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Generi Separations and Leaf LanguagesMatthias Galota1, Sven Kosub2, and Heribert Vollmer11 Theoretishe Informatik, Julius-Maximilians-Universit�at W�urzburg,Am Hubland, D-97074 W�urzburg, Germany2 Institut f�ur Informatik, Tehnishe Universit�at M�unhen,D-80290 M�unhen, GermanyAbstrat. In the early nineties of the previous entury, leaf languages were introdued asa means for the uniform haraterization of many omplexity lasses, mainly in the rangebetween P (polynomial time) and PSPACE (polynomial spae). It was shown that the sep-arability of two omplexity lasses an be redued to a ombinatorial property of the or-responding de�ning leaf languages. In the present paper, it is shown that every separationobtained in this way holds for every generi orale in the sense of Blum and Impagliazzo.We obtain several onsequenes of this result, regarding, e.g., simultaneous separations anduniversal orales, resoure-bounded generiity, and type-2 omplexity.Keywords: omputational and strutural omplexity, leaf language, orale separation, gene-ri orale, type-2 omplexity theory.1 IntrodutionIn 1975 Baker, Gill, and Solovay onstruted an orale B that separates P from NP:PB 6= NPB [BGS75℄. On the other hand, it is relatively easy to see that there is an oralerelative to whih P and NP ollapse (just pik any PSPACE-omplete language). Hene,the existene of B shows that the P-NP-question is diÆult to solve in the sense that non-relativizing proof tehniques will be neessary. Coniting relativizations like this give asort of independene result : Relativizing arguments will neither be able to prove nor todisprove P 6= NP.Many more suh results have been established in omplexity theory sine; and ertainlyone would like to know whih one of two oniting orales is nearer to the \atual", i.e.,unrelativized, world without an orale. Therefore, one has looked for notions of \typial"orales with the hope that separations for suh a restrited type of orale also hold, ifno orale is present. One type of orales that have been onsidered along this avenue arerandom orales, where membership of words in the orale is essentially determined byindependent fair oin tosses. Bennett and Gill [BG81℄, introduing random orales, estab-lished the random orale hypothesis, stating that every separation relative to a randomorale also holds in the unrelativized ase. Unfortunately, the random orale hypothesis isfalse [CCG+94℄, in fat, it even fails very badly, namely in the ase that both ourringlasses are de�ned with the same mahine model [VW97℄ (tehnially: the leaf languagemodel, see below).Another type of orales that have attrated a lot of attention are generi orales, madepopular in omputational omplexity theory by Blum and Impagliazzo [BI87℄ (but goingbak to muh older developments in mathematial logi). Generi orales are \typial" inthe sense, that they have all the properties that an be enfored by a stage onstrution.Going bak to reursion theory (see, e.g., [Soa87℄), stage onstrutions have been the main



tehnique to obtain orales with ertain desired properties. Baker, Gill, and Solovay alsorelied on this method; thus, a generi orale separates P and NP, but sine it has additionalproperties enfored by other stage onstrutions, it even makes the polynomial hierarhyin�nite. When looking at the harateristi sequene of generi orales, \anything evenremotely possible will happen, and happen in�nitely often" [BI87, p. 120℄. For example,generi orales will have in�nitely often intervals of onseutive zeroes, whose length annotbe bounded reursively. In this sense, generi orales are arbitrary, but not random.Though a orresponding generi orale hypothesis also does not hold [Fos93℄, there area number of very good motivations to study generi orales. We only mention two of them:First, generi relativizations (i.e., relativizations via generi orales) do make statementsabout the real world. Blum and Impagliazzo showed that any language aeptable by a(time- or spae-bounded) Turing mahine with a generi orale an be aepted withoutan orale in essentially the same resoures. This is a \half-sided" positive relativizationresult, sine it implies that if resoure-bounded lasses oinide relative to a generi orale,then they oinide absolutely. Also, Blum and Impagliazzo proved that, if P is not equal toUP under a generi orale, then P 6= NP. (This result atually goes bak to an older paperby Hartmanis and Hemahandra, see [HH90℄.) Hene, generi orales immediately relateto a main motivation for a lot of urrent researh in omplexity theory, namely the P-NP-problem. Seond, generi orales proved to be very useful when looking for simultaneousollapses and separations; a number of suh results an be found in [BI87℄.Around the time of the appearane of random and generi orales in omplexity theory,leaf languages were introdued as a uniform way to haraterize many omplexity lassesbetween P (polynomial time) and PSPACE (polynomial spae) using only one omputationmodel: the nondeterministi Turing mahine running in polynomial time (NPTM). Thisway makes use of haraterizations of lasses in terms of onditions on the values printedat the leaves of omputation trees of NPTMs. A leaf language is essentially nothing elsethan a set of �nite sequenes of suh values. A word w given as input to a NPTM M issaid to be aepted by M (with leaf language A) if the sequene of output values is asequene in A. For example, the lass NP an learly be haraterized by the ondition\there is one leaf in the omputation tree that outputs a 1"; thus the leaf language for NPonsists of all binary sequene with at least one ourrene of the letter 1.Interestingly, there are onnetions between leaf language de�nability and orale sep-arability. Bovet, Cresenzi, and Silvestri [BCS92℄ and Vereshhagin [Ver93℄ showed howthe question of the separability of omplexity lasses by an orale an be expressed equiv-alently by a relation among the haraterizing leaf languages. In this way, the task toonstrut an orale separation often redues to a ombinatorial problem, without the needto perform an atual stage onstrution.In this paper, we relate the question if two lasses an be separated by a generi oraleto a relation among the orresponding leaf languages. In muh the same way as in thejust ited results, the proof of a generi separation now beomes a ombinatorial task. Wealso present a number of onsequenes of our result. For example, we show that all oraleseparations among ertain omplexity lasses (those that relativizably have an arithmetiomplete set) hold simultaneously relative to all generi orales. We further examine rela-tionships between leaf languages and generiity with respet to bounded resoures.Another �eld of appliations of our result onerns type-2 omplexity theory. Type-0objets are numbers or words, type-1 objets are funtions (or relations) of type-0 ob-2



jets, and type-2 objets are funtions (or relations) of type-1 and type-0 objets. Thus, atype-2 funtion takes as input a word/number and a funtion (or relation/language) andoutputs a word/number. Type-2 omputations our in di�erent areas of mathematis andomputer siene, where a funtion is given as a \blak box". For example in numerialmathematis, an algorithm for integration takes as input numbers a; b and a funtion f andomputes R ba f(x)dx. Funtion f is presented as a blak box or orale, that an be queried,and suh an evaluation of f onsumes no resoures. Thus, the natural omputation deviefor type-2 objets are orale Turing mahines. Type-2 objets and their omplexity lasseswere studied already in the seventies by Constable and Mehlhorn [Con73, Meh76℄. In avery interesting reent paper by Cook, Impagliazzo, and Yamakami [CIY97℄, the inlusionrelations between type-2 lasses are studied and related to inlusion relative to a generiorale. Making use of our relation between leaf languages and generi orales, we showthat the leaf language approah ompletely lari�es the inlusion struture among \well-de�nable" type-2 omplexity lasses. This result again redues the question of inlusionamong these lasses to properties of the involved leaf languages, without an orale on-strution. Cook, Impagliazzo, and Yamakami also raised the issue if type-1 and type-2omputations relative to a generi orale oinide. Again, for lasses \well-de�nable" in aertain sense, we exhaustively answer this question.Finally we disuss in our leaf language framework the possibility of separating P andUP by a generi orale (and thus, by the Blum-Impagliazzo ondition, proving P 6= NP).2 PreliminariesGeneriityIn the present paper, we use the notion of generi orales as used by Blum and Impagliazzoin [BI87℄. (It should be remarked that many di�erent notions of generiity have beenstudied in omputational omplexity theory; for an overview the reader might onsult[FFKL93, AS96℄. For a disussion of various onditions of generiity in reursion theory,see [Kur83℄.)We briey repeat the entral de�nitions from [BI87℄. An orale O is a set of naturalnumbers. We will identify suh sets with their harateristi funtions, i.e., an orale isnothing else than a total funtion O : N ! f0; 1g. We will also onsider �nite orales|these are partial funtions v : N ! f0; 1g whose domain, denoted by D(v), is �nite. Inpartiular, �nite orales v whose domain is a �nite pre�x of the natural numbers, i.e., aset f0; 1; : : : ; ng for some n 2 N, will also be identi�ed with �nite binary strings, namelyv(0)v(1) : : : v(n). In this vein, we also identify in�nite orales with in�nite binary strings.The set of all orales with �nite pre�x v thus is v � f0; 1g! .We say that a �nite orale w extends a �nite orale v, in symbols: v v w, if D(v) �D(w) and the funtions v and w agree on D(v). A (total) orale O extends a �nite oralev if the funtions O and v agree on D(v).As mentioned in the introdution, a generi orale is intuitively an orale that in asense has all properties that an be enfored by a stage onstrution. During the stagesof these onstrutions, usually �nite orales are extended. In order to be able to ompletethe next stage, at every stage we must have still enough possibilities for suh an extension.Formally we need a property alled \denseness":3



A set D of �nite orales is dense, if every �nite orale v has an extension to a �niteorale w 2 D.Dense sets D should be thought of as those �nite pre�xes of orales that ful�ll (or,meet) the ondition aimed at during a spei� stage of a usual orale onstrution. Theresult of a stage onstrution as a whole has to meet a ountable number D1;D2; : : : ofsuh onditions. In the separation of P from NP by Baker, Gill, and Solovay, the setsDi onsist of those �nite pre�xes of orales, for whih a set L(O) (depending on oraleO) annot be deided by the i-th deterministi polynomial time orale Turing mahine.Hene, if O meets all Di, the resulting L(O) annot be in PO. From the way L(O) isde�ned in [BGS75℄, however, it is very easy to see that for every O, L(O) 2 NPO, and inthis way we obtain the desired relativized separation.Generi orales now are orales that meet all onditions desribable in a ertain lan-guage. Here, we onsider all onditions that result from sets in the arithmetial hierarhy(see, e.g., [Soa87℄). Hene we de�ne:Let C = fD1;D2; : : :g be a ountable olletion of dense sets of �nite orales. An oraleis C-generi if, for eah i, O has a �nite pre�x wi 2 D. A set D of �nite orales (or a setof �nite words) is arithmeti, if membership in D an be expressed as a �nite-length �rstorder formula with reursive prediates. Let A be the olletion of dense, arithmeti setsof �nite orales (in other words, the lass of all dense sets from the arithmetial hierarhy[Soa87, Chap. VI℄). An orale is generi if it is A-generi.We will mainly onsider generi sets in the sense of A-generi; however we will also beinterested in C-generi orales for a resoure-bounded lass C later.Leaf LanguagesIn the leaf language approah to the haraterization of omplexity lasses, the aeptaneof a word given as input to a nondeterministi polynomial time Turing mahine (NPTM)depends only on the values printed at the leaves of the omputation tree. To be morepreise, let M be a nondeterministi Turing mahine, halting on eah path printing asymbol from an alphabet �, with some order on the nondeterministi hoies. Then,leafstringM (x) is the onatenation of the symbols printed at the leaves of the omputationtree of M on input x (aording to the order of M 's paths indued by the order of M 'shoies).Call a omputation tree of a mahine M balaned, ifM branhes at most binary, all ofits omputation paths have the same length, and moreover, if we identify every path withthe string over f0; 1g desribing the sequene of nondeterministi hoies on this path,then there is some string z suh that all paths y with jyj = jzj and y � z (in lexiographiordering) exist, but no path y with y � z exists.Given now a pair of languages A;R � �� suh that A \ R = ;, this de�nes a om-plexity lass BLeaf(A;R) as follows: A language L belongs to BLeaf(A;R) if there is anNPTM M whose omputation tree is always balaned, suh that for all x, x 2 L =)leafstringM (x) 2 A and x 62 L =) leafstringM (x) 2 R.In the ase that A = R we also simply write BLeaf(A) for BLeaf(A;R). The lasseswhih an be de�ned by a pair (A;A) are syntati lasses in the terminology of Papadim-itriou [Pap94℄, while those whih annot are semanti lasses, i.e., promise lasses.4



This omputation model was introdued by Papadimitriou and Sipser around 1979,and published for the �rst time by Bovet, Cresenzi, and Silvestri, and independently byVereshhagin [BCS92, Ver93℄ (see also the textbook [Pap94, pp. 504f℄).Important for us will be redutions among leaf languages, in partiular:�pltm -redutionsas introdued in [BCS92, Ver93℄. First, we de�ne the lass of those funtions that willonstitute our redutions:A funtion f : �� ! �� is polylog-time bit-omputable if there exist two polynomialtime orale transduers R : �� � N ! � and l : �� ! N suh that, for any x 2 ��,f(x) = Rx(jxj; 1)Rx(jxj; 2) � � �Rx(jxj; lx(jxj)).There are quite \natural" funtions that have this property:Lemma 1. Let M be an balaned NPTM with orale (NPOTM) with input alphabet f0; 1gand orale alphabet �. For x 2 ��, the funtion f(x) =def leafstringMx(jxj) is polylog-timebit-omputable.Proof. The transduer l from the de�nition of �pltm in this ase has to ompute the numberof paths in the balaned omputation tree of M with input jxj and orale x. Sine l itselfhas input jxj and orale x at its disposal, it an simulate M to ahieve this.The transduer R on input (jxj; k) then has to ompute the output of M on ompu-tation path k with input jxj and orale x. Again, sine R an use jxj and x diretly, thesimulation of path k ofM is easy (note that the omputation tree ofM is balaned, henethe bits of the binary representation of k orrespond to the nondeterministi hoies Mon that path). ��pltm -redutions are now de�ned as follows:Let (A;R) and (A0; R0) be two pairs of languages. (A;R) is polylog-time reduible to(A0; R0) (in symbols: (A;R) �pltm (A0; R0)), if there exists a polylog-time bit-omputablefuntion f , suh that f(A) � A0 and f(R) � R0. We note that for the ase R = A andR0 = A0 this is equivalent to x 2 A, f(x) 2 A0.The importane of plt-redutions stems from that fat that these relate to oraleseparations of leaf language de�nable lasses, as proved in [BCS92, Ver93℄. First, if in thede�nition of BLeaf(A;R) above, M is an NPOTM with aess to orale O, we denote theobtained lass by BLeafO(A;R). The main result of [BCS92, Ver93℄ an now be statedformally as:Theorem 2. Let (A;R) and (A0; R0) be pairs of leaf languages. ThenBLeafO(A;R) � BLeafO(A0; R0) for all orales O () (A;R) �pltm (A0; R0):3 Plt-Redutions and Generi OralesOur main result relates the existene of separating generi orales to non-plt-reduibility:Theorem 3. Let A and B be arithmeti sets. ThenBLeafG(A) � BLeafG(B) for all generi orales G () A �pltm B:5



In other words, two omplexity lasses an be separated with a generi orale if andonly if the orresponding leaf languages are not plt-reduible to one-another.The impliation from right to left of ourse immediately follows from Theorem 2.For the left to right impliation, i.e., if A 6�pltm B then there is a generi G suh thatBLeafG(A) 6� BLeafG(B), informally, the proof proeeds as follows: For any orale O, atest language L(O) is de�ned, that is easily seen to be in BLeafO(A0; R0). The desiredorale G is onstruted by a stage onstrution suh that in stage 2m+ 1 the m-th densearithmeti set is met, and in stage 2m it is ensured that the m-th BLeaf(A)-NPOTMdoes not aept L(G). Thus, the odd stages will ensure that G is generi while the evenstages will ensure that BLeafG(A) 6� BLeafG(B). We remark that a similar onstrutionwas used by Foster in [Fos93℄, where a generi orale separating IP from PSPACE wasonstruted. In that paper, the odd stages ensure that the resulting orale is generi whilethe even stages ensure IP 6= PSPACE relative to the onstruted orale.The rest of this setion is devoted to a formal proof of Theorem 3.Proof. It is suÆient to prove the impliation from left to right: Let A and B be arithmetisets and let BLeafG(A) � BLeafG(B) for all generi orales G.We de�ne a funtion Æ : N ! N as Æ(n) = n+ n(n�1)2 . For every orale O we de�ne thetest language L(O) as L(O) =def �x �� O(Æ(x) + 1) : : : O(Æ(x) + x) 2 A	. Then it holdsfor all orales O: L(O) 2 BLeafO(A). By the assumption then also holds for all generiorales G that L(G) 2 BLeafG(B). Let Mk be the k-th mahine in an enumeration of allbalaned NPOTMs. I. e. for all generi orales G there exists a k, suh that x 2 L(G) ,leafstringMGk (x) 2 B for all x.We now laim that in the previous sentene, the two quanti�ers an be swapped.Claim: There exists a balaned NPOTM M̂ suh that for all generi orales G and forall x, x 2 L(G), leafstringM̂G(x) 2 B.We use this mahine M̂ in the de�nition of a �pltm -redution from A to B:Input: a word w, jwj = x, w = w(0) : : : w(x� 1).Output: a word v with w 2 A, v 2 B.Algorithm: Let s =def 0Æ(jxj)w0m be the pre�x of a generi orale G, where m is largeenough to ensure that during a simulation of M̂G(x), all queries to G are positionedin s. Then we have x 2 L(G), w 2 A.We an now onstrut an NPOTM M 0 with input x and orale w, whih simulatesthe behavior of M̂ (this is possible sine we have onstruted G suh that knowledgeabout w suÆes to simulate G). This mahine is also balaned and leafstringM̂G(x) =leafstringM 0w (x). But Lemma 1 showed that v =def leafstringM 0w(x) is then polylogbit omputable. And the laim about M̂ yields x 2 L(G), v 2 B.Combining both equivalenes we get w 2 A, v 2 B.It remains to prove the laim.We make the the following assumption whih is the inverse of our laim and lead it toa ontradition:Assumption Z: For all k there exists an x and a generi orale G suh thatx 2 L(G), leafstringMGk (x) =2 B:6



To ontradit Z we show that the family C = fC0; C1; : : : ; C2m; C2m+1; : : :g with{ C2m =def � z �� 9x : x 2 L(z), leafstringMzm(x) =2 B 	{ C2m+1 =def Dm (the m-th dense arithmeti set)is a family of dense sets. For every C-generi orale G it then holds that{ G is generi (with A and B also the C2m are arithmeti),{ for all m there exists an x with x 2 L(G), leafstringMGm(x) =2 B.This ontradits the fat that for all generi orales G there exists a k, suh that x 2L(G) , leafstringMGk (x) 2 B for all x, whih we have shown at the beginning of theproof. So assumption Z must be wrong.It remains to prove that|under assumption Z|the C2m are dense, i.e. for all oraless there exists a z 2 C2m with s v z.De�ne ŝ suh that s v ŝ and jŝj = Æ(r) for a suitable r. We take a look at the followingAssumption Y: For all orales H 2 ŝ � f0; 1g! and for all x,x 2 L(H), leafstringMHm (x) 2 B:There are two possibilities:1) Y is false:This means there is an H 2 ŝ�f0; 1g! and an x with x 2 L(H), leafstringMHm (x) =2 B.Let x be the lexiographially smallest word, for whih suh an H exists. Let qx be thelexiographially largest orale question, that gets asked to H during the omputationof MHm (x). We de�ne z =def H(0)H(1) : : : H(qx) whih yields ŝ v z and z 2 C2m.2) Y is true:We de�ne an NPOTM M 0 the following way: Let O be a generi orale and x 2 N.Then we de�neleafstringM 0O(x) = 8>>>><>>>>: leafstringMÔm(x) if jŝj � Æ(x);a word from B if jŝj > Æ(x) andO(Æ(x) + 1) : : : O(Æ(x) + x) 2 Aa word from B if jŝj > Æ(x) andO(Æ(x) + 1) : : : O(Æ(x) + x) =2 Awhere Ô =def ŝ�O(Æ(r)+1)O(Æ(r)+2) � � � . ThenM 0 is an NPOTM and for every generiorale O we have x 2 L(O) () leafstringM 0O(x) 2 B, whih violates assumption Z.So, Y annot be true unless Z is false|whih �nishes our proof. �4 ConsequenesUniversal OralesThe following result is well-known from reursion theory, f. [BI87℄:Proposition 4. Let � be any property of orales, desribable with a �rst-order formulawith reursive prediates and a prediate O(x) (denoting membership in the orale), thatdoes not depend on any �nite number of bits in the orale. Then either all generi oraleshave property � or none has. 7



This immediately leads to the following onsequene of Theorem 3:Corollary 5. Let A and B be arithmeti sets. ThenBLeafG(A) 6� BLeafG(B) for all generi orales G () A 6�pltm B:Hene we onlude that any orale separation between lasses de�nable via arithmetileaf languages holds relative to every �xed generi orale.Corollary 6. Let A and B be arithmeti sets, and let bG be a �xed generi orale. ThenBLeafO(A) 6� BLeafO(B) for some orale O() BLeaf bG(A) 6� BLeaf bG(B)() BLeafG(A) 6� BLeafG(B) for all generi orales G:Proof. Immediate from Theorem 2 and Corollary 5. �In partiular, the previous result means that all relativized separations that an beahieved among lasses BLeaf(A) for arithmeti A hold simultaneously.Corollary 7. All orale separations among lasses, that relativizably have an arithmetiomplete set, simultaneously hold relative to the same �xed generi orale bG.Proof. The fat that a lass C an be haraterized as BLeaf(A;R) with R = A, i.e,C = BLeaf(A), is equivalent to the laim that C has a omplete set in all relativizedworlds [BCS92, Theorem 4.2℄. If a lass C has an arithmeti omplete set, then it is learlyharaterizable with an arithmeti leaf language.Hene, every lass that relativizably has an arithmeti omplete set, is a lass of theform BLeaf(A) for arithmeti A. The result now follows immediately from Corollary 6. �In other words, generi orales indue an isomorphism between (the order of) rela-tivized omplexity lasses and (the order of) plt-degrees. As is usual, we de�ne a plt-degreeto be the lass of sets all equivalent with respet to �pltm (observe that �pltm is reexive andtransitive). A plt-degree is said to be arithmeti i� it has an arithmeti representative.Corollary 8. Let bG be any �xed generi orale. Then the family�BLeaf bG(A) �� A is arithmeti 	;partially ordered with respet to set inlusion, is isomorphi to the partial order of allarithmeti plt-degrees.As mentioned in the introdution, Blum and Impagliazzo proved that if two resoure-bounded lasses oinide relative to a generi orale, then they oinide absolutely [BI87℄.We an rephrase Corollary 5, extending their result to all leaf-language de�nable lasses.Corollary 9. Let A and B be arithmeti sets. ThenBLeafG(A) � BLeafG(B) for some generi orale G=) BLeaf(A) � BLeaf(B):8



Resoure-bounded GeneriityAlmost all interesting syntati omplexity lasses between P and PSPACE an be har-aterized using regular leaf languages (the prominent exeption to this is the lass PP, see,e.g., [Vol99℄). For this ase, the relevant lass of dense sets of �nite orales (i.e., the sets C2min the proof of Theorem 3) are easily seen to be deidable in QP =def DTIME�nlogO(1) n�,i.e., quasipolynomial time. Thus, the obtained orale is not only A-generi, but even QP-generi. Hene, the following orollary is proven:Corollary 10. Let A and B be regular sets. ThenBLeafO(A) 6� BLeafO(B) for some orale O() BLeafG(A) 6� BLeafG(B) for some QP-generi orale G:Moreover, when separating a omplexity lass from P, even a P-generi orale in theabove sense is enough.Corollary 11. Let A be a regular set. ThenBLeafO(A) 6� PO for some orale O() BLeafG(A) 6� PG for some P-generi orale G:Type-2 ComplexityIn [CIY97℄, Cook, Impagliazzo, and Yamakami showed that any two omplexity lassessatisfying some general onditions are distint relative to a generi orale if and only if theorresponding type-2 lasses are distint. As we will see, this provides a bridge betweenleaf language theory and type-2 omplexity theory.A type-2 funtion F over �� assigns to all words x 2 �� and sets X � �� a value in��. A type-2 relation is a 0-1-valued type-2 funtion. Let R be any type-2 relation and letC be any lass of type-2 relations. For a �xed set X, we de�ne R[X℄ =def fx j R(x;X) gand C[X℄ =def fR[X℄ j R 2 C g.We say that a type-2 funtion F is polynomial-time omputable if there exist a deter-ministi orale Turing mahineM and polynomial p suh that, given input string x on theinput tape and set X as an orale, M outputs F (x;X) after at most p(jxj) steps, whereeah orale query ounts as only one step.A type-2 relation R is polynomial-time many-one reduible to a type-2 relation S, insymbols R �pm S, i� there exist a type-2 polynomial-time omputable funtion F andtype-2 polynomial-time omputable relation Q suh that for all words x and sets X, itholds that R(x;X) = S(F (x;X); Q[x;X℄), where Q[x;X℄ =def fz j Q(x; z;X)g.The question studied by Cook, Impagliazzo, and Yamakami is what inlusion relationshold among type-2 lasses. For lasses losed under �pm, this was related to relativizedinlusion under a generi orale [CIY97, Theorem 3.2℄:Proposition 12. Let C and D be lasses of omputable type-2 relations and suppose thatC and D are losed under �pm. Then for any generi orale G,C �D () C[G℄ �D[G℄:9



In the leaf language framework, type-2 omplexity lasses an be de�ned in the fol-lowing way. Given two sets A;R � �� with A \ R = ;, the type-2 relation S belongs tothe type-2 lass BLeaf(A;R) if and only if there exists a polynomial-time orale Turingmahine M suh that for all words x and sets X, S(x;X) =) leafstringMX (x) 2 A and:S(x;X) =) leafstringMX (x) 2 R.Sine it an be observed that eah lass BLeaf(A;R) is losed under �pm, we obtainfrom Theorem 3 and Theorem 12 a omplete ombinatorial haraterization of inlusionrelations between reasonably de�nable syntati type-2 lasses.Corollary 13. Let A and B be arithmeti sets. Then the following statements are equiv-alent.(1) A �pltm B.(2) BLeafG(A) � BLeafG(B) for some generi orale G.(3) BLeaf(A)[G℄ � BLeaf(B)[G℄ for some generi orale G.(4) BLeaf(A) � BLeaf(B).Proof. The equivalene of (1) and (2) is just Theorem 3, and the equivalene of (3) and (4)is just Proposition 12. Equivalene of (2) and (3) follows from Theorem 15 given below. �Typially, a type-1 omplexity lass C has a natural type-2 ounterpart C, based onthe same resoures used to de�ne C. Cook, Impagliazzo, and Yamakami [CIY97℄ raisedthe issue of determining for whih lasses C and C, their relativized versions oinide,i.e., CO = C[O℄ for all orales O. Consider for example the lass BPP of all languagesaeptable in polynomial-time by probabilisti Turing mahines with two-sided bounded-error probability. Not every probabilisti mahine has this latter property, hene BPP is apromise lass. The relativized lass BPPO ontains all sets aeptable relative to orale Oby some probabilisti Turing mahine that relative to orale O has bounded-error. On theother hand, for the type-2 lass BPP, we require that our mahines have bounded-errorfor all inputs and for all orales. Hene BPP[O℄ onsists of all sets aeptable relative toorale O by some probabilisti Turing mahine that relative to all orales has bounded-error. Thus, BPP[O℄ � BPPO but the onverse is not lear, and indeed, there is an oraleO for whih BPP[O℄ 6= BPPO [CIY97℄. But for generi orales, the situation hanges.Cook et al. proved that BPP[G℄ = BPPG for any generi orale G. A number of otherlasses behaving like BPP were exhibited in [CIY97℄. A omplete haraterization of thoselasses C with type-2 ounterpart C, that have the property that CG = C[G℄ for generiG, was left open.Using the method of foring we an give an almost exhaustive answer to this questionfor the lasses de�nable by pairs of leaf languages (A;R). The suÆient ondition weobtain in Theorem 15 below, that A[R is o-reursively enumerable, is very general andis satis�ed by all leaf-language de�nable omplexity lasses we know of. In partiular ofourse, omplementary pairs of leaf languages (A = R) satisfy this ondition. Thus, forany A, BLeafG(A) = BLeaf(A)[G℄, proving equivalene of (2) and (3) in Corollary 13.An orale property is a type-2 relation S(x;X) that does not depend on words x butonly on sets X. Therefore, we denote orale properties simply by S(X). We say that a�nite orale v fores an orale property S if S(X) holds for every orale X extending v.The following lemma is well-known { a formal proof an be found in [CIY97, Lemma 2.1℄.10



Lemma 14. Suppose S is a �01 orale property and G is a generi orale. Then S(G)holds if and only if some �nite pre�x of G fores S.Theorem 15. Let (A;R) be a pair of leaf languages suh that A [ R is o-r.e. ThenBLeafG(A;R) = BLeaf(A;R)[G℄ for any generi orale G.Proof. It suÆes to show the inlusion �. Our proof follows the proof of Proposition 4.2in [CIY97℄. Let L 2 BLeafG(A;R), i.e., there exists a balaned NPOTM M suh that forall x, leafstringMG(x) 2 A [ R, and x 2 L , leafstringMG(x) 2 A. We de�ne the oraleproperty Q by Q(X)()def for all x, leafstringMX (x) 2 A [R:Sine A[R is o-r.e., Q is learly a �01 orale-property for whih Q(G) is true. Hene, byLemma 14, there exists a �nite orale v whih is a pre�x of G suh that for all orales Oextending v, Q(O) holds. Now de�ne a type-2 relation S0 byS0(x;X)()def leafstringMXv (x) 2 A;where Xv denotes the orale X with a pre�x of length jvj replaed with v. Clearly, S0 2BLeaf(A;R) and, sine Gv = G, we obtain S0[G℄ = L. Thus, L 2 BLeaf(A;R)[G℄. �5 ConlusionIn the present paper, we related leaf language separations to separations by generi oralesand obtained a number of onsequenes onerning, e.g., simultaneous separations andtype-2 omplexity. It should be remarked that our main result an also be proved foromplexity lasses of funtions. \Leaf languages" for the de�nition of funtion lassesand orale separations were studied in [KSV00℄. The main result from that paper an beextended in the same way as our paper extends the Bovet-Cresenzi-Silvestri-Vereshhaginresult, i.e., two funtion lasses de�nable in a ertain way in the leaf-language frameworkare separable by any orale i� they are separable by a generi orale i� they are separatedby any generi orale. Among the possible appliations of this result we only mention thatrelative to any generi orale, the Embedding Conjeture from [KW00℄ about the strutureof the Boolean hierarhy of NP-partitions holds.The in our point of view most important open question brings us bak to Set. 1, wherewe mentioned that Blum and Impagliazzo related the existene of separating orales tounrelativized separations, most importantly in the ase of the lasses P and NP. Theyproved: If PG 6= UPG relative to some generi orale G, then P 6= NP. Beause it is knownthat P and UP an be separated by some orale, one might hope that, by Corollary 6,there exists a generi separating orale. For this, it would be neessary that UP ould bede�ned by a leaf language. This would lead to a result like \if A is an arithmeti languagesuh that for all orales O, BLeafO(A) = UPO, then P 6= NP." Unfortunately, it is knownthat the prerequisite of this statement does not hold: There is no A suh that relativizably,UP = BLeaf(A) [BCS92℄. To haraterize UP relativizably, we need a leaf language pair(A;R) with R 6= A, and in this ase, our main result (Theorem 3) does not apply.The main obstale in the proof of Theorem 3, when dealing with pairs (A;R), R 6= A,is the denseness ondition for the sets C2m, whih we ould only prove for R = A. Butmaybe there are ertain restritions to general pairs (A;R) suh that then the C2m are still11
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