
MULTIGRID PRECONDITIONING AND TOEPLITZ MATRICESTHOMAS HUCKLE AND JOCHEN STAUDACHER �Abstra
t. In this paper we dis
uss multigrid methods for symmetri
 Toeplitz matri
es. Thenthe restri
tion and prolongation operators 
an be seen as proje
ted Toeplitz matri
es. Be
ause ofthe intimate 
onne
tion between su
h matri
es and trigonometri
 series we 
an express the multigridalgorithm in terms of the underlying fun
tions with spe
ial zeros. This shows how to 
hoose theprolongation/restri
tion operator in order to get fast 
onvergen
e. We start 
onsidering Toeplitzmatri
es with generating fun
tions having a single zero of �nite order in ℄��;�℄ and extend previousresults on multigrid for Toeplitz matri
es, in parti
ular by introdu
ing a natural 
oarse grid operator.Afterwards we 
arry over our reasoning to 
ases with more than one zero and study how the previous
ases relate to Toeplitz systems resulting from the dis
retization of Fredholm integral equations ofthe �rst kind as they arise from image pro
essing. Finally, we take a short view on Blo
k Toeplitzsystems with Toeplitz Blo
ks: We show how the one-dimensional te
hniques 
an be 
arried overeasily for positive de�nite problems with a single zero in ℄ � �; �℄2 and we also present a multigridalgorithm for linear systems arising from pra
ti
al image deblurring problems. Finally, we give anew 
hara
terization of the well known diÆ
ulties en
ountered in the inde�nite 
ase.Key words. Multigrid methods, iterative methods, pre
onditioning, Toeplitz matri
es, Fred-holm integral equations, image deblurring.AMS subje
t 
lassi�
ations. 65N55, 65F10, 65F22, 65F35, 65R20.1. Introdu
tion.1.1. Toeplitz matri
es and generating fun
tions. Let f(x) be a real-valued
ontinuous fun
tion on the interval I = [��; �℄ and periodi
ally extended to the wholereal axis. Given the Fourier 
oeÆ
ients of f(x)ak = 12� Z ��� f(�)eik�d�; for k integer,we 
an de�ne the sequen
e of Toeplitz matri
es fAn � Tn(f)gn asso
iated with thegenerating fun
tion f(x). Its entries are given by (An)i;j = ai�j :An = 0BBBBBB� a0 a�1 � � � � � � a1�na1 a0 a�1 ...... . . . . . . . . . ...... a1 a0 a�1an�1 � � � � � � a1 a0
1CCCCCCANote that the matri
es An are Hermitian, sin
e f(x) is real-valued. In 
ase f(x) is aneven fun
tion, we are dealing with a sequen
e of real symmetri
 Toeplitz matri
es.Furthermore, we know that the spe
trum of An is 
ontained in range(f).Example 1: The well known matrix tridiag(�0:5; 1;�0:5) { i.e. the one-dimensionalLapla
ian { is related to the fun
tion f(x) = �0:5e�ix + 1 � 0:5eix = 1 � 
os(x).The eigenvalues of An are 
ontained in the interval [0; 2℄. The small eigenvalues of�Institut f�ur Informatik, Te
hnis
he Univerit�at M�un
hen, Ar
isstr. 21, D-80290 M�un
hen, Ger-many (hu
kle�in.tum.de, stauda
j�in.tum.de). The work of the se
ond author was partially sup-ported by the DAAD via grant DD/00/20283. 1



2 THOMAS HUCKLE and JOCHEN STAUDACHERAn that lead to the large 
ondition numbers are 
aused by the zero x0 = 0 of f ,f(x0) = f(0) = 0, of multipli
ity two.If we want to solve Anx = b iteratively we 
ould use a further Toeplitz matrixM {whi
h should be easy to invert { as a pre
onditioner and 
onsider M�1Anx = M�1b.A good pre
onditioner 
ould e.g. be one with an underlying fun
tionm(x) ofM havingthe same zero as f(x) with the same multipli
ity. If we 
an prove that the spe
trumof M�1An is 
ontained in an interval [a; b℄, 0 < a � b < 1, independently of n,then this guarantees fast 
onvergen
e, e.g. for the pre
onditioned 
onjugate gradientmethod (see e.g. [29℄).1.2. Additive and multipli
ative multigrid methods. For many 
lasses oflinear systems multigrid methods are among the fastest iterative solvers: Frequently,their 
omputational 
omplexity is of the same order as the multipli
ation of the systemmatrix with a ve
tor, i.e. O(n) for a sparse matrix and O(n log(n)) in 
ase of a Toeplitzmatrix ({ with n denoting the number of unknowns in the linear system).Before going deeper into the dis
ussion of multigrid pre
onditioners we would liketo review 
ertain basi
 
on
epts very brie
y as they will be of major importan
e forthe rest of the paper.First of all, multipli
ative multigrid 
y
les 
an be used as stand alone solvers. Wewould now like to give a 
ompa
t version of a multigrid 
y
le. For more algorithmi
details see e.g. the books by Greenbaum [22℄, pp. 193, or Briggs [4℄, pp. 48.Algorithm 1: Solving Ax = b iteratively by a multigrid 
y
le:Pro
eed with the following iteration until stopping 
riterion is satis�ed(a) Smooth (e.g. by the Ri
hardson method) in order to get a new iterate x(j)(b) Compute residual r = Ax(j) � b(
) Restri
t residual r
oarse = P T r using the restri
tion operator P T(d) Set up the 
oarse grid matrix, e.g. via the Galerkin approa
h A
oarse = P TAP(e) Solve residual equation A
oarsey = r
oarse on 
oarse grid { if not already on
oarsest level, then apply multigrid 
y
le re
ursively(f) Update x(j) := x(j) � Py using the prolongation operator PIf within the re
ursive solution in step (e) we use one 
y
le, we get a so-
alledV-
y
le algorithm. By applying two 
y
les, we re
ognize the W-
y
le algorithm.However, multigrid 
y
les 
an also be used as pre
onditioners for Krylov subspa
emethods, like e.g. the Conjugate Gradient (CG) algorithm. For 
ompli
ated problemsin S
ienti�
 Computing this may be favourable be
ause the Krylov subspa
e methodguarantees 
onvergen
e. Anyway, we shall see in the following that for the stru
-tured problems investigated in this paper multigrid 
y
les will usually perform moreeÆ
iently when used as stand alone solvers.In 
ontrast to the multipli
ative multigrid algorithms dis
ussed so far there arealso additive pre
onditioners like the 
elebrated BPX-pre
onditioner [1℄ or the mul-tilevel diagonal s
aling method [37℄. These methods are designed to work as pre-
onditioners only and although they 
an rarely outperform their multipli
ative 
oun-terparts on a serial 
omputer, they are highly interesting for their usually superior



MULTIGRID and TOEPLITZ 3parallel performan
e. The following equation gives a simpli�ed BPX-pre
onditionerwithout smoothing ({ the matri
es P1; : : : ; Pk denote the prolongation operators onthe individual levels):(I + P1(I + P2(I + � � � (I + PkP Tk ) � � �)P T2 )P T1 )Ax = b(1.1)One of the goals of this paper will be to develop appropriate transfer operators forsolving Toeplitz systems. Hen
e we �nally mention the well known fa
t that bettertransfer operators for multipli
ative multigrid algorithms will normally also lead tobetter additive pre
onditioners and vi
e versa.1.3. Multigrid and Toeplitz systems { A brief motivation. In multigridmethods we need to apply a restri
tion and prolongation operator: If we use a Galerkinapproa
h { a

ording to step (d) in Algorithm 1 { we 
an in the symmetri
 
ase writethe 
oarse grid matrix for a twogrid step asAn=2 = ITn;n=2 �BTn �An �Bn � In;n=2 = P Tn �An � Pnwith a Toeplitz matrix Bn related to a fun
tion b(x), and the elementary proje
tionmatrix In;n=2 = 0BBBBB� 10 00 1 00 00 1�
1CCCCCA = I(1 : n; 1 : 2 : n)in MATLAB-notation with the identity matrix I . In most 
ases we will 
onsider onlysymmetri
 Bn with real-valued generating fun
tion b(x).As a starting point for our paper let us introdu
e the following heuristi
s: With~f(x) = b(x) � f(x) � b(x) the entries of the matrix BTn �An �Bn are "asymptoti
allygiven" by the 
oeÆ
ients of ~f(x); therefore the 
oeÆ
ients of An=2 
an { up to aperturbation of low rank { be found by deleting every se
ond entry in ~f(x):f2(x) = (1=2) � �b2(x2 )f(x2 ) + b2(x2 + �)f(x2 + �)�(1.2)Let us assume that f(x) has a unique zero x0 of �nite order 2k in the interval ℄��; �℄.Now the new matrix An=2 should be 
losely related to the original An. Hen
e therelated fun
tion f2(x) should have a zero with the same multipli
ity as f(x).In view of f(x) � 0 this is only possible if b(x0+�) = 0. Therefore, we 
an easilymotivate to use a prolongation operator of the formb(x) = (
os(x0) + 
os(x))k :(1.3)Remark 1: Note that in general a suitable prolongation operator b(x) may have anadditional zero b(x1) = 0 without generating an additional zero in f2(x) as long asb(x1 + �)f(x1 + �) 6= 0. More generally we 
ould even use prolongation operatorsof the form b(x) � h(x) with any nonnegative fun
tion h; but in most 
ases we arestrongly interested in retaining sparsity by setting h(x) � 1.



4 THOMAS HUCKLE and JOCHEN STAUDACHER1.4. Existing work on multigrid for Toeplitz systems. Multigrid methodsfor symmetri
 positive de�nite Toeplitz matri
es were �rst proposed by Fiorentinoand Serra in [18℄, [19℄. In [20℄ they try to extend their work to inde�nite symmetri
Toeplitz systems via an additive algorithm. In all their papers, the main fo
us lieson Toeplitz systems with a generating fun
tion in the Wiener 
lass having a singlezero x0 2 [0; �℄ of �nite order. Fiorentino and Serra use prolongations and restri
-tions 
orresponding to the fun
tion (1.3) and employ Galerkin 
oarse grid operatorsand Ri
hardson smoothers in their algorithms. Very re
ently, Serra [30℄ also gave adetailled proof of 
onvergen
e for his multigrid solvers based on the assumption thatthe generating fun
tion f has a single zero x0 of �nite order at the origin. The work ofSerra and Fiorentino is driven by pointing out 
lose relations between Toeplitz matri-
es and matri
es from trigonometri
 algebras: In parti
ular, they also give multigrid
onvergen
e proofs for � -matri
es, i.e. the algebra of matri
es that 
an be diagonalizedby the fast sine transform. In [31℄ and [32℄ Serra and Tablino also present multigridapproa
hes for 
ir
ulant matri
es.Multigrid algorithms for Toeplitz systems were also proposed by R. Chan and
ollaborators in [11℄ and [34℄. In [11℄ a 
onvergen
e proof for multigrid solvers isgiven for a 
lass of Toeplitz systems in
luding weakly diagonally dominant matri
es.In parti
ular, [11℄ deals with resorts in 
ases where a prolongation operator 
orre-sponding to (1.3) is no longer appropriate, like e.g. for Toeplitz systems belonging tof(x) = 1� 
os(2x). The algorithms proposed also use a Galerkin 
oarse grid operatorand employ damped Ri
hardson smoothing.1.5. Outline of this paper. We start by taking a look at the 
ase of generatingfun
tions with a single zero x0 2 [0; �℄ of �nite order. We report problems that 
anarise in a multigrid approa
h with the prolongation operator 
orresponding to (1.3) for
ertain positions of x0 and brie
y present a new idea how to over
ome su
h diÆ
ultiesby proje
tions onto every m-th 
olumn. Anyway, we observe that su
h algorithms arenot very re
ommendable 
omputationally.Instead, we fo
us on another way to over
ome the problems: It is trivial and wellknown that we 
an s
ale every Toeplitz matrix with a zero x0 2℄ � �; �℄ su
h thatx0 is shifted to the origin. We then turn to the problem that we will normallylose Toeplitz stru
ture on 
oarser levels, if we set up our 
oarse grid matri
es using aGalerkin approa
h a

ording to Algorithm 1, step (d). In 
ase our generating fun
tionhas only got a single zero x0 2℄ � �; �℄ our strategy of shifting the zero to the originhelps us to get rid of su
h in
onvenien
es 
ompletely, be
ause it allows us to use anatural 
oarse grid operator.Then we 
arry over our multigrid algorithms with natural 
oarse grid operators toproblems with equidistant zeros of �nite order in ℄� �; �℄. Afterwards we investigateon Fredholm integral equations of the �rst kind arising from one-dimensional imagedeblurring: We are attempting to make a 
onne
tion to the linear systems 
onsideredpreviously by interpreting the system matri
es to be asso
iated with a "zero of in�niteorder". We extend an algorithmi
 idea by R. Chan, T. Chan and J. Wan [9℄ { again byobtaining the 
oarse grid operators via redis
retization { and put the new algorithminto the 
ontext of the established multigrid method of the se
ond kind by Ha
kbus
h(see [23℄, 
h. 16.)The �nal se
tion deals with Blo
k Toeplitz matri
es with Toeplitz blo
ks (BTTBmatri
es): We show how the one-dimensional te
hniques 
arry over easily in the 
ase



MULTIGRID and TOEPLITZ 5of a single zero x0 2℄� �; �℄2. Again, we follow the strategy of �xing the zero at theorigin 
ombined with a natural 
oarse grid operator. Obtaining 
oarse grid operatorsvia redis
retization also leads to a pra
ti
al multigrid algorithm for deblurring imageswith Tikhonov regularization. We note that the advantages of employing a natural
oarse grid operator { in terms of preserving BTTB stru
ture { are even more strikingthan in one dimension. Finally, we also take a look at inde�nite BTTB matri
es: Wegive a new phenomologi
al 
hara
terization of the problems en
ountered in designingmultigrid algorithms for su
h systems whi
h seems to be strongly related to a veryre
ent algorithm by Brandt and Livshits [3℄ for Helmholtz problems with 
onstant
oeÆ
ients.We would like to emphasize right now that { very mu
h unlike the papers by Serraand Fiorentino and R. Chan and 
ollaborators, respe
tively { the fo
us of our paperdoes not lie on mathemati
al proofs. Instead, we are 
on
erned with the developmentof algorithms. Anyway, we will point out how and why our new algorithms �t intothe existing mathemati
al framework.Due to our fo
us on algorithmi
 issues we feel the need to give the reader plentyof numeri
al results. We will report numeri
al experiments for additive and multi-pli
ative multigrid pre
onditioners as well as for multigrid algorithms as stand-alonesolvers. There we will put parti
ular emphasis on W-
y
le solvers. (Note that multi-grid 
onvergen
e proofs 
an frequently only be a
hieved for W-
y
les and not forV-
y
les.)We always employ the following stopping 
riterion to obtain the iteration 
ounts welist in our tables: kr(j)k1kr(0)k1 � 10�6Here r(j) denotes the residual after j iterations and r(0) the original residual, i.e. westop iterating when the relative residual 
orresponding to the maximum norm is lessor equal 10�6. Unless otherwise stated, we use two steps of the Ri
hardson method forpre- and postsmoothing in our multigrid 
y
les. A

ording to [11℄ we use the dampingparameters !1 = 1=max�2[��;�℄ f(�) for presmoothing and !2 = 2=max�2[��;�℄ f(�)for postsmoothing, respe
tively. We �nally note that it would not be sensible to applya variant of Gauss-Seidel for smoothing in a Toeplitz 
ontext unless the matrix wassparse.2. Generating fun
tions with zeros of �nite order: Simple 
ases.2.1. Model problems. In this and the following two subse
tions we will assumethat our Toeplitz matrix A is 
onne
ted with a generating fun
tion f in the Wiener
lass having a single zero x0 2 [0; �℄ of �nite order. Although we are a
tually interestedin dense Toeplitz matri
es our reasoning is most easily explained by �rst 
onsideringsparse linear systems.Example 2: Our standard example in the following we will be the sparse matrixbelonging to the generating fun
tionf(x) = (
os(x0)� 
os(x))2with x0 2 [��; �℄nf��2 g. Thus f has the zeros �x0. Note that we deliberately ex-
lude the 
ase x0 = ��2 whi
h we investigate on separately in se
tion 3.



6 THOMAS HUCKLE and JOCHEN STAUDACHERThe matri
es from Example 2 are strongly related to the inde�nite matri
es 
or-responding to ~f(x) = 
os(x0) � 
os(x) whi
h 
an be seen as the result of a uniform�nite di�eren
e dis
retization of the 1D Helmholtz equationuxx + �2u = gNote that the matri
es from Example 2 will in general di�er from the Helmholtznormal equations by a perturbation of low rank.2.2. The position of the zero. Let us 
onsider Toeplitz matri
es An 
onne
tedto f(x) = (
os(x0) � 
os(x))2. A

ording to (1.3) we use a fun
tion with zeros at�x0 + � as prolongation operator, namely (
os(x0) + 
os(x))k . The 
orrespondingprolongation matri
es Bn are:tridiag(0:5; 
os(x0); 0:5),pentadiag(0:25; 
os(x0); 
os(x0)2 + 1=2; 
os(x0); 0:25),septadiag( 18 ; 34
os(x0); 32
os(x0)2+ 38 ; 
os(x0)3+ 32
os(x0); 32
os(x0)2+ 38 ; 34
os(x0); 18 )and so on. The Galerkin 
oarse grid matrix matrix An=2 of half size is { up to a lowrank term { related to the fun
tionf2(x) = (1=2)�(
os(x0) + 
os(x2 ))2k(
os(x0)� 
os(x2 ))2++ (
os(x0)� 
os(x2 ))2k(
os(x0) + 
os(x2 ))2� =(
os(x0)2 � 
os(x2 )2)2 � �(
os(x0) + 
os(x2 ))2k�2 + (
os(x0)� 
os(x2 ))2k�2�=2 =(
os(2x0)� 
os(x))2 � �(
os(x0) + 
os(x2 ))2k�2 + (
os(x0)� 
os(x2 ))2k�2�=8:That way our heuristi
s points out that f2(x) has the zeros �2x0 with the same mul-tipli
ity as f(x). The new fun
tion f2(x) 
an be seen as a slightly 
hanged version ofthe original f with the new zeros �2x0. We observe that the 
ase x0 = 0 is ex
ep-tional be
ause 2x0 = x0 = 0 and we 
an use the same prolongation and restri
tionoperators in every step.Remark 2: In general, this 
hange of the zeros �x0, �2x0, �4x0, and so on, 
an leadto diÆ
ulties if in the 
ourse of the Multigrid method we rea
h a zero near (2j+1)�=2;this 
ase is e.g. also related to the fun
tion f(x) = 
os(x)2 with two double zerosat �=2 and 3�=2. Then x0 and x0 + � are both zeros of f , and f2 will have 2x0 asa zero of higher multipli
ity than f(x); then our reasoning shows that the above ap-proa
h will lead to a deterioration of the 
ondition number of the related linear system.Remark 2 
an easily be 
on�rmed in numeri
al experiments. The following tables
ompare iteration numbers for additive multilevel pre
onditioners of the form (1.1)for the Conjugate Gradient method.



MULTIGRID and TOEPLITZ 7number of unknowns � = 0:2 � = 0:15 � = 0:1 � = 0:01 � = 0:001256 60 88 133 159 166512 83 111 200 246 265Table 1. CG Iteration numbers for additive pre
onditioners:f(x) = (
os(�0)� 
os(x))2, b(x) = (
os(�0) + 
os(x))2 and �0 = �=4 + �.number of unknowns � = 0:2 � = 0:15 � = 0:1 � = 0:01 � = 0:001256 158 187 213 221 232512 294 350 396 416 422Table 2. CG Iteration number for additive pre
onditioners:f(x) = (
os(�0)� 
os(x))2, b(x) = (
os(�0) + 
os(x))2 with �0 = �=2 + �.2.3. Proje
tions onto every m-th 
olumn { the �rst idea for a resort. Inorder to avoid the problem outlined in Remark 2 we 
ould also introdu
e elementaryproje
tions onto every third, fourth, or general m-th 
olumn/row of An. Instead ofredu
ing An to half size we use An=m. To this aim we apply elementary proje
tionsIn;n=m. Making use of our heuristi
s (1.2) on
e again this is related to pi
king everym-th entry out of ~f(x) = b(x)2f(x). Then we getfm(x) = 1m m�1Xj=0 ~f(x + 2j�m ) = 1m m�1Xj=0 b2(x+ 2j�m )f(x+ 2j�m ) ;whi
h is again a 2�-periodi
 fun
tion. If f has a zero x0 we have to generate a zerowith the same multipli
ity in fm. This 
an be a
hieved by de�ningb(x) = �m�1Yj=1 (
os(x0)� 
os(x � 2j�m )�k :Then the fun
tion fm will have a zero at mx0 with the desired multipli
ity. There-fore, by 
hoosing m in every step of the multigrid method we 
ould at least avoid theex
eptional 
ase x0 � (2j + 1)�=2.However, it has long been known that multigrid algorithms usually work best ifthe restri
tion yields a redu
tion to every se
ond 
olumn. This has been 
on�rmed inall our numeri
al experiments whi
h have been leading us to the 
on
lusion that thenew algorithmi
 idea outlined in this subse
tion is not very re
ommendable for usein pra
ti
e. In the following table we simply 
ompare iteration 
ounts for additivepre
onditioners for A = tridiag(�1; 2;�1).number of unknowns 128 256 512 1024 2048 4096redu
tion 1:2 per step; 5 levels used 18 18 19 20 21 21redu
tion 1:4 per step; 3 levels used 37 40 41 41 41 41Table 3. CG Iteration numbers for additive pre
onditioners of the form (1.1): We
learly observe that a redu
tion to every se
ond 
olumn is superior to a redu
tion toevery fourth 
olumn.



8 THOMAS HUCKLE and JOCHEN STAUDACHER2.4. Diagonal s
aling { the better resort. Regarding the fa
t that(
os(x0)� 
os(x))2 = (1� 
os(x � x0)) � (1� 
os(x+ x0)) (2:1)there is a mu
h simpler strategy to solve the problems from Example 2. The produ
tform (2.1) allows us to devise a simple and e�e
tive pre
onditioner: We solve the twomatrix problems related to 1 � 
os(x � x0) (e.g. by multigrid) and use the result topre
ondition 
onjugate gradients. Note that the matri
es related to 1�
os(x�x0) 
anbe treated very eÆ
iently by multigrid, be
ause they are nothing else than diagonallys
aled versions of tridiag(�0:5; 1;�0:5) { i.e. the one-dimensional Lapla
ian:diag(1; eix0 ; e2ix0 ; :::) � tridiag(�0:5; 1;�0:5) � diag(1; e�ix0 ; e�2ix0 ; :::) == tridiag(�0:5 eix0 ; 1; �0:5 e�ix0) : (2:2)It is plain that the diagonal s
aling strategy (2.2) 
an be applied to any Toeplitzmatrix in order to shift the generating fun
tion along the x-axis. Furthermore, as longas we have only got a single zero x0 2℄ � �; �℄, the whole algorithm is simpli�ed byshifting x0 to the origin: Then we 
an use the same kind of transfer operators in everystep { i.e. standard prolongations and restri
tions a

ording to b(x) = (1 + 
os(x))k .2.5. Natural 
oarse grid operator. For the rest of se
tion 2 we shall assumethat our Toeplitz matri
es are related to a nonnegative generating fun
tion with aunique zero x0 2℄ � �; �℄. (Note that this does in general not in
lude the matri
esfrom Example 2.)In the previous subse
tions we have presented a number of arguments for s
aling theToeplitz system with the (orthogonal) diagonal matri
es diag(1; e�ix0 ; e�2ix0 ; :::) be-fore treating it by multigrid. However, we have not yet presented a way to handlethe problem that our Galerkin 
oarse grid operators lose their Toeplitz stru
ture.R. Chan and 
ollaborators already pointed out in [11℄ that if we use standard linearinterpolation (a

ording to b(x) = 1 + 
os(x)) then we 
an only be sure to preserveToeplitz stru
ture on all the 
oarse levels if the size n of the matrix is of the formn = 2q � 1 (with q integer). Otherwise perturbations of low rank 
an be introdu
ed.But note that this loss of Toeplitz stru
ture may 
ause severe diÆ
ulties when we godown to lower levels.There is a very simple resort: First s
ale the matrix a

ording to (2.2) {and then employ a natural 
oarse grid operator! Anyway, let us start froms
rat
h: Going ba
k to the earliest papers on multigrid (like e.g. [2℄), resear
hersdid not think in terms of Galerkin 
oarse grid operators. Instead they used a natural
oarse grid operator based on an appropriate redis
retization of the underlying partialdi�erential equation. We wish to emphasize that using a natural 
oarse grid operatoris still the most popular 
hoi
e among multigrid pra
titioners: In parti
ular, the re
ent600-page monograph by Trottenberg, Oosterlee and S
h�uller [36℄ deals almost entirelywith this type of 
oarse grids. Galerkin 
oarse grid operators are mainly preferred froman algebrai
 viewpoint for their superior stability properties, e.g. in 
onne
tion withpartial di�erential equations with highly os
illatory or dis
ontinuous 
oeÆ
ients (seee.g. [25℄) { and, furthermore, the underlying variational prin
iple fa
ilitates proving
onvergen
e theorems.



MULTIGRID and TOEPLITZ 9But let us take a 
loser look at the Toeplitz problems in question: Considering theone-dimensional Lapla
e problem with the system matri
esAn = (1=n2) � tridiag(�1; 2;�1)it is well known that natural 
oarse grid operators work out perfe
tly and 
onvergen
eproofs are not diÆ
ult.Now let us swit
h over to general Toeplitz matri
es belonging to a generating fun
tionf that satis�es (
f. also [11℄, se
. 3)min�2[��;�℄ f(�)1� 
os(�) > 0 (2:3)If the matrix size is of the form n = 2q � 1 then we know that the Galerkin 
oarsegrid operator will be a Toeplitz matrix related to the same underlying fun
tion. Thisobservation motivates the idea simply to mimi
 a multigrid algorithm with a natural
oarse grid operator for general matrix size n, i.e. just like we would do it for theLapla
ian our 
oarse level matrix is nothing but an appropriately s
aled Toeplitz ma-trix of half size n=2 
orresponding to the same generating fun
tion f(x).We would like to emphasize again that for the 
ase of a Toeplitz matrix with asingle zero x0 = 0 of �nite order satisfying (2.3) and the matrix size n = 2q � 1 thenatural 
oarse grid operator and the Galerkin 
oarse grid operator 
oin
ide su
h thatthe variational prin
iple remains satis�ed. Thus the 
onvergen
e proofs (for twogridand W-
y
le solvers) given e.g. in [11℄ or [30℄ are appli
able and the statements remainvalid for our algorithms applying natural 
oarse grid operators.Anyway, in order to show the 
omputational feasibility of our approa
h, we will de-liberately 
hoose the matrix sizes in our numeri
al experiments in most 
ases to beof the forms n = 2q or n = 2q +1. Finally, we wish to emphasize on
e again that ouridea of using a natural 
oarse grid operators 
ru
ially depends on the fa
t that oursingle zero x0 2℄ � �; �℄ is indeed shifted to the origin for otherwise (2.3) 
ould notbe satis�ed.2.6. Numeri
al results. In our numeri
al experiments we will show that thenew multigrid algorithms with natural 
oarse grid operators perform very well. Wewill only give numeri
al results for dense Toeplitz matri
es as the loss of Toeplitzstru
ture on 
oarser levels is only an issue in this 
ase.Example 3: Generating fun
tions for dense Toeplitz matri
es with a single zero oforder at most two at the origin:(a) f1(x) = x2 with the Fourier expansionf1(x) = �33 + � � 1Xj=1 2 � (�1)jj2 
os(j � x)(b) f2(x) = (x=4) � sin(x=2) with the Fourier expansionf2(x) = 1 + 1Xj=1 (�1)j � (4 � j2 + 1)(2 � j � 1)2 � (2 � j + 1)2 
os(j � x)
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) f3(x) = jxj with the Fourier expansionf3(x) = �22 � 1Xj=1 2(2 � j � 1)2 
os((2 � j � 1) � x)(d) f4(x) = jsin(x=2)j with the Fourier expansionf4(x) = 2� 1Xj=1 2(2 � j � 1) � (2 � j + 1)
os(j � x)Note that for the matri
es from Examples 3 (a){(d) the 
elebrated 
ir
ulantpre
onditioner [12℄ will in general not lead to optimal 
omputational performan
e,be
ause the underlying fun
tions are not stri
tly positive. We would also like to em-phasize that { unlike the matri
es from Examples 3 (a) and (b) whi
h 
orrespond toa zero of order 2 { the matri
es from Example 3 (
) and 3 (d) 
an not be handled bythe band Toeplitz pre
onditioners proposed in [5℄ and [8℄, be
ause the zero is not ofeven order. A

ording to our theory the prolongation operator to be used for multi-grid treatment of all the matri
es from Example 3 is standard linear interpolation
orresponding to b(x) = 1 + 
os(x).number of unknowns 513 1025 2049 4097 8193 16385f1(x) = x2 9 9 9 9 9 9f2(x) = (x=4) � sin(x=2) 11 12 11 12 12 12f3(x) = jxj 5 5 5 5 5 5f4(x) = jsin(x=2)j 7 7 7 7 7 7Table 4. Iteration numbers for the pre
onditioned 
onjugate gradient method for thedense matri
es from Example 3: We use a W-
y
le for pre
onditioning.number of unknowns 512 1024 2048 4096 8192 16384f1(x) = x2 11 12 12 12 12 12f2(x) = (x=4) � sin(x=2) 12 12 12 12 12 12f3(x) = jxj 6 6 6 6 6 6f4(x) = jsin(x=2)j 5 5 5 5 5 5Table 5. Iteration numbers for W-
y
le solvers for the dense matri
es from Example 3.Tables 4 and 5 show very 
learly that our new multigrid algorithms lead to fast
onvergen
e with iteration 
ounts independent of the number of unknowns involved.Hen
e they give very eÆ
ient solvers of optimal 
omputational 
omplexity O(n logn).Furthermore, our multigrid method has no problem at all with the fa
t that f3(x) = jxjand f4(x) = jsin(x=2)j are not di�erentiable at the origin: On the 
ontrary, the fa
tthat the order of the zero is lower than 2 leads to even faster 
onvergen
e.Finally, let us also take a short view on zeros of higher order.Example 4: Generating fun
tions for dense Toeplitz matri
es with a single zero oforder higher than 2 at the origin:



MULTIGRID and TOEPLITZ 11(a) f5(x) = x4 with the Fourier expansionf5(x) = �55 + 1Xj=1� 24�(2 � j � 1)4� 4�3(2 � j � 1)2 �
os((2�j�1)�x)+ 1Xj=1��3j2 � 3�2 � j4 �
os(2�j�x)(b) f6(x) = jxj3 with the Fourier expansionf6(x) = �44 + 1Xj=1� 12(2 � j � 1)4� 3�2(2 � j � 1)2 �
os((2�j�1)�x)+ 1Xj=1 3�2(2 � j)2 
os(2�j�x)Note again, that due to the odd order of the zero the matrix from Example 4 (b)
an not be treated by band Toeplitz pre
onditioners.Now equation (1.3) tells us to use a prolongation operator 
orresponding to b(x) =(1 + 
os(x))2 { this will be abbreviated by "Prol. squared" in the following tables.Anyway, looking at (1.2) it might be very interesting also to try standard linear in-terpolation 
orresponding to b(x) = 1 + 
os(x) (abbreviated by "Prol. simple"):number of unknowns 511 1023 2047 4095 8191 16383f5(x) = x4, Prol. simple 29 29 29 29 29 29f5(x) = x4, Prol. squared 33 33 33 33 33 33f6(x) = jxj3, Prol. simple 14 14 14 14 14 14f6(x) = jxj3, Prol. squared 19 19 19 19 19 19Table 6. Iteration numbers for W-
y
le solvers for the dense matri
es from Example 4.We observe that in pra
ti
e it is suÆ
ient to use standard linear interpolation forprolongation and restri
tion. Surprisingly, in this 
ase results are even better if we usethe transfer operators 
orresponding to b(x) = 1+ 
os(x) { although the 
onvergen
etheory presented in [30℄ 
learly tells us to use b(x) = (1+ 
os(x))2. Anyway, this 
on-�rms the well known advi
e of multigrid pra
titioners that higher order interpolationsmight frequently not pay o�.2.7. Con
lusions. In this se
tion we have been presenting a new eÆ
ient wayto solve Toeplitz systems 
orresponding to an underlying fun
tion having a single zerox0 2℄� �; �℄ of �nite order: One �rst s
ales the matrix with diagonal matri
es of theform diag(1; e�ix0 ; e�2ix0 ; :::) in order to shift the zero to the origin and then solvesthe s
aled system by a multigrid algorithm employing a natural 
oarse grid operator.3. Generating fun
tions with equidistant zeros of �nite order.3.1. Equidistant zeros. The 
ase when the generating fun
tion has more thanone zero of �nite order is 
ertainly more 
ompli
ated. Let us start with a fairly simplyexample whi
h has �rst been addressed in [11℄: For generating fun
tions of the formf(x) = 1 � 
os(m � x), m integer, it is no longer appropriate to use prolongationoperators of the form (1.3). Instead, Chan, Chang and Sun [11℄ use prolongations
orresponding to b(x) = 1 � 
os(m � x) and their multigrid algorithms based onGalerkin 
oarsening work out perfe
tly. Choose f(x) = 1 � 
os(m � x) and observe



12 THOMAS HUCKLE and JOCHEN STAUDACHERthat this idea also mat
hes our heuristi
s (1.2):f2(x) = (1+
os(m � x2 ))2�(1�
os(m � x2 ))+(1+
os(m � x2 +�))�(1�
os(m � x2 +�))2 == (1 + 
os(m � x2 ))2 � (1� 
os(m � x2 )) + (1� 
os(m � x2 ))2 � (1 + 
os(m � x2 )) == 2 � (1� (
os(m � x2 ))2) = 1� 
os(m � x) :Note that for this sparse example the appropriate 
hoi
e for the prolongation operator
ould also be written in the form b(x) = f(x+ �) whenever m is odd. This 
hoi
e is
losely related to the so-
alled "Matrix Multilevel Method" [25℄ re
ently proposed bythe authors for mu
h more general sparse matri
es.However, the prolongation operators b(x) = 1+ 
os(m � x) are appli
able in 
asethe generating fun
tion of our Toeplitz matrix has m equidistant zeros of order atmost 2 in the interval [0; 2�[ one of whi
h needs to be at the origin, i.e. the generatingfun
tion has the zeros x0 = 0; x1 = 2�m ; : : : ; xm�1 = 2�(m�1)��m .We 
an again apply our reasoning from se
tion 2: In 
ase none of our m equidistantzeros of order at most 2 is at the origin, we �rst s
ale the matrix a

ording to (2.2).Afterwards we observe that f(x) = 1 � 
os(m � x) 
an be again interpreted as adis
retization of the 1D Lapla
ian { and, analogously to (2.3), we 
an 
arry over ourapproa
h to Toeplitz matri
es asso
iated with a generating fun
tion f satisfyingmin�2[��;�℄ f(�)1� 
os(m � �) > 0(3.1)In other words: We are able to use multigrid algorithms with natural 
oarse gridoperators and the prolongations b(x) = 1 + 
os(m � x) for fun
tions satisfying (3.1).3.2. A blo
k interpretation. The above 
ase also leads us to an interestingobservation: Let us take a look at the matrix 
onne
ted with f(x) = 1� 
os(m � x)and the 
orresponding transfer operators b(x) = 1+ 
os(m�x). Now we 
an interpretthis also in terms of matrix valued fun
tions:f(x) = Im � 
os(Im � x) = Im � (1� 
os(x))is treated by prolongations of the formb(x) = Im + 
os(Im � x) = Im � (1 + 
os(x))with Im denoting the m-by-m identity matrix. Thus we 
an view this 
ase as stan-dard multigrid applied to Blo
k Toeplitz matri
es with m-by-m blo
ks. By insertingblo
k matri
es di�erent from the identity we 
an 
arry over this idea to general Blo
kToeplitz matri
es (i.e. also without Toeplitz blo
ks). This will be presented later in aseparate paper [26℄.However, note that the strategy outlined in subse
tion 3.1 also applies to 
ases likee.g. Toeplitz matri
es belonging to f(x) = x � sin(x) whi
h are not 
overed by the
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k interpretation (see Example 5(
) in subse
tion 3.3 for the Fourier expan-sion). As f(x) = x � sin(x) has the two zeros x0 = 0 and x1 = � we 
an interpret theappropriate prolongationb(x) = (1� 
os(x0)) � (1� 
os(x1)) = 12 � (1� 
os(2 � x))(3.2)analogously to (1.3) as the produ
t of the two prolongations 
orresponding to x0 andx1. This interpretation has previously been given by Serra in [30℄, although he hasnot published any numeri
al experiments to 
on�rm it.3.3. Numeri
al results. In the following we will test our multigrid algorithmsemploying natural 
oarse grid operators for problems with equidistant zeros in [0; 2�[.Example 5: Generating fun
tions for dense Toeplitz matri
es with two zeros x0 = 0and x1 = � of order at most two:(a) f7(x) = x2 � (x � �)2 ({ de�ned on [0; �℄ and then evenly extended to [��; 0[ {)with the Fourier expansionf7(x) = �530 � � � 1Xj=1 32 � (2 � j)4 � 
os(2 � j � x)(b) f8(x) = jsin(x)j with the Fourier expansionf8(x) = 2� 1Xj=1 2(2 � j � 1) � (2 � j + 1) � 
os(2 � j � x)(
) f9(x) = x � sin(x) with the Fourier expansionf9(x) = � + �4 
os(x) � � � 1Xj=2 (�1)j(j � 1) � (j + 1) � 
os(j � x)On
e again, note that band Toeplitz pre
onditioners would only be available forf7, but not for f8 and f9. We regard f9 to be a parti
ularly 
hallenging example,be
ause it has a zero of order two at the origin and a zero of odd order at �.number of unknowns 513 1025 2049 4097 8193 16385 32769f7(x) = x2 � (x� �)2 11 12 12 12 12 12 12f8(x) = jsin(x)j 5 5 5 5 5 5 5f9(x) = x � sin(x) 9 9 9 9 9 9 9Table 7. Iteration numbers for W-
y
le solvers for the dense matri
es from Example 5.We observe optimal 
omputational behaviour of our multigrid algorithms for allproblems from Example 7. The natural 
oarse grid operators take into a

ount very
arefully the orders of the zeros of the generating fun
tion. Thus we 
an 
on�rm nu-meri
ally that the multigrid algorithms suggested in se
tion 2 
arry over to the 
aseof generating fun
tions with m equidistant zeros in [0; 2�[.



14 THOMAS HUCKLE and JOCHEN STAUDACHER4. Image Deblurring. Today image pro
essing is maybe the most eminent �eldof appli
ations of Toeplitz matri
es (see e.g. [6℄, [7℄). The most well known exampleare dense matri
es from image deblurring.4.1. The model. Let us start with an idealized model for one-dimensional imagedeblurring. There we want to solve an integral equation of the �rst kind of the formKu(x) = Z
 k(x� x0)u(x0)dx0(4.1)with a 
onvolution kernel of the form k(x) = exp(�x2=�2) with � 2℄0; 1[ on theinterval 
 = [�p; p℄. The operator K is often referred to as "Gaussian blur".We 
an now dis
retize this integral equation on a uniform grid via the midpointquadrature rule and will end up with a Toeplitz matrix (see e.g. [6℄, se
. 4.4, or [27℄,
h. 2): We work with the mesh size h = 2pn and the midpointsxj = �p+ (2 � j � 1) � h2 ; j = 1; 2; : : : ; n:Then we use the midpoint quadrature rule and the 
onvolution operator (4.1) trans-lates into Ku(xi) = Z p�p k(xi � x0)u(x0)dx0 � n�1Xj=0 k(xi � xj)u(xj)h � [K�u℄iwith the symmetri
 positive de�nite Toeplitz matrixK = h � toeplitz(k(0); k(1 � h); : : : ; k((n� 1) � h))and the ve
tor �u = [u(x1); : : : ; u(xn)℄T .It is well known that the blurring matri
es K are highly ill-
onditioned and hen
edeblurring algorithms are extremely sensitive to noise [21℄. In other words: We aredealing with an inverse problem and hen
e we need to regularize.In the following we shall only investigate on Tikhonov regularization [17℄. If weminimize the Tikhonov fun
tional in the L2-norm our system matrix be
omesL = K + �I(4.2)with regularization parameter �. If we use the H1-norm instead, then the systemmatrix be
omes L = K + �4with 4 = tridiag(�1; 2;�1) denoting the one-dimensional Lapla
ian.For simpli
ity, we will in the following only dis
uss the L2-based 
ase (4.2). However,
arrying over our reasoning to the H1-based 
ase is straightforward.4.2. Transfer operators and smoothers. So far, there has essentially beenonly one paper by R. Chan, T. Chan and J. Wan [9℄ on multigrid methods for imagedeblurring. In the following we shall attempt to put their observations and algorithmsin the 
ontext of multigrid methods for Toeplitz matri
es and the so-
alled multigrid
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ond kind:The paper [9℄ reports that for the system matri
es in question standard relaxationmethods like Ri
hardson fail as smoothers. To over
ome this diÆ
ulty a semi-iterativesmoother is used: They employ 
onjugate gradients with optimal 
osine transformpre
onditioner [10℄. The approa
h does not make any expli
it use of Toeplitz stru
-ture; furthermore, standard prolongations and restri
tions and Galerkin 
oarseningare used without any further explanation (see [9℄, p. 70).Do the methods presented in se
tion 2 relate to this 
ase? First of all, we needto state that obviously there is no underlying fun
tion 
onne
ted with our matri
esK. However, if we simply assign fun
tions to matri
es of di�erent size, we qui
klyobserve that we are dealing with a "single zero of in�nite order" lo
ated at x0 = �.Anyway, this information does not help us to devise multigrid transfer operators. Thereasoning asso
iated with (1.3) is no longer appli
able as we 
ertainly do not want touse anything like b(x) = (1� 
os(x))1.On the other hand, reasonable information on the transfer operators is given ifwe put the ideas from [9℄ into the 
ontext of the multigrid method of the se
ond kindproposed by Ha
kbus
h (see [23℄, 
h. 16), i.e. multigrid algorithms for the eÆ
ientnumeri
al solution of Fredholm integral equations of the se
ond kind:As long as we dis
retize our integral operator (3.1) via the midpoint quadrature rulethe dis
retization error will be of order O(h2) and it is plain that standard prolon-gation and restri
tion operators based on pie
ewise linear interpolation { i.e. 
orre-sponding to b(x) = 1 + 
os(x) { are an appropriate 
hoi
e (see again [23℄, 
h. 16, formore details and underlying 
onsisten
y results). On the other hand, we emphasizethat it would be totally inappropriate to s
ale the matrix via the diagonal matri
esdiag(1; e�i�; e�2�; :::) in order to move the zero x0 = � to the origin in this parti
ular
ase { and we 
an 
ertainly not over
ome the problems of Ri
hardson smoothing by
hoosing transfer operators di�erent from standard linear interpolation.Let us view our system matrix L = K+��I in terms of a Fredholm integral equationof the se
ond kind: Setting ~k(x; y) := �k(x; y) and obtaining a dis
retization ~K viathe midpoint quadrature rule we 
an rewrite (4.2) asL = � � I � ~Kin the standard form of an integral equation of the se
ond kind.However, in standard appli
ations of integral equations of the se
ond kind we mostlydeal with the 
ase � = 1 and then the multigrid method of the se
ond kind { whi
husually employs one step of Ri
hardson (pre)smoothing { works out perfe
tly. Fur-thermore, there are variants of the multigrid method of the se
ond kind espe
iallydesigned for the 
ase of smaller � whi
h also employ Ri
hardson smoothing: We men-tion in parti
ular a variant by Hemker and S
hippers [24℄ and a variant by Ha
kbus
hwhi
h misses out 
ertain smoothing steps (see [23℄, se
. 16.2.3). Anyway, we have
he
ked very 
arefully in plenty of numeri
al experiments that these variants do notlead to 
onvergent algorithms for the small regularization parameters � we need todeal with in image deblurring problems. We emphasize that these small regularizationparameters lead to very large 
ondition numbers whi
h render the multigrid methodof the se
ond kind impra
ti
al.Instead, we 
on�rm the need for a semi-iterative smoother a

ording to [9℄. Notethat L usually exhibits huge 
ondition numbers due to a vast range of magnitudes of



16 THOMAS HUCKLE and JOCHEN STAUDACHEReigenvalues and, in parti
ular, due to the fa
t that there are hardly any eigenve
torsof L without any os
illatory 
omponents. Thus we need a smoother whi
h treats allthe frequen
y 
omponents of the error rather equally { and this is exa
tly what the(pre
onditioned) 
onjugate gradient algorithm does when it is used as a smoother.For more details and analysis we refer to the up
oming Ph.D. thesis [33℄.As we are not using a stationary iterative smoother, our multigrid 
y
les are no longeravailable for standard Krylov subspa
e solvers: In fa
t, our multigrid pre
onditioner
hanges during the iteration as a result of the CG-smoothing. However, we 
ould useso-
alled "
exible" Krylov subspa
e methods, like e.g. the FGMRES variant by Saad[28℄, whi
h allows to use a di�erent pre
onditioner in every iteration step. But asour system matrix (4.2) is symmetri
 positive de�nite, symmetri
 versions of 
exibleKrylov solvers would also 
ome into a

ount (see [14℄).Finally, we emphasize that again we prefer to use a natural 
oarse grid operator {instead of Galerkin 
oarsing used by R. Chan, T. Chan and J. Wan (see [9℄,p. 70) {in order to preserve Toeplitz stru
ture on the 
oarse levels.4.3. Numeri
al results. In the following we give numeri
al results for the one-dimensional deblurring problem using various di�erent regularization parameters. Wehave implemented a multigrid algorithm using 
onjugate gradients with the optimal
ir
ulant pre
onditioner [12℄ as a smoother. Here we employ two presmoothing andno postsmoothing steps.We would like to admit right now that the 
omparisons with �xed regularization pa-rameters � reported in the following table may seem slightly questionable from thepoint of view of solving an inverse problem from signal or image pro
essing. Cer-tainly, the regularization parameter would normally not be pi
ked without looking atthe matrix �rst. Again, we refer to [33℄ for more details. Anyway, we are deliberatelypresenting our numeri
al results in this way in order to fo
us on the strong 
onne
tionto the multigrid method of the se
ond kind.number of unknowns 512 1024 2048 4096 8192 16384 32768� = 1e� 3 5 4 4 3 3 3 3� = 1e� 4 9 7 6 5 5 4 4� = 1e� 5 37 26 17 12 9 7 6Table 8. Iteration numbers for W-
y
le solvers for the one-dimensional image deblur-ring problem (4.1) with � = 0:1 on 
 = [�1; 1℄. The smoother is CG with optimal
ir
ulant pre
onditioner, 
oarse grid operators are obtained via redis
retization.Table 8 shows that by using 
ir
ulant-pre
onditioned 
onjugate gradients as asmoother we 
an obtain the typi
al 
onvergen
e behaviour of the multigrid method ofthe se
ond kind also for the 
ase of very small �, i.e. iteration numbers even de
linefor a larger number of unknowns. Hen
e the idea to employ a semi-iterative smoother
an be seen as an extension of the multigrid method of the se
ond kind in order tohandle very small �.



MULTIGRID and TOEPLITZ 175. Twodimensional 
ase: Blo
k Toeplitz matri
es with Toeplitz Blo
ks.5.1. Positive de�nite problems. In the 2D-
ase we 
onsider Blo
k Toeplitzmatri
es with Toeplitz blo
ks (BTTB matri
es) related to a fun
tion of the formf(x; y) =X aj;keijxeikye.g. f(x; y) = 2� 
os(x) � 
os(y) for the Lapla
ian dis
retized on the unit square bythe 5-point sten
il. The bad 
ondition numbers of the matri
es are again 
aused bythe zeros x = y = 0 of f(x; y).We are in the simple 
ase as long as the fun
tion f has only a unique isolated zero(x0; y0) 2℄� �; �℄2. Then we 
an try to pro
eed with multigrid algorithms similar tose
tion 2. For simpli
ity, let us �rst take a look at the 
ase of a single isolated zero(x0; y0) of order 2. In a multigrid approa
h we 
an 
hooseb(x; y) = (
os(x0) + 
os(x)) � (
os(y0) + 
os(y)) (5:1)for prolongation and restri
tion. Note that this is nothing else than the Krone
kerprodu
t of the 
orresponding 1D matri
es. A

ording to our heuristi
s (1.2) thefun
tion f2 asso
iated with the Galerkin 
oarse grid operator is the redu
tion of~f(x; y) = b(x; y)f(x; y)b(x; y) to every se
ond 
oeÆ
ient relative to x and y. For thematrix this is nothing else than the proje
tion onto every se
ond row/
olumn androw/
olumn blo
k, respe
tively. Therefore it resultsf2(x; y) = 14 � � ~f(x2 ; y2) + ~f(x2 + �; y2) + ~f(x2 ; y2 + �) + ~f(x2 + �; y2 + �)� : (5:2)Hen
e, f2 will have the isolated zero (2x0; 2y0) { and the prolongation b(x; y) needsto have the three zeros (x0 + �; y0), (x0; y0 + �) and (x0 + �; y0 + �).Anyway, for BTTB matri
es it is even more important to use a natural 
oarse gridoperator instead of Galerkin 
oarsening. Again, for Galerkin 
oarsening we 
an onlybe sure to preserve BTTB stru
ture on every 
oarse grid if the matrix size is of theform n = (2q � 1)2 (with q integer). More importantly, the perturbations introdu
edvia Galerkin operators are no longer of low rank like in the Toeplitz 
ase, but normallygrow proportional to the matrix size.However, the resort is as simple as in se
tion 2: For a single zero (x0; y0) 2℄ � �; �℄2we 
an s
ale our linear system �rst via the matri
esI 
 diag(1; e�ix0 ; e�2ix0 ; :::)and diag(1; e�iy0 ; e�2iy0 ; :::)
 I;respe
tively, and thus shift the zero to the origin.Then we 
an pro
eed as usual just like we would do for the two-dimensional Lapla
ian.We 
an 
arry over virtually everything presented in subse
tion 2.5 from diagonals
alings to natural 
oarse grid operators via Krone
ker produ
ts as long as we haveonly got a single zero.Analogously to 2.5 we re
all the fa
t that multigrid algorithms with natural 
oarsegrid operators have been long been known to 
onverge for two-dimensional Lapla
e



18 THOMAS HUCKLE and JOCHEN STAUDACHERproblems. Like in [35℄ we 
arry over our reasoning to employ a natural 
oarse gridoperator to fun
tions f(x; y) satisfyingmin(x;y)2[��;�℄2 f(x; y)2� 
os(x)� 
os(y) > 0 (5:3)We repeat that for matrix sizes of the form n = (2m � 1)2 Galerkin and natural
oarse grid operators 
oin
ide su
h that the variational prin
iple remains satis�ed {and hen
e the 
onvergen
e proofs from [35℄ 
arry over.Note that (5.3) 
ertainly in
ludes non-separable generating fun
tions, like e.g. f(x; y) =20� 8 � 
os(x) � 8 � 
os(y) � 4 � 
os(x) � 
os(y) whi
h 
orresponds to a 9-point dis-
retization of the Lapla
ian on the unit square. However, we shall give only numeri
alresults for separable problems in the following table. There we list iteration 
ounts formultigrid algorithms with natural 
oarse grid operators for separable BTTB problemsrelated to generating fun
tions from Example 3.number of unknowns 16 � 16 32 � 32 64 � 64 128 � 128 256 � 256f(x; y) = x2 + y2 14 14 14 14 14f(x; y) = x2 + (y=4) � sin(y=2) 23 24 24 24 24f(x; y) = jxj+ jyj 7 8 8 8 8f(x; y) = jx=�j+ jsin(y=2)j 8 9 9 10 10f(x; y) = x2 + jyj 15 15 15 15 15Table 9. Iteration numbers for W-
y
le solvers for BTTB systems related to the ma-tri
es from Example 3.Again, our multigrid algorithms give eÆ
ient solvers of optimal 
omputational
omplexity O(n logn). Our natural 
oarse grid operators take into a

ount very 
are-fully the order of the zero { and thus the algorithms are not a�e
ted at all in 
ase thezero at the origin is of order less than 2.However, our approa
h runs into trouble as soon as there is more than a singlezero of �nite order: A

ording to (5.1) and (3.2) we would need to build prolon-gations b(x; y) in
orporating all the zeros. However, this for
es us to build prolon-gations whi
h are mu
h too dense. For example, for BTTB matri
es belonging tothe fun
tion f(x; y) = 2 � 
os(2x) � 
os(2y) we would { in view of (5.1) { need towork with prolongations involving 8 "elementary" fa
tors 
orresponding to the 4 zeros(0; 0); (0; �); (�; 0); (�; �). This does not lead to 
omputationally feasible algorithms.On the 
ontrary, the algorithms from se
tion 4 
arry over to pra
ti
al (i.e. two-dimensional) image deblurring problems: There we are dealing with a Gaussian bluragain, i.e. we need to solve an integral equation of the �rst kind of the formKu(x; y) = Z
 k(x� x0; y � y0)u(x0; y0)dx0dy0 (5:4)with a 
onvolution kernel k(x; y) = exp(�(x2 + y2)=�2) with � 2℄0; 1[ on the square
 = [�p; p℄2. This kernel models atmospheri
 turbulen
e blur and it is used in pra
-ti
e e.g. for the restoration of satellite images.
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tion 4, we dis
retize via midpoint quadrature and end up with apositive de�nite BTTBmatrixK having a "single zero of in�nite order" at x0 = (�; �).Then we 
an do Tikhonov regularization with respe
t to the L2-norm and need tosolve a linear system of the form L = K + � � I .Now we build eÆ
ient multigrid algorithms by employing 
onjugate gradients withthe optimal Blo
k 
ir
ulant 
ir
ulant blo
k pre
onditioner by T. Chan and J. Olkin[13℄ as a smoother. Note that this idea 
an only lead to a pra
ti
al O(n logn) imagedeblurring algorithm if we get our 
oarse grid operators via redis
retization. The fol-lowing table tests our algorithmi
 idea for various regularization parameters. Again,our algorithms use two presmoothing and no postsmoothing steps.Like in one dimension, we 
an observe the typi
al 
onvergen
e behaviour of the multi-grid method of the se
ond kind: For �xed regularization parameter � iteration 
ountsde
rease for larger matrix sizes. Furthermore, our multigrid algorithms 
an also han-dle very small regularization parameters �.number of unknowns 64 � 64 128 � 128 256 � 256 512 � 512 1024 � 1024� = 1e� 3 7 5 5 4 4� = 1e� 4 20 12 8 5 5� = 1e� 5 68 30 20 24 21Table 10. Iteration 
ounts for W-
y
le solvers with semi-iterative smoothing for atwo-dimensional image deblurring problem 
orresponding to (5.4) with � = 0:05 onthe square 
 = [�1; 1℄2.5.2. Inde�nite Problems. The situation gets mu
h more 
ompli
ated if the
ondition f(x; y) = 0 has a whole 
urve (x(t); y(t)) as solution. Certainly, we 
an nolonger \shift" the 
urve of zeros to the origin by s
aling. For the Multigrid prolonga-tion in view of (1.3) we need a fun
tion with zeros at (x(t) + �; y(t)), (x(t); y(t) + �),and (x(t) + �; y(t) + �). We 
an build su
h a fun
tion by settingb(x; y) = f(x+ �; y) � f(x; y + �) � f(x+ �; y + �) :Again, the disadvantage of this approa
h is that the resulting matri
es 
onne
ted tof2(x; y) are getting more and more dense { and we 
an not expe
t to obtain a pra
ti
alalgorithm.Let us take a look at shifted Lapla
ians with the underlying fun
tion of the formf(x; y) = 2� �� 
os(x) � 
os(y)For small � the 
urve des
ribed by f(x(t); y(t)) = 0 is nearly the 
ir
le around theorigin with radius p2�.Asymptoti
ally the eigenvalues of the BTTB matrix are given by (see e.g. [29℄)f(xj ; yj) = 2� �� 
os( �jn+ 1)� 
os( �kn+ 1) � �2(j2 + k2)(n+ 1)2 � � ; j; k = 1; :::; n :As we are dealing with shifted 2D-Lapla
ians our matri
es 
an be diagonalized by the2D-Sine Transform matrix with S1 =q 2n+1 (sin(�jk=(n+1))nj;k=1, S2 = S1
S1, andS2BT S2 = diag(�j + �k � �)
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Fig. 5.1. Curve f(x; y) = 0 and approximate 
ir
lewhere �j are the eigenvalues of the 1D-Lapla
ian. Hen
e, the eigenvalues are exa
tlygiven by f(xj ; yj) = 2� �� 
os( �jn+ 1)� 
os( �kn+ 1) ; j; k = 1; :::; nand the eigenve
tors related to the near-zero eigenvalues are of the formsin(�jm=(n+ 1))nm=1 
 sin(�km=(n+ 1))nm=1with j2 + k2 � �(n+ 1)2=�2 : (5:5)Hen
e we have to design a method that 
an deal with the error 
omponents in thesedire
tions. For the same problem a very sophisti
ated and highly promising algorithm



MULTIGRID and TOEPLITZ 21that is related to this idea has been introdu
ed by Brandt and Livshits based on atotally di�erent approa
h [3℄. There more than one 
oarse grid is employed in orderto resolve the problemati
 error 
omponents.Finally, we wish to emphasize that the above inde�nite model problem should notbe viewed as a Helmholtz problem: Helmholtz equations usually model s
atteringphenomena on an exterior domain and the system matri
es 
an never be expe
tedto have Toeplitz stru
ture. Furthermore, absorbing boundary 
onditions have to beintrodu
ed whi
h turn the system 
omplex-symmetri
. For a state of the art algo-rithm for multigrid for Helmholtz problems that is also appli
able to the non-
onstant
oeÆ
ient 
ase we refer to re
ent work by Elman, Ernst and O'Leary [15℄, [16℄.In Figure 5.1 we display the (j; k)-grid (5.5) with the 
urve f(x; y) = 0 and theapproximating 
ir
le in the (x; y)-plane. Figure 5.2 shows the exa
t eigenvalues of thematrix on the mesh in the positive (x; y)-quadrant and the 
urve with f(x; y) = 0.The mesh also models the surfa
e des
ribed by the fun
tion f .5.3. Outlook and 
on
lusions. We have investigated multigrid methods forsymmetri
 BTTB matri
es. If the matrix is related to a fun
tion with a single iso-lated zero x0 2℄� �; �℄2, then usually the methods presented here are appli
able. Inparti
ular, the need to use a natural 
oarse grid operator is even more prominent.Natural 
oarse grid operators also help to develop feasible multigrid algorithms withsemi-iterative smoothing for image deblurring problems. However, if the fun
tion hasa nontrivial 
urve of zeros then more advan
ed algorithms, possibly employing morethan one 
oarse grid, need to be developed.REFERENCES[1℄ J. Bramble, J. Pas
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