
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderfors
hungsberei
h 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Re
hnerar
hitekturen

Bla
k Box Views of State Ma
hinesMax Breitling and Jan Philipps

TUM-I9916SFB-Beri
ht Nr. 342/07/99 AOktober 99

TUM{INFO{10-I9916-100/1.{FIAlle Re
hte vorbehaltenNa
hdru
k au
h auszugsweise verboten

1999 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler Ar
hitekturenAnforderungen an: Prof. Dr. A. BodeSpre
her SFB 342Institut f�ur InformatikTe
hnis
he Universit�at M�un
henD-80290 M�un
hen, GermanyDru
k: Fakult�at f�ur Informatik derTe
hnis
hen Universit�at M�un
hen

Bla
k Box Views of State Ma
hines �Max Breitling Jan PhilippsInstitut f�ur InformatikTe
hnis
he Universit�at M�un
henD-80290 M�un
henfbreitlin|philippsg�in.tum.de FOCUS

Abstra
tSystem spe
i�
ation by state ma
hines together with property spe
i�
ation andveri�
ation by temporal logi
s are by now standard te
hniques to reason aboutthe
ontrol
ow of hardware
omponents, embedded systems and
ommuni
ationproto
ols. The te
hniques to reason about the data
ow within a system, however,are less well developed.This report adapts a UNITY-like formalism for spe
i�
ation and veri�
ation tosystems of asyn
hronously
ommuni
ating
omponents. The
omponents them-selves are spe
i�ed as state ma
hines. The resulting proof te
hniques allows ab-stra
t and
ompositional reasoning about data
ow properties of systems.

�This work was supported by the Sonderfors
hungsberei
h 342 \Werkzeuge und Methoden f�ur dieNutzung paralleler Re
hnerar
hitekturen" and by a travel grant of the Bayeris
he Fors
hungss-tiftung. 1

Contents1 Introdu
tion 42 Bla
k Box Spe
i�
ations 62.1 Streams . 62.2 Components . 72.3 Bla
k Box Composition . 82.4 Pre�x Properties and Length Properties 103 State Ma
hines 113.1 Variable Valuations . 113.2 State Transition Systems . 123.3 State Transition Diagrams . 143.4 Exe
utions . 163.5 State Ma
hine Composition . 174 Safety Properties 234.1 Predi
ates and Properties . 234.2 Veri�
ation Rules . 254.2.1 Basi
 Rules . 254.2.2 Invariant Substitution Rules . 284.3 Example . 294.4 Compositionality . 305 Progress Properties 325.1 Leads-To Properties . 325.2 Veri�
ation Rules . 325.2.1 Basi
 Rules . 325.2.2 Indu
tion Rule . 355.2.3 Invariant Substitution Rules . 355.2.4 Output Extension Rule . 355.3 Example . 375.4 Compositionality . 38
2

6 Bla
k Box Views of State Ma
hines 396.1 Bla
k Box Views . 396.2 Safety Properties . 406.3 Liveness Properties . 416.4 Methodology . 426.5 Compatibility of the
omposition operators 437 Example: Communi
ation System 457.1 Bla
k Box Spe
i�
ations . 457.2 State Ma
hine Spe
i�
ations . 477.3 Safety Proofs . 517.4 Liveness Proofs . 547.5 Comments . 578 Con
lusion 59

3

1 Introdu
tionTo allow pre
ise reasoning about a hard- or software system, a mathemati
al founda-tion for both systems and properties is a prerequisite. For some
lasses of systemstemporal logi
s have been used su

essfully to formalize and to reason about their prop-erties. Prominent examples are
ir
uit design and embedded systems software, wherethe
lo
ked or
y
li
 operation model leads to a straightforward notion of a system state.The distin
tion between \allowed" and \forbidden" system states leads to natural invari-an
e properties and proof te
hniques. Moreover, both hardware
ir
uits and embeddedsoftware have essentially a �nite state spa
e, and exhaustive veri�
ation te
hniques, su
has model
he
king, have been used with some su

ess.Temporal logi
 and model
he
king are less su

essful, however, when the data
ow be-tween loosely
oupled
omponents that
ommuni
ate asyn
hronously via
ommuni
ation
hannels is examined. Note that it is not simply a question of guessing an upper boundof the
hannel bu�er size. Sometimes a system has a |for all purposes| unboundedbu�er size. When examining an email-based groupware system, what would be the sizeof the internet between parti
ipating parties; and what would be the upper bound ofthe length of the list of unread mails?For su
h systems, the state-based glass box view of a
omponent is less useful than thebla
k box view of its input and output. Bla
k box properties of data
ow
omponentsand systems
an be
on
isely formulated as relations over the
ommuni
ation history of
omponents [12, 3, 13℄; su
h properties are inherently modular and allow easy reasoningabout the global system behavior given the
omponent properties.But also for data
ow
omponents a state-based glass box view
an be helpful. Statema
hines lead to natural proofs of safety properties by indu
tion; they provide an op-erational intuition that
an aid in �nding ranking fun
tions for some
lasses of livenessproofs; and �nally, state ma
hines are good design do
uments for a
omponent's imple-mentation.In this report we show |based on the ideas of Broy's veri�
ation of the AlternatingBit Proto
ol [6℄| how abstra
t spe
i�
ations of the bla
k box view of a system orsystem
omponent
an be
ombined with state ma
hine-based des
riptions of the systemoperations. Thus we
ombine te
hniques for easy veri�
ation of data
ow properties withdes
riptions that lead to eÆ
ient implementations of a system.The property spe
i�
ation and veri�
ation te
hnique is adapted from UNITY [27, 26℄.The UNITY axioms for the safety and progress operators are proven to be
orre
t inour mathemati
al model. Moreover, our framework allows
ompositional reasoning:Properties of single
omponents
an be used to dedu
e properties of the whole system.This report is stru
tured as follows: In Se
tion 2 we introdu
e the mathemati
al basisfor the bla
k box view of
omponents and systems; Se
tion 3 introdu
es the abstra
tsyntax and the semanti
s of state ma
hines and their graphi
al representation, statetransition diagrams. Safety and progress properties together with their proof te
hniques
4

are des
ribed in Se
tions 4 and 5. The bla
k box and state ma
hine spe
i�
ations arerelated in Se
tion 6. In parti
ular, it is shown how state ma
hine properties
an beused to derive properties of the state ma
hine's bla
k box view. Se
tion 7
ontains anextended example. The
on
lusion (Se
tion 8) summarizes the results and
ontains anoutlook on future work.

5

2 Bla
k Box Spe
i�
ationsA data
ow system is a network of
omponents. Ea
h
omponent has input and outputports. The ports are
onne
ted by dire
ted
hannels. The bla
k box view regards onlythe
ommuni
ation between
omponents and abstra
ts from the internal workings of the
omponents.Fo
us o�ers a mathemati
al basis for the bla
k box view of data
ow systems. Adetailed introdu
tion into Fo
us
an be found in [12, 3℄. This se
tion
ontains onlya short overview over the
on
epts used in the rest of the report. The
ommuni
ationhistory of
hannels is represented by message sequen
es
alled streams (Se
tion 2.1),
omponents are modeled as relations between
ommuni
ation histories (Se
tion 2.2),and systems are modeled as the
omposition of
omponents (Se
tion 2.3);
omponent
omposition results again in a
omponent.2.1 StreamsThe
ommuni
ation history of system
hannels is modeled by streams. A stream is a�nite or in�nite sequen
es of messages. The empty stream is denoted by h i. Finitestreams
an be enumerated, for example: h1; 2; 3; : : :10i. For a set of messages Msg, theset of �nite streams over Msg is denoted by Msg�, that of in�nite streams by Msg1. ByMsg! we denote Msg� [Msg1.Given two streams s; t and j 2 N ,� #s denotes the length of s. If s is �nite, #s is the number of elements in s; if s isin�nite, #s =1.� s _ t denotes the
on
atenation of s and t . If s is in�nite, s _ t = s.� s v t holds if s is a pre�x of t :9 u 2 Msg! � s _ u = t� s j denotes the result of
on
atenating j
opies of s; similarly, s1 results in the
on
atenation of in�nitely many
opies of s.� s:j is the j -th element of s, if 1 � j � #s, and is unde�ned otherwise.� s# j is the pre�x of s with length j , if 0 � j � #s, and is unde�ned otherwise.� ft:s denotes the �rst element of a stream, i.e. ft:s = s:1, if s 6= h i.� rt:s is the stream s without the �rst element: s = hft:si_ rt:s for all s 6= h i.
6

The set of streams Msg! with the pre�x order v forms a CPO with least element h i. A
hain is a set f si j i 2 N g of streams, where for ea
h i : si v si+1. Sin
e the set ofstreams is a CPO, ea
h su
h
hain has a unique least upper bound s whi
h is denotedby Ff si j i 2 NgThe operators de�ned above as well as the notion of
hains and least upper bounds
anbe extended pointwise to tuples of streams.A fun
tion out of Msg!1 ! Msg!2 is
alled a
ontinuous fun
tion [28℄, i�Ff f (si) j i 2 Ng = f (Ff si j i 2 Ng)Continuous fun
tions are also monotoni
:x v y) f (x) v f (y)An example of a
ontinuous fun
tion is the �lter fun
tions; Mss is the substream ofs that
ontains only messages also
ontained in the set M .The �lter fun
tion has the following properties:Msh i = h im 2 M) Ms(s a hmi) = (Mss)a hmim 62 M) Ms(s a hmi) = (Mss)2.2 ComponentsData
ow
omponents are modeled as relations over
ommuni
ation histories. The rela-tions are expressed using formulas in predi
ate logi
 where the formula's free variablesrange over streams. They represent the
ommuni
ation history over the
omponent'sinput and output ports.The bla
k box behavior of a data
ow
omponent U is spe
i�ed by giving a set of input
hannel identi�ers IU , a set of output
hannel identi�ers OU (where IU \OU = ?) anda predi
ate (for simpli
ity also denoted by U) with free variables from IU and OU . Ea
h
hannel identi�er has an assigned type that des
ribes the set of messages allowed onthat
hannel. We do not treat the typing of the identi�ers formally in this paper.Figure 1 shows a graphi
al representation of a
omponent with two input
hannels i1and i2 of type M1 and M2, where M1 \ M2 = ?, and a single output
hannel o oftype M = M1 [M2. The intended bla
k box behavior of this
omponent is to mergethe messages on the two input
hannels: all inputs re
eived on the input
hannels areforwarded to the output
hannel o.This behavior is spe
i�ed with the sets for the input and output identi�ersIMerge df= fi1; i2g; OMerge df= fog 7

PSfrag repla
ementsIdentity i1 : M1i2 : M2 o : MMerge
Figure 1: Component Mergeand the predi
ateMerge df, M1so = i1 ^ M2so = i2stating that the messages sent on o of type Mj are exa
tly the messages, in the sameorder, as re
eived on
hannel ij (for j 2 f1; 2g).Component behavior
an be spe
i�ed in the following more readable style:Mergein i1 : M1; i2 : M2out o : MM1so = i1M2so = i2Not all spe
i�
ations in Fo
us are sensible: It is easy to spe
ify in
onsistent
omponentsby predi
ates that restri
t the possible input histories of a
omponent. A
omponent isrealizable, if it is possible to a
hieve its behavior step by step in a way that is
ausally
orre
t. This means in parti
ular that it is monotoni
: It
annot take ba
k messagesthat were sent earlier.A detailed dis
ussion of these requirements and their formalizations
an be found in [15℄.The spe
i�
ations in this report are all
onsistent and realizable.2.3 Bla
k Box CompositionThe bla
k box view of a system
an be derived from the bla
k box views of the sys-tem's
omponents by
omposition. Components may share input
hannels, but ea
houtput
hannel must be
ontrolled by a single
omponent. This is
aptured below in thede�nition of
ompatibility.

8

PSfrag repla
ementsIdentity i1 : M1i2 : M2 o : M o1 : M1o2 : M2Merge Split
Figure 2: System MultiplexCompatibility. Two
omponents U and V are
ompatible if they do not share output
hannels:OU \ OV = ?Composition. Compatible
omponents
an be
omposed. The result of the
ompo-sition U
 V is again a
omponent spe
i�
ation. Channels with identi
al names are
onne
ted, the output of the
omposition is the union of the two
omponent's output
hannels as output, and the input of the
omposition
onsists of those input
hannelsthat remain un
onne
ted.IU
V df= (IU [IV) n (OU [OV); OU
V df= OU [OVThe system behavior is the
onjun
tion of the
omponent behavior predi
ates:U
 V df, U ^ VNote that we de
ided to keep
onne
ted
hannels visible, so that no information islost that
ould be useful in formal proofs. Although not all internals are hidden inour approa
h we still
all it a bla
k box view sin
e the behavior is only des
ribed inan abstra
t way through a relation of streams, as opposed to state ma
hines that usebu�ers, states and transitions as shown in the next se
tion.Figure 2 shows a system that models a multiplexing data transfer
hannel. In additionto the merge
omponent, it
onsists of a split
omponent, spe
i�ed as:Splitin o : Mout o1 : M1; o2 : M2o1 = M1soo2 = M2so 9

The
omposition of the two bla
k box spe
i�
ations is shown below:Multiplexin i1 : M1; i2 : M2out o : M ; o1 : M1; o2 : M2M1so = i1M2so = i2o1 = M1soo2 = M2so2.4 Pre�x Properties and Length PropertiesA bla
k box spe
i�
ation
an be seen as a des
ription of the input and output propertiesof a
omponent. In pra
ti
e, properties of data
ow systems are often expressed as a
onjun
tion of equationsf (o) = F (i1; : : : in)where o 2 O and F is a fun
tion that des
ribes the output on o given input historiesi1; : : : in 2 I . Both f and F are assumed to be
ontinuous. In many
ases, f will just bethe identity fun
tion.Su
h equations
an be split into a pre�x propertyf (o) v F (i1; : : : in)and a length property#f (o) � #F (i1; : : : in)For example, the spe
i�
ation of Merge
an equivalently be formulated as follows:Mergein i1 : M1; i2 : M2out o : MM1so v i1M2so v i2#M1so � #i1#M2so � #i2Pre�x properties are safety properties: Their violation
an be dete
ted as soon as anillegal output is produ
ed. Length properties are liveness properties: Their violation
annot be dete
ted by an observer, sin
e it is always possible that the output is produ
edsome time in the future. Liveness properties put demands on
omplete exe
utions of a
omponent, while safety properties restri
t partial exe
utions.10

3 State Ma
hinesIn the previous se
tion bla
k box spe
i�
ations of
omponents and systems are intro-du
ed. With these more abstra
t spe
i�
ations only the relation between
omplete inputand output message streams is
onsidered, but nothing is said about how the behaviorof a
omponent is a
hieved. In
ontrast, state ma
hines des
ribe a behavior in a stepwisemanner.In this se
tion we show how data
ow
omponents
an be spe
i�ed by state ma
hines.We use the term state ma
hine both for their abstra
t syntax (state transition systems,Se
tion 3.2) and for their
on
rete graphi
al representation (state transition diagrams,Se
tion 3.3). Se
tion 3.4 de�nes the semanti
s of state ma
hines, Se
tion 3.5 their
omposition.First we give a formal de�nition of variable valuations for an assertion. Variable valu-ations allow us to talk about the validity of assertions in the di�erent states of a statema
hine exe
ution.3.1 Variable ValuationsDe�ning Var as the universe of all (unprimed) variables, we de�ne a valuation � as afun
tion that assigns to ea
h variable in Var a value from the variable's type. By free(�)we denote the set of free variables in a logi
al formula �. If an assertion � evaluates totrue when ea
h variable v 2 free(�) is repla
ed by �(v), we write� j= �Variable names
an be primed : For example, v 0 is a new variable name that results fromputting a prime behind v . We extend priming to setsV 0 df= f v 0 j v 2 V gand to valuations: Given a valuation � of variables in Var, �0 is a valuation of variablesin V 0 with�0(v 0) = �(v) for all variables v 2 VarPriming
an also be extended to predi
ates, fun
tions and other expressions: If 	 is anassertion with free() � V , then 	0 is the assertion that results from priming all freevariables. Thus, free(0) = (free())0. Similarly, any expression expr0 just denotes theexpression expr with all variables primed.Note that an unprimed valuation � assigns values to all unprimed variables, while aprimed valuation � 0 only assigns values to all primed variables. If an assertion �
ontainsboth primed and unprimed variables, we need two valuations to determine its truth. If� evaluates to true, we write�;� 0 j= � 11

Two valuations
an
oin
ide on a subset V of Var, de�ned as� V= � df, 8 v 2 V � �(v) = �(v)3.2 State Transition SystemsA state transition system (STS) S is a tuple(I ;O ;A; I;�)with the following
omponents:� I ;O : Sets of input and output
hannel variables with I \ O = ?. Ea
h variablein I and O ranges over �nite streams. These variables hold the
ommuni
ationhistory from the environment to the
omponent and from the
omponent to itsenvironment, respe
tively.� A: A set of variables
ontaining lo
al state attributes of the STS (variables thathold the
ontrol state of the ma
hine or some additional data) together with theset f iÆ j i 2 I g. We assume again A \ I = ? = A \ O . The variables iÆ alsorange over �nite streams; they stand for that part of the input i that has alreadybeen pro
essed by the state ma
hine. The part of i that has not been pro
essedyet is denoted by i+, and uniquely de�ned viai = iÆ _ i+Sin
e our state ma
hines ensure that iÆ v i , i+ is well-de�ned. Intuitively, i+ isthe impli
it
ommuni
ation bu�er of the asyn
hronous
ommuni
ation.We introdu
e V df= I[O[A as the set
ontaining all variables of an STS. Sometimeswe refer to the variables in I as external variables, while we
all the variables inO [A
ontrolled variables.� I: An assertion over the variables V whi
h
hara
terizes the set of initial states.We require that I is satis�able.This means that there is a valuation � that satis�esthe initial assertion and this validity does not depend on i 2 I nor is it restri
tingthe values i 2 I , i.e. the valuations for i 2 I
an be ex
hanged arbitrarily:9� � � j= I ^ �8� � � O[A= �) � j= I�Moreover, I asserts that initially no input has been pro
essed:I) iÆ = h i for all i 2 I
12

� � : A �nite set of transitions. Ea
h transition � 2 � is an assertion over thevariables V [V 0. The unprimed variables stand for variable valuations in the
urrent state, the primed ones for valuations in the su

essor state.Ea
h transition � 2 � must ful�ll the following requirements for all i 2 I ; o 2 O .It may not take ba
k messages it already sent, it may not undo the re
eipt of amessage, it
an only read what was sent to the
omponent and the environment isnot allowed to take ba
k input:�) o v o 0 ^ iÆ v iÆ0 ^ iÆ0 v i ^ i v i 0Transitions
an only very weakly restri
t the
hanges of the external variables I ,sin
e nothing should be assumed about the environment. The only
onstraint ofthe environment is that it may only extend the streams that are asso
iated (bythe valuations) with the variables in I , but in an arbitrary way. This
an beformalized as follows: If a transition � leads from state � to state � (valuations
an be interpreted as states), this transition
an
ontain some spe
i�

hanges ofthe input variables. It must be shown that the same transition is also valid withan arbitrary extension of the input variables. This means that for all Val ;�;
:�;� 0 j= � ^ � O[A=
 ^ 8 i 2 I � �(i) v
(i)) �;
 0 j= �In addition to the transitions in � there is always an impli
it environment transi-tion � � whi
h abstra
ts the possible behavior of the environment of S. It is de�nedas follows:� � df, ^v2O[A v = v 0 ^ î2I i v i 0The environment transition leaves all
ontrolled variables un
hanged, while theinput variables may be extended. The environment transition, too, obeys therestri
tions posed on the transitions in � . The fairness of transitions is re
e
tedin the de�nition of exe
utions in Se
tion 3.4.Enabledness In Se
tion 3.4, states of an STS are formalized as valuations for thevariables V . Given a valuation �, we say that a transition � is enabled in �, i� there isa valuation � for V su
h that�;� 0 j= �We write� j= En(�)for the assertion that � is enabled in �. Note that the environment transition � � isenabled in every state (with � = �). 13

To use the predi
ate in arbitrary (but of
ourse well-formed) formulas, it
an also bede�ned synta
ti
ally as follows:En(�) df= 9 v 0 2 Var0 � �If a transition is not enabled, we denote this as � j= : En(�).3.3 State Transition DiagramsTypi
ally, an STS is not spe
i�ed by de�ning formally all elements of the quintuple,but by a state transition diagram (STD). We use a subset of the STD syntax from theAutoFo
us CASE tool [14, 21℄. The
hannel identi�ers in I and O are not dire
tlyspe
i�ed in an STD; they are taken from system stru
ture diagrams, whi
h des
ribe
omponent interfa
es as well as
omponent inter
onne
tion.STDs are dire
ted graphs where the verti
es represent (
ontrol) states and the edgesrepresent transitions between states. One vertex is a designated initial state; graphi-
ally this vertex is marked by an opaque
ir
le in its left half. Edges are labeled; ea
hlabel
onsists of four parts: A pre
ondition, a set of input statements, a set of outputstatements and a post
ondition. In STDs, transition labels are represented with thefollowing s
hema:fPre
onditiong Inputs B Outputs fPost
onditiongInputs and Outputs stand for lists of expressions of the formi?x and o!exp (i 2 I ; o 2 O), respe
tively, where x is a
onstant value or a (transition-lo
al) variable of the typeof i , and exp is an expression of the type of o. The Pre
ondition is a boolean formula
ontaining data state variables and transition-lo
al variables as free variables, whilePost
ondition and exp may additionally
ontain primed state variables. The distin
tionbetween pre- and post
onditions does not in
rease the expressiveness, but improvesreadability. If the pre- or post
onditions are equivalent to true, they
an be omitted.The informal meaning of a transition is as follows: If the available messages in the input
hannels
an be mat
hed with Inputs, the pre
ondition is and the post
ondition
an bemade true by assigning proper values to the primed variables, the transition is enabled.If it is
hosen, the inputs are read, the outputs are written and the post
ondition ismade true.Example As an example, the merge
omponent from the previous se
tion (Figure 1)
ould be spe
i�ed by the STD in Figure 3. The
orresponding STS
an be derived in as
hemati
 way:
14

PSfrag repla
ements ftrueg i1?a B o!a ftrueg
ftrueg i2?a B o!a ftruegMerge

Figure 3: Merge STDI df= fi1; i2gO df= fogA df= f�; iÆ1 ; iÆ2gI df= � = Merge ^ iÆ1 = h i ^ iÆ2 = h i ^ o = h i� df= f �1; �2; � � gThe variable � holds the
urrent
ontrol state of the STD. It is not really ne
essary here(sin
e there is only one state) but in
luded for illustration. There are no other internalvariables. Note that I assures that initially no input is read and also it does not restri
tthe input variables, and therefore ful�lls the ne
essary requirements. The transition �1is de�ned by�1 df, � = Merge ^ �0 = Merge ^9 a 2 M1 :true ^ft:i+1 = a ^ iÆ1 0 = iÆ1 _ hai ^ o 0 = o _ hai ^true ^iÆ2 0 = iÆ2 ^i1 v i 01 ^ i2 v i 02whi
h states the following: The sour
e and target state are both Merge, the emptypre
ondition is trivially true, there is some message a that is available on
hannel i1and not yet read, whi
h is then input and also sent on
hannel o. The post
onditionis empty and therefore also trivially true. All variables not mentioned in the transitionstay un
hanged. In this
ase this results in a
onstant iÆ2 , meaning that we don't read on
hannel i2. Finally, the environment
an append arbitrary input to the input
hannels.Note that the variable a in the transition label in Figure 3 does not appear as a variablein V . It is a transition-lo
al variable.
15

Transition �2 is de�ned similarly by (now omitting \true" in the
onjun
tion)�2 df, � = Merge ^ �0 = Merge ^9 a 2 M2 :ft:i+2 = a ^ iÆ2 0 = iÆ2 _ hai ^ o 0 = o _ hai ^iÆ1 0 = iÆ1 ^i1 v i 01 ^ i2 v i 02The idle transition � � allows the environment to sent messages to Merge, but keeps allvariables un
hanged that are under
ontrol of Merge.� � df, �0 = � ^iÆ1 0 = iÆ1 ^ i 0Æ2 = iÆ2 ^ o 0 = oi1 v i 01 ^ i2 v i 02In addition to the
ontrol state,
omponents
an have data state attributes. State at-tributes
an be
he
ked by the pre
onditions, and modi�ed by the a
tions of a transitionlabel, spe
i�ed in the post
ondition. The de
laration of data state variables with theirtype and initialization
an be supplied in an atta
hed box in an STD, as shown inFigure 10.A more detailed des
ription of STDs, in
luding extensions of STDs that allow hierar
hi-
al des
riptions,
an be found in [21, 11℄.3.4 Exe
utionsAn exe
ution of an STS S is an in�nite stream � of valuations of the variables V thatsatis�es the following requirements:� The �rst valuation in � satis�es the initialization assertion:�:1 j= I� Ea
h two subsequent valuations �:k ; �:(k+1) in � are related either by a transitionin � or by the environment transition � �:�:k ; �0:(k + 1) j= � � _ _�2� �� Ea
h transition � 2 � of the STS is taken in�nitely often in an exe
ution, unlessit is disabled in�nitely often:(8 k � 9 l � k � �:l j= : En(�)) _ (8 k � 9 l � k � �:l ; �0:(l + 1) j= �)16

The set of exe
utions of an STS S is denoted by hhSii; it is de�ned byhhSii df= f � j �:1 j= I ^8 k 2 N : �:k ; �0:(k + 1) j= � � _ _�2� � ^^�2� ((8 k � 9 l � k � �:l j= : En(�)) _(8 k � 9 l � k � �:l ; �0:(l + 1) j= �)) gBy indu
tion it is easy to show that for ea
h state �:k in an exe
ution�:k j= iÆ v iholds. Moreover,
hanges in the valuations of input variables I , output variables O andthe pro
essed input variables fiÆ j i 2 I g in subsequent states are restri
ted to the pre�xorder v.3.5 State Ma
hine CompositionState ma
hines
an be
omposed if they are
ompatible. Similar to the
ompati-bility of bla
k box spe
i�
ations, two state ma
hines S1 = (I1;O1;A1; I1;� 1) andS2 = (I2;O2;A2; I2;� 2) are
ompatible if their
ontrolled variables are disjoint andif there is no
on
i
t
on
erning internal variables, i.e. no ma
hine may a

ess theinternal variables of the other ma
hine:(O1 [A1) \ (O2 [A2) = ? ^A1 \ I2 = ? ^ A2 \ I1 = ?Thus, the two
omponents may only share variables whi
h are input variables of atleast one of the two
omponents. In Figure 4 the separation of the variables in di�erentdisjoint sets is visualized for a
omposition of two state ma
hines. All messages on
hannels i with i 2 I1 \ I2
an be read by both ma
hines independently. In order toensure that the variables from A1 and A2 are disjoint in this
ase, the variables iÆ haveto be renamed to iÆ1 or iÆ2 throughout the variable sets, transitions and initializationpredi
ates of S1 and S2, respe
tively.
17

PSfrag repla
ements
S1
S2

A1O1 n I2O1 \ I2O2 \ I1O2 n I1A2
I1 n (I2 [O2)I1 \ I2I2 n (I1 [O1)Figure 4: Composition of State Ma
hinesThe
omposition S = S1kS2 is de�ned as the STS with the following
omponents:I df= (I1 [I2) n (O1 [O2)O df= O1 [O2A df= A1 [A2I df, I1 ^ I2� df= f �1 ^ � �2 j �1 2 � 1 g [f � �1 ^ �2 j �2 2 � 2 g� � df, ^v2O[A v = v 0 ^ î2I i v i 0From the de�nition above, it is easy to see that
omposition is asso
iative:S1k(S2kS3) = (S1kS2)kS3The resulting STS satis�es the requirements of Se
tion 3.2:Proof:� The variable sets of S satisfy the disjointness and in
lusion requirements posed onI , O and A.� I ful�lls the requirements9� � � j= I ^ �8� � � O[A= �) � j= I�and I) iÆ = h i for all i 2 Iwhat is proved here:{ I is indeed satis�able for all input valuations of I : With S1 and S2 as properSTS, we know that there exist �1 and �2 with�1 j= I1 ^ 8� � � O1[A1= �1) � j= I1�2 j= I2 ^ 8� � � O2[A2= �2) � j= I218

and we have to show9� � � j= I ^ 8� � � O[A= �) � j= IWe now de�ne the � we are looking for on the
ontrolled variables of S by�(v) = (�1(v) if v 2 O1 [A1�2(v) if v 2 O2 [A2For v 2 I we allow any valuation. Note that this de�nition is
on
i
t-freesin
e (O1 [A1) \ (O2 [A2) = ? and I \ (A1 [A2) = ?. Hen
e� O1[A1= �1 ^ � O2[A2= �2and therefore (instantiating � with �)� j= I1 ^ � j= I2 , � j= I1 ^ I2 , � j= IFor some � with � O[A= � we have � O1[A1= � and � O2[A2= � due to the subsetrelations, so we
on
lude� j= I1 ^ I2{ The se
ond requirement for I is also ful�lled sin
e all input valuations areinitially empty:I) I1 ^ I2) (8 i1 2 I1 � iÆ1 = h i) ^ (8 i2 2 I2 � iÆ2 = h i)) 8 i 2 I � iÆ = h i� The set � of the
omposed system has all properties it should have:{ All transitions � allow only restri
ted
hanges of the
hannel valuations:�) o v o 0 ^ iÆ v iÆ0 ^ iÆ0 v i 0 ^ i v i 0The empty transition � � trivially ful�lls this requirement. All other transitions�
onsist of �1 ^ � �2 or �2 ^ � �1 . Be
ause of this symmetry, we show the proofonly for the �rst
ase.� , �1 ^ � �2) 8 o1 2 O1; i1 2 I1 � o1 v o 01 ^ iÆ1 v iÆ1 0 ^ iÆ1 0 v i 01 ^ i1 v i 01 ^^o22O2 o2 = o 02 ^ ^i22I2 iÆ2 = iÆ2 0 ^ ^i22I2 i2 v i 02Note that quantifying over i 2 I and over iÆ 2 A ranges over the same vari-ables in any o

urren
e of iÆ, a

ording to the de�nition of A. By rearrangingthe terms we rea
h8 o1 2 O1 � o1 v o 01 ^ 8 o2 2 O2 � o2 = o 028 iÆ1 2 A1 � iÆ1 v iÆ1 0 ^ 8 iÆ2 2 A2 � iÆ2 = iÆ2 0 ^8 i1 2 I1 � i1 v i 01 ^ 8 i2 2 I2 � i2 v i 0219

and therefore8 o 2 O � o v o 0 ^ 8 iÆ 2 A � iÆ v iÆ0 ^ 8 i 2 I � i v i 0Finally, with iÆ2 0 = iÆ2 (ax)v i2 v i 02 for all i2 2 I2 and 8 i1 2 I1 � iÆ1 0 v i 01 we get8 i 2 I � iÆ0 v i 0{ Additionally, we show (again for only one of the two
ases) that � is restri
tingthe variables in I in the proper way, i.e. we assume�;� 0 j= �1 ^ � �2 (1)� O[A=
 (2)8 i 2 I1 [I2 � �(i) v
(i) (3)and show�;
 0 j= �1 ^ � �2�;
 0 j= �1 follows dire
tly from the properties of �1 with the subset relationsO1 [A1 � O [A and I1 � I . It remains to show�;
 0 j= ^v2O2[A2 v = v 0 ^ ^i22I2 i2 v i 02Assuming v 2 O2 [A2, we prove the �rst half by�(v) (1)= � 0(v 0) (Def :)= �(v) (2)=
(v) (Def :)=
 0(v 0)Finally, withi1 2 I1) �(i1) (3)v
(i1)) �;
 0 j= i1 v i 01we
on
lude the proof.{ There is always an environment transition � � that is de�ned exa
tly as inSe
tion 3.2.� We also prove here that
omposition maintains the enabledness of transitions, i.e.it holds� j= En(�1) , � j= En(�1 ^ � �2)� j= En(�2) , � j= En(�2 ^ � �1)We only show the �rst property, and prove for an arbitrary � only that9� � �;� 0 j= �1) 9
 � �;
 0 j= �1 ^ � �220

The opposite dire
tion is obvious. For some � we de�ne
 by
(v) = (�(v) if v 2 (O2 \ I1) [(A2 [(O2 n I1)) [((I1 [I2) n (O1 [O2))�(v) if v 2 (A1 [(O1 n I2)) [(O1 \ I2)With this de�nition we have
 A1[O1= � and 8 v 2 I1 � �(v) v
(v)and therefore (due to the properties of �1)�;
 0 j= �1For v 2 O2 [A2 we have
(v) = �(v), so�;
 0 j= ^v2O2[A2 v = v 0is valid. For v 2 I2\O1 we know �(v) =
(v), and from the assumption �;� 0 j= �1that �(v) v � 0(v 0), sin
e �1) v v v 0 (v 2 O1!), and this leads to �(v) v
(v).For v 2 I2 nO1 we de�ned
(v) = �(v), so that �;
0 j= v = v 0. Together, we have�;
 0 j= ^i22I2 i2 v i 02and therefore�;
 0 j= �2whi
h �nishes the proof. 2The main property of the
omposed system is that the runs of S are subsets of the runsof S1 and S2:hhS1kS2ii � hhS1ii and hhS1kS2ii � hhS2iiThe
onverse does not hold: Sin
e ea
h
omponent may restri
t the input to the other
omponent, some exe
utions of the individual
omponents may not be possible after
omposition.Proof: We only need to show that ea
h � 2 hhS1kS2ii is also in hhS1ii; the proof for S2is symmetri
al. Expanding the de�nition of hh:ii, we have to show:1. If �:1 j= I, then also �:1 j= I1.2. For all k 2 N�:k ; �0:(k + 1) j= � � _ _�2� �) �:k ; �0:(k + 1) j= � �1 _ _�12� 1 �121

3. For all � 2 � , if(8 k � 9 l � k � �:l j= : En(�)) _ (8 k � 9 l � k � �:l ; �:(l + 1) j= �)then for all �1 2 � 1(8 k � 9 l � k � �:l j= : En(�1)) _ (8 k � 9 l � k � �:l ; �:(l + 1) j= �1)The proof for the initialization assertion is immediate, sin
e I) I1.The proof of the
onse
ution assertion distinguishes the kind of transition that S makes:� If S makes the environment transition � �, S1 also makes its environment transition� �1 .This is valid sin
e � �) � �1 : All inputs of S1 are either also inputs of S (and thus
an only be extended), or outputs of S2 (and thus left un
hanged). The othervariables of S1 are left un
hanged.� If S makes a transition that
onsists of the environment transition � �1 of S1 and aproper transition �2 2 � 2, S1 also makes an environment transition.This is valid sin
e the
ontrolled variables of S1 remain un
hanged, the environmentinputs
an only be extended, and the inputs
onne
ted to outputs of S2 also
anonly be extended by �2.� If S makes a transition that
onsists of a proper transition �1 2 � and the envi-ronment transition � �2 of S2, S1 makes the transition �1.For the fairness assumption, it is suÆ
ient to show the following two properties for ea
h�1 2 � 1:(8 k � 9 l � �:l j= : En(�1 ^ � �2))) (8 k � 9 l � �:l j= : En(�1))and (8 k � 9 l � k � �:l ; �:(l + 1) j= (�1 ^ � �2))) (8 k � 9 l � k � �:l ; �:(l + 1) j= �1)If we identify k and l in the
onsequen
es of the impli
ations with the k and l on theleft-hand-sides, respe
tively, the proofs are immediate. 2

22

4 Safety PropertiesThis se
tion introdu
es proof prin
iples for safety properties of a state ma
hine. Atypi
al safety property is invarian
e, whi
h means that an assertion over the variablesof the state ma
hine holds in every state of every exe
ution.The proof prin
iples for safety properties are inspired by the UNITY theory [27℄. In Se
-tion 4.1 the
onstrains operator
o of UNITY is adapted to our state ma
hine framework;Se
tion 4.2 introdu
es some veri�
ation rules. In parti
ular, the axioms of UNITY's
oare shown to be valid in our framework.4.1 Predi
ates and PropertiesState ma
hine properties are expressed using assertions that relate
ommuni
ation his-tories and the values of the attribute variables.A state predi
ate of a state ma
hine S = (I ;O ;A; I;�) is an assertion � where the freevariables range over the variables in V = I [O [A; a history predi
ate is a formulawhere the free variables range only over the input and output variables I [O .An example for a state predi
ate is the initialization assertion I of the state ma
hine.Below is the initialization assertion of the state ma
hine Merge (Figure 3):� = Merge ^ i+1 = i1 ^ iÆ1 = h i ^ i+2 = i2 ^ iÆ2 = h i ^ o = h iAn example for a history predi
ate is the bla
k box spe
i�
ation of Merge (Se
tion 2.2):M1so = i1 ^ M2so = i2State predi
ates relate the
ommuni
ation histories and state variables at a given pointin a system exe
ution. To express properties about the
omplete exe
ution, predi
atesare lifted to exe
utions by one of the following two operators:� initially� holds for a state ma
hine S and a state predi
ate �, i� � is true underthe variable valuation of the �rst time point of ea
h system run:8 � 2 hhSii � �:1 j= �This is denoted by S j= initially�. It holds if the
hara
terization of the initialstates imply �, i.e. if I) � is valid.� �
o 	 holds for a state ma
hine S and state predi
ates � and 	 (�
onstrains), i� whenever � evaluates to true at a point in a system exe
ution, then so does	 at the subsequent point:8 � 2 hhSii � 8 k � (�:k j= �) �:(k + 1) j=)This is denoted by S j= �
o 	. The operator
o is de�ned to have a weakerbinding than all other logi
al operators.23

We also use the following abbreviations:S j= stable � df, S j= �
o �S j= inv� df, S j= stable � and S j= initially�Informally, a predi
ate is stable if its validity is preserved by all transitions of a system,and we
all it an invariant, if it holds in all rea
hable states.The abbreviations
an also be expressed at the level of exe
utions: By indu
tion on k it
an be shown thatS j= inv� , 8 � 2 hhSii � 8 k � �:k j= �This
hara
terization
an be used to lift tautologies and general results from the statema
hine level to the property level. If we haveS j= inv�and know8 v 2 free(�) [free() � �) 	we
an also dedu
eS j= inv	As another example, we know that in every exe
ution � 2 hhSii and for every input i 2 Iwe have 8 k � �:k j= iÆ v i We
an apply this knowledge in property proofs sin
e it
anbe lifted to S j= inv iÆ v i :Free variables
an be introdu
ed to relate the left and the right side of a
o property. Thiste
hnique
an be used to lift the fa
t that outputs are only extended within an exe
ution,either expressed dire
tly with the output variable, or with the output variable's length:S j= x = o
o x v oS j= #o = k
o #o � kFree variables as x and k are universally quali�ed (
omparable to so-
alled rigid vari-ables). In the semanti
s, the �rst of the two properties above is denoted by8 � 2 hhSii; k 2 N ; x 2 X � (�:k j= x = o) �0:(k + 1) j= x v o 0)where X is the type of the variable x (whi
h should be the same as the type of the statema
hine output variable o).Note that �) 	
annot be
on
luded from �
o 	, as the following
ounterexampleshows: Assume a state ma
hine S with a integer variable x , that is initialized with thevalue 0 and that
an only be in
remented. Obviously we have true
o x � 0, whiletrue) x � 0 is not valid. Properties using
o have only to be valid for all rea
hablestates, while an impli
ation must be true for all valuations of the variables.24

I) �S j= initially�(a) Initiality
� ^ � �) 	0� ^ �) 	0 for all � 2 �S j= �
o 	(b) Conse
utionS j= �1
o 	1S j= �2
o 	2S j= �1 ^ �2
o 	1 ^ 	2S j= �1 _ �2
o 	1 _ 	2(
) Conjun
tion and Disjun
tion
S j= �
o 	S j= 	
o �S j= �
o �(d) TransitivityS j= �
o 	S j= � ^ �
o 	(e) LHS Strengthening
S j= �
o 	S j= �
o 	 _ �(f) RHS WeakeningFigure 5: Basi
 rules for
o4.2 Veri�
ation RulesWith suitable veri�
ation rules it is possible to verify system properties from the abstra
tsyntax of state ma
hines, without having to expand the de�nitions of initially and
oand to verify properties semanti
ally.In this se
tion, we state and prove some veri�
ation rules.4.2.1 Basi
 RulesFigure 5 shows a number rules that are frequently used in veri�
ation:The initialization and
onse
ution rules (Figure 5(a), 5(b)) lift the semanti
 de�nitionsof initially� and �
o 	 to the level of the abstra
t syntax of state ma
hines. The
on-jun
tion and disjun
tion rule (Figure 5(
))
ombine two
o-properties into one. Note thesimilarity of this rule |as well as the strengthening and weakening rules in Figure 5(e),25

5(f)| to the usual rules for logi
al impli
ation. Indeed, as Misra remarks [27℄, the
ooperator is a kind of temporal impli
ation. Finally,
o is transitive (Figure 5(d)).Proof:Initialization. The validity of the initialization rule follows immediately from the de�-nition of initially�.Conse
ution. For the
onse
ution rule, assume that � 2 hhSii and that �:k j= � for anarbitrary k 2 N . Then,�:k ; �0:(k + 1) j= �sin
e free(�) � V , i.e. �
ontains no primed variables. From the de�nition of exe
utions,we know that�:k ; �0:(k + 1) j= � � _ _�2� �Assume now that�:k ; �0:(k + 1) j= � �and therefore�:k ; �0:(k + 1) j= � ^ � �From the �rst premise we
on
lude�:k ; �0:(k + 1) j= 	0On the other hand, if for a � 2 ��:k ; �0:(k + 1) j= �we know�:k ; �0:(k + 1) j= � ^ �Be
ause of the se
ond premise also�:k ; �0:(k + 1) j= 	0Sin
e free(0) � V 0,�0(k + 1) j= 	0therefore�:(k + 1) j= 	 26

whi
h
on
ludes the proof.Conjun
tion and Disjun
tion. We just show the
onjun
tion part of the rule. Assumethat �:k j= �1 ^ �2or, equivalently�:k j= �1 and �:k j= �2From the premises we
on
lude�:(k + 1) j= 	1 and �:(k + 1) j= 	2and thus�:(k + 1) j= 	1 ^ 	2The proof of the disjun
tion part is similar. The rules for the strengthening of the lefthand side and weakening of the right hand side of
o are
orollaries of the
onjun
tionand disjun
tion rule.Transitivity rule. The validity of the rule is not obvious: The
on
lusion relates two
onse
utive states, as do the two premises. Intuitively, then, � should hold not in thestate following �, but in the one after that. The rule is proven by introdu
ing a stutteringstep via an additional environment transition into an exe
ution.Given arbitrary � 2 hhSii and k 2 N su
h that �:k j= �, we need to show that�:(k + 1) j= �First, we
onstru
t a sequen
e b� from � by repeating the k -th state of �:b�:l = 8><>: �:l if l � k�:k if l = k + 1�:(l � 1) if l > k + 1The repetition of the state �:k
orresponds to an environment transition � � whi
h leavesthe external variables un
hanged; hen
e b�, too, is an exe
ution of S.Now, �:k j= �) b�:k j= �; sin
e b�:k = �:k) b�:(k + 1) j= 	; sin
e S j= �
o) b�:(k + 2) j= �; sin
e S j= 	
o �) �:(k + 1) j= �; sin
e b�:(k + 2) = �:(k + 1) 227

4.2.2 Invariant Substitution RulesThe two rules in Figure 6 are related to UNITY's substitution axiom; they are takenfrom Paulson's Isabelle formalization of UNITY [30℄.S j= inv�S j= � ^ �
o 	S j= �
o 	(a) LHS Invariant Elimination
S j= inv�S j= �
o 	S j= �
o 	 ^ �(b) RHS Invariant Introdu
tionFigure 6: Invariant substitution rulesThe �rst rule allows us to remove invariants on the left hand side, while the se
ond oneallows us to to introdu
e invariants on the right hand side. The proofs of these rulesare shown below. Invariant introdu
tion on the left side and invariant elimination onthe right side is also possible: This
an be handled by the strengthening and weakeningrules of Figure 5.Proof:Invariant elimination on the left side. We need to show that if(1) 8 � 2 hhSii; k � �:k j= �and (2) 8 � 2 hhSii; k � �:k j= � ^ �) �:(k + 1) j= 	then for arbitrary � 2 hhSii, k :�:k j= �) �:(k + 1) j= 	After instantiating the quanti�ers in (2), we have�:k j= � ^ �) �:(k + 1) j= 	hen
e�:k j= � ^ �:k j= �) �:(k + 1) j= 	or, equivalently,�:k j= �) (�:k j= �) �:(k + 1) j=)28

Instantiating (1), we have�:k j= �and therefore�:k j= �) �:(k + 1) j= 	whi
h
on
ludes the proof.Invariant introdu
tion on the right side. We need to show that if(1) 8 � 2 hhSii; k � �:k j= �and (2) 8 � 2 hhSii; k � �:k j= �) �:(k + 1) j= 	then for arbitrary � 2 hhSii, k :�:k j= �) �:(k + 1) j= 	 ^ �After instantiating the quanti�ers in (2) and (1), we have�:k j= �) �:(k + 1) j= 	 and �:(k + 1) j= �Thus,�:k j= �) (�:(k + 1) j= 	 ^ �:(k + 1) j= �)whi
h
on
ludes the proof. 24.3 ExampleAs an example of how to use the veri�
ation rules in pra
ti
e, we
ontinue our exampleof Se
tion 3.3 and show that the state ma
hine ofMerge (Figure 3) only produ
es outputthat has been re
eived on its input
hannels before:We need to show thatMerge j= invM1so v i1 and Merge j= invM2so v i2Note that this is not identi
al to the pre�x properties of the Merge
omponent as for-mulated in Se
tion 2.4; here we only show that the pre�x properties hold in every stateof an exe
ution, not that it holds for the
omplete I/O behavior of an exe
ution. InSe
tion 6, we show how to relate
omplete I/O behavior with invariants.29

The two properties are symmetri
al; we just show the one for i1. With i1 = iÆ1 _ i+1 weknow that(M1so) = iÆ1) (M1so) v i1so that a

ording to the observation of Se
tion 4.1 it suÆ
es to showMerge j= invM1so = iÆ1A

ording to the de�nition of inv and the veri�
ation rules for initially and
o thisexpands to the following proof obligations:I) M1so = iÆ1 (1)M1so = iÆ1 ^ � �) M1so 0 = iÆ1 0 (2)M1so = iÆ1 ^ �1) M1so 0 = iÆ1 0 (3)M1so = iÆ1 ^ �2) M1so 0 = iÆ1 0 (4)Proof: Sin
e I implies o = iÆ1 = h i, (1) is trivial. The idle transition � � implies iÆ0 = iÆand o 0 = o, so that (2) is also obvious.Expanding �1 in (3) shows its validity:M1so 0 = iÆ1 0 ,M1s(o _ hai) = iÆ1 _ hai a2M1,(M1so)_ hai = iÆ1 _ hai ,M1so = iÆ1Using the de�nition of �2 in (4)
ompletes the proof:M1so 0 = iÆ1 0 ,M1s(o _ hai) = iÆ1 a 62M1,M1so = iÆ1 24.4 CompositionalityFrom the
ompositionality result of Se
tion 3.5 we
an derive the following rules:S1 j= initially�S1kS2 j= initially� S1 j= �
o 	S1kS2 j= �
o 	
30

Proof: Let � be an arbitrary exe
ution from [[S1kS2℄℄. From Se
tion 3.5 we know thatthen � 2 [[S1℄℄ also holds. The premises of the two rules imply�:1 j= �and 8 k � (�:k j= �) �:(k + 1) j=)Sin
e � is also a run of [[S1kS2℄℄, this also meansS1kS2 j= initially�and S1kS2 j= �
o 	 2A
orollary of the above rules is that every invariant of a system remains an invariantafter
omposition:S1 j= inv�S1kS2 j= inv�The
ompositionality of initiality,
onstraints and invariants is due to the data
ow stru
-ture of our systems: Components intera
t only by the transmission of messages, and sin
ethe arrival of new messages
annot disable
omponent transitions,
omponents
annotinterfere in an unexpe
ted way.In UNITY,
omponents
an interfere; hen
e,
ompositionality rules like the ones aboveare not valid in general.

31

5 Progress PropertiesSafety properties are useful to show that the system does not enter an illegal state oroutput illegal data. It is easy to build a system that ful�lls safety properties: A systemthat simply does nothing ful�lls any safety property.To ensure that a system indeed pro
esses its input and produ
es output, progress prop-erties are used. As for safety properties, the progress properties are related to UNITY[26℄. They are based on a \leadsto" operator 7! (Se
tion 5.1).5.1 Leads-To PropertiesProgress is expressed by the leadsto operator 7!. Intuitively, � 7! 	 means that when-ever in a state ma
hine exe
ution a state is rea
hed where � holds, at the same or at alater point in the exe
ution a state is rea
hed where 	 holds.The semanti
 de�nition of S j= � 7! 	 is as follows. For all � 2 hhSii,8 k � (�:k j= �)) (9 l � k � �:l j=)From the semanti
 de�nition it follows immediately that 7! is transitive, and that when-ever �) 	, then also � 7! 	.5.2 Veri�
ation RulesFor the leadsto operator there is also a set of veri�
ation rules so that properties
anbe shown at the level of state transition systems without reasoning about the systemexe
utions themselves.5.2.1 Basi
 RulesFigure 7 shows a number rules that are frequently used in veri�
ation. Essentially,leadsto properties are proved as follows. With the ensure rule (Figure 7(a)) leadstoproperties that relate states that are separated by only a single proper transition areshown; this transition is
alled the helpful transition. From this basis, more elaborateproperties are derived by the transitivity (Figure 7(b)) and disjun
tion (Figure 7(
))rules.Rule 7(f) (RHS weakening) is a spe
ial
ase of Rule 7(
) (disjun
tion). It would besuÆ
ient for �nite state systems; the disjun
tion rule is needed to show properties ofin�nite state systems (see [26℄ for a detailed explanation).Proof:Ensure. The proof is by
ontradi
tion. Assume that the premises of the rule in Fig-32

S j= � ^ : 	
o � _ 	For a transition � 2 � :� ^ :) En(�)and� ^ : 	 ^ �) 	0S j= � 7! 	(a) Ensure
S j= � 7! 	S j= 	 7! �S j= � 7! �

(b) TransitivityS j= �(x) 7! 	 for all x 2 XS j= (9 x 2 X � �(x)) 7! 	(
) Disjun
tion
�) 	S j= � 7! 	(d) Impli
ationS j= � 7! 	S j= � ^ � 7! 	(e) LHS Strengthening
S j= � 7! 	S j= � 7! 	 _ �(f) RHS WeakeningFigure 7: Basi
 rules for 7!

33

ure 7(a) hold, but not its
on
lusion. Then there is an exe
ution � 2 hhSii and a k 2 Nwith �:k j= �but for all l � k�:l j= : 	In parti
ular, then�:k j= : 	and, by indu
tion and the �rst premise, for all n � k :�:n j= � ^ : 	By the �rst part of the se
ond premise, there is a � 2 � su
h that for all n � k�:n j= En(�)Be
ause of the fairness assumption of state ma
hine exe
utions (Se
tion 3.4), this meansthat there is an m � k su
h that�:m; �0:(m + 1) j= �and thus�:m; �0:(m + 1) j= � ^ : 	 ^ �Be
ause of the se
ond part of the se
ond premise, this implies�:m; �0:(m + 1) j= 	0hen
e�:(m + 1) j= 	whi
h
ontradi
ts the assumption that there is no l � k whi
h validates 	.Transitivity and impli
ation. These rules are immediate
onsequen
es of the semanti
de�nition of 7! (Se
tion 5.1).Disjun
tion. Let X be an arbitrary set, �(x) a shear of state predi
ates parameterizedby x 2 X . Assume that � 2 hhSii, and k and x su
h that�:k j= �(x)From the premise we know that9 l � k � �:l j= 	Hen
e, the rule is valid.Strengthening and weakening. The validity of these rules follows immediately from thesemanti
 de�nition of 7!. 234

5.2.2 Indu
tion RuleNon-trivial progress proofs often make use of some kind of a ranking fun
tion or measure,based on well-founded orders. This is formalized in the following rule. Let (W ;�) bea well-founded order, m a variable that ranges over W , and M a W -valued expressionwith free variables from V .S j= (p ^ M = m) 7! (p ^ M < m) _ q for all m 2WS j= p 7! qThe validity proof of this rule in analogous to the proof of this rule in [27℄.5.2.3 Invariant Substitution RulesThe UNITY substitution axiom holds for leadsto properties as well; the four rules inFigure 8
orrespond to the substitution rules for
o in Se
tion 4.2.S j= inv�S j= � ^ � 7! 	S j= � 7! 	(a) LHS Invariant Elimination
S j= inv�S j= � 7! 	S j= � 7! 	 ^ �(b) RHS Invariant Introdu
tionFigure 8: Invariant substitution rulesThe proof of these rules is analogous to the proof of the
orresponding rules in Se
tion 4.2.Again, invariant introdu
tion on the left side and invariant elimination on the right sidefollow immediately from the strengthening and weakening rules.5.2.4 Output Extension RuleThe typi
al appli
ation for leadsto properties in data
ow systems is to show that a
omponent produ
es output. Su
h properties
an be formalized using the followingproperty pattern:S j= #o = k ^ k < ` 7! #o > kwhere o 2 O is an output variable of the
omponent, and ` is a N-valued expressionwith free(`) � I [O that is monotoni
 in the values of its free variables.35

For output extension, the ensure rule
an be further simpli�ed. For the �rst premise ofensure, we need to showS j= #o = k ^ k < ` ^ #o � k
o (#o = k ^ k < `) _ #o > kBy predi
ate logi
, this is equivalent toS j= #o = k ^ k < `
o #o � k ^ (k < ` _ #o > k)We now show that in data
ow systems this property always holds. For all variablesv 2 I [O ,(1) S j= #v = k
o #v � k(see Se
tion 4.1). This implies in parti
ular that `
annot be
ome smaller be
ause ` ismonotone, i.e.(2) S j= k < `
o k < `By LHS strengthening (1) with k < ` we obtainS j= #o = k ^ k < `
o #o � kSimilarly, we strengthen the LHS of (2) with #o = k and weaken its RHS with #o > k :S j= #o = k ^ k < `
o k < ` _ #o > kThese two properties
an be
ombined with the
onjun
tion rule of
o to yield the �rstpremise of the ensure rule.Thus, for output extension, the following rule is already suÆ
ient:For a transition � 2 � :#o = k ^ k < `) En(�)and#o = k ^ k < ` ^ �) #o 0 > kS j= #o = k ^ k < ` 7! #o > kNote that this is a quite substantial redu
tion in pra
ti
e: It redu
es the number ofveri�
ation
onditions from n + 3 to 2, where n is the number of transitions in � .The output extension rule is still valid, when o is repla
ed by f (o), where f is a fun
tionthat is monotoni
 a

ording to the pre�x order v.Another useful variation is the following rule, where the left hand sides of the 7! operatorare strengthened by �. 36

For a transition � 2 � :� ^ #o = k ^ k < `) En(�)and� ^ #o = k ^ k < ` ^ �) #o 0 > kS j= � ^ #o = k ^ k < ` 7! #o > k
5.3 ExampleTo demonstrate the veri�
ation rules for 7!, we
ontinue the example of Se
tion 3.3 andSe
tion 4.3.In Se
tion 4.3, we learned thatMerge j= invM1so = iÆ1and thereforeMerge j= invM1so v i1This is a pure safety property: no M1-output is emitted by the merge
omponent, thathas not been re
eived on i1 before; moreover, the order of the messages from M1 on i1and o is identi
al.This property also holds for a
omponent that never reads from its input
hannels andnever outputs anything on its output
hannel.However, for the merge
omponent we
an show thatMerge j= #M1so = k ^ #i1 > k 7! #M1so > kInformally, this property means that whenever data is available on the input
hannel i1,the
omponent will at some time output further data of type M1 on its output
hannel.Note that this does not mean that the output on o is indeed the same data that the
omponent re
eived from i1; this has already been shown by the safety property ofSe
tion 4.3.Proof: In this
ase, it is suÆ
ient to just use the output extension rule. The rulehas two premises, where we have to
hoose a transition � 2 � . The obvious
hoi
e istransition �1.� For showing the �rst premise, we assume#M1so = k ^ k < #i1

37

and have to show that �1 is enabled, i.e. we need values for the primed variablesthat evaluate �1 to true. From Se
tion 4.3 we know (M1so) = iÆ1 , so we have#i1 = #(iÆ1 _ i+1) = #iÆ1 +#i+1 = #(M1so) + #i+1 = k +#i+1Therefore we have with k < #i1#i+1 > 0) 9 a 2 M1 � ft:i+1 = aThe values for the remaining primed variables
an be
hosen a

ording to �1.� The se
ond premise states#(M1so) = k ^ k < #i1 ^ �1) #(M1so 0) > kand is easy to show:#(M1so 0) = #(M1so _ hai) a2M1= #(M1so) + 1 = k + 1 > kNote that we only showed that the output is eventually produ
ed when input is availableon i1. This does not ne
essarily imply that indeed all input from i1 appears on o; inSe
tion 6 this gap is
losed.The proof thatM2so is extended when messages are available on
hannel i2 is analogous.25.4 CompositionalityLeadsto properties are
ompositional. The validity of the following rule follows fromthe
ompositionality result from Se
tion 3.5; the proof is similar to the
ompositionalityresult of Se
tion 4.4.S1 j= � 7! 	S1kS2 j= � 7! 	

38

6 Bla
k Box Views of State Ma
hinesBoth safety and liveness properties of state ma
hines are based on state and historypredi
ates. These predi
ates relate
ommuni
ation histories up to a time point andattribute values at this time point.Typi
al data
ow properties
annot be expressed in this way. For example, the Merge
omponent property that all input of
hannel i1 is forwarded to the output is a propertyabout the
omplete state ma
hine exe
ution, and not of the individual states in theexe
ution.This se
tion
loses the gap between state ma
hines and bla
k box views that des
ribethe I/O behavior of a system for
omplete exe
utions. In Se
tion 6.1 the bla
k boxview of a state ma
hine is de�ned; Se
tions 6.2 and 6.3 show how safety and livenessproperties of a state ma
hine
an be used to dedu
e properties of its bla
k box view.6.1 Bla
k Box ViewsWithin a state ma
hine exe
ution �,
hanges in the valuations for the input and outputvariables I , O are restri
ted to the pre�x order v: For ea
h variable v 2 I [O andevery k 2 N ,(�:k)(v) v (�:(k + 1))(v)Thus the valuations of ea
h input and output variable within an exe
ution form a
hain,and for ea
h exe
ution and ea
h variable v 2 I [O there is a least upper bound�:1(v) df= Ff (�:k)(v) j k 2 N gNote that �:1(v) is only de�ned for the input and output variables, not for the attributevariables of a state ma
hine.The bla
k box view of a state ma
hine S = (I ;O ;A; I;�) is a set of valuations for thevariables I [O . It is denoted by [[S℄℄ and de�ned via the least upper bounds of the inputand output histories of the ma
hine's exe
utions:[[S℄℄ = f � j 9 � 2 hhSii � î2I �(i) = �:1(i) ^ ô2O �(o) = �:1(o) gSin
e both the proper transitions � 2 � and the environment transition � � of a statema
hine allow arbitrary extension of the input variable valuations, it is possible tosu

essively approximate every possible input history. This means that the bla
k boxview [[S℄℄ is
omplete with respe
t to the input variables of S: For an arbitrary inputthere is always some rea
tion of the system. Formally, this reads as: For ea
h valuation� for the variables I [O there exists a valuation � for I [O su
h that� I= � and � 2 [[S℄℄ 39

6.2 Safety PropertiesIn pra
ti
e, it is diÆ
ult to dire
tly use the bla
k box semanti
s of a state ma
hinede�ned in Se
tion 6.1. Instead, we dedu
e properties about the bla
k box view fromproperties of the state ma
hine. Te
hni
ally, a property of the bla
k box view [[S℄℄ is ahistory predi
ate � (see Se
tion 4.1) whi
h is valid for ea
h valuation in a system's bla
kbox view:8� 2 [[S℄℄ � � j= �We then write [[S℄℄) �.A useful
lass of history predi
ates is that of admissible predi
ates [28℄. A historypredi
ate � is admissible in a set of variable W � free(�) if it holds for the limit of a
hain of valuations for its variables, provided that it holds for ea
h element of the
hain.If predi
ate � is admissible in free(�) it is simply
alled admissible. The free variablesin a history predi
ate all range over the CPO of streams; the
on
epts of
hain and limitare taken from Se
tion 2.1).If � is an admissible invariant history property of a state ma
hine, it holds not only inevery state of a system run, but also for the
omplete
ommuni
ation history:free(�) � I [Oadm �S j= inv�[[S℄℄) �Proof: Expanding the de�nition of S j= inv�, we have8 � 2 hhSii; k 2 N � �:k j= �In other words, � holds when its free variables v (where v 2 I [O) are repla
ed by�:k(v)for ea
h k 2 N . Sin
e � is admissible, it also holds when its free variables are repla
edby the least upper bounds�:1(v)This implies the
on
lusion of the rule. 2It is in general not trivial to show the admissibility of a given property. However, Paulsongives in [28℄ some simple synta
ti
al
riteria for admissibility. For example,
onjun
tionsand disjun
tions of the following expressions over streams s; t ; u are admissible in boths and t , but not in u: 40

s = t #s = #ts v t #s � #tu � s #u < #sHere s; t ; u need not be simple stream variables or
onstants; they
an also be termsbuilt from
ontinuous fun
tions (a

ording to the pre�x order v), be
ause admissibilityis
ompositional through
ontinuous fun
tions.ExampleIn Se
tion 4.3, the following invariant property of the merge
omponent has been derived:S j= M1so v i1 ^ M2so v i2Sin
e this property is admissible |see above|, the following bla
k box property of the
omponent holds:[[Merge℄℄) M1so v i1 ^ M2so v i26.3 Liveness PropertiesIn general, progress properties expressed with the leadsto operator 7!
annot be liftedto
omplete exe
utions. Still, from output extension properties (Se
tion 5.2), livenessproperties of a state ma
hine's bla
k box view
an be derived.Let ` be an N-valued expression with free(`) � I that is monotoni
 in the values of itsfree variables, and o 2 O .free(`) � I [OS j= #o = � ^ � < ` 7! #o > �[[S℄℄) #o � `Proof: The proof is by
ontradi
tion. Assume that the premises of the rule hold, butnot its
on
lusion. Thus, there is a valuation � 2 [[S℄℄ with � j= #o < `, and hen
e� j= #o <1. This means that there is an exe
ution � 2 hhSii with�(o) = �:1(o)With � df= #�:1(o) there is an n1, su
h that#�:n1(o) = �and an n2 with�:n2 j= � < ` 41

With n df= max(n1; n2) we have�:n j= #o = � ^ � < `sin
e o
annot be extended beyond � in �, and be
ause of monotoni
ity `
annot be
omesmaller, as its arguments are not shortened.Semanti
ally, the se
ond premise then implies9m � n : �:m j= #o > �whi
h
ontradi
ts the assumption that #o does not ex
eed �.Hen
e the assumption that � j= #o < ` is invalid, and for all � 2 [[S℄℄� j= #o � ` 2In the rule above, o
an be repla
ed by f (o), where f is a
ontinuous fun
tion. The ruleis also valid if the
onstant value1 is used for `: The
omponent then produ
es in�niteoutput for any input.ExampleIn Se
tion 5.3, the following progress properties of the merge
omponent have beenderived:Merge j= #M1so = k ^ #i1 > k 7! #M1so > kMerge j= #M2so = k ^ #i2 > k 7! #M2so > kWith the length fun
tion ` df= #i1 (and ` df= #i2 for the se
ond input
hannel), and sin
es is
ontinuous, the rule above allows us to
on
lude[[Merge℄℄) (#M1so � #i1) ^ (#M2so � #i2)6.4 MethodologyThat only length properties are lifted to the bla
k box spe
i�
ation level seems to bequite restri
tive. In pra
ti
e, however, length properties are suÆ
ient for the veri�
ationof liveness properties of a state ma
hine's bla
k box view. In Se
tion 2.4 we stated thattypi
al data
ow properties
an be formulated as a set of equations, one for ea
h outputvariable of a
omponent. Ea
h equation
an be split into a pre�x property (the safetypart) and a length property (the liveness part).The safety part
an be veri�ed using the te
hniques of Se
tion 4; the liveness part
anbe veri�ed using the te
hniques of Se
tion 5. For both parts, properties of the bla
k boxview
an be dedu
ed as shown above. 42

ExampleFrom Se
tion 6.2, we know the following pre�x property of the Merge
omponent:[[Merge℄℄) M1so v i1 ^ M2so v i2The following length property of Merge has been shown in Se
tion 6.3:[[Merge℄℄) (#M1so � #i1) ^ (#M2so � #i2)Together, these properties imply[[Merge℄℄) M1so = i1 ^ M2so = i2In other words, the state ma
hine from Figure 3 indeed ful�lls the bla
k box spe
i�
ationgiven in Se
tion 2.2.6.5 Compatibility of the
omposition operatorsThe bla
k box
omposition operator
 and the state ma
hine
omposition operator jjare synta
ti
ally
ompatible: They
oin
ide on the de�nition of the input and output
hannels of the
omposed system. Con
erning the behavior of the resulting system, thefollowing holds:[[S1 jj S2℄℄) [[S1℄℄
 [[S2℄℄The impli
ation is easily proved:Proof: For the impli
ation, we need to show that when � 2 [[S1 jj S2℄℄, then also� 2 [[S1℄℄ and � 2 [[S2℄℄. Given the left hand side, we know that there exists an exe
ution� 2 hhS1 jj S2ii with8 v 2 I [O � �(v) = �:1(v)where I = (I1 [I2) n (O1 [O2) and O = O1 [O2.From Se
tion 3 we know that � is also a run of S1. Sin
e I1 � I [O and O1 � I [O we
an
on
lude that� 2 [[S1℄℄Similarly, we get � 2 [[S2℄℄. 2A
ounterexample shows that the opposite dire
tion does not hold:Proof: Assume a system S1 that reads from
hannel y , and writes on
hannel x .Both
hannels
an only transmit the message a. The system has only one state and onetransition:y?a B x !a 43

Obviously, if the system is fed with a1 as input, it rea
ts by sending a1. System S2 issimilar, but it reads from
hannel x , writes onto y .The
omposed system S1
S2 has no input
hannels and two output
hannels. Assigninga1 to both x and y represents a possible behavior of this system.However, this is not a behavior of S1 jj S2. Here both ma
hines wait for a �rst messageof the other ma
hine; they never send output a message and the only behavior is theone that assigns h i to both x and y . 2Bla
k box views are an abstra
tion of a system's behavior. In this abstra
tion operationalinformation, su
h as the
ausality between input and output messages, is lost [4℄. Oneapproa
h to in
lude the
ausality information also in the bla
k box views is to expli
itlyintrodu
e time into the
ommuni
ation histories [7, 20℄; however, this makes the bla
kbox spe
i�
ations more
omplex.

44

7 Example: Communi
ation SystemFigure 9 shows a
ommuni
ation system (originally proposed by the VSE group in theDFKI, Saarbr�u
ken, [22℄). The system
onsists of a sender and a re
eiver
onne
ted viaa queue
omponent. The queue's bu�er
an hold N data elements. To ensure that thebu�er does not over
ow a handshaking proto
ol is used. We assume that the sender\pushes" data (it sends a datum, then waits for an a
knowledgment from the queue),while the re
eiver \pulls" data (it sends a request to the queue, then awaits a datum).Request and a
knowledgment signals are modeled with the singleton set Signal = f~g.
PSfrag repla
ements

Sender Queue Re
eiveri : Msg o : Msgx : Msg y : Msga
k : Signal req : SignalFigure 9: Bounded Bu�erThis se
tion �rst gives bla
k box spe
i�
ations (Se
tion 7.1) and state ma
hine spe
i-�
ations (Se
tion 7.2) for the
ommuni
ation system's
omponents. Se
tion 7.3 proofsthat the state ma
hines imply the safety part of the bla
k box spe
i�
ations; Se
tion 7.4shows the same for the liveness part. A dis
ussion about the veri�
ation te
hniques isin Se
tion 7.5.7.1 Bla
k Box Spe
i�
ationsThe spe
i�
ation of the three
omponents are divided into pre�x (safety) and length(progress) properties. The pre�x parts simply state the obvious requirement that ea
h
omponent's output is a pre�x of its data input.Senderin i : Msg; a
k : Signalout x : Msgx v i#x � min(#i ; 1 + #a
k)The length property of the sender expresses its \push" behavior: The length of the out-put is one more than the number of a
knowledgments re
eived from the queue, providedthere is still data from the environment available.
45

Re
eiverin y : Msgout req : Signal; o : Signalo v y#o � #y#req = 1 +#yThe re
eiver's length property expresses its \pull" behavior: It sends requests initiallyand after re
eiving ea
h message from the queue.Note that here the length property for the requests is an equality. This is be
ause it alsoin
orporates the safety property that the length of req must be less or equal than 1+#y ;sin
e it is only the number of requests that is relevant, instead of a pre�x property anumeri
al inequality is used as an upper bound on the length of the
ommuni
ationhistory. Queue(N)in x : Msg; req : Signalout a
k : Signal; y : Msgy v x#y � min(#x ;#req)#a
k = min(#x ;#req + N � 1)The spe
i�
ation for the
omposition of sender, queue and re
eiver in our example isshown below.System(N)in i : Msgout o : Signal; x : Msg; a
k : Signal; y : Msg; req : Signalx v iy v xo v y#x � min(#i ; 1 + #a
k)#y � min(#x ;#req)#a
k = min(#x ;#req + N � 1)#o � #y#req = 1 +#yFrom the spe
i�
ation of System(N) above, we
an immediately see that the output isa pre�x of the input. By some
ase analysis it
an also be shown that the length of the46

output equals the length of the input. This implieso = ifor all input streams i . The
ommuni
ation system implements the identity relation.7.2 State Ma
hine Spe
i�
ationsFigure 10 shows the state transitions diagrams of the sender, queue and re
eiver
ompo-nents. The queue
omponent has an attribute variable q , whi
h holds a �nite sequen
eof messages.Following Se
tion 3.3, the diagrams
an be
onverted s
hemati
ally into state transitionsystems. Below is the STS for ea
h
omponent. For brevity, the names of the STS
omponents and transitions are not di�erentiated. In the proofs of the veri�
ation
onditions, it will be
lear from the
ontext, whi
h
omponent is referred to.Sender STSThe STS for the sender is formally de�ned byI df= fi ; a
kgO df= fxgV df= fi ; iÆ; a
k ; a
k Æ; x ; �gI df= � = Transmit ^ iÆ = h i ^ a
k Æ = h i ^ x = h i� df= f�1; �2gThe transitions �1 and �2 are the following assertions; they
orrespond to the arrows inthe sender's STD (Figure 10).�1 df= 9 d : � = Transmit We move from the sour
e state^ �0 = WaitA
k to the target state.^ ft :i+ = d There is a message d available in
hannel i^ iÆ0 = iÆ _ hdi that we
onsume^ x 0 = x _ hdi and send on
hannel x ,^ a
k Æ0 = a
k Æ while we don't read from
hannel a
k .^ i v i 0 ^ a
k v a
k 0 The input
hannels
an be extended.�2 df= � = WaitA
k^ �0 = Transmit^ ft :a
k+ = ~^ a
k Æ0 = a
k Æ _ h~i^ iÆ0 = iÆ^ x 0 = x^ i v i 0 ^ a
k v a
k 0 47

PSfrag repla
ements Transmit WaitA
ki?d B x !d
a
k?b BPSfrag repla
ements y?d B o!d ; req !~

Re
eiveInit B req !~
PSfrag repla
ements Empty Nonempty

Full

x?d B a
k !~ fq 0 = q _ hdig
f#q = 1g req?b B y !ft:q fq 0 = rt:qg

f#q > 1g req?b B y !ft:q fq 0 = rt:qgf#q < N � 1g x?d B a
k !~ fq 0 = q _ hdig
f#q = N � 1g x?d Bfq 0 = q _ hdigreq?b B a
k !~; y !ft:q fq 0 = rt:qgvar q : Msg� = h i

Figure 10: Sender, Re
eiver and Queue STDs
48

The environment transition � � is de�ned a

ording to the s
hema in Se
tion 3.2:� � df= � = �0^ iÆ0 = iÆ^ a
k Æ0 = a
k Æ^ x 0 = x^ i v i 0 ^ a
k v a
k 0Queue STSThe Queue STS
ontains the setsI df= fx ; reqgO df= fy ; a
kgV df= fx ; x Æ; req ; reqÆ; y ; a
k ; q ; �gI df= � = Empty ^ x Æ = h i ^ reqÆ = h i ^ y = h i ^ a
k = h i ^ q = h i� df= f�1; �2; �3; �4; �5; �6gwhere the transitions are de�ned by�1 df= 9 d : � = Empty^ �0 = Nonempty^ ft :x+ = d^ x Æ0 = x Æ _ hdi^ reqÆ0 = reqÆ^ y 0 = y^ a
k 0 = a
k _ h~i^ q 0 = q _ hdi^ x v x 0 ^ req v req 0
�2 df= � = Nonempty^ �0 = Nonempty^ #q > 1^ ft :req+ = ~^ reqÆ0 = reqÆ _ h~i^ x Æ0 = x Æ^ y 0 = y _ hft :qi^ a
k 0 = a
k^ q 0 = rt :q^ x v x 0 ^ req v req 0�3 df= 9 d : � = Nonempty^ �0 = Nonempty^ #q < N � 1^ ft :x+ = d^ x Æ0 = x Æ _ hdi^ reqÆ0 = reqÆ^ y 0 = y^ a
k 0 = a
k _ h~i^ q 0 = q _ hdi^ x v x 0 ^ req v req 0
�4 df= � = Full^ �0 = Nonempty^ ft :req+ = ~^ reqÆ0 = reqÆ _ h~i^ x Æ0 = x Æ^ y 0 = y _ hft :qi^ a
k 0 = a
k _ h~i^ q 0 = rt :q^ x v x 0 ^ req v req 0
49

�5 df= 9 d : � = Nonempty^ �0 = Full^ #q = N � 1^ ft :x+ = d^ x Æ0 = x Æ _ hdi^ reqÆ0 = reqÆ^ y 0 = y^ a
k 0 = a
k^ q 0 = q _ hdi^ x v x 0 ^ req v req 0
�6 df= � = Nonempty^ �0 = Empty^ #q = 1^ ft :req+ = ~^ reqÆ0 = reqÆ _ h~i^ x Æ0 = x Æ^ y 0 = y _ hft :qi^ a
k 0 = a
k^ q 0 = rt :q^ x v x 0 ^ req v req 0The environment transition � � is de�ned as follows:� � df= � = �0^ x Æ0 = x Æ^ reqÆ0 = reqÆ^ q 0 = q^ y 0 = y^ a
k 0 = a
k^ x v x 0^ req v req 0Re
eiver STSThe re
eiver is de�ned formally throughI df= fygO df= freq ; ogV df= fy ; yÆ; req ; o; �gI df= � = Init ^ yÆ = h i ^ req = h i ^ o = h i� df= f�1; �2gwith just the following two transitions:�1 df= � = Init^ �0 = Re
eive^ yÆ0 = yÆ^ req 0 = req _ h~i^ o 0 = o^ y v y 0
�2 df= 9 d : � = Re
eive^ �0 = Re
eive^ ft :y+ = d^ yÆ0 = yÆ _ hdi^ o 0 = o _ hdi^ req 0 = req _ h~i^ y v y 0
50

Again, the environment transition � � is de�ned s
hemati
ally:� � df= � = �0^ yÆ0 = yÆ^ req 0 = req^ o 0 = o^ y v y 07.3 Safety ProofsIn this se
tion we show that for ea
h of the system's three
omponents, the state ma
hinespe
i�
ation implies the safety part of the bla
k box spe
i�
ation.For all
omponents, the proof is stru
tured identi
ally:1. Show that the data output of a
omponent equals the pro
essed part of its input;2. Con
lude that the output is a pre�x of the input;3. Con
lude that this also holds for the bla
k box view.SenderWe show the following property:Sender j= inv x = iÆA

ording to the rules in se
tions 4.1 and 4.2 we need to proveI) x = iÆ (5)^�2� � ^ (x = iÆ)) x 0 = iÆ0 (6)Sin
e I) x = h i = iÆ, obligation (5) is trivially ful�lled. We now show (6) for all � :� Transition �1:x = iÆ ^ �1) x _ hdi = iÆ _ hdi) x 0 = iÆ0� Transition �2:x = iÆ ^ �2) x 0 = iÆ0 51

� Transition � �:x = iÆ ^ �2) x 0 = iÆ0Sin
e iÆ v i is also an invariant of the sender, we
an
on
lude thatSender j= inv x v iand therefore[[Sender ℄℄) x v iThus, the state ma
hine of the sender implies the safety part of the sender's bla
k boxspe
i�
ation.QueueFor the queue
omponent, we show the following property:Queue j= inv y _ q = x ÆSin
e I) y = q = x Æ = h i the property above holds initially. We now show that isalso stable, and therefore indeed an invariant:� Transition �1:y _ q = x Æ ^ �1) y _ q _ hft:x+i = x Æ _ hft:x+i) y 0 _ q 0 = x Æ0The proof is analogous for the transitions �3 and �5.� Transition �2:y _ q = x Æ ^ �2) y _ hft :qi_ rt :q = x Æ) y 0 _ q 0 = x Æ0The proof is analogous for the transitions �4 and �6.� Transition � �:y _ q = x Æ ^ � �) y _ q = x Æ ^ y 0 = y ^ x Æ0 = x Æ ^ q 0 = q) y 0 _ q 0 = x Æ0 52

From the invariants y _ q = x Æ and the invariant x Æ v x , we
on
ludeQueue j= inv y v xHen
e, the queue
omponent ful�lls the safety part of its bla
k box spe
i�
ation, sin
e[[Queue℄℄) y v xRe
eiverFor the re
eiver, we showRe
eiver j= inv o = yÆThat this property holds initially is immediate sin
eI) o = yÆ = h iIt remains to show that the property is stable under the two re
eiver transitions �1 and�2 and the environment transition � �.� Transition �1 (the proof is analogous for � �):o = yÆ ^ �1) o 0 = yÆ0� Transition �2:o = yÆ ^ �2o _ hft:y+i = yÆ _ hft:y+i) o 0 = yÆ0Thus, o = yÆ is an invariant of the re
eiver. Sin
e also iÆ v y is an invariant, we
an
on
ludeRe
eiver j= inv o v yFrom this, we
an immediately
on
lude the safety part of the re
eiver's bla
k boxspe
i�
ation:[[Re
eiver ℄℄) o v y
53

7.4 Liveness ProofsFor ea
h
omponent, the liveness part of the bla
k box spe
i�
ation is derived from the
omponent's output extension properties.Usually, the liveness proofs require some knowledge about the relation between
ontrolstate, attribute values and the length or
ontents of the variables iÆ. Su
h relations areexpressed by additional invariants of the
omponents. For the liveness proofs below, wejust list the invariants. Their proof is analogous to the proof of the pre�x properties inthe previous se
tion.SenderWe need to prove that the output x 2 O is extended; the length fun
tion ` is themin-Term of the bla
k box spe
i�
ation: ` df= min(#i ; 1 + #a
k).First we prove the following two properties that re
e
t the e�e
t of the sender's twotransitions.� Transition �1 indeed extends the output:(1) � = Transmit ^ #x = k ^ k < ` 7! #x > k� Transition �2, however, leaves the output un
hanged. The length expression maybe
ome larger, but in any
ase it will stay larger than k :(2) � =WaitA
k ^ #x = k ^ k < ` 7! � = Transmit ^ #x = k ^ k < `The �rst property is proven with the output extension rule. We need to show thefollowing premises, where we
hoose �1 as the helpful transition:(1:1) � = Transmit ^ #x = k ^ k < `) En(�1)(1:2) � = Transmit ^ #x = k ^ k < ` ^ �1) #x 0 > kPremise (1:1) is ful�lled, sin
e the enabledness
ondition of �1
orresponds to� = Transmit ^ #i+ > 0whi
h holds sin
e#i � min(#i ; 1 + #a
k) = ` > k = #x = #iÆusing the fa
t that #x = #iÆ as shown in Se
tion 7.3. Hen
e, #i+ = #i �#iÆ > 0.Premise (1:2) follows immediately from the de�nition of �1 with x 0 = x _ hdi.
54

For property (2), we use the ensure rule; the helpful transition in this
ase is �2. Weneed to dis
harge the following three premises:(2:1) S j= (� = WaitA
k ^ #x = k ^ ` > k) ^ : (� = Transmit ^ #x = k ^ ` > k)
o(� = WaitA
k ^ #x = k ^ ` > k) _ (� = Transmit ^ #x = k ^ ` > k)(2:2) (� = WaitA
k ^ #x = k ^ ` > k) ^: (� = Transmit ^ #x = k ^ ` > k)) En(�2)(2:3) (� = WaitA
k ^ #x = k ^ ` > k) ^ : (� = Transmit ^ #x = k ^ ` > k) ^�2) �0 = Transmit ^ #x 0 = k ^ `0 > kPremise (2.1) holds, sin
e transition �1 is not enabled in states that satisfy the premise'sleft hand side; the environment transition leaves � as well as #x un
hanged, while `
annot be
ome smaller. Finally, transition �2 leads to a state where � = Transmit ^#x = k ^ ` > k . This also implies premise (2.3).For premise (2.2), we need to show that #a
k+ > 0. This premise requires an additionalinvariant, namelyS j= inv(� = Transmit) #x = #a
k Æ) ^ (� = WaitA
k) #x = 1 +#a
k Æ)The proof of this invariant follows the stru
ture of the proofs in Se
tion 7.3.From this invariant and the left hand side of the impli
ation (2:2), we
on
lude1 + #a
k � ` > k = #x = 1 +#a
k ÆHen
e, #a
k+ = #a
k �#a
k Æ > 0. 2The two leadsto properties (1) and (2)
an be
ombined by the transitivity rule, whi
hyields:(3) � =WaitA
k ^ #x = k ^ ` > k 7! #x > kProperties (1) and (3) are
ombined by the disjun
tion rule:(4) (� =WaitA
k _ � = Transmit) ^ #x = k ^ ` > k 7! #x > kSin
e the two
ontrol states WaitA
k and Transmit are the only
ontrol states of thesender, the disjun
tion on the left hand side of (4) is equivalent to true; thus, (4)
anbe simpli�ed whi
h yields(5) #x = k ^ ` > k 7! #x > kNow, from (5) we obtain[[Sender ℄℄) #x � min(#i ; 1 + #a
k)55

2QueueThe queue has two output variables. For ea
h output, the following extension propertiesare valid:#y = k ^ min(#x ;#req) > k 7! #y > k#a
k = k ^ min(#x ;#req + N) > k 7! #a
k > kWe want to show only the �rst property here.To prove the �rst property, we need the following invariants whi
h relate
ontrol anddata state, as well as
ontrol state and the lengths of the pro
essed input variables.These invariants
an be shown in the same style as the pre�x property in Se
tion 7.3.Queue j= inv (� = Empty ^ #q = 0) _(� = Nonempty ^ 1 � #q � N � 1) _(� = Full ^ #q = N)Queue j= inv (� = Empty) #y = #reqÆ ^ #a
k = #x Æ) ^(� = Nonempty) #y = #reqÆ ^ #a
k = #x Æ) ^(� = Full) #y = #reqÆ ^ #a
k + 1 = #x Æ)Queue j= inv#x Æ = #reqÆ +#qThe transitions that extend y are �2, �4, �6. Choosing these transitions as helpful tran-sitions in the output extension rule, we
an show (with ` df= min(#x ;#req)):(1) � = NonEmpty ^ #q > 1 ^ #y = k ^ ` > k 7! #y > k(2) � = Full ^ #q = N ^ #y = k ^ ` > k 7! #y > k(3) � = NonEmpty ^ #q = 1 ^ #y = k ^ ` > k 7! #y > kIn ea
h rule appli
ation, the invariants above has to be used to show that the transitions�2, �4, �6, respe
tively, are enabled.Examining the �rst two invariants above, we note that the only state where no helpfultransition is enabled when ` > k is the
ontrol state Empty .Now, be
ause of the invariants, we know that when � = Empty , then also #q = 0, and#x Æ = #reqÆ = #y = k < ` � #x 56

This means that transition �1 is enabled, sin
e #x+ > 0. Therefore, with� � � = Empty ^ #q = 0 ^ #y = k ^ ` > k	 � � = NonEmpty ^ #q = 1 ^ #y = k ^ ` > kwe got� ^ :) En(�1)Sin
e �1 leads to the state NonEmpty and in
reases the length of q to 1, without
hangingy and not de
reasing `, we also have� ^ : 	 ^ �1) 	0The property� ^ : 	
o � _ 	holds for �1, as already seen. The other transition in � are not enabled, and for � � thevalidity of � does not
hange. So, we
an use the ensure rule and
on
lude(4) � = Empty ^ #q = 0 ^ #y = k ^ ` > k7! � = NonEmpty ^ #q = 1 ^ #y = k ^ ` > kBy transitivity of 7!, we obtain from (4) and (3):(5) � = Empty ^ #q = 0 ^ #y = k ^ ` > k 7! #y > kThe properties (1), (2), (3), (5)
an be
ombined with a �nite variant of the disjun
tionrule; after invariant elimination on the left hand side, we obtain#y = k ^ min(#x ;#req) > k 7! #y > k 2Re
eiverThe liveness proof of the re
eiver is quite similar to the one for the sender. We omitthe proof here. For ea
h output of the re
eiver, it needs two appli
ations of the out-put extension rule, one appli
ation of the transitivity rule and one appli
ation of thedisjun
tion rule.7.5 CommentsThe proofs that the state ma
hines satisfy the bla
k box spe
i�
ations might seemfrighteningly
ompli
ated. We believe, however, that this is less a matter of
omplexity,57

and more a matter of the total size of the proof. The veri�
ation
onditions themselves
an be redu
ed to impli
ations in predi
ate logi
, and are not too diÆ
ult to dis
harge.The deal with the sheer number of veri�
ation
onditions, obviously some kind of toolsupport in the form of intera
tive theorem provers is needed. Sin
e the veri�
ation
onditions themselves are mainly �rst-order logi
, and no elaborate theory of streams isneeded (see [17℄ for a dis
ussion of the diÆ
ulties of stream formalizations), the demandsof the prover are not very high.Another problem is the stru
ture of the proofs. A solution might be the use of veri�
ationdiagrams [5℄ whi
h represent proof stru
tures as dire
ted diagrams. The verti
es arelabeled with state predi
ates, the labels with transitions. Ea
h transition represents averi�
ation
ondition.

58

8 Con
lusionThis report shows how to
ombine state-based and history-based spe
i�
ation and ver-i�
ation of safety and liveness properties of distributed systems. Properties for statema
hines are formulated in a UNITY-like language; sin
e our approa
h is based onproof prin
iples for invariants and leadsto properties, other linear-time temporal logi
s[25, 24℄
an be used as well.Data
ow systems are interferen
e free: Components
annot disable transitions of other
omponents. Noninterferen
e means that our proof system is
ompositional for bothsafety and liveness properties. This has also been exploited for UNITY by Charpentierand Chandy [16℄; however, they do not use their data
ow properties to reason about
omplete
ommuni
ation histories.Sin
e the number of veri�
ation
onditions for
on
rete systems
an be quite large, somekind of tool support is needed. Tool support is not infeasible, sin
e ea
h
ondition itselfis rather simple and
an be expressed in �rst-order logi
. In parti
ular, the bla
k boxproperties that refer to potentially in�nite streams are derived from state properties thatrefer only to �nite streams. Hen
e, the
omparatively simple theory of lists is suÆ
ientto dis
harge the veri�
ation
onditions; the diÆ
ulties of the en
oding of in�nite streamsor lazy lists |whi
h requires
ore
ursion or a CPO theory [17℄|
an be avoided.As a
ase study in tool support, the safety properties of the
ommuni
ation system exam-ple have been veri�ed using the STeP [2℄ proof environment. Ex
ept for the instantiationof some stream axioms, the veri�
ation
onditions are dis
harged automati
ally. Using atheorem prover with stronger automatization, su
h as Isabelle [29℄, would further redu
ethe manual e�ort for dis
harging the proof obligations. Re
ently, a Unity formalizationin Isabelle has been developed [30℄, whi
h
ould probably be adapted to our framework.Previous work on the
ombination of state ma
hine des
riptions and the stream-basedspe
i�
ation of Fo
us has dealt primarily with stream-based semanti
s of state ma-
hines [11, 19℄; the
onne
tion of that work to the proof prin
iples in this report andBroy's veri�
ation of the Alternating Bit Proto
ol [6℄ has to be explored. An open ques-tion is also the
onne
tion to state ma
hine re�nement
al
uli [32℄ and re�nement ingeneral [9, 10℄. For the spe
ial
ase of ar
hite
tural re�nement [31℄, our proof te
hniquesallow the formulation and veri�
ation of invariants.Our spe
i�
ation and proof te
hniques are so far only suited for time-independent sys-tems. The extension of history-based spe
i�
ations raises some interesting questions [8℄.A straightforward solution might be to expli
itly in
lude \time ti
ks" in the messagestreams [18℄. Su
h time ti
ks
an also be used to ensure progress of a state ma
hine.But also without expli
it time, progress is not restri
ted to the weak fairness
onditionof Se
tion 3.4. An alternative would be to just demand that some transition is takenwhenever at least one transition is persistently enabled; the de�nition of interleaving
omposition, however, would be slightly more
ompli
ated.Finally, our te
hniques
an be adapted to di�erent state-based des
ription te
hniques.
59

SDL [1, 23℄ and ROOM [33℄, in parti
ular, would be good
andidates for a
on
rete statema
hine syntax, given their use in the spe
i�
ation of
ommuni
ation proto
ols.A
knowledgments. This report bene�ted from many stimulating dis
ussions withManfred Broy. We thank Stephan Merz, Bernhard Rumpe, Robert Sandner and Bern-hard S
h�atz for
omments on a draft version of this report.

60

Referen
es[1℄ F. Beline, D. Hogrefe, and A. Sarma. SDL with Appli
ations from Proto
ol Spe
i�-
ation. Prenti
e-Hall, 1991.[2℄ N. Bj�rner, A. Browne, E. Chang, M. Col�on, A. Kapur, Z. Manna, H. B. Sipma, andT. E. Uribe. STeP: Dedu
tive-Algorithmi
 Veri�
ation of Rea
tive and Real-timeSystems. In CAV'96, volume 1102 of Le
ture Notes in Computer S
ien
e, pages415{418, 1996.[3℄ M. Breitling, U. Hinkel, and K. Spies. Formale Entwi
klung verteilter reaktiverSysteme mit Fo
us. In Formale Bes
hreibungste
hniken f�ur verteilte Systeme,8. GI/ITG Fa
hgespr�a
h, 1998.[4℄ J. D. Bro
k and W. B. A
kermann. S
enarios: A model of nondeterministi

om-putation. In J. Diaz and I.Ramos, editors, Le
ture Notes in Computer S
ien
e 107,pages 225{259, 1981.[5℄ I. A. Browne, Z. Manna, and H. B. Sipma. Generalized temporal veri�
ation dia-grams. In Le
ture Notes in Computer S
ien
e 1026, pages 484{498, 1995.[6℄ M. Broy. From states to histories. To be published.[7℄ M. Broy. Appli
ative real time programming. In FIP World Congress, InformationPro
essing 83, pages 259{264, 1983.[8℄ M. Broy. Fun
tional spe
i�
ation of time sensitive
ommuni
ating systems. InJ. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Models, Formalism,Corre
tness. Le
ture Notes in Computer S
ien
e 430, pages 153{179. Springer, 1990.[9℄ M. Broy. Compositional re�nement of intera
tive systems. Working Material, In-ternational Summer S
hool on Program Design Cal
uli, August 1992.[10℄ M. Broy. (Inter-) a
tion re�nement: the easy way. Working Material, InternationalSummer S
hool on Program Design Cal
uli, August 1992.[11℄ M. Broy. The Spe
i�
ation of System Components by State Transition Dia-grams. Te
hni
al Report TUM-I9729, Institut f�ur Informatik, Te
hnis
he Univer-sit�at M�un
hen, 1997.[12℄ M. Broy, F. Dederi
hs, C. Dendorfer, M. Fu
hs, T. F. Gritzner, and R. Weber.The Design of Distributed Systems: An Introdu
tion to Fo
us|Revised Version.Te
hni
al Report TUM-I9202-2, Institut f�ur Informatik, Te
hnis
he Universit�atM�un
hen, 1993.[13℄ M. Broy, F. Huber, B. Pae
h, B. Rumpe, and K. Spies. Software and system mod-eling based on a uni�ed formal semanti
s. In Manfred Broy and Bernhard Rumpe,61

editors, Requirements Targeting Software and Systems Engineering, InternationalWorkshop RTSE'97, LNCS 1526. Springer, 1998.[14℄ M. Broy, F. Huber, and B. S
h�atz. AutoFo
us { ein Werkzeugprototyp zur Entwi
k-lung eingebetteter Systeme. Informatik Fors
hung und Entwi
klung, 14(3):121{134,1999.[15℄ M. Broy and K. St�len. Fo
us on system development. To be published.[16℄ M. Charpentier and K. M. Chandy. Towards a
ompositional approa
h to the designand veri�
ation of distributed systems. In J.M. Wing, J. Wood
o
k, and J. Davies,editors, FM'99 - Formal Methods. Le
ture Notes in Computer S
ien
e 1708, pages570{589. Springer, 1999.[17℄ M. Devillers, D. GriÆoen, and O. M�uller. Possibly in�nite sequen
es in theoremprovers: A
omparative study. In TPHOL'97, Pro
. of the 10th International Work-shop on Theorem Proving in Higher Order Logi
s, LNCS 1275, pages 89{104, 1997.[18℄ M. Fu
hs and K. St�len. A formal method for hardware/software
o-design. Te
h-ni
al Report TUM-I9517, Institut f�ur Informatik, Te
hnis
he Universit�at M�un
hen,1995.[19℄ R. Grosu and B. Rumpe. Con
urrent timed port automata. Te
hni
al ReportTUM-I9533, Institut f�ur Informatik, Te
hnis
he Universit�at M�un
hen, 1995.[20℄ E. C. R. Hehner. A Pra
ti
al Theory of Programming. Springer-Hall, 1993.[21℄ F. Huber, B. S
h�atz, A. S
hmidt, and K. Spies. Autofo
us|a tool for distributedsystems spe
i�
ation. In Pro
eedings FTRTFT'96 | Formal Te
hniques in Real-Time and Fault-Tolerant Systems, LNCS 1135, 1996.[22℄ D. Hutter, H. Mantel, G. Ro
k, and W. Stephan. Nebenl�au�ge verteilte Systeme:Ein Produ
er/Consumer Beispiel. Internal Manus
ript, DFKI, 1998.[23℄ ITU-T. Re
ommendation Z.100, Spe
i�
ation and Des
ription Language (SDL).ITU, 1993.[24℄ L. Lamport. The temporal logi
 of a
tions. ACM Transa
tions on ProgrammingLanguages, 6(3):872{923, May 1994.[25℄ Z. Manna and A. Pnueli. The Temporal Logi
 of Rea
tive and Con
urrent Systems| Spe
i�
ation. Springer, 1991.[26℄ J. Misra. A logi
 for
on
urrent programming: Progress. Journal of Computer andSoftware Engineering, 3(2):273{300, 1995.[27℄ J. Misra. A logi
 for
on
urrent programming: Safety. Journal of Computer andSoftware Engineering, 3(2):239{272, 1995.62

[28℄ L. C. Paulson. Logi
 and Computation. Cambridge University Press, 1987.[29℄ L. C. Paulson. Isabelle: A Generi
 Theorem Prover, volume 828 of Le
ture Notesin Computer S
ien
e. Springer, 1994.[30℄ L. C. Paulson. Me
hanizing UNITY in Isabelle. Te
hni
al Report 467, Universityof Cambridge, Computer Laboratory, 1999.[31℄ J. Philipps and B. Rumpe. Re�nement of pipe and �lter ar
hite
tures. In J.M. Wing,J. Wood
o
k, and J. Davies, editors, FM'99 - Formal Methods. Le
ture Notes inComputer S
ien
e 1708, pages 96{115. Springer, 1999.[32℄ B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Sys-teme. Herbert Utz Verlag Wissens
haft, 1996. PhD thesis, Te
hnis
he Universit�atM�un
hen.[33℄ B. Seli
, G. Gullekson, and P. T. Ward. Real-time obje
t-oriented modeling. JohnWiley & Sons, 1994.

63

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRe
hnerar
hitekturenbisher ers
hienen :Reihe A Liste aller ers
hienenen Beri
hte von 1990-1994auf besondere Anforderung342/01/95 A Hans-Joa
him Bungartz: Higher Order Finite Elements on SparseGrids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performan
e ofParallel Computers: Order Statisti
s and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of theKrone
ker Produ
t of Identi
al Servers to a Redu
ed Produ
t Spa
e342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van deLiefvoort: Auto-Correlation of Lag-k For Customers DepartingFrom Semi-Markov Pro
esses342/05/95 A Sas
ha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:Appli
ations to Multi-dimensional S
hr�odinger Problems342/06/95 A Maximilian Fu
hs: Formal Design of a Model-N Counter342/07/95 A Hans-Joa
him Bungartz, Stefan S
hulte: Coupled Problems in Mi-
rosystem Te
hnology342/08/95 A Alexander PfaÆnger: Parallel Communi
ation on Workstation Net-works with Complex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-
ow Net-works - with an Emphasis on Completeness342/10/95 A Ketil St�len, Max Fu
hs: A Formal Method for Hardware/SoftwareCo-Design342/11/95 A Thomas S
hnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement ofM
Millan's Unfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Che
king System Properties viaInteger Programming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-Point Data
ow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-pute the Con
urren
y Relation of Free-Choi
e Signal TransitionGraphs342/16/95 A Bernhard S
h�atz, Katharina Spies: Formale Syntax zur logis
henKernspra
he der Fo
us-Entwi
klungsmethodik342/17/95 A Georg Stellner: Using CoChe
k on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller:Workshop on PVM, MPI, Tools and Appli
ations

Reihe A342/19/95 A Thomas S
hnekenburger: Integration of Load Distribution intoParMod-C342/20/95 A Ketil St�len: Re�nement Prin
iples Supporting the Transition fromAsyn
hronous to Syn
hronous Communi
ation342/21/95 A Andreas Listl, Giannis Bozas: Performan
e Gains Using Subpagesfor Ca
he Coheren
y Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with BoundedTreewidth into Optimal Hyper
ubes342/23/95 A Petr Jan�
ar, Javier Esparza: De
iding Finiteness of Petri Nets upto Bisimulation342/24/95 A M. Jung, U. R�ude: Impli
it Extrapolation Methods for VariableCoeÆ
ient Problems342/01/96 A Mi
hael Griebel, Tilman Neunhoe�er, Hans Regler: Algebrai
Multigrid Methods for the Solution of the Navier-Stokes Equationsin Compli
ated Geometries342/02/96 A Thomas Graus
hopf, Mi
hael Griebel, Hans Regler: AdditiveMultilevel-Pre
onditioners based on Bilinear Interpolation, MatrixDependent Geometri
 Coarsening and Algebrai
-Multigrid Coars-ening for Se
ond Order Ellipti
 PDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynami
 Edge-Disjoint Em-beddings of Complete Binary Trees into Hyper
ubes342/04/96 A Thomas Hu
kle: EÆ
ient Computation of Sparse Approximate In-verses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode:OMIS | On-line Monitoring Interfa
e Spe
i�
ation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semanti
s for PetriNet Components342/07/96 A Ri
hard Mayr: Some Results on Basi
 Parallel Pro
esses342/08/96 A Ralph Raderma
her, Frank Weimer: INSEL Syntax-Beri
ht342/09/96 A P.P. Spies, C. E
kert, M. Lange, D. Marek, R. Raderma
her,F. Weimer, H.-M. Windis
h: Spra
hkonzepte zur Konstruktionverteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode:PFSLib { A File System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anes
u: The Algebra of Stream Pro-
essing Fun
tions342/12/96 A Javier Esparza: Rea
hability in Live and Safe Free-Choi
e PetriNets is NP-
omplete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-Many Data-
ow Networks342/14/96 A Giannis Bozas, Mi
hael Jaedi
ke, Andreas Listl, BernhardMits
hang, Angelika Reiser, Stephan Zimmermann: On Transform-ing a Sequential SQL-DBMS into a Parallel One: First Results andExperien
es of the MIDAS Proje
t

Reihe A342/15/96 A Ri
hard Mayr: A Tableau System for Model Che
king Petri Netswith a Fragment of the Linear Time � -Cal
ulus342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezi�kation vonmobilen, dynamis
hen Fo
us-Netzen342/17/96 A Ri
hard Mayr: Model Che
king PA-Pro
esses342/18/96 A Mi
haela Huhn, Peter Niebert, Frank Wallner: Put your ModelChe
ker on Diet: Veri�
ation on Lo
al States342/01/97 A Tobias M�uller, Stefan Lamberts, Ursula Maier, Georg Stellner:Evaluierung der Leistungsf"ahigkeit eines ATM-Netzes mit paral-lelen Programmierbibliotheken342/02/97 A Hans-Joa
him Bungartz and Thomas Dornseifer: Sparse Grids: Re-
ent Developments for Ellipti
 Partial Di�erential Equations342/03/97 A Bernhard Mits
hang: Te
hnologie f"ur Parallele Datenbanken -Beri
ht zum Workshop342/04/97 A ni
ht ers
hienen342/05/97 A Hans-Joa
him Bungartz, Ralf Ebner, Stefan S
hulte: Hierar
his-
he Basen zur eÆzienten Kopplung substrukturierter Probleme derStrukturme
hanik342/06/97 A Hans-Joa
him Bungartz, Anton Frank, Florian Meier, Tilman Ne-unhoe�er, Stefan S
hulte: Fluid Stru
ture Intera
tion: 3D Numer-i
al Simulation and Visualization of a Mi
ropump342/07/97 A Javier Esparza, Stephan Melzer: Model Che
king LTL using Con-straint Programming342/08/97 A Niels Reimer: Untersu
hung von Strategien f�ur verteiltes Last- undRessour
enmanagement342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compiler gi
342/10/97 A Manfred Broy, Franz Regensburger, Bernhard S
h�atz, KatharinaSpies: The Steamboiler Spe
i�
ation - A Case Study in Fo
us342/11/97 A Christine R�o
kl: How to Make Substitution Preserve Strong Bisim-ilarity342/12/97 A Christian B. Cze
h: Ar
hitektur und Konzept des Dy
os-Kerns342/13/97 A Jan Philipps, Alexander S
hmidt: TraÆ
 Flow by Data Flow342/14/97 A Norbert Fr�ohli
h, Rolf S
hlagenhaft, Josef Fleis
hmann: Partition-ing VLSI-Cir
uits for Parallel Simulation on Transistor Level342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf�uhrungund zur Visualisierung von INSEL-Programmen342/16/97 A Niels Reimer, J�urgen Rudolph, Katharina Spies: Von FOCUS na
hINSEL - Eine Aufzugssteuerung342/17/97 A Radu Grosu, Ketil St�len, Manfred Broy: A Denotational Model forMobile Point-to-Point Data-
ow Networks with Channel Sharing342/18/97 A Christian R�oder, Georg Stellner: Design of Load Management forParallel Appli
ations in Networks of Heterogenous Workstations

Reihe A342/19/97 A Frank Wallner: Model Che
king LTL Using Net Unfoldings342/20/97 A Andreas Wolf, Andreas Kmo
h: Einsatz eines automatis
henTheorembeweisers in einer taktikgesteuerten Beweisumgebung zurL�osung eines Beispiels aus der Hardware-Veri�kation { Fallstudie {342/21/97 A Andreas Wolf, Mar
 Fu
hs: Cooperative Parallel Automated The-orem Proving342/22/97 A T. Ludwig, R. Wism�uller, V. Sunderam, A. Bode: OMIS - On-lineMonitoring Interfa
e Spe
i�
ation (Version 2.0)342/23/97 A Stephan Merkel: Veri�
ation of Fault Tolerant Algorithms UsingPEP342/24/97 A Manfred Broy, Max Breitling, Bernhard S
h�atz, Katharina Spies:Summary of Case Studies in Fo
us - Part II342/25/97 A Mi
hael Jaedi
ke, Bernhard Mits
hang: A Framework for ParallelPro
essing of Aggregat and S
alar Fun
tions in Obje
t-RelationalDBMS342/26/97 A Mar
 Fu
hs: Similarity-Based Lemma Generation with Lemma-Delaying Tableau Enumeration342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase Frame-Work for the Evaluation and Maintenan
e of Automated TheoremProver Data (in
l. Do
umentation)342/29/97 A Radu Grosu, Ketil St�len: Compositional Spe
i�
ation of MobileSystems342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. S
hie-mann, T. S
hnekenburger (Herausgeber): "`AnwendungsbezogeneLastverteilung"', ALV'98342/02/98 A Ursula Hinkel: Home Shopping - Die Spezi�kation einer Kommu-nikationsanwendung in Fo
us342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung von Be-triebssystemkonzepten342/04/98 A Stefan Bis
hof, Ernst-W. Mayr: On-Line S
heduling of ParallelJobs with Runtime Restri
tions342/05/98 A St. Bis
hof, R. Ebner, Th. Erleba
h: Load Balan
ing for Problemswith Good Bise
tors and Appli
ations in Finite Element Simula-tions: Worst-
ase Analysis and Pra
ti
al Results342/06/98 A Giannis Bozas, Susanne Kober: Logging and Crash Re
overy inShared-Disk Database Systems342/07/98 A Markus Pizka: Distributed Virtual Address Spa
e Management inthe MoDiS-OS342/08/98 A Niels Reimer: Strategien f�ur ein verteiltes Last- und Ressour
en-management342/09/98 A Javier Esparza, Editor: Pro
eedings of INFINITY'98342/10/98 A Ri
hard Mayr: Lossy Counter Ma
hines342/11/98 A Thomas Hu
kle: Matrix Multilevel Methods and Pre
onditioning

Reihe A342/12/98 A Thomas Hu
kle: Approximate Sparsity Patterns for the Inverse ofa Matrix and Pre
onditioning342/13/98 A Antonin Ku
era, Ri
hard Mayr: Weak Bisimilarity with In�nite-State Systems
an be De
ided in Polynomial Time342/01/99 A Antonin Ku
era, Ri
hard Mayr: Simulation Preorder on SimplePro
ess Algebras342/02/99 A Johann S
humann, Max Breitling: Formalisierung und Beweis einerVerfeinerung aus FOCUS mit automatis
hen Theorembeweisern {Fallstudie {342/03/99 A M. Bader, M. S
himper, Chr. Zenger: Hierar
hi
al Bases for theInde�nite Helmholtz Equation342/04/99 A Frank Strobl, Alexander Wisspeintner: Spe
i�
ation of an ElevatorControl System342/05/99 A Ralf Ebner, Thomas Erleba
h, Andreas Ganz, Claudia Gold,Clemens Harl�nger, Roland Wism"uller: A Framework for Re
ord-ing and Visualizing Event Tra
es in Parallel Systems with LoadBalan
ing342/06/99 A Mi
hael Jaedi
ke, Bernhard Mits
hang: The Multi-OperatorMethod: Integrating Algorithms for the EÆ
ient and Parallel Eval-uation of User-De�ned Predi
ates into ORDBMS342/07/99 A Max Breitling, Jan Philipps: Bla
k Box Views of State Ma
hines

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRe
hnerar
hitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebrai
 Spe
i�
ations342/2/90 B J�org Desel: On Abstra
tion of Nets342/3/90 B J�org Desel: Redu
tion and Design of Well-behaved Free-
hoi
e Sys-tems342/4/90 B Franz Abstreiter, Mi
hael Friedri
h, Hans-J�urgen Plewan: DasWerkzeug runtime zur Beoba
htung verteilter und paralleler Pro-gramme342/1/91 B Barbara Pae
h1: Con
urren
y as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox-Anwenderbes
hreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop�uber Parallelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Meth-ods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent VirtuallyShared Memory S
heme: Formal Spe
i�
ation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Spe
i�
ationand Corre
tness Proof of a Virtually Shared Memory S
heme342/7/91 B W. Reisig: Con
urrent Temporal Logi
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelre
hner: Theorie, Hard-ware, Software, Anwendungen342/1/93 B Max Fu
hs: Funktionale Spezi�kation einer Ges
hwindigkeits-regelung342/2/93 B Ekkart Kindler: Si
herheits- und Lebendigkeitseigens
haften: EinLiteratur�uberbli
k342/1/94 B Andreas Listl; Thomas S
hnekenburger; Mi
hael Friedri
h: ZumEntwurf eines Prototypen f�ur MIDAS

