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Abstract. In the early nineties of the previous century, leaf languages were introduced as
a means for the uniform characterization of many complexity classes, mainly in the range
between P (polynomial time) and PSPACE (polynomial space). It was shown that the sep-
arability of two complexity classes can be reduced to a combinatorial property of the cor-
responding defining leaf languages. In the present paper, it is shown that every separation
obtained in this way holds for every generic oracle in the sense of Blum and Impagliazzo.
We obtain several consequences of this result, regarding, e.g., simultaneous separations and
universal oracles, resource-bounded genericity, and type-2 complexity.

Keywords: computational and structural complexity, leaf language, oracle separation, gene-
ric oracle, type-2 complexity theory.

1 Introduction

In 1975 Baker, Gill, and Solovay constructed an oracle B that separates P from NP:
PB £ NP? [BGS75]. On the other hand, it is relatively easy to see that there is an oracle
relative to which P and NP collapse (just pick any PSPACE-complete language). Hence,
the existence of B shows that the P-NP-question is difficult to solve in the sense that non-
relativizing proof techniques will be necessary. Conflicting relativizations like this give a
sort of independence result: Relativizing arguments will neither be able to prove nor to
disprove P # NP.

Many more such results have been established in complexity theory since; and certainly
one would like to know which one of two conflicting oracles is nearer to the “actual”, i.e.,
unrelativized, world without an oracle. Therefore, one has looked for notions of “typical”
oracles with the hope that separations for such a restricted type of oracle also hold, if
no oracle is present. One type of oracles that have been considered along this avenue are
random oracles, where membership of words in the oracle is essentially determined by
independent fair coin tosses. Bennett and Gill [BG81], introducing random oracles, estab-
lished the random oracle hypothesis, stating that every separation relative to a random
oracle also holds in the unrelativized case. Unfortunately, the random oracle hypothesis is
false [CCGT94], in fact, it even fails very badly, namely in the case that both occurring
classes are defined with the same machine model [VW97] (technically: the leaf language
model, see below).

Another type of oracles that have attracted a lot of attention are generic oracles, made
popular in computational complexity theory by Blum and Impagliazzo [BI87] (but going
back to much older developments in mathematical logic). Generic oracles are “typical” in
the sense, that they have all the properties that can be enforced by a stage construction.
Going back to recursion theory (see, e.g., [S0a87]), stage constructions have been the main



technique to obtain oracles with certain desired properties. Baker, Gill, and Solovay also
relied on this method; thus, a generic oracle separates P and NP, but since it has additional
properties enforced by other stage constructions, it even makes the polynomial hierarchy
infinite. When looking at the characteristic sequence of generic oracles, “anything even
remotely possible will happen, and happen infinitely often” [BI87, p. 120]. For example,
generic oracles will have infinitely often intervals of consecutive zeroes, whose length cannot
be bounded recursively. In this sense, generic oracles are arbitrary, but not random.

Though a corresponding generic oracle hypothesis also does not hold [Fos93], there are
a number of very good motivations to study generic oracles. We only mention two of them:
First, generic relativizations (i.e., relativizations via generic oracles) do make statements
about the real world. Blum and Impagliazzo showed that any language acceptable by a
(time- or space-bounded) Turing machine with a generic oracle can be accepted without
an oracle in essentially the same resources. This is a “half-sided” positive relativization
result, since it implies that if resource-bounded classes coincide relative to a generic oracle,
then they coincide absolutely. Also, Blum and Impagliazzo proved that, if P is not equal to
UP under a generic oracle, then P # NP. (This result actually goes back to an older paper
by Hartmanis and Hemachandra, see [HH90].) Hence, generic oracles immediately relate
to a main motivation for a lot of current research in complexity theory, namely the P-NP-
problem. Second, generic oracles proved to be very useful when looking for simultaneous
collapses and separations; a number of such results can be found in [BI87].

Around the time of the appearance of random and generic oracles in complexity theory,
leaf languages were introduced as a uniform way to characterize many complexity classes
between P (polynomial time) and PSPACE (polynomial space) using only one computation
model: the nondeterministic Turing machine running in polynomial time (NPTM). This
way makes use of characterizations of classes in terms of conditions on the values printed
at the leaves of computation trees of NPTMs. A leaf language is essentially nothing else
than a set of finite sequences of such values. A word w given as input to a NPTM M is
said to be accepted by M (with leaf language A) if the sequence of output values is a
sequence in A. For example, the class NP can clearly be characterized by the condition
“there is one leaf in the computation tree that outputs a 1”; thus the leaf language for NP
consists of all binary sequence with at least one occurrence of the letter 1.

Interestingly, there are connections between leaf language definability and oracle sep-
arability. Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] showed how
the question of the separability of complexity classes by an oracle can be expressed equiv-
alently by a relation among the characterizing leaf languages. In this way, the task to
construct an oracle separation often reduces to a combinatorial problem, without the need
to perform an actual stage construction.

In this paper, we relate the question if two classes can be separated by a generic oracle
to a relation among the corresponding leaf languages. In much the same way as in the
just cited results, the proof of a generic separation now becomes a combinatorial task. We
also present a number of consequences of our result. For example, we show that all oracle
separations among certain complexity classes (those that relativizably have an arithmetic
complete set) hold simultaneously relative to all generic oracles. We further examine rela-
tionships between leaf languages and genericity with respect to bounded resources.

Another field of applications of our result concerns type-2 complexity theory. Type-0
objects are numbers or words, type-1 objects are functions (or relations) of type-0 ob-



jects, and type-2 objects are functions (or relations) of type-1 and type-0 objects. Thus, a
type-2 function takes as input a word/number and a function (or relation/language) and
outputs a word/number. Type-2 computations occur in different areas of mathematics and
computer science, where a function is given as a “black box”. For example in numerical
mathematics, an algorithm for integration takes as input numbers a, b and a function f and
computes f: f(x)dz. Function f is presented as a black box or oracle, that can be queried,
and such an evaluation of f consumes no resources. Thus, the natural computation device
for type-2 objects are oracle Turing machines. Type-2 objects and their complexity classes
were studied already in the seventies by Constable and Mehlhorn [Con73, Meh76]. In a
very interesting recent paper by Cook, Impagliazzo, and Yamakami [CIY97], the inclusion
relations between type-2 classes are studied and related to inclusion relative to a generic
oracle. Making use of our relation between leaf languages and generic oracles, we show
that the leaf language approach completely clarifies the inclusion structure among “well-
definable” type-2 complexity classes. This result again reduces the question of inclusion
among these classes to properties of the involved leaf languages, without an oracle con-
struction. Cook, Impagliazzo, and Yamakami also raised the issue if type-1 and type-2
computations relative to a generic oracle coincide. Again, for classes “well-definable” in a
certain sense, we exhaustively answer this question.

Finally we discuss in our leaf language framework the possibility of separating P and
UP by a generic oracle (and thus, by the Blum-Impagliazzo condition, proving P # NP).

2 Preliminaries

Genericity

In the present paper, we use the notion of generic oracles as used by Blum and Impagliazzo
in [BI87]. (It should be remarked that many different notions of genericity have been
studied in computational complexity theory; for an overview the reader might consult
[FFKL93, AS96]. For a discussion of various conditions of genericity in recursion theory,
see [Kur83].)

We briefly repeat the central definitions from [BI87]. An oracle O is a set of natural
numbers. We will identify such sets with their characteristic functions, i.e., an oracle is
nothing else than a total function O: N — {0,1}. We will also consider finite oracles—
these are partial functions v: N — {0,1} whose domain, denoted by D(v), is finite. In
particular, finite oracles v whose domain is a finite prefix of the natural numbers, i.e., a
set {0,1,...,n} for some n € N, will also be identified with finite binary strings, namely
v(0)v(1)...v(n). In this vein, we also identify infinite oracles with infinite binary strings.
The set of all oracles with finite prefix v thus is v - {0, 1}%.

We say that a finite oracle w extends a finite oracle v, in symbols: v C w, if D(v) C
D(w) and the functions v and w agree on D(v). A (total) oracle O eztends a finite oracle
v if the functions O and v agree on D(v).

As mentioned in the introduction, a generic oracle is intuitively an oracle that in a
sense has all properties that can be enforced by a stage construction. During the stages
of these constructions, usually finite oracles are extended. In order to be able to complete
the next stage, at every stage we must have still enough possibilities for such an extension.
Formally we need a property called “denseness”:



A set D of finite oracles is dense, if every finite oracle v has an extension to a finite
oracle w € D.

Dense sets D should be thought of as those finite prefixes of oracles that fulfill (or,
meet) the condition aimed at during a specific stage of a usual oracle construction. The
result of a stage construction as a whole has to meet a countable number Dy, Ds, ... of
such conditions. In the separation of P from NP by Baker, Gill, and Solovay, the sets
D; consist of those finite prefixes of oracles, for which a set L(O) (depending on oracle
O) cannot be decided by the i-th deterministic polynomial time oracle Turing machine.
Hence, if O meets all D;, the resulting L(O) cannot be in PC. From the way L(O) is
defined in [BGS75], however, it is very easy to see that for every O, L(Q) € NP9, and in
this way we obtain the desired relativized separation.

Generic oracles now are oracles that meet all conditions describable in a certain lan-
guage. Here, we consider all conditions that result from sets in the arithmetical hierarchy
(see, e.g., [S0a87]). Hence we define:

Let € = {Dq, Ds,...} be a countable collection of dense sets of finite oracles. An oracle
is C-generic if, for each i, O has a finite prefix w; € D. A set D of finite oracles (or a set
of finite words) is arithmetic, if membership in D can be expressed as a finite-length first
order formula with recursive predicates. Let A be the collection of dense, arithmetic sets
of finite oracles (in other words, the class of all dense sets from the arithmetical hierarchy
[Soa87, Chap. VI]). An oracle is generic if it is A-generic.

We will mainly consider generic sets in the sense of A-generic; however we will also be
interested in C-generic oracles for a resource-bounded class C later.

Leaf Languages

In the leaf language approach to the characterization of complexity classes, the acceptance
of a word given as input to a nondeterministic polynomial time Turing machine (NPTM)
depends only on the values printed at the leaves of the computation tree. To be more
precise, let M be a nondeterministic Turing machine, halting on each path printing a
symbol from an alphabet Y, with some order on the nondeterministic choices. Then,
leafstring () is the concatenation of the symbols printed at the leaves of the computation
tree of M on input z (according to the order of M’s paths induced by the order of M’s
choices).

Call a computation tree of a machine M balanced, if M branches at most binary, all of
its computation paths have the same length, and moreover, if we identify every path with
the string over {0,1} describing the sequence of nondeterministic choices on this path,
then there is some string z such that all paths y with |y| = |2| and y < 2z (in lexicographic
ordering) exist, but no path y with y > z exists.

Given now a pair of languages A, R C X* such that AN R = (), this defines a com-
plexity class BLeaf(A, R) as follows: A language L belongs to BLeaf(A, R) if there is an
NPTM M whose computation tree is always balanced, such that for all z, x € L =
leafstring,,(z) € A and z ¢ L = leafstring,,(z) € R.

In the case that A = R we also simply write BLeaf(A) for BLeaf (A, R). The classes
which can be defined by a pair (A4, A) are syntactic classes in the terminology of Papadim-
itriou [Pap94], while those which cannot are semantic classes, i.e., promise classes.



This computation model was introduced by Papadimitriou and Sipser around 1979,
and published for the first time by Bovet, Crescenzi, and Silvestri, and independently by
Vereshchagin [BCS92, Ver93] (see also the textbook [Pap94, pp. 504f]).

Important for us will be reductions among leaf languages, in particular: g%t—reductions
as introduced in [BCS92, Ver93]. First, we define the class of those functions that will
constitute our reductions:

A function f: X* — X* is polylog-time bit-computable if there exist two polynomial
time oracle transducers R: X* x N — X and [: XY* — N such that, for any z € X%,
f(z) = Re(|el, )R (|x],2) - B (|a], 1% (|a]))-

There are quite “natural” functions that have this property:

Lemma 1. Let M be an balanced NPTM with oracle (NPOTM) with input alphabet {0, 1}
and oracle alphabet X. For x € X*, the function f(x) =qer leafstringy-(|z|) is polylog-time
bit-computable.

Proof. The transducer [ from the definition of ggit in this case has to compute the number
of paths in the balanced computation tree of M with input |z| and oracle z. Since [ itself
has input |z| and oracle z at its disposal, it can simulate M to achieve this.

The transducer R on input (|z|, k) then has to compute the output of M on compu-
tation path k& with input |z| and oracle z. Again, since R can use |z| and z directly, the
simulation of path &k of M is easy (note that the computation tree of M is balanced, hence
the bits of the binary representation of k£ correspond to the nondeterministic choices M
on that path). O

S%t—reductions are now defined as follows:

Let (A, R) and (A’, R') be two pairs of languages. (4, R) is polylog-time reducible to
(A", R) (in symbols: (4, R) <5 (A’, R')), if there exists a polylog-time bit-computable
function f, such that f(A) C A’ and f(R) C R'. We note that for the case R = A and
R' = A’ this is equivalent to z € A & f(z) € A'.

The importance of plt-reductions stems from that fact that these relate to oracle
separations of leaf language definable classes, as proved in [BCS92, Ver93]. First, if in the
definition of BLeaf(A, R) above, M is an NPOTM with access to oracle O, we denote the
obtained class by BLeaf?(A, R). The main result of [BCS92, Ver93] can now be stated
formally as:

Theorem 2. Let (A, R) and (A', R') be pairs of leaf languages. Then
BLeaf®(A, R) C BLeaf®(A', R') for all oracles O < (A,R) <P (A", R').

3 Plt-Reductions and Generic Oracles

Our main result relates the existence of separating generic oracles to non-plt-reducibility:

Theorem 3. Let A and B be arithmetic sets. Then
BLeaf®(A) C BLeaf"(B) for all generic oracles G <= A <PI' B,



In other words, two complexity classes can be separated with a generic oracle if and
only if the corresponding leaf languages are not plt-reducible to one-another.

The implication from right to left of course immediately follows from Theorem 2.
For the left to right implication, i.e., if A ﬁit B then there is a generic G such that
BLeaf%(A) ¢ BLeaf%(B), informally, the proof proceeds as follows: For any oracle O, a
test language L(O) is defined, that is easily seen to be in BLeaf?(A’, R'). The desired
oracle G is constructed by a stage construction such that in stage 2m + 1 the m-th dense
arithmetic set is met, and in stage 2m it is ensured that the m-th BLeaf(A)-NPOTM
does not accept L(G). Thus, the odd stages will ensure that G is generic while the even
stages will ensure that BLeaf®(A) ¢ BLeaf®(B). We remark that a similar construction
was used by Foster in [Fos93], where a generic oracle separating IP from PSPACE was
constructed. In that paper, the odd stages ensure that the resulting oracle is generic while
the even stages ensure IP # PSPACE relative to the constructed oracle.

The rest of this section is devoted to a formal proof of Theorem 3.

Proof. Tt is sufficient to prove the implication from left to right: Let A and B be arithmetic
sets and let BLeaf”(A) C BLeaf"(B) for all generic oracles G.

We define a function § : N — N as §(n) =n+ @ For every oracle O we define the
test language L(O) as L(0) =gt {2z ‘ O(6(z) +1)...0(6(z) + z) € A}. Then it holds
for all oracles O: L(O) € BLeaf?(A). By the assumption then also holds for all generic
oracles G that L(G) € BLeaf%(B). Let M}, be the k-th machine in an enumeration of all
balanced NPOTMs. 1. e. for all generic oracles G there exists a k, such that z € L(G) <
leafstring/c (z) € B for all .

We now claim that in the previous sentence, the two quantifiers can be swapped.

Claim: There exists a balanced NPOTM M such that for all generic oracles G and for
all z, z € L(G) < leafstring,«(x) € B.

We use this machine M in the definition of a g%t—reduction from A to B:

Input: a word w, |w| =z, w =w(0)... w(z —1).

Output: a word v with w € A & v € B.

Algorithm: Let s =qor 0°07D0™ be the prefix of a generic oracle G, where m is large
enough to ensure that during a simulation of M G (z), all queries to G are positioned
in s. Then we have z € L(G) & w € A.
We can now construct an NPOTM M’ with input z and oracle w, which simulates
the behavior of M (this is possible since we have constructed G such that knowledge
about w suffices to simulate (). This machine is also balanced and leafstring ;¢ (z) =
leafstring ;v (). But Lemma 1 showed that v =ger leafstring,, (x) is then polylog
bit computable. And the claim about M yields z € L(G) < v € B.
Combining both equivalences we get w € A & v € B.

It remains to prove the claim.

We make the the following assumption which is the inverse of our claim and lead it to
a contradiction:
Assumption Z: For all k there exists an x and a generic oracle G such that

z € L(G) & leafstring,c (z) ¢ B.



To contradict Z we show that the family € = {Cy, C1,...,Con, Comy1, ...} with

— Com =aef { 2 ‘ Jz 1z € L(z) & leafstring,. (7) ¢ B}
— Com+1 =det D (the m-th dense arithmetic set)

is a family of dense sets. For every C-generic oracle G it then holds that

— @ is generic (with A and B also the Cy,, are arithmetic),
— for all m there exists an z with 2 € L(G) « leafstring)/¢ (z) ¢ B.

This contradicts the fact that for all generic oracles G there exists a k, such that xz €
L(G) & leafstring (z) € B for all z, which we have shown at the beginning of the
proof. So assumption Z must be wrong.

It remains to prove that—under assumption Z—the Cy,, are dense, i.e. for all oracles
s there exists a z € Oy, with s C z.

Define § such that s C § and |§| = 0(r) for a suitable r. We take a look at the following

Assumption Y: For all oracles H € §-{0,1}* and for all z,
z € L(H) < leafstringu (z) € B.
There are two possibilities:

1) Y is false:
This means there is an H € 5-{0,1}* and an = with z € L(H) < leafstring,;n () ¢ B.
Let x be the lexicographically smallest word, for which such an H exists. Let ¢, be the
lexicographically largest oracle question, that gets asked to H during the computation
of M (z). We define z =qo¢ H(0)H(1) ... H(q,) which yields § C z and z € Coy,.

2) Y is true:
We define an NPOTM M’ the following way: Let O be a generic oracle and z € N.
Then we define

)

and

leafstring, . () if [5] < d(z
a word from B if |§] > 0(z
leafstring 0 () = O@(x)+1)...0((x)+z) e A
a word from B if |3| > §(z) and
OW(z)+1)...000(z)+z) ¢ A
where O =g 5-O(0(r)+1)O(8(rr)+2) - - - . Then M" is an NPOTM and for every generic
oracle O we have z € L(O) <= leafstring,,o(z) € B, which violates assumption Z.
So, Y cannot be true unless 7 is false—which finishes our proof.

~— — — ~—

0

4 Consequences

Universal Oracles

The following result is well-known from recursion theory, cf. [BI87]:

Proposition 4. Let IT be any property of oracles, describable with a first-order formula
with recursive predicates and a predicate O(x) (denoting membership in the oracle), that
does not depend on any finite number of bits in the oracle. Then either all generic oracles
have property II or none has.



This immediately leads to the following consequence of Theorem 3:

Corollary 5. Let A and B be arithmetic sets. Then
BLeaf%(A) ¢ BLeaf%(B) for all generic oracles G <= A £P B.

Hence we conclude that any oracle separation between classes definable via arithmetic
leaf languages holds relative to every fixed generic oracle.

Corollary 6. Let A and B be arithmetic sets, and let G be a fixed generic oracle. Then
BLeaf?(A) ¢ BLeaf®(B) for some oracle O

& BLeaf(A) ¢ BLeaf®(B)
<= BLeaf%(A4) ¢ BLeaf"(B) for all generic oracles G.

Proof. Immediate from Theorem 2 and Corollary 5. O

In particular, the previous result means that all relativized separations that can be
achieved among classes BLeaf(A) for arithmetic A hold simultaneously.

Corollary 7. All oracle separations among classes, that relativizably have an arithmetic
complete set, simultaneously hold relative to the same fized generic oracle G.

Proof. The fact that a class € can be characterized as BLeaf(4, R) with R = A, i.e,
€ = BLeaf(A), is equivalent to the claim that € has a complete set in all relativized
worlds [BCS92, Theorem 4.2]. If a class € has an arithmetic complete set, then it is clearly
characterizable with an arithmetic leaf language.

Hence, every class that relativizably has an arithmetic complete set, is a class of the
form BLeaf(A) for arithmetic A. The result now follows immediately from Corollary 6. [

In other words, generic oracles induce an isomorphism between (the order of) rela-
tivized complexity classes and (the order of) plt-degrees. As is usual, we define a plt-degree
to be the class of sets all equivalent with respect to S%t (observe that S%t is reflexive and
transitive). A plt-degree is said to be arithmetic iff it has an arithmetic representative.

Corollary 8. Let G be any fized generic oracle. Then the family
{BLeaf@(A) ‘ A is arithmetic },

partially ordered with respect to set inclusion, is isomorphic to the partial order of all
arithmetic plt-degrees.

As mentioned in the introduction, Blum and Impagliazzo proved that if two resource-
bounded classes coincide relative to a generic oracle, then they coincide absolutely [BI87].
We can rephrase Corollary 5, extending their result to all leaf-language definable classes.

Corollary 9. Let A and B be arithmetic sets. Then
BLeaf®(A) C BLeaf(B) for some generic oracle G
— BLeaf(A) C BLeaf(B).



Resource-bounded Genericity

Almost all interesting syntactic complexity classes between P and PSPACE can be char-
acterized using regular leaf languages (the prominent exception to this is the class PP, see,
e.g., [Vol99]). For this case, the relevant class of dense sets of finite oracles (i.e., the sets Cop,
in the proof of Theorem 3) are easily seen to be decidable in QP =4, DTIME (nlogo(l) ”),
i.e., quasipolynomial time. Thus, the obtained oracle is not only A-generic, but even QP-
generic. Hence, the following corollary is proven:

Corollary 10. Let A and B be regular sets. Then
BLeaf®(A) ¢ BLeaf?(B) for some oracle O
= BLeaf%(A) ¢ BLeaf%(B) for some QP-generic oracle G.

Moreover, when separating a complexity class from P, even a P-generic oracle in the
above sense is enough.

Corollary 11. Let A be a reqular set. Then
BLeaf?(A) € PO for some oracle O

<= BLeaf%(A4) € PY for some P-generic oracle G.

Type-2 Complezity

In [CIY97], Cook, Impagliazzo, and Yamakami showed that any two complexity classes
satisfying some general conditions are distinct relative to a generic oracle if and only if the
corresponding type-2 classes are distinct. As we will see, this provides a bridge between
leaf language theory and type-2 complexity theory.

A type-2 function F over X* assigns to all words z € X* and sets X C X* a value in
X*. A type-2 relation is a 0-1-valued type-2 function. Let R be any type-2 relation and let
€ be any class of type-2 relations. For a fixed set X, we define R[X]| =4et {z | R(z,X) }
and C[X]| =gt { R[X] | R € C}.

We say that a type-2 function F' is polynomial-time computable if there exist a deter-
ministic oracle Turing machine M and polynomial p such that, given input string = on the
input tape and set X as an oracle, M outputs F(z, X) after at most p(|z|) steps, where
each oracle query counts as only one step.

A type-2 relation R is polynomial-time many-one reducible to a type-2 relation S, in
symbols R <}, S, iff there exist a type-2 polynomial-time computable function F and
type-2 polynomial-time computable relation ) such that for all words x and sets X, it
holds that R(z, X) = S(F(z, X), Q[z, X]), where Q[z, X] =qet {2 | Q(z,2, X)}.

The question studied by Cook, Impagliazzo, and Yamakami is what inclusion relations
hold among type-2 classes. For classes closed under <},, this was related to relativized
inclusion under a generic oracle [CIY97, Theorem 3.2]:

Proposition 12. Let € and D be classes of computable type-2 relations and suppose that
C and D are closed under <},. Then for any generic oracle G,

€CD « €G] C D[G]



In the leaf language framework, type-2 complexity classes can be defined in the fol-
lowing way. Given two sets A, R C X* with AN R = (), the type-2 relation S belongs to
the type-2 class BLeaf (A, R) if and only if there exists a polynomial-time oracle Turing
machine M such that for all words z and sets X, S(z, X) = leafstring,,;x (z) € A and
-S(z, X) = leafstring,,/x () € R.

Since it can be observed that each class BLeaf (A, R) is closed under <},,, we obtain
from Theorem 3 and Theorem 12 a complete combinatorial characterization of inclusion
relations between reasonably definable syntactic type-2 classes.

Corollary 13. Let A and B be arithmetic sets. Then the following statements are equiv-
alent.

(1) A<D B.

(2) BLeaf%(A) C BLeaf%(B) for some generic oracle G.

(3) BLeaf(A)[G] C BLeaf(B)[G] for some generic oracle G.
(4) BLeaf(A) C BLeaf(B).

Proof. The equivalence of (1) and (2) is just Theorem 3, and the equivalence of (3) and (4)
is just Proposition 12. Equivalence of (2) and (3) follows from Theorem 15 given below. [

Typically, a type-1 complexity class C has a natural type-2 counterpart €, based on
the same resources used to define €. Cook, Impagliazzo, and Yamakami [CIY97] raised
the issue of determining for which classes € and €, their relativized versions coincide,
ie., % = @[O] for all oracles O. Consider for example the class BPP of all languages
acceptable in polynomial-time by probabilistic Turing machines with two-sided bounded-
error probability. Not every probabilistic machine has this latter property, hence BPP is a
promise class. The relativized class BPP? contains all sets acceptable relative to oracle O
by some probabilistic Turing machine that relative to oracle O has bounded-error. On the
other hand, for the type-2 class BPP, we require that our machines have bounded-error
for all inputs and for all oracles. Hence BPP[O] consists of all sets acceptable relative to
oracle O by some probabilistic Turing machine that relative to all oracles has bounded-
error. Thus, BPP[O] C BPP? but the converse is not clear, and indeed, there is an oracle
O for which BPP[O] # BPP? [CIY97]. But for generic oracles, the situation changes.
Cook et al. proved that BPP[G] = BPPY for any generic oracle G. A number of other
classes behaving like BPP were exhibited in [CIY97]. A complete characterization of those
classes @ with type-2 counterpart €, that have the property that €% = @[G] for generic
G, was left open.

Using the method of forcing we can give an almost exhaustive answer to this question
for the classes definable by pairs of leaf languages (A, R). The sufficient condition we
obtain in Theorem 15 below, that A U R is co-recursively enumerable, is very general and
is satisfied by all leaf-language definable complexity classes we know of. In particular of
course, complementary pairs of leaf languages (A = R) satisfy this condition. Thus, for
any A, BLeaf(A) = BLeaf(A)[G], proving equivalence of (2) and (3) in Corollary 13.

An oracle property is a type-2 relation S(z, X) that does not depend on words x but
only on sets X. Therefore, we denote oracle properties simply by S(X). We say that a
finite oracle v forces an oracle property S if S(X) holds for every oracle X extending v.
The following lemma is well-known — a formal proof can be found in [CIY97, Lemma 2.1].
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Lemma 14. Suppose S is a II) oracle property and G is a generic oracle. Then S(G)
holds if and only if some finite prefiz of G forces S.

Theorem 15. Let (A, R) be a pair of leaf languages such that A U R is co-r.e. Then
BLeaf%(A, R) = BLeaf (A, R)[G] for any generic oracle G.

Proof. Tt suffices to show the inclusion C. Our proof follows the proof of Proposition 4.2
in [CIY97]. Let L € BLeaf%(A, R), i.e., there exists a balanced NPOTM M such that for
all z, leafstring,;c(z) € AUR, and z € L < leafstring,,;c(z) € A. We define the oracle
property @ by

Q(X) <= qef for all z, leafstring,,;x () € AU R.

Since AU R is co-r.e., Q is clearly a IT{ oracle-property for which Q(G) is true. Hence, by
Lemma 14, there exists a finite oracle v which is a prefix of G such that for all oracles O
extending v, Q(O) holds. Now define a type-2 relation S’ by

S'(x, X) <=>qef leafstring,,x» (z) € A,

where X denotes the oracle X with a prefix of length |v| replaced with v. Clearly, S’ €
BLeaf(A, R) and, since G = G, we obtain S’[G] = L. Thus, L € BLeaf(A, R)[G]. O

5 Conclusion

In the present paper, we related leaf language separations to separations by generic oracles
and obtained a number of consequences concerning, e.g., simultaneous separations and
type-2 complexity. It should be remarked that our main result can also be proved for
complexity classes of functions. “Leaf languages” for the definition of function classes
and oracle separations were studied in [KSV00]. The main result from that paper can be
extended in the same way as our paper extends the Bovet-Crescenzi-Silvestri-Vereshchagin
result, i.e., two function classes definable in a certain way in the leaf-language framework
are separable by any oracle iff they are separable by a generic oracle iff they are separated
by any generic oracle. Among the possible applications of this result we only mention that
relative to any generic oracle, the Embedding Conjecture from [KWO00] about the structure
of the Boolean hierarchy of NP-partitions holds.

The in our point of view most important open question brings us back to Sect. 1, where
we mentioned that Blum and Impagliazzo related the existence of separating oracles to
unrelativized separations, most importantly in the case of the classes P and NP. They
proved: If PG # UPY relative to some generic oracle G, then P # NP. Because it is known
that P and UP can be separated by some oracle, one might hope that, by Corollary 6,
there exists a generic separating oracle. For this, it would be necessary that UP could be
defined by a leaf language. This would lead to a result like “if A is an arithmetic language
such that for all oracles O, BLeaf®(A) = UP?, then P # NP.” Unfortunately, it is known
that the prerequisite of this statement does not hold: There is no A such that relativizably,
UP = BLeaf(A) [BCS92]. To characterize UP relativizably, we need a leaf language pair
(A, R) with R # A, and in this case, our main result (Theorem 3) does not apply.

The main obstacle in the proof of Theorem 3, when dealing with pairs (A4, R), R # A,
is the denseness condition for the sets Cy,,, which we could only prove for R = A. But
maybe there are certain restrictions to general pairs (A, R) such that then the Cy,, are still
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dense, and maybe even the pair for UP fulfills these restrictions. The main open issue thus
is to find sufficient conditions that leaf language pairs have to satisfy such that Theorem 3
still holds. Interesting in this context is a result by Fortnow and Yamakami [FY96] who

proved a separation of U

PP and PNP relative to a generic oracle; but again, UPNF does

not seem to have an obvious characterization by a complementary pair of leaf languages.
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