
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Language Operations with Regular Expressions of
Polynomial Size

Hermann Gruber Markus Holzer

TUM-I0814

Mai 08

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-5-I0814-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut für Informatik der

Technischen Universität München

Language Operations with Regular Expressions of

Polynomial Size

Hermann Gruber

Institut für Informatik, Ludwig-Maximilians-Universität München,

Oettingstraße 67, 80538 München, Germany

gruberh@tcs.ifi.lmu.de

Markus Holzer

Institut für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching, Germany

holzer@in.tum.de

Abstract

This work deals with questions regarding to what extent regularity-preserving language

operations affect the descriptional complexity of regular expressions. Some language oper-

ations are identified which are feasible for regular expressions in the sense that the result

of the operation can be represented as a regular expression of size polynomial in that of

the operands. We prove that taking language quotients, in particular the prefix and suffix

closures, of a regular set can incur at most a quadratic blow-up on the required expression

size. The circular shift operation can cause only a cubic increase in size. For the latter

operation, at least an almost quadratic blow-up can be necessary in the worst case.

1 Introduction

In the last 20 years, a large body of research on the descriptional complexity of finite automata
has been developed. To the authors’ knowledge, the first systematic attempt to start a parallel
development for the descriptional complexity of regular expressions was presented by Ellul et
al. [8] at the workshop on “Descriptional Complexity of Formal Systems” (DCFS), in 2002. In
particular, they raised the question of determining how basic language operations such as com-
plementation and intersection affect the required regular expression size. For the intersection
and shuffle operations, exponential lower bounds are known, and complementation can even
incur a doubly-exponential blow-up [9, 10]. In [10] it was shown that the star height of a regular
language is at most logarithmic in the minimum regular expression size, and lower bounds are
proved by finding families of languages for which the respective language operations incur a
dramatic increase in star height. In contrast, it is well known that taking language quotients
does not increase the star height [7]. This and similar language operations appear to be a nat-
ural testing ground for deepening our understanding of the descriptional complexity of regular

1

expressions: Either one has to find some new lower bound techniques, or one has to find a non-
trivial implementation of these operations on regular expressions, or both—a straightforward
procedure would be to convert the expression into a finite automaton, implement the operation
on a finite automaton, and convert back to a regular expression using state elimination. Yet
that last step can incur an exponential blow-up in general, even over binary alphabets [10].

Here, we give polynomial upper bounds for the required expression size resulting from taking
language quotients and circular shift. The descriptional complexity of these operations were
already studied for various computational models, see [1, 2, 18] for the circular shift on various
types of automata and grammars, and [13, 16] for language quotients of deterministic finite
automata—the latter two references consider deterministic finite automata with multiple start
states, but the results easily translate to state complexity results for (left) quotients.

The basic idea is to implement the operation for the special case of linear expressions [3],
called single-occurrence regular expressions in [9]. These are expressions in which every al-
phabetic symbol occurs exactly once, which makes it easier to deal with as they can describe
only local languages. To cover the general case, we study the interplay of the operations with
length-preserving homomorphisms.

2 Basic definitions

We recall some basic notions in formal language theory—for a thorough treatment, the reader
might want to consult a textbook such as [14]. In particular, let Σ be a finite alphabet and Σ∗

the set of all words over the alphabet Σ, including the empty word λ. A (formal) language over
the alphabet Σ is a subset of Σ∗.

Apart from the regular operations on languages, namely (finite) union, catenation, and star,
we briefly recall the following operations on languages: The reversal of a language L, denoted
by LR, consists of all words which, when read backwards yield a word in L. The (left) derivative
of a language L with respect to a word w, written as w−1L, is defined as { x | wx ∈ L }, the (left)
quotient of L with respect to a set of words W , denoted by W−1L, is defined as

⋃

w∈W w−1L.
The special case W = Σ∗ is known as the suffix closure of L and denoted by suf(L). We
can perform similar operations when reading words from right to left: The right derivative of
a language L with respect to a word w is defined as { v | vw ∈ L }. This operation can be
expressed using derivatives and reversal as ((wR)−1LR)R; right quotients and the prefix closure
pre(L) are defined in an analogous manner. The circular (or cyclic) shift of a language, denoted
by �(L), is given by { xw | wx ∈ L }.

Let Σ be an alphabet. The regular expressions over Σ are defined recursively in the usual
way:1 ∅, λ, and every letter a with a ∈ Σ is a regular expression; and when s and t are regular
expressions, then (s+t), (s·t), and (s)∗ are also regular expressions. The language denoted by a
regular expression r, denoted by L(r), is defined as follows: L(∅) = ∅, L(λ) = {λ}, L(a) = {a},
L(s + t) = L(s) ∪ L(t), L(s · t) = L(s) · L(t), and L(s∗) = L(s)∗. Two regular expressions are
called equivalent if they denote the same language. For a regular expression r, define λ(r) = λ
if λ ∈ L(r), and λ(r) = ∅ otherwise. Likewise, for a language L, we define λ(L) analogously.

1For convenience, parentheses in regular expressions are sometimes omitted and the concatenation is simply

written as juxtaposition. The priority of operators is specified in the usual fashion: concatenation is performed

before union, and star before both product and union.

2

The size or alphabetic width of a regular expression r over the alphabet Σ, denoted by
alph(r), is defined as the total number of occurrences of letters of Σ in r. For a regular
language L, we define its alphabetic width, alph(L), as the minimum alphabetic width among
all regular expressions describing L. The star height of a regular expression r, denoted by h(r)
is a structural complexity measure inductively defined by

1. h(r) = 0, for r ∈ Σ ∪ {∅, λ},

2. h(s · t) = h(s + t) = max (h(s), h(t)), and

3. h(r∗) = 1 + h(r).

The star height of a regular language L is then defined as the minimum star height among all
regular expressions describing L.

Let r be a regular expression. Following [15], we say that r is reduced if all of the following
conditions hold: If r contains the symbol ∅, then r = ∅; the expression r contains no subex-
pression of the form st or ts, with L(s) = {λ} and no subexpression of the form (s∗)∗; if r
contains a subexpression of the form s+ t or t+ s with L(s) = {λ}, then λ /∈ L(t); if r contains
a subexpression of the form s∗, then L(s) 6= {λ}. Otherwise r is called reducible. The above
definition suggests some rewriting rules, such as replacing s + ∅ with s, and a few more rules,
see [15]. By iteratively applying the rules to all subexpressions until none is applicable, we can
reduce every regular expression to a reduced one.

Clearly, for every regular expression there exists an equivalent reduced regular expression
with alphabetic width and star height no larger than the original expression. We will need the
following relation between star height and alphabetic width of reduced regular expressions:

Lemma 1. Let r be a reduced regular expression. Then h(r) ≤ alph(r).

Proof. We prove the following two statements by simultaneous induction on the total number
of occurrences of operators in r: If r is a starred expression, then h(r) ≤ alph(r), otherwise
h(r) ≤ alph(r) − 1. If r contains no operators at all, then the statement clearly holds. To
do the induction step, assume the statement holds for all regular expressions with at most m
occurrences of operators. In the cases r = s + t and r = s · t, we have h(r) = max (h(s), h(t)),
and the statement holds by induction hypothesis. If r has the form (s)∗, then s is not a starred
expression, since r is reduced. Thus by induction assumption, h(s) ≤ alph(s) − 1. Since
alph(r) = alph(s) and h(r) = h(s) + 1, the claimed statement also holds in this case, and the
proof is completed. �

3 Linear expressions

Let r be a regular expression over the alphabet Σ. The alphabetic width of r, denoted by
alph(r), is the total number of occurrences of symbols in r. We refer to the ith alphabetic
letter in r as the ith position. A regular expression r over an alphabet Σ = {a1, a2, . . . , an} is
called a linear expression if and only if |Σ| = alph(r) and the ith position in r is the symbol ai.
In this case, there is a straightforward bijection between positions and alphabet symbols, and
here we shall often denote the used alphabet by Pr.

3

For two alphabets Σ and Γ, a homomorphism h : Σ∗ → Γ∗ is length-preserving or also
letter-to-letter if it maps all symbols from Γ to symbols from Σ. It is easy to see that each
regular expression r is the image of a unique linear expression r under a length-preserving
homomorphism: That homomorphism maps the symbol ai to the ith position of r. This
homomorphism will be denoted by `r or just ` in the case r is understood from the context.

Example 2. For the regular expression r = ((ab)∗a)∗, the corresponding linear expression
is r = ((a1a2)

∗a3)
∗, and the length-preserving homomorphism which maps r to r is given by

`r = {a1 7→ a, a2 7→ b, a3 7→ a}.

Let Σ be an alphabet. A language L ⊆ Σ∗ is local if

L = λ(L) ∪ (PΣ∗ ∩ Σ∗S) \ (Σ∗NΣ∗)

for some P, S ⊆ Σ and N ⊆ Σ2. Note that in this definition, we permit the empty word to be
a member of a local language. The concept of local languages is related to linear expressions
as follows [4]:

Theorem 3. For every linear expression r, the language L(r) is local.

We briefly recall the definition of the canonical derivative da(r) of a linear expression r with
respect to an alphabet symbol a, in the reformulation given in [6, Prop. 6]:

Definition 4. Let r be a linear expression and let a be a symbol in Pr. Then the canonical
derivative da(r) is computed recursively by applying the following rules and finally reducing the
expression:

da(a) = λ

da(s + t) =

{

da(s) if da(s) 6= ∅

da(t) otherwise

da(s · t) =

{

da(s) · t if da(s) 6= ∅

da(t) otherwise

da(r
∗) = da(r) · r

∗

And da(r) = ∅ in all cases not covered above.

The study [6] relates the canonical derivatives of a linear expression to the original definition
of derivatives for general regular expressions due to Brzozowski [5], and to the continuations
introduced by Berry and Sethi [3]. The results from [6] relevant to our context are summarized
in the following characterization:

Theorem 5. Let r be a linear expression, let a be a symbol in Pr, and u a word over Pr. If
the set (ua)−1L(r) is nonempty, then it is described by the canonical derivative da(r).

Thus for a reduced linear expression r, the canonical derivative da(r) describes the language
quotient (P ∗

r a)−1L(r).

4

Example 6. Consider again the linear expression r = ((ab)∗c)∗ from Example 2; we now use
the alphabet {a, b, c} instead of {a1, a2, a3} to increase readability. Then

da(r) = da((ab)∗c) · ((ab)∗c)∗ = da((ab)∗) · c · ((ab)∗c)∗

= da(ab) · (ab)∗ · c · ((ab)∗c)∗ = da(a) · b · (ab)∗ · c · ((ab)∗c)∗

= λ · b · (ab)∗ · c · ((ab)∗c)∗ = b(ab)∗c((ab)∗c)∗.

A similar computation yields db(r) = (ab)∗c((ab)∗c)∗ and dc(r) = ((ab)∗c)∗. �

Now we generalize the above notion from symbols a ∈ Pr to sets of symbols A ⊆ Pr as
follows:

Definition 7. Let r be a reduced linear expression and let A be a set of symbol in Pr. Then the
canonical derivative dA(r) is computed recursively by applying the following rules and finally
reducing the expression:

dA(a) = λ if a ∈ A

dA(s + t) = dB(s) + dA\B(t) with B = { a ∈ A | da(s) 6= ∅ }

dA(s · t) = dB(s) · t + dA\B(t) with B = { a ∈ A | da(s) 6= ∅ }

dA(s∗) = dA(s) · s∗

And dA(r) = ∅ in all cases not covered above.

A straightforward induction shows that the definition works as expected:

Lemma 8. Let r be a linear expression and A a set of symbols in r. Then L(dA(r)) =
⋃

a∈A L(da(r)). �

Example 9. Continuing Example 6, for the expression r = ((ab)∗c)∗ and A = {b, c}, the
expression dA(r) computes as

dA(r) = dA ((ab)∗c) · ((ab)∗c)∗ = (db((ab)∗) · c + dc(c)) · ((ab)∗c)∗

= (db(ab) · (ab)∗ · c + dc(c)) · ((ab)∗c)∗

= (db(b) · (ab)∗ · c + dc(c)) · ((ab)∗c)∗ = (λ · (ab)∗ · c + λ) · ((ab)∗c)∗

= ((ab)∗c + λ) · ((ab)∗c)∗.

For the last line of the above computation, we applied two different rules for reducing the
expression. Note that this expression is indeed shorter than the expression db(r) + dc(r) we
computed in Example 6, although one might first be tempted to expect the contrary.

A similar computation yields the equalities d{a,b}(r) = ((b + λ)(ab)∗c) · ((ab)∗c)∗, d{a,c}(r) =
(b(ab)∗c + λ) · ((ab)∗c)∗, and finally d{a,b,c}(r) = ((b + λ)(ab)∗c + λ) · ((ab)∗c)∗. �

Next, we estimate the size of the expressions dA(r).

Lemma 10. Let r be a reduced linear expression of alphabetic width n ≥ 1 and star height h,
and let A be a subset of Pr. Then the expression dA(r) has size at most n2−n

2
+ hn = O(n2).

5

Proof. First, recall that Lemma 1 proves that the claimed size is in O(n2). We prove the claim
by induction on the depth d ≥ 0 of the syntax tree of r. In the case d = 0, then with alph(r) ≥ 1
we must have r = a for some a ∈ Pr, and the claim clearly holds. To do the induction step, we
consider three cases.

If r is of the form s+ t, then dA(r) is the expression obtained from reducing dB(s)+dA\B(t).
Let alph(s) = k and alph(t) = n − k, for some k ≥ 0. By induction hypothesis we obtain that

alph(dA(r)) ≤
k2 − k

2
+ hk +

(n − k)2 − (n − k)

2
+ h(n − k).

By rearranging terms, we get

k2 − k + (n − k)2 − (n − k)

2
=

n2 − n

2
+ k(k − n) ≤

n2 − n

2
,

and thus alph(dA(r)) is bounded above by n2−n
2

+ hn in this case.
If r is of the form s · t, then dA(r) is the expression obtained from reducing the expression

dB(s)·t+dA\B(t). Since r is reduced, both s and t have alphabetic width at least 1. Letting k ≥ 1
denote the alphabetic width of s and n − k the alphabetic width of t, we obtain by induction
hypothesis that

alph(dA(r)) ≤
k2 − k

2
+ hk +

(n − k)2 − (n − k)

2
+ h(n − k) + n − k.

By a similar computation as for the previous case, the right hand side in the above inequality
is still bounded above by n2−n

2
+ hn.

Finally, if r is of the form s∗, then the depth of s is smaller than that of r, and by induction
assumption alph(dA(r)) ≤ alph(dA(s))+n ≤ n2−n

2
+(h−1)n+n. This covers all possible cases,

and the proof is completed. �

We remark that our notion of dA(r) differs from the one given in [6] in that our definition
yields expressions of size O(n2), while defining dA as

∑

a∈A da(r) would be much more redun-
dant, recall Example 9. It should be said that the actual size of these expressions is immaterial
in the context of [6], but is important in the present paper.

Now we take a closer look at local languages. The following lemma is easy to see from the
definition of local languages:

Lemma 11. If L ⊆ Σ∗ is a local language, then for each a ∈ Σ holds:

u1 · a · v1 ∈ L and u2 · a · v2 ∈ L implies u1 · a · v2 ∈ L. �

For a local language L and an alphabet symbol a, we may thus define da(L) as the language
quotient da(L) = (Σ∗a)−1L. Likewise, for a set of symbols A define dA(L) = (Σ∗A)−1L.
This operator overloading is perfectly consistent with the use of the notation da(r) to denote
the canonical derivative of a linear expression r with respect to an alphabet symbol a: By
Theorem 5, we have L(da(r)) = da(L(r)).

The above characterization allows us to provide a neat formula for left quotients of local
languages:

6

Lemma 12. Let L ⊆ Σ∗ be a local language and let W ⊆ Σ∗ an arbitrary language. Define
A = { a ∈ Σ | W ∩ pre(L) ∩ Σ∗a 6= ∅ }. Then

W−1L = λ(W) · L ∪
⋃

a∈A

da(L) = λ(W) · L ∪ dA(L).

Proof. First of all, it follows from the definition of language quotients that W−1L = (W ∩
pre(L))−1L. Second, if we decompose the set W as λ(W) ∪

⋃

a∈Σ(W ∩ Σ∗a), we obtain

W−1L = λ(W)−1 · L ∪
⋃

a∈Σ

(W ∩ Σ∗a ∩ pre(L))−1L

= λ(W) · L ∪
⋃

a∈A

(W ∩ Σ∗a ∩ pre(L))−1L,
(1)

since
⋃

a∈Σ\A(W ∩ Σ∗a ∩ pre(L))−1L = (∅)−1L = ∅. Finally, for a ∈ A, let ua be any word

in W ∩ Σ∗a ∩ pre(L). Then from Lemma 11 one can readily deduce that (ua)−1L = (Σ∗a ∩
pre(L))−1L = (Σ∗a)−1L = da(L). Thus (W ∩ Σ∗a ∩ pre(L))−1L = da(L). By putting this into
Equation (1), the result follows. �

Example 13. For illustration, we compute the left quotient of the language L = L(r) denoted
by the linear expression r = ((ab)∗c)∗ with respect to the set W denoted by the regular expression
(ab)∗ + (abc)∗. To this end, we identify the set A = { d ∈ {a, b, c} | W ∩ Σ∗d ∩ pre(L) 6= ∅ }.
No word in W ends with a, but the words ab and abc are both in W and prefixes of words in L,
thus A = {b, c} in our case. In general, the set A can be effectively computed provided W is
represented in a machine model that effectively allows intersection with regular sets and has
a decidable emptiness problem. This is the case, e.g., for the finite automaton and pushdown
automaton models, see [14].

Now by Lemma 12 holds W−1L = λ(W) · L ∪ d{b,c}(L). Here we have λ(W) · L = L, and
a regular expression denoting d{b,c}(L) is given in the previous example (Example 9). Thus, a
regular expression denoting the quotient W−1L is given by

r + d{b,c}(r) = ((ab)∗c)∗ + ((ab)∗c + λ) · ((ab)∗c)∗.

Observe, that in case A = {a, c} the above computation would have resulted in r + d{a,c}(r) =
((ab)∗c)∗ + (b(ab)∗c + λ) · ((ab)∗c)∗, where d{a,c}(r) is computed in Example 6. �

Also for the circular shift of local languages, we obtain a nice characterization:

Lemma 14. Let L ⊆ Σ∗ be a local language. Then for the circular shift �(L) holds

�(L) = λ(L) ∪
⋃

a∈Σ

a · da(L) · (da(L
R))R.

Proof. The circular shift of any language L can by definition be written as �(L) = λ(L) ∪
⋃

a∈Σ L(a), with

L(a) = { awv | v, w ∈ Σ∗, vaw ∈ L }.

7

In particular, if L is local, Lemma 11 tells us that there cannot be any dependencies between
the subwords v and w in the definition of L(a). Thus L(a) can be rewritten as

L(a) =
⋃

{ v∈Σ∗|va·da(L)⊆L }

a · da(L) · v,

and since local languages are readily seen to be closed under reversal, redoing the same trick
for the reversed language yields L(a) = a · da(L) · da(L

R)R, as desired. �

Example 15. We also compute the circular shift of the language L = L(r) in our running ex-
ample. By Lemma 14, we can write �(L) as λ(L)∪

⋃

a∈Σ a · da(L) · (da(L
R))R. The sets da(L),

db(L) and dc(L) are denoted by the expressions da(r) = b(ab)∗c((ab)∗c)∗, db(r) = (ab)∗c((ab)∗c)∗,
and dc(r) = ((ab)∗c)∗, respectively, which were computed in Example 6. In a similar man-
ner, we obtain for rR = (c(ba)∗)∗ the canonical derivatives da(r

R) = (ba)∗(c(ba)∗)∗, db(r
R) =

a(ba)∗(c(ba)∗)∗, and dc(r
R) = (ba)∗(c(ba)∗)∗. We have λ(L) = λ, and straightforward rules for

implementing the reversal of regular expressions yield ((ba)∗(c(ba)∗)∗)R = ((ab)∗c)∗(ab)∗ as well
as (a(ba)∗(c(ba)∗)∗)R = ((ab)∗c)∗(ab)∗a. Thus a regular expression denoting �(L) is given by

λ + a · b(ab)∗c((ab)∗c)∗ · ((ab)∗c)∗(ab)∗

+ b · (ab)∗c((ab)∗c)∗ · ((ab)∗c)∗(ab)∗a + c · ((ab)∗c)∗ · ((ab)∗c)∗(ab)∗.

Finally, we note that in an actual implementation the computational overhead for the two re-
versal operations carried out here could be saved by defining the concept of “canonical right
derivatives” using rules analogous to those for computing canonical (left) derivatives in Defini-
tion 4. �

These characterizations immediately lend themselves to an implementation of quotient and
circular shift operations on linear expressions via canonical derivatives. Using Lemma 10, we
can estimate the resulting expression size as follows:

Theorem 16. Let r be a linear expression of size n, and let L = L(r). Then for set of words
W ⊆ P ∗

r , there is a regular expression of size O(n2) denoting W−1L, and a regular expression
of size O(n3) denoting the circular shift �(L). �

4 The General Case

The above results allow us to compute from a given linear expression relatively small regular
expressions denoting a language quotient or the circular shift of the denoted language. In this
section, we investigate the interaction of (length-preserving) homomorphisms with the language
operations under consideration to transfer the obtained results to the general case. The easier
case is a language operation that commutes with length-preserving homomorphisms. This is
the case for the circular shift:

Lemma 17. Let ` be a length-preserving homomorphism, and let L ⊆ Σ∗ be a language. Then
�(`(L)) = `(�(L)).

8

Proof. Since both the homomorphism and circular shift operation commute with taking finite
and infinite unions, it suffices to show the claim for the case L contains a single word w =
a1a2 . . . ak. In the case k ≤ 1, we have L = �(L), and the claim is trivially true. So assume
k ≥ 2. Then

`(�({w})) = {`(w)} ∪ ` ({ aj . . . aka1a2 · · ·aj−1 | 2 ≤ j ≤ k })

= {`(w)} ∪ { `(aj) . . . `(ak)`(a1)`(a2) . . . `(aj−1) | 2 ≤ j ≤ k }.

Now let x = b1b2 . . . bk, with bi = `(ai). Then

�({`(w)}) = {`(w)} ∪ { bj . . . bkb1b2 . . . bj−1 | 2 ≤ j ≤ k }

= {`(w)} ∪ { `(aj) . . . `(ak)`(a1)`(a2) . . . `(aj−1) | 2 ≤ j ≤ k },

thus proving the desired equality. �

The following lemma shows how homomorphisms interact with taking left derivatives.

Lemma 18. Let L ⊆ Σ∗ be a regular language, let ` : Σ∗ → Γ∗ be a length-preserving homo-
morphism, and let w ∈ Γ∗. Then w−1`(L) =

⋃

x∈`−1(w) `(x−1L).

Proof. Let A = (Q, Σ, δ, Q0, F) be a nondeterministic finite automaton (possibly with multiple
start states) accepting L, in the standard notation of [14]. We obtain a nondeterministic
finite automaton B accepting `(L) by a standard construction: Let B = (Q, Γ, δ′, Q0, F) with
δ′(q, a) =

⋃

b∈`−1(a) δ(q, b), for every q ∈ Q and every a ∈ Γ. For an automaton C accepting

w−1`(L), we perform the standard quotient construction: Let C = (Q, Γ, δ′, Q′
0, F), with Q′

0 =
⋃

q0∈Q0
δ′(q0, w).

For a finite automaton accepting the language
⋃

x∈`−1(w) x−1L, let D = (Q, Σ, δ, Q′
0, F) with

the same start states as above. Note that for the set Q′
0 holds

Q′
0 =

⋃

q0∈Q0

δ′(q0, w) =
⋃

x∈`−1(w)

⋃

q0∈Q0

δ(q0, x),

so this automaton indeed accepts the quotient
⋃

x∈`−1(w) x−1L. To get an automaton accepting
the image under ` of this language, we replace in D, similar to above, the transition func-
tion δ with δ′ and change the input alphabet to Γ. But then we end up with the automaton
(Q, Γ, δ′, Q′

0, F), which is identical to the automaton C. Thus w−1`(L) =
⋃

x∈`−1(w) `(x−1L) as
desired. �

Now we are ready to state the main result of this paper:

Theorem 19. Let r be a regular expression of size n denoting the language L ⊆ Σ∗, and
let W ⊆ Σ∗. Then there is a regular expression of size O(n2) denoting W−1L and a regular
expression of size O(n3) denoting �(L).

Proof. Let r be the linear expression for r, and ` = `r be the homomorphism which maps r
to r. Since ` is length preserving, every word w ∈ Σ∗ is in `(Pr)

∗, and thus, by Lemma 18, we
have

w−1`(L(r)) =
⋃

x∈`−1(w)

`(x−1L(r)).

9

This readily generalizes to sets of words, and we obtain

W−1`(L(r)) =
⋃

w∈W

⋃

x∈`−1(w)

`(x−1L(r)) = `(
⋃

x∈`−1(W)

x−1L(r)) = `
(

(`−1(W))−1L(r)
)

The last one of the above expressions is the image under ` of a quotient of r. By Theorem 16, the
latter language can be described by a regular expression of size O(n2), and applying the map `
does not increase the alphabetic width. This shows that alph(W−1L) = O(n2). For the circular
shift, recall from Theorem 16 that �(L(r)) has alphabetic width in O(n3). By Lemma 17,
�(L(`(r))) = `(�(L(r))), and, as noted before, applying a length-preserving homomorphism
does not increase the alphabetic width. �

Example 20. Let’s come back to the regular expression r = ((ab)∗a) from Example 2. Recall
that the length-preserving homomorphism which maps the corresponding linear expression r to r
reads as `r = {a1 7→ a, a2 7→ b, a3 7→ a}. In all previous examples the alphabet {a, b, c} was used
instead of {a1, a2, a3} to increase readability—here we stay with this convention, although there
may be danger of confusion, since for example an expression for `−1((ab)∗) is in fact over the
alphabet {a1, a2, a3} and not over {a, b, c}.

Thus, the left-quotient of L(r) with respect to the set W denoted by the expression (aba)∗

can be similarly computed as in Example 13. To this end we determine the linear expressions
for r and the expression for `−1((aba)∗), which read as r = ((ab)∗c)∗ and ((a + c)b(a + c))∗,
respectively. Then the main result of this section shows that the language W−1L(r) is given by
`((`−1(W))−1L(r)). First we determine A = { d ∈ {a, b, c} | `−1(W) ∩ Σ∗d ∩ pre(L(r)) 6= ∅ },
where Σ = {a, b, c}. It is easily seen that A = {a, c}. Then an analogous computation as in
Example 13 shows that

(`−1(W))−1L(r) = r + d{a,c}(r)

= ((ab)∗c)∗ + (b(ab)∗c + λ) · ((ab)∗c)∗,

where d{a,c}(r) is given in Example 9. Thus applying the length-preserving homomorphism `
gives

W−1L(r) = ((ab)∗a) + (b(ab)∗a + λ)((ab)∗a)∗.

What concerns the circular shift of our running example? Finally, we deduce from Exam-
ple 15 that the circular shift of L(r) is simply

�(L(r)) = λ + a · b(ab)∗a((ab)∗a)∗ · ((ab)∗a)∗(ab)∗

+ b · (ab)∗a((ab)∗a)∗ · ((ab)∗a)∗(ab)∗a + a · ((ab)∗a)∗ · ((ab)∗a)∗(ab)∗,

again by applying the length-preserving homomorphism ` to the result presented there. �

Currently, we do not know whether these upper bounds have the right order of magnitude.
At least, we found an almost quadratic lower bound on the increase of alphabetic width for the
circular shift operation:

Theorem 21. There exist infinitely many regular languages Lm over a binary alphabet such
that Lm admits a regular expression of alphabetic width m, but every regular expression describ-

ing �(Lm) has alphabetic width at least Ω
(

m2

log2 m

)

.

10

0 1

a

b

2

a

b

3

a

b

4

a

b

Figure 1: A finite automaton accepting L4

Proof. Our witness language is the language Lm for which in [18] an Ω(m2) lower bound on the
number of states needed by a nondeterministic finite automaton in order to accept �(Lm) was
proved. The language Lm contains all words w over the alphabet {a, b} such that |w|a −|w|b =
m−1 and moreover for every prefix x of w holds 0 ≤ |x|a−|x|b ≤ m−1. A finite automaton A4

accepting L4 is depicted in Figure 1. By a straightforward generalization of the pattern of the
depicted automaton, we obtain an m + 1-state automaton Am, whose start state is the state 0,
and the only final state is state m. For simplicity, assume for now m = 2k for some integer
k ≥ 0. It is easily observed that each accepting computation path has to go through the
middle state m

2
at least once. Each time such a path reaches this state, the path can either

continue by reading the letter a, going to the right and, by using only states with numbers
higher than m

2
, eventually returns to the middle state, or accept. The other possibility is that

the path continues from the middle state by reading the letter b, the computation continues by
using only states with numbers less than or equal to m

2
, and eventually return to the middle

state. This gives rise to the following recursive definition:

r0 = λ, r1 = a(ba)∗, and rm = rm/2 · (sm/2 + tm/2)
∗ · rm/2, for m ≥ 2.

Moreover we define

s0 = t0 = λ, sm = (a · sm−1 · b)
∗, and tm = (b · tm−1 · a)∗, for m ≥ 1.

Here the regular expression sm/2 (tm/2, respectively) describe the computations that start and
end in the middle state, and using only states numbered higher (lower, respectively) than or
equal to m/2. Two sample computations are depicted in Figure 2—in the computation drawn
as a solid line the word read between the points marked with A and B belongs to L(rm/2), that
read between B and C to L(sm/2), that between C and D to L(tm/2), and finally the word read
between D and E again to L(rm/2). It is easy to see that any computation can be decomposed
according to the above given recurrence.

It is not hard to see that this expression has alphabetic width O(n log n), the above being
a typical divide-and conquer recurrence. Since every regular expression of size m can be trans-
formed into a nondeterministic finite automaton having at most m+1 states, every regular ex-
pression describing �(Ln) needs to have size at least Ω(n2). Letting m = alph(rn) = Θ(n log n),

the lower bound reads as Ω(n2) = Ω
(

m2

log2 m

)

. �

For language quotients, in particular for prefix and suffix closure, we can currently provide
only a linear lower bound: E.g., for the unary language {an}, we have (a∗)−1an = a≤n. Clearly,
language a≤n has alphabetic width at least n, since this is the length of the longest word in the
language. At least, observe that the languages L(rn) and L(sn) defined in the above proof are
mutual derivatives. While sn is a regular expression of size linear in n, we were unable to find
a regular expression for L(rn) of size o(n log n). It remains open whether such an expression
could possibly exist.

11

A

B

C

D E

0
m
2 m

B′

C ′

Figure 2: Two sample computations (solid and dashed line) on the m-state finite automaton Am.
Here B (B′, respectively) is the point where the computation drawn as a solid (dashed, respec-
tively) line reaches the middle state the first time, and D is that point of the computation,
where the middle state is seen the last time during the computation.

5 Conclusion

In this paper, we identified some regularity-preserving language operations whose effect on
required regular expression size is not too drastic, i.e., which can incur at most a polynomial
blow-up. Among these are all operations which are special cases of language quotients, e.g., the
prefix or suffix closure of a set of words, and the circular shift. The naive way to implement such
an operation would involve a translation into finite automata and back. However, the conversion
into the back direction likely causes an undesirable blow-up in expression size. In contrast, the
algorithms presented here are entirely based on rewriting expressions and thus avoid these
difficulties altogether. There are two ingredients in such an approach: First, the language
operation under consideration needs to admit an efficient solution for linear expressions. Second,
it needs to be somehow well-behaved with respect to length preserving homomorphisms.

One task for further research is to find other regularity preserving operations for which
this or similar approaches might work. For instance, for the language of scattered substrings
(superstrings, respectively) of the language described by a regular expression over Σ, we simply
replace every position a with a subexpression λ + a (with a subexpression describing Σ∗aΣ∗,
respectively) to obtain a regular expression denoting that language. Both operations can be
thus performed with only linear increase in expression size provided Σ is fixed. Issues on the
state complexity of these operations were studied recently in [11] and [17].

Another, probably difficult, challenge is to try to tighten the bounds given here. Quite a few
lower bound techniques for regular expression size, apart from those based on the number of
states required by a nondeterministic finite automaton, have been developed recently [9, 10, 12].
Apparently none of them can be used to infer something nontrivial about language quotients.

References

[1] P. R. J. Asveld. Generating all circular shifts by context-free grammars in Chomsky normal
form. Journal of Automata, Languages and Combinatorics, 11(2):147–159, 2006.

[2] P. R. J. Asveld. Generating all circular shifts by context-free grammars in Greibach normal
form. International Journal of Foundations of Computer Science, 18(6):1139–1149, 2007.

12

[3] G. Berry and R. Sethi. From regular expressions to deterministic automata. Theoretical
Computer Science, 48:117–126, 1986.

[4] J. Berstel and J. E. Pin. Local languages and the Berry-Sethi algorithm. Theoretical
Computer Science, 155(2):439–446, 1996.

[5] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–494,
1964.

[6] J.-M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives and finite
automaton constructions. Theoretical Computer Science, 289(1):137–163, 2002.

[7] R. S. Cohen and J. A. Brzozowski. General properties of star height of regular events.
Journal of Computer and System Sciences, 4(3):260–280, 1970.

[8] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New results and open
problems. Journal of Automata, Languages and Combinatorics, 10(4):407–437, 2005.

[9] W. Gelade and F. Neven. Succinctness of the complement and intersection of regular
expressions. In S. Albers and P. Weil, editors, Proceedings of the 25th Symposium on
Theoretical Aspects of Computer Science, volume 08001 of Dagstuhl Seminar Proceed-
ings, pages 325–336, Bordeaux, France, February 2008. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

[10] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and regular expression
size. In L. Aceto, I. Damgaard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir,
and I. Walkuwiewicz, editors, Proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming, Reykjavik, Iceland, July 2008. Springer. Accepted
for publication.

[11] H. Gruber, M. Holzer, and M. Kutrib. More on the size of Higman-Haines sets: Effective
c onstructions. In J. O. Durand-Lose and M. Margenstern, editors, Proceedings of the
5th International Conference Machi nes, Computations, and Universality, volume 4664 of
LNCS, pages 193–204, Orléans, France, September 2007. Springer.

[12] H. Gruber and J. Johannsen. Optimal lower bounds on regular expression size using
communication complexity. In R. Amadio, editor, Proceedings of the 11th International
Conference Foundations of Software Science and Computation Structures, volume 4962 of
LNCS, pages 273–286, Budapest, Hungary, March–April 2008. Springer.

[13] M. Holzer, K. Salomaa, and S. Yu. On the state complexity of k-entry deterministic finite
automata. Journal of Automata, Languages and Combinatorics, 6(4):453–466, 2001.

[14] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, 1979.

[15] L. Ilie and S. Yu. Follow automata. Information and Computation, 186(1):140–162, 2003.

[16] M. Kappes. Descriptional complexity of deterministic finite automata with multiple initial
states. Journal of Automata, Languages and Combinatorics, 5(3):269–278, 2000.

13

[17] A. Okhotin. On the state complexity of scattered substrings and superstrings. Technical
Report TUCS Technical Report No.849, University of Turku - Department of Mathematics
and Turku Centre for Computer Science and Academy of Finland, October 2007.

[18] A. Okhotin and G. Jirásková. State complexity of cyclic shift. RAIRO – Theoretical
Informatics and Applications, 42(2):335–360, 2008.

14

