
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Optimal Tree Contraction and Term Matching
on the Hypercube and Related Networks

Ernst W. Mayr Ralph Werchner

������
TUM-I9532

November 1995

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-11-1995-I9532-300/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1995 MATHEMATISCHES INSTITUT UND
INSTITUT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

Optimal Tree Contraction and Term Matchingon the Hypercube and Related NetworksErnst W. Mayr�Institut f�ur InformatikTechnische Universit�atM�unchen, Germany Ralph WerchneryFachbereich InformatikJ.W. Goethe-Universit�atFrankfurt am Main, GermanyNovember 8, 1995AbstractAn optimal tree contraction algorithm for the boolean hypercube and the con-stant degree hypercubic networks, such as the shu�e exchange or the butter
ynetwork, is presented. The algorithm is based on novel routing techniques and, forcertain small subtrees, simulates optimal PRAM algorithms. For trees of size n,stored on a p processor hypercube in in-order, the running time of the algorithmis O(lnpm log p). The resulting speed-up of O(p= log p) is optimal due to logarithmiccommunication overhead, as shown by a corresponding lower bound.The same algorithmic ingredients can also be used to solve the term matching prob-lem, one of the fundamental problems in logic programming.

�mayr@informatik.tu-muenchen.deywerchner@informatik.uni-frankfurt.de 1

1 IntroductionTree contraction is a fundamental technique for solving problems on trees. A given treeis reduced to a single node by repeatedly contracting edges, resp., merging adjacentnodes. This operation can be used for problems like top-down or bottom-up algebraictree computations [ADKP89], which themselves can be applied to solve the membershipproblem for certain subclasses of languages in DCFL [GR86] or to evaluate expressionsconsisting of rational operands and the operators +;�; �; =.In the context of parallel processing the objective is to contract the tree using a smallnumber of stages. In a stage, a set of disjoint pairs of adjacent nodes in the currenttree is selected, and the edges connecting these pairs are contracted, i.e., each pair ofnodes is merged into a single node. The contractions are not allowed to produce a nodewith more than two children. Brent [Bre74] was the �rst to show that a logarithmicnumber of such stages is su�cient, and he applied this result to the restructuring ofalgebraic expression trees, producing trees of logarithmic depth. Subsequent work [MR85,GR86, GMT88, KD88, ADKP89] concentrated on the e�cient parallel computation ofcontraction sequences, and eventually resulted in work optimal logarithmic time treecontraction algorithms on the EREW PRAM.We consider the tree contraction problem on the boolean hypercube and on similarnetworks. In this model, computing a suitable contraction sequence is more di�cult, andthe additional problem of routing pairs of nodes to be contracted to common processorsarises. For the contraction of (suitably represented) paths, both problems become trivialand can be solved in logarithmic time by a parallel pre�x operation [Sch80]. For arbitrarytrees, we combine two known (PRAM) contraction techniques with a recursive approach.To achieve a logarithmic running time we separate the local communication operationsfrom the few long distance communication steps and perform them in appropriately sizedsubcubes. The necessary routing steps are performed by new logarithmic time algorithmsdesigned for special classes of routings. Our algorithm contracts a tree of size n on a pprocessor boolean hypercube in O(lnpm log p) steps, which we also show is asymptoticallyoptimal by a matching lower bound.Term matching is an important special case of the uni�cation problem. It is one of themost time consuming tasks in logic programming and term rewriting systems. A term is anexpression composed of function symbols (with arbitrary arity), constants, and variables.In the term matching problem, we are given two terms A and B, with B containing novariable symbols. The task is to �nd a substitution of terms for the variables (in A)making A syntactically identical to B. Consider, for example, A = F(G(x; y; a);F(x;b))and B = F(G(b;F(a;b); a);F(b;b)); the desired substitution is x 7! b ; y 7! F(a;b).In [PW78] Paterson and Wegman solve the general uni�cation problem sequentially inlinear time. Later, this problem was shown P-complete in [DKM84]. The �rst parallel al-gorithms for the term matching problem achieving optimal speed-up and logarithmic run-ning time are due to Kedem and Palem [KP92]. Their algorithms use the CRCW PRAMor the randomized CREW PRAM model. Employing a recursive approach conceptuallyvery similar to the one presented in this paper, Kosaraju and Delcher [KD90] developeda work-optimal logarithmic time term matching algorithm for the CREW PRAM model.Term matching naturally decomposes into two phases. First, all pairs of correspondingsymbols in A and B are determined, where this correspondence is de�ned by consideringthe ordered trees TA and TB corresponding to the terms A and B respectively. For a nodev on level i of a k-ary tree T let pathT (v) 2 f1; : : : ; kgi denote the path description of v inT . It is pathT (v) = (j1; : : : ; ji�1; ji) i� v is the ji-th child of its parent w and pathT (w) =2

(j1; : : : ; ji�1). Two nodes u and v correspond to each other i� pathTA(u) = pathTB(v).Since the symbols of A appear in the same order as the corresponding symbols in B, asingle monotone routing (respectively shift) of the symbols in both terms su�ces to aligncorresponding symbols with each other. In the following, this �rst part will be called theterm alignment problem. In the second phase of term matching, all pairs of correspondingsymbols and all subtrees of TB corresponding to the same variable are tested for equality.One contribution of this paper is an optimal hypercube algorithm for the term align-ment problem. A p processor hypercube can compute and perform the desired routingfor terms of size n in O(lnpm log p) steps. Applying our general approach, we �rst alignthe terms A and B roughly, considering only their global structure, and postpone theexact alignment to a recursive call in lower dimensional subcubes. The task of compar-ing subtrees mapped to the same variable generally has to be performed by a standardsorting algorithm. This can be done by a randomized sorting algorithm [VB81, ALMN90]within the same time bound O(lnpm log p). The best known deterministic sorting algorithm[CP90] exceeds this time bound by a factor of O((log log p)2).2 Fundamental Concepts and NotationWe �rst give a short description of our model of computation. A network of processors isa set of processors, interconnected by bidirectional communication links. Each processorhas the capabilities of a RAM, a unique processor-id and additional instructions to sendor receive one machine word to respectively from a direct neighbor. We assume the wordlength of the processors to be �(log p) bits where p is the number of processors. Thetopological structure of the communication links can be described by an undirected graph(V;E).A d-dimensional (boolean) hypercube is a network of processors represented by thegraph G = (V;E) withV = f0; 1gd ;E = f(u; v) ju and v di�er in exactly one bitg :A network with bounded degree and a structure very similar to the hypercube is the d-dimensional shu�e-exchange. The processors are numbered as they are in the hypercube.Two processors are connected by a link if their ids di�er only in the last bit (exchangeedges) or if one id is a cyclic shift by one position of the other id (shu�e edges). Acompendium of results concerning hypercubes and shu�e-exchange networks can be foundin [Lei92].For the tree contraction problem on networks of processors we assume that the datacomprising each node can be stored in a constant number of processor words and that twoadjacent nodes stored by the same processor can be merged in constant time. Note thatthis implies in particular that the number of nodes must be polynomial in the number ofprocessors.On networks the complexity of a problem may depend heavily on the distribution ofthe input data over the processors of the network. For the tree contraction problem weassume the in-order sequence of the nodes to be evenly distributed over the sequence ofprocessors ordered by processor-id. To uniquely describe the structure of the tree in thisway, each nontrivial subtree is assumed to be enclosed by a pair of parentheses. For theterm matching problem we assume that both terms { the pre-order representations of thecorresponding trees { are evenly distributed over the sequence of processors. Permitting3

more general tree representations, like lists of edges, seems to imply that sorting and/orlist ranking subproblems have to be solved. The best known hypercube algorithms forthese problems would yield inferior complexity bounds for tree contraction.On a hypercube or hypercubic network with p processors the representation of a tree ofsize n can be transformed between pre-, in-, and post-order in time O(lnp m log p) [MW92].Thus the asymptotic complexity of both the tree contraction and the term matchingproblem does not depend on whether the input data is given in pre-, in-, or post-order. Ifthe tree is given by an arbitrary, but balanced distribution of the nodes linked by pointers,the nodes have to be rearranged into pre- or in-order before applying the algorithmspresented in this paper. This task can be performed by a list ranking on the Euler tourof the tree and a corresponding routing operation. On a p processor hypercube, thistransformation can be carried out in O(lnpm log2 p log log log p log� p) steps for trees ofsize n [HM93]. The dominating part is the time required for the list-ranking. As alreadymentioned, this running time is much higher than the running times of our tree contractionand term matching algorithms designed for the in- or pre-order representation.The algorithms given in the next sections use the following basic operations known tobe executable in logarithmic time on a hypercube or shu�e-exchange network:� parallel-pre�x-operation and segmented parallel-pre�x-operation [Sch80];� monotone routing (the relative ordering of the data items remains unchanged)[NS81];� sparse enumeration sort (sorting p� data items on a p processor hypercube, for some�xed � < 1) [NS82];� parentheses-structured routing (routing between matching pairs in a well-formedstring of parentheses) [MW92].3 Tree Contraction on the HypercubeIn this section we show how binary trees (i.e., each internal node has exactly two chil-dren) of size n can be contracted on a p processor hypercube or hypercubic network inO(lnp m log p) steps. It can easily be seen that, using standard techniques, more generalexpressions trees can be transformed into binary trees without asymptotically increasingthe complexity. We concentrate on the contraction of trees with at most p nodes in loga-rithmic time on the hypercube. For inputs of a size n > p, a hypercube of size �(n) canbe simulated with a slowdown of �(np). Because of the simple communication structure,the hypercube algorithm can be simulated on a shu�e exchange network of the same sizewith just constant slowdown. Furthermore, due to a general simulation result [Sch90],any algorithm on the shu�e exchange network can be simulated with constant slowdownon each of the other so called hypercubic networks, such as the de Bruijn network, thecube connected cycles network, or the butter
y network.We give an outline of the contraction algorithm. It proceeds in three phases:1. We identify and contract small subtrees in a recursive call of the algorithm.2. The remaining tree may still be quite large, but, if so, has a structure that allowsa signi�cant further reduction by eliminating the leaves and contracting chains ofnodes with a single child each to one edge, an operation similar to the \compact"operation in [MR85]. 4

C1 C2 C3 C4

compact

T’

T’’

Figure 1: The compact operation applied to T 03. To contract the remaining tree, we emulate the PRAM algorithm of [KD88]. We�rst compute the communication structure of this algorithm when executed on theremaining tree. After rearranging the nodes of the tree accordingly in the hypercube,each step of the PRAM tree contraction algorithm can then be simulated in constanttime.3.1 Contraction of SubtreesIn the �rst phase, we divide the processors of the d-dimensional hypercube into contiguousblocks of size 2b 34dc. These blocks are j34dk-dimensional subcubes, say C1; C2; : : : ; C2dd=4e.We determine those subtrees contained entirely within a single Ci. For this purpose, we�rst compute the height , i.e., the level of nesting, of the parentheses enclosing the subtrees.An opening parenthesis with height h is part of a local subtree i� there is a parenthesis toits right, but within its block, with a height� h. Performing a parallel-pre�x-computationwithin each block Ci, we can for each parenthesis compute the minimum height of theparentheses to its right within the block. Comparing this value with its own height, eachopening parenthesis can determine whether it is matched within its block. An analogouscomputation is performed for the closing parentheses.In a recursive call to the algorithm, for all subcubes Ci in parallel, the subtrees withinblocks are contracted. Clearly, the resulting tree is again binary. In general, a subcubeCi may contain a sequence of several maximal local subtrees. This causes the need tomake the algorithm capable of contracting a sequence of trees. We only describe here howto contract a single tree; the modi�cations required for dealing with a sequence of trees,however, are quite straightforward, and are left to the reader.3.2 CompactionDenote by T , T 0, and T 00 the trees at the beginning of the algorithm, after the �rst phase,and after the second phase, respectively. Let L be the set of pairs (u; v), with v a leafof T 0, u its parent, and v not the left sibling of another leaf. We reduce T 0 to T 00 byeliminating all pairs of nodes in L (see Figure 1).This reduction is equivalent to one \rake" operation (eliminating the leaves) and a5

repeated \compress" operation (contracting the maximal chains of nodes with a singlechild). Together, they were called a \compact" operation in [MR85]. The result, T 00, isagain a binary tree.We �rst prove that the resulting tree is small. Then we show how the compact oper-ation can be carried out on the hypercube in logarithmic time.Lemma 1 Starting with an expression tree of size at most 2d, applying the �rst andsecond phase of our algorithm, the resulting tree T 00 is a binary tree with at most 2dd=4e�1leaves.Proof: Each leaf of T 0 corresponds to a maximal subtree of T initially stored totallywithin one of the blocks C1; C2; : : : ; C2dd=4e . Assign to each leaf the index of its subcube.Then the sequence of numbers assigned to the leaves in T 0 is sorted and two leaves thatare siblings are assigned di�erent numbers. As the only leaves of T 0 surviving in T 00 arethose whose right sibling is also a leaf, they are all assigned distinct numbers. Since thesenumbers are in the range from 1 to 2dd=4e � 1, T 00 has at most 2dd=4e � 1 leaves.To perform the compact operation e�ciently on the hypercube we �rst swap somesiblings in the tree such that for all (u; v) 2 L, the leaf v is a right child of u. For ourin-order representation of the tree this means that we modify the tree according to thefollowing pattern: : : : (v u(: : :)) : : : �! : : : ((: : :)u0 v) : : : ; (1)where u is modi�ed to u0 to denote that its children have been interchanged.The routing required for the modi�cation belongs to a special class of partial per-mutations called parentheses structured routings [MW92]. To de�ne this class considerthe following situation: Some of the processors are storing each an opening or closingparenthesis. Together with some of the opening parentheses data items are stored. Thesequence of parentheses is well-formed, and each data item has to be routed from itsopening parenthesis to the processor storing the matching closing parenthesis. A partialpermutation that can be described in this way is called a parentheses structured rout-ing. The algorithm proposed in [MW92] performs the routing in logarithmic time on thehypercube, the shu�e exchange network or any other hypercubic network. In (1), therouting of the data item (u; v) can be guided by the pair of parentheses enclosing thesubtree rooted at u.Let (u1; v1); (u2; v2); : : : ; (ur; vr) be a maximal chain of tupels from L in T 0, i.e., ui isa child of ui+1 for 1 � i < r, and ur is either the root or the sibling of an internal node,and v1's sibling w is either a leaf or the parent of two internal nodes. After the aboverouting step, this chain is, in in-order notation, a sequence: : : u1v1)u2v2) : : :)urvr : : : :In each such chain, the edges (ui; vi) are contracted by routing the leaves vi one po-sition to the left. The remaining path u1; : : : ; ur is contracted to a single node by asegmented parallel-pre�x-operation. Finally, the resulting node is routed to w by a sparse-enumeration-sort, and the two nodes are merged.3.3 Simulation of PRAM Contraction AlgorithmIn the third and last phase, we simulate the logarithmic time PRAM tree contractionalgorithm proposed in [KD88] or [ADKP89]. Although Lemma 1 guarantees that there6

f

b

e

d

6

2

4 5

8

f

a

b

e

c

d

g

1

6

2

3

4 5

87

stage

 [1, l]
f

b

e

6

2 4

8

stage

 [1, r]

f

e

64

8

f

4 8

stage

 [2, l]

stage

 [2, r]

stage

 [3, l]
8

stage

 [2, l]

Figure 2: Contraction of T 00are only very few nodes left, a step-by-step simulation of the PRAM algorithm, performinga routing phase for each parallel random access step of the PRAM, would still result in asuboptimal algorithm.In our approach, we �rst compute the communication structure of the complete execu-tion of the PRAM algorithm (without a complete simulation). Then, we route the nodesthat will have to communicate to adjacent hypercube processors. After rearranging thedata, we are able to simulate the PRAM tree contraction algorithm without slowdown.In [KD88] the tree is reduced using the operation \rake". This operation, applied to aleaf l of the tree, involves three nodes: the leaf l, its parent p, and its sibling s. The twoedges connecting these nodes are contracted and the nodes l and p are eliminated whilenode s survives.If the given tree has m leaves, the contraction algorithm proceeds in 2 � blogmc stagescalled [1,l], [1,r], [2,l], [2,r], : : : ; [blogmc,l], [blogmc,r]. The leaves are numbered left toright from 1 to m. In stage [i,l] (resp., [i,r]) the rake operation is applied to all leavesnumbered by odd multiples of 2i�1 that are left (resp. right) children. In this fashion,no node is involved in more than one rake operation in each stage (see Figure 2 for anexample).We apply this contraction algorithm to the tree T 00. For a stage x, let Tx be thereduced tree just before stage x. The contraction of T 00 can be represented by a tree ~T(continuing the example, see Figure 3). For each stage x of the contraction procedurethere is one level of ~T containing exactly the nodes of Tx. In ~T , a node v with childrenv1; v2; v3 corresponds to the contraction of v1; v2; v3 to v. The depth of ~T is bounded bybd=2c since T 00 has m < 2dd=4e leaves. Thus ~T can easily be embedded in a d-dimensionalcube with dilation 2. To contract T 00, we compute this embedding of ~T , route the nodes ofT 00 to the corresponding leaves of ~T , and perform the contraction along the (embedded)edges of ~T . Note that the nodes of T 00 can be routed in logarithmic time by a sparse7

f

4 8

8

2

b

4

4

f

e

6

e

6

8

f

8

Figure 3: The top 4 levels of the corresponding ~Tenumeration sort followed by a monotone routing. The major problem is to computetheir destinations according to the embedding of ~T .For each node v of ~T , we de�ne p(v) 2 f0; 1; 2; 3gbd=2c as the description of the pathfrom the root of ~T to v. The i-th element of p(v) is j 2 f1; 2; 3g if the i-th edge onthis path points to a j-th child, and an appropriate number of 0's is appended to padp(v) to length bd=2c. Substituting each number of p(v) by its two-bit-representation, thehypercube address of v in the embedding of ~T can easily be obtained. It remains to showhow to compute p(v) e�ciently for the leaves of ~T , i.e. the nodes of T 00.Investigating the tree contraction algorithm, the following facts can easily be derived:(a) The nodes of T[i;l] are the leaves of T 00 numbered by multiples of 2i�1 and theirlowest common ancestors in T 00.(b) Let v be a node of ~T on a level corresponding to some stage x of the contraction.The descendants of v in ~T are those nodes of T 00 that have been contracted into v.These are v itself and those nodes u connected in T 00 (considered as an undirectedtree) to the parent of v by a path (including u and v) containing no node of Tx.We show how to compute the strings p(v) for all nodes v of T 00. The elementsof p(v) corresponding to the stages [i; l] and [i; r] are computed independently for alli = 1; 2; : : : ; blogmc. For each i, this computation is performed by one of blogmc disjoint2 dd=4e-dimensional subcubes. The computation can be visualized by a two-dimensionalarray of processors, with each row and column placed in a dd=4e-dimensional subcube.Every column corresponds to a path from the root of T 00 to a leaf and every row corre-sponds to an internal node of T 00. A processor is called active if its row corresponds toa node on the path corresponding to its column. The essential steps in the computationof the strings p(v) are performed by the active processors. The other processors are onlyused for supporting pre�x computations and broadcast operations along the rows and thecolumns.To initialize the computation of the arrays we have to assign the internal nodes andthe leaves of T 00 to the rows and columns and we have to identify the active processors.8

The leaves are assigned to the columns in in-order, and the internal nodes are assignedto the rows in breadth-�rst-search-order which can be obtained by a stable sorting of thenodes of T 00 according to their depth. To identify the active processors, each internalnode v computes the set of its descendants in T 00. In the in-order representation of T 00,these are the nodes in the maximal intervals to the left and to the right of v with a depthgreater than v. Some pre�x operations are su�cient to �nd the intervals.The i-th array computes the nodes of T[i;l] using Fact (a) above and simulates twostages of the contraction. For x = [i; l] and x = [i; r] the behavior of each node v of Txdetermines j 2 f1; 2; 3g so that v is a j-th child in ~T on the level corresponding to stagex. This j is broadcast to those nodes u of T 00 which are descendants of v in ~T since it ispart of their string p(u). Fact (b) tells how to �nd these descendants. First, v's parentbroadcasts j along the path towards the root of T 00 until reaching a node of Tx. Then,the nodes reached on this segment broadcast j towards the leaves of T 00, again stoppingthe broadcast operation at nodes of Tx.From p(u) the destination of node u in the embedding of ~T is easily computed. Afterrouting the nodes of T 00 to their destinations each stage of the contraction is simulated inconstant time. Thus, the three phases of our hypercube contraction algorithm for treesof size p consist of a logarithmic number of parallel steps and a recursive call in j34dk-dimensional subcubes. Considering the remark made at the beginning of this section weobtain our main result:Theorem 1 A tree of size n can be contracted on a hypercube with p processors inO(lnp m log p) steps.The running time of this algorithm can be improved by a constant factor using the factthat no s-node of some stage [i; l] can be an l-node in the following stage [i; r]. Hence,the four address bits corresponding to two consecutive stages [i; l] and [i; r] can never be0111 or 1111. The remaining 7 possibilities can be encoded into 3 bits, and the algorithmcan be modi�ed making the recursive call for dd=3e-dimensional subcubes.The primitive operations used in the algorithm and the �nal simulation of the PRAMtree contraction algorithm can all be performed on the shu�e exchange network in loga-rithmic time. Combined with a general simulation result in [Sch90], we have:Corollary 1 A tree of size n can be contracted on any p processor hypercubic network inO(lnp m log p) steps.The results of Theorem 1 and Corollary 1 can be shown to be asymptotically optimal forany input size if we assume that the only operations allowed on the nodes of the tree iscopying, routing and contracting two nodes. In this case, the number of messages requiredto contract a tree T with each node u of T stored in processor p(u) of a network G hasto be at least 12 P1�i<k distG(p(ui); p(ui+1)), where u1; : : : ; uk is a simple path in T anddistG(p(ui); p(ui+1)) is the distance between the processors p(ui) and p(ui+1) in G.It is easy to construct a tree with n nodes where this lower bound is
(n log p) assuminga balanced distribution of the in-order sequence of nodes in a p processor hypercube.We would like to mention that the technique of precomputing the communicationstructure of the PRAM tree contraction algorithm, rearranging the nodes of the giventree and embedding the corresponding tree ~T can also be used to construct NC1 circuitsfor the evaluation of expressions over �nite domains. Although this result has alreadybeen obtained in [MP92] we brie
y sketch our construction as an alternative to the ratherinvolved proof given there. 9

Similar to the circuit given in [MP92] our construction consists of three stages. Tocontract a tree T of size m the third stage of the circuit is a ternary tree ~C of depth2 blogmc capable of performing the contraction of T according to an embedding of thecorresponding tree ~T in ~C. The �rst stage computes for every node v its path descriptionp(v) 2 f1; 2; 3g2 blogmc in ~T . For this computation, the above algorithm can be imple-mented by NC1 circuits for pre�x and broadcast operations and sorting. In the secondstage, every node v of T is routed to that input of ~C corresponding to p(v). This routingcan be done by sorting the nodes according to p(v), and by a monotone routing througha butter
y network guided by the destination addresses p(v). The total size of the circuitis dominated by the size of the second stage. Thus we have (also see [MP92]):Theorem 2 Algebraic expressions of size m over a �nite domain can be evaluated by anNC1 circuit of size O(log2m �m2 log 3).Applying the transformation given in [KD90] the size of our circuit for the evaluation ofalgebraic expressions can be decreased to O(logkm �m) (for some constant k) maintaininglogarithmic depth.4 Dynamic Expression EvaluationAs an application, the contraction algorithm given in the previous section can be usedto evaluate algebraic expressions of size n on a p processor hypercube in O(lnp m log p)steps, provided that the operators in the expression satisfy certain closure properties[ADKP89]. Furthermore, the value of each subexpression can be computed within thesame time bound: after contracting the tree, we reverse the contraction steps, startingwith a single node, ending up with the original tree, and maintaining an expression treewith the values of all subexpressions already computed.Tree contraction can be applied to the evaluation of algebraic expressions with rationalnumbers and the operators +;�; �; =, but the model of computation has to be adjustedappropriately. As the numbers computed in the evaluation may grow rapidly we have tosupply the network with the ability to communicate rational numbers and to perform thebasic arithmetic operations on rational numbers in constant time. We call this model ofcomputation a rational number network.It can be shown that our expression evaluation algorithm on the rational numberhypercube is asymptotically optimal for each input size. Thus, the maximum speed-upachievable for the expression evaluation problem on the hypercube is O(p= log p). Notethat, on the EREW-PRAM, the optimal speed-up of �(p) can be achieved for input sizesin
(p log p).Intuitively, the lower bound for the rational number hypercube derives from the factthat the initial distribution of the operands in the hypercube can be chosen in such away that nodes adjacent in the expression tree are stored in distant processors of thehypercube. Consider, for example, expressions of the typex1 � ((x2 � : : : ((xp�1 � ((xp � yp) + yp�1)) : : :+ y2)) + y1)where the operands xi and yi are stored at maximal distance from each other. In ourproof, Abelson's argument [Abe80] bounding the communication complexity from belowby the rank of a certain matrix is applied simultaneously to the d partitions dividing thed-dimensional hypercube into two d � 1-dimensional subcubes. For the constant degreehypercubic networks, the lower bound can be obtained considering a small bisector of thenetwork. 10

a

e

f

b c

d

a

e

b

c

d

g

f

g

a (b , c (d , e (f)) , g) a (b , o [c (d , o [e (f , o) , o]) , o [g , o]])

T T ’

Figure 4: Transformation into a binary treeTheorem 3 Expressions containing n rational numbers and the operators +;�; �; = canbe evaluated, including all subexpressions, on a rational number hypercube or hypercubicnetwork with p processors in O(lnpm log p) steps, and this bound is optimal.5 Term-MatchingOur term alignment algorithm is conceptually very similar to the tree contraction algo-rithm presented above. Since both algorithms use the primitive operations listed in section2 in a similar fashion, we will keep our presentation on a high level. We freely switchbetween tree and linear (i.e., strings with parentheses) representations of the terms, de-pending on which is more convenient for the discussion. In our term alignment algorithmfor the hypercube, we follow the general approach of Kosaraju and Delcher [KD90] forthe CREW PRAM model.We only show how to solve the term alignment problem on a p processor hypercubein O(log p) steps for terms A and B with a total length of n � p, stored in the �rst nprocessors. For n � p the problem is solved by simulating a hypercube of size at least nwith a slowdown factor of �(n=p).We identify the terms A and B with their corresponding trees. Each matching pairof parentheses in A and B corresponds to a node of TA or TB. In a preprocessing step,we convert TA and TB into binary trees T0 and T1 maintaining the node correspondencebetween the original nodes of TA and TB as shown in �gure 4. This can easily be doneby introducing k new dummy nodes d1; : : : ; dk for each original node v with k childrenv1; : : : ; vk. We make di the right child of di�1 if i > 1, and we make d1 the right childof v. The node vi becomes the left child of di�1 if i > 1, and v1 continues to be theleft child of v. Each original path description pTA(v) = (j1; j2; : : : ; ji) is transformed intopT0(v) = (2j1�1; 1; 2j2�1; 1; : : : ; 1; 2ji�1; 1). Note that T0 and T1 are binary trees, i.e., eachinternal node has exactly two children.To further simplify the problem we temporarily ignore the function symbols, constantsand variables in A and B. To indicate whether a node is a left or right child it isrepresented by a pair of parentheses of type () or [] respectively (by default, the rootis represented by a pair ()). Using the algorithmic techniques described in [MW92] to11

transform algebraic expressions between pre-, in-, and post-order the transformation of Aand B into the representations of T0 and T1 by parentheses of two di�erent types can beperfomed in logarithmic time.To compute all pairs of corresponding nodes for two trees T0 and T1 (which is theterm alignment problem) we use a divide-and-conquer approach. First we eliminate someof the nodes of T0 and T1 which are known to have no corresponding node in the othertree. The remaining trees T̂0 and T̂1 are partitioned into binary trees T (1)0 ; T (2)0 ; : : : ; T (r)0and T (1)1 ; T (2)1 ; : : : ; T (r)1 so that the root of each T (i)0 corresponds to the root of T (i)1 . Thealgorithm is called recursively for all pairs �T (1)0 ; T (1)1 � ; : : : ; �T (r)0 ; T (r)1 �. After the recur-sive call each node of T0 knows the address of its corresponding node in T1 provided thatsuch a node exists. In the conquer-step we �nally reverse the routing of the divide-stepand reconstruct T0 and T1.In the divide-step we are aiming at a bound of O(p2=3) on the size of each T (i)0 andT (i)1 . The running time of the divide-step and the corresponding conquer-step will beO(log p). By the result of [MW93] appropriately sized subcubes can be allocated to thegenerated subproblems so that the total runing time of the divide-and-conquer algorithmis O(log p).The divide-step is performed in 3 phases:1. After numbering the leaves of T0 and T1 from left to right determine the sets V0 andV1 of those leaves numbered by multiples of jp2=3k. DetermineW0, the set of lowestcommon ancestors of V0 in T0 and W1, the set of lowest common ancestors of V1 inT1.2. Compute M0, the set of nodes from W0 corresponding to an inner node of T1 andN1, the set of nodes in T1 corresponding to the nodes of M0. Analogously computeM1 and N0. Let C0 be the nodes of M0 [N0 and their lowest common ancestors inT0. Analogously de�ne C1.3. In T0 delete all descendants of nodes in W0 nM0. Let T̂0 be the remaining tree.Divide T̂0 into the subtrees T (1)0 ; T (2)0 ; : : : ; T (r)0 (r = 2 jC0j + 1) by cutting for eachv 2 C0 the edges between v and its children.Analogously compute the trees T (1)1 ; T (2)1 ; : : : ; T (r)1 . Note that the nodes of C0 corre-spond exactly to the nodes of C1. Arrange the separated subtrees in correspondingpairs �T (1)0 ; T (1)1 � ; : : : ; �T (r)0 ; T (r)1 � for which the problem is solved recursively.The set of nodes of a T (i)0 satis�es one of the following conditions: (1) the root of T (i)0is just the root of T0 or (2) T (i)0 contains all descendants in T0 of a child u of some v 2 C0or (3) there is a child u of some v 2 C0 and a v0 2 C0 [W0 so that T (i)0 contains alldescendants of u in T0 except for the descendants of v0. In either case it can be shownthat T (i)0 is made up of at most 4 jp2=3k � 3 nodes. Obviously the same condition holdsfor each T (i)1 .We outline the hypercube implementation of the three phases described above. Phase1 is based on the fact that a node is a lowest common ancestor of V0 i� both of its childrenare ancestors of nodes in V0. Some pre�x-operations and parentheses-structured routingsare su�cient to identify those parentheses representing the nodes of V0 and W0.For phase 3 we note that each T (i)0 is represented by one or two intervals of parenthe-ses. In case there are two intervals these intervals have to be routed together. First we12

Figure 5: The trees S0 and S1create empty space for the second interval right after the �rst interval. By a parentheses-structured routing each second interval is routed into the corresponding empty space.Since each interval arrives in reversed order, it has to be reversed again using a bit-complement-permutation routing in a suitable subcube.In phase 2 we have to compute the correspondences for all nodes of W0 in T1, whichis is the most complicated part of the divide-step. In fact, we compute the correspondingnodes for all ancestors of V0. Our description of phase 2 is given in terms of trees, subtreesand nodes. The algorithm can be implemented in a straightforward way by a constantnumber of pre�x operations, applications of sparse enumeration sort, monotone routingsand parentheses-structured routings on the sequence of parentheses representing T0 andT1.1. Let K0 be the set of ancestors of V0 including V0, and let K1 be the set of ancestorsof V1 including V1. Let H be the set of heights of the nodes of W0 [V0 in T0 andthe nodes of W1 [V1 in T1. Let K 00 and K 01 be those nodes of K0 and K1 with aheight in H. Let S0, S1, S00, and S01 be the trees consisting of the nodes in K0, K1,K 00, and K 01 respectively. Each edge in S 00 or S 01 represents a path in T0 or T1 (see�gures 5 and 6).2. We compute all pairs of correponding nodes in S00 and S 01: This is done by comparingfor each pair (v;w) 2 V0 � V1 their path-descriptions pS00(v) and pS01(w). Everycommon pre�x of pS00(v) and pS01(w) corresponds to a pair of correponding nodes.Note that the cardinality of V0 and V1 and the length of each pS00(v) and pS01(w) isbounded by O(p1=3).3. We compute all pairs of correponding nodes in S0 and S1: For an edge (v;w) of S 00or S01 let P (v;w) denote the corresponding path in S0 or S1. For every edge (v;w) ofS00 corresponding to an edge (v0; w0) of S01 we compare the descriptions of the pathsP (v;w) and P (v0; w0). The outcomes of these comparisons can be used to repeatstep 2 in a re�ned manner and to �nally obtain the correspondences between S0 andS1. 13

Figure 6: The trees S00 and S 014. Now for all the nodes of K0 the corresponding nodes in T1 are computed providedthat they are elements of K1. Let v be a node of K0 not corresponding to a nodeof K1 whose parent w corresponds to a node w0 2 K1. If w0 is a leaf of T1, thenode v and all its descendants don't correspond to any node of T1 and they can bediscarded from any further considerations. Otherwise v corresponds to that childv0 of w0 which is not in K1. Let X1 � K0 be the set of those v considered in thesecond case, i.e., the nodes v corresponding to a node v0 =2 K1 which is a sibling ofa node in K1. For v 2 X1 let T (v)0 be the subtree of T0 rooted at v and let T (v)1 bethe subtree of T1 rooted at the corresponding v0.5. It remains to compute the correspondences for those nodes of K0 which are descen-dants of a node v 2 X1 by considering all pairs �T (v)0 ; T (v)1 � for v 2 X1. Note thatall subtrees T (v)0 and T (v)1 for v 2 X1 are disjoint and that the size of each T (v)1 isbounded by 2 jp2=3k whereas a T (v)0 may still contain up to O(p) nodes.Repeating steps 1 { 4 in an analogous manner for the pairs �T (v)0 ; T (v)1 � we obtaina set X2 � K0 so that the correspondences of the ancestors of X2 are computedand for each w 2 X2 there is a pair of corresponding subtrees �T (w)0 ; T (w)1 � withjT (w)1 j = O(p1=3).Repeating steps 1 { 4 once more in an analogous manner for the pairs �T (w)0 ; T (w)1 �for all w 2 X2, we �nally compute the correspondences for all nodes of K0.If n, the number of nodes of both trees, is greater than p, the term-alignment algorithmfor a dlog ne-dimensional hypercube has to be simulated by the p processor hypercube witha slowdown of O(n=p). If n is bounded by a polynomial in p, the resulting running timeis O(lnpm log n) = O(lnpm log p).Theorem 4 The term alignment problem for terms of size n can be solved on a p pro-cessor hypercube or hypercubic network in O(lnpm log p) steps.14

As noted in the introduction the term matching problem can be solved by a termalignment followed by a standard sorting algorithm. Thus, we haveCorollary 2 The term matching problem for terms of size n can be solved on a p processorhypercube with a worst case running time of O(lnp m log p(log log p)2) steps or, using arandomized sorting algorithm, with an expected running time of O(lnp m log p) steps.6 Conclusion and Open ProblemsUsing a recursive approach, we have shown how to contract trees e�ciently on hypercubesand related networks. Our technique of precomputing the communication structure of aPRAM contraction algorithm, rearranging the data and simulating the algorithm withoutany further overhead can be used for the contraction of small trees in networks. It couldalso be applied for the construction of NC1 circuits for the expression evaluation problemwhich is simpler than the construction proposed in [MP92].Due to the recursive call and the usage of the parentheses structured routing algorithm,the constant factor in the worst case running time of our contraction algorithm is quitelarge. But the algorithm performs much better for random trees. As noted in [PS91], withhigh probability most of the nodes are contained in local subtrees and will be eliminatedin the recursive call or even in the reduction within a single processor.For rational number hypercubes and hypercubic networks, the maximal speed-upachievable for the expression evaluation problem is O(p= log p). We conjecture that asimilar result holds for all constant degree networks, but we have so far been unable toapply the known lower bound results for communication complexity to this case.References[Abe80] H. Abelson. Lower bounds on information transfer in distributed computa-tions. Journal of the ACM, 27:384{392, 1980.[ADKP89] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A simpleparallel tree contraction algorithm. Journal of Algorithms, 10:287{302, 1989.[ALMN90] B. Aiello, F.T. Leighton, B. Maggs, and M. Newman. Fast algorithms forbit-serial routing on a hypercube. In Proceedings of the 2nd Annual ACMSymposium on Parallel Algorithms and Architectures, pages 55{64, 1990.[Bre74] R. Brent. The parallel evaluation of general arithmetical expressions. Journalof the ACM, 21:201{206, 1974.[CP90] R. Cypher and C.G. Plaxton. Deterministic sorting in nearly logarithmic timeon the hypercube and related computers. In Proceedings of the 22nd AnnualACM Symposium on Theory of Computing, pages 193{203, 1990.[DKM84] C. Dwork, P. Kanellakis and J.C. Mitchell. On the sequential nature of uni�-cation. Journal of Logic Programming, 1:35{50, 1984.[GMT88] H. Gazit, G.L. Miller, and S.-H. Teng. Optimal tree contraction in theEREW model. In Stuart K. Tewksbury, Bradley W. Dickinson, and Stuart C.Schwartz, editors, Concurrent Computations: Algorithms, Architecture, andTechnology, pages 139{156. Plenum Press: New York-London, 1988.15

[GR86] A. Gibbons and W. Rytter. An optimal parallel algorithms for dynamic ex-pression evaluation and its applications. In Proceedings of the 6th Conferenceon Foundations of Software Technology and Theoretical Computer Science,LNCS-241, pages 453{469, 1986.[HM93] V. Heun and E.W. Mayr. A new e�cient algorithm for embedding an arbitrarybinary tree into its optimal hypercube. Technical Report I9321, Institut f�urInformatik, TU-M�unchen, 1993.[KD88] S.R. Kosaraju and A.L. Delcher. Optimal parallel evaluation of tree-structuredcomputations by raking. In Proceedings of the 3rd Aegean Workshop on Com-puting: VLSI Algorithms and Architectures, LNCS-319, pages 101{110, 1988.[KD90] S.R. Kosaraju and A.L. Delcher. A tree-partitioning technique with appli-cations to expression evaluation and term matching. In Proceedings of the31st Annual Symposium on Foundations of Computer Science, pages 163{172,1990.[KP92] Z.M. Kedem and K.V. Palem. Optimal parallel algorithms for forest and termmatching. Theoretical Computer Science, 93:245{264, 1992.[Lei92] F.T. Leighton. Introduction to Parallel Algorithms and Architectures. MorganKaufmann Publishers, 1992.[MP92] D.E. Muller and F.P. Preparata. Parallel restructuring and evaluation ofexpressions. Journal of Computer and System Sciences, 44:43{62, 1992.[MR85] G. Miller and J. Reif. Parallel tree contraction and its application. In Pro-ceedings of the 26st Annual Symposium on Foundations of Computer Science,pages 478{489, 1985.[MW92] E.W. Mayr and R. Werchner. Optimal routing of parentheses on the hyper-cube. In Proceedings of the 4th Annual ACM Symposium on Parallel Algo-rithms and Architectures, pages 109{117, 1992.[MW93] E.W. Mayr and R. Werchner. Divide-and-conquer algorithms on the hy-percube. In 10th Annual Symposium on Theoretical Aspects of ComputerScience,LNCS-665, pages 153{162, 1993.[NS81] D. Nassimi and S. Sahni. Data broadcasting in SIMD computers. IEEETransactions on Computers, C-30:101{107, 1981.[NS82] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and anew generalized connection network. JACM, 29:642{667, 1982.[PS91] G. Pietsch and E. Sch�omer. Optimal parallel recognition of bracket languageson hypercubes. In 8th Annual Symposium on Theoretical Aspects of ComputerScience, LNCS-480, pages 434{443, 1991.[PW78] M.S. Paterson and M.N. Wegman. Linear uni�cation. Journal of Computerand System Sciences, 16:158{167, 1978.[Sch80] J.T. Schwartz. Ultracomputers. ACM Transactions on Programming Lan-guages and Systems, 2:484{521, 1980.16

[Sch90] E.J. Schwabe. On the computational equivalence of hypercube-derived net-works. In Proceedings of the 2nd Annual ACM Symposium on Parallel Algo-rithms and Architectures, pages 388{397, 1990.[VB81] L.G. Valiant and G.J. Brebner. Universal schemes for parallel communication.In Proceedings of the 13th Annual ACM Symposium on Theory of Computing,pages 263{277, 1981.

17

