
T U M
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Generi
 Separations and Leaf LanguagesMatthias Galota1, Sven Kosub2, and Heribert Vollmer11 Theoretis
he Informatik, Julius-Maximilians-Universit�at W�urzburg,Am Hubland, D-97074 W�urzburg, Germany2 Institut f�ur Informatik, Te
hnis
he Universit�at M�un
hen,D-80290 M�un
hen, GermanyAbstra
t. In the early nineties of the previous 
entury, leaf languages were introdu
ed asa means for the uniform 
hara
terization of many 
omplexity 
lasses, mainly in the rangebetween P (polynomial time) and PSPACE (polynomial spa
e). It was shown that the sep-arability of two 
omplexity 
lasses 
an be redu
ed to a 
ombinatorial property of the 
or-responding de�ning leaf languages. In the present paper, it is shown that every separationobtained in this way holds for every generi
 ora
le in the sense of Blum and Impagliazzo.We obtain several 
onsequen
es of this result, regarding, e.g., simultaneous separations anduniversal ora
les, resour
e-bounded generi
ity, and type-2 
omplexity.Keywords: 
omputational and stru
tural 
omplexity, leaf language, ora
le separation, gene-ri
 ora
le, type-2 
omplexity theory.1 Introdu
tionIn 1975 Baker, Gill, and Solovay 
onstru
ted an ora
le B that separates P from NP:PB 6= NPB [BGS75℄. On the other hand, it is relatively easy to see that there is an ora
lerelative to whi
h P and NP 
ollapse (just pi
k any PSPACE-
omplete language). Hen
e,the existen
e of B shows that the P-NP-question is diÆ
ult to solve in the sense that non-relativizing proof te
hniques will be ne
essary. Con
i
ting relativizations like this give asort of independen
e result : Relativizing arguments will neither be able to prove nor todisprove P 6= NP.Many more su
h results have been established in 
omplexity theory sin
e; and 
ertainlyone would like to know whi
h one of two 
on
i
ting ora
les is nearer to the \a
tual", i.e.,unrelativized, world without an ora
le. Therefore, one has looked for notions of \typi
al"ora
les with the hope that separations for su
h a restri
ted type of ora
le also hold, ifno ora
le is present. One type of ora
les that have been 
onsidered along this avenue arerandom ora
les, where membership of words in the ora
le is essentially determined byindependent fair 
oin tosses. Bennett and Gill [BG81℄, introdu
ing random ora
les, estab-lished the random ora
le hypothesis, stating that every separation relative to a randomora
le also holds in the unrelativized 
ase. Unfortunately, the random ora
le hypothesis isfalse [CCG+94℄, in fa
t, it even fails very badly, namely in the 
ase that both o

urring
lasses are de�ned with the same ma
hine model [VW97℄ (te
hni
ally: the leaf languagemodel, see below).Another type of ora
les that have attra
ted a lot of attention are generi
 ora
les, madepopular in 
omputational 
omplexity theory by Blum and Impagliazzo [BI87℄ (but goingba
k to mu
h older developments in mathemati
al logi
). Generi
 ora
les are \typi
al" inthe sense, that they have all the properties that 
an be enfor
ed by a stage 
onstru
tion.Going ba
k to re
ursion theory (see, e.g., [Soa87℄), stage 
onstru
tions have been the main



te
hnique to obtain ora
les with 
ertain desired properties. Baker, Gill, and Solovay alsorelied on this method; thus, a generi
 ora
le separates P and NP, but sin
e it has additionalproperties enfor
ed by other stage 
onstru
tions, it even makes the polynomial hierar
hyin�nite. When looking at the 
hara
teristi
 sequen
e of generi
 ora
les, \anything evenremotely possible will happen, and happen in�nitely often" [BI87, p. 120℄. For example,generi
 ora
les will have in�nitely often intervals of 
onse
utive zeroes, whose length 
annotbe bounded re
ursively. In this sense, generi
 ora
les are arbitrary, but not random.Though a 
orresponding generi
 ora
le hypothesis also does not hold [Fos93℄, there area number of very good motivations to study generi
 ora
les. We only mention two of them:First, generi
 relativizations (i.e., relativizations via generi
 ora
les) do make statementsabout the real world. Blum and Impagliazzo showed that any language a

eptable by a(time- or spa
e-bounded) Turing ma
hine with a generi
 ora
le 
an be a

epted withoutan ora
le in essentially the same resour
es. This is a \half-sided" positive relativizationresult, sin
e it implies that if resour
e-bounded 
lasses 
oin
ide relative to a generi
 ora
le,then they 
oin
ide absolutely. Also, Blum and Impagliazzo proved that, if P is not equal toUP under a generi
 ora
le, then P 6= NP. (This result a
tually goes ba
k to an older paperby Hartmanis and Hema
handra, see [HH90℄.) Hen
e, generi
 ora
les immediately relateto a main motivation for a lot of 
urrent resear
h in 
omplexity theory, namely the P-NP-problem. Se
ond, generi
 ora
les proved to be very useful when looking for simultaneous
ollapses and separations; a number of su
h results 
an be found in [BI87℄.Around the time of the appearan
e of random and generi
 ora
les in 
omplexity theory,leaf languages were introdu
ed as a uniform way to 
hara
terize many 
omplexity 
lassesbetween P (polynomial time) and PSPACE (polynomial spa
e) using only one 
omputationmodel: the nondeterministi
 Turing ma
hine running in polynomial time (NPTM). Thisway makes use of 
hara
terizations of 
lasses in terms of 
onditions on the values printedat the leaves of 
omputation trees of NPTMs. A leaf language is essentially nothing elsethan a set of �nite sequen
es of su
h values. A word w given as input to a NPTM M issaid to be a

epted by M (with leaf language A) if the sequen
e of output values is asequen
e in A. For example, the 
lass NP 
an 
learly be 
hara
terized by the 
ondition\there is one leaf in the 
omputation tree that outputs a 1"; thus the leaf language for NP
onsists of all binary sequen
e with at least one o

urren
e of the letter 1.Interestingly, there are 
onne
tions between leaf language de�nability and ora
le sep-arability. Bovet, Cres
enzi, and Silvestri [BCS92℄ and Veresh
hagin [Ver93℄ showed howthe question of the separability of 
omplexity 
lasses by an ora
le 
an be expressed equiv-alently by a relation among the 
hara
terizing leaf languages. In this way, the task to
onstru
t an ora
le separation often redu
es to a 
ombinatorial problem, without the needto perform an a
tual stage 
onstru
tion.In this paper, we relate the question if two 
lasses 
an be separated by a generi
 ora
leto a relation among the 
orresponding leaf languages. In mu
h the same way as in thejust 
ited results, the proof of a generi
 separation now be
omes a 
ombinatorial task. Wealso present a number of 
onsequen
es of our result. For example, we show that all ora
leseparations among 
ertain 
omplexity 
lasses (those that relativizably have an arithmeti

omplete set) hold simultaneously relative to all generi
 ora
les. We further examine rela-tionships between leaf languages and generi
ity with respe
t to bounded resour
es.Another �eld of appli
ations of our result 
on
erns type-2 
omplexity theory. Type-0obje
ts are numbers or words, type-1 obje
ts are fun
tions (or relations) of type-0 ob-2



je
ts, and type-2 obje
ts are fun
tions (or relations) of type-1 and type-0 obje
ts. Thus, atype-2 fun
tion takes as input a word/number and a fun
tion (or relation/language) andoutputs a word/number. Type-2 
omputations o

ur in di�erent areas of mathemati
s and
omputer s
ien
e, where a fun
tion is given as a \bla
k box". For example in numeri
almathemati
s, an algorithm for integration takes as input numbers a; b and a fun
tion f and
omputes R ba f(x)dx. Fun
tion f is presented as a bla
k box or ora
le, that 
an be queried,and su
h an evaluation of f 
onsumes no resour
es. Thus, the natural 
omputation devi
efor type-2 obje
ts are ora
le Turing ma
hines. Type-2 obje
ts and their 
omplexity 
lasseswere studied already in the seventies by Constable and Mehlhorn [Con73, Meh76℄. In avery interesting re
ent paper by Cook, Impagliazzo, and Yamakami [CIY97℄, the in
lusionrelations between type-2 
lasses are studied and related to in
lusion relative to a generi
ora
le. Making use of our relation between leaf languages and generi
 ora
les, we showthat the leaf language approa
h 
ompletely 
lari�es the in
lusion stru
ture among \well-de�nable" type-2 
omplexity 
lasses. This result again redu
es the question of in
lusionamong these 
lasses to properties of the involved leaf languages, without an ora
le 
on-stru
tion. Cook, Impagliazzo, and Yamakami also raised the issue if type-1 and type-2
omputations relative to a generi
 ora
le 
oin
ide. Again, for 
lasses \well-de�nable" in a
ertain sense, we exhaustively answer this question.Finally we dis
uss in our leaf language framework the possibility of separating P andUP by a generi
 ora
le (and thus, by the Blum-Impagliazzo 
ondition, proving P 6= NP).2 PreliminariesGeneri
ityIn the present paper, we use the notion of generi
 ora
les as used by Blum and Impagliazzoin [BI87℄. (It should be remarked that many di�erent notions of generi
ity have beenstudied in 
omputational 
omplexity theory; for an overview the reader might 
onsult[FFKL93, AS96℄. For a dis
ussion of various 
onditions of generi
ity in re
ursion theory,see [Kur83℄.)We brie
y repeat the 
entral de�nitions from [BI87℄. An ora
le O is a set of naturalnumbers. We will identify su
h sets with their 
hara
teristi
 fun
tions, i.e., an ora
le isnothing else than a total fun
tion O : N ! f0; 1g. We will also 
onsider �nite ora
les|these are partial fun
tions v : N ! f0; 1g whose domain, denoted by D(v), is �nite. Inparti
ular, �nite ora
les v whose domain is a �nite pre�x of the natural numbers, i.e., aset f0; 1; : : : ; ng for some n 2 N, will also be identi�ed with �nite binary strings, namelyv(0)v(1) : : : v(n). In this vein, we also identify in�nite ora
les with in�nite binary strings.The set of all ora
les with �nite pre�x v thus is v � f0; 1g! .We say that a �nite ora
le w extends a �nite ora
le v, in symbols: v v w, if D(v) �D(w) and the fun
tions v and w agree on D(v). A (total) ora
le O extends a �nite ora
lev if the fun
tions O and v agree on D(v).As mentioned in the introdu
tion, a generi
 ora
le is intuitively an ora
le that in asense has all properties that 
an be enfor
ed by a stage 
onstru
tion. During the stagesof these 
onstru
tions, usually �nite ora
les are extended. In order to be able to 
ompletethe next stage, at every stage we must have still enough possibilities for su
h an extension.Formally we need a property 
alled \denseness":3



A set D of �nite ora
les is dense, if every �nite ora
le v has an extension to a �niteora
le w 2 D.Dense sets D should be thought of as those �nite pre�xes of ora
les that ful�ll (or,meet) the 
ondition aimed at during a spe
i�
 stage of a usual ora
le 
onstru
tion. Theresult of a stage 
onstru
tion as a whole has to meet a 
ountable number D1;D2; : : : ofsu
h 
onditions. In the separation of P from NP by Baker, Gill, and Solovay, the setsDi 
onsist of those �nite pre�xes of ora
les, for whi
h a set L(O) (depending on ora
leO) 
annot be de
ided by the i-th deterministi
 polynomial time ora
le Turing ma
hine.Hen
e, if O meets all Di, the resulting L(O) 
annot be in PO. From the way L(O) isde�ned in [BGS75℄, however, it is very easy to see that for every O, L(O) 2 NPO, and inthis way we obtain the desired relativized separation.Generi
 ora
les now are ora
les that meet all 
onditions des
ribable in a 
ertain lan-guage. Here, we 
onsider all 
onditions that result from sets in the arithmeti
al hierar
hy(see, e.g., [Soa87℄). Hen
e we de�ne:Let C = fD1;D2; : : :g be a 
ountable 
olle
tion of dense sets of �nite ora
les. An ora
leis C-generi
 if, for ea
h i, O has a �nite pre�x wi 2 D. A set D of �nite ora
les (or a setof �nite words) is arithmeti
, if membership in D 
an be expressed as a �nite-length �rstorder formula with re
ursive predi
ates. Let A be the 
olle
tion of dense, arithmeti
 setsof �nite ora
les (in other words, the 
lass of all dense sets from the arithmeti
al hierar
hy[Soa87, Chap. VI℄). An ora
le is generi
 if it is A-generi
.We will mainly 
onsider generi
 sets in the sense of A-generi
; however we will also beinterested in C-generi
 ora
les for a resour
e-bounded 
lass C later.Leaf LanguagesIn the leaf language approa
h to the 
hara
terization of 
omplexity 
lasses, the a

eptan
eof a word given as input to a nondeterministi
 polynomial time Turing ma
hine (NPTM)depends only on the values printed at the leaves of the 
omputation tree. To be morepre
ise, let M be a nondeterministi
 Turing ma
hine, halting on ea
h path printing asymbol from an alphabet �, with some order on the nondeterministi
 
hoi
es. Then,leafstringM (x) is the 
on
atenation of the symbols printed at the leaves of the 
omputationtree of M on input x (a

ording to the order of M 's paths indu
ed by the order of M 's
hoi
es).Call a 
omputation tree of a ma
hine M balan
ed, ifM bran
hes at most binary, all ofits 
omputation paths have the same length, and moreover, if we identify every path withthe string over f0; 1g des
ribing the sequen
e of nondeterministi
 
hoi
es on this path,then there is some string z su
h that all paths y with jyj = jzj and y � z (in lexi
ographi
ordering) exist, but no path y with y � z exists.Given now a pair of languages A;R � �� su
h that A \ R = ;, this de�nes a 
om-plexity 
lass BLeaf(A;R) as follows: A language L belongs to BLeaf(A;R) if there is anNPTM M whose 
omputation tree is always balan
ed, su
h that for all x, x 2 L =)leafstringM (x) 2 A and x 62 L =) leafstringM (x) 2 R.In the 
ase that A = R we also simply write BLeaf(A) for BLeaf(A;R). The 
lasseswhi
h 
an be de�ned by a pair (A;A) are synta
ti
 
lasses in the terminology of Papadim-itriou [Pap94℄, while those whi
h 
annot are semanti
 
lasses, i.e., promise 
lasses.4



This 
omputation model was introdu
ed by Papadimitriou and Sipser around 1979,and published for the �rst time by Bovet, Cres
enzi, and Silvestri, and independently byVeresh
hagin [BCS92, Ver93℄ (see also the textbook [Pap94, pp. 504f℄).Important for us will be redu
tions among leaf languages, in parti
ular:�pltm -redu
tionsas introdu
ed in [BCS92, Ver93℄. First, we de�ne the 
lass of those fun
tions that will
onstitute our redu
tions:A fun
tion f : �� ! �� is polylog-time bit-
omputable if there exist two polynomialtime ora
le transdu
ers R : �� � N ! � and l : �� ! N su
h that, for any x 2 ��,f(x) = Rx(jxj; 1)Rx(jxj; 2) � � �Rx(jxj; lx(jxj)).There are quite \natural" fun
tions that have this property:Lemma 1. Let M be an balan
ed NPTM with ora
le (NPOTM) with input alphabet f0; 1gand ora
le alphabet �. For x 2 ��, the fun
tion f(x) =def leafstringMx(jxj) is polylog-timebit-
omputable.Proof. The transdu
er l from the de�nition of �pltm in this 
ase has to 
ompute the numberof paths in the balan
ed 
omputation tree of M with input jxj and ora
le x. Sin
e l itselfhas input jxj and ora
le x at its disposal, it 
an simulate M to a
hieve this.The transdu
er R on input (jxj; k) then has to 
ompute the output of M on 
ompu-tation path k with input jxj and ora
le x. Again, sin
e R 
an use jxj and x dire
tly, thesimulation of path k ofM is easy (note that the 
omputation tree ofM is balan
ed, hen
ethe bits of the binary representation of k 
orrespond to the nondeterministi
 
hoi
es Mon that path). ��pltm -redu
tions are now de�ned as follows:Let (A;R) and (A0; R0) be two pairs of languages. (A;R) is polylog-time redu
ible to(A0; R0) (in symbols: (A;R) �pltm (A0; R0)), if there exists a polylog-time bit-
omputablefun
tion f , su
h that f(A) � A0 and f(R) � R0. We note that for the 
ase R = A andR0 = A0 this is equivalent to x 2 A, f(x) 2 A0.The importan
e of plt-redu
tions stems from that fa
t that these relate to ora
leseparations of leaf language de�nable 
lasses, as proved in [BCS92, Ver93℄. First, if in thede�nition of BLeaf(A;R) above, M is an NPOTM with a

ess to ora
le O, we denote theobtained 
lass by BLeafO(A;R). The main result of [BCS92, Ver93℄ 
an now be statedformally as:Theorem 2. Let (A;R) and (A0; R0) be pairs of leaf languages. ThenBLeafO(A;R) � BLeafO(A0; R0) for all ora
les O () (A;R) �pltm (A0; R0):3 Plt-Redu
tions and Generi
 Ora
lesOur main result relates the existen
e of separating generi
 ora
les to non-plt-redu
ibility:Theorem 3. Let A and B be arithmeti
 sets. ThenBLeafG(A) � BLeafG(B) for all generi
 ora
les G () A �pltm B:5



In other words, two 
omplexity 
lasses 
an be separated with a generi
 ora
le if andonly if the 
orresponding leaf languages are not plt-redu
ible to one-another.The impli
ation from right to left of 
ourse immediately follows from Theorem 2.For the left to right impli
ation, i.e., if A 6�pltm B then there is a generi
 G su
h thatBLeafG(A) 6� BLeafG(B), informally, the proof pro
eeds as follows: For any ora
le O, atest language L(O) is de�ned, that is easily seen to be in BLeafO(A0; R0). The desiredora
le G is 
onstru
ted by a stage 
onstru
tion su
h that in stage 2m+ 1 the m-th densearithmeti
 set is met, and in stage 2m it is ensured that the m-th BLeaf(A)-NPOTMdoes not a

ept L(G). Thus, the odd stages will ensure that G is generi
 while the evenstages will ensure that BLeafG(A) 6� BLeafG(B). We remark that a similar 
onstru
tionwas used by Foster in [Fos93℄, where a generi
 ora
le separating IP from PSPACE was
onstru
ted. In that paper, the odd stages ensure that the resulting ora
le is generi
 whilethe even stages ensure IP 6= PSPACE relative to the 
onstru
ted ora
le.The rest of this se
tion is devoted to a formal proof of Theorem 3.Proof. It is suÆ
ient to prove the impli
ation from left to right: Let A and B be arithmeti
sets and let BLeafG(A) � BLeafG(B) for all generi
 ora
les G.We de�ne a fun
tion Æ : N ! N as Æ(n) = n+ n(n�1)2 . For every ora
le O we de�ne thetest language L(O) as L(O) =def �x �� O(Æ(x) + 1) : : : O(Æ(x) + x) 2 A	. Then it holdsfor all ora
les O: L(O) 2 BLeafO(A). By the assumption then also holds for all generi
ora
les G that L(G) 2 BLeafG(B). Let Mk be the k-th ma
hine in an enumeration of allbalan
ed NPOTMs. I. e. for all generi
 ora
les G there exists a k, su
h that x 2 L(G) ,leafstringMGk (x) 2 B for all x.We now 
laim that in the previous senten
e, the two quanti�ers 
an be swapped.Claim: There exists a balan
ed NPOTM M̂ su
h that for all generi
 ora
les G and forall x, x 2 L(G), leafstringM̂G(x) 2 B.We use this ma
hine M̂ in the de�nition of a �pltm -redu
tion from A to B:Input: a word w, jwj = x, w = w(0) : : : w(x� 1).Output: a word v with w 2 A, v 2 B.Algorithm: Let s =def 0Æ(jxj)w0m be the pre�x of a generi
 ora
le G, where m is largeenough to ensure that during a simulation of M̂G(x), all queries to G are positionedin s. Then we have x 2 L(G), w 2 A.We 
an now 
onstru
t an NPOTM M 0 with input x and ora
le w, whi
h simulatesthe behavior of M̂ (this is possible sin
e we have 
onstru
ted G su
h that knowledgeabout w suÆ
es to simulate G). This ma
hine is also balan
ed and leafstringM̂G(x) =leafstringM 0w (x). But Lemma 1 showed that v =def leafstringM 0w(x) is then polylogbit 
omputable. And the 
laim about M̂ yields x 2 L(G), v 2 B.Combining both equivalen
es we get w 2 A, v 2 B.It remains to prove the 
laim.We make the the following assumption whi
h is the inverse of our 
laim and lead it toa 
ontradi
tion:Assumption Z: For all k there exists an x and a generi
 ora
le G su
h thatx 2 L(G), leafstringMGk (x) =2 B:6



To 
ontradi
t Z we show that the family C = fC0; C1; : : : ; C2m; C2m+1; : : :g with{ C2m =def � z �� 9x : x 2 L(z), leafstringMzm(x) =2 B 	{ C2m+1 =def Dm (the m-th dense arithmeti
 set)is a family of dense sets. For every C-generi
 ora
le G it then holds that{ G is generi
 (with A and B also the C2m are arithmeti
),{ for all m there exists an x with x 2 L(G), leafstringMGm(x) =2 B.This 
ontradi
ts the fa
t that for all generi
 ora
les G there exists a k, su
h that x 2L(G) , leafstringMGk (x) 2 B for all x, whi
h we have shown at the beginning of theproof. So assumption Z must be wrong.It remains to prove that|under assumption Z|the C2m are dense, i.e. for all ora
less there exists a z 2 C2m with s v z.De�ne ŝ su
h that s v ŝ and jŝj = Æ(r) for a suitable r. We take a look at the followingAssumption Y: For all ora
les H 2 ŝ � f0; 1g! and for all x,x 2 L(H), leafstringMHm (x) 2 B:There are two possibilities:1) Y is false:This means there is an H 2 ŝ�f0; 1g! and an x with x 2 L(H), leafstringMHm (x) =2 B.Let x be the lexi
ographi
ally smallest word, for whi
h su
h an H exists. Let qx be thelexi
ographi
ally largest ora
le question, that gets asked to H during the 
omputationof MHm (x). We de�ne z =def H(0)H(1) : : : H(qx) whi
h yields ŝ v z and z 2 C2m.2) Y is true:We de�ne an NPOTM M 0 the following way: Let O be a generi
 ora
le and x 2 N.Then we de�neleafstringM 0O(x) = 8>>>><>>>>: leafstringMÔm(x) if jŝj � Æ(x);a word from B if jŝj > Æ(x) andO(Æ(x) + 1) : : : O(Æ(x) + x) 2 Aa word from B if jŝj > Æ(x) andO(Æ(x) + 1) : : : O(Æ(x) + x) =2 Awhere Ô =def ŝ�O(Æ(r)+1)O(Æ(r)+2) � � � . ThenM 0 is an NPOTM and for every generi
ora
le O we have x 2 L(O) () leafstringM 0O(x) 2 B, whi
h violates assumption Z.So, Y 
annot be true unless Z is false|whi
h �nishes our proof. �4 Consequen
esUniversal Ora
lesThe following result is well-known from re
ursion theory, 
f. [BI87℄:Proposition 4. Let � be any property of ora
les, des
ribable with a �rst-order formulawith re
ursive predi
ates and a predi
ate O(x) (denoting membership in the ora
le), thatdoes not depend on any �nite number of bits in the ora
le. Then either all generi
 ora
leshave property � or none has. 7



This immediately leads to the following 
onsequen
e of Theorem 3:Corollary 5. Let A and B be arithmeti
 sets. ThenBLeafG(A) 6� BLeafG(B) for all generi
 ora
les G () A 6�pltm B:Hen
e we 
on
lude that any ora
le separation between 
lasses de�nable via arithmeti
leaf languages holds relative to every �xed generi
 ora
le.Corollary 6. Let A and B be arithmeti
 sets, and let bG be a �xed generi
 ora
le. ThenBLeafO(A) 6� BLeafO(B) for some ora
le O() BLeaf bG(A) 6� BLeaf bG(B)() BLeafG(A) 6� BLeafG(B) for all generi
 ora
les G:Proof. Immediate from Theorem 2 and Corollary 5. �In parti
ular, the previous result means that all relativized separations that 
an bea
hieved among 
lasses BLeaf(A) for arithmeti
 A hold simultaneously.Corollary 7. All ora
le separations among 
lasses, that relativizably have an arithmeti

omplete set, simultaneously hold relative to the same �xed generi
 ora
le bG.Proof. The fa
t that a 
lass C 
an be 
hara
terized as BLeaf(A;R) with R = A, i.e,C = BLeaf(A), is equivalent to the 
laim that C has a 
omplete set in all relativizedworlds [BCS92, Theorem 4.2℄. If a 
lass C has an arithmeti
 
omplete set, then it is 
learly
hara
terizable with an arithmeti
 leaf language.Hen
e, every 
lass that relativizably has an arithmeti
 
omplete set, is a 
lass of theform BLeaf(A) for arithmeti
 A. The result now follows immediately from Corollary 6. �In other words, generi
 ora
les indu
e an isomorphism between (the order of) rela-tivized 
omplexity 
lasses and (the order of) plt-degrees. As is usual, we de�ne a plt-degreeto be the 
lass of sets all equivalent with respe
t to �pltm (observe that �pltm is re
exive andtransitive). A plt-degree is said to be arithmeti
 i� it has an arithmeti
 representative.Corollary 8. Let bG be any �xed generi
 ora
le. Then the family�BLeaf bG(A) �� A is arithmeti
 	;partially ordered with respe
t to set in
lusion, is isomorphi
 to the partial order of allarithmeti
 plt-degrees.As mentioned in the introdu
tion, Blum and Impagliazzo proved that if two resour
e-bounded 
lasses 
oin
ide relative to a generi
 ora
le, then they 
oin
ide absolutely [BI87℄.We 
an rephrase Corollary 5, extending their result to all leaf-language de�nable 
lasses.Corollary 9. Let A and B be arithmeti
 sets. ThenBLeafG(A) � BLeafG(B) for some generi
 ora
le G=) BLeaf(A) � BLeaf(B):8



Resour
e-bounded Generi
ityAlmost all interesting synta
ti
 
omplexity 
lasses between P and PSPACE 
an be 
har-a
terized using regular leaf languages (the prominent ex
eption to this is the 
lass PP, see,e.g., [Vol99℄). For this 
ase, the relevant 
lass of dense sets of �nite ora
les (i.e., the sets C2min the proof of Theorem 3) are easily seen to be de
idable in QP =def DTIME�nlogO(1) n�,i.e., quasipolynomial time. Thus, the obtained ora
le is not only A-generi
, but even QP-generi
. Hen
e, the following 
orollary is proven:Corollary 10. Let A and B be regular sets. ThenBLeafO(A) 6� BLeafO(B) for some ora
le O() BLeafG(A) 6� BLeafG(B) for some QP-generi
 ora
le G:Moreover, when separating a 
omplexity 
lass from P, even a P-generi
 ora
le in theabove sense is enough.Corollary 11. Let A be a regular set. ThenBLeafO(A) 6� PO for some ora
le O() BLeafG(A) 6� PG for some P-generi
 ora
le G:Type-2 ComplexityIn [CIY97℄, Cook, Impagliazzo, and Yamakami showed that any two 
omplexity 
lassessatisfying some general 
onditions are distin
t relative to a generi
 ora
le if and only if the
orresponding type-2 
lasses are distin
t. As we will see, this provides a bridge betweenleaf language theory and type-2 
omplexity theory.A type-2 fun
tion F over �� assigns to all words x 2 �� and sets X � �� a value in��. A type-2 relation is a 0-1-valued type-2 fun
tion. Let R be any type-2 relation and letC be any 
lass of type-2 relations. For a �xed set X, we de�ne R[X℄ =def fx j R(x;X) gand C[X℄ =def fR[X℄ j R 2 C g.We say that a type-2 fun
tion F is polynomial-time 
omputable if there exist a deter-ministi
 ora
le Turing ma
hineM and polynomial p su
h that, given input string x on theinput tape and set X as an ora
le, M outputs F (x;X) after at most p(jxj) steps, whereea
h ora
le query 
ounts as only one step.A type-2 relation R is polynomial-time many-one redu
ible to a type-2 relation S, insymbols R �pm S, i� there exist a type-2 polynomial-time 
omputable fun
tion F andtype-2 polynomial-time 
omputable relation Q su
h that for all words x and sets X, itholds that R(x;X) = S(F (x;X); Q[x;X℄), where Q[x;X℄ =def fz j Q(x; z;X)g.The question studied by Cook, Impagliazzo, and Yamakami is what in
lusion relationshold among type-2 
lasses. For 
lasses 
losed under �pm, this was related to relativizedin
lusion under a generi
 ora
le [CIY97, Theorem 3.2℄:Proposition 12. Let C and D be 
lasses of 
omputable type-2 relations and suppose thatC and D are 
losed under �pm. Then for any generi
 ora
le G,C �D () C[G℄ �D[G℄:9



In the leaf language framework, type-2 
omplexity 
lasses 
an be de�ned in the fol-lowing way. Given two sets A;R � �� with A \ R = ;, the type-2 relation S belongs tothe type-2 
lass BLeaf(A;R) if and only if there exists a polynomial-time ora
le Turingma
hine M su
h that for all words x and sets X, S(x;X) =) leafstringMX (x) 2 A and:S(x;X) =) leafstringMX (x) 2 R.Sin
e it 
an be observed that ea
h 
lass BLeaf(A;R) is 
losed under �pm, we obtainfrom Theorem 3 and Theorem 12 a 
omplete 
ombinatorial 
hara
terization of in
lusionrelations between reasonably de�nable synta
ti
 type-2 
lasses.Corollary 13. Let A and B be arithmeti
 sets. Then the following statements are equiv-alent.(1) A �pltm B.(2) BLeafG(A) � BLeafG(B) for some generi
 ora
le G.(3) BLeaf(A)[G℄ � BLeaf(B)[G℄ for some generi
 ora
le G.(4) BLeaf(A) � BLeaf(B).Proof. The equivalen
e of (1) and (2) is just Theorem 3, and the equivalen
e of (3) and (4)is just Proposition 12. Equivalen
e of (2) and (3) follows from Theorem 15 given below. �Typi
ally, a type-1 
omplexity 
lass C has a natural type-2 
ounterpart C, based onthe same resour
es used to de�ne C. Cook, Impagliazzo, and Yamakami [CIY97℄ raisedthe issue of determining for whi
h 
lasses C and C, their relativized versions 
oin
ide,i.e., CO = C[O℄ for all ora
les O. Consider for example the 
lass BPP of all languagesa

eptable in polynomial-time by probabilisti
 Turing ma
hines with two-sided bounded-error probability. Not every probabilisti
 ma
hine has this latter property, hen
e BPP is apromise 
lass. The relativized 
lass BPPO 
ontains all sets a

eptable relative to ora
le Oby some probabilisti
 Turing ma
hine that relative to ora
le O has bounded-error. On theother hand, for the type-2 
lass BPP, we require that our ma
hines have bounded-errorfor all inputs and for all ora
les. Hen
e BPP[O℄ 
onsists of all sets a

eptable relative toora
le O by some probabilisti
 Turing ma
hine that relative to all ora
les has bounded-error. Thus, BPP[O℄ � BPPO but the 
onverse is not 
lear, and indeed, there is an ora
leO for whi
h BPP[O℄ 6= BPPO [CIY97℄. But for generi
 ora
les, the situation 
hanges.Cook et al. proved that BPP[G℄ = BPPG for any generi
 ora
le G. A number of other
lasses behaving like BPP were exhibited in [CIY97℄. A 
omplete 
hara
terization of those
lasses C with type-2 
ounterpart C, that have the property that CG = C[G℄ for generi
G, was left open.Using the method of for
ing we 
an give an almost exhaustive answer to this questionfor the 
lasses de�nable by pairs of leaf languages (A;R). The suÆ
ient 
ondition weobtain in Theorem 15 below, that A[R is 
o-re
ursively enumerable, is very general andis satis�ed by all leaf-language de�nable 
omplexity 
lasses we know of. In parti
ular of
ourse, 
omplementary pairs of leaf languages (A = R) satisfy this 
ondition. Thus, forany A, BLeafG(A) = BLeaf(A)[G℄, proving equivalen
e of (2) and (3) in Corollary 13.An ora
le property is a type-2 relation S(x;X) that does not depend on words x butonly on sets X. Therefore, we denote ora
le properties simply by S(X). We say that a�nite ora
le v for
es an ora
le property S if S(X) holds for every ora
le X extending v.The following lemma is well-known { a formal proof 
an be found in [CIY97, Lemma 2.1℄.10



Lemma 14. Suppose S is a �01 ora
le property and G is a generi
 ora
le. Then S(G)holds if and only if some �nite pre�x of G for
es S.Theorem 15. Let (A;R) be a pair of leaf languages su
h that A [ R is 
o-r.e. ThenBLeafG(A;R) = BLeaf(A;R)[G℄ for any generi
 ora
le G.Proof. It suÆ
es to show the in
lusion �. Our proof follows the proof of Proposition 4.2in [CIY97℄. Let L 2 BLeafG(A;R), i.e., there exists a balan
ed NPOTM M su
h that forall x, leafstringMG(x) 2 A [ R, and x 2 L , leafstringMG(x) 2 A. We de�ne the ora
leproperty Q by Q(X)()def for all x, leafstringMX (x) 2 A [R:Sin
e A[R is 
o-r.e., Q is 
learly a �01 ora
le-property for whi
h Q(G) is true. Hen
e, byLemma 14, there exists a �nite ora
le v whi
h is a pre�x of G su
h that for all ora
les Oextending v, Q(O) holds. Now de�ne a type-2 relation S0 byS0(x;X)()def leafstringMXv (x) 2 A;where Xv denotes the ora
le X with a pre�x of length jvj repla
ed with v. Clearly, S0 2BLeaf(A;R) and, sin
e Gv = G, we obtain S0[G℄ = L. Thus, L 2 BLeaf(A;R)[G℄. �5 Con
lusionIn the present paper, we related leaf language separations to separations by generi
 ora
lesand obtained a number of 
onsequen
es 
on
erning, e.g., simultaneous separations andtype-2 
omplexity. It should be remarked that our main result 
an also be proved for
omplexity 
lasses of fun
tions. \Leaf languages" for the de�nition of fun
tion 
lassesand ora
le separations were studied in [KSV00℄. The main result from that paper 
an beextended in the same way as our paper extends the Bovet-Cres
enzi-Silvestri-Veresh
haginresult, i.e., two fun
tion 
lasses de�nable in a 
ertain way in the leaf-language frameworkare separable by any ora
le i� they are separable by a generi
 ora
le i� they are separatedby any generi
 ora
le. Among the possible appli
ations of this result we only mention thatrelative to any generi
 ora
le, the Embedding Conje
ture from [KW00℄ about the stru
tureof the Boolean hierar
hy of NP-partitions holds.The in our point of view most important open question brings us ba
k to Se
t. 1, wherewe mentioned that Blum and Impagliazzo related the existen
e of separating ora
les tounrelativized separations, most importantly in the 
ase of the 
lasses P and NP. Theyproved: If PG 6= UPG relative to some generi
 ora
le G, then P 6= NP. Be
ause it is knownthat P and UP 
an be separated by some ora
le, one might hope that, by Corollary 6,there exists a generi
 separating ora
le. For this, it would be ne
essary that UP 
ould bede�ned by a leaf language. This would lead to a result like \if A is an arithmeti
 languagesu
h that for all ora
les O, BLeafO(A) = UPO, then P 6= NP." Unfortunately, it is knownthat the prerequisite of this statement does not hold: There is no A su
h that relativizably,UP = BLeaf(A) [BCS92℄. To 
hara
terize UP relativizably, we need a leaf language pair(A;R) with R 6= A, and in this 
ase, our main result (Theorem 3) does not apply.The main obsta
le in the proof of Theorem 3, when dealing with pairs (A;R), R 6= A,is the denseness 
ondition for the sets C2m, whi
h we 
ould only prove for R = A. Butmaybe there are 
ertain restri
tions to general pairs (A;R) su
h that then the C2m are still11



dense, and maybe even the pair for UP ful�lls these restri
tions. The main open issue thusis to �nd suÆ
ient 
onditions that leaf language pairs have to satisfy su
h that Theorem 3still holds. Interesting in this 
ontext is a result by Fortnow and Yamakami [FY96℄ whoproved a separation of UPNP and PNP relative to a generi
 ora
le; but again, UPNP doesnot seem to have an obvious 
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