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Abstract. In this paper we discuss multigrid methods for symmetric Toeplitz matrices. Then
the restriction and prolongation operators can be seen as projected Toeplitz matrices. Because of
the intimate connection between such matrices and trigonometric series we can express the multigrid
algorithm in terms of the underlying functions with special zeros. This shows how to choose the
prolongation/restriction operator in order to get fast convergence. We start considering Toeplitz
matrices with generating functions having a single zero of finite order in | —m, 7] and extend previous
results on multigrid for Toeplitz matrices, in particular by introducing a natural coarse grid operator.
Afterwards we carry over our reasoning to cases with more than one zero and study how the previous
cases relate to Toeplitz systems resulting from the discretization of Fredholm integral equations of
the first kind as they arise from image processing. Finally, we take a short view on Block Toeplitz
systems with Toeplitz Blocks: We show how the one-dimensional techniques can be carried over
easily for positive definite problems with a single zero in | — 7, 7]? and we also present a multigrid
algorithm for linear systems arising from practical image deblurring problems. Finally, we give a
new characterization of the well known difficulties encountered in the indefinite case.
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1. Introduction.

1.1. Toeplitz matrices and generating functions. Let f(z) be a real-valued
continuous function on the interval I = [—m, 7] and periodically extended to the whole
real axis. Given the Fourier coefficients of f(x)
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we can define the sequence of Toeplitz matrices {A, = T,,(f)}n associated with the
generating function f(z). Its entries are given by (A4,)i; = a;—;:
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Note that the matrices A,, are Hermitian, since f(x) is real-valued. In case f(z) is an
even function, we are dealing with a sequence of real symmetric Toeplitz matrices.
Furthermore, we know that the spectrum of A4,, is contained in range(f).

Example 1: The well known matrix tridiag(—0.5,1, —0.5) — i.e. the one-dimensional
Laplacian — is related to the function f(z) = —0.5e % + 1 — 0.5¢"* = 1 — cos(x).
The eigenvalues of A,, are contained in the interval [0,2]. The small eigenvalues of
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A, that lead to the large condition numbers are caused by the zero zo = 0 of f,
f(xo) = f(0) =0, of multiplicity two.

If we want to solve A, x = b iteratively we could use a further Toeplitz matrix M —
which should be easy to invert — as a preconditioner and consider M 1A,z = M ~'b.
A good preconditioner could e.g. be one with an underlying function m(x) of M having
the same zero as f(x) with the same multiplicity. If we can prove that the spectrum
of M~1A4, is contained in an interval [a,b], 0 < a < b < oo, independently of n,
then this guarantees fast convergence, e.g. for the preconditioned conjugate gradient
method (see e.g. [29]).

1.2. Additive and multiplicative multigrid methods. For many classes of
linear systems multigrid methods are among the fastest iterative solvers: Frequently,
their computational complexity is of the same order as the multiplication of the system
matrix with a vector, i.e. O(n) for a sparse matrix and O(n log(n)) in case of a Toeplitz
matrix (— with n denoting the number of unknowns in the linear system).

Before going deeper into the discussion of multigrid preconditioners we would like
to review certain basic concepts very briefly as they will be of major importance for
the rest of the paper.

First of all, multiplicative multigrid cycles can be used as stand alone solvers. We
would now like to give a compact version of a multigrid cycle. For more algorithmic
details see e.g. the books by Greenbaum [22], pp. 193, or Briggs [4], pp. 48.

Algorithm 1: Solving Az = b iteratively by a multigrid cycle:

Proceed with the following iteration until stopping criterion is satisfied

(a) Smooth (e.g. by the Richardson method) in order to get a new iterate z(/)

b) Compute residual r = Az() — b

¢) Restrict residual 7¢°47%¢ = P1r using the restriction operator P

d) Set up the coarse grid matrix, e.g. via the Galerkin approach A¢°%"%¢ = PTAP
e) Solve residual equation A¢04T$¢y = €0aTs¢ o coarse grid — if not already on
coarsest level, then apply multigrid cycle recursively

(f) Update () := zU) — Py using the prolongation operator P

(
(
(
(

If within the recursive solution in step (e) we use one cycle, we get a so-called
V-cycle algorithm. By applying two cycles, we recognize the W-cycle algorithm.

However, multigrid cycles can also be used as preconditioners for Krylov subspace
methods, like e.g. the Conjugate Gradient (CG) algorithm. For complicated problems
in Scientific Computing this may be favourable because the Krylov subspace method
guarantees convergence. Anyway, we shall see in the following that for the struc-
tured problems investigated in this paper multigrid cycles will usually perform more
efficiently when used as stand alone solvers.

In contrast to the multiplicative multigrid algorithms discussed so far there are
also additive preconditioners like the celebrated BPX-preconditioner [1] or the mul-
tilevel diagonal scaling method [37]. These methods are designed to work as pre-
conditioners only and although they can rarely outperform their multiplicative coun-
terparts on a serial computer, they are highly interesting for their usually superior
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parallel performance. The following equation gives a simplified BPX-preconditioner
without smoothing (- the matrices Py, ..., P denote the prolongation operators on
the individual levels):

(1.1) (I+P(I+P(I+ - (I+PPl) )PHP)Az =b

One of the goals of this paper will be to develop appropriate transfer operators for
solving Toeplitz systems. Hence we finally mention the well known fact that better
transfer operators for multiplicative multigrid algorithms will normally also lead to
better additive preconditioners and vice versa.

1.3. Multigrid and Toeplitz systems — A brief motivation. In multigrid
methods we need to apply a restriction and prolongation operator: If we use a Galerkin
approach — according to step (d) in Algorithm 1 — we can in the symmetric case write
the coarse grid matrix for a twogrid step as

Apjpp = Ig’n/2 *BZ * Apx By x Iy nn = Pg x A, x P,

with a Toeplitz matrix B,, related to a function b(z), and the elementary projection
matrix

1
00
010
Linp = 0 0 =I(1:n,1:2:n)
0 1

in MATLAB-notation with the identity matrix I. In most cases we will consider only
symmetric B,, with real-valued generating function b(z).

As a starting point for our paper let us introduce the following heuristics: With
f(@) = b(z) * f(x) * b(x) the entries of the matrix BT « A, * B, are "asymptotically
given” by the coefficients of f(x); therefore the coefficients of A, /2 can — up to a
perturbation of low rank — be found by deleting every second entry in f (z):

(1-2) @) = (1/2)« (B(PFG) + (G +Mf(G +m)

2 2 2 )
Let us assume that f(z) has a unique zero x, of finite order 2k in the interval | -, 7].
Now the new matrix A, /, should be closely related to the original A;,. Hence the
related function f>(x) should have a zero with the same multiplicity as f(x).

In view of f(z) > 0 this is only possible if b(z¢ + 7) = 0. Therefore, we can easily
motivate to use a prolongation operator of the form

(1.3) b(x) = (cos(zo) + cos(z))* .

Remark 1: Note that in general a suitable prolongation operator b(z) may have an
additional zero b(z;) = 0 without generating an additional zero in f>(z) as long as
b(xy + 7) f(x1 + m) # 0. More generally we could even use prolongation operators
of the form b(z) * h(xz) with any nonnegative function h; but in most cases we are
strongly interested in retaining sparsity by setting h(z) = 1.
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1.4. Existing work on multigrid for Toeplitz systems. Multigrid methods
for symmetric positive definite Toeplitz matrices were first proposed by Fiorentino
and Serra in [18], [19]. In [20] they try to extend their work to indefinite symmetric
Toeplitz systems via an additive algorithm. In all their papers, the main focus lies
on Toeplitz systems with a generating function in the Wiener class having a single
zero zo € [0, 7] of finite order. Fiorentino and Serra use prolongations and restric-
tions corresponding to the function (1.3) and employ Galerkin coarse grid operators
and Richardson smoothers in their algorithms. Very recently, Serra [30] also gave a
detailled proof of convergence for his multigrid solvers based on the assumption that
the generating function f has a single zero ¢ of finite order at the origin. The work of
Serra and Fiorentino is driven by pointing out close relations between Toeplitz matri-
ces and matrices from trigonometric algebras: In particular, they also give multigrid
convergence proofs for 7-matrices, i.e. the algebra of matrices that can be diagonalized
by the fast sine transform. In [31] and [32] Serra and Tablino also present multigrid
approaches for circulant matrices.

Multigrid algorithms for Toeplitz systems were also proposed by R. Chan and
collaborators in [11] and [34]. In [11] a convergence proof for multigrid solvers is
given for a class of Toeplitz systems including weakly diagonally dominant matrices.
In particular, [11] deals with resorts in cases where a prolongation operator corre-
sponding to (1.3) is no longer appropriate, like e.g. for Toeplitz systems belonging to
f(z) = 1—rcos(2z). The algorithms proposed also use a Galerkin coarse grid operator
and employ damped Richardson smoothing.

1.5. Outline of this paper. We start by taking a look at the case of generating
functions with a single zero zp € [0, 7] of finite order. We report problems that can
arise in a multigrid approach with the prolongation operator corresponding to (1.3) for
certain positions of xy and briefly present a new idea how to overcome such difficulties
by projections onto every m-th column. Anyway, we observe that such algorithms are
not very recommendable computationally.

Instead, we focus on another way to overcome the problems: It is trivial and well
known that we can scale every Toeplitz matrix with a zero zo €] — m,n] such that
xp is shifted to the origin. We then turn to the problem that we will normally
lose Toeplitz structure on coarser levels, if we set up our coarse grid matrices using a
Galerkin approach according to Algorithm 1, step (d). In case our generating function
has only got a single zero x¢ €] — 7, 7| our strategy of shifting the zero to the origin
helps us to get rid of such inconveniences completely, because it allows us to use a
natural coarse grid operator.

Then we carry over our multigrid algorithms with natural coarse grid operators to
problems with equidistant zeros of finite order in | — 7, w]. Afterwards we investigate
on Fredholm integral equations of the first kind arising from one-dimensional image
deblurring: We are attempting to make a connection to the linear systems considered
previously by interpreting the system matrices to be associated with a ”zero of infinite
order”. We extend an algorithmic idea by R. Chan, T. Chan and J. Wan [9] — again by
obtaining the coarse grid operators via rediscretization — and put the new algorithm
into the context of the established multigrid method of the second kind by Hackbusch
(see [23], ch. 16.)

The final section deals with Block Toeplitz matrices with Toeplitz blocks (BTTB
matrices): We show how the one-dimensional techniques carry over easily in the case
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of a single zero zg €] — m, 7]?. Again, we follow the strategy of fixing the zero at the
origin combined with a natural coarse grid operator. Obtaining coarse grid operators
via rediscretization also leads to a practical multigrid algorithm for deblurring images
with Tikhonov regularization. We note that the advantages of employing a natural
coarse grid operator — in terms of preserving BTTB structure — are even more striking
than in one dimension. Finally, we also take a look at indefinite BTTB matrices: We
give a new phenomological characterization of the problems encountered in designing
multigrid algorithms for such systems which seems to be strongly related to a very
recent algorithm by Brandt and Livshits [3] for Helmholtz problems with constant
coeflicients.

We would like to emphasize right now that — very much unlike the papers by Serra
and Fiorentino and R. Chan and collaborators, respectively — the focus of our paper
does not lie on mathematical proofs. Instead, we are concerned with the development
of algorithms. Anyway, we will point out how and why our new algorithms fit into
the existing mathematical framework.

Due to our focus on algorithmic issues we feel the need to give the reader plenty
of numerical results. We will report numerical experiments for additive and multi-
plicative multigrid preconditioners as well as for multigrid algorithms as stand-alone
solvers. There we will put particular emphasis on W-cycle solvers. (Note that multi-
grid convergence proofs can frequently only be achieved for W-cycles and not for
V-cycles.)

We always employ the following stopping criterion to obtain the iteration counts we
list in our tables:

[Ir ]l

oo <106
Ir e =

Here 7(9) denotes the residual after j iterations and r(°) the original residual, i.e. we
stop iterating when the relative residual corresponding to the maximum norm is less
or equal 1075, Unless otherwise stated, we use two steps of the Richardson method for
pre- and postsmoothing in our multigrid cycles. According to [11] we use the damping
parameters wy = 1/ maxge[_r 5 f(0) for presmoothing and ws = 2/ maxge[_r ) f(0)
for postsmoothing, respectively. We finally note that it would not be sensible to apply
a variant of Gauss-Seidel for smoothing in a Toeplitz context unless the matrix was
sparse.

2. Generating functions with zeros of finite order: Simple cases.

2.1. Model problems. In this and the following two subsections we will assume
that our Toeplitz matrix A is connected with a generating function f in the Wiener
class having a single zero z¢ € [0, 7] of finite order. Although we are actually interested
in dense Toeplitz matrices our reasoning is most easily explained by first considering
sparse linear systems.

Example 2: Our standard example in the following we will be the sparse matrix
belonging to the generating function

f(z) = (cos(zp) — cos(az))2

with zg € [—m,7]\{£5}. Thus f has the zeros +zy. Note that we deliberately ex-
clude the case o = £5 which we investigate on separately in section 3.
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The matrices from Example 2 are strongly related to the indefinite matrices cor-
responding to f(x) = cos(zg) — cos(xz) which can be seen as the result of a uniform
finite difference discretization of the 1D Helmholtz equation

2
Ugy + KU = G

Note that the matrices from Example 2 will in general differ from the Helmholtz
normal equations by a perturbation of low rank.

2.2. The position of the zero. Let us consider Toeplitz matrices A,, connected
to f(z) = (cos(xp) — cos(z))?. According to (1.3) we use a function with zeros at
4+ + 7 as prolongation operator, namely (cos(zg) + cos(x))* . The corresponding
prolongation matrices B,, are:

tridiag(0.5, cos(xp),0.5),

pentadiag(0.25, cos(wo), cos(x0)? + 1/2, cos(wp),0.25),

septadiag(s, 2cos(xo), Scos(xo)? + 2, cos(x0)® + Scos(xo), Scos(x0)® + 2, Scos(xo), §)
and so on. The Galerkin coarse grid matrix matrix A, /, of half size is — up to a low
rank term — related to the function

fo(z) = (1/2) ((cos(xo) + cos(g))zk(cos(xo) — cos(g))2+

+ (cos(zo) — cos(g))%(cos(:ﬂo) + cos(g))z) =

(cos(wg)? — cos(g)2)2 * ((cos(azg) + cos(%))%*2 + (cos(zg) — cos(%))2’“’2)/2 =

(cos(2x0) — cos(x))? * ((cos(azg) + cos(%))%_2 + (cos(xo) — cos(%))%_Q)/S.
That way our heuristics points out that fo(z) has the zeros £2z¢ with the same mul-
tiplicity as f(x). The new function f2(x) can be seen as a slightly changed version of
the original f with the new zeros £2xy. We observe that the case zp = 0 is excep-
tional because 2zg = x¢o = 0 and we can use the same prolongation and restriction
operators in every step.

Remark 2: In general, this change of the zeros +x¢, £2x¢, £4x¢, and so on, can lead
to difficulties if in the course of the Multigrid method we reach a zero near (2j+1)7/2;
this case is e.g. also related to the function f(z) = cos(x)? with two double zeros
at /2 and 3w/2. Then z and z¢ + 7 are both zeros of f, and f, will have 2z as
a zero of higher multiplicity than f(z); then our reasoning shows that the above ap-
proach will lead to a deterioration of the condition number of the related linear system.

Remark 2 can easily be confirmed in numerical experiments. The following tables
compare iteration numbers for additive multilevel preconditioners of the form (1.1)
for the Conjugate Gradient method.
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| number of unknowns || e=0.2 | e=0.15 | e=0.1 | e =0.01 | e = 0.001 |

256 60 88 133 159 166 |
512 83 111 200 246 265 |

Table 1. CG Iteration numbers for additive preconditioners:
f(z) = (cos(dy) — cos(x))?, b(x) = (cos(dy) + cos(x))? and o = 7/4 + €.

| number of unknowns || e=0.2 | e=0.15 | e=0.1 | e =0.01 | e = 0.001 |

256 158 187 213 221 232 |
512 204 350 396 416 22 |

Table 2. CG Iteration number for additive preconditioners:
f(z) = (cos(dy) — cos(x))?, b(z) = (cos(po) + cos(x))? with ¢g = 7/2 + €.

2.3. Projections onto every m-th column — the first idea for a resort. In
order to avoid the problem outlined in Remark 2 we could also introduce elementary
projections onto every third, fourth, or general m-th column/row of A,,. Instead of
reducing A, to half size we use A,,/,,. To this aim we apply elementary projections
L njm- Making use of our heuristics (1.2) once again this is related to picking every

m-th entry out of f(z) = b(z)?f(x). Then we get

1 e 2. 12 27 27
Fr) = = 37 ) - = N g T AT
7=0 7j=0

which is again a 27-periodic function. If f has a zero zy we have to generate a zero
with the same multiplicity in f,,. This can be achieved by defining

= 257 \*
o) = ( ~cosfa - T
(z) H (cos(xg) — cos(x - )
Jj=1
Then the function f,, will have a zero at mzo with the desired multiplicity. There-
fore, by choosing m in every step of the multigrid method we could at least avoid the

exceptional case zg & (25 + 1)7/2.

However, it has long been known that multigrid algorithms usually work best if
the restriction yields a reduction to every second column. This has been confirmed in
all our numerical experiments which have been leading us to the conclusion that the
new algorithmic idea outlined in this subsection is not very recommendable for use
in practice. In the following table we simply compare iteration counts for additive
preconditioners for A = tridiag(—1,2, —1).

| number of unknowns || 128 | 256 | 512 | 1024 | 2048 | 4096 |

reduction 1:2 per step; 5 levels used || 18 18 19 20 21 21
reduction 1:4 per step; 3 levels used || 37 | 40 | 41 41 41 41

Table 3. CG Iteration numbers for additive preconditioners of the form (1.1): We
clearly observe that a reduction to every second column is superior to a reduction to
every fourth column.
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2.4. Diagonal scaling — the better resort. Regarding the fact that
(cos(xg) — cos(x))? = (1 — cos(x — xg)) * (1 — cos(x + o)) (2.1)

there is a much simpler strategy to solve the problems from Example 2. The product
form (2.1) allows us to devise a simple and effective preconditioner: We solve the two
matrix problems related to 1 — cos(x £ xo) (e.g. by multigrid) and use the result to
precondition conjugate gradients. Note that the matrices related to 1—cos(z£xo) can
be treated very efficiently by multigrid, because they are nothing else than diagonally
scaled versions of tridiag(—0.5,1,—0.5) —i.e. the one-dimensional Laplacian:

diag(1,e™® e?0 ) x tridiag(—0.5,1, —0.5) * diag(1, e~ 0, e 2% ) =

= tridiag(—0.5€"*°, 1, —0.5¢~0) . (2.2)

It is plain that the diagonal scaling strategy (2.2) can be applied to any Toeplitz
matrix in order to shift the generating function along the z-axis. Furthermore, as long
as we have only got a single zero xzog €] — 7, w], the whole algorithm is simplified by
shifting ¢ to the origin: Then we can use the same kind of transfer operators in every
step — i.e. standard prolongations and restrictions according to b(x) = (1 + cos(z))¥.

2.5. Natural coarse grid operator. For the rest of section 2 we shall assume

that our Toeplitz matrices are related to a nonnegative generating function with a
unique zero zo €] — m,7]. (Note that this does in general not include the matrices
from Example 2.)
In the previous subsections we have presented a number of arguments for scaling the
Toeplitz system with the (orthogonal) diagonal matrices diag(1, et e*2i@o ) be-
fore treating it by multigrid. However, we have not yet presented a way to handle
the problem that our Galerkin coarse grid operators lose their Toeplitz structure.
R. Chan and collaborators already pointed out in [11] that if we use standard linear
interpolation (according to b(z) = 1 + cos(x)) then we can only be sure to preserve
Toeplitz structure on all the coarse levels if the size n of the matrix is of the form
n =29 — 1 (with ¢ integer). Otherwise perturbations of low rank can be introduced.
But note that this loss of Toeplitz structure may cause severe difficulties when we go
down to lower levels.

There is a very simple resort: First scale the matrix according to (2.2) —
and then employ a natural coarse grid operator! Anyway, let us start from
scratch: Going back to the earliest papers on multigrid (like e.g. [2]), researchers
did not think in terms of Galerkin coarse grid operators. Instead they used a natural
coarse grid operator based on an appropriate rediscretization of the underlying partial
differential equation. We wish to emphasize that using a natural coarse grid operator
is still the most popular choice among multigrid practitioners: In particular, the recent
600-page monograph by Trottenberg, Oosterlee and Schiiller [36] deals almost entirely
with this type of coarse grids. Galerkin coarse grid operators are mainly preferred from
an algebraic viewpoint for their superior stability properties, e.g. in connection with
partial differential equations with highly oscillatory or discontinuous coefficients (see
e.g. [25]) — and, furthermore, the underlying variational principle facilitates proving
convergence theorems.
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But let us take a closer look at the Toeplitz problems in question: Considering the
one-dimensional Laplace problem with the system matrices

Ap = (1/n?) x tridiag(—1,2, —1)

it is well known that natural coarse grid operators work out perfectly and convergence
proofs are not difficult.

Now let us switch over to general Toeplitz matrices belonging to a generating function
f that satisfies (cf. also [11], sec. 3)

min _ O >0 (2.3)
ge[—m,x] 1 — cos(8)
If the matrix size is of the form n = 2?9 — 1 then we know that the Galerkin coarse
grid operator will be a Toeplitz matrix related to the same underlying function. This
observation motivates the idea simply to mimic a multigrid algorithm with a natural
coarse grid operator for general matrix size n, i.e. just like we would do it for the
Laplacian our coarse level matrix is nothing but an appropriately scaled Toeplitz ma-
trix of half size n/2 corresponding to the same generating function f(z).

We would like to emphasize again that for the case of a Toeplitz matrix with a

single zero xp = 0 of finite order satisfying (2.3) and the matrix size n = 29 — 1 the
natural coarse grid operator and the Galerkin coarse grid operator coincide such that
the variational principle remains satisfied. Thus the convergence proofs (for twogrid
and W-cycle solvers) given e.g. in [11] or [30] are applicable and the statements remain
valid for our algorithms applying natural coarse grid operators.
Anyway, in order to show the computational feasibility of our approach, we will de-
liberately choose the matrix sizes in our numerical experiments in most cases to be
of the forms n = 27 or n = 2 + 1. Finally, we wish to emphasize once again that our
idea of using a natural coarse grid operators crucially depends on the fact that our
single zero z¢ €] — m, | is indeed shifted to the origin for otherwise (2.3) could not
be satisfied.

6. Numerical results. In our numerical experiments we will show that the
new multigrid algorithms with natural coarse grid operators perform very well. We
will only give numerical results for dense Toeplitz matrices as the loss of Toeplitz
structure on coarser levels is only an issue in this case.

Example 3: Generating functions for dense Toeplitz matrices with a single zero of
order at most two at the origin:
(a) f1(z) = z? with the Fourier expansion

73 2% (—=1)7
fl(x):?+7r*z2§,721)]cos(j*w)

=1

(b) fa(x) = (z/4) * sin(x/2) with the Fourier expansion

= i D s (4%7° +1) cos(j * x)
- 12*]—1 « (2% +1)2 %Y
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(c) f3(x) = |z| with the Fourier expansion

o)
7'('2

f3(z) = o5 Z ﬁcos(@ xj—1)*x)

Jj=1
(d) fa(x) = |sin(z/2)| with the Fourier expansion

o0 9 .
fa(z) 22—; (2*j—1)*(2*j+1)cos(] * T)

Note that for the matrices from Examples 3 (a)-(d) the celebrated circulant
preconditioner [12] will in general not lead to optimal computational performance,
because the underlying functions are not strictly positive. We would also like to em-
phasize that — unlike the matrices from Examples 3 (a) and (b) which correspond to
a zero of order 2 — the matrices from Example 3 (c¢) and 3 (d) can not be handled by
the band Toeplitz preconditioners proposed in [5] and [8], because the zero is not of
even order. According to our theory the prolongation operator to be used for multi-
grid treatment of all the matrices from Example 3 is standard linear interpolation
corresponding to b(z) = 1 + cos(z).

[ number of unknowns || 513 | 1025 | 2049 | 4097 | 8193 [ 16385 |

fi(z) =22 9 9 9 9 9 9

fo(z) = (z/4) * sin(z/2) || 11 12 11 12 12 12
f3(z) = || 5 5 5 5 5 5

fa(z) = |sin(z/2)| 7 7 7 7 7 7

Table 4. Iteration numbers for the preconditioned conjugate gradient method for the
dense matrices from Example 3: We use a W-cycle for preconditioning.

| number of unknowns || 512 | 1024 | 2048 | 4096 | 8192 | 16384 |

filz) =22 11 | 12 | 12 | 12 | 12 | 12

Fo(@) = (a/D *sin(z/2) | 12 | 12 | 12 | 12 | 12 | 12
fa(z) = |z| 6 6 6 6 6 6

fa(z) = |sin(z/2)| 5 5 5 5 5 5

Table 5. Iteration numbers for W-cycle solvers for the dense matrices from Example 3.

Tables 4 and 5 show very clearly that our new multigrid algorithms lead to fast
convergence with iteration counts independent of the number of unknowns involved.
Hence they give very efficient solvers of optimal computational complexity O(nlogn).
Furthermore, our multigrid method has no problem at all with the fact that f3(z) = |z|
and fi(z) = |sin(x/2)| are not differentiable at the origin: On the contrary, the fact
that the order of the zero is lower than 2 leads to even faster convergence.

Finally, let us also take a short view on zeros of higher order.

Example 4: Generating functions for dense Toeplitz matrices with a single zero of
order higher than 2 at the origin:
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(a) f5(z) = z* with the Fourier expansion

_W5+§:( il i )cos((2#j—1)x +Z 5T cos(2xjxa)
= 5 = (2*]'_1)4 (2*]-_1)2 cos J— T P 2*j4 cos 1*T

(b) fs(x) = |z|* with the Fourier expansion

™ & 3r? = 32
= Z - 2)cos((2>k] 1)z +Z 25 ) oy COS(2% %)
i=

2*]—1 (2% — 1)

Note again, that due to the odd order of the zero the matrix from Example 4 (b)
can not be treated by band Toeplitz preconditioners.
Now equation (1.3) tells us to use a prolongation operator corresponding to b(x) =
(1 + cos(z))? — this will be abbreviated by ”Prol. squared” in the following tables.
Anyway, looking at (1.2) it might be very interesting also to try standard linear in-
terpolation corresponding to b(z) = 1 + cos(z) (abbreviated by ”Prol. simple”):

| number of unknowns || 511 | 1023 | 2047 | 4095 | 8191 | 16383 |
fs(x) = 2%, Prol. simple 29 29 29 29 29 29
fs(z) = z*, Prol. squared | 33 33 33 33 33 33
fe(z) = |z|?, Prol. simple | 14 | 14 14 14 14 14
fe(x) = |z|?, Prol. squared || 19 19 19 19 19 19

Table 6. Iteration numbers for W-cycle solvers for the dense matrices from Example 4.

We observe that in practice it is sufficient to use standard linear interpolation for
prolongation and restriction. Surprisingly, in this case results are even better if we use
the transfer operators corresponding to b(z) = 1 + cos(z) — although the convergence
theory presented in [30] clearly tells us to use b(x) = (1+ cos(x))?. Anyway, this con-
firms the well known advice of multigrid practitioners that higher order interpolations
might frequently not pay off.

2.7. Conclusions. In this section we have been presenting a new efficient way
to solve Toeplitz systems corresponding to an underlying function having a single zero
xg €] — m, 7] of finite order: One first scales the matrix with diagonal matrices of the
form diag(1, et et2i®o ) in order to shift the zero to the origin and then solves
the scaled system by a multigrid algorithm employing a natural coarse grid operator.

3. Generating functions with equidistant zeros of finite order.

3.1. Equidistant zeros. The case when the generating function has more than
one zero of finite order is certainly more complicated. Let us start with a fairly simply
example which has first been addressed in [11]: For generating functions of the form
f(x) = 1 F cos(m = x), m integer, it is no longer appropriate to use prolongation
operators of the form (1.3). Instead, Chan, Chang and Sun [11] use prolongations
corresponding to b(z) = 1 &+ cos(m % ) and their multigrid algorithms based on
Galerkin coarsening work out perfectly. Choose f(z) = 1 — cos(m * x) and observe
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that this idea also matches our heuristics (1.2):

foz) = (1+cos(m*w))Q*(l—cos(m*x))+(1+cos(m +m))*(1— cos(m

= (1+cos(m*w

m*xx

=2 (1 — (cos( )?) =1—cos(m*z) .

Note that for this sparse example the appropriate choice for the prolongation operator
could also be written in the form b(x) = f(z + m) whenever m is odd. This choice is
closely related to the so-called ”Matrix Multilevel Method” [25] recently proposed by
the authors for much more general sparse matrices.

However, the prolongation operators b(z) = 1 + cos(m * ) are applicable in case
the generating function of our Toeplitz matrix has m equidistant zeros of order at
most 2 in the interval [0, 27| one of which needs to be at the origin, i.e. the generating
function has the zeros zg = 0,21 = 2Z,... p_y = W
We can again apply our reasoning from sectlon 2: In case none of our m equidistant
zeros of order at most 2 is at the origin, we first scale the matrix according to (2.2).
Afterwards we observe that f(z) = 1 — cos(m % x) can be again interpreted as a
discretization of the 1D Laplacian — and, analogously to (2.3), we can carry over our

approach to Toeplitz matrices associated with a generating function f satisfying

f(0)

1 —_—
(3-1) 9e[—m,x] 1 — cos(m * 6)

>0

In other words: We are able to use multigrid algorithms with natural coarse grid
operators and the prolongations b(z) = 1 + cos(m * ) for functions satisfying (3.1).

3.2. A block interpretation. The above case also leads us to an interesting
observation: Let us take a look at the matrix connected with f(z) = 1 — cos(m * )
and the corresponding transfer operators b(z) = 1+ cos(m*x). Now we can interpret
this also in terms of matrix valued functions:

flz) =1, — cos(I, * ) = I, * (1 — cos(x))
is treated by prolongations of the form
b(x) = Iy + cos(Iy, x x) = Ly, x (1 4 cos(x))

with I, denoting the m-by-m identity matrix. Thus we can view this case as stan-
dard multigrid applied to Block Toeplitz matrices with m-by-m blocks. By inserting
block matrices different from the identity we can carry over this idea to general Block
Toeplitz matrices (i-e. also without Toeplitz blocks). This will be presented later in a
separate paper [26].

However, note that the strategy outlined in subsection 3.1 also applies to cases like
e.g. Toeplitz matrices belonging to f(z) = z * sin(z) which are not covered by the
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above block interpretation (see Example 5(c) in subsection 3.3 for the Fourier expan-
sion). As f(x) = x * sin(x) has the two zeros o = 0 and x; = 7 we can interpret the
appropriate prolongation

(3.2) b(xz) = (1 — cos(xp)) * (1 — cos(z1)) = % x (1 — cos(2xx))

analogously to (1.3) as the product of the two prolongations corresponding to zy and
x1. This interpretation has previously been given by Serra in [30], although he has
not published any numerical experiments to confirm it.

3.3. Numerical results. In the following we will test our multigrid algorithms
employing natural coarse grid operators for problems with equidistant zeros in [0, 27[.

Example 5: Generating functions for dense Toeplitz matrices with two zeros o = 0
and z1 =7 of order at most two:
(a) fr(x) = 2% * (x — 7)? (~ defined on [0, 7] and then evenly extended to [—m, 0] —)
with the Fourier expansion
5 3
fr(x) = 7;0 T % 272* @) % cos(2 % j xx)

(b) fs(z) = |sin(z)| with the Fourier expansion

o0

9 4 i
jzl TTEE 2*j+1)*cos( YEXD

(c) fo(x) = x * sin(x) with the Fourier expansion

= T cos(x) — % 3 —(_1)j *cos(j xx

i=2

Once again, note that band Toeplitz preconditioners would only be available for

f7, but not for fg and fo. We regard fo to be a particularly challenging example,
because it has a zero of order two at the origin and a zero of odd order at =.

[ number of unknowns || 513 [ 1025 | 2049 | 4097 | 8193 | 16385 | 32769 |

Fiw) =2« @—m2 || 1L | 12 | 12 | 12 | 12 | 12 12
fs(z) = |sin(z)| 5 5 5 5 5 5 5
fo(z) = z x sin(x) 9 9 9 9 9 9 9

Table 7. Iteration numbers for W-cycle solvers for the dense matrices from Example 5.

We observe optimal computational behaviour of our multigrid algorithms for all
problems from Example 7. The natural coarse grid operators take into account very
carefully the orders of the zeros of the generating function. Thus we can confirm nu-
merically that the multigrid algorithms suggested in section 2 carry over to the case
of generating functions with m equidistant zeros in [0, 2.



14 THOMAS HUCKLE and JOCHEN STAUDACHER

4. Image Deblurring. Today image processing is maybe the most eminent field
of applications of Toeplitz matrices (see e.g. [6], [7]). The most well known example
are dense matrices from image deblurring.

4.1. The model. Let us start with an idealized model for one-dimensional image
deblurring. There we want to solve an integral equation of the first kind of the form

(4.1) Ku(z) = /Qk(:v — 2" )u(z")dz'

with a convolution kernel of the form k(z) = exp(—2?/0?) with o €]0,1[ on the
interval = [—p, p]. The operator K is often referred to as ”Gaussian blur”.

We can now discretize this integral equation on a uniform grid via the midpoint
quadrature rule and will end up with a Toeplitz matrix (see e.g. [6], sec. 4.4, or [27],
ch. 2): We work with the mesh size h = %” and the midpoints

. h .
G=-p+@ej-lrg,  j=12..n
Then we use the midpoint quadrature rule and the convolution operator (4.1) trans-
lates into

Ku(z;) = ’ k(z; — 2" )u(z")dz' ~ z_: k(z; — xj)u(z;)h ~ [Ka];

“p =
with the symmetric positive definite Toeplitz matrix

K = h xtoeplitz(k(0),k(1*h),...,k((n — 1) % h))
and the vector @ = [u(z1), ..., u(z,)]?.

It is well known that the blurring matrices K are highly ill-conditioned and hence
deblurring algorithms are extremely sensitive to noise [21]. In other words: We are
dealing with an inverse problem and hence we need to regularize.

In the following we shall only investigate on Tikhonov regularization [17]. If we
minimize the Tikhonov functional in the Ls-norm our system matrix becomes

(4.2) L=K+AI

with regularization parameter A. If we use the Hi-norm instead, then the system
matrix becomes

L=K+ A

with A = tridiag(—1,2, —1) denoting the one-dimensional Laplacian.
For simplicity, we will in the following only discuss the Lo-based case (4.2). However,
carrying over our reasoning to the Hj-based case is straightforward.

4.2. Transfer operators and smoothers. So far, there has essentially been
only one paper by R. Chan, T. Chan and J. Wan [9] on multigrid methods for image
deblurring. In the following we shall attempt to put their observations and algorithms
in the context of multigrid methods for Toeplitz matrices and the so-called multigrid
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method of the second kind:

The paper [9] reports that for the system matrices in question standard relaxation
methods like Richardson fail as smoothers. To overcome this difficulty a semi-iterative
smoother is used: They employ conjugate gradients with optimal cosine transform
preconditioner [10]. The approach does not make any explicit use of Toeplitz struc-
ture; furthermore, standard prolongations and restrictions and Galerkin coarsening
are used without any further explanation (see [9], p. 70).

Do the methods presented in section 2 relate to this case? First of all, we need
to state that obviously there is no underlying function connected with our matrices
K. However, if we simply assign functions to matrices of different size, we quickly
observe that we are dealing with a ”single zero of infinite order” located at zy = .
Anyway, this information does not help us to devise multigrid transfer operators. The
reasoning associated with (1.3) is no longer applicable as we certainly do not want to
use anything like b(z) = (1 — cos(xz))*.

On the other hand, reasonable information on the transfer operators is given if
we put the ideas from [9] into the context of the multigrid method of the second kind
proposed by Hackbusch (see [23], ch. 16), i.e. multigrid algorithms for the efficient
numerical solution of Fredholm integral equations of the second kind:

As long as we discretize our integral operator (3.1) via the midpoint quadrature rule
the discretization error will be of order O(h?) and it is plain that standard prolon-
gation and restriction operators based on piecewise linear interpolation — i.e. corre-
sponding to b(z) = 1 + cos(x) — are an appropriate choice (see again [23], ch. 16, for
more details and underlying consistency results). On the other hand, we emphasize
that it would be totally inappropriate to scale the matrix via the diagonal matrices
diag(1,e*™ e*27 ) in order to move the zero xo = 7 to the origin in this particular
case — and we can certainly not overcome the problems of Richardson smoothing by
choosing transfer operators different from standard linear interpolation.

Let us view our system matrix L = K + A« [ in terms of a Fredholm integral equation
of the second kind: Setting k(z,y) := —k(z,y) and obtaining a discretization K via
the midpoint quadrature rule we can rewrite (4.2) as

L=)\+xI-K

in the standard form of an integral equation of the second kind.

However, in standard applications of integral equations of the second kind we mostly
deal with the case A = 1 and then the multigrid method of the second kind — which
usually employs one step of Richardson (pre)smoothing — works out perfectly. Fur-
thermore, there are variants of the multigrid method of the second kind especially
designed for the case of smaller A which also employ Richardson smoothing: We men-
tion in particular a variant by Hemker and Schippers [24] and a variant by Hackbusch
which misses out certain smoothing steps (see [23], sec. 16.2.3). Anyway, we have
checked very carefully in plenty of numerical experiments that these variants do not
lead to convergent algorithms for the small regularization parameters A we need to
deal with in image deblurring problems. We emphasize that these small regularization
parameters lead to very large condition numbers which render the multigrid method
of the second kind impractical.

Instead, we confirm the need for a semi-iterative smoother according to [9]. Note
that L usually exhibits huge condition numbers due to a vast range of magnitudes of
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eigenvalues and, in particular, due to the fact that there are hardly any eigenvectors
of L without any oscillatory components. Thus we need a smoother which treats all
the frequency components of the error rather equally — and this is exactly what the
(preconditioned) conjugate gradient algorithm does when it is used as a smoother.
For more details and analysis we refer to the upcoming Ph.D. thesis [33].

As we are not using a stationary iterative smoother, our multigrid cycles are no longer
available for standard Krylov subspace solvers: In fact, our multigrid preconditioner
changes during the iteration as a result of the CG-smoothing. However, we could use
so-called "flexible” Krylov subspace methods, like e.g. the FGMRES variant by Saad
[28], which allows to use a different preconditioner in every iteration step. But as
our system matrix (4.2) is symmetric positive definite, symmetric versions of flexible
Krylov solvers would also come into account (see [14]).

Finally, we emphasize that again we prefer to use a natural coarse grid operator —
instead of Galerkin coarsing used by R. Chan, T. Chan and J. Wan (see [9],p. 70) -
in order to preserve Toeplitz structure on the coarse levels.

4.3. Numerical results. In the following we give numerical results for the one-

dimensional deblurring problem using various different regularization parameters. We
have implemented a multigrid algorithm using conjugate gradients with the optimal
circulant preconditioner [12] as a smoother. Here we employ two presmoothing and
no postsmoothing steps.
We would like to admit right now that the comparisons with fixed regularization pa-
rameters A reported in the following table may seem slightly questionable from the
point of view of solving an inverse problem from signal or image processing. Cer-
tainly, the regularization parameter would normally not be picked without looking at
the matrix first. Again, we refer to [33] for more details. Anyway, we are deliberately
presenting our numerical results in this way in order to focus on the strong connection
to the multigrid method of the second kind.

| number of unknowns || 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 |

A=1le—3 b} 4 4 3 3 3 3
A=1le—4 9 7 6 5 5 4 4
A=1le—-5 37 26 17 12 9 7 6

Table 8. Iteration numbers for W-cycle solvers for the one-dimensional image deblur-
ring problem (4.1) with o0 = 0.1 on 2 = [-1,1]. The smoother is CG with optimal
circulant preconditioner, coarse grid operators are obtained via rediscretization.

Table 8 shows that by using circulant-preconditioned conjugate gradients as a
smoother we can obtain the typical convergence behaviour of the multigrid method of
the second kind also for the case of very small A, i.e. iteration numbers even decline
for a larger number of unknowns. Hence the idea to employ a semi-iterative smoother
can be seen as an extension of the multigrid method of the second kind in order to
handle very small A.
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5. Twodimensional case: Block Toeplitz matrices with Toeplitz Blocks.

5.1. Positive definite problems. In the 2D-case we consider Block Toeplitz
matrices with Toeplitz blocks (BTTB matrices) related to a function of the form

T = a; pe ety
Y 7,k

e.g. f(z,y) = 2 — cos(x) — cos(y) for the Laplacian discretized on the unit square by
the 5-point stencil. The bad condition numbers of the matrices are again caused by
the zeros x =y = 0 of f(z,y).

We are in the simple case as long as the function f has only a unique isolated zero
(wo,y0) €] — m, 7]*>. Then we can try to proceed with multigrid algorithms similar to
section 2. For simplicity, let us first take a look at the case of a single isolated zero
(o, yo) of order 2. In a multigrid approach we can choose

b(x,y) = (cos(xo) + cos(x)) * (cos(yo) + cos(y)) (5.1)

for prolongation and restriction. Note that this is nothing else than the Kronecker
product of the corresponding 1D matrices. According to our heuristics (1.2) the
function fo associated with the Galerkin coarse grid operator is the reduction of
f(z,y) = bz, y)f(x,y)b(z,y) to every second coefficient relative to = and y. For the
matrix this is nothing else than the projection onto every second row/column and

row/column block, respectively. Therefore it results

fatey) = 3+ (FG D+ G +m D+ FE Y e m +

y
i 50 +, +7r)). (5.2)

x
2 2

Hence, fo will have the isolated zero (2o, 2yo) — and the prolongation b(x,y) needs
to have the three zeros (zo + 7, y0), (%0, yo + 7) and (xo + 7, yo + 7).

Anyway, for BTTB matrices it is even more important to use a natural coarse grid
operator instead of Galerkin coarsening. Again, for Galerkin coarsening we can only
be sure to preserve BTTB structure on every coarse grid if the matrix size is of the
form n = (27 — 1)? (with ¢ integer). More importantly, the perturbations introduced
via Galerkin operators are no longer of low rank like in the Toeplitz case, but normally
grow proportional to the matrix size.

However, the resort is as simple as in section 2: For a single zero (xo,yo) €] — 7,72
we can scale our linear system first via the matrices

I @ diag(1, et e+ )
and
diag(1,eFWo er2ivo Y@ T,

respectively, and thus shift the zero to the origin.

Then we can proceed as usual just like we would do for the two-dimensional Laplacian.
We can carry over virtually everything presented in subsection 2.5 from diagonal
scalings to natural coarse grid operators via Kronecker products as long as we have
only got a single zero.

Analogously to 2.5 we recall the fact that multigrid algorithms with natural coarse
grid operators have been long been known to converge for two-dimensional Laplace



18 THOMAS HUCKLE and JOCHEN STAUDACHER

problems. Like in [35] we carry over our reasoning to employ a natural coarse grid
operator to functions f(z,y) satisfying

f(z,y)

min
(z,y)€[—m,7]2 2 — cos(z) — cos(y)

(5.3)

We repeat that for matrix sizes of the form n = (2™ — 1)? Galerkin and natural
coarse grid operators coincide such that the variational principle remains satisfied —
and hence the convergence proofs from [35] carry over.

Note that (5.3) certainly includes non-separable generating functions, like e.g. f(z,y) =
20 — 8 x cos(x) — 8 * cos(y) — 4 * cos(x) * cos(y) which corresponds to a 9-point dis-
cretization of the Laplacian on the unit square. However, we shall give only numerical
results for separable problems in the following table. There we list iteration counts for
multigrid algorithms with natural coarse grid operators for separable BTTB problems
related to generating functions from Example 3.

| number of unknowns || 16 % 16 | 32 %32 | 64 x 64 | 128 % 128 | 256 x 256 |
f(z,y) = 2%+ 47 14 14 14 14 14
flx,y) = 2% + (y/4) * sin(y/2) 23 24 24 24 24
f(z,y) = |z| + |y| 7 8 8 8 8
f(z,y) = |z/x] + [sin(y/2)] 8 9 9 10 10
flz,y) =2 + |y| 15 15 15 15 15

Table 9. Iteration numbers for W-cycle solvers for BTTB systems related to the ma-
trices from Example 3.

Again, our multigrid algorithms give efficient solvers of optimal computational
complexity O(nlogn). Our natural coarse grid operators take into account very care-
fully the order of the zero — and thus the algorithms are not affected at all in case the
zero at the origin is of order less than 2.

However, our approach runs into trouble as soon as there is more than a single
zero of finite order: According to (5.1) and (3.2) we would need to build prolon-
gations b(x,y) incorporating all the zeros. However, this forces us to build prolon-
gations which are much too dense. For example, for BTTB matrices belonging to
the function f(z,y) = 2 — cos(2z) — cos(2y) we would — in view of (5.1) — need to
work with prolongations involving 8 ”elementary” factors corresponding to the 4 zeros
(0,0), (0,m), (7,0), (7, 7). This does not lead to computationally feasible algorithms.

On the contrary, the algorithms from section 4 carry over to practical (i.e. two-
dimensional) image deblurring problems: There we are dealing with a Gaussian blur
again, i.e. we need to solve an integral equation of the first kind of the form

Ku(z,y) = / k(x — 2’y — y)u(z',y )dz' dy’ (5.4)
Q
with a convolution kernel k(x,y) = exp(—(2* + y*)/0?) with o €]0,1[ on the square

Q2 = [—p,p]?. This kernel models atmospheric turbulence blur and it is used in prac-
tice e.g. for the restoration of satellite images.
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Analogously to section 4, we discretize via midpoint quadrature and end up with a
positive definite BTTB matrix K having a ”single zero of infinite order” at xo = (m, 7).
Then we can do Tikhonov regularization with respect to the Ly-norm and need to
solve a linear system of the form L = K + A= 1.

Now we build efficient multigrid algorithms by employing conjugate gradients with
the optimal Block circulant circulant block preconditioner by T. Chan and J. Olkin
[13] as a smoother. Note that this idea can only lead to a practical O(nlogn) image
deblurring algorithm if we get our coarse grid operators via rediscretization. The fol-
lowing table tests our algorithmic idea for various regularization parameters. Again,
our algorithms use two presmoothing and no postsmoothing steps.

Like in one dimension, we can observe the typical convergence behaviour of the multi-
grid method of the second kind: For fixed regularization parameter X iteration counts
decrease for larger matrix sizes. Furthermore, our multigrid algorithms can also han-
dle very small regularization parameters A.

| number of unknowns [| 64 % 64 [ 128 x 128 | 256 = 256 [ 512 x 512 | 1024 x 1024 |

A=1le—3 7 3 3 4 4
A=1le—4 20 12 8 ) 5
A=1le—5 68 30 20 24 21

Table 10. Iteration counts for W-cycle solvers with semi-iterative smoothing for a
two-dimensional image deblurring problem corresponding to (5.4) with o = 0.05 on
the square Q = [—1,1]°.

5.2. Indefinite Problems. The situation gets much more complicated if the
condition f(z,y) = 0 has a whole curve (z(t),y(t)) as solution. Certainly, we can no
longer “shift” the curve of zeros to the origin by scaling. For the Multigrid prolonga-
tion in view of (1.3) we need a function with zeros at (z(t) + m, y(¢)), (z(t), y(t) + ),
and (x(t) + m,y(t) + 7). We can build such a function by setting

b(x,y) = fle+m,y)x flx,y+m)x flx +m,y+m7) .

Again, the disadvantage of this approach is that the resulting matrices connected to
f2(z,y) are getting more and more dense — and we can not expect to obtain a practical
algorithm.

Let us take a look at shifted Laplacians with the underlying function of the form
f(z,) =2 — a — cos(x) — cos(y)

For small a the curve described by f(z(t),y(t)) = 0 is nearly the circle around the
origin with radius v/2a.

Asymptotically the eigenvalues of the BTTB matrix are given by (see e.g. [29])

wk 72 (5% + k?) )

— ~ — —a , j,k=1,....n.

) cos(n+1) 1) a g n
As we are dealing with shifted 2D-Laplacians our matrices can be diagonalized by the

2D-Sine Transform matrix with S; = %(sin(ﬂjk/(n-i- 1)} g1, S2 = S1® 51, and

)
flzj,y;) = 2—a—cos(n+1

Sy BT Sy = diag(A\j + Ap — )
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alpha=0.5, n=30

1.2

F1G. 5.1. Curve f(z,y) =0 and approzimate circle

where \; are the eigenvalues of the 1D-Laplacian. Hence, the eigenvalues are exactly
given by

k
) 1) — cos(—=

k=1,..
n+ n_l_l);]; yeeny 1

f(zj,y;) =2 —a— cos(
and the eigenvectors related to the near-zero eigenvalues are of the form
sin(mjm/(n + 1)1y @ sin(rkm/(n +1))0_;
with
P2+ k ~an+1)? /7. (5.5)

Hence we have to design a method that can deal with the error components in these
directions. For the same problem a very sophisticated and highly promising algorithm
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that is related to this idea has been introduced by Brandt and Livshits based on a
totally different approach [3]. There more than one coarse grid is employed in order
to resolve the problematic error components.

Finally, we wish to emphasize that the above indefinite model problem should not
be viewed as a Helmholtz problem: Helmholtz equations usually model scattering
phenomena on an exterior domain and the system matrices can never be expected
to have Toeplitz structure. Furthermore, absorbing boundary conditions have to be
introduced which turn the system complex-symmetric. For a state of the art algo-
rithm for multigrid for Helmholtz problems that is also applicable to the non-constant
coefficient case we refer to recent work by Elman, Ernst and O’Leary [15], [16].

In Figure 5.1 we display the (j, k)-grid (5.5) with the curve f(z,y) = 0 and the
approximating circle in the (z,y)-plane. Figure 5.2 shows the exact eigenvalues of the
matrix on the mesh in the positive (x,y)-quadrant and the curve with f(z,y) = 0.
The mesh also models the surface described by the function f.

5.3. Outlook and conclusions. We have investigated multigrid methods for
symmetric BTTB matrices. If the matrix is related to a function with a single iso-
lated zero zy €] — m, 7]?, then usually the methods presented here are applicable. In
particular, the need to use a natural coarse grid operator is even more prominent.
Natural coarse grid operators also help to develop feasible multigrid algorithms with
semi-iterative smoothing for image deblurring problems. However, if the function has
a nontrivial curve of zeros then more advanced algorithms, possibly employing more
than one coarse grid, need to be developed.
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