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1 Introduction

Software development for fully decentralized distributed systems faces three challenges: Finding and
retrieving remote data, synchronized concurrent access to that data, and assignment of data and
threads to the system’s resources.

Our envisioned system shall accomplish all three challenges and provide a single system image
[1, 2], which allows applications to run transparently on clusters of heterogeneous multi-core machines.
It distributes code, objects and threads onto the compute resources, which may be added or removed at
run-time. This dynamic property leads to an ad-hoc network of processors and cores. In this network,
a fully decentralized object location and retrieval algorithm has to guarantee the access to distributed
shared objects.

On an single core or a symmetric multiprocessing (SMP) processor, a reference is represented as a
local memory address. In a distributed system, a reference can either point into local memory or into
remote memory on distant nodes. Such a remote reference can become invalid if a node fails or an
object migrates without precautions to another node.

In this paper we examine different object location and retrieval algorithms under the assumption
of object migration. Migrating objects is an important functionality of distributed systems. It allows
or facilitates:

e Maintenance: Migrate the running threads and locally stored objects from a node A to another
node B to exchange node A during runtime.

e Communication: Migrate objects that access each other to nodes close to each other to decrease
the access latency.

e Replication: Migrate object replicas to nodes that are spread throughout the network to increase
the reliability in case of node failures. This also improves access latency of accessing nodes in
the close neighborhood of a replica.

e Resources: Migrate objects and threads to nodes with free resources for an optimal load-balancing
or to nodes with specialized resources such as floating-point units.

An object access requires that the referencing object holds a reference to the referenced object
and that the referencing node can reach the node where the referenced object is stored. Whenever
an object migrates from one node to another, the system must ensure that it is still accessible from
referencing objects. To achieve this requirement, we separate the object identifier from the object
locator. In this paper, we describe various ways to achieve this task:

e Broadcast

e Reactive Updates (On-the-Fly, upon access)

Proactive Updates (On-the-Fly, upon migration; forward requests)

Enhanced Proactive Updates (On-the-Fly, upon migration; fast responses)

Distributed Registry, e. g. Distributed Hash Tables (DHT)

e Centralized Registry

We have chosen the Java programming language [3] as as starting point of our work. Java is a
general purpose programming language, and as such has gained a rising interest as a programming
language for scientific and engineering computing. Moreira et al. [4] for example describe the usage
of Java for high performance numerical computing. Their approach is built around the use of a
numerical Java library, especially for arrays and complex number. Additionally, they discuss compiler
optimizations that their HPCJ compiler performs on the numerical library code, e. g. array bound
check optimizations.

Taboada et al. [5] analyze current research projects (as of 2009) that use Java for High Performance
computing. They conclude, that Java is well suited for hybrid shared memory (intra-node) and



distributed memory (inter-node) architectures, because Java threads support shared memory, and
Java network support assists distributed memory communication. According to Taboada et al.,
most research focuses on scalable Java communication middleware for high-speed networks, such as
InfiniBand or Myrinet. According to Taboada et al. the various projects can be classified into:

e shared memory programming with Java threads, OpenMP-like implementations or a PGAS Java
dialect, e. g. Titanium [6] (see 6.3).

e usage of Java sockets.
e usage of Remote Method Invocation (RMI).

e usage of message passing, that can again use RMI, Java sockets or wrap methods from the Java
Native Interface (JNI).

We did not follow these approaches, but decided to develop a distributed Java runtime environment
for our envisioned system. Other projects, e.g.cJVM [7] or JESSICA2 [3] (described in more details
in section 6) followed this approach as well.

In this paper, our Java runtime environment is simulated with a network simulator that is used to
evaluate the reactive and the proactive update approaches. The results show that the overhead of
the proactive update approach is not worthwhile for most application scenarios, while the proactive
update approach has the best performance with respect to the remote object access latency.

1.1 Object Model

We use the general term object to name all kinds of high-level programming language data; objects
and arrays but also execution contexts and program code. We distinguish objects between Local Object
Copies (LOCs) and Global Accessible Objects (GAOs). Another distinction is between dynamic and
static objects (c.f. figure 1).

Local Object A local object (copy) (LOC) is an object that resides in the local memory. It is only
accessible from within the local node through a local memory pointer, e.g.a C-pointer. This pointer is
only valid on the local node. If the local object becomes accessible from a remote node, e. g. due to
object migration, it is transformed into a global accessible object.

Global Accessible Object A global accessible object (GAO) is addressed by its global unique
identifier (GUID) or via a chain of references (c.f.sec. 2.2.7). Tt is accessible from each node in the
network, given that the node holds the GUID of the object or a valid chain of references. With the
GUID, the GAO is reachable regardless of its physical location.

Replicas of GAOs might exist on different nodes in the network. This paper does not address the
task of replication management. It also does not deal with the access to a distinct replicate (unicast),
any replicate (anycast) or all replicates (multicast). This is ongoing work in our group. A first study
of replication mamagement was done in our group by [J].

Dynamic Object A dynamic object is allocated on the heap whenever the application instantiates
a new object. The accessing entity must know a reference to the object to access it. An entity must
not be able to make up a valid reference to a dynamic object on its own. An object gets hold of a new
dynamic reference if this new reference is written to one of its reference fields. The execution context
gets hold of a reference to a dynamic object e. g.if it allocates a new object A or reads reference field
of an object B (for this, the execution context must already hold the reference to object B). Other
possibilities, e. g. the reception of a reference as method parameter during method invocation, are only
special issues of the two basic cases.
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Figure 1: GAO Types using the example of Java.

Static Object (Parts) A static object (part) contains the class members. Tt is unique within a
class-domain tuple (c. f.section 1.3). In Java, the static object parts of a class are created during class
loading.

To access this static object part of a class, the accessing entity can compute a reference to it. Such
a reference might be for example the hashed class definition e. g. the hash of the Java bytecode. All
entities are able to compute and access this reference. To do this, the system is required to offer a
distributed lookup service such as a distributed hash table (DHT). Such a service is ongoing work in
our group and not topic of this paper.

1.2 Reference Graph

The starting point for our proposed solution is the separation of object identification and object
location, i.e.the GUID of a GAO does not encode the GAQO’s location in the network. Thus, we need
a mechanism to locate the home node of the corresponding GAO to retrieve or access it on its remote
home node.

The objects that belong to the same application may reference each other in one way or another:
A member variable of an object may hold a reference to another object; ditto for arrays. FExecution
contexts hold references to the code they execute and the objects which belong to their parameters or
their local variables. Figure 2 gives an example of references to code and objects.

Altogether, these objects form the reference graph of the application. It is rooted in the application’s
primordial execution context (PEC) and evolves during the execution of the application. Upon
application start, the reference graph consists only of an empty execution context — the PEC — and
the associated code.

References in the common sense are unidirectional: they point from the referencing object to the
referenced object. We call them the outgoing references of an object. Beside these references, our
proactive update approach, described in section 3.4 uses bi-directional references. These bi-directional
references introduce additional backward reference, which point back from the referenced object to
the referencing one. According to outgoing references we call these backward references the incoming
references of an object.

1.3 Domain Concept

Since a GAO exists only once for each application, we would not be able to execute more than one
application in our system. To break this constraint, we introduce domains, c.f. [10], that identify
the scope of an application. A domain is a virtual self-contained environment that executes the
application(s) that are associated with it. Domains are identified by a secret key which is used to
restrict access to the domain and, if required, to encrypt the messages sent between participants of the
domain. Nodes that know the domains secret key are those who participate in running the associated
application.

Inter-domain communication is done via static object parts. As stated above, static object parts are
unique within a class-domain tuple. The thread that is responsible for the inter-domain communication
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Figure 2: Execution context, Code and Objects.

accesses two different static object parts in two different domains. In this way, the reference graph of
the thread is spread between two domains. The details of this concept are subject on ongoing work in
our group and we will not detail this work in this paper.

1.4 Concurrent Object Access

To ensure a consistent access in face of concurrent threads, we support two different approaches: The
common locking approach, which is used to synchronize the access, e.g. with a (binary) semaphore
that keeps threads from entering the ’critical section’ when another thread is already in that section.
Another approach is the use of Software Transactional Memory (STM).

Software Transactional Memory is an alternative to lock-based synchronization. STM uses optimistic
transactions, in which a thread performs a series of read and write operations on shared memory in an
atomic block. These operations are performed without regards to any other thread that might operate
on this memory. The changes are not visible to other threads until a transcation commits its changed
data. If no other transaction modified the data that has been touched by the commiting transaction,
the commit succeeds. If the data was modified in the meantime, the transaction fails and has to be
rolled back and re-executed.

To execute a transaction without interfering with other transactions, each thread retrieves a Local
Object Copy (LOC) of the read or written GAOs and operates locally on this copy. When a transaction
finishes, the modified LOC is written back. If more than one thread modified the LOC, a distributed
consensus protocol has to decide which thread is allowed to commit and which threads have to roll
back. By this, the programmer gets the illusion that each thread manipulates the data in an atomic
block without being disturbed by others. The development of decentralized STM protocols is ongoing
work in our group. A first proposal is DecentSTM [11].

In the context of DecentSTM, a GAO is a mutable structure that consists of a list of immutable
GAO versions, see [11]. Whenever a transaction successfully commits, all LOCs that have been written
in the transaction become new versions of the corresponding GAOs. If theses new GAQO head version
are located on other nodes than the previous versions, it looks for the system as if the corresponding
GAOs migrated. By this, our system implicitly migrates GAO on write accesses.

The rest of the paper is structured as follows: Section 2 describes the different components thar
are involved in the reference maintenance. These are part of the entity of the runtime environment



that is responsible for the resources of a single node, e. g. one instance of a distributed Java Virtual
Machine. Additionally, this section introduces an example setup that we use in section 3 to describe
the various location update strategies for dynamic objects. In section 4 we give a short overview of
location retrieval mechanisms for static (parts of) objects. Afterwards, we present the evaluation of
our protocols in section 5. Finally, the paper concludes in section 6 with an extended overview of
related work.

2 System Specification

Our target system consists of heterogeneous multi- or manycore processors that are interconnected
to an network of computing nodes. To execute a parallel application, we place one instance of a
collaborating runtime environment entity on each node in the network. This entity is responsible for
the local memory of the node, e.g the local Java heap, and consists itself of various modules.

VM Migration
GC
Manager
Object
Retrieval
Manager
Memory
Manager

Figure 3: Conceptional System Design.

These modules are shown in figure 3. Each of them fulfills a different task to ensure the reachability
of local and remote objects under object migration. Between each other, these modules interact via
well defined interfaces.

The memory manager (MemMygr) is responsible for the local memory and the locally stored objects.
The object retrieval manager (ORMgr) manages the local and remote object access. The ORMgr
handles the translation between local and remote references and keeps track of the location of locally
referenced remote objects. The runtime environment, in our case a virtual machine (VM), executes
the application. The VM executes the PEC and accesses the objects of the application. Each VM has
a local garbage collector (LGC) and manages parts of the global, distributed garbage collector (DGC).
The VM also contains the migration manager (MigMgr). This manager handles all local actions that
are involved in the migration of local or remote objects.

2.1 Virtual Machine

The runtime environment executes one or more applications. Typically, the runtime environment will
be a virtual machine (VM), e.g.a Java VM or a Hypervisor. Since our work was inspired by a Java
VM, we use the corresponding terminology.

Each application consists of multiple threads which are concurrently executed. Internally, each of
these threads consists of chunks of local memory. These hold the execution context (program counter,
stack frame, etc.) and the corresponding bytecode. Both, execution context and bytecode, can be
local object copies (LOCs) of globally accessible objects (GAOs). The usage of LOCs is preferable
because the execution context is thread local data anyway and the bytecode is immutable and can



thus be replicated easily. Using LOCs also improves the performance as no messages have to be sent
through the network for each single execution step.

Other application data may be stored and modified on separate nodes. Either updates are sent
timely to the node that stores the GAO (write through), or the LOCs must be synchronized with the
GAO at a given time (write back).

2.1.1 Scheduler

The VM executes the application by executing the bytecode of the threads. A scheduler considers all
its threads and assigns each thread a fixed unit of execution time at the local processor. While the
thread is executed it is in the VM running state.

After the assigned execution time, the scheduler puts the execution threads on hold and continues
with the execution of another one. While the thread is on hold, it is in the VM wait state.

GET/PUT_instructio,

Send requeSt msg'
"€ceive response msg-

- —

Figure 4: Virtual Machine State Diagram.

Figure 4 shows the state diagram with the different states and transitions of the VM. The state
diagram only shows the transitions that are due to object access operations and not due to scheduler
revocation.

During the program execution, the VM creates objects and executes PUT or GET instructions
on their fields. These PUT and GET instructions might access local and remote objects by reading
or writing the fields of these objects. We distinguish these fields into reference fields, that hold a
reference to another object, or numerical fields, that hold a value. In this paper we are dealing with
the reachability of objects, namely, the maintenance of references between objects. For this reason, we
are only interested in operations that access reference fields.

Access instructions to local objects return immediately from the VM wait state. If the object
is located on a remote node, the VM stalls the corresponding thread in the VM wait state. Upon
receiving a response message that indicates the success of the remote operation, the local thread
resumes.

The response for a remote GET operation contains the content of the field that has been read.
Remote PUT operations are acknowledged with an acknowledgement (ACK) message that indicates
the success of the operation.

If the node does not receive a response or ACK message within a given threshold, the request
message is repeated.

2.1.2 Memory Manager

The Memory Manager (MemMgr) is responsible for the node-local memory of the VM. It allocates
and frees local memory for GAOs that are stored and managed in the local object store. For these
tasks, the MemMgr offers the following methods:

locMemPtr_t MemMgr::AllocateObject();
void MemMgr: :FreeObject(locMemPtr_t);



Additionally, the MemMgr allocates and manages the memory for the internal data structures of
the VM. Some of these data structures are described in the following, all others are not in the scope of
this paper.

2.2 Object Retrieval Manager

The Object Retrieval Manager (ORMgr) is responsible for the access to the local object (copies) and
for locating and retrieving remote objects. Conceptually, we separate object references not only from
their location in the network, but also from their location in the local memory. This separates the
local object view from the global object view.

To reflect this separation, the ORMgr uses a two staged dereferencing system (c.f.fig. 5). This
system uses a ReferenceMap, a GaoMap and an optional Incoming Reference Map (InRefList). The
first two maps are necessary to access and retrieve local and remote objects. The latter map is used
for the proactive location update approach described in section 3.4. The ORMgr dynamically allocates
this InRefList on a per-object basis.

Reference Map GAO Map
local ID #5
—}—> GUID
L —1+——> Node ID, local ID
global ID
|—> Routing System

- Global Addr.
- Source Route
- Virt. Circuit

local memory pointer
e.g. C-Pointer

Figure 5: ReferenceMap and GaoMap.

Internally, the VM uses locallDs to reference objects. A locallD points into the ReferenceMap, that
is used to resolve this ID. This shields the VM from the knowledge about the actual object location
and allows an easier VM implementation. E.g., the VM can use internal 16-bit locallDs, while the
GUID of object might be e. g. 160-bit or more.

2.2.1 ReferenceMap

The ReferenceMap stores the mapping of locallD to either a local memory pointer or a globallD. In
some cases, the ReferenceMap can also build up chains of references (see sec.2.2.7).

An entry to a locally stored object maps the localID to a local memory pointer. A local reference
counter indicates how many local objects reference this entry. Additionally, the map stores an external
reference counter and a garbage collector epoch index for the garbage collector.

For the proactive location update approach, a pointer to the InRefList of the object is added as
well. The number of entries in the InRefList corresponds to the value of the external reference counter.

An entry to a remote object maps the locallD to a globallD i.e. a pointer into the GaoMap. Figure 7
shows two nodes: Node A holds three objects that all references another object on node B. The
ReferenceMap on node A maps the locallID to a GUID and a location information, leading to node B.
The location information might additionally contain the localID of the object on node B (see below).
On node B, the ReferenceMap maps a request for the object to the local memory pointer and the
InRefList pointer. In this case, the InRefList stores node A as an incoming reference.

The local reference counter of this ReferenceMap entry indicates how many local objects reference
the remote object. In accordance with the one entry in the local Reference Map and GaoMap, there is
one incoming reference entry in the remote InRefList of the referenced object, c.f. figure 7.

Note that an entry in the ReferenceMap can point to both, a local memory location and an entry
in the GaoMap. This is the case for objects that are local object copies of remote objects.

10
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Figure 7: Three references on node A to a remote object on node B.

2.2.2 Allocation of Local Objects

Since the ORMgr maintains the ReferenceMap, it is also involved in the object create and delete
operations. For these two tasks it offers the following two methods:

locId_t ORMgr::AllocateObject();
void ORMgr: :FreeObject(locId_t);

To create a new object, the ORMgr chooses a new locally unique locallD. Afterwards, the ORMgr
invokes the MemMgr which allocates the object in the local memory and returns the local memory
pointer to the object. Then, the ORMgr allocates a new slot in the ReferenceMap and inserts the
local memory pointer together with the assigned localID. The reference fields of the object are handled
by the object access methods described below.

If the ReferenceMayp is full or if the MemMgr cannot provide enough heap space, the allocation
fails with an QutOfMemory exception. Alternatively, the node can try to allocate the object on a
remote node if there is not enough local memory to create the object but enough for an additional
entry in the ReferenceMap.

2.2.3 Obtaining Access Information for Remote Objects

References to remote objects can
e be read from a static object part,

e be read from a remote dynamic object to which the reference is known,

11



e result from the migration of a local object,
e result from an object which migrates to the local node or

e result from a NEW operation which can not be fulfilled locally and must be executed on a remote
node.

If a reference to a remote object is received or created, the ORMgr assigns a global and local
ID. Then, the ORMgr inserts these mappings with the additional information such as the location
information into the ReferenceMap and GaoMap.

2.2.4 Locating Remote Objects

A distributed system can address and locate remote objects using different types of location information.
The most generic information is the GUID. With the GUID it is always possible to broadcast a request
into the network, see section 3.1 for more information. Other location information are e. g. a tuple of
(node ID, local ID) or any other form of routing information. This routing information depends on the
underlying routing algorithm, which is responsible for the delivery of messages to a given location.

Our system uses source routes that reflect a hop-by-hop path from the referencing node to the
referenced node. The system stores these source routes in the local route cache. As a result, our
location information consists of the GUID, the home node of the object and an additional source route
leading to the home node of the object. If different nodes in the network reference the same GAO, the
GUID (part of the) reference and the location information on each node is the same but the associated
source routes might be completely different.

2.2.5 Access to Remote Objects

To access a referenced object the node first translates the locallD either to a local memory pointer or
a global ID.

If the mapping resolves a global ID, the GaoMap translates this ID into the location information
of the remote object. If the location information is not the GUID but a node address, the location
information must also contains the localID of the object on its remote home node. Using remote
locallDs simplifies the access to the requested object on its remote home node, as no additional ID
translation step is required.

The ORMgr module offers these two methods to access objects:

void ORMgr: :PutReferenceTo(locId_t Obj, Index, locId_t Ref);
locId_t ORMgr::GetReferenceFrom(locId_t Obj, Index);

The PutReferenceTo(locId_t Obj, Index, locId_t Ref) method writes (puts) a reference Ref
to the reference field with index Index of object Obj. The GetReferenceFrom(locId_t 0Obj, Index)
method reads (gets) a reference stored in the reference field with index Index of object 0bj.

GET and PUT operations read or write local or remote references. If these operations read or write
a reference that is already present on the accessed node, only the corresponding reference counter is
incremented. If these operations create a new local reference, the ORMgr must allocate local memory
for a new entry in the ReferenceMap and the GaoMap. The proactive update approach needs additional
memory for the incoming reference that is stored in the InRefList. If there is no local memory left, the
runtime system throws an OutOfMemory exception. If such an exception is thrown on the local or
remote node, the operation fails. To prevent that failure, the node can invoke the garbage collector
to free memory. If this fails as well, the accessed object might be a good candidate for migration or
another object must be found which can be migrated. E.g. if an object is only referenced from remote
nodes, this object is a good candidate for a migration.

2.2.6 Alternative Approaches

We identified three alternative approaches for the described ReferenceMap/GaoMap process. They
aim at the reduction of the two stage resolution process by eliminating one or both indirections.

12
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Figure 8: Local Memory Stub and GaoMap.

The first alternative removes the ReferenceMap and makes direct use of the local memory pointer as
locallID. In this case, the local memory pointer always points into a valid memory region. Therefore, the
approach has to distinguish a local from a remote object. To do this, we introduce a local stub object.
At this location, the stub stores the corresponding index (globalID) into the GaoMap, c.f. figure 8. If
a locallD that points to a stub is resolved, the access is redirected to a GaoMap lookup that resolves
the location information needed for the remote object access.

Instead of removing the ReferenceMap, the second alternative removes the GaoMap. It moves the
location information from the GaoMap into the ReferenceMap, c.f. figure 9.

Reference Map

Object ]— > GUID
local ID «1—> Node ID, local ID

L->>Routing System
] - Global Addr.
- Source Route
- Virt. Circuit

local memory pointer
e.g. C-Pointer

Figure 9: ReferenceMap without GaoMap.

Combining the two previous alternative approaches, the third removes both, the ReferenceMap
and the GaoMap. It uses only regular local objects and stub objects. In this approach, the stub object
stores the location information for the remote object directly. Namely, it stores the same information
that was previously stored in the GaoMap, see figure 10.

This approach is comparable to a tagged pointer. A tagged pointer is a union of a local memory
pointer and an additional tag. The tag is e.g. used to indicate the type of data to which the pointer
points, or specific access conditions for the data. In our case, it is the location information of the
remote object.

All the different approaches have advantages and disadvantages. The main advantage of the
presence of the ReferenceMap is the additional information that is stored in this map, e. g. the reference
counter, garbage collector epoch counter, etc. This allows a fast access to the information that e.g. the
Java garbage collector needs.

The removal of the ReferenceMap and the usage of direct local memory pointers has the advantage
of a direct access to local objects, without the indirection via the ReferenceMap. With the DecentSTM
algorithm, all computation is done on local object copies only, see sec. 1.4. If a transaction reads or
writes a remote object, the system first has to fetch this object and create a local object copy. As
the object is remote, the locallD points to the stub object that reveals, directly or indirectly via the
GaoMap, the location of the object. The node uses this location information to send a request for a
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Figure 10: Local Memory Stub only, no ReferenceMap, no GaoMap.

copy of the remote object. When the remote object copy arrives at the local node, the node has to
deal with two objects: the object copy and the corresponding local stub object. Note that the locallD
still points to the stub object.

As the locallD is a pointer into the local memory, the system has three options to create a valid
reference that points to the received local object copy:

e The stub object holds an additional local memory pointer that points to the LOC. This option
has the disadvantage that it introduces an additional indirection.

e All locallDs that point to the stub object must be re-written to point to the LOC. This option
requires that all locallIDs on the stack and in all local objects must be check and eventually
re-written. Depending on the number of objects the thread holds, this might require a lot of
time and slow down the system. If the LOC is deleted later but at least one local reference is
kept, the same procedure has to be performed to re-write the locallID to point to the stub object
again.

e The stub object is moved to another memory location and the LOC is placed at the previous
location of the stub. The LOC must store the pointer to the new stub location. The replacement
of the stub has two disadvantages: First, there might not be enough continuous memory behind
the stub to hold the whole LOC. In this case, the LOC has to be stored at some other memory
location and the stub has either to re-direct all access to the LOC or all locallDs to the stub
object have to be re-written (see the two options above). Second, if the LOC replaced the sub
and the LOC is deleted, the stub must be copied back, if there is at least one local reference to
the corresponding object. To prevent memory fragmentation, the system would have to take
additional measures.

The only advantage of the removal of both, the ReferenceMap and the GaoMap is that it removes
the indirection that leads from the stub object to the GaoMap. All other problems described above
apply in the same manner as they do for the solely removal of the ReferenceMap.

The removal of the GaoMap does not has the problems of the two other alternative approaches.
Instead, it has the advantage to remove the indirection from the ReferenceMap to the GaoMap.
This is possible because the information from the GaoMap is moved into the ReferenceMap. The
disadvantage is, that each entry in the ReferenceMap has to provide enough space for the remote
location information, even if the object is private and will always stay on the local node.

Under these considerations, it seems as if the original approach with both maps, the ReferenceMap
and the GaoMap, is most suitable for a general system. If and when one of the alternative approaches
is suitable depends on the concrete application. This evaluation is ongoing work in our group.

2.2.7 Reference Chains

In object oriented programming languages, it happens that a reference field in an object is read,
only to read from that object another reference, and so on. This is e. g. the case in a red-black tree
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implementation, where the color a of the right node of the parent of the parent of an object B is read:
color a = right0f (parentOf (parentOf (Object_B))).getColor();

A common object access first reads and stores the reference to the parent of object B. Afterwards,
this reference is used to access the parent object to read the reference to the parent-parent. This
reference is again stored while the reference to the parent is deleted. Finally, the reference to the
parent-parent is used to read the reference to the right node of this object.

Up to now, this procedure requires that a LOC of all intermediate, potentially remote, objects
if iteratively fetched, even though the intermediate objects are not necessarily needed. To prevent
this overhead, we introduce reference chains: The runtime environment builds up a chain of locallDs
in its local ReferenceMap, as long a thread only accesses the reference fields of objects. The chain
is recursively resolved only if a numeric value field is accessed, or the reference is needed, e. g. for a
compare operation.

To resolve the chain, a table lookup is done until the first remote object is found. Then, a request
is sent to the remote object, together with the information about the rest of the reference chain. The
information about the reference chain must contain the GUIDs of the referenced objects, rather than
the only locally valid localIDs. This process is continued on the remote node(s), until the last object is
reached. The home node of this last object returns the LOC to the node that initiated the resolution
of the chain. If the chain accesses a reference field that contains a NULL reference, a NULL Reference
FEzception is returned immediately.

Figure 5 shows a chain of two localIDs. In that figure, the first object references the fifth object in
the local ReferenceMap.

2.3 Migration Manager

The Migration Manager (MigMgr) handles the migration of GAOs from one node to another. Discussing
details and the reason for the migration is beyond the scope of this paper. Potential scenarios are
e. g. the need to bring two objects closer together to prevent unnecessary message traffic, load balancing
or the need to free local memory.

The MigMgr is invoked on the node that initiates the GAO migration. A migration is performed
either as push, pull or transfer operation.

The methods or the MigMgr are:

void MigMgr: :PushObjectTo(locID_t, Node);
void MigMgr::PullObjectFrom(locID_t, Node);
void MigMgr::TransferObjectFromTo(locID_t, NodeA, NodeB);

In a push migration, the old home node initiates the migration. It takes a local object and pushes
it to a remote node. The remote node has to acknowledge the migration, before the pushing node is
allowed to delete the migrated object.

A pull migration is initiated by the new home node of the object. The new home node pulls the
GAO from the old home node and stores it into the local object store. When this is done, the new
home node has to send an acknowledge message to the old home node. This allows the old home to
delete its local object.

A transfer migration is initiated by a third party. It transfers an object from its old home node to
another new home node without the involvement of the initiating node. When the transfer is finished,
the new home node of the object has to send two acknowledgment messages. One to the old home
node so that this node can delete its local object and one to the initiating node so that this node does
not invoke the transfer again.

All these operations can cause an OutOfMemory Exception on the old and/or the new home node of
the object, depending of the location maintenance approach. For example, the reactive and proactive
approaches need at least a new entry in the GaoMap on the old home node for the prozy entry. If the
local object holds references to these objects, an additional outgoing reference entry in the GaoMap
must be created. The new home node must allocate memory for the object. In some cases it must
create additional entries in the different maps and the source route cache.
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The migration of an object requires an update of the ReferenceMap entries of its outgoing references.
On the old home node, the reference counter is decremented. If this counter drops to zero, there are
no other local objects which need this reference and its entries in the ReferenceMap and the GaoMap
entries can be deleted.

Migration Process An object migration process passes through the following steps:

e Retrieve the location information of the new home node (for a push/transfer operation) or old
home node (for a pull operation) of the GAO.

e Send request to the remote MemMgr to allocate memory for the migrating object in the remote
memory (push/transfer case) or to allocate local memory for the new GAO (pull case).

e Retrieve the GAO from the local MemMegr (push case) or retrieval of the GAO from the remote
memory (pull/transfer case).

e Retrieve the location information of each outgoing reference (e. g.source route to reference home
node) the migrating GAO holds from the GaoMap on the old home node (any case).

e If proactive update: Retrieve the location information for each incoming reference entry in the
InRefList (e. g. source routes to InRef nodes).

e Include the migrating GAO, all outgoing references (together with their location information)
and its InRefList (is present) in one message. Send this message to the new home node (any
case).

When the migration message reaches the new home node the migrated object is stored in it’s local
object store and the ORMgr assigns a new local ID. For each outgoing reference either a new entry
is created in the ReferenceMap and the GaoMap or the reference counter is incremented. Then, the
shipped InRefList of the migrated object is stored in the local memory.

As we use source routes to reach a remote node, the new home node must compute the corresponding
source routes for all InRefLiist entries and all outgoing references. To do this, the node concatenates
the shipped reference source routes with the inverted migration route and adds them to the local route
cache:

NewReferenceRoute = (—MigrationRoute) + CurrentReferenceRoute (1)

e Al =S S N
@ @ reference @

o o

(a) Before migration. (b) Migration. (c) After migration.

Figure 11: Outgoing Reference redirection after migration.

Fig. 11 gives an example. for which the source routes are concatenated as follows:

01d Ref. A -> D : (1-3-4)
Mig. path : (1-3-2)
Ref. update :
A ->D : -(1-3-2) + (1-3-4)
A ->D: (2-3-1) + (1-3-4)
A ->D: (2-3-4)
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This update operation implicitly removes all potential loops in the new routes. Nevertheless, this
may result in temporarily quite sub-optimal routes; but [12] has shown, the routing algorithm is able
to quickly remove indirections and optimize the path.

2.4 Example Setup

The following example is used to illustrate a fully distributed setting in which objects are free to
migrate. The example in figure 12 shows five objects with GUIDs 7, 9, 12, 13 and 14, which reference
each other. We use small numbers for the GUIDs of the GAOs in this example. Typically, GUIDs are
larger than the node local memory pointers.

We use the example to discuss:

e the maintenance overhead, i.e. number and types of messages that are needed to keep the
references updated

e the state that must be stored and maintained on each node in the network, and

e the object and location information retrieval overhead.

@

(O Node [ ] Object
a) Object Reference Graph. (b) Object Location in Distributed Network.

Figure 12: Reference Graph and Physical Location.

Object 7 Object 9 Object 14 Object 12 Object 13
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Table 1: Outgoing References of each GAO.

Node B Node D Node C Node E
07— D:1 07— D:0 12— C:0 13— E:0
09— B:1 12— C:1 13— E:1
12— C:2
13—E:1
14—DB:0

Table 2: Referenced GAO Location Information per Node.

Figure 12(a) shows the reference graph of the example. Figure 12(b) shows an initial location of
the GAOs in the our example network. Table 1 shows the outgoing references of each objects. The
right arrow (—) is read as this object “holds a reference to” GUID or this object “references” GUID,
e.g., “object 7 references object 12”7. Table 2 shows the corresponding location information. Here,
the right arrow (—) is read as this object “is stored on” node or this object “is located on” node.
E.g. for node B, where the entry (07 — D : 1) is read as “object 7 is stored on node D”. This table
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include the local self-reference to the locally stored objects, e.g. for the objects 9 and 14 on node
B. Each location information entry is accompanied by a reference counter that indicates how many
local objects reference the corresponding object. A value of zero indicates that a local object is not
referenced from the local node. E.g. for node C, where the entry (12 — C : 0) indicates that the
local object 12 is not referenced locally.

3 Locating Dynamic Objects

Each read or write operation to a dynamic object requires a reference to this object. As described
above, the referencing object must not be able to make up a valid reference. In a fully distributed
system a reference must not only identify the object. It must also enable a location system to supply
the information, where the object is located.

If a GAO migrates from one node to another, the stored GAO location information on all other
nodes becomes invalid. For this reason an additional object location retrieval protocol is needed. This
protocol either has to

e ensure that access messages always reach the corresponding GAO, even if the message was
initially sent to an outdated location, or

e keep the location information of the migrated GAO updated on all other nodes.

The first requirement is met if a migrated object e.g. leaves a proxy behind that forwards the
request to the new home node of the GAO. Another solution could be a central registry where an
accessing node can ask for the new location if the first access attempt at an outdated location failed.
Finally, the request can be sent as a broadcast message to all nodes in the network.

The second requirement can be met by sending update messages to all incoming and outgoing
references of the migrating object.

In practice, it is hard to ensure the timely update of location information in a distributed system.
Thus, one wants to use a combination of both: proxies to forward requests and update messages that
eliminate proxies eventually. If this protocol fails for some reason, the fallback to broadcast messages
is always possible, even though costly.

In the following, we describe different object retrieval and location information maintenance
approaches that ensure that a node can access a dynamic object while it is allowed to migrate from
one node to another.

3.1 Broadcast

The fallback approach that always works is to broadcast the access request to all nodes in the network.
This approach requires only the GUID of the accessed object, no additional location information is
needed.

The broadcast message floods the network and propagates from node to node until it reaches
the current home node of the accessed GAO. To send the response, the accessed GAO can use the
underlying routing mechanism.

This approach has to ensure that the broadcast message reaches each node. Additionally, the
algorithm has to terminate so that the message does not flood the network indefinitely.

In this approach, objects are free to migrate between different nodes. There is no need to send any
update messages or to keep any additional state on the old home nodes like proxies. The drawback of
this approach is the potentially high communication cost and access latency. Nevertheless, it is a last
resort in case that the other protocols fail.

Various broadcast protocols have been developed. Williams and Camp [13] describe twelve broadcast
protocols for mobile ad-hoc networks. They classify these protocols in four categories: simple flooding,
probability based methods, area based methods and neighbor knowledge methods. They evaluated
one or two protocols of each category, in total five, to make assumptions about the applicability of all
protocols in this category.

Dalal and Metcalfe [14] introduced another protocol, the reverse path forwarding protocol for
broadcast packets.
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Bolton and Love analyzed the reverse path forwarding protocol in [15].

Bellur and Ogier describe in [16] a broadcast protocol for dynamic networks that is based on
reverse-path forwarding.

Tréaff et.al. [17, 18] describe another approach for an optimal broadcast algorithm for SMP cluster
and fully connected processor-node networks.

As all broadcast protocols introduce a high message overhead, we decided against an evaluation of
a broadcast protocol in the network simulator.

Nevertheless, broadcast will be the fallback solution in our runtime environment, in case a remote
reference is irreparable lost. We are currently developing a prototype of our distributed runtime
environment, where we will include a broadcast protocol as fallback. When this prototype is finished,
we will re-evaluate our protocols and examine the broadcast approach as well.

3.2 Central Registry

A central registry is a common approach to locate or track mobile objects. It is used to store the
location information for all objects present in the system, e.g.at a single node. As such, this node
is a single point of failure. For this rason, the registry should be replicated redundantly on different
nodes. This is also desirable for load balancing, e. g.to distribute a huge number of lookup requests
and decrease the access latency in large networks.

Bhattacharya et. al. [19] describe a flexible, hierarchical location directory service for tiered sensor
networks, called Multi-resolution Location Directory Service (MLDS). Their approach aims at locating
and tracking physical “objects”, such as tools or employees, e. g.doctors in a clinic. MLDS has a four
tiered hierarchy with a central registry at the top. The second tier is formed by the base stations
of the different sensor networks. These networks are again clustered into groups of sensors, with a
distinguished sensor node as clusterhead. The clusterheads form the third tier, while the individual
sensor nodes below form the fourth tier. Different queries can be send to their location directory service
to e.g.locate a specific object. To reduce the communication overhead, MLDS does not propagate all
requests and information to the top most hierarchy. With this approach, MLDS has similarities to the
Domain Name Service (DNS) [20], see below, on the Internet.

The Common Object Request Broker Architecture (CORBA) [21, 22, 23] uses an object registry,
the so called Naming Service. CORBA is a middleware specification to allow multiple applications to
communicate and exchange data among each other. These applications might be written in different
programming languages, which makes it necessary to use the interface definition language (IDL), that
defines the interface to objects. To retrieve a reference to an object, the client either has to query the
Naming Service with a string identifier that identifies the requested object or the referenced is passed
as a parameter of a method call.

Henning describes in [24] the problems of CORBA and what one can learn from the CORBA
mistakes. The problems that Henning identifies are e. g. the need for the Naming Service, as a client
can not create an object reference without the use of this external service. Also, the specification
ignores multi-threading, so that threaded applications are non-portable.

The Java Remote Method Invocation (RMI), see e. g. Wollrath et.al. [25], describes an approach
to invoke methods on remote objects. Before an object is accessible from remote nodes, the creating
node must register the object at the central RMI Registry, a bootstrap name server. Afterwards, a
remote client can access this new remote object by requesting the remote reference from the central
RMI Registry. To do this, the client has to lookup the specific name of the object at the RMI Registry.
This name must be known in advance. The return value of the lookup is the remote reference, a tuple
of endpoint and object identifier.

Munoz et.al. [26] compare the distributed object model from CORBA and Java RMI. They use a
simple client server application as average response benchmark, described by Orfali and Harkey [27].
With this benchmark, the performance and timing issues of both systems are measured and compared
under different conditions. The paper identifies various sources for latency overhead, such as object
location and parameter transformation. They find that CORBA and RMI introduce an overhead that
is about twice as high as socket calls but that they are about three times faster than HTTP/CGI.
According to their conclusion, both systems are well suitable for request/response applications over
Ethernet networks.
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The Domain Name System (DNS) [28, 29, 20] is another example of a distributed, hierarchical
lookup service using centralized DNS name server. The local DNS resolver is responsible for the
resolution of a given name to the corresponding IP address. The resolver does this by by sending a
query to its pre-configured name server. The name server can handle DNS queries either recursively
or iteratively. An iterative query is answered by the queried name server either with the requested
resource record, or with the address of another name server. If the response contains another name
server, the resolver re-sends its query to this other name server. This process is repeated until a name
server answers the request with a valid resource record. A recursive query is always answered by the
first queried name server. In case that the server does not know the answer to the request, itself “asks”
additional server until it gets an answer, that is send back.

Similar to broadcast, we do not test one or more centralized registry approaches in the network
simulator. The reason is the limited scalability of this approach and our goal to design a fully-
decentralized system.

An alternative to a centralized registry is e.g.a distributed hash table (DHT). DHTs provide a
scalable, distributed lookup service. They are used in peer-to-peer systems such as CAN [30], Chord
[31] or Pastry [32]. As we need a lookup service, e. g.to locate static (parts of) objects, we will use a
DHT, or a similar approach, in our prototype as well.

3.3 Reactive Updates with Migration Proxies

If an object migrates from one node to another, the location information for this object is invalid on
all other nodes except for the two nodes that are involved in the migration. To still be able to access
the migrated object, an alternative to broadcast and a central registry is the use of a prozy. The proxy
is kept on the former home node of the object. It can then forward all requests to the new location of
the object. Proxies are applied by some systems found in the literature, c. f. the related work section 6.

In our system, the proxy does not need an explicit representative in the object store. It is only
represented by an entry in the GaoMap, that stores the new location of the object, e.g.its GUID,
together with its new home node and an object migration sequence number (see below).

[ ]Object

Figure 13: Proxy Chain of GAO 12.

With each new migration the former home node of the object creates a new proxy. This leads to a
chain of proxies that the migrating object creates while moving through the system. As an example of
a chain of prozies see figure 13: GAO 12 migrated from node C to D and afterwards further to node B.

3.3.1 Object Access

The simple object access along (a chain of) proxies is shown in figure 14. Subfigure 14(a) shows the
state where object B migrated to another node and left the proxy B’ at its former home node.

At the beginning of the access process, object A holds an “outdated“ reference to object B,
c.f.fig. 14(a). Object A can be a Java object, from which a thread reads the reference to object B for
the object access. Or, object A can represent the execution context itself, that holds the reference to
object B, e.g.in a local variable.

To access object B, the home node of object A sends an access request (1) to the former home node,
where the proxy B’ resides. Proxy B’ forwards the access request (2) to the now location of object
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(a) Access request and for- (b) Access response.
warding.

Figure 14: Simple Object Access along Intermediate Proxies.

B. The new home node of object B answers the request and sends the response (3) back to object A.
When the home node of object A receives this response, it updates it location information for object
B. Afterwards, all access requests are send directly to object B, without the indirection via proxy B’.

(a) Access request and for- (b) Access response.
warding.

Figure 15: Simple Object Access along Intermediate Proxies.

Figure 15 shows the same process, this time with the additional migration of object A. In this
case, object A represents the execution context that executes the access to object B. This is possible,
because our system represents execution contexts as objects as well.

Again, the access of object B is initiated by the home node of object A (1), and the request is
forwarded to the new home node of object B (2). Afterwards, object A migrates as well, leaving the
proxy A’ c.f.fig. 15(b). The new home node of object B answers the request and sends the response
(3) to the old location of A, where now the proxy A’ is located. Proxy A’ forwards the response (4) to
the new location of object A. When the home node of object A receives this response, it updates it
location information for object B.

In this second example, object A cannot be a Java object, as the object access process finishes
at the instance that initiated the access. This is never the object itself, but always the thread, that
executes the code that accesses the object B.

Proxy Deletion Proxies remain on the former home node indefinitely, because a node cannot
determine if there are references in the network that reference the proxy. For this reason the system
deletes all proxies only during a distributed garbage collection run. The garbage collection (GC) starts
at a root object and from there follows all valid references until an object with no further references is
reached. The GC traverses all proxies which are still used and by this updates the outdated location
information. Afterwards, all proxies are marked for deletion and the system can remove them.

The garbage collection makes use of the fact that each usage of outdated location information
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results in the update of this information. The system can perform this update reactive during the
object access either in a recursive or iterative manner.

Reactive and Recursive Updates In the recursive update approach only the home node of the
accessed object sends a response message. All traversed proxies only recursively forward the object
access request message to the next proxy in the proxy chain. This process continues until the message
reaches the current home node of the accessed GAO. The home node answers the request with a
response message that is sent back to the home node of the accessing GAQO. This response message is
sent directly to the requesting node, it does not traverse the chain of proxies.

When the requesting node receives the response, it can update its GaoMap (reactive update on the
fly) and send all further requests directly to the GAO. If the requesting object itself migrated in the
meantime, it left a proxy that is now used to forward the response message to the object.

Request Msg.

Response Msg.
',/ before update /after update

[ ]Object

Figure 16: Reactive and Recursive Update of Proxy Chain.

After receiving the response, the requesting node might send an optional update message to the
old, outdated location information, namely the first proxy. If this message is forwarded along the
proxy chain, all proxies in this chain can update their outdated location information. On one hand,
this shortens the access for all other GAOs that use one of these proxies. On the other hand, this
increases the traffic overhead. Figure 16 shows the proxy chain before and after the access of object
14 to object 12 and the following proxy chain update. The two labeled arrows indicate the travel of
the Request Message and the Response Message. The unlabeled, dashed arrows indicate the outdated
location information of the corresponding references. The unlabeled solid arrows indicate the updated
location information.

Reactive and Iterative Updates In the iterative update approach each proxy sends an update
message directly back to the requesting node instead of forwarding the message along the chain of
proxies. This update message contains the new location information for the next proxy in the proxy
chain or the final location of the accessed GAQO. The accessing node iteratively re-sends the request to
this new location until the request reaches the home node of the accessed GAO. After the requesting
node received the response, it might again send an optional update message to the proxy.

Figure 17 shows again the proxy chain. As before, the labeled arrows show the travel of the Request,
Update and Response Messages.

Cyclic Routing Object migration and different GAO access patterns can lead to inconsistent object
location information in the network. As an example see fig. 18 where an application with two threads
access the same data. The application created a number of objects and migrated them through the
network. The following time line shows an execution flow that results in an infinite proxy loop:

t = 0: Thread 1 on node A receives a reference to GAO 3 and stores it in GAO 1. At the same time, the
location information “GAQ 3 is located on node C” is stored. In the GaoMap, this is represented
by the tuple (3, C).
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Figure 17: Reactive and Iterative Update of Proxy Chain.

t = 1: GAO 3 migrates from node C to node B and leaves a migration proxy. The reference of GAO 1
on node A is not updated.

t = 2: The runtime instance on node B migrates GAO 3 to node D and leaves the proxy (3, D).

t = 3: Thread 2 on node B executes a GET operation for the reference field of GAO 1 which holds the
reference to GAO 3.
The access message is send to node A. The following access response from node A to node B
contain the old location information “GAO 3 is located on node C”. But node B already stores
the location information “GAO 3 is located on node D”.

Now, the runtime instance on node B cannot determine which information, (3, C) or (3, D), is the
correct one. If it stored the information (3, C) the result would be an infinite loop: (B — C — B —
C — ...). The situation would only be resolved, if GAO 3 migrated to one of the nodes that are part
of the loop. Figure 18 shows the situation before node B decides which location information it should
store.
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PUT 1,3|store GaoMap PUT 1,3|Store GaoMap
[1~{3]¢] [1]-{5T¢]
(a) Node A: Put ref. to obj. 3 into obj. 1. (b) Node C: Migrate obj. 3 from C to B.
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(c) Node B: Migrate obj. 3 from B to D. (d) Node B: Get ref. to obj. 3 from obj. 1.

Figure 18: Potential Reference Override by GET operation.

We identified three different approaches to solve the problem of cyclic routing: sending two access
messages, using timestamps and using migration sequence numbers.

Approach 1: Two access messages In the first approach, node B sends two access messages along
the two possible references. Only one of them will reach GAO 3 and result in a response message.
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This response message contains the latest location information, that is used to update the location
information on node B. As a side-effect, this access removes all proxy indirection. The other message
results in a loop and cycles back to node B, where it is deleted.

Instead of sending the two access messages immediately, the node can hold them back until the
runtime environment issues an access to the object.

Approach 2: Timestamps The second approach uses timestamps, as e. g.suggested by Moreau
and Ribbens [33, 34]. As our system , they keep a record of the last known location of the object in a
local lookup table. Additionally, the assign a timestamp to each location information in that table,
that indicates at what time the corresponding entry was inserted into the table. In contrast to our
migration sequence number approach below, this approach has to synchronize the clocks on all nodes
in the network.

Approach 3: Migration Sequence Numbers In our system, a global timestamp, as described
above, is unnecessary, as the migration information of a single object is unique to this object. For
this reason, we do not use timestamps, but assign each object with a per-object migration sequence
number. This number is stored with each remote reference entry in the GaoMap. It indicates for each
entry when it was created.

Upon an object migration, the migration sequence number of the migrating object is incremented.
Additionally, the sequence numbers of the GaoMap entries (for the migrating object) on the old and
on the new home node are updated as well.

Of the three described approach, this one is the one that is best suited for our decentralized,
distributed scenario, as it does not require additional messages or any time synchronization.

3.3.2 Object State Diagram

An object on a given node can assume five different states during its lifetime. It can be a local object,
a proxy or an object in the pending state. Additionally, an initial state indicates the point at which an
object comes into existence on a node, while the finish state indicates the end of an objects lifetime.
Depending of the state of an object, the home node has to handle messages for this object differently.

Additionally to the object states, we have to consider some node and network conditions. First,
we suppose that neither the underlying network nor the routing protocol is reliable and that for this
reason messages might get lost. Therefore, we introduce a timeout period in which the system expects
a response or acknowledgement message. If a message is not acknowledged within this time period, it
is marked to be re-sent. If the original message is re-sent or if the message is modified depends on
the message and the given node conditions. Consider an example, for that an access message was
sent to object x on node A and got lost. At the time the message has to be resent, a new location
information for object x might exist that states that object x now resides on node B. In this case, the
access message is modified and sent to node B instead of node A.

Second, the update of the GaoMap might result in the update of the location information. In our
scenario, this additional information is the source route that is needed to reach a remote home node.
A new outgoing reference entry in the GaoMap, for example, adds a new entry to the GaoMap and
the corresponding source route to the RouteCache.

Local Object State An object in the local object (copy) state is located in the local memory. An
object is local either because of the invocation of a NEW operation that triggers a NEW object event
or the reception of a migration message that indicates that an object migrates to this node.

The NEW object event invokes the local ORMgr and MemMgr to create the new object; and it
adds the corresponding entries to the various location maintenance maps, c. f. section 2.2.2.

An object migration message triggers the check if there is a local proxy or an outgoing reference
(OutRef) entry in the GaoMap. If there is an OutRef entry in the GaoMap, the node updates this
entry to point to the local node. If there is a local proxy, this proxy is deleted. The node adds the
location information for all OutRefs to the corresponding maps. If there is already an entry for a
OutRef present on the local node, the reference counter is incremented. Additionally, the migration
sequence of the current entry is checked. If a location information that came with the object migration
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Figure 19: State Diagram: Reactive Update with Migration Proxies (Proxy Only).
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is newer, the current entry is replaced, otherwise, it is kept and the information from the migration
message is discarded. After this process finished successfully, the node sends a migration ACK message
back to the sending node. It can happen the the node receives the same migration message twice,
e.g.due to a timeout event on the sending node, c.f. pending state below. If this happens, this second
message will be dropped. If e.g. an OutOfMemory Exzception occurs, instead of an ACK a NAK (not
acknowledged) message is sent back.

A PUT or GET request message for a local object is always answered directly with the corresponding
response message. A PUT request writes a new reference to a reference field and is acknowledged with
an ACK message. The home node answers a GET request with a response message that contains the
read reference and the latest known location information of this reference.

The read reference that is delivered by a GET response is handled in the same way as an OutRef
of a migrated object described above. If the current location information is outdated and replaced by
the read reference, an optional update message can be sent to this outdated location information (the
proxy). This update message travels along the whole proxy chain towards the current location of the
object, see figure 16. When the message reaches the current home node of the object, the message
is dropped. This should not happen regularly, because the last proxy in the chain should drop the
message as well, c. f. the prozy state below.

There are two events, that cause an object to change from the local object state into either the
pending or the finished state: the object migration event and the delete object event.

The object migration event initiates the transition into the pending state. This event invokes the
MigMgr of the node, which then generates the migration message as described in section 2.3.

If there are local references to the migrated object, these references are changed from local to
remote references, namely the home node of the object is set to the node where the object is migrated
to. This is an optimistic approach that assumes that the migration will succeed, see description of
the pending state below. Nevertheless, we suppose that a local access message that is sent directly
after the migration message reaches the new home node when the migration was successful. If this
assumption is wrong, the new home node will drop this access message which will be resend after the
timeout period.

The delete object event results in the deletion of the object and the transition into the finished
state. The local reference counter of each OutRef of the deleted object is decremented during the
deletion process. If one of these counters drops to zero, the ORMgr deletes the corresponding entries
in the location maintenance maps.

Pending State If an object resides in the pending state, its home node forwards all request and
response message for this object. The node is not allowed to answer the request to prevent an
inconsistent object state in the network.

If the migration message did not reach the destination node or the migration process was aborted
due to an OutOfMemory exception, the node will drop the forwarded message. In both cases, the
requesting node will eventually re-send the message.

Another solution is to drop all messages, wait for the re-send after the timeout and then forward
the message. Our approach is optimistic that the migration succeeds. In this case, the node will be
able to answer the forwarded request and no re-sending is necessary.

If the home node of the pending object receives a migration NAK message, the migration process
was aborted, e.g.due to an OutOfMemory exception. In this case, the entity that triggered the
migration has to reconsider the migration. Depending on the migration policy, the entity can either
choose another node to migrate the object to or to invoke the garbage collector on the corresponding
node to try to free memory for the migrating object. The actual policy is beyond the scope of this
paper. Our simulation environment expects that there is always enough memory for the the migrating
object. For this reason, no migration NAK message occurs in our simulation. Nevertheless, it can
happen that a migration does not succeed before the above mentioned forwarded access message
reaches the node. This is e. g. the case if the migration message was sent along a longer source route
than the forwarded access message. This happens if the sending node received an new source route to
the destination node inbetween these two messages.

The reception of the migration ACK message triggers the transition into the prozry state. At
this time the actual proxy is created and the reference counter of the object’s outgoing references is
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decremented. This decrement must not happen before the migration succeeded. Thereby, we prevent
the heady deletion of the entries in the location maintenance maps, which might be needed if the
migration aborts. After the reference counter are decremented, the MemMgr deletes the object from
the local object store. After that, only the proxy entry and a possible outgoing reference entry to the
migrated object remain in the GaoMap.

If the home node of the pending object does not receive the migration ACK message during the
timeout period, the migration message is re-sent.

Proxy State The node that holds an object in the proxy state forwards all messages for this object
to the next known object location. This state does not handle the timeout period, because no messages
are sent actively in the proxy state.

If the corresponding object re-migrates back to this node the proxy is deleted. If a remote OutRef to
a former home node of the object exists locally, this OutRef is changed to a local reference. Additionally,
the location information, namely the home node of the object is changed to the local node. Finally,
all steps for a migration message are executed as done for the transition from the initial to the local
object state.

If the system supports the optional update message mentioned above, the node checks the corre-
sponding location information of the proxy. The node updates this location information only if the
information in the update message is newer. If this is true, the node also forwards the message to the
former location, which is the next proxy in the chain of proxies. If the location information is older or
equally old, the message is dropped.

As mentioned before, the distributed garbage collection will update all outdated OutRefs that
point to proxies during its mark phase. The sweep phase will then delete all remaining proxies which
results in the transition from the proxy state into the finished state.

3.4 Proactive Update Messages with Incoming References

The reactive update approach described in section 3.3 has two potential drawbacks. Both result from
a high migration but low garbage collection rate. First, each migration increases the length of the
proxy chain, with the result of long chains of proxies. If an object is seldom accessed, a long proxy
chain increases the object access latency. Second, if objects are accessed frequently and the location
information are up to date, proxies that are not needed anymore, stay in the system and occupy
memory.

To circumvent these drawbacks, we introduce the proactive update approach. Here, invalid location
information are updated directly after the success of an object migration. This approach requires
additional backward references, the so called incoming references (InRefs) of an object.

The main idea is that the home node of the remaining proxy sends update messages to all of the
proxies incoming and outgoing references. This has two advantages: A all location information are up
to date, access messages are send directly to the migrated object, with no (or if, only a few) proxies in
between. Second, if the home node of a proxy can be sure that the proxy is not referenced anymore,
the node can delete this proxy. The disadvantage is the increased management and message overhead
that is needed to update the remote location information.

3.4.1 Incoming References

An incoming reference (InRef) is the backward reference of an outgoing reference (OutRef): it points
from the referenced object back to the referencing object. For all OutRefs from object A to any other
object B (A — B) there exist a corresponding InRef from object B back to object A (A «— B).
If object A references a number x of other objects on the same node Y, object A has x incoming
references from node Y. This requires that object A has to store 2 InRefs. If update messages are send
to all InRefs after object A migrated, the former home node of object A would have to sent = update
messages: One to each referencing object on node Y, all containing the same new location information.
To prevent this, the protocol does not store an InRef for each referencing object but consolidates all
InRefs from the same node in only one InRefs for this referencing node. As a result, object A only
stores one InRef node: the node Y.
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This approach is the counterpart of the GaoMap. The GaoMap consolidates references as well:
it combines all local OutRefs to the same remote object in only one GaoMap entry, and a reference
counter that indicates the number of local objects holding this reference. As a result, for each GaoMap
entry on node Y leading to a node Z, there exists an object on node Z that has an incoming reference
list (InRefList) with an entry to node Y.

Outgoing Ref. s Incoming Ref.

Figure 20: Reference Graph with InRefs and Physical Location.

Figure 20 shows the modified reference graph and object placement of the chosen example setup
(c.f.fig. 12). On the left side of an object are the InRefs that lead to the referencing nodes, e. g. object
7 on node D has an InRef from node B that corresponds to the OutRef from object 9 to object 7.
On the right side of an object are the OutRefs that lead to the reference object, e.g.object 9 that
references object 7. Note that object 12 on node C has only one InRef from node B (seen object 12 in
table 3), but two OutRefs, from object 9 and 14 on node B, lead to object 12. These two references
are consolidated on node B in only on GaoMap entry for object 12 with a reference count of two: (12
— C : 2) (see table 4).

Object 07 Object 09 Object 14 Object 12 Object 13
Out: Out: Out: Out: Out:
— 12 — 7 —9 — 13
— 12 — 12
— 13
In: In: In: In: In:
«— B +— B +— A +— B
+—B +—C

Table 3: Incoming and Outgoing References of each GAO.

Table 3 shows the outgoing and incoming references of each object. OutRefs are marked by a right
arrow (—), which is read as this GUID “is located on” that node. InRefs are marked by a left arrow
(+—), which is read as this GUID “is referenced by” that node. Table 4 shows the GaoMaps of each
node. The value that is separated by a colon shows the local reference counter.

3.4.2 Differences to Reactive Update Approach Proxies

The proactive update approach uses proxies in the same way as the reactive update approach,
c.f.sec. 3.3: namely to forward all messages until all In- and OutRefs of the remaining proxy have
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Node B Node C Node D Node E
07— D:1 12— C:0 07— D:0 13— E:0
09— B:1 13—E:1 12— C:1
12— C:2
13——E:1
14-—B:0

Table 4: GaoMap: Referenced GAO Location Information.

been updated. But additionally, it is required to store more state than in the reactive update approach
to maintain the In- and OutRefs.

In the reactive update approach, a proxy was a single entry in the GaoMap that was used to
forward all request messages. In the proactive update approach, the node that holds the proxy must
keep the whole In- and OutRef information of the object. Additionally, it must keep track which
references have been successfully updated and for which the acknowledgement of the update is pending.
If all In- and OutRefs of the proxy are updated, the proxy is not needed any more and the home
node of the proxy can delete it. This ensures the reachability of all objects before, during and after a
migration.

3.4.3 In- and OutRef Maintenance

To enable the proactive update approach, we introduce two new classes of reference maintenance
messages. The first class of messages is used to announce the establishment and removal of InRef.
The second class is used to maintain the In- and OutRefs after an object migration succeeded.

The first class of maintenance messages contains InRef FEstablish and InRef Remove messages and
their acknowledgement messages. Note that there is no OutRef Establish message because OutRefs are
implicitly established during PUT and GET operations. The establishment of a new OutRef causes
the sending of an InRef Fstablish message.

Whenever a PUT or GET operation adds an OutRef to a local object, the node also checks
the local GaoMap for this OutRef. If there is an entry for this OutRef, the reference counter of
this entry is incremented by one. If there is no entry yet, a new entry is created and added to the
GaoMap. Additionally, the node announces this reception by sending an InRef Establish message to
the referenced object. When receiving this message, the home node of the referenced object adds the
sending node as new InRef node to this objects InRefList.

PUT operations also overwrite reference fields of objects. If a valid reference is overwritten, the
reference counter of the GaoMap entry for this reference is decremented by one. If the reference
counter drops to zero, the node announces the removal of the last local OutRef by sending an InRef
Remove message to the corresponding object. When receiving this message, the home node of the
referenced object removes the sending node from the InRefList of the object.

The sending node does not wait until the InRef Remove ACK message arrives, but has to delete
the corresponding OutRef immediately from the ReferenceMap and the GaoMap. This is necessary, as
the application might establish a new OutRef to the object in another context, while still waiting for
the InRef Remove ACK. If the node afterwards receives the ACK message and then deletes the entry,
it would remove this newly established and still needed entry.

Alternatively, the node could mark the entry with a to-be-deleted flag that is set when the InRef
Remove message is send, and that causes the deletion of the entry, if the InRef Remove ACK message
arrives. If afterwards a new OutRef entry is established, this flag is deleted again.

Which of these two alternatives is chosen depends on the protocol implementation. The first
approach requires the node to store the corresponding InRef Remove message information, to enable
the re-sending of the message, in case no InRef Remove ACK message is received within the given
threshold. The second approach keeps this information in the GaoMap.

The second class of maintenance messages contains the Incoming-to-Outgoing (InOut) Notify and
Outgoing-to-Incoming (OutIn) Notify messages and their acknowledgement messages. A node sends
these messages after an object migration has finished successfully. By this, the node announces the
new home node of the migrated object to all the In- and OutRefs of the remaining proxy object.
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InOut Notify messages are send to the InRefs of the proxy, to update the remote OutRefs, resp. their
GaoMap entries on the InRef nodes. OutIn Notify messages are send to the OutRefs of the proxy, to
inform the corresponding InRefs of the referenced objects.

The nodes that receive these messages have to handle them according to the local state of their
local objects. A detailed description is given below in section 3.4.6.

3.4.4 Object Access: Triangular Access Messages

The proactive update approach tries to delete proxies as soon as possible when all In- and OutRefs
have been updated. Nevertheless, the update process or the proxy can overlap with pending PUT and
GET operations. These operations might use the location information of the proxy object and create
new remote references to the proxy.

E.g., a remote GET operation creates a new reference to a proxy. Now it can happen that the new
InRef of the proxy is not established in time, before all outdated InRefs in the InRefList are updated
and the proxy is deleted. See figure 21 for an example.
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Figure 21: Reason for a failed InRef Establishment.

In this example, an object 1 on node A holds a reference to an object 3 on node C. In the first step,
figure 21(a), node B reads the reference to object 3 from object 1 with a GET message (1). Node
A responds with the reference (2) and the current location information object 3 on node C' (3 —
C). Before node B sends the InRef Establish message to node C, node C migrates object 3 to node D.
After the successful migration, node C sends an InOut Notify message (3) to node A, c.f.fig. 21(Db).
When the acknowledge message (4) from node A arrives at node C, node C deletes the proxy. If node
B now sends the InRef Establish message (5), after the proxy was deleted, this establishment must fail,
as the proxy and all information about object 3 was deleted on node C.

To guarantee the consistency of the InRefs of an object, we introduce triangular access messages,
namely Triangular-GET and Triangular-PUT messages. In contrast to regular GET operations, which
follow a simple request-response protocol, Triangular-GET operations follow a three step protocol: the
accessed object does not answer the GET request message but forwards the message to the referenced
object, from where the response is send back to the requesting node.

First, the request message reaches the home node of the accessed object. The home node reads
the reference from the accessed object field and forwards the request message to this new reference.
When the forwarded request message reaches the home node of the referenced object, this home node
adds a new InRef from the requesting node (the one that sent the initial request) to the objects
InRefList. Afterwards, the request is answered with a GET response message back to the requesting
node. Figure 22 shows the timing sequence and message flow of this access. The advantage of this
process is that the requesting node not only receives the read reference (GUID) but also the latest
location information of the corresponding object. The disadvantage is that the access latency is
increased, because the GET request message has to travel to the accessed object and further on to the
object to which the reference is read. With this approach, the referenced object adds the new InRef
before the OutRef is established at the reading (accessing) node. Now, in case the object to which the
reference was read migrates, its proxy will update this additional InRef as well.

The Triangular-PUT is similar: instead of sending the PUT request to the object where the
reference is written to, the request is send to the referenced object, c.f. fig. 23. This message contains
the GUID and location information of that object, to which the reference has to be written. The
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Figure 23: Triangular-PUT Operation.

receiving node adds the new InRef to the referenced objects and forwards the PUT request to the
object where the reference is written to. The home node of the accessed object (where the ref. is
written to) writes the new OutRef to the object and the latest location information of the referenced
object is stored. Afterwards the node sends the ACK message back to the node that requested the
PUT operation.

3.4.5 Enhanced Proactive Location Update

To circumvent the disadvantage of the increased access latency, we enhance the Triangular-GET
approach, cf fig. 21 and fig. 24. In this approach, node A does not forwarding the request message
to node C. Instead, the node sends two messages: the GET response message as in the original
request-response protocol, back to node B, and an additional InRef Fstablish message to node C,
where object 3 resides, to which the reference was read. This additional InRef Establish message
announces the new InRef from node B to object 3 on node C. Node C acknowledges this message.
But in accordance with the triangular approach of the protocol, the ACK is not send back to node
A, but it is send to the requesting node A. By this, the message fulfills the same task as the GET
response message in the 'normal’ Triangular-GET approach: It acknowledges not only the new InRef
of object 3, but also the success of the whole Enhanced Triangular-GET protocol. If node A would not
receive the ACK within the defined threshold, it would re-send the initial GET request message and
re-start the GET process. Note that the execution of the application might proceed after the GET
response message is received, but that the GET operation has to be re-triggered if the ACK does not
arrive. This is necessary to keep the In- and OutRefs consistent. Note that a re-trigger of the GET
operation does not influence the result of the execution as the accessed object (the GAO version) itself
is immutable.
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The advantage of this approach is the decreased access latency, as the response is send immediately.
The disadvantage is the one, additional GET response message.
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Figure 24: Enhanced Triangular-GET Operation.

Triangular-PUT operations can be enhanced in a similar way: It follows the original request-
response approach with an additional InRef Establish message. But this time, the additional InRef
FEstablish message is send by the node that initiated the PUT request operation.

3.4.6 Object State Diagram

The proactive update approach more complicated than the reactive update approach. The state
diagram from fig. 19 stays valid, as the proactive approach uses proxies as well. Unlike the reactive
approach, it does so only until all references are updated. As the proactive approach implicitly updates
In- and OutRefs, the optional update message from the reactive approach is discarded.

The following sections presents the additional state diagrams for the proactive approach. These
diagrams are split into three parts: the regular operations (fig. 25), object migration (fig. 26) and
reference management (fig. 31). Note that the update of the object references includes the update
of the corresponding location information, e. g.the corresponding source routes in the route cache,
c. f.section 3.3.2.

The following sections deal with the case that messages have to be sent between remote nodes in
the system. For access operations to referenced objects, which are located on the local, accessing node,
no message is send but the request is processed immediately on the local node.

3.4.7 State Diagram: Runtime Operations

The state diagram for the runtime operations describes the handling of remote GET and PUT messages.

Because we are only interested in the maintenance of object references, we only consider GET and

PUT operations that access the reference fields in objects, not those that access numerical fields.
The different states of an object are the:

e initial state: The object is created.

Local Object, or short, Object state: The object is a regular object that can be used in a regular
way.

pending state: The object is currently migrating, but the migration did not yet finish.

Proxy state: The migration is finished, and the object on the former home node changes from
pending to Proxy.

finished state: The terminal state of an object or a proxy after it is deleted.
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Local Object State This section describes the different state transitions of an object in the Object
state. In figure 25, each transition is represented by an arrow.

An object comes into existence at the initial state if a thread creates a new object with a NEW
object event. This causes the home node to add an initial InRef from the local node to the objects
InRefList. This InRef indicates that the local execution context holds a reference to the object on its
stack (in a local variable).

As described in section 3.4.4, each triangular access consists of two parts. We name the corresponding
messages in the state diagram GET1 and GET2 request for GET requests and PUT1 and PUT2
request for PUT requests. A PUT1 request message is the initial message for the Triangular-PUT
operation. The node that receives the PUT1 request adds the new InRef from the sending node to the
InRefList of the referenced object. Afterwards the node forwards the PUT1 request as a PUT2 request
message to the node where the new reference will be written.

When receiving a PUT2 request for a local object, the receiving node writes the new reference into
the corresponding reference field of the object. Additionally, it updates the GaoMap by either only
incrementing the reference counter of an already present OutRef entry, or by adding a new OutRef
entry. As the establishment was done with the PUT! request message, it is not necessary to send an
InRef Establish message. Still, the node sends the PUT ACK message back to the requesting node.

A PUT operation might overwrite a reference field. If there was a valid reference stored in the
overwritten field, the reference counter of the corresponding entry in the GaoMap is decremented. If
the reference counter of this entry drops to zero, there are no more local OutRef to this object. In this
case, the node sends an additional InRef Remove message.

A GETI request message is the initial message for the Triangular-GET operation. The node that
receives this message and holds the accessed object reads the corresponding reference from the accessed
object field. Afterwards the request is forwarded as a GET?2 request to the home node of corresponding
object that belongs to the read reference.

The node that holds the reference object receives this GET2 request message. It then inserts a
new InRef from the accessing node to the referenced objects InRefList. Afterwards, the node sends
the GET response back to the accessing node. When the accessing node receives this GET response
message, it handles the received reference according to the application logic and adds the OutRef to
the GaoMap.

Nodes may drop messages if they can not answer a request at the time the message arrived.
Additionally, packets might get lost in the system due to network failures. A timeout interval is used
to deal with these two events. If a node that sent a request messages does not receive the response
or ACK message within this timeout interval, the node re-transmits the lost request message. The
node checks the conditions of the 'lost’ request message before its re-transmission. This is necessary to
adapt the request message, e. g.in the case that the destination of the first message changed in the
meantime.

An object goes from the Object into the finished state if the runtime system executes a DEL
operation for this object. This operation causes the node to delete the object from the local memory
store. For each OutRef that the deleted object held, the node decrements the reference counter in
the GaoMap. If the reference counter drops to zero, the node sends an InRef Remove message to the
referenced object and waits for the acknowledgment.

Pending State An object is in the pending state if it has been local before and is currently migrating
from the local node to another node in the network. An object in this state forwards all PUT and
GET requests to the new home node of the object. If no packet reordering occurs, the new home node
of the object can immediately handle the request messages. In the case of packet reordering or if the
migration process fails, the new home node drops the messages. In this case, the requesting node has
to re-send the dropped request message after the timeout period. In contrast to the proxy state, as
explained below, no notification messages of any kind are sent. This is necessary because it is not sure
that the migration will succeed.

For PUT1 and GET2 messages, the node adds a new InRef to the pending object. This InRef is
necessary because there exists an additional object that holds a reference/location information to this
pending object and that must thus be informed when the migration succeeds.
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Because our current system does not support thread migration, PUT ACK and GET response
messages are not forwarded. Response and acknowledgement messages always terminate on the same
node/thread that initiated the request. For this reason, our system handles these message as described
in the Object state: the thread stores the read reference in a local variable and the protocol adds the
new OutRef to the GaoMap (GET) or continues the execution (PUT).

If thread migration was allowed and the initiating thread migrated, the node would have to update
the GaoMap entry and forward the message to the requesting thread.

Proxy State A node that holds an object that is in the prozy state always forwards all access
messages to the new home node of the object. Again, as in the pending state, it is not sufficient to
only forward PUT1 or GET2 request messages. Additionally, the node adds a new InRef to the proxy
because there is still an object in the system that holds a reference/location information to this proxy.
This entry is necessary to prevent the deletion of the proxy. To delete the proxy, the node has to
update the new InRef. In contrast to the pending state, the node perform this update immediately.
To do this, it sends an InOut Notify message back to the requesting node. After the requesting node
acknowledged this message, the InRef is deleted.

Note that this procedure results the sending of more than one location update message: One or
more location updates result from InOut Notify message sent by the proxies that are encountered
on the way to the accessed object, and one update results from the final response message from the
new home node of the object. This process increases the message overhead of the protocol, but it is
necessary to keep the location information consistent and prevent the premature deletion of proxies.

PUT ACK and GET response messages are handled as in the pending state, they do not need to
be forwarded as long as no thread migration is supported.

3.4.8 State Diagram: Migration

The state diagram for the migration process describes the different transitions of an object while it
migrates from one node to another. It is the only diagram in which transitions between the three
states, Object, pending and Prozxy, occur. Additionally, this section describes in detail our solutions to
a number of challenges that arise with the In- and OutRef update approach.

Local Object State The migration process starts when an object is scheduled for migration.
Nevertheless, we start the description of the whole process at the initial state, i.e. when a migrating
object reaches its new home node because this is the start state of the state diagram.

A node that accepts a migration stores the migrated object in its local object store. If a local
OutRef entry to this object exists in the GaoMap, the entry is updated to point to the local node. If a
proxy for this object resides on the local node, this proxy is deleted and replaced by the migrated
object.

Afterwards, the node has to perform the necessary tasks for the reference maintenance. First,
the node adds all OutRefs of the object to the local GaoMap. If the OutRef is already present, its
reference counter is incremented and the migration time stamp is checked: if the location information
of the OutRef from the object is newer, this information overwrites the old one. Additionally, the
source route to the new OutRef, starting at the local node, is computed and added to the route cache.
Otherwise, the locally present location information remains unchanged. If the OutRef is new on this
node, the node sends an InRef Establish message to the home node of the referenced object.

For all In- and OutRefs of the object, the migration message contains the source route that leads
to the corresponding home node. The new home node needs these routes if it has no route to the
respective node yet. If no such route is present, the new route to the home node, starting at the local
node, is computed and added to the route cache.

The reception of an InOut Notify messages results in the update of the corresponding OutRef in
the GaoMap. This message does not target a specific local object itself but the corresponding OutRef
in the GaoMap. If there exist only objects in the Object state that hold OutRefs to the updated
reference, the GaoMap entry is updated and an InOut Notify ACK message is sent back. If there is at
least one local object in the pending state, the InOut Notify message must be dropped because the
state of the migrating object is unclear until the migration fails or finishes successfully. If the node
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holds objects that are in the Proxy state, the node has to take additional measures as described below.
These measures are necessary to prevent the loss of object location information. We describe this
problem with the following example.

1‘ Outgoing Reference

é Forwarding Pointer

Figure 27: Simple Example of two Migrating Objects.

We begin with the description of the need for Outln Notify messages and explain this with figure 27.
There, the objects A and B migrate at the same time and object A is the only object that holds a
reference to object B. Suppose there are only InRef Establish and Remove messages. If the migration
of object A succeeds, the old home node of object A, the one that holds the proxy A’, does not need
the OutRef to object B any more. For this reason, the node could sent an InRef Remove message
to object B that will terminate at proxy B’. During the reception process of the migrated object A,
the new home node of object A will send an InRef Establish message. If the home node of proxy B’
receives the InRef Remove message first, it will delete the corresponding InRef. Because this InRef
was the only InRef of the proxy, the node will delete proxy B’. If the node afterwards receives the
InRef Establish message for object B from the new home node of A, this node is not able to forward
the message anymore. Thereby, object A loses the location information of object B.

To prevent this loss, we have introduced the Outln Notify message. It is sent by the old home node
of a migrated object to announce the new home node of object A. It might additionally announce the
deletion of the old InRef from the sending (old home) node. In the example, the node that holds the
proxy A’ sends the OutIn Notify message announcing first, the new home node of object A as a new
InRef of proxy B’ and second, the deletion of its own node ID from the InRefList from the proxy. The
proxy B’ replaces the old InRef with the new one and forwards the message to object B.

If an OutIn Notify message is received for a local object, the receiving node inserts the new InRef
into its InRefList. If the InRef Remowve parameter is set, the node deletes the respective InRef from
the InRefList.

InOut Notify messages can cause the deletion of still needed proxies as well. As an example take
figure 27 again: Object A migrates to another node, but the InRef Establish message did not reach B’
yet. At the moment the migration of object B is finished, proxy B’ sends the InOut Notify message
back to the former home node of A, the node holding A’. When this node receives the InQOut Notify
message, it updates the location information of object B and sends an InOut Notify ACK message
back to the node holding proxy B’. As this was the only InRef of proxy B’, the InOut Notify ACK
message causes the deletion the proxy B’. If afterwards the InRef Establish message of object A reaches
the former home node of proxy B’ the message is dropped and again, object A losses the location
information of object B.

An additional problem occurs if two objects reference a third one. Figure 28 shows the setting of
an example scenario: The two objects 9 and 14 on node B, denoted as (9,B) and (14,B), both reference
object 12 on node C, denoted as (12,C). At the beginning, object 14 migrates to node D and object 12
migrates to node E. Before the InRef Establish message from node D is sent to the object (12, C),
node B receives an InOut Notify message from node C that object 12 migrated to node E. Node B
updates its local OutRef entry in the GaoMap and sends the InOut Notify ACK message back to node
C. When node C receives this ACK, it deletes the last InRef of the proxy (12,C) and deletes the proxy.
If now the InRef Establish message from node D to object 12 on node C reaches this node, it has no
information about object 12 anymore. As a result, a node has to take further measures before sending
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an InOut Notify ACK message.

@/é‘  ®

O Node [ ] Object | | Proxy O Node [] Object {7 Proxy
(a) Object Reference Graph. (b) Object Location in Distributed Network.

Figure 28: Reference Graph with InRefs and Physical Location.

One might assume that it is a solution to drop InOut Notify messages until all proxies are deleted.
But this approach is not applicable, as a deadlock might occur: Suppose two proxies on two different
nodes reference each other and both objects are referenced by another object on the remote node. See
figure 29: proxy (12,C) is referenced by object (9,B) and proxy (14,B) while proxy (14,B) itself is
referenced by object (7,C) and proxy (12,C). If the proxies 12 and 14 both change their state from
pending to Prozy, both send InOut Notify messages to delete themselves after they have received the
acknowledgment. But this ACK is never sent as these messages will be dropped on their destination
nodes indefinitely. The reason is that there is always a proxy that holds an OutRef to the migrated
object. Another problem is that neither node B nor node C will send an OutIn Notify message with a
set InRef Remove parameter, as there are still the local objects (9,B) and (7,C).

Only when one of the objects (9,B) or (7,C) migrates as well this deadlock would happen to be
broken. At this moment, the Outln Notify message would be sent with a set InRef Remove parameter:
If e. g. object (9,B) migrates to node D as well, node B sends the OutIn Notify message to proxy (12,C)
with the InRef Remove parameter set to indicate the deletion of the InRef from node B. When node C
receives this message this last InRef of proxy (12,C) from node B is removed and the proxy is deleted.
Afterwards, node C will acknowledge the InOut Notify message from proxy (14,B) and this proxy is
deleted as well.

14 7 (O Node [ ] Object [ Proxy

(a) Object Reference Graph. (b) Object Location in Distributed Network.

Figure 29: Bi-Directional References of Proxies on different Nodes.

To prevent this deadlock situation, another approach must be taken: First, the node has to wait
until all pending objects changed either into the local or into the proxy state. Until then, all these
messages must be dropped. Afterwards, the node is allowed to handle the InOut Notify message. To
do this, the node checks all local proxies if any of them holds a reference to the corresponding object
in the InOut Notify message. If so, the InOut Notify message is forwarded along the chain of proxies
to their new home nodes. Afterwards, the InOut Notify ACK message is sent back to the notifying
node. This InOut Notify ACK message includes a NewlInRefList that contains all new home nodes of
the local proxies to which the node has forwarded the InOut Notify message. When the node that
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sent the InOut Notify message receives the InOut Notify ACK message, it takes this list and adds the
new InRefs to the InRefList of the corresponding local proxy. Because the InOut Notify message was
already forwarded to these nodes, no further measures must be taken. The node simply waits for the
ACK messages from these nodes. If these ACKs are not received within the timeout period, the node
re-sents the InOut Notify messages again.

If a local object receives Outin/InOut Notify ACK messages, this is an indication that the object
has been a proxy before and at that time sent the corresponding OutIn/Outln Notify messages.
Receiving these messages means that the object has migrated back to this node in the meantime.
Therefore, these messages can be dropped.

A migrate object event is issued implicitly by a remote PUT operation or by an explicit migration
request. In both cases, the node migrates the local object to a remote node. The node that migrates
the object sends the migrating object together with the location information for all its In- and OutRefs
to the node that is specified in the migrate object event. The required location information of each of
these references is retrieved from the GaoMap and the route cache.

In contrast to the reactive update approach, the OutRefs are handled during the transition from
pending to proxy state. This is necessary to prevent the deletion of the GaoMap entries that are
needed to send the Outln Notify messages.

Pending State As long as an object is in the pending state, the only messages that are handled are
OutIn Notify messages. These messages cause the node to add the new InRef to the pending object
and forwards the message to the new home node of the migrating object. If the message reaches the
new home node before the migrating object they are dropped. If this happens, the sending node will
resend the message after the timeout. A node that received this OutIn Notify message does not send
an InOut Notify message as the prozy state does because it is still unclear if the migration will succeed.
The message also does not cause the receiving node to delete an InRef. This will be done during the
transition from pending into the prozxy state.

An object in the pending should not receive Outln/InOut Notify ACK messages because the
migration did not finish yet. If such messages are received, these could be ACK messages that result
from earlier migrations between this node and another one. E.g. the object migrated from node A to
node B, became a proxy on node A and sent the notification messages. Before the ACK messages
arrive, the object migrated back from node B to node A and then again, migrated to another node
where it is currently in the pending state. For this reason, all received InOut Notify and OutIn/InOut
Notify ACK messages are dropped.

Proxy State After the migration process has finished, the object changes from the pending into the
prozy state. During this transition, the old home node of the object sends the InOut Notify messages
along the InRefs of the object. This message informs all nodes that hold a reference to the migrated
object about its new location. When a node receives this message, it updates its GaoMap entry and
sends all future requests directly to the actual object without the indirection along the proxy. Again,
the node that receives the InOut Notify message has to check if there are additional local proxies, to
where the message must be forwarded.

Because InOut Notify messages update GaoMap entries, it might happen that this message gets
caught in a message loop. See figure 30 for an example. Such a loop is created, if two proxies on
different nodes hold a reference to the announced updated OutRef and their corresponding objects
resides on an other proxy node. In this example, object 14 informs the objects 7 and 12 about its
migration. Node B and C both find an additional proxy that has to be informed. If the receiving proxy
nodes do not check if the OutRef has already been updated, the InOut Notify message is ping-ponged
between node B and C until the protocol deletes the proxies (7, B) and (12, C) eventually. To avoid
this, each node checks if the corresponding OutRef, to object 14 in the example, was already updated
and if so, it drops the message.

During the transition from pending to prozy, the node decrements the reference counter of all
OutRefs of the migrated object in the GaoMap. If the reference counter of one OutRef drops to zero,
the InRef Remowve parameter in the OutIn Notify message is set. Note that the OutRef entry must
not be deleted from the GaoMap yet as it might be needed for the re-sending of messages. Note also
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Figure 30: Simple Example of two Migrating Objects.

that the In- and OutRefs of a proxy might have been updated before the re-send timeout occurred.
As a result, the re-sending routine must check if the message parameters are still valid, e. g.if the
remote object location changed or if the formerly referenced object was deleted already. If e. g. the
GaoMap entry for the notified object was updated, the Outln Notify message is not re-sent because an
updated OutRef entry indicates that the referenced object has been migrated as well. During this
process, the referenced object has already been informed about the migration of the referencing object
that corresponds to the proxy that sent the Outln Notify message.

A prozy object that receives an Outln Notify message adds the new InRef to the proxy. To delete
this InRef again, the proxy sends an InOut Notify message back to the newly added InRef node. If
the InRef Remove parameter is set in the Outln Notify message, the corresponding node is deleted
from the proxy’s InRefList.

If a node that holds a proxy receives a Outin Notify ACK message, the corresponding OutRef
in the proxy object (not the one in the GaoMap) is marked as updated. The reception of an InOut
Notify ACK message causes the deletion of the corresponding InRef from the proxy’s InRefList.

When all InRefs are deleted and all OutRefs stored in the proxy object are updated, the node
issues an In- and OutRef Empty event and the proxy is deleted.

3.4.9 State Diagram: InRef Management

The incoming reference management is tightly coupled to both, the regular operations and the migration
process. Nevertheless, this state diagram describes the InRef establishment and removal only.

Local Object State The handling of InRef management messages is straight forward for a local
object in the object state: An InRef Establish message adds a new InRef to the object whereas an
InRef Remove message deletes an InRef from the object. Both messages are acknowledged with the
corresponding ACK message.

The reception of the InRef Establish ACK message updates the GaoMap entry of the corresponding
OutRef, if the referenced object has migrated in the meantime.

An InRef Remove ACK message is not associated with a specific object on the receiving node. The
node that receives this message has to check if the local reference counter of the corresponding entry in
the GaoMap is still zero because this was the reason why the node has sent the InRef Remove message
in the first place. If so, there are still no local objects that hold a corresponding OutRef and the entry
in the GaoMap can be deleted. If the reference counter is greater than zero, a new OutRef has been
established in the meantime and the entry must not be deleted. In this case, the ACK message is
dropped.

The local thread that created/used the object added the local node to the InRefList of the object.
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So, if the last InRef of an object is deleted, there are no local or remote objects or threads that hold a
reference to that object. In this case, the object can be deleted before the garbage collector is invoked.

If a node deletes an object, it has to decrement the reference counter of all OutRefs of that object.
If the reference counter for one of these references drops to zero, the node sends an InRef Remove
message to the referenced object. Afterwards, an InOutRefEmpty (IORE) event is issued and the
object is deleted.

Pending State An object in the pending state drops all InRef Remove messages to prevent an
inconsistent object state during and after the migration process. The node that has sent the InRef
Remove message is responsible to re-send the message after its timeout period.

In contrast to InRef Remove messages, InRef Establish messages must be forwarded to prevent an
inconsistent object state. The new InRef is added to the pending object but no acknowledgement or
InOut Notify message is sent. This ensures that the InRef Establish message will either successfully
reach the migrated object or that the message is re-sent. The latter might happen if packet reordering
occurs and the InRef Establish message reaches the new home node of the object before the migrating
object itself. In any case, the additional InRef that was added to the pending object ensures that an
InOut Notify message is sent after the migration succeeds.

The forwarding of InRef Establish messages is also necessary in case a high migration rate results
in a chain of proxies. If one proxy in this chain would not receive this additional InRef, the proxy
might be deleted erroneously and the chain breaks.

In the same way, the new InRef that is contained in an OutIn Notify message has to be added to
the pending object. Nevertheless, if the message contains an InRef Remowve request, this InRef must
not be deleted to prevent the deletion of the proxy. Otherwise, the node that sent the Outln Notify
message and that happens to not receive the ACK message would delete the proxy. In that case, the
sending node would try to re-send the OutlIn Notify message indefinitely.

If a node receives an InRef Fstablish ACK message it updates the corresponding OutRef entry in
the GaoMap. It can do so because the InRef Establish message is linked to the GaoMap and not to a
specific object.

An InRef Remove ACK message is handled in the same way as described above for the local state.

Proxy State A node that holds an object in the prozy state forwards all InRef Establish/Remove
message, as it does in the pending state.

A node that receives an InRef Establish message not only forwards the message but adds the new
InRef to the proxy object and sends an InOut Notify message back to the sending node.

If a node receives an InRef Establish ACK message, it can update its corresponding OutRef entry
in the GaoMap. If only proxies exist that hold the corresponding OutRefs, this step is not necessary.

If the node receives an InRef Remove message, the announced InRef is deleted from the InRefList
of the proxy and the message is forwarded to the new home node of the object. If this was the last
InRef of the proxy and all OutRefs have been successfully updated (see migration process above), the
node issues an InOutRefEmpty (IORE) event and the proxy is deleted.

If a node receives an InRef Remove ACK message, it has to check if it is allowed to delete the
corresponding entry from the GaoMap (see the description of the local state above for details).

4 Locating Static Objects

In Java, the static fields of an object are class variables, i.e. they exist only once per class. According
to the Java specification, the first thread that accesses a class must execute the code that initializes
the class’ static fields. Afterwards, each Java virtual machine that accesses the class must be able to
access the so initialized static fields. To do so, it does not require any explicit reference; the identifier
of the class suffices. Hence, the virtual machine requires a resolver protocol that retrieves the location
of the static fields for each class.

Since all the static fields of a class are initialized by the same thread, we combine them into a
so-called static object. I.e., we do not support separate locations for the static field of the same class.
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A common Java virtual machine (JVM) initializes the static fields during the class loading. This
happens upon the first access to the class, i.e.upon invoking a method of that class, creating an
instance of that class, or accessing a field of that class. In a distributed environment, each instance of
the distributed JVM has to know if the static fields have already been initialized when it first accesses
a class. If it happens to be the first JVM instance to access a class, it instantiates the static object for
that class and runs the initialization code. It must also timely publish this fact so that no other JVM
instance runs the initialization again.

One possible solution to ensure the uniqueness of each static object and allow all nodes to retrieve
a reference to that object is the use of a Distributed Hash Table (DHT), e.g. CAN [30], Chord [31] or
Pastry [32]. A DHT provides an abstract key space. All n nodes that participate in the DHT form an
overlay, e. g. a virtual ring, on top of the underlying physical network. Depending on the chosen metric,
the complete key space is partitioned into n parts, where each node in the overlay is responsible for
one of these sub-parts.

When a node — say node A — wants to store a new value v in the DHT, it uses a hash function to
generate a key k from a given application key. This key is an address in the abstract key space. Each
key lies within the responsibility of one of the n nodes in the network, say node B. Now, depending
on the DHT implementation, the publishing node, i.e.node A, either sends the tuple (k, v) to the
node responsible for the key, i.e.node B, or it sends only the reference information “the value that is
associated with key k is located on node A” to that node. The DHT’s routing functionality resolves
the associating between the key and the responsible node while routing the message. A node that
wants to retrieve the value generates the same key k£ and sends a request towards that key. When
node B revives that request, it replies with the stored value v (or the stored reference to the node that
stores v).

In our case, the key k is the hash value of the class identifier, e. g. the string java.lang. Object. The
stored wvalue is either the static object or a reference to the node that (currently) stores that object.

Upon class loading, each JVM instance has to perform a lookup in the DHT. If the class’ static
object has not yet been created, the lookup request results in a negative answer, and the requesting
node creates and initializes the static object. Afterwards, it publishes (the location of) that object in
the DHT. If the lookup returns a reference, the node uses this information to access the static object
as it does with dynamic objects.

If the accessing node needs to migrate the static object, this change of location can be published in
the DHT. This corresponds to the use of incoming references for proactive location updates.

5 Evaluation

In this section, we describe the simulation environment we used to evaluate and compare the three
update approaches: the reactive, proactive and enhanced proactive update. We begin with a description
our simulation environment and the Java micro benchmark application, that simulates the concurrent
access of a number of threads to a red-black tree data structure. This application generated the input
for our simulation environment, that is based on the OMNeT++ [35, 30] discrete event simulator
framework, version 3.3. This description is followed by the evaluation of our simulation results, first,
without explicit object migration and then with explicit migrations with different migration rates.

5.1 Simulation Environment

The simulation environment consists of a 10x10 grid network of toroidal connected nodes. Each of
these nodes executes one thread of our benchmark. The execution environment of each node in the
network is derived from the OMNeT++ cSimpleModule class. To communicate within the network,
nodes exchange messages that trigger an appropriate action. To do this, the nodes are programmed in
the event-processing programing model: whenever a message is delivered to a node, a special handle
method is called with the received message as parameter. The other programing model that is offered
by OMNeT++ is the coroutine-based programing model. Here, the coroutine runs in an infinite loop
and continuously sends and receives messages. This mode is not suitable for our scenario because each
node has to send and receive a variable number of different messages. Additionally, the coroutine-based
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model requires each node to have its own CPU stack, which would require more memory for a single
node than the event-base model.

Our micro benchmark is the Java implementation of a red-black tree data structure. This structure
was first described by Guibas and Sedgewick [37]. A red-black tree is a self-balancing binary search
tree in which search, delete and insert operations are performed in O(log n) time. If the tree becomes
imbalanced by an insert or delete operation, balancing operations rotate the tree or sub-trees until it
is reasonably re-balanced, i. e.until the longest path from the root to any leaf in not longer than twice
as long as the shortest path from the root to any leaf.

Our application consists of a tree with x elements. In our network, 100 independent threads, one
on each node, access the tree z times and search for a random element. If the chosen element is found,
the thread deletes it from the tree. Then, a new, random element is created and inserted into the tree.
Afterwards, this thread yields the execution to the next thread which performs the same operations.
If the element is not found, the thread yields without further operations. This ensures, that there
are always exactly = elements stored in the tree. We executed the application for our simulation two
times: one time with z = 50 and one time with x = 100 objects.

We did not implement a full JVM instance on each node of the OMNeT++ simulator. Instead,
we instrumented the Java source code of the red-black tree implementation to write out all object
operations, such as the object creation or the accesses to reference fields. We do not log accesses
to numeric value fields, as we are only interested in the maintenance of references. We use the
instrumented source code to simulate the random access of 100 threads to the tree data structure.
The application is executed in a single JVM instance on a single proceossor core. As a result, the
application generates a sequential output file, which we use as input trace for the OMNeT++ simulator.
In this file, each line represents one operation of one of the 100 application threads.

The simulator reads the sequential simulation trace file line-by-line, and associates each thread
with one node in the simulation network. With each simulation event, the next instruction (GET,
PUT, NEW, or DEL) from the simulation trace file is scheduled and executed on the corresponding
node. If a GET or PUT operation accesses a remote object, the execution is stopped until the return
message arrives.

One line in the output file, e. g. for a GET and a PUT operation, looks like this:

GET : 2 : 42 : 23 :
PUT : 2 : 23 : 17 : 64

In the first line we see that the second thread performs a GET operation on the object with GUID
42, and reads a reference to the object with GUID 23. In the second line, the same thread performs a
PUT operation on the object with GUID 23. The thread writes a reference to object 17 to the object
23. By doing this, the thread overwrites a reference to object 64.

Since the trace was generated with a sequential generator, we do not have a parallel access to
the red-black tree, but a strictly sequential one. Only the migrations run in parallel to the red-black
tree operations, and can thus cause conflicts with respect to the object location. This is intended, as
we are interested in the performance of our protocols under implicit and explicit object migration.
Concurrent access control is not in the scope of this paper, but as described above, we envisage the
DecentSTM protocol to target this task.

The entry point into the red-black tree is a Java class object, also called a static object. This static
object is used to hold the reference to the root object of the tree. Each thread holds a reference to
this static object to access the tree. But unlike the application that generated the simulation input
file, the nodes in the simulator network do not share the same memory. Therefore, the location of the
static object must be published before the simulation can start. For this, the simulator publishes the
location and GUID of the static object to all threads during the initialization phase. Afterwards, the
static object is allowed to migrate as well.

We use the simulation environment to measure the access latency to remote objects. This access
latency is measured in number of hops, needed to reach the remote object. For each simulation run,
we applied one of our reference maintenance strategies: Reactive Location Update (RU), sec. 3.3,
Proactive Location Update (PU), sec. 3.4, and Enhanced Proactive Location Update (EPU), sec. 3.4.5.
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50 objects 100 objects
Operation/Approach | RU/PU/EPU || RU/PU/EPU
NEW 4950 9992
DELETE 4 898 9890
Total GET 984 766 3993158
Local GET 63 341 144037
Remote GET 921425 3849121
Total PUT 51279 101719
Local PUT 12979 25441
Remote PULL 38 300 76278

Table 5: Number of Operations, Migration Rate 0%.

5.2 Simulation Runs

To measure the influence of proxies and update messages, we ran the simulation with different migration
rates. The migration rate gives the probability with which each object is migrated every 10 simulation
events. In other words, each object migrates explicitly every 10 simulation events, with the given
probability to another, arbitrary node in the network. The destination of each migration is chosen by
a random lookup in the local route cache. The chosen source route is the migration path of the object,
along which the object travels to reach its new home.

For the simulation runs with 50 objects, it is set from 0% to 50% in 10% steps. For the simulation
runs with 100 objects, we set the migration rate to 0%, 10% and 20%. The rates of 10% and 20%
have been chosen to compare these runs against the 50 objects run for a qualitative evaluation of the
protocols. We did not simulate with the other migration rates, as these are CPU intensive and not
relevant, because we suggest that our prototype implementation will have implicit object migration,
represented by the 0% migration rate, only. This implicit object migration results from successful local
PUT operation executed in an STM transaction.

Our simulator executes all PUT operation on the local node that holds the executing thread. We
choose this policy in accordance with the DecentSTM protocol [11]. In the DecentSTM context, this
means that a node that executes a PUT operation on a remote object first creates a LOC, on which
the operation is performed. This requires that the node fetches a copy from the latest remote GAO
version with a PULL migration to the local node. When the transaction that executed the local PUT
commits its changes and wins the distributed consensus protocol, the LOC becomes the new head
version of the modified GAO. Therefore, this process is an implicit object migration due to a remote
PUT operation, that results in a number migrations, even if no explicit migration takes place, and the
migration rate is set to zero.

5.3 Evaluation of Implicit Migration Only

Table 5 shows the number of different operations (NEW, DEL, GET, PUT) for the simulation runs
without explicit object migration (migration rate 0%). The number of operations is the same for all
scenarios, as the same application is executed. All scenarios have also the same number of remote
GET and object PULL migration operations, because the thread and object layout is the same as well.

For the tree with 50 objects, the table shows that from 984766 GET operations only 63241
operations, i.e.about 6.5%, could be answered locally. All other operations, about 93.5%, had to
access an object on a remote node.

A tree with 100 objects has an higher depth than the tree with 50 objects. This leads to longer
access paths from the root to any leave in the tree. Additionally, the application accesses the tree
multiple times: first, to find an element in the tree, second, if the element is found, to delete the
element from the tree, and third, to insert a new element. Both, the deletion and the insertion might
result in the re-balancing of the tree. As a result, the tree with 100 objects has with 3993158 GET
operations about four times more GET operations than the tree with 50 objects. Of these 3993 158
GET operations, only 144 037 operations, about 3.6%, could be answered locally.
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50 objects 100 objects
Operation/Approach RU PU | EPU RU PU | EPU
Remote GET Proxy Frwds | 298 332 0 0 || 1036525 0 0
Remote PUT Proxy Frwds 286 0 0 525 0 0
Proxy Deletes 0] 19150 | 19150 0| 38139 | 38139
Proxy Remaining 345 0 0 535 0 0

Table 6: Number of Proxy operations, Migration Rate 0%.

The tree with 100 objects has about twice as much PUT operations than the tree with 50 objects.
PUT operations are performed whenever a new element is inserted into the tree, or if the tree is
rebalanced. For both trees, about 25% of the PUT operations have been answered directly on the
local node, all others operations had to fetch the remote object first, before the node could perform
the operation locally.

In addition to table 5, table 6 shows the total number of proxy forwards for remote GET and
remote PUT operations. Note that a remote PUT operation in this case means the message, that
fetches the remote object, and not a remote PUT message, which performs the PUT on the remote
node. Compared to no forwards in the PU and EPU approaches, the RU approach had to forward the
messages for remote GET and remote PUT operations along (chains of) proxies.

Table 6 shows only the total number of GET request messages that have been forwarded along a
(chain of) proxies. This number is broken down in the histogram of figure 32(b). It shows, that 795736
messages reached their destination without a proxy forward, 114 764 messages have been forwarded
along one proxy and 51320 messages along a chain of two proxies. The number of proxy forwards
continues to decrease, and ends with 47 messages that have been forwarded along a chain of eight
proxies; which is not visible in the figure.

About 75% of all PUT operations required a previous PULL migration. Because GET operations
reactively updated the object locations of the read object, a later PULL migration can use this updated
location. Still, there are 286 PULL migration messages for the 50 object tree, and 525 for the 100
object tree that have been forwarded along a proxy. This can happen if e. g. a thread re-balances the
tree. During this operation, the thread might PUT a new reference to an object that was not accessed
for some time by that thread.

Reading a reference field from a remote object, that itself holds an outdated location information
is another reason for an outdated object location. This might happen, if the home node of the read
object did not itself access the read reference recently. In this case, an old reference location (leading
to a proxy) is read during the GET request, which is then used for the following PULL operation.

In our benchmark application, each thread starts its access to the tree from the static root object.
For this reason, each thread updates a number of remote object and reference locations frequently,
depending on the current object value that has to be searched, deleted or inserted into the tree.

The PU and EPU approaches both deleted 19 150 proxies for the 50 object tree, and 38 139 proxies
for the 100 object tree. After these simulation terminated, no proxies remained in the system.

In contrast to the PU and EPU approaches, the RU approach did not delete any proxies and
after the simulation terminated, 345 proxies remained in the system. This number of proxies is small,
compared to the number of deleted proxies in the PU and EPU approaches. This small number is the
result of objects that migrate back to a node, where a proxy for this object resides. In this case, the
node implicitly deletes the proxy and replaces it with the actual object.

As table 5 shows, access messages in the PU and EPU approaches reach the accessed object
without proxy indirections. Nevertheless, this advantage is payed with a high penalty: First, these two
approaches send a factor of about 2 (PU), and a factor of about 2.7 (EPU), more messages than the
RU approach (see table 7). Second, the access latency in the PU approach is about twice as high to
reach the accessed object, due to the Triangular-GET messages, c.f.fig. 32(a) and fig. 33(a). We will
describe these drawbacks in more details below.

As said above, the PU and EPU approaches send a factor of about 2 (PU), and a factor of about 2.7
(EPU), more messages than the RU approach. Table 7 shows the sources of these additional messages,
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50 objects 100 objects

Messages/Approach RU PU EPU RU PU EPU

InRef Establish + ACK 24852 | 1276750 50344 | 5647242
InRef Remove + ACK 1629482 | 1629482 7168616 | 7168616

InOut Notify + ACK 118458 118 458 208500 208500
Outln Notify + ACK 51642 51642 103104 103104

ol o oo O
ol o oo O

Total Maintenance + ACK 1824432 | 3076332 7530564 | 13127462

Total Object Acc. + Resp. | 1842850 | 1842850 | 1842850 || 7698242 | 7698242 | 7698242

Total Send Msg. | 1842850 [ 3667282 | 4919182 [| 7698242 [ 15228806 | 20825 704

Table 7: Access and Reference Maintenance Messages, Migration Rate 0%.

that are needed for reference maintenance. The numbers for each message type add up the number of
request and acknowledgement messages.

The table shows, that the EPU approach sends about 1.7 times more messages than the PU
approach. This additional amount of messages in the EPU approach results from the split of the
PU approach’s triangular GET/PUT messages. The triangular messages are split into a GET/PUT
Response message and an additional InRef Establish message, which must be acknowledged as well.
Compared to the triangular message approach, this adds one additional message, the InRef Establish
ACK per access to the protocol, c.f.e.g. fig. 22 and fig. 24.

The additional InRef Establish messages and their acknowledgements are reflected in the 1276 750
InRef Establish + ACK messages (for a tree with 50 objects) in the EPU approach, compared to
only 24852 InRef Establish + ACK messages in the PU approach. Adding the total number of GET
Request + Response messages, that result in an additional InRef Establish messages, and the total
number of InRef Establish + ACK messages of the PU approach, that are still needed, these are less
InRef Establish + ACK messages, than expected. The reason is that not all GET Request operations
must send an InRef Establish message, e.g.in case that the accessed object and the corresponding
referenced object are located on the same node, and no InRef Establish message is send.

As said above, triangular messages in the PU approach need about twice as long to reach the
accessed object as the bilateral request /response message pairs, c.f. fig. 32(a), fig. 33(a) and fig. 34(a)
for the tree with 50 objects. The x-axis of these figures shows the number of hops, a message traveled
before it reached its destination. The y-axis shows the number of messages that traveled the given
number of hops before they reached their destination. The figures visualize the distribution of the
GET Request and GET Response messages. The distributions follow a Gaussian normal distribution,
c.f.e.g. equation 2.

The histograms show that the GET Response messages have about the same distribution for all
scenarios. We will consider only the 50 object tree simulation for the rest of this section, unless stated
otherwise, e. g. because the 100 object tree simulation offers further, notable insights.

Figure 34(a) shows the message distribution for the EPU approach. The figure shows the ideal
message distribution for the simulation scenario. We consider this case ideal because all GET Request
and GET Response messages reached their destination without being forwarded along a proxy. This
observation is supported by table 6, that shows that no GET Request message was forwarded along (a
chain of) proxies.

As table 6 indicates, no GET Request message was forwarded along proxies is the PU approach, as
well. Nevertheless, figure 33(a) shows, that the Triangular-GET messages increased the access latency
for GET Request messages by about a factor of two, compared to the EPU approach. The peak for the
PU approach is around 9 hops, with 82253 messages, but with 89 319 messages, that traveled 8 hops
and 87 805 messages that traveled 10 hops. The distribution has a long tail, with e. g. 648 messages,
that traveled 20 hops, and that ends with 17 messages, that traveled 32 hops, before they reached
their destination.

For the EPU approach, the peak of the distribution is at 5 hops, with 166 446 messages. Their is a
short tail, with e.g.2 messages, that traveled 20 hops. The end of the tail is with 2 messages at 27
hops.
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The RU approach has its peak at 5 hops as well, with 136 227 messages. But compared to the
PU approach, figure 32(a) shows that the GET Request message distribution for the RU approach is
heavy-tailed. This tail is a result of the proxy forwards, and has e. g. 4 780 messages, that traveled 20
hops. It is still visible in the figure, that 691 messages traveled 30 hops, before they reached their
destination.

The end of the tail of the RU distribution is at 54 hops with 3 messages. These very high hop
counts are a result from inefficient source routes at the beginning of the simulation, c.f.[12]. At this
stage, the route caches hold only few, potentially sub-optimal source routes, to only some nodes in the
network. During the runtime of the simulation, each node ’learns’ more source routes, until eventually
it knows an optimal source route to all other nodes in the network.

We are interested in the mean value and the variance to further evaluate our results. For this
reason, we fitted the Gaussian normal distribution function to all GET Request distributions:

(z—)2

) =a-e5E (2)

The fitting results for all simulation runs are shown in table 13. For the RU approach, the GET
Requests have a mean value (parameter b in equation 2) of 5.30 hops and a variance (parameter ¢2 in
equation 2) of 2.56 hops. The mean value of the PU approach is 8.37 hops with a variance of 4.05,
while the EPU approach has a mean value of 5.04 hops and a variance of 2.28 hops.

These values show, again, that the EPU approach has the best access latency of all three approaches,
followed by the RU approach. The latency of the RU approach is slightly lower, but heav-tailed' The
reason is that some access requests did not reach the accessed object on the shortest path. Additionally,
the RU approach does not delete any proxies, and therefore requires more memory. Nevertheless,
it needs only half the number of messages as compared to the EPU approach, which has to send
additional messages to keep the location information up to date. For this reason, it depends on the
network and the application if it is preferable to send less messages and tolerate a longer access latency
(RU), or if an object must be accessed as fast as possible, while a higher number of sent messages is
tolerable (EPU).

The PU approach, with its triangular messages, is not applicable, as the access latency is higher,
with a bigger variance, compared to the other two approaches. To make matters worse, it also requires
additional messages to keep the location information up to date.

We will come back to these results in the next section, when we allow explicit object migration as
well.

5.4 Evaluation of Implicit and Explicit Migration

Up to now, we have only examined implicit object migration, which is due to PUT operations. In this,
we investigate the influence of explicit object migration with various migration rates. Possible reasons
for explicit object migration are e. g.load balancing or system maintenance. We will not go into more
details for these reasons, as they are beyond the scope of this paper.

We chose different migration rates, to analyze the influence of explicit object migration. We
measure the object migration rate in “percent of all objects” and chose rates from 0% to 50%, in 10%
steps. A migration rate of 10%, for example, means, that 10% of all objects migrate every 10 simulation
steps. (Simulation steps are the granularity, with which the simulator runs. In one simulation step, a
message travels for example one hop.)

With a migration rate of 50%, half of all objects migrate every 10 simulation steps. We do not
expect to find systems with such a high migration rate. Nevertheless, we ran these simulations first, to
see if our maintenance protocols can cope with that many object migrations and second, to further
investigate and evaluate the overhead of our maintenance protocols.

To simplify the comparison, we only discuss the migration rates of 0% and 50%. The other
simulation runs scale linearly between these two points, see e. g. fig. 35.

In accordance to table 6, table 8 compares the two simulation runs with 0% and 50% explicit
object migration. Because more objects migrate within the system, the number of GET operations,

I This fact would indicate that the distribution follows a Poisson distribution. Nevertheless, we did not find any
indications for this asumption.
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50 objects

Events/Operations RU PU EPU
Migration Rate 0% 50% 0% 50% 0% 50%
Total GET 984 766 984766 || 984766 984766 || 984766 984 766
Local GET 63 341 25307 63 341 25321 63341 25365
Remote GET 921425 959459 || 921425 959445 || 921425 959401
Total PUT 51279 51279 51279 51279 51279 51279
Remote PULL 38300 61628 38300 61642 38300 61512
Remote Re-PULL 0 10349 0 10363 0 10233
PUSH Migration 0 | 13057592 0 | 13224047 0| 12895221

Table 8 Number of Operations/Events, Migration Rate 0% and 50%.

50 objects
Events/Operations RU PU EPU
Migration Rate 0% 50% 0% 50% 0% 50%
Remote GET Proxy Frwds | 298332 | 1939310 0 19606 0 9977
Remote PUT Proxy Frwds 286 21293 0 419 0 438
Proxy Deletes 0 0 || 19150 | 6302913 || 19150 | 6212334
Proxy Remaining 345 6025 0 584 0 535

Table 9: Number of Proxy Operations/Events, Migration Rate 0% and 50%.

that can be performed locally, drops for all approaches from 63 341 operations (6.5%), to about 25000
operations (2.6%). On one hand, this is not a big decrease, compared to about 13 million explicit
object migrations, listed in the last row of the table. But on the other hand, even without explicit
migrations, 93.5% of all GET operations access a remote object. With explicit migration, this number
increases to about 96.4%.

Table 8 shows for PUT operations, that more objects have been pulled than actual PUT operations
were performed. For this reason, an additional row for “Remote Re-PULL” operations was added.
These “Re-PULLSs” are specific to the simulation environment. The migration policy of the simulator
migrates an arbitrary local object, regardless if it was recently pulled to the local object store to
perform a local PUT operation. For this reason, it happens that a node implicitly migrated (pulled)
an object to the local object store, and explicitly migrated it to another node, immediately afterwards,
without executing the local PUT operation. In this case, the node tries to perform the local PUT
afterwards, and has to re-pull the object again. A simple solution would be an object tag, that
indicates if an object was pulled to perform a local PUT operation. We did not implement this tag,
because we are not interested in a high execution performance, but in a performance comparison of
the location maintenance approaches.

The additional row at the end of the table shows, that with 50% explicit object migrations, about
13 million migrations take place. With only 984 766 GET and 51 279 PUT operations, this means that,
on average, each object migrates 13 times, before it is accessed. As stated above, we do not expect
such a high migration rate in a real system, but use it to evaluate the performance of our location
update protocols.

Table 9 compares the proxy operations for the two explicit object migration rates 0% and 50%.
While in the 0% case the PU and EPU approach do note make active use of proxies, e. g. to forward
GET messages, this changes if more objects migrate, i.e.in the 50% case. Still, compared to the
1939310 proxy forwards in the RU approach, these numbers are a factor 100 lower.

The number of proxy forwards in the EPU approach two times lower than in the PU approach.
This is caused by the faster arrival of GET Response messages and the sending of the additional InRef
FE'stablish message. First, if the response is received faster, less objects are able to migrate between
two GET Requests. Second, if the additional InRef Establish message leads to a proxy, an update
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Figure 33: Proactive Update: Histogram of GET request and GET response messages.

message is send to the requesting node that is used to update the location information of the object,
and by this, reduces the length of the proxy chain.

As a result, all 9977 messages in the EPU approach have been forwarded only once. On the
opposite, 14473 messages in the PU approach have been forwarded once, while 2565 messages have
been forwarded twice, and one message has been forwarded three times. Note, that, because the table
lists all proxy forwards, the number of messages, that have been forwarded twice, count twice (two
forwards) in the table.

In contrast to the PU and EPU approaches, the majority of GET messages in the RU approach is
forwarded along a proxy, at least once, see fig. 32(d). With 307 891 messages that are forwarded by
one proxy, this number is even higher than the 299 374 messages that reach their destination directly.
These numbers are followed by 148 787 messages that have been forwarded twice. As a result, the GET
Request message distribution for the 50% migration case in fig. 32(c) is widened and significant more
heavy-tailed, compared to the 0% case in fig. 32(a). The tail passes the 20 hops with 14 972 messages
and has 2233 messages that traveled 50 hops. The tail goes on with 103 messages, that traveled 96
hops and ends with one message that traveled 181 hops. For the PU approach, the worst case is one
message, that traveled 35 hops, and for the EPU approach 11 messages that traveled 19 hops.

The result of fitting the Gaussian normal distribution function, c. f. equation 2, to the 50% migrations,
GET Request message distribution, is a mean value of 8.85 hops and a variance of 5.90 hops, compared
to the 0% case, that has a mean value of 5.30 hops and a variance of 2.56 hops.

The comparison of the GET Request message distributions for the PU and EPU approaches, shown
in fig. 33 and fig. 34, do not show such significant differences. The only difference between the 0% and
the 50% case is the higher number of local (0-hop) GET Request and GET Response messages in the
0% case.

The EPU approach is closest to an optimal object access characteristic. The message distribution
indicates that the GET Request messages traveled the same number of hops, as the corresponding
GET Response messages traveled back.

Again, we fit the Gaussian normal distribution function, c.f.equation 2, to the GET Request
message distribution. For the PU approach, the result is a mean value of 9.94 hops and a variance of
3.21 hops. The comparison to the 0% migration case, with a mean value of 8.37 hops and a variance
of 4.05, shows, that the PU approach, with 50% explicit migrations, has a higher latency of 1.57 hops.

The fit to the message distribution of the EPU approach results in a mean value of 5.02 hops and a
variance of 2.27. If compared to the 0% migration case, with a mean value of 5.04 hops and a variance
of 2.28 hops, this result shows, that the performance of the EPU approach is not influenced by 50%
explicit object migrations at all.

Table 10 compares the various maintenance messages that are needed for the PU and EPU approach.
Compared to the 0% case, the PU and EPU approaches need about 82 times more maintenance
messages than object access messages. We do not evaluate the 10% migration rate in more detail,
but for that case, the PU and EPU approaches send a total of 27204 874 (PU) and 28 395538 (EPU)
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50 objects
Approach PU EPU
Migration Rate 0% 50% 0% 50%
InRef Establish 12426 | 10914200 || 638375 [ 11604406
InRef Establish ACK 12426 | 10914200 || 638375 | 11604406
InRef Remove 814741 | 11766125 || 814741 | 11536838
InRef Remove ACK 814741 | 11766125 || 814741 | 11536838
InOut Notify 59229 | 42788684 59229 | 41919139
InOut Notify ACK 59229 | 42444550 59229 | 41631944
InOut Notify Resend 0| 19634431 0| 16501939
Outln Notify 25821 | 11116611 25821 | 10882250
Outln Notify ACK 25821 | 11116604 25821 | 10882242
Outln Notify Resend 0 0 0 0
Total Maintenance + ACK [ 1824432 [ 152827099 [[ 3076332 | 151598 063
Total Object Acc. 4+ Resp. | 1842850 | 1842850 || 1842850 | 1842850
| Total Send Msg. | 3667282 [ 154669949 [| 4919182 [ 153440913 |

Table 10: Reference Maintenance Messages, Migration Rate 0% and 50%.
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50 objects

Events/Operations PU EPU
Migration Rate 0% 50% 0% 50%
InRef Establish Proxy Frwds 0| 5379060 0| 5273317
InRef Remove Proxy Frwds 0| 1275558 0 | 1248860
InOut Ref Notify Frwds 0| 4260122 0| 4167820
Outln Ref Notify Frwds 0| 5481712 0 | 5363639

Table 11: Proactive Location Update Proxy Forwards, Migration Rate 0% and 50%.

maintenance messages, about 15 times more maintenance messages than object access messages.

The number of the different maintenance messages are nearly equal for the 50% migration case. In
contrast to this, the 0% case shows two contrasts: First, the contrast between the numbers of InRef
FEstablish and InRef Remove messages in the PU approach, and second, the contrast between the
numbers of InRef Establish messages in the PU and EPU approach.

These differences are smoothed in the 50% case, as a result of the high migration rate: With about
13 times more migrations than GET Request messages (c.f.tab. 8), the additional InRef Establish
messages for the EPU approach vanish in the total number of all sent InRef FEstablish messages.

Table 10 splits up the number of messages into Request and ACK messages. The reason for this
split is the difference between Request and ACK messages. The numbers indicate, that more Request
messages have been sent than ACKs have been received, which is an allowed protocol feature. It
indicates that a message was sent, but dropped at the destination node. If the migration process
resolved the state that was responsible for the sending of the InOut Notify or OutIn Notify message,
the re-sending is canceled after the timeout expired. If the state is not resolved, the message will be
re-sent after the timeout. This happens 19634431 times for the InOut Notify messages in the PU
approach, and for 16 501 939 InOut Notify messages in the EPU approach. The reason for this high
number is again the location update protocol: if the node, that receives an InOut Notify message,
holds local objects in the pending state, the InOut Notify message must be dropped, c.f.sec. 3.4.8.

In contrast to the 0% migration case, some maintenance messages in the 50% migration case are
forwarded along proxies. The number of proxy forwards for the maintenance messages are listed in
table 11.

The number of proxy forwards are about equal for both, the PU and EPU approach. They show
that about half of all InRef Establish, half of all QutIn Notify messages, about 10% of all InRef Remove
messages, and about 10% of all InOut Notify messages have been forwarded along at least one proxy.

5.5 Protocol Comparison for all Migration Rates

Up to now, we compared and evaluated the implicit object migration case and the 50% explicit object
migration case. In this section, we compare the GET request message distributions when applying
various migration rates. Again, we fit the Gaussian normal distribution function, c. f. equation 2, to the
GET Request message distributions and plot the different mean values and corresponding variances.

5.5.1 Comparison for RB Tree with 50 Objects

The first comparison is for the red-black tree that stores 50 Objects. We ran the simulations for each
location update approach with migration rates from 0% to 50%.

The mean values and variances of these runs are listed in table 12. Figure 35 plots the results for
the GET Request message distributions, while fig. 36 plots the results for the PULL Migration Request
messages.

Fig. 35 shows, that the mean values of the RU approach have a steady, linear slope. It starts with
a mean value of 5.31 hops and a variance of 2.56 hops, if no explicit object migrations take place.

Without explicit object migration, the PU approach starts with a mean value of 8.37 hops and a
variance of 4.05. The EPU approach has the best result, with a mean value of 5.04 hops and a variance
of 2.29.
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50 objects
Mig. Rate RU PU EPU

Mean Value | Variance || Mean Value | Variance || Mean Value | Variance
0% 5.30428 2.56249 8.37611 4.05236 5.04427 2.28973
10% 5.45114 2.70836 9.92555 3.18504 5.00982 2.26701
20% 6.00729 3.35265 9.94657 3.19554 5.00388 2.26918
30% 6.92401 4.38721 9.94391 3.19286 5.00834 2.26472
40% 7.89621 5.28051 9.94879 3.20425 5.01632 2.27437
50% 8.84582 5.90493 9.94259 3.21257 5.01731 2.27315

Table 12: Mean values and variances of GET Request distributions, Migration Rate 0% to 50%, 50
objects.

The PU approach shows a 1-hop step at the transition from no explicit object migration to 10%
object migrations. This step is not seen in the EPU approach. It indicates that explicit object
migrations, together with the increased latency of the Triangular-GET messages, result in objects
that are further apart from each other. This, again, results in more hops a message needs to reach an
object. With higher migration rates, the PU approach stays constant over all migration rates.

With a migration rate of 50%, the RU approach reaches a mean value of 8.85 hops and a variance of
5.90. The PU approach is still slightly above the RU results, with a mean value of 9.94, but a smaller
variance of 3.21. The result of the EPU approach was not influenced by explicit object migration at
all, and still has a mean value of 5.02 hops and a variance of 2.27.
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Figure 35: Comparison of hop counts for all three approaches, GET Requests, 50 Objects.

Due to the fact that PUT Migration message are preceded by GET Requests, which updated the
object location information, there is almost no difference between the three approaches, see fig. 36.
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Figure 36: Comparison of hop counts for all three approaches, PULL Migration Requests, 50 Objects.

5.5.2 Comparison for RB Tree with 100 Objects

Additionally to the red-black tree with 50 objects, we ran simulations with a red-black tree that stored
100 objects. For these simulations, we applied the migration rates from 0%, 10% and 20%. We did not
run higher migration rates as we are most interested in the 0% migration rate. Also, we do not expect
to find systems with higher explicit migration rates so that we can spare the simulation effort.

The mean values and variances of these simulations are listed in table 13. The results are similar
to the red-black tree with 50 objects, with slightly higher values for the RU approach.

Figure 37 plots these values. Again, the RU approach has a steady, linear slope. The PU approach
has again the 1-hop step from no explicit migration to 10% explicit migration, while the EPU approach
stays constant over all migration rates.

Again, there is almost no difference between the three approaches, when comparing the PULL
Migration Request messages, see figure 38.

100 objects
Mig. Rate RU PU EPU
Mean Value | Variance || Mean Value | Variance || Mean Value | Variance
0% 5.28056 2.49902 8.67647 3.87287 5.03789 2.26971
10% 5.56372 2.83152 9.98676 3.13437 5.00473 2.25944
20% 6.35526 3.80372 9.99157 3.13956 5.01113 2.26670

Table 13: Mean values and variances of GET Request distributions, Migration Rate 0% to 20%, 100

objects.

55



REQ: GET - All Runs, Objs.: 100, Grid: 10x10

20 T T T T T T
Reactive Update ——+—
Proactive Update
Enhanced Proactive Update :-----
15 .
n
Q.
2 }
= 10 | |
|_
m —
5 Tk I * i
0 | | | | | |

0 10 20 30 40 50
Percent of Migrations/10 Events

Figure 37: Comparison of hop counts for all three approaches, GET Requests, 100 Objects.

6 Related Work

Different application domains deal with locating and retrieving mobile objects. Depending on the
domain, a mobile object can be

e a physical resource, such as a device in a wireless network. People, robots or tools on a factory
floor can also be considered as mobile objects. These resources are tracked or located e.g. to
optimize the workflow or to bring worker and tools together.

e 3 piece of mobile code and data, called software agent, that performs its task on different, remote
nodes in a network. The code and data travels actively through the network to execute its
operations on the different nodes, e. g. to collect data in a sensor network.

e a piece of memory, as defined in object oriented programming languages, e. g.a Java object. The
object is passively moved through the network towards the code that requires the object’s data
for its execution.

The movement of these objects can be either active or passive. Active movement is governed by the
object itself; e. g. by a worker who decides to go to another location, or a mobile software agent that
has finished its task and moves to the next node. Passive movement is managed by a separate entity
that is different from the object. This entity can either be the programmer, who explicitly embeds
the object migration in the program, or the distributed runtime environment that implicitly migrates
objects. Examples are e. g. a distributed garbage collector that decides to migrate objects to resolve
cyclic dependencies or a virtual machine that decides to migrate a thread or a process to balance the
load in the system.

In the following sections, we describe the literature that we belief to be most related to our work.
We start with an introduction into mobile computing and distributed objects. Afterwards, we give
an overview over different programming models,such as the distributed shared memory programming
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Figure 38: Comparison of hop counts for all three approaches, PULL Migration Requests, 100 Objects.

model and the Parallel Global Object Space (PGAS) paradigm. Finally, we discuss various projects
that have developed distributed runtime environments that are similar to our approach.

6.1 Mobile Code, Mobile Objects and Mobile Computing

In distributed computing, nodes in a computer network communicate and interact with each other to
achieve a common goal. Therefore, the application task is split into parts that are executed on the
different nodes. There, these tasks are processed, either without further interaction between the tasks
i. e. “embarrassingly parallel”, or with further communication and interaction, e.g. as remote method
invocations (RMI) or remote procedure calls (RPC) or via the message passing interface (MPI).

Instead of transporting the data to the code, an alternative approach is to transport mobile code
to the data. Different classes of mobile code exist. They have e. g. been characterized by Thorn [33].
For our discussion, only two of Thorn’s classes are interesting:

e a program that can be executed on different, heterogeneous processors without further adaptions.

Examples are: Java [3, 39] that was designed with mobility in mind, Omniware [10], which
uses a RISC virtual machine, the OmniVM, or the Orca [11] or Emerald [412, 43] programming
languages. A sub-type of this class is the shipment of only parts of the program, e. g.threads or
processes, which are distributed onto the different nodes.

e mobile agents [11]: an object that contains code and that is given a list of destinations and a
number of operations it should perform at these destinations.

The use of mobile code can significantly reduce the amount of communication between two remote
nodes. Instead of encapsulating each method call in a remote procedure call (RPC), the whole code is
shipped to the remote site where the invocation is local.
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Orca [41] is a programming language that aims at the easy development of parallel programs for
distributed systems. It supports mobile code as a fundamental programming construct, e. g. by forking
a process that is started on a remote node, and it allows a program to migrate objects between nodes.
A reliable broadcast protocol handles the communication between nodes. To keep shared objects
consistent, each node caches all shared objects. If one node modifies a shared object, it broadcasts
these changes and all other nodes update their data.

Emerald [42, 43] is another programming language that uses a distributed runtime system and
specialized compiler. It aims as homogeneous [412] our heterogeneous [43] processor clusters of up to
100 nodes. This runtime environment allows threads and objects to migrate between nodes. In the
Emerald model, threads follow objects when objects are moved. Thereby, Emerald keeps the threads
co-located with the objects that they access.

To reference an object regardless of its location, Emerald uses globally unique and location
independent object identifiers (OIDs). Each node holds an additional object descriptor for each global
object that is referenced on that node. If the object is local, the object descriptor contains the local
memory pointer to the object. Otherwise, it contains information about the objects’ location.

If this object location is outdated, the system uses the concept of forwarding addresses [15], which
is the same concept as our proxy approach. If the latest known object location node is unavailable,
the protocol falls back to a broadcast protocol.

As the Emerald system compiles a program to machine code, and not an intermediate language,
the program must be compiled for each platform in the heterogeneous network separately. How to use
the same OID for the same code object on heterogeneous platforms is described in [43], even though
the authors did not implement this feature in their prototype. Their solution is to use a centralized
program database that stores the different code objects for the different platforms. The first platform
that compiles a code object assigns the OID and stores it, together with the code, in the database.
Afterwards, all other platforms first retrieves this OID and assign it to the code object that they
generate for their own architectures.

Both, Orca and Emerald introduce a new programming language that the programmer has to learn.
Additionally, both systems aim at small to medium cluster sizes with up to 100 nodes, only.

)

Mobile objects in Java [34] is a middleware library to support the development of mobile agent
systems. It associates objects, which communicate with each other, with a client-side stub at the
sending object and a server-side stub at the receiving object.

Both, client and server object are allowed to migrate. Similarly to Emerald and our approach,
each node maintains a table of all known mobile objects, together with their last known location and
a timestamp. While an object migrates through the system, it leaves a trail of forwarding pointers,
similar to our chain of proxies. Similarly to our approach, the location information of a migrated
object is updated whenever a node accesses this object. To be able to remove proxies if they are not
longer needed, the authors suggest the use of a distributed reference counting algorithm.

Moreau and Ribbens [34] investigate two routing strategies to forward an object access request:
call forwarding, which is similar to our recursive proxy forwarding, and so called referrals, which are
similar to our iterative proxy approach.

Call forwarding forwards the object access from proxy to proxy until the object is reached. Unlike
our approach, the answer to an access request travels back along the chain of proxies as well. Tt is
unclear, why this solution is chosen, and why the answer is not sent back directly.

With the referral approach, each proxy returns the location of the next proxy. Afterwards, the
caller re-tries the access by sending the request to the next proxy, until the object is reached. The
referral approach is the same as the recursive version of our reactive update approach (c.f.sec. 3.3.1).

Additionally, Moreau and Ribbens describe two proxy update mechanisms: Fager Acknowledgements
which sends the new object location to all previous locations, namely to all existing proxies and One
Acknowledgement which only updates the directly previous location. In contrast to our incoming
reference approach, these two mechanisms only update the chain of proxies, but not the referencing
objects. If Eager Acknowledgements are used, object access requests are forwarded at most once, while
the One Acknowledgement mechanism only shortens the proxy chain by at most one forwarder.

The benchmark results suggest that the call forwarding approach is slower than the referral
approach, while eager acknowledgments increase the object access latency. According to [34], this is
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due to the fact that the call forwarding approach has to traverse the chain of proxies two times, one
time on the way towards the object, and the second time, when the answer is sent back. In our opinion,
this second traversal is unnecessary, as the answer should be sent back directly without the indirection
via the chain of proxies (c.f.sec. 3.3.1). Unfortunately, the paper does not make any measurements
how many messages are needed for the different approaches or how many proxy forwards have been
needed.

Alouf et al. [46] compare the two approaches to locate a mobile agent that are implemented in the
ProActive [47] Java library. The first approach uses chains of forwarders. It uses the same mechanisms
as our chains of proxies approach. The second approach is based on a centralized server. There, a
node first tries to access the object on the formerly known location. If this access fails, the node sends
a location request to the centralized server.

It might happen, that the server replies with a wrong location, if it was not informed about the
new location of an object yet. In this case, the requesting node will again fail to reach the object
and has to issue a second request to the server. The paper makes no assumptions about frequently
migrating objects, for which this approach might increase the access latency significantly. Additionally,
a central server is a single point of failure.

Alouf et al. compare these two approaches with simulations and in an experimental environment.
In contrast to our approach, they examined only the communication between one source and one
agent. They also assume that an agent does not return to a previously visited node where a forwarder
still exist. Additionally, no communication between source and agent can take place while the agent
migrates.

According to [40], the centralized server works best on “high-speed” network, such as a 100 MBit/s
local area network (LAN). There, it outperforms the forwarder approach. In networks with an increased
latency, e.g in a 7 MBit/s metropolitan area network (MAN), which have a higher object migration
time, the performance of the forwarder approach surpasses the centralized approach. One of the
reasons for this result is that no communication can take place during the migration of the object.

Day et al. [18] discuss references to remote mobile objects in the distributed object-oriented database
system Thor. This database is stored on highly-available servers, so called object repositories (ORs).
These ORs, together with their objects, are replicated at a number of servers.

Thor attempts to cluster objects which reference each other, both on the same OR and close by in
the local memory. With this attempt, the authors assume that references across OR boundaries are
rare. They use distributed garbage collector to free objects. Object accesses are atomic transactions.

Objects are referenced by names. Two types of references are discussed: location independent
names, where the reference does not change when the object migrates and location dependent names,
where the reference changes when the object migrates.

In the case of location independent names, a locator is responsible for each object. If an object
migrates, the local reference on the new node changes and the new node informs the locator about the
address change. To determine the current location of an object, each access must first ask the locator
where the object currently resides.

In the case of location dependent names, a proxy is left at the old home node of the object.
Additionally, the old node updates all referencing objects about the new address and location of the
object. To enable this update, each node holds an incoming reference list of all other nodes which
reference a local object. This approach is similar to our incoming reference approach, discussed in
section 3.4.

In contrast to our approach, the object reference itself is not decoupled from the object location.
This means that the migration of an object requires each referencing node to touch all local objects
that hold a reference to the migrating object in order to update their references.

Srinivas et al. [19] describes optimizations of the shared object space Virat that allows it to scale
in large networks like the Internet. Objects in the Virat system are located via lookup servers that
maintain the current location of the object meta-data repository (OMRS) in their associated cluster.
These OMRs form a pastry ring [32], using the freepastry implementation of pastry. The routing
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between the OMRs use a DHT-like lookup mechanism to retrieve the responsible OMR for a given
object. For each object, k replicas are created throughout the network to deal with OMR failures.

We decided against the use of a DHT to locate dynamic objects to prevent nodes from maintaining
location information for objects that they do not use themselves. Nevertheless, we use a DHT to
locate static objects, which must be available to all nodes in the network.

6.2 Distributed Shared Memory (DSM)

One approach to program applications for a network of distributed computers is the use of the message
passing. This approach follows a 'share-nothing’ paradigm that requires all nodes in the network to
explicitly send and receive messages e. g. to exchange data.

Another approach uses shared memory, where the whole memory is accessible from all nodes and
processes in the network. A process can have references to all memory addresses within the global
address space. Most shared memory systems require hardware support, as e. g. offered by the FLASH
multiprocessor [50].

A combination of message passing and a shared address space are Distributed Shared Memory
(DSM) systems. They provides the abstraction of shared memory in a distributed memory environment.
To do this, DSM systems hide the underlying communication between the different nodes.

DSM systems can be distinguished into hardware and software DSMs. Hardware DSMs support
the shared memory abstraction on the hardware level, while software DSMs provide this abstraction
within the runtime environment. Another dimension to classify DSMs is fine-grain vs. coarse-grain
memory or object-based vs. page-based memory. In general, each node in a DSM system can access
its local memory via a coherent address space, while the network of all nodes form a non-coherent
address space. In the following, we only investigate fine-grain and coarse-grain software DSMs.

6.2.1 IVY

Li and Hudak [51] implemented IVY, the first page-based DSM. IVY allows the migration of memory
pages in a page-based distributed shared memory virtual address space but it allows only a single
writer. The ownership of a page is transfered to the node that is currently granted write access. After
the write succeeded, invalidation messages are broadcast to invalidate copies of the memory page.

In [51], Li and Hudak examine various centralized and distributed page location approaches for
VY.

The centralized manager approach maintains a table that has one entry for each memory page
in the shared memory system. Pages do not have a fix owner; only the manager knows who owns
the page at a given time. The manager serializes the access to the page by locking the page for all
processors but the one that was granted access.

An improved centralized manager approach moves the page access synchronization from the central
manager to the individual page owner. Still, a processor that wants to access a page has to first access
the central manager to retrieve the owner of a page.

A fixed distributed manager approach partitions the shared address space into fixed chunks, which
are distributed among all nodes. Li and Hudak state that this approach is superior to the centralized
managers. Nevertheless, they argue that it is difficult to find a good fixed partition scheme that suits
all applications well.

Another distributed protocol uses broadcasts to find a page whenever a page is not yet available at
the requesting processor.

Finally, Li and Hudak describe a proxy approach with forwarding addresses. These proxies are
updated whenever an invalidation message propagates the true owner of the page.

The prototypic implementations of these concepts have been evaluated on Apollo workstations
that have been connected by a proprietary token-ring network, the Apollo token ring, introduced
by the company Apollo Computer in 1981. In this network, a token travels around the ring and
grants that node permission to transmit data that currently holds the token. The authors state, that
the dynamic distributed manager approaches, using broadcast or proxies, perform better than the
centralized approaches, if only a small number of processors share the same page for a short period of
time. Nevertheless, the experiments have only be done on a network of eight processors.
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6.2.2 Linda

Linda [52] is a programming tool to develop parallel programs. A program in Linda is not described
as a process graph, but described as a “spatially and temporally unordered bag of processes” ([52]).
Instead of partitioning the parallel program into n logical pieces that are modeled by n coupled
processes, Linda applies a so called replicated worker model that replicates the program r times, where
r is the number of available processors. These r independent, un-coupled workers, which ignore each
other, search for tasks to execute in the program’s data space.

Linda’s memory is tuple-granular, where tuples are stored in the tuple space. A tuple consists of a
logical name and an ordered set of immutable values. A tuple is accessed via its logical name, rather
than its physical address in memory.

The Linda implementation for the S/Net multicomputer broadcasts all messages to all nodes in the
network, and stores a copy of the tuple space on all nodes, as well. The implementation for the Intel
iPSC hypercube used a DHT in which a tuple was hashed and stored on the node that was responsible
for this hash.

Compared to the common read and write memory access operations, the tuple space is accessed
by read, add and remove operations. The read operation tries to read a tuple in the tuple space by
issuing a query for its logical name. If such a tuple exists, its values are read into a local tuple and the
original tuple stays in the tuple space. If more than one tuple exist, one is chosen arbitrarily. If no
such tuple exists, the reading process suspends until a matching tuple is present in the tuple space.
The remove operation is similar to the read operation but removes the tuple from the tuple space. To
write the values of a tuple in the tuple space, the tuple has to be removed, changed and reinserted.

LIME [53] extends the Linda model to mobile environments. It was designed to allow the
development of mobile agents over both, wired and ad hoc networks, where mobile agents may reside
on mobile hosts.

6.2.3 JavaSymphony

JavaSymphony [54, 55, 56] is built on top of Java RMI. It offers a broader range of possibilities to
control object and code locality than Linda and its derivatives JavaSpaces [57, 53], Javelin [59] and
Jada [60]. The main feature of JavaSymphony is the ability of the programmer to explicitly control the
object locality, e. g. the location where an object is created or the migration of an object to a remote
node. It is designed as a Java library, and Fahringer states [55] that it is mostly suitable for medium-
to coarse-grained parallelism, but not for fine-grained.

JavaSymphony offers synchronous, asynchronous and one-sided remote method invocations, where
the latter does not wait for a result or for a method to finish. Additionally, it does not replicate all
code to all nodes, but allows selective class loading on only those nodes that need them.

The user might select the nodes and resources which should be used to execute a JavaSymphony
application. These resources form the virtual distributed architecture on which the JavaSymphony
runtime system (JRS) is executed. Each application must register itself with the JRS, and should
un-register when it is finished.

Even though JavaSymphony supports automatic mapping, load balancing and object migration,
Fahringer states that automatic systems have a poor performance because of a lack of information
about the application and an insufficient ability for static and dynamic analysis.

In [56], the authors describe an extension of JavaSymphony to shared memory systems such as
multi-core and many-core architectures.

6.2.4 Aleph

The Aleph toolkit [61] offers a collection of Java packages that use remote threads to extend thread
parallelism and to help to construct distributed shared objects. The toolkit supports push and pull
communication, as well as object migration and remote method invocations.

[62] implemented and evaluate three different distributed directory services for the Aleph toolkit
These directory services are used to keep track of moving objects and their cached copies. One directory
implements a home based protocol; another one uses the arrow directory protocol [63]. The third
protocol is a hybrid protocol of the other two.
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In the home based protocol, each object is associated with a home node that is responsible for this
object. This home node keeps track of the location of the object and all cached copies of the object.
The home node manages all accesses to the object; it is not possible to reach the object other than
by invoking its home node. In this scheme, only one read/write copy or multiple read-only copies
are allowed. To acquire exclusive access to an object, four messages are required, two of which are
blocking.

The arrow protocol creates a binary tree of all nodes so that the location of each node in the tree
can be calculated from its index. The protocol uses one-hop pointers, the arrows, that point to the
direct neighbor in the tree in whose direction the object currently resides. For each object, all nodes
have to have an arrow to one of their direct neighbors in the tree. This is necessary even if the node
never accesses this object during its lifetime.

In this protocol, each remote object access follows the arrows through the network. During this
travel, each node that forwards the request changes the direction of the arrow into the direction of the
requesting node, respectively towards the node from where the request came. This protocol assumes
that the access always succeeds, and that the accessed object always migrates to the requesting node.

It is unclear how or if this protocol can manage multiple read-only copies of the same object.
Additionally, the paper does not say anything about the creation of new objects, about the initialization
of the network, or about the mechanism that is used to obtain a reference.

The authors use a single shared object to evaluate the two protocols [61]. The main thread
initializes the object and starts a thread on all remote nodes, which themselves access the shared
object.

The authors assume that a 'multi-hop’ message has the same cost as a ’single-hop’ message. The
experiments for the paper included at most 16 nodes, which have been connected via one Ethernet
local area network. The arrow protocol that uses a binary tree as a node directory did not reflect this
topology but assumed a binary tree structure.

For this reason, the authors conclude that the home base protocol only takes two messages to
retrieve and request an object. For the request, one message to the home and one from the home to
the current node that holds the object copy. And conversely for the retrieval: one message from the
node holding the object copy to the home node, and one message from there to the requesting node.

For the arrow protocol, the authors state that a request needs d messages for a d hop path between
the requesting node and the node that currently holds the object. In their metric, the way back to the
requesting node takes only one message.

The hybrid protocol uses a home node for each object and each home tracks the last node
that requested the object. Hence, a request message is always forwarded to the last known node.
Additionally, the source of the request is stored as the new ’last requesting’ node. The retrieve message
is sent directly from the node that holds the object back to the requesting node, without a detour over
the home node. Applying the authors message count metric this results in two request and only one
retrieve message. It thus outperforms both previous approaches. This approach is comparable to our
proxy approach, where each object access message has to travel along one proxy hop.

6.3 Partitioned Global Address Space (PGAS)

The Partitioned Global Address Space (PGAS) model is a rather new programming model. Tt is similar
to the DSM model, but its main focus is on distributed array access. According to Cantonnet et
al. [64], PGAS model is just an alternative name for the DSM programming model.

In PGAS, all physically addressable memory on all nodes is part of a global address space with
non-uniform access time. Similar to DSM systems, access to the local partitions of the global address
space has a low-latency, while access to the remote partitions has a longer, and potentially non-uniform
access latency. PGAS supports the shared memory model as well as the message passing model.
Thereby, it combines the ease of programming shared memory systems with the efficiency of message
passing.

One of the key features of the PGAS model is to give the programmer explicit control over the
location of both, data and code execution. I.e., the programmer decides which data is shared and
how it is distributed among all nodes.
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6.3.1 X10

X10 is an object-oriented programming language that is part of the PGAS language family. It was
proposed by IBM and aims at the programming of heterogeneous, non-uniform clusters. [65] describes
the version 0.41 of the language. As of today, the latest version is 2.1.1, which was released in January
2011.

X10 is derived from the Java programming language, while the authors of [65] state that the major
drawback of Java is the tight coupling to a single, uniform heap.

X10 uses the notion of places to allow the programmer to control the location of code and objects.
A place is a virtual concept of non-migratable mutable data, and the corresponding asynchronous
activities that operate on this data.

Asynchronous activities are lightweight “threads”, which replace regular threads and explicit
message passing. They are created locally or remotely. They support thread-based parallelism as well
as asynchronous data transfer. Chales et al. [65] describe remote activities as a generalization of active
messages [60].

In X10 only places can migrate. It is not possible to migrate data and objects between different
places. Nevertheless, an activity in one place can spawn activities in other places. This is especially
necessary to read/write remote data. An activity can only read/write data that is local in its own
place. There, the read and write memory access happens in one atomic, sequentially consistent [67]
step. To read/write remote data, the activity has to spawn an activity at the remote place.

Additionally, X10 supports a sub-language for sparse, dense, distributed, and multi-dimensional
arrays. In this context, a global array can be distributed throughout the PGAS space. This distribution
cannot be changed during the execution of the application. The array is accessed via fat pointers,
which consist of the globally unique VM ID of the creating virtual machine (VM) and an ID that is
unique within this VM. Each place provides a mapping of the fat pointers to local memory locations.
As global arrays can never change their place, fat pointers are always valid.

In contrast to other PGAS languages, X10 makes the location of data directly visible in the code.
According to [65], the reason is that a transparent location of objects can be a performance bottleneck
because it is not visible if a data access generates remote communication.

6.3.2 TUnified Parallel C

Unified Parallel C (UPC) [68] is a parallel extension of the C programming language. The main goal
of UPC is to minimize the communication overhead between two cooperating threads. Similar to X10,
UPC allows the programmer to decide where to place data in the system.

Barton et al. [69] describe a UPC compiler and runtime system for the BlueGene/L supercomputer
[70]. The compiler simplifies the code that is generated for parallel loops and eliminates indirections
for the access to shared arrays. A distributed Shared Variable Directory (SVD) is used to access shared
data. The entries in this directory are entirely managed by the compiler during compile-time.

The runtime system uses an algorithm to determine if an access to a shared object can be performed
locally or remotely. If the data is local, the reference is transformed from a fat pointer to a local
C-pointer like reference. In the beginning, the base address of an array is determined once and always
requires to follow the various indirections of the SVD. Afterwards, the subsequent array accesses are
potentially translated to direct memory accesses.

Another optimization describes the update of read-modify-update operations, used e.g.in the
RandomAccess benchmark [71]. Instead of sending three messages (read, update, acknowledgement),
the authors suggest to use only one asynchronous message for the operation.

The authors have evaluated two applications from the HPC Challenge benchmark suite [71] and
one application from the NASA Advanced Supercomputing (NAS) benchmark [72, 73, 74]. When all
described optimizations are applied, the authors found a speedup of 7 for the RandomAccess and a
speedup of 240 for the STREAM benchmark. They conclude that the main performance gain was
achieved because the compiler transformed most of the fat pointers into local references (C-Pointers).

The data access characteristics in UPC are investigated in Barton et al.[75]. Omne of their
observations is that the performance is significantly improved if the programmer is able to decide
how the shared data is distributed among the executing threads. If the programmer provides this
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knowledge, the compiler can optimize the data access at compile time. During their analysis, the
authors found that a majority of shared data accesses is to local data. To do this, the compiler analyzes
which shared data is accessed locally and privatizes this data for local access, e. g. via a private pointer.
Thereby, the compiler avoids the translation overhead through the SVD. To analyze different access
patterns, the authors use a subset of the NAS benchmark [72, 74]. During their evaluations, Barton et
al. found evidence that a number of algorithms in scientific computing exhibit regular access pattern
to remote data.

6.3.3 Others

Various other PGAS languages have been proposed, e. g.the Java dialect Titanium [6], Ct [76], Co-
Array Fortran [77] or Chapel [78]. We are not going into more details of these programming languages
here and leave the further study to the interested reader.

6.4 Distributed (Java) Virtual Machines (DJVM)

The main feature of a distributed virtual machine (DVM), or, more specific, a distributed Java virtual
machine (DJVM), is to provide a Single System Image (SSI) [1, 2]. An SSI hides the heterogeneous and
distributed nature of e. g. a cluster of PCs, and offers the user a unified view of the system. Thereby,
the user has a transparent view onto the resources in the system, without the need to know where the
different resources are physically located. In [1, 2] an SSI is defined as one of the key features that are
needed to use a cluster-based system.

The SSI can be implemented on different levels:

e At the hardware level as e. g. in the FLASH multiprocessor [50], which offers a hardware distributed
shared memory (DSM).

e At the operating system level as e. g. with MangetOS [79], an operating system offering an SSI
over ad hoc networks, or GLUnix [30], a global layer unix for cluster.

e As application as e.g. PARMON [31], which offers the user a single application window that
offers access to all system resources or services.

e As a runtime environment, e. g. as a distributed Java virtual machine as described in the following.

The hardware level SSI offers the highest level of transparency, but it is inflexible if the system
needs to be extended or enhanced. The OS level SSI is more flexible but it must be modified for each
new hardware technology, which makes it expensive to develop and maintain. The application level
SST is limited to a single application, for which the developer is not supported by the hardware or
the OS. The runtime environment level SSI is a compromise between the other SSI levels. Only the
developer of the runtime environment has to deal with the implementation of the SST on top of the
available hardware or the OS. If e. g. a runtime environment is developed on top of a Linux OS, it is
afterwards executable on all hardware platforms for which a Linux OS exists. A programmer who
programs for this runtime environment has full, transparent access to the underlying system.

6.4.1 cJVM

c¢JVM [7] is a distributed Java virtual machine for homogeneous cluster of computers. It implements
a distributed heap that uses a master-prozy approach to access remote objects. The master node of an
object is the node where the object was created; the proxy resides on other remote nodes, which use
the proxy to access the object on the master node. Locally, objects are referenced by regular Java
references. The first time, a reference to a local object is passed to another node, e. g. as an argument
to a remote operation, it is assigned with a unique global identifier, the global address of the object
(GAO). Together with the global address of the class (GAC), remote nodes use the tuple of (GAO,
GAC) to create the local proxy and to access the object on it’s master node. A local DHT translates
between the memory local proxy address and the global address of the master object.
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Instead of thread migration or object migration, cJVM supports method shipping. With method
shipping, the thread itself does not migrate, but its stack can be distributed over different nodes.
Nevertheless, synchronized methods and native methods must always be executed on the master node.

When a remote object is accessed, cJVM ships the method to the remote node. This process is
supported with caching and replication policies. E.g.a remote access to a static field of a class is
logged at the master node of that class, and a replica is cached on the accessing node. If the static
field is updated, all its replicas are invalidated and require a new remote access to the field on the
master node of that class. At object level, read-only objects are cached as well.

Various optimizations for the ¢cJVM have been proposed [$2]. For example, a simple object
migration mechanism that handles those cases where one thread creates and initializes an object, and
exactly one other, remote thread uses the object, without any overlap between these two threads. If
an object contains application-defined native methods, the object is not allowed to migrate, because
native local state can not be migrated.

Aridor et al. have developed and executed a prototype on the Windows NT operating system, which
can execute unmodified, multi-threaded Java applications.

6.4.2 JESSICA

The JESSICA system is an ongoing research project at the University of Hong Kong. It was started in
1996 2 and first presented in [33, 54]. JESSICA runs on top of a standard UNIX operating system and
offers an SSI over a heterogeneous computing cluster.

JESSICA spans a logical global thread space across all nodes in the cluster, which allows threads
to freely move from one node to another. Unlike cJVM, JESSICA focuses on thread migration for
dynamic load balancing.

The global object space (GOS), which is a sub space of the global thread space, contains the globally
accessible objects. To cache remote objects, and to keep these cached copies in a coherent state,
JESSICA relies on the cache coherence protocol of the underlying DSM system.

Initially, the GOS was implemented on top of the TreadMarks [35] page-based DSM, which was
later replaced by JUMP [36]. JUMP is another page-based DSM, which allows the home of a memory
page to migrate to another node. This migration takes place whenever a remote node modifies a
cached copy of a memory page. At this moment, the modifying node becomes the new home node of
the memory page; the home migrated. This approach is similar to our migrate-on-modify approach.

To prevent a node from reading an outdated page from a former home node, JUMP sends migration
notice messages to each node in the system at the synchronization points. If the new home node
modifies several pages, all migration notice messages can be consolidated into one.

Fang et al. [37, 88] developed a fine-grain, object-based global object space for JESSICA that includes
a simple object home migration method. The GOS supports object pushing to allow prefetching. The
reason for this development was the poor performance of the page-based DSM systems, e. g.due to the
false sharing problem.

The GOS distinguishes between node-local objects and distributed-shared objects (DSO). To detect
a DSO, the GOS uses a DSO detection mechanism. This mechanism examines the communication
between nodes to detect object references that cross the node boundary. If a remote DSO is requested,
the GOS applies a prefetching strategy, i.e.it pushes additional objects that the requested object
references to the requesting node until the maximal message length is reached.

As in ¢JVM, each object has a dedicated home node, which holds the master object. This home
node can change, corresponding to an object migration (“object home migration”). Similarly to cJVM,
the GOS takes a conservative approach and only allows the migration of objects that have a single
writer access. In this case, the remote node first caches the master object and after it modified the
object, it announces itself to the former home node as the new home node of the object.

With this approach, the GOS avoids the need for remote reference maintenance, as we apply it in
our system. If a third thread tries to access the migrated object on its former home node, a home
redirection message is sent back to the requesting thread. Afterwards the requesting thread updates
its information about the object’s home node and sends its request to the correct new home node. In

2http://i.cs.hku.hk/ clwang/projects/JESSICA4.htm, last visited 2011-01-19
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addition to the home redirection message, a forwarding pointer is left on the original home node. This
is similar to our proxy approach.

JESSICA2 [39, 8, 90] adds a transparent Java thread migration to JESSICA. To achieve this,
JESSICA2 employs Just-in-Time (JIT) recompilation that preserves the native thread execution mode
and eliminates code instrumentation.

JESSICAS focuses on the applications that the VM executes. The main objectives are to overcome
memory space limitations and to solve the problem of global thread scheduling.

Luo et al. [91] study the connectivity of objects and the traversal behavior over the access paths
among objects. This work was done for the JESSICA3 project in order to find a suitable prefetching
policy.

They propose a profiling strategy that classifies classes and fields into different types according to
their access patterns. Based on this classification, they described and evaluated different prefetching
approaches, such as depth-first (fetch objects recursively which are reachable along one reference to
the next layer) or breadth-first (fetch all objects at the next object layer).

JESSICA4 aims at new parallel programming paradigms, e. g. the partitioned global address space
(PGAS) programming model (see above) and transaction-based synchronization with two-way elastic
atomic blocks (TWEAK).

6.4.3 Java/DSM

Java/DSM [92] is another modified JVM. Similar to JESSICA, its heap is implemented on top of the
TreadMarks [$5] DSM. Java/DSM does not allow object migration and does not implement thread
migration. Additionally, the thread location is not transparent.

The Java/DSM garbage collector uses two lists: the export list, which contains remote references
to local objects, and the import list, which contains references to remote objects. These two lists are
comparable to our InRef List and GaoMap. Nevertheless, the remote references in the export list are
only used for garbage collection and not for object migration.

6.4.4 Hyperion

Hyperion [93], in contrast to JESSICA and Java/DSM, is a JVM that is built on top of an object-base
DSM. Hyperion uses a JIT approach that first compiles Java to C code. Just before its execution, this
C code is compiled to machine code.

Each node holds a centralized object address table that is used to access the whole DSM. In this
DSM address table, each node owns only a statically assigned portion of the address space.

The object table contains tuples that consist of a local object pointer and a remote object pointer.
A nodes’ own portion of this object table is used to create local objects, whereas the remote portions
are used to cache remote objects.

If a thread accesses an index in the object table and finds that the local object pointer is invalid,
it retrieves a cached copy from the remote node that is associated with the accessed portion of the
object table. Afterwards, the node replaces the entry for the remote object pointer in the nodes object
table with the pointer to the locally cached copy.

Hyperion does not allow object migrations. Instead, the node that created an object holds the
master object all the time. If a remote node accesses this master object it is shipped as a copy of the
object. If the node modifies this object copy, the copy is written back to the master node at Java
synchronization points.

6.4.5 Jackal

Jackal [94] is a compiler-driven, fine-grained DSM system for Java. Jackal compiles Java code to native
machine code. During this compilation, Jackal performs the object-graph aggregation, similar to an
object pushing in the JESSICA GOS [37]. Similar to Hyperion, the global address space is divided
into chunks, that are owned by different nodes in the system.

Ungar et al. [95] describe a distributed Smalltalk virtual machine. This VM is based on the Squeak
Smalltalk system [96, 97] and was enhanced to be a distributed VM that runs on the TILE64 many
core processor from Tilera.
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The VM distributes its object heap among the individual caches of 56 of the processor cores, such
that each core has its own (part of the) heap. A shared address space allows any core to access any
object in the heap. A global, centralized object table deals with the problem of changing memory
addresses of objects, whenever they move from one cache to another. To evaluate their design, they
executed a single thread which moved from node to node, but they did not measure parallel and/or
multi-threaded workloads.

6.4.6 Barrelfish

Barrelfish [93] is a first implementation of the new multikernel model for operating systems which
support multicore processor systems. For inter-core communication, Barrelfish uses user-level Re-
mote Procedure Calls (RPCs), which read/write into dedicated shared memory locations in the
reader’s/writer’s caches (cache lines).

Instead of communicating via caches and shared memory, Barrelfish uses message passing which
the authors claim to be a much better paradigm for multi-core systems. Therefore, their approach is a
shared nothing model. They show experimental results where the costs of updating shared memory
on a multi-core machine is much more expensive than updating the local cache of a server node via
message passing.

6.4.7 CellVM

The CellVM [99] is a DJVM that extends the JamVM. It is specially designed to run on the IBM
Cell processor. The CellVM supports two modes of operation: a pure interpretative approach and
a dynamic Java bytecode to native code compiler, which translates Java bytecode to native vector
code on-the-fly. The interpreter uses the direct-threaded interpreter approach (instead of the switched
interpreter approach), because the SPEs do not offer hardware branch prediction.

The VM comes in two flavors: the ShellVM, which is executed on the Power PC core (PPE) and
the CoreVM, which is run on the SPEs. The ShellVM maintains the global system resources, while
the CoreVM operates on its own local storage. The Java heap that is shared by all VMs is located
in the main memory. To access this heap, the CoreVMs need to perform a DMA transfer because
this is the only way to move data into the local memory of the SPEs. The CoreVMs do not execute
the whole set of Java bytecode because not all of the operations can be implemented and executed
efficiently on the SPEs. E.g.for complex memory operations, the execution is transfered from the
SPE to the PPE. The creation of new objects and the execution of native methods is handled by the
ShellVM on the PPE as well.

6.4.8 JavaSplit

JavaSplit [100, 101] is a distributed Java runtime system that uses Java sockets to enable IP-based
communication. It administers a pool of worker nodes that can be connected by a standard IP network.

JavaSplit uses an object-based DSM system that was inspired by the HLRC protocol [102]. Objects
can be local or shared, but only the latter ones are managed by JavaSplit. If the system detects that
an object is used by more than one thread, it assigns a globally unique ID and registers it in the DSM
as a shared object.

Like HLRC, JavaSplit is home-based in the way that each object has a home node that manages
the master copy of the object. All threads that access the object create local copies of the object. At
some synchronization point, the changes the thread has made are written back to the master copy.

Nodes that want to join JavaSplit simply use a Java-enabled browser to access a website that
contains the Java applet that executes the code of a worker node.

JavaSplit takes a given parallel application written in standard Java. The bytecode of the
application is automatically rewritten to incorporate all the needed distributed runtime logic. The
resulting rewritten classes of the application are transparently distributed onto the participating worker
nodes. These nodes then execute those threads of the application that were assigned to them on their
standard JVMs.

The bytecode rewriter intercepts the bytecodes that start the execution of a new thread. It is
replaced by a handler that transfers the thread to one of the nodes in the system. Synchronization
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mechanisms such as monitors or synchronized methods are substituted by a appropriate synchronization
handler.

To preserve memory consistency, each load and store operations first has to perform an access
check. If this check fails, a newer version of the object is fetched from another node.

6.4.9 JavaParty

JavaParty [103] introduces transparent remote objects for Java. JavaParty is built on top of RMI.
If modifies the Java language by introducing a new class modifier remote. A pre-processing phase
transforms JavaParty code into regular Java code with RMI hooks. This code is then compiled with
the RMI compiler.

The JavaParty runtime system is built around a central RuntimeManager. Each node runs a
LocalJP JavaParty instance that must register itself at the manager. The manager knows all LocalJPs
and the location of all class objects, e.g.the host that initialized the static parts of a class. This
information is replicated to all LocalJPs to reduce the management overhead.

JavaParty allows object migration,; it uses proxies that are left behind after a migration. If a
method call arrives at a proxy, the new location is sent back to the caller. This is similar to our
reactive and iterative update approach (c.f.sec. 3.3.1).

Haumacher et al. [1041] describe how Java’s remote method invocation (RMI) can be used to
transparently create and control distributed threads in their JavaParty system.

6.4.10 Commercial Solutions

The Terracotta system [105, 106] allows a Java application to run on multiple distributed Java virtual
machines (JVMs). The JVMs run on multiple machines that are connected via a network-attached
Java heap. This Java heap consists of an underlying server array, to which all JVMs connect. Hot
standby servers provide fault tolerance. They take over when an active server fails.

In this system, the user needs to identify all objects that should be reachable while they reside in
the network-attached heap. The bytecode of the classes that become shared objects is instrumented to
allow object maintenance on the global heap. Terracotta does not allow data and threads to migrate
between the machines in the cluster, but objects may be moved to the server, if the local Java heap
has no memory left.

Azul Systems developed the Zing Java virtual machine. The Zing JVM on the host server is only a
virtualization proxy that pushes the Java stack and thus the application to the Zing Virtual Appliance
(ZVA ), which runs on an X86 hypervisor. Azul states that the ZVA is a better execution stack to
execute the Java application. The Zing Resource Controller (ZRC) is a centralized management
component that dynamically growth or shrinks the memory footprint of a Java application on demand.

Azul did not publish any scientific papers, but information about their VM can be found on their
website [107].
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