conditions: (1) the root of Téi)
is just the root of Ty or (2) Téi) contains all descendants in 7j of a child v of some v € Cy
or (3) there is a child u of some v € Cy and a v' € Cy U Wy so that Téi) contains all
descendants of u in Ty except for the descendants of v'. In either case it can be shown
that Téi) is made up of at most 4 {pz/:&J — 3 nodes. Obviously the same condition holds

for each Tl(i).

We outline the hypercube implementation of the three phases described above. Phase
1 is based on the fact that a node is a lowest common ancestor of V; iff both of its children
are ancestors of nodes in V5. Some prefix-operations and parentheses-structured routings
are sufficient to identify those parentheses representing the nodes of V5 and W.

For phase 3 we note that each Téz) is represented by one or two intervals of parenthe-
ses. In case there are two intervals these intervals have to be routed together. First we
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Figure 5: The trees Sy and 5

create empty space for the second interval right after the first interval. By a parentheses-
structured routing each second interval is routed into the corresponding empty space.
Since each interval arrives in reversed order, it has to be reversed again using a bit-
complement-permutation routing in a suitable subcube.

In phase 2 we have to compute the correspondences for all nodes of Wy in T3, which
is is the most complicated part of the divide-step. In fact, we compute the corresponding
nodes for all ancestors of V5. Our description of phase 2 is given in terms of trees, subtrees
and nodes. The algorithm can be implemented in a straightforward way by a constant
number of prefix operations, applications of sparse enumeration sort, monotone routings
and parentheses-structured routings on the sequence of parentheses representing Ty and

Ty.

1. Let Ky be the set of ancestors of V4 including V5, and let K5 be the set of ancestors
of V1 including V. Let H be the set of heights of the nodes of Wy U V4 in T and
the nodes of W7 U V; in Tj. Let K} and K] be those nodes of Ky and K; with a
height in H. Let Sg, 51, S5, and S] be the trees consisting of the nodes in Ky, K7,
K/, and K] respectively. Each edge in Sj or S} represents a path in Ty or Ty (see
figures 5 and 6).

2. We compute all pairs of correponding nodes in S and 57: This is done by comparing
for each pair (v,w) € Vo x V; their path-descriptions pgi,(v) and pgi, (w). Every
common prefix of pg,(v) and pg/, (w) corresponds to a pair of correponding nodes.
Note that the cardinality of V5 and V4 and the length of each pg/,(v) and pg/, (w) is
bounded by O(p'/?).

3. We compute all pairs of correponding nodes in Sy and S;: For an edge (v, w) of S},
or S let P(v,w) denote the corresponding path in Sy or ;. For every edge (v, w) of
Sg corresponding to an edge (v’, w') of 5] we compare the descriptions of the paths
P(v,w) and P(v',w"). The outcomes of these comparisons can be used to repeat
step 2 in a refined manner and to finally obtain the correspondences between Sy and

St
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Figure 6: The trees 5§ and 5]

4. Now for all the nodes of Ky the corresponding nodes in Ty are computed provided
that they are elements of K. Let v be a node of Ky not corresponding to a node
of K7 whose parent w corresponds to a node w' € Ki. If w' is a leaf of Ty, the
node v and all its descendants don’t correspond to any node of T} and they can be
discarded from any further considerations. Otherwise v corresponds to that child
v’ of w' which is not in K;. Let Xy C Ky be the set of those v considered in the
second case, i.e., the nodes v corresponding to a node v’ ¢ K; which is a sibling of
a node in K. For v € X let Tév) be the subtree of 1j rooted at v and let Tl(v) be
the subtree of T rooted at the corresponding v'.

5. It remains to compute the correspondences for those nodes of Ky which are descen-
dants of a node v € X by considering all pairs (Tév), Tl(v)) for v € X;. Note that
all subtrees Tév) and Tl(v) for v € X are disjoint and that the size of each Tl(v) is
bounded by 2 {pz/:&J whereas a Tév) may still contain up to O(p) nodes.

Repeating steps 1 — 4 in an analogous manner for the pairs (Tév) ) Tl(v)) we obtain
a set Xy C Ky so that the correspondences of the ancestors of X, are computed
and for each w € X5 there is a pair of corresponding subtrees (Téw), Tl(w)) with

1] = 0

Repeating steps 1 — 4 once more in an analogous manner for the pairs (Téw) , Tl(w))
for all w € X,, we finally compute the correspondences for all nodes of K.

If n, the number of nodes of both trees, is greater than p, the term-alignment algorithm
for a [log n]-dimensional hypercube has to be simulated by the p processor hypercube with
a slowdown of O(n/p). If n is bounded by a polynomial in p, the resulting running time

is O([ﬂ logn) = O([ﬂ log p).

Theorem 4 The term alignment problem for terms of size n can be solved on a p pro-
cessor hypercube or hypercubic network in O( [ﬂ log p) steps.
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As noted in the introduction the term matching problem can be solved by a term
alignment followed by a standard sorting algorithm. Thus, we have

Corollary 2 The term matching problem for terms ofsize n can be solved on a p processor

hypercube with a worst case running time of O([ log p(log log p)?) steps or, using a

n
p

randomized sorting algorithm, with an expected running time of O([ w log p) steps.

n
p

6 Conclusion and Open Problems

Using a recursive approach, we have shown how to contract trees efficiently on hypercubes
and related networks. Our technique of precomputing the communication structure of a
PRAM contraction algorithm, rearranging the data and simulating the algorithm without
any further overhead can be used for the contraction of small trees in networks. It could
also be applied for the construction of NC* circuits for the expression evaluation problem
which is simpler than the construction proposed in [MP92].

Due to the recursive call and the usage of the parentheses structured routing algorithm,
the constant factor in the worst case running time of our contraction algorithm is quite
large. But the algorithm performs much better for random trees. As noted in [PS91], with
high probability most of the nodes are contained in local subtrees and will be eliminated
in the recursive call or even in the reduction within a single processor.

For rational number hypercubes and hypercubic networks, the maximal speed-up
achievable for the expression evaluation problem is O(p/logp). We conjecture that a
similar result holds for all constant degree networks, but we have so far been unable to
apply the known lower bound results for communication complexity to this case.
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