
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Design and Implementation of FOONET - a
Framework for object-oriented Network Design

Volker G. Fischer

ABCDEFGHIJKLMNO
TUM-I9919

Dezember 99

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-12-I9919-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c1999

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Design and Implementation of FooNet,a Framework for objet-oriented Network DesignVolker Gerd FisherInstitut f�ur InformatikLehrstuhl f�ur RehnerkommunikationTehnishe Universit�at M�unhen, Germany
Keywords:Teleommuniation Network Design, Objet-oriented Framework, Objet-orientedAnalysis and Design, Extensible Markup Language
AbstratThis report presents the design and implementation of FooNet, an objet-orientedappliation framework for teleommuniation network design. The harateristis ofFooNet in ontrast to other planning environments are its onsequent objet-orienteddesign and the support of reuse tehniques on di�erent levels of abstration. FooNetomes with a library of helpful algorithms used in network design problems. A furtherimportant feature of FooNet is its support of XML for data exhange. XML o�ers a newdimension of ommuniation eliminating inompatibilities between various appliations.

X-CRClassi�ationB.4.3, C.2.1, D.1.5, D.2.2, I.7.2

Contents
Motivation 11 Teleommuniation Network Design 31.1 Introdution . 31.2 Deomposition Planning . 41.3 The B-WiN Planning Task Example . 62 Introdution to Objet-Oriented Software Design 92.1 Overview . 92.2 Uni�ed Modelling . 102.3 Software Reuse . 113 A Framework for Objet-Oriented Network Design (FooNet) 173.1 Overview . 173.2 The Core Design Classes . 183.3 The Extended Design Classes . 243.4 Coding Conventions . 273.5 Network Design using FooNet . 284 Data Exhange using XML 314.1 Introdution and Motivation . 314.2 Proessing XML Data . 324.3 XML in FooNet . 345 Summary and Outlook 355.1 Summary . 355.2 Outlook . 35List of Figures 36Bibliography 38

ii FOONETA The Uni�ed Modelling Language - UML 43A.1 Overview . 43A.2 Stati Class Diagram . 43A.3 Implementation Diagram . 45B Doument Type Desription 47B.1 Introdution to the Doument Type Doumentation 47B.2 FooNet DTDs . 49C Software Requirements 53Index 55

MotivationNetwork design, the task of planning and managing ommuniation networks, omprisesa variety of tehniques and knowledge evolving frommany di�erent �elds of siene1. Thesesienes inlude optimization, graph theory, foreasting, simulation and modeling, knowl-edge representation, deision theory, �nane, eletrial engineering and omputer siene.Due to its telephony heritage and the eletro-tehnial problem part, wide area networkdesign has also a long standing history in the �eld of eletrial engineering (remember forexample the work of Erlang in the early deades of this entury).The relation between omputer siene and network planning is at least twofold. First,teleommuniation network planning was one of the �rst appliations for whih the om-putational power (supported by advanes in mathematial optimization) was and still isused. Seond, the explosion of ommuniation servie demands (the Internet) auses avital interest of omputer siene in teleommuniation network design.However due to its heritage, software engineering aspets have played only a minor rolein network design. Pratial engineers have traditionally been fond of imperative pro-gramming languages, suh as FORTRAN and C. The trend in omputer ommuniationis towards objet-oriented software engineering with its ability to ope with omplexityeven for large problem sizes and to reuse software. Some projets have already shownthe power of objet-oriented approahes in ommuniations, for example in the �eldof network-management (OSI network management) or protool design ([B�o97℄). Butthe network design task itself laks tools supporting the objet-oriented programmingparadigm. It seems that espeially in teleommuniation the appliation of objet-orientedsoftware design is promising. For example, Jakson showed in [JGJ97℄ that the reuse ofteleommuniation software by AT&T was between 40% and 92%.In this report, a software tool alled FooNet2 is presented whih is the result of submittingthe teleommuniation network planning proess to an objet-oriented design&analysis(OOA&OOD). FooNet is an appliation framework that releases the designer from \rein-venting" the parts of the software design that are ommon to all network design problems.Objet-orientation an ahieve this without limiting the generality of the design proessitself by making restritions that the designer annot overrule. This report fouses onsoftware design, but it is assumed that the reader has at least basi knowledge of teleom-muniation network planning as well as objet-oriented design priniples.A further problem in network design is the lak of agreed upon standards for data exhangebetween appliations. Every tool has its own (sometimes even unpublished) interfae anddata-format. This problem is not a peuliarity of network design, but a more general1In this report the terms \network", \ommuniation network" and \teleommuniation network" areused synonymously2Framework for the objet-oriented Network Design

2 FOONETone that an be found in many areas of data proessing. With the suess of Internettehnologies, the W3C onsortium has introdued a tehnology alled XML that allowsthe exhange of almost arbitrary information between di�erent appliations. In this report,a data-format ompliant to XML is introdued. Examples of the abilities of this formatare given. FooNet is designed to produe and proess XML ompliant output.The report is organized as follows: The �rst two hapters give a short introdution inteleommuniation network planning and reent advanes in objet-oriented software de-sign. The third hapter ontains the doumentation of the design and implementation ofFooNet. The fourth hapter disusses the apabilities of XML as a data exhange format.The report onludes with a summary and an outlook to future work.AknowledgementsI'd like to thank (in alphabetial order) Thomas Erlebah, Manfred Jobmann and Hans-Peter Shwefel for their helpful omments and ritis.

Chapter 1
Teleommuniation Network Design
1.1 IntrodutionIt is a non-trivial task to formulate a network design problem by itself. Due to the fatthat a network must satisfy the needs of an enterprise and every enterprise has di�erentrequirements on ommuniation, network design is a ontext sensitive problem.Generally, ommuniation networks are designed using hierarhial strutures. Two dif-ferent types of hierarhies an be identi�ed: The topologial hierarhy imposed by thedi�erent network layers (see Figure 1.1) and the logial hierarhy implied by tiers (seeFigure 1.2). ISO-OSI Layers 2 & 3(LLC/IP)

��Virtual Transmission Network(ATM [VPI/VCI℄)
��

VV

Transmission Network(SDH)VVFigure 1.1: Example for a topologial HierarhyHierarhial network design is a frequently used strategy to ope with the omplexity of theproblem. The hierarhial design divides a single network layer into tier-levels by groupingseveral nodes and onsidering them as one new node of a \higher tier". The B-WiN (seeChapter 1.3) has two tier-levels: The lowest tier ontains the aess- or end-nodes. Eahend-node represents a anonial soure/destination that sends/reeives traÆ into/fromthe network. The higher tier, alled bakbone-tier, ontains the bakbone nodes. Eahend-node is onneted to exatly one bakbone node. Figure 1.2 shows a star-topologybetween the aess-nodes and the bakbone-nodes.

4 FOONET

Figure 1.2: B-WiN Aess Design Example1.2 Deomposition PlanningWhen aepting the following statements:1. network design as a whole, i.e. overall network design, is too ompliated to besolved in one step2. an obvious \optimum" solution does not exist in general due to multi-riteria ob-jetive funtions and inomplete knowledge3. network design is an iterative, user ontrolled proedure4. networks exist within enterprises and must be adjusted to the goals of the enterpriseConsequently, this leads to deomposition planning (see Figure 1.3) with well de�nedand as muh as possible independent subtasks ombined with alternate optimization, i.e.optimization with reourse, and interation with the designer.The deomposition planning proess must be embedded in the topologial hierarhy ofthe network, e.g. it must be exeuted for the di�erent topologial hierarhies. The more

1 Teleommuniation Network Design 5Start
��TraÆ Planning
��Aess Network Planning

��Input Data
77ooooooooooooooooooooooooooooo

33gggggggggggggggggggg

//

++WWWWWWWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Mesh Topology Planning

��

[[

Dimensioning & Routing
��

[[

Performane Evaluation
��

BC

ED
oo

BC

ED
oo

BC

ED
oo

BC

ED
oo

Materialization and �nal Cost Evaluation
��

BC

ED
oo

EndFigure 1.3: Deomposition Planning (taken from [Fri98℄)hierarhy levels a designer wants to take into aount, the more omplex the planningproblem beomes. Only a joint optimization over all layers and tiers safeguards an optimalsolution, but suh an approah usually results in an intratable omplexity. Optimality istherefore sari�ed for tratability.The following terminology is used throughout this report:� a faility is an arbitrary network element suh as a router or an arbitrary serviesuh as a leased line. A di�erent set of failities exists for eah topologial networklayer. The osts entailed with a faility divide into:� setup osts, that arise when introduing a new faility in the design (e.g.buying a new router)� reourring osts, that arise in regular intervals (e.g. leasing rates)� termination osts, that arise when removing a faility from the design (e.g.when terminating a ontrat)� usage-dependent osts (e.g. all minutes)� a topology in the ontext of network design is the physial or logial layout ofnetwork failities. Common topologies inlude star, ring, bus or mesh. A ommonrepresentation of the network topology is a graph.� a network design1 is the spei�ation of topology and on�guration forming aprodutivity network. To put it in other words, the topology spei�es where to put1In ontrast to the network design task itself here a spei� network design, i.e. a realization of a

6 FOONETthe failities and how to interonnet them, the on�guration spei�es whih failityis used for eah topologial element and how to set it up.� a requirement or ommodity is a ommuniation demand between two nodes,usually measured in terms of Megabit per seond (Mbps).1.3 The B-WiN Planning Task ExampleTo illustrate the problems arising in network design the (simpli�ed) planning task ofthe Breitband Wissenshaftsnetz (B-WiN) provided by Deutshes Forshungsnetz Verein(DFN-Verein) is shown in Figure 1.4.Given:� a. 400 node loations� (measured) traÆ busy-hour matrix (IP-traÆ) (quite asymmetri!)� tari�s of the Deutshe Telekom AG� OSPF-routingminimize ost subjet to� edge apaities are available in inremental 2 Mbps steps beginning ata minimum apaity of 34 Mbps� survivability: nodes having � Mbps aess rate should be two-edge-onneted� hop-limit: h hops� bakbone lines should not have more then u% utilizationOutput:� number and loation of bakbone nodes� aess and bakbone topology� line apaities� OSPF routing parametersFigure 1.4: Sample B-WiN Planning TaskIt has been shown (e.g. in [MS81℄) that even subproblems of the network design problemare strongly NP-omplete2. Another important fat is that there exists no generi algo-single network, is meant. From the ontext it should be immediately lear to whih of the two meaningsit is referred2whih means that under the assumption P 6= NP this problem is not solvable in an eÆient way

1 Teleommuniation Network Design 7rithm that an take into aount the various onstraints imposed on the problem. Evenif formulated as a mathematial program there is no eÆient way to solve this problem.Therefore many known algorithms used in network design problems rely on heuristis thathave to be adapted by the network planner to meet the requirements of his planning task.

8 FOONET

Chapter 2Introdution to Objet-OrientedSoftware Design
2.1 OverviewThis setion gives a brief overview of reent advanes in objet-oriented software design.It is assumed that the reader has some experiene with objet-orientation, otherwise theauthor would reommend [Boo91, Cop92, Sto97℄ for a detailed and appliation-orientedintrodution.Some important terms and onepts in objet-orientation are introdued as follows:� Objet-Oriented Analysis (OOA): Objet-oriented analysis is a method of an-alyzing that examines the requirements on the software from the perspetive oflasses and objets found in the problem under onsideration.� Objet-Oriented Design (OOD): Objet-oriented design is a method of designompassing the proess of objet-oriented deomposition and notation (here in thelanguage of UML) for depiting both logial and physial as well as stati anddynami properties of the problem under design. The most important priniples inobjet-oriented design are abstration, enapsulation, modularization and hierarhy.� Objet-oriented Programming (OOP): Objet-oriented programming is amethod of implementation in whih programs are organized as ooperative olle-tions of objets, eah of whih represents an instane of some lass.� Inheritane: Inheritane is a hierarhial relation among lasses, in whih onelass shares the struture or behavior de�ned in one (single inheritane) or more(multiple inheritane) other lasses. Inheritane de�nes a \is-a" hierarhy amonglasses in whih a sublass inherits from one or more generalized superlasses. Asublass typially speializes its superlass by augmenting or rede�ning the existingstruture or behavior.� Polymorphism: Polymorphism is a onept in type theory wherein a name maydenote instanes of many di�erent lasses (usually related by some ommon su-perlass in C++). Dynami Binding is a onsequene of polymorphism, whihimplies that sending the same message to di�erent objets ould stimulate di�erentbehavior. Tehnially this is realized by the use of virtual funtions.

10 FOONET� Interfae: An abstrat base lass whih provides a set of virtual funtions is alledan interfae.� Persistene: Persistene is the property of an objet through whih it an transendtime (i.e. the objet ontinues to exist after its reator eases to exist) and/or spae(i.e. the objet's loation moves from the address spae in whih it was reated).Persistene in FooNet works with harater streams and relies on two omplementingmethods: serialize (write objet in a stream) and de-serialize (read objet from astream).� Class Library: A lass library is a olletion of reusable lasses that rely on objet-oriented design paradigms suh as hierarhy and polymorphism. Usually, lass li-braries provide support in solving problems belonging to a spei� problem ategory.2.2 Uni�ed ModellingThe objet-oriented software design paradigm does not ditate a methodology of how thelasses and the relationships between them are derived from the system. This part has tobe performed by the designer1 supported by a detailed objet-oriented analysis.However, there exist several proess models (for an overview see e.g. [NS99℄) whih guidethe designer through this task. The proess model that is used here is the Uni�ed Pro-ess proposed in [Ja99℄, whih is a use-ase-driven and inremental approah and onsistsmainly of the �ve stages illustrated in Figure 2.1.Requirement Spei�ation(Use Cases / Sequene Diagrams)
��Analysis(CRC-Cards / Collaboration Diagrams)
��Design(Class Diagrams / Ativity Diagrams)
��Implementation(Component Diagrams /Collaboration Diagrams)
��Use /Test BC

ED
oo

Figure 2.1: Objet-oriented Software Design ProessConneted with the Uni�ed Proess is UML, the Uni�ed Modelling Language, that sup-ports the proess model by providing a set of easy to read but expressive diagrams. UML is1and is therefore often onsidered as an art

2 Introdution to Objet-Oriented Software Design 11a symboli language for speifying, onstruting and doumenting (the semantis of) soft-ware systems. It is standardized by the Objet Management Group (OMG) in [OMG97℄and has beome the \Esperanto" of objet-oriented design. The terms in the brakets be-neath eah stage of the diagram in Figure 2.1 denote examples of whih part of the UMLnotation may be appropriate when working in this stage. However, UML does not ditatea partiular proess, it is more a \blueprint" for software design. A short introdution toUML that is suÆient to understand the diagrams in this report is presented in AppendixA.2.3 Software Reuse2.3.1 MotivationThe implementation of omplex software systems remains resoure expensive and errorprone. Already the design of a medium sized omputer program is a nontrivial task. Muhof the osts stem from the redisovery and reinvention of ore onepts and omponents.The onept of software reuse originates from the observation that a software designershould onentrate on the peuliarities of his/her task instead of solving problems thathave already been solved many times before. Software reuse is ommonly de�ned as \thesystemati development of reusable omponents and the systemati reuse of these ompo-nents as building bloks to reate new software systems".A reusable omponent may be ode, denoted as ode reuse, but the bigger bene�tsof reuse ome from a broader and higher-level view of what an be reused: softwarespei�ations, abstrations, design patterns and frameworks. This is ommonly denotedas design reuse.FooNet provides an appliation framework (see Chapter 2.3.3) for network design problemsand as suh provides design reuse, but builds itself on top of two other reuse tehniques:� Idioms: Idioms allow ode reuse by providing higher level datatypes, suh aslists, queues, and graphs (see e.g. [Cop92℄). The C++ language provides a numberof idioms, whih are standardized in the Standard Template Library (STL, [Int97℄).Additionally the idioms provided by the Graph Template Library (GTL, http://www.fmi.uni-passau.de/Graphlet/GTL) are used. In some publiations this kindof ode reuse is denoted as generi programming.� Design Patterns: Design Patterns are a (very suessful) design reuse tehnique.A short desription is given in Chapter 2.3.2.From this perspetive, FooNet has a three level reuse hierarhy: Classes, objets and idiomson the lowest level of abstration, design patterns on a medium level and frameworks onthe highest level.2.3.2 Design PatternsA design pattern [GHJV95℄ desribes a (often reourring) problem, the ore of a simpleand elegant solution together with the ontext in whih the solution works, and its ost

12 FOONETand bene�ts. Design patterns serve as the miro-arhitetural elements of frameworks,but due to their abstratness, they annot be expressed as lasses or lines of ode.The following list gives a short overview of all design patterns2 that have been used inFooNet together with examples of where the design patterns our:� Letter-Envelope (also known as Handle-Body or Bridge)A letter-envelope-pattern deouples an abstration, denoted as envelope, from itsimplementation, denoted as letter. The advantage of this design pattern lies in thefat that the letter objet an vary independent from the envelope whih allows agreater exibility of usage.A ommonly used example for the letter-envelope design pattern is a referene-ounted lass. The node-envelope of FooNet administrates a pointer and a referene-ounter to the node-letter. The atual node-letter objet is dupliated only if ne-essary. This signi�antly redues resoures.� FatoryA fatory de�nes an interfae for reating an objet, but lets sublasses deide whihlass to instantiate. Usually a fatory provides a method produe() whih reatesan objet of a known base lass. Fatories prevent to inlude user-spei� ode inthe lass design.FooNet provides a fatory pattern for network failities. To produe a ertain kindof a network faility (for example an IP-router), the user sends a message to thatfatory with a set of requirements (for example having at least a throughput of 100Megabit per seond) and the fatory returns the heapest network faility found(for example a Ciso IP Router having 1000 Megabit per seond throughput) whihmeets the requirements. The user an add more manufaturers dynamially by deriv-ing a new sub-fatory. The seletion proess and the vendor-spei� data is shadowedby the design pattern.� StrategyA strategy de�nes a family of algorithms, enapsulates eah one, and makes theminterhangeable. Strategies allow to formulate a skeleton of an appliation whih isindependent from a onrete realization.The (stati) routing interfae in FooNet is a typial example for a strategy. For ex-ample, testing the network for overload needs the routing funtionality, but whetherrouting is performed by an OSPF, PNNI or some other kind of routing algorithm isirrelevant.� VisitorA visitor represents an operation to be performed on the \elements of an objetstruture" (see example below). A visitor allows to de�ne a new operation withouthanging the lasses of the elements on whih the visitor design pattern operates.The topology of a network layer forms an objet struture that onsists of topologial(node and edge) elements. FooNet provides a visitor pattern for topologial elements.For example, if a user wants to know the average load on the edges of that layer, heould derive this funtionality from the visitor interfae and simply all the visit-all-edges method.2For a more detailed desription and sample implementations please refer to [GHJV95℄

2 Introdution to Objet-Oriented Software Design 13� CompositeA omposite is used to represent part-whole hierarhies of objets, when di�erenesbetween ompositions and individual objets an be ignored.The logial hierarhy of a network is a typial example of a omposite pattern. Thetwo types of nodes (end-nodes and tier-nodes) form a tree struture, but e.g. whenalulating the osts of a network, there is no di�erene between tier-nodes andend-nodes.� Warper (also known as Deorator)A warper dynamially attahes additional responsibilities and funtionalities to anobjet. It provides a exible alternative to sub-lassing.Warpers are frequently used for attahing visualizing apabilities to an objet. Sodoes the GraphWin-warper of a layer objet in FooNet. The GraphWin-warper anbe transparently used wherever a layer objet is expeted, but observes any messagesent to that layer-objet and updates its visualization if neessary.� BuilderA builder separates the onstrution of a omplex objet from its representation sothat the same onstrution proess an reate di�erent representations.The XML-Fatory lass alls on a builder design-pattern whih is provided by theSAX-parser (http://www.jezuk.demon.o.uk/SAX/). This parser takes an XMLdoument (see Chapter 4) and builds a parse tree from whih the internal represen-tation is derived.� PrototypeA prototype spei�es the kind of objet to reate by using a prototypial instaneand reates a new objet by opying this prototype.This design pattern is used wherever a pointer to a base lass has to be loned.Tehnially, every lass supporting the prototype pattern provides a method lone()whih guarantees that a perfet opy is made.� Command and ObserverA ommand enapsulates a request as an objet, thereby parameterizing the lientsof the ommand pattern with di�erent requests. An observer de�nes a one-to-manydependeny between objets so that when one objet hanges state, all its depen-dents are noti�ed and updated automatially.Both design patterns are typially used in graphial user interfaes. A menu-barentry ould be realized as a ommand. An observer an guarantee that di�erentviews of a single objet are onsistent. Sine both patterns are not used in the baseframework of FooNet, they are not disussed in greater detail.� Virtual ConstrutorA virtual onstrutor allows to build an objet of known abstrat type but unknownonrete type, whih is important when de-serializing objets.A builder that sequentially reads an objet out of a stream usually knows the basetype of the next expeted objet, but not its onrete type. For example, the XML-Fatory knows that the next objet has to be of the type \faility", but it does notknow whih onrete type this faility has, i.e. its sublass. The virtual onstrutorpattern solves this problem.

14 FOONET2.3.3 FrameworksObjet-oriented appliation frameworks are a promising tehnology for reusing provensoftware designs (design reuse) and implementations (ode reuse) in order to reduethe osts and improve the quality of software. A framework is de�ned as follows [Joh97,FSJ99℄:A framework is a reusable design of all or part of a system that is represented bya set of abstrat lasses and the way their instanes interat. Frameworks aim atsolving a family of similar problems.The purpose of a framework is to provide the skeleton of an appliation that an beustomized by an appliation developer.Frameworks di�er from lass libraries by their additional reuse of high-level design, sineframeworks do not only de�ne lasses but also a model for interation between them.A framework is therefore a \semi-omplete" appliation (by the use of inversion ofontrol3) that an be speialized to produe ustom appliations. Frameworks enhanemodularity by enapsulating volatile implementation details behind stable interfaes. Ex-tensibility is supported by providing expliit hook methods that allow appliations toextend the interfae.Examples for widely known frameworks are:� AWT & JavaBeans (http://java.sun.om)� Qt (http://www.trollteh.no)� MFC (http://www.mirosoft.om)� Abaus(http://www.informatik.uni-koeln.de/ls_juenger/projets/abaus.html)There exist two di�erent kinds of frameworks:� White-box frameworks rely heavily on objet-oriented language features like in-heritane and dynami binding in order to enhane extensibility. To use white-boxframeworks, intimate knowledge of their internal struture is needed. FooNet is de-signed to be a white-box framework.� Blak-box frameworks support extensibility by de�ning interfaes for omponentsthat an be plugged into the framework via objet omposition. The funtionality ofblak box frameworks is based on design patterns, suh as strategy and ommand.Blak-box frameworks are less exible than white-box ones, but usually easier touse. The Qt-based visualization C qt layer warper in the FooNet extensions is anexample for a blak-box framework that provides a graphial user interfae.Several properties are ommonly demanded for frameworks:� ompleteness: the framework should provide all neessary funtionality.3Sometimes also denoted as the Hollywood priniple:\don't all us, we all you"

2 Introdution to Objet-Oriented Software Design 15� eÆieny: the framework should provide eÆient implementations of the relevant,time-ritial parts.� exibility (reusability): the framework should be appliable in more than one on-text.� ease of use: the user of the framework should only be responsible for the part of theimplementation that is software spei�.� extensibility: the framework should have the ability to grow with future require-ments.� portability: the framework should not be restrited to a spei� hard- or software.

16 FOONET

Chapter 3A Framework for Objet-OrientedNetwork Design (FooNet)
FooNet is a result of the upoming PHD thesis [Fis00℄ that deals with various aspets ofnetwork design problems.3.1 OverviewFooNet is a white-box appliation framework that is designed to signi�antly redue thedevelopment e�ort of network design appliations. At the moment, its fous is at teleom-muniation network design, but it ould be easily expanded to ope with other networkdesign problems (suh as road networks or gas pipelines) as well.The design of FooNet onsists of two parts:� A ore framework, whih is the result of an objet-oriented analysis & design proess.It represents the abstrations, interfaes and interation models of network designproblems.� An extended framework that builds on top of the ore framework and enrihes itby providing additional funtionality and appliations. It is expeted to grow veryfast in the future, providing a library of algorithms helpful for teleommuniationnetwork design.FooNet provides a system of base lasses from whih the appliation spei� sublassesan be derived. All problem independent parts are invisible to the user, so that he anonentrate on the problem-spei� algorithms and data-strutures. As a white-box frame-work, FooNet relies heavily on inheritane from base-lasses and overloading pre-de�nedhook-methods, i.e. the user derives his speializations from a set of appropriately designed(interfae) lasses. Virtual funtions provide default implementations that are often use-ful, but an be overloaded, if required. Sometimes suh virtual funtions do nothing atall, but they allow the user to add some funtionality. The task of \inventing" an ap-propriate network algorithm and/or representation annot be ompletely taken o� the

18 FOONETdesigner, sine this is problem-dependent1. However all other ativities in network de-sign (e.g. persistene, displaying, editing, foreasting, loading, performane evaluation,sensitivity testing) are managed by the framework.The next paragraphs introdue the design of FooNet in greater detail. Referenes to thelasses or methods in the implementation are in teletype font. Referenes to designpatterns are in italis font.3.2 The Core Design ClassesThe UML stati lass diagram of the ore framework is shown in Figure 3.2. The readeris asked to take a look at this stati lass diagram regularly, sine it helps to larify themodel of interation between the lasses.In the following setions, the main abstrations are introdued, but the details of theimplementation are left to the program doumentation that is inluded in the FooNetdistribution2.3.2.1 Network NodesThe lass C node is an abstration of a network node. A node is a loation (given asC oordinate) of an arbitrary soure or destination of a traÆ requirement. A node mayrepresent a single workstation or even a whole orporation. Network nodes are identi�edby their unique name (the id of the node). Nodes are elements of the network topology(see Chapter 3.2.6).A ommon strategy of network design algorithms is the grouping of nodes and onsideringthem as one new node of a \higher tier". This introdues a hierarhy of the nodes, thelogial hierarhy of the network, in whih it is possible that one node is a omponentof more than one higher tier node, but no higher tier node is allowed to be omponent ofa lower or equal tier node.The nodes on the lowest hierarhial level are denoted as end nodes, all others are alledomponent nodes. An example of an aess network design is shown in Figure 1.2.Nodes are implemented by C node letter objets using the omposite design pattern.C node is an envelope aording to the letter-envelope design pattern that hides a (refer-ene ounted) letter objet C node letter.Eah node ontains a C node info objet that allows the user to store additional infor-mation by deriving his own information lass from it.3.2.2 CommoditiesThe lass C ommodity represents the ommuniation demands in terms of bits per se-ond between a set of network nodes, i.e. the traÆ matrix. TraÆ matries are usually1For a detailed disussion of this subjet see [Fis00℄2There is an extended version of this report available at http://wwwjessen.informatik.tu-muenhen.de/~fisherv/foonet that inludes the ode doumentation

3AFrameworkforObjet-OrientedNetworkDesign(FooNet)
19

Foonet 1.0
UML Package Diagram

Design Algorithms

NDA

Backbone_NDA
Access_NDA

Multi_Layer_NDA

Forecasting

Utilities

Period

Date

Performace Evaluation

Network
Generator

Network
Simulator

Commodity
Generator

Sensitivity
Tester

Facilities

Facility

Facility_Client

Facility_Factory

Cost

Network Design

Layer

Topology

Node

Routing

Top_Hierarchy

Commodity

NDP

Constraint
Soft_Constraint

XML
Factory

pstreamFigure3.1:UMLPakageDiagram

20
FOONET

Foonet 1.0 Core Design

Graph

T_node
T_edge

«bind»
(Top_Info,Top_Info)

Node_letter Node

its letter

Tier_Node End_Node

consists of

Node_Info

«interface»
Coordinates

Composite
Design Pattern

Letter-Envelope
Design Pattern

Commodity

Topology

*

«interface»
Routing

Top_Info Routing_Info

«interface»
Topology_Visitor

Visitor
Design Pattern

Topology
Visitor

Layer

Top_Hierarchy

Warped_Layer

routing scheme

Warper
Design Pattern

1..n

1..n

*

ND_Problem

«interface»
Constraint

«interface»
Soft_Constraint

1..n

1..n

Requirement

«friend»

Mapping

«interface»
ND_Algorithm

«interface»
Accesstier_NDA

«interface»
Multitier_sl_NDA

«interface»
Multilayer_NDA

«interface»
Singlelayer_NDA

Strategy
Design Patterns

1

1..n1..n

«interface»
Forecast

«interface»
Network_Generator

«interface»
Network_Simulator

«interface»
Commodity_Generator

«interface»
Sensitivity_Tester

«interface»
Traffic_Generator

«utility»
XML_FactoryTime

Period

«interface»
Facility

«interface»
Facility_Factory

Facility_Client

Node_Facility Edge_Faclility

Edge_Facility_Attributes Node_Facility_Attributes

1..n

Single_Facility Evolving_Facility

1..n

Abstract Factory
Design Pattern

cost

«interface»
Cost

Generic Factory1

«utility»
shared_ptr

T

Prototype

«utility»
pstream

Virtual
constructor

Builder

Figure3.2:StatiUMLCoreClassDiagram

3 A Framework for Objet-Oriented Network Design (FooNet) 21asymmetri. A single ommodity is identi�ed (C ommodity::t index) by a pair of net-work nodes, the soure and the destination. The lass C ommodity provides methods forthe omputation of the traÆ demands on eah tier level.3.2.3 Failities & CostThe lass C faility is an interfae that represents all (edge3 and node) failities of anetwork, whereby a faility is a omponent belonging to a single network layer (see Setion3.2.5). Eah faility has a reliability and a apaity.The most important attribute ommon to all failities is the ost interfae that allows toalulate the expenses neessary during their lifetimes. These osts are stored in a C ostobjet and alulated aording to the disounted ash ow (DCF) formula4 using thesetup-, reourring- and termination (respetively upgrade) osts. The ost interfae isintended to ope with usage-dependent osts in the next software release.The speializations of C faility inlude single failities, C single faility, on theone hand and evolutionary failities, C evol faility, on the other hand. Single failitiesdivide into edge, C edge faility, and node, C node faility, failities. Evolutionaryfailities represent a series of sueeding single failities over time5. Series of failities arenon-overlapping, i.e. at all times, exatly one single faility is present.3.2.4 Faility Fatory & Faility ClientThe lass C failitylient represents all available failities of a single network layer.Internally it stores a list of C failityfatory lasses. Instanes of C failityfatorysublasses may represent a single vendor, produt-line, publi arrier servie et. To obtaina list of appropriate failities the user must speify the harateristis by (node or edge)attributes, whih are based on C ef attribute for edge-failities and C nf attributefor node-failities, respetively. C failitylient is a realization of the fatory designpattern.C failitylient enables the designer to handle di�erent faility fatories, but it burdenshim with the task of hoosing a faility out of a list of appropriate ones, sine one failitymay have heaper setup osts while the other has heaper reourring osts.Sometimes vendors o�er speial "upgrade-fees" when swithing from one fail-ity to another. This an be modeled by over-riding the upgrade-ost method(C failityfatory::upgrade()). If no appropriate faility is found, an empty objetis returned.An instantiation of a faility fatory is given by the lass C generi fatory whihimplements an eonomy of sale faility fatory (see again [Fis00℄) with the eonomy ofsale parameter6 a. Additionally a list of disrete values for the available apaities an bespei�ed. When produing a faility, the heapest faility that meets the given attributesis returned.3This may also inlude transport servies o�ered by publi arriers4For a more detailed introdution in this subjet see [Fis00℄5For example, the faility f1 is known to be replaed by faility f2 at planning time �6also alled power-law

22 FOONET3.2.5 Network Layer and Topologial HierarhyThe lass C layer is a olletion of all information assoiated with a single network layer,e.g. SDH, ATM or IP. A layer objet ontains information about the available failities(in a C failitylient objet), the used routing-algorithm (in a C routing objet) andits topology (in a C topology objet).The network layers are organized aording to the topologial hierarhy of the network(C topologial hierarhy). The mapping between peer layers an be supported by amapping objet (C mapping)7. It provides routing funtionality between peer layers andallows for example to query whih failities of a lower layer (e.g. a SDH-path) are usedby a faility on a higher layer (e.g. a ATM-VP) and vie versa.Additional funtionality an be attahed to a layer by the lass C warped layer whih isan instantiation of the warper design pattern.3.2.6 TopologyThe lass C topology represents the topology of a single network layer, i.e. the layoutof its nodes and edges. C topology is implemented by a parameterized C graph objet.Every topologial element, i.e. all nodes and edges, ontains a C topology info objet.Eah topologial node-element is assoiated with a C node objet and eah topologialedge-element is assoiated with two C node objets, the soure and destination node.C topology info is a base lass for (node and edge) information assoiated with everytopologial element. It ontains a faility (C faility) objet, a routing information(C routing info) objet, and a variable to store the urrent load in terms of bits perseond. It is designed to be overloaded if additional information is required.C topology visitor represents an abstrat interfae of a visitor design pattern for topo-logial elements. For example a C topology visitor objet is used to alulate the ostsof the topology by visiting all topologial elements and summing up the assoiated failityosts.3.2.7 RoutingThe lass C routing is an interfae for a stati routing (respetively loading) algorithm(see e.g. [Cah98℄). The main funtionality is in the C routing::load() method, whihloads a ommodity on the topology aording to the routing algorithm by setting theload variable in eah topologial element.To support all possible routing algorithms, eah topologial element stores aC routing info objet, whih should be overloaded to support the needs of the rout-ing algorithm. In its basi implementation C routing info ontains no information.3.2.8 Network Design Problems, Foreast & ConstraintsThe lass C ndp represents both, a network design problem and its solution. It serves asthe parameter to the network design algorithms (C nda).7For a detailed introdution to this subjet see [Au99℄

3 A Framework for Objet-Oriented Network Design (FooNet) 23A C ndp objet stores� a topologial hierarhy (C topologial hierarhy) objet that is subjet to theplanning� a ommodity (C ommodity) objet representing the load that the highest networklayer has to arry at the time of the planning� the planning period (C period)� a foreasting algorithm (C foreast)� a set of onstraints (C onstraint)� a set of soft onstraints (C soft onstraint)The method C ndp::objetive() alulates the objetive funtion of the urrent state ofthe network design (whih is given by the topologial hierarhy objet). The funtionalityprovided by the base lass alulates the objetive funtion by summing up the ost ofall used failities over the planning period plus the (weighted) penalties from all softonstraints.The lass C foreast is an interfae lass for foreasting algorithms, that alulates anexpeted ommodity at any time in the future given a ommodity at the present time.The lass C onstraint is an interfae for onstraints. A onstraint takes a networkdesign problem (in the method C onstraint::is fulfilled()) and deides whetheronstraint is ful�lled or not.The lass C soft onstraint is an interfae for soft onstraints. A soft onstraint takes anetwork design problem (in C soft onstraint::penalty()) and returns a penalty (i.e. anon-negative number) if the assoiated ondition is not ful�lled, otherwise it returns zero.Usually the penalty grows with the "distane" to the ondition that should be ful�lled.The penalties of soft onstraints ontribute to the objetive funtion of the objet.3.2.9 Network Design AlgorithmsC nda is an interfae for network design algorithms. There is a wide range of possibili-ties how to design ommuniation networks that depend heavily on the given failities,protools, network layers and many more.Therefore the lass hierarhy derived from C nda implements well known strategies fornetwork design (realized by the strategy design pattern) without plaing restritions onnew design ideas.Following strategies are supported:� C singlelayer nda is an interfae for a single layer design algorithm.� C aesstier nda is an interfae for designing aess networks within a layer.� C multitier sl nda is an interfae for a single layer design algorithm onsistingof at least one aess design algorithm (C aesstier nda) and a bakbone designalgorithm (C singlelayer nda).� C multilayer nda is a design algorithm for planning more than one layer at a timeby (reursively) propagating the highest layer ommodity from the top to the bottomlayer and solving eah layer by a single layer algorithm.

24
FOONET

3.2.10AdditionalInterfaes
ThewholeomponentPerformaneEvaluation(seeFigure3.1)willbeimplementedin
thenextmajorreleaseofFooNet.
3.3TheExtendedDesignClasses

Node«interface»
Coordinates

Commodity

Topology

«interface»
Routing

Top_Info Routing_Info

Layer

Top_HierarchyWarped_Layer

routing scheme

ND_Problem

«interface»
Constraint

OSPF_Routing_Info

OSPF_Routing

Graphwin_Warped_Layer

Connectivity

ATM_CommodityGeo_Coordinates Euklid_Coordinates

QT_Warped_Layer

Reliability

«interface»
Soft_Constraint

LEDA
Adapter

«interface»
ND_Algorithm

«interface»
Accesstier_NDA

«interface»
Singlelayer_NDA

«interface»
Forecast

Add/DropCenter_Of_MassMentour

MentorII Constraint_MSTAMentor

Prim_Dijkstra_TreeBranch_Exchange KruitoffWeighted_Least_sqares

Extrapolation

Holt_WintersFuzzy_Clustering

Mentor

Observer
Command

Figure3.3:StatiUMLExtendedClassDiagram
TheseondpartoftheFooNetframeworkextendstheoredesignbyalibraryofuse-
fulalgorithmsandappliations.Thenextparagraphsliststheavailableextensionsand
desribetheworkinprogress.
3.3.1NetworkDesign
Thefollowingnetworkdesignalgorithmsareprovided:

3 A Framework for Objet-Oriented Network Design (FooNet) 25� Add/Drop [Ker93℄: aess design algorithm(C add,C drop)� Center of Mass [Ker93℄: aess design algorithm(C enter of mass)� Prim-Dijkstra Tree [Ker93℄: aess design algorithm(C prim dijkstra)� Fuzzy Clustering [Lan99℄: aess design algorithm(C fuzzy lustering)� Branh Exhange [GK77℄: single layer design algorithm(C branh exhange)� Conave Branh Elimination [GK77℄: single layer design algorithm(C onave branh elimination)� Mentor [KKG89℄: single layer design algorithm(C mentor)� MentorII [Cah98℄: single layer design algorithm with OSPF routing(C mentorII)� MenTour [Cah98℄: reliable single layer design algorithm(C mentour)� AMentor [Cah98℄: reliable single layer design algorithm(C amentor)� InreMentor [Cah98℄: inremental single layer design algorithm(C inrementor)The following foreasting algorithms are provided:� Extrapolation: A simple extrapolation based upon various model funtions(C extrapolation)� The Kruito� Algorithm, taken from [ITU92℄(C kruitoff)� Weighted Least Squares [ITU92℄(C least squares)� Holt-Winters Method [Har89℄(C holt winters)The following onstraints are provided:� onnetivity, returns true if the network is onneted(C onnetivity onstraint)� 2-node onnetivity, returns true if the network is 2-node onneted(C 2node onnetivity onstraint)� 2-edge onnetivity testing, returns true if the network is 2-edge onneted(C 2edge onnetivity onstraint)

26 FOONETThe following soft-onstraints are provided:� overload, alulates the amount of traÆ that annot be transported by the network(C overload sonstraint)� reliability, alulates the probability of the network to beome disonneted [Ker93℄(C reliability sonstraint)3.3.2 RoutingThe following routing algorithms are provided:� Open Shortest Path First (OSPFv2) Routing [RFC98℄(C ospf routing, C ospf routing info)3.3.3 Commodity� ATM-Commodity: Commodities are alulated from ATM parameters using theE�etive Bandwidth formula from [Lin94℄(C atm ommodity)3.3.4 Helper Appliations� LEDA-Adapter: LEDA (Library of EÆient Datatypes and Algorithms) is a well-known lass library that o�ers a set of useful graph algorithms. FooNet providesa helper appliation whih transforms a C topology objet into a parameterizedLEDA GRAPH objet and vie versa.(leda to fng(), fng to leda())� GraphWin-Visualizer: LEDA omes with a graphial user-interfae for graphs. Usingthe warper design pattern, a simple visualization is provided by speializing theC warped layer lass. An example of this an be seen in Figure 1.2.(C graphwin warped layer)� QT-Visualizer: This is a more elaborate version of a visualizer. It is designed afterthe model-viewer-ontrol paradigm that bases on the observer and ommand designpattern. It allows to display arbitrary information in graphs.(C qt warped layer)

3 A Framework for Objet-Oriented Network Design (FooNet) 273.4 Coding Conventions3.4.1 NamespaeTo avoid any ollisions with existing names FooNet de�nes its own namespae FN.3.4.2 PersisteneEah base lass de�nes a streaming operator (operator<< and operator>>) method thatalls the private virtual method serialize. By overloading the serialize() methods itis possible for a lass to de�ne its own persisting information, that have to onform theXML onventions. De-serialization is implemented using the virtual onstrutor designpattern.3.4.3 Cloning ObjetsEah base lass provides a funtion ::lone() that has to be overloaded by eah sublassand has to reate an exat opy of the objet. This approah is idential with the prototypedesign pattern.3.4.4 Heap ObjetsAll dynamially reated objets are managed by a referene ounted shared pointer<>-template that guarantees to destroy the objet when the last pointer to the objet isdestroyed.

28 FOONET3.5 Network Design using FooNetThe design priniples that are realized by FooNet are more than a simple implementationof a set of base lasses for network design problems. The following non-trivial funtionalityis entailed with FooNet:� The design relies on a set of well known and well understood design patterns. Theinternal implementations pro�t from this fat, but also the software designer whouses FooNet. Examples for design patterns that may be used by the software designerare:� the visitor design pattern for topologial elements� the fatory design pattern for faility reation� the warper design pattern for adding funtionality to network layers� the strategy design pattern for the reation of new network design algorithms� the prototype design pattern for transparently loning objets� the virtual onstrutor and builder design pattern for persistene� All important funtionality is implemented in virtual base lasses, i.e. interfaes.The interfaes provided by FooNet are:� C node info - extends a network node by additional information� C topology info - extends a topologial element by additional information� C oordinate - allows the use of arbitrary oordinate systems� C routing - allows the software designer to realize arbitrary routing whih isused whenever routing funtionality is required� C routing info - extends eah topologial information by the neessary rout-ing information� C faility, C node faility, C edge faility & C evol faility - inter-faes for families of failities� C failitylient - interfae for seleting failities having ertain attributes� C onstraint & C soft onstraint- interfae for arbitrary (soft) onstraints� C nda - interfae for arbitrary network design algorithms (inluding the inter-faes of the derived lasses)The software designer an use the default funtionality given by eah interfae, butno restritions are imposed on him. He an always overrule them by deriving hisown lass that realizes the desired funtionality. For example, the objetive funtionof a network design problem and the seletion & upgrade of failities are usefulandidates that an and should be overloaded by the software designer.� The design of the persistene guarantees that eah piee of information is storedonly one. This is similar to the \normal forms" of relational database systems.� The ost struture realized by FooNet bases on a well known and widely aeptedtheory of �nane, the disounted osts. FooNet is the �rst tool that expliitly takesthis notion into aount. The support for evolving failities C evol faility is adiret onsequene.

3 A Framework for Objet-Oriented Network Design (FooNet) 29� The extended design provides a repository of well-known algorithms used in networkdesign. These algorithms may be helpful for solving a onrete design problem.� Last but not least, FooNet is designed to o�er the highest possible degree of odereuse. However, only the future will show how good this design is in pratial use.

30 FOONET

Chapter 4Data Exhange using XML
4.1 Introdution and MotivationThe Extensible Markup Language (XML) [XML98℄ is a proposed reommendation fromthe WWW-Consortium (http://www.w3.org) for a �le format to support the distri-bution of eletroni douments. XML is a subset of the SGML (Standard GeneralizedMarkup Language) and data is proessed in human readable form. The outstanding fea-ture of XML is the fat that unlike other formats it ontains also information abouthow to proess the data, i.e. the data desribes its own format. Like HTML, XML is amarkup language, whih relies on the onept of rule-speifying tags and the use of atag-proessing appliation that knows how to deal with the tags. In ontrast to HTML,XML is a meta markup language whih allows to de�ne appliation-spei� markup-tags.A software module, alled XML proessor, is used to read an XML doument and toprovide aess to its ontent and struture.The advantages of XML are:� Searhing information in the data is omparatively easy and eÆient, by simplyparsing the desription-bearing tags. Even omplex relationships like trees or graphsand inheritane1 an be inluded.� Extensibility is supported, while maintaining the legibility of the ode by self-desribing tags.� the GUI is not embedded by the data. Thus hanging the display does not inuenethe data.� \Extensible Stylesheet Language Templates" allow to onvert XML data in almostany format without the neessity to write additional programs.� XML proessors are available as free software (see e.g. http://www.jlark.om/xml/xt.html).� As soon as the standardization of [SOX99℄ is �nished, XML an solve the problemsof exhanging objet-oriented datatypes between di�erent appliation, whih is stillan unsolved problem.XML is supported by XEmas, Netsape 5.0, Internet Explorer 5.0.1work in progress by the W3C

32 FOONET4.2 Proessing XML DataThe �le that desribes the syntax of a well-formed doument (i.e. the tag-names andtheir hierarhial relationships) is alled Doument Type De�nition (DTD). A DTDontains the meta information that is neessary to hek whether a given XML doumentis syntatially orret. To put it in a more formal way, the DTD desribes the (ontext-free) grammar of an XML doument. Typially DTDs are stored in separate douments.A short introdution to the DTD an be found in Appendix B.1.To aess or display the relevant information inluded in an XML-doument, additionalinformation is neessary. The Extensible Stylesheet Language (XSL) [XSL99b℄ willde�ne a set of formatting and proessing instrutions that allow the onversion of XMLdouments. The transformation part, Extensible Stylesheet Language Templates, isalready standardized in [XSL99a℄ and ontains rules for patterns that are mathed againstelements in the soure tree of the doument and templates that onstrut a portion of theresulting output. During this transformation the data an be modi�ed (e.g. reordered)and proessed (e.g. aumulated).<?xml version="1.0" enoding="UTF-8" standalone="no"?><!DOCTYPE node SYSTEM "Node_DB.dtd" [℄><FN_NODE_DB number="323"><FN_NODE id="b-win-gw.rrz.uni-koeln.de" type="E" hilds="0" tier="0"><FN_COORD type="geo" x="50.9272" y="6.9213"></FN_COORD><FN_NODE_INFO></FN_NODE_INFO><FN_NODE_CHILDREN></FN_NODE_CHILDREN></FN_NODE><FN_NODE id="bam-berlin" type="E" hilds="0" tier="0"><FN_COORD type="geo" x="52.4479" y="13.2994"></FN_COORD><FN_NODE_INFO></FN_NODE_INFO><FN_NODE_CHILDREN></FN_NODE_CHILDREN></FN_NODE><FN_NODE id="bast.koeln1" type="E" hilds="0" tier="0"><FN_COORD type="geo" x="50.9522" y="7.17136"></FN_COORD><FN_NODE_INFO></FN_NODE_INFO><FN_NODE_CHILDREN></FN_NODE_CHILDREN></FN_NODE>...</FN_NODE_DB> Figure 4.1: Fration of a Node DatabaseThe following (very simple) example demonstrates how this works. In Figure 4.1, a frag-ment of an XML-doument (ompliant to the DTD in Appendix B.2.1) that ontains a setof nodes is shown. If a user wants to aess all node-ids together with their oordinates,he an use the XLST sript shown in Figure 4.2 that provides this funtionality. Figure4.3 presents the result of the transformation.As a onlusion, XML seems to be a very promising approah for data exhange betweendi�erent tools and appliations in the ontext of network design.

4 Data Exhange using XML 33<xsl:stylesheetversion="1.0"xmlns:xsl="http://www.w3.org/1999/XSL/Transform"><xsl:template math="/"><HTML><HEAD><TITLE> FOONET Proessing Output </TITLE></HEAD><BODY><xsl:apply-templates /></BODY></HTML></xsl:template><xsl:template math="FN_NODE"><xsl:value-of selet="�id" /><xsl:text>: </xsl:text><xsl:apply-templates /></xsl:template><xsl:template math="FN_COORD"><xsl:value-of selet="�x"/><xsl:text> </xsl:text><xsl:value-of selet="�y"/></xsl:template></xsl:stylesheet> Figure 4.2: XSL-Transformation<HTML><HEAD><TITLE> FOONET Proessing Output </TITLE></HEAD><BODY>b-win-gw.rrz.uni-koeln.de: 50.9272 6.9213bam-berlin: 52.4479 13.2994bast.koeln1: 50.9522 7.17136...</BODY></HTML> Figure 4.3: Transformation Result

34 FOONET4.3 XML in FooNetFooNet produes and proesses XML ompliant data, i.e. all streaming operators (seeChapter 3.4.2) work with XML douments. The Doument Type Desriptions of the in-and output data are listed in Appendix B.2.The following XSLTs that provide mainly �ltering funtionality are already used or atleast in a development stage:� HTML-Conversion: For all FooNet DTDs there are XSLTs that display the dataontained in the doument in HTML format.� GNU-Plot-Conversion: This XSLT transforms the output of a C Layer to a GNU-Plot ompatible input �le.� GML-Conversion: GML is a wide-spread data format for (parameterized) graphs[Him96℄. This XSLT transforms a C Layer output into a GML-doument.� VRML-Conversion: Similar to the previous two points this XSLT transforms aC layer output into a VRML doument that an be viewed by any WEB-browsersupporting VRML2.The development of traÆ measurement tools that produe XML-ompliant data is afurther step in this diretion. Suh measurements ould for example easily be onvertedinto a C ommodity ompliant output.

2Virtual Reality Modelling Language, a standard from the W3C

Chapter 5Summary and Outlook
5.1 SummaryIn this report, FooNet, an objet-oriented appliation framework for teleommuniationnetwork design, is presented. The harateristis of FooNet in ontrast to other planningenvironments are its onsequent objet-oriented design and the support of reuse tehniqueson di�erent levels of abstration. FooNet omes with a set of algorithms used in networkplanning and this library is expeted to grow in the future. Additionally, the apabilitiesof XML as a data exhange format between various appliations are disussed.5.2 OutlookThe author is aware of the fat that the present version of FooNet is not nearly overingall faets of network design problems. It laks a lot of features that are useful or evenneessary for some problems.The following work is intended to be done in the near future:� Inlude support for usage dependent osts.� Finish the interfaes and provide default implementations for the network perfor-mane analysis part.� Inlude extensions for planning mobile networks.� Inrease the number of network design strategies derived from C nda.� Inrease the number of algorithms and utilities in the extended framework.� The XML part of FooNet bases exlusively on proposed standards of the W3C.However the DTDs of XML lak a support of objet-oriented datatypes. The W3Cis urrently working on a \Shema for objet-oriented XML" [SOX99℄ that will solvethis problem. A soon as this spei�ation is available as a proposed standard, it willbe supported by FooNet.

36 FOONET

List of Figures1.1 Example for a topologial Hierarhy . 31.2 B-WiN Aess Design Example . 41.3 Deomposition Planning (taken from [Fri98℄) 51.4 Sample B-WiN Planning Task . 62.1 Objet-oriented Software Design Proess 103.1 UML Pakage Diagram . 193.2 Stati UML Core Class Diagram . 203.3 Stati UML Extended Class Diagram . 244.1 Fration of a Node Database . 324.2 XSL-Transformation . 334.3 Transformation Result . 33A.1 UML Notation Guide . 44

38 FOONET

Bibliography[Au99℄ Ben Auh. Design und prototypishe Implementierung einer integrierten Platt-form zur Planung von hierarhishen Netzen. Master's thesis, Tehnishe Uni-versit�at M�unhen, Institut f�ur Informatik, 1999.[B�o97℄ Stefan B�oking. Objektorientierte Netzwerkprotokolle - Grundlagen, Entwurfund Implementierung. Addison Wesley Longman Publishing Company, 1997.[Boo91℄ Grady Booh. Objet oriented Design with Appliations. The Ben-jamin/Cummings Publishing Company, 1991.[Cah98℄ Robert S. Cahn. Wide Area Network Design - Conepts and Tools for Opti-mization. Morgan Kaufmann Publishers In., 1998. The Morgan KaufmannSeries in Networking.[Cop92℄ James O. Coplien. Advanes C++ Styles and Idioms. Addison Wesley Pub-lishing Company, 1992.[Fis00℄ Volker Gerd Fisher. Evolutionary Design of Corporate Networks under Uner-tainty. PhD thesis, Tehnishe Universit�at M�unhen, Institut f�ur Informatik,2000. work in progress.[Fri98℄ Johen Frings. Eine kurze Einf�uhrung in die Netzplanung. Tehnial report,Tehnishe Universit�at M�unhen, 1998. Lehrstuhl f�ur Kommunikationsnetze.[FSJ99℄ M. E. Fayad, D. C. Shmidt, and R. E. Johnson. Building Appliation Frame-works : Objet-Oriented Foundations of Framework Design. Horizon Publishers& Distributors In., 1999.[GHJV95℄ Erih Gamma, Rihard Helm, Ralph Johnson, and John Vlissides. DesignPatterns : Elements of Reusable Objet-Oriented Software. Addison WesleyPublishing Company, 1995.[GK77℄ Mario Gerla and Leonard Kleinrok. On the topologial Design of DistributedComputer Networks. IEEE Transations on Communiations, COM-25(1):48{60, January 1977.[Har89℄ Andrew C. Harvey. Foreasting, strutural time series models and the Kalman�lter. Cambridge University Press, 1989.[Him96℄ Mihael Himsolt. GML: A portable Graph File Format. Tehnial report,Universit�at Passau, 1996.

40 FOONET[Int97℄ International Standards Organization. ISO/IEC Final Draft InternationalStandard 14882 - Programming Language C++, 11 1997.[ITU92℄ International Teleommuniation Union. Forasting International TraÆ,1992. E.506 (rev.1).[Ja99℄ Ivar Jaobsen. Applying UML in The Uni�ed Proess. Tehnial report,Rational Software In., 1999. www.rational.om.[JGJ97℄ Ivar Jaobsen, Martin Griss, and Patrik Jonsson. Software Reuse : ArhitetureProess and Organization for Business. ACM Press, 1997.[Joh97℄ Ralph E. Johnson. Frameworks = Components + Patterns - How frameworksompare to other objet-oriented reuse tehniques. Communiations of theACM, 40(10):39{42, Otober 1997.[Ker93℄ Aaron Kershenbaum. Teleommuniations Network Design Algorithms.MGraw-Hill, 1993.[KKG89℄ A. Kershenbaum, P. Kermani, and G. Grover. Mentor: An Algorithm for MeshNetwork Topologial Optimization and Routing. Tehnial Report RC 147647/14/89, IBM Researh Division, T.J. Watson Researh Center, 1989.[Lan99℄ Daniel Lang. Plazierung von Bakboneknoten mit Fuzzy-Clustering. Master'sthesis, Tehnishe Universit�at M�unhen, 1999. Institut f�ur Informatik.[Lin94℄ Karl Lindberger. Dimensioning and Design Methods for Integrated ATM Net-works. International TeletraÆ Conferene, 14:897{906, 1994.[MS81℄ Andranik Mirzaian and Kenneth Steiglitz. A Note on the omplexity of the Sta-Star Conentrator Problem. IEEE Transations on Communiations, COM-29(10):1549{1552, Otober 1981.[NS99℄ J�org Noak and Bruno Shienmann. Objektorientierte Vorgehensmodelle imVergleih. Informatik-Spektrum, (22):166{180, 1999.[Oes97℄ Bernd Oesterreih. Objekt-Orientierte Softwareentwiklung mit der Uni�edModelling Language. Oldenbourg Verlag, 2. edition, 1997.[OMG97℄ OMG - Objet Management Group. UML Notation Guide - Version 1.1,September 1997.[RFC98℄ OSPF Version 2. Tehnial report, Internet Engineering Task Fore - NetworkWorking Group, April 1998. RFC 2328.[SOX99℄ W3C Disussion Paper. Shema for Objet-Oriented XML 2.0, 7 1999.[Sto97℄ Bjarne Stoustrup. The C++ Prorgamming Language. Addison-Wesley Pub-lishing, 3rd. edition, 1997.[XML98℄ W3C Reommendation. Extensible Markup Language (XML) 1.0, 10 1998.REC-xml-19980210.

BIBLIOGRAPHY 41[XSL99a℄ W3C Reommendation. XSL Transformations (XSLT) Version 1.0, 8 1999.REC-xslt-19991116.[XSL99b℄ W3C Working Draft. Extensible Stylesheet Language (XSL) Spei�ation, 41999.

42 FOONET

Appendix AThe Uni�ed Modelling Language -UML
A.1 OverviewUML, the Uni�ed Modelling Language, is a diagram-oriented language for analyzing anddesigning objet-oriented systems. UML notation omprises several types of diagrams:� Use Case Diagrams� Class Diagrams� Sequene Diagrams� Collaboration Diagrams� State-hart Diagrams� Ativity Diagrams� Implementation DiagramsThis report uses two types of diagrams - stati lass diagrams and implementation di-agrams - and only these are desribed in the following setion to the neessary level ofdetail. The interested reader may refer to [Oes97℄ for a detailed introdution.A.2 Stati Class DiagramStati lass diagrams show the stati struture and relations of the abstrations (i.e.lasses) of the software design. Class diagrams an be used to show the attributes andoperations of a lass and the onstraints for the way objets ollaborate. The UML no-tation of a stati lass diagram onsists of a set of nodes and edges. The nodes have theform of retangles and the size and relative position does not matter. An overview of theused symbols is shown in Figure A.1.Classes are symbolized by retangles that have three ompartments with the followingproperties: the �rst ompartment ontains the name and stereotype of the lass, the

44 FOONETseond its attributes, and the third the operations. For onveniene, the seond and thirdompartment an be hidden in a diagram. If a lass is abstrat, its name is displayed inemphasized letters. UML supports also parameterized lasses (i.e. template lasses),whose parameter is spei�ed in a dashed retangle on the upper right.
A B

A

A

A

B

B

B

1

*

A "is a" B [sub-class]

A "uses" many B [Aggregation]

A "has a" B (exactly one) [Composition]

A "is related to" B [Association]

A B A "uses" at least one and up to n B
(via reference)

1..n

A B A "knows of" the class B

A A offers an interface "int"

int

package

sub-package

a package containing sub-packages

Note a note (or comment) from the developer

C
T

«interface»
D

C is a template with parameter T

D is an abstract base class and realizes the
stereotype <<interface>>Figure A.1: UML Notation GuideStereotypes, denoted by mathed double brakets (also alled guillements)��, are usedto extend a onstrut at modeling time. Generally stereotypes represent usage distintions.Examples are the stereotype �interfae�, whih denotes a pure abstrat base lass, orthe stereotype �bind�, whih instantiates a template with a parameter.Notes and omments are supplied by a retangle with its upper right orner folded down.Although newer versions of UML support design patterns by additional annotations inthe lass, here they are inluded as omments.The assoiations between lasses are shown by various types of lines between the lasses.An assoiation an have a ardinality whih is expressed by the number (or range) at theend of the line. If the assoiation has a name it is written on the top of the onnetingline.

A The Uni�ed Modelling Language - UML 45The following types of assoiations are used:� Composition - means that an objet of lass A \owns" (\has-a" relationship) anobjet of lass B, i.e. lass A is responsible for its assoiated objets of lass B, and ifan objet of lass A is destroyed, all owned objets of lass B are also destroyed. Thegraphial symbol is a line with a �lled diamond on the side of lass A. To expressthat the assoiation is of a referened type, the side of the assoiated lass B has anarrow.� Aggregation - is a weaker form of omposition (\uses-a" relationship). It meansthat an objet of lass A has a (temporary) aquisition of an objet of lass B withoutownership and responsibility for its lifetime. To express that the aggregation is of areferened type, the side of the aggregated lass B has an arrow.� Assoiation - If the modeller wants to express an assoiation that is not spei�edin detail, he an use a dashed line between the assoiated diagram elements.� (Publi) Inheritane - (\is-a" relationship) is indiated with a triangle pointingup to the lass from whih the other is derived.� Interfae - (\knows of a" relationship) expresses that the objets of a lass A knowthe interfae of lass B. Tehnially this implies that the lass A annot be ompiledwithout importing the lass B. The graphial notation is a line with a irle at theend pointing to lass B.Sometimes more than one lass support a ertain kind of interfae. This an beindiated with a (dangling) line that has a small irle at the end of the line.A.3 Implementation DiagramA omponent diagram (whih belongs to the lass of implementation diagrams) is used tobreak down a larger software system into logial grouping of smaller systems. It an alsoshow the dependenies of lasses and their dependenies within a omponent. It serves asan orientation where to �nd whih funtionality.Pakages are used to group a set of lasses having a ommon purpose. They are displayedby large retangles with the name of the purpose (i.e. the name of the pakage) in a smallretangle on top of the upper-left orner. Classes belonging to the pakage are visualizedby smaller retangles grouped within. Pakages an be nested.

46 FOONET

Appendix BDoument Type Desription
B.1 Introdution to the Doument Type Doumen-tationThe syntax of a (well-formed) XML doument is strutured by tags that an be projetedinto a tree struture. Eah element in this tree onsists of a start tag, a body and anend tag as well as a set of attributes assoiated with that element. Syntatially, a tag isanything between \<" and \>". Tags are ase sensitive. End tags are marked by a leading\/". The following onstrution is an example for a valid tag:<string length="17"> This is a string </string>Sometimes it makes sense to have an empty tag simply by putting the slash at the endof the tag \<EMPTY_TAG/>". Empty elements usually have a number of attributes to givethem usefulness. The atual names of tag-elements are arbitrary, i.e. an be hosen bythe doument designer (usually guided by their meaning and therefore often denoted as\semanti tags"). All douments begin with a \root of doument" entity, all other entitiesare optional.The Doument Type De�nition (DTD) de�nes the syntax of the XML-doument. It on-tains meta information about valid elements, valid attribute names and values, and in-formation how elements an nest in eah other. One an think of a DTD as de�ning theoverall struture and syntax (i.e. the grammar) of the doument. Typially DTDs arestored in separate douments.Here, the syntax of a DTD is demonstrated with the help of the following example:1 <!DOCTYPE FOONET [23 <!-- ENTITIES HERE -->45 <!ENTITY \% LRK \'Lehrstuhl für Rehnerkommunikation\'>67 <!-- ELEMENTS HERE -->8

48 FOONET9 <!ELEMENT FN_NODE_DB (FN_NODE+, #PCDATA)>10 <!ATTLIST FN_NODE_DB11 date CDATA #IMPLIED12 reator CDATA #REQUIRED13 id ID #REQUIRED >1415 <!ELEMENT FN_LAYER "SDH" | "ETHERNET" | "ATM" | "IP" >1617 <!ELEMENT FN_NODE EMPTY>18 ℄>This doument makes use of the following DTD features:� Root TagThe line 1 of the DTD de�nes the root element of the DTD, i.e. in this exampleall douments onforming to this DTD must be enompassed by \<FOONET>" and\</FOONET>".� CommentsComments an be plaed using the following syntax \<!-- COMMENT -->".� EntitiesEntities are aliases for more omplex funtions. For example, the entity \&LRK;" de-�ned in line 5 represents the term \Lehrstuhl für Rehnerkommunikation"in the doument. Entities an redue the �le size and they prevent error-prone re-peating.� ElementsAn element de�nes a tag and the syntatially orret usage of that tag. For example,line 9 de�nes the tag \<FN_NODE_DB>" and demands that this element must ontainat least one element (denoted by \+") of the type \<FN_NODE>" followed by arbitraryharater data (\#PCDATA") in its body. The rules for building the body of theelement are similar to regular expressions. Line 15 de�nes that the body of the tag\<FN_LAYER>" may ontain one of the terms \SDH", \ETHERNET", \ATM" or \IP".Line 17 de�nes an element with an empty body, i.e. \<FN_NODE/>".� AttributesAttributes allow to assoiate an element with additional parameters. For example,the rule beginning at line 10 allows the element \<FN_NODE_DB>" to have an attribute\date" and requires the attributes \reator" and \id". A valid realization ouldbe for example \<FN_NODE_DB reator="VOLKER" id="SDH">".The following types of attributes are de�ned:� CDATA - any value� ID - unique identi�er within the XML doument� IDREF - referene to an element with a spei� ID� IDREFS - sequene of IDREFs� XPOINTER - a relative path through the XML tree (e.g. a hild or parent)The DTD an be inluded in the XML doument by inserting it after the proessinginstrutions:

B Doument Type Desription 49<?xml version = "1.0" enoding=''UFT-8'' standalone="yes"?><!DOCTYPE ROOT [<!-- HERE COMES THE DTD -->℄><ROOT><!-- HERE COMES THE BODY --></ROOT>or it ould be inluded by referening a �le:<?xml version="1.0" enoding="UTF-8" standalone="no"?><!DOCTYPE FOONET SYSTEM "FOONET.dtd" [℄><FOONET><!-- HERE COMES THE BODY --></FOONET>B.2 FooNet DTDsThe following paragraphs present the doument type desriptions of the in- and output ofFooNet. Please note that this beomes obsolete as soon as the objet-oriented shemataare standardized.B.2.1 Node Database<!--Copyright 1999 V. Fisher --><!-- Network Node DTD --><!ELEMENT FN_NODE_DB (FN_NODE)*><!ATTLIST FN_NODE_DB reator CDATA #IMPLIEDdate CDATA #IMPLIEDnumber CDATA #REQUIRED ><!ELEMENT FN_NODE (FN_COORD , FN_NODE_INFO , FN_NODE_CHILDREN)><!ATTLIST FN_NODE id ID #REQUIREDtype CDATA #REQUIREDhilds CDATA #REQUIREDtier CDATA #REQUIRED ><!ELEMENT FN_COORD (#PCDATA)><!ATTLIST FN_COORD type CDATA #REQUIREDx CDATA #REQUIREDy CDATA #REQUIRED>

50 FOONET<!ELEMENT FN_NODE_INFO (#PCDATA)><!ELEMENT FN_NODE_CHILDREN (FN_NODE_ID)*><!ELEMENT FN_NODE_ID EMPTY><!ATTLIST FN_NODE_ID id ID #REQUIRED >B.2.2 Failities<!--Copyright 1999 V. Fisher --><!-- Network Faility DTD --><!ELEMENT FN_FAC (FN_COST | (FN_PERIOD , FN_FAC* , #PCDATA?))><!ATTLIST FN_FAC type ("N"|"E"|"EVOL") #REQUIREDlayer CDATA #REQUIREDap CDATA #REQUIREDvendor CDATA #REQUIREDid CDATA #REQUIRED ><!ELEMENT FN_COST (FN_PERIOD , #PCDATA?)><!ATTLIST FN_COST setup CDATA #REQUIREDterm CDATA #REQUIREDreo CDATA #REQUIRED ><!ELEMENT FN_PERIOD EMPTY><!ATTLIST FN_PERIOD d CDATA #REQUIREDh CDATA #REQUIREDm CDATA #REQUIREDs CDATA #REQUIRED >B.2.3 Layer<!--Copyright 1999 V. Fisher --><!-- Network Layer --><!ELEMENT FN_LAYER (FN_F_CLIENT, FN_ROUTING, FN_TOPOLOGY)><!ATTLIST FN_LAYER id ID #REQUIRED><!ELEMENT FN_CLIENT (#PCDATA)><!ATTLIST FN_CLIENT name CDATA #REQUIRED><!ELEMENT FN_ROUTING (#PCDATA)><!ATTLIST FN_ROUTING name CDATA #REQUIRED>

B Doument Type Desription 51<!ELEMENT FN_TOPOLOGY (FN_TNODE+ , FN_TEDGE*) ><!ATTLIST FN_TOPOLOGY nodes CDATA #REQUIREDedges CDATA #REQUIRED ><!ELEMENT FN_TNODE (FN_TOP_INFO , #PCDATA) ><!ATTLIST FN_TNODE id IDREF #REQUIRED ><!ELEMENT FN_TEDGE (FN_TOP_INFO , #PCDATA) ><!ATTLIST FN_TEDGE soure IDREF #REQUIREDdest IDREF #REQUIRED ><!ELEMENT FN_TOP_INFO ((FN_FAC | FN_NULL), (FN_ROUTING_INFO | FN_NULL) , #PCDATA) ><!ATTLIST FN_TOP_INFO load CDATA '0' ><!-- NULL-Pointer --><!ELEMENT FN_NULL EMPTY >B.2.4 Commodity<!--Copyright 1999 V. Fisher --><!-- Network Commodity DTD --><!ELEMENT FN_COMMODITY (FN_NODE_ID* , FN_TM*) ><!ATTLIST FN_COMMODITY nr_nodes=CDATA #REQUIREDauthor =CDATA #IMPLIED ><!ELEMENT FN_NODE_ID EMPTY><!ATTLIST FN_NODE_ID id IDREF #REQUIRED ><!ELEMENT FN_TM (#PCDATA , FN_T)*><!ATTLIST FN_TM id IDREF #REQUIRED ><!ELEMENT FN_T EMPTY>

52 FOONET

Appendix CSoftware RequirementsFooNet is developed under LINUX 2.2.7 using the GNU C++ Compiler Suite g-2.95.2(http://www.ygnus.org). The ore design should work with any standard ompliantC++ ompiler that supports namespaes, exeptions and templates.Software requirements for the ore framework are:� STL [Int97℄� GTL (http://www.fmi.uni-passau.de/Graphlet/GTL)� SAX (http://www.jezuk.demon.o.uk/SAX/)Software requirements for the extention framework are:� LEDA (http://www.mpi-sb.mpg.de/LEDA/)� Qt 2.0 (http://www.trollteh.no)

54 FOONET

IndexAggregation, 41Assoiation, 40Bakbone-Node, 3Builder, 13Class, 39Class Library, 10Command, 13Commodity, 18Component Node, 18Composite, 13Composition, 41Constraint, 23Cost, 21DCF, 21De-serialize, 10Deomposition Planning, 4Design Pattern, 11Disounted Cash Flow, 21Doument Type De�nition, 32, 43DTD, 32, 43Dynami Binding, 9End Node, 3, 18Evolutionary Faility, 21Faility, 5, 21Fatory, 12Foreast, 23Framework, 14Generi Programming, 11Hierarhylogial, 3topologial, 3Idiom, 11Inheritane, 9, 41Interfae, 10, 41Inversion of Control, 14Layer, 22

Letter-Envelope, 12Mbps, 6Network Designoverall, 4Network Design Problem, 22Network Node, 18Objetive, 23Observer, 13OOA, 9OOD, 9OOP, 9Pakage, 41Persistene, 10Polymorphism, 9Prototype, 13Reuse, 11Code, 11Design, 11Routing, 22Serialize, 10Soft Constraint, 23Software Reuse, 11Stereotype, 40Strategy, 12Tier, 3, 18Topologial Hierarhy, 22Topology, 22TraÆ Matrix, 18UML, 10Uni�ed Proess, 10Virtual Construtor, 13Virtual Funtions, 9Visitor, 12Warper, 13XLST, 32XSL, 32

