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AbstratSystem spei�ation by state mahines together with property spei�ation andveri�ation by temporal logis are by now standard tehniques to reason aboutthe ontrol ow of hardware omponents, embedded systems and ommuniationprotools. The tehniques to reason about the dataow within a system, however,are less well developed.This report adapts a UNITY-like formalism for spei�ation and veri�ation tosystems of asynhronously ommuniating omponents. The omponents them-selves are spei�ed as state mahines. The resulting proof tehniques allows ab-strat and ompositional reasoning about dataow properties of systems.
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1 IntrodutionTo allow preise reasoning about a hard- or software system, a mathematial founda-tion for both systems and properties is a prerequisite. For some lasses of systemstemporal logis have been used suessfully to formalize and to reason about their prop-erties. Prominent examples are iruit design and embedded systems software, wherethe loked or yli operation model leads to a straightforward notion of a system state.The distintion between \allowed" and \forbidden" system states leads to natural invari-ane properties and proof tehniques. Moreover, both hardware iruits and embeddedsoftware have essentially a �nite state spae, and exhaustive veri�ation tehniques, suhas model heking, have been used with some suess.Temporal logi and model heking are less suessful, however, when the dataow be-tween loosely oupled omponents that ommuniate asynhronously via ommuniationhannels is examined. Note that it is not simply a question of guessing an upper boundof the hannel bu�er size. Sometimes a system has a |for all purposes| unboundedbu�er size. When examining an email-based groupware system, what would be the sizeof the internet between partiipating parties; and what would be the upper bound ofthe length of the list of unread mails?For suh systems, the state-based glass box view of a omponent is less useful than theblak box view of its input and output. Blak box properties of dataow omponentsand systems an be onisely formulated as relations over the ommuniation history ofomponents [12, 3, 13℄; suh properties are inherently modular and allow easy reasoningabout the global system behavior given the omponent properties.But also for data ow omponents a state-based glass box view an be helpful. Statemahines lead to natural proofs of safety properties by indution; they provide an op-erational intuition that an aid in �nding ranking funtions for some lasses of livenessproofs; and �nally, state mahines are good design douments for a omponent's imple-mentation.In this report we show |based on the ideas of Broy's veri�ation of the AlternatingBit Protool [6℄| how abstrat spei�ations of the blak box view of a system orsystem omponent an be ombined with state mahine-based desriptions of the systemoperations. Thus we ombine tehniques for easy veri�ation of dataow properties withdesriptions that lead to eÆient implementations of a system.The property spei�ation and veri�ation tehnique is adapted from UNITY [27, 26℄.The UNITY axioms for the safety and progress operators are proven to be orret inour mathematial model. Moreover, our framework allows ompositional reasoning:Properties of single omponents an be used to dedue properties of the whole system.This report is strutured as follows: In Setion 2 we introdue the mathematial basisfor the blak box view of omponents and systems; Setion 3 introdues the abstratsyntax and the semantis of state mahines and their graphial representation, statetransition diagrams. Safety and progress properties together with their proof tehniques
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are desribed in Setions 4 and 5. The blak box and state mahine spei�ations arerelated in Setion 6. In partiular, it is shown how state mahine properties an beused to derive properties of the state mahine's blak box view. Setion 7 ontains anextended example. The onlusion (Setion 8) summarizes the results and ontains anoutlook on future work.
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2 Blak Box Spei�ationsA dataow system is a network of omponents. Eah omponent has input and outputports. The ports are onneted by direted hannels. The blak box view regards onlythe ommuniation between omponents and abstrats from the internal workings of theomponents.Fous o�ers a mathematial basis for the blak box view of dataow systems. Adetailed introdution into Fous an be found in [12, 3℄. This setion ontains onlya short overview over the onepts used in the rest of the report. The ommuniationhistory of hannels is represented by message sequenes alled streams (Setion 2.1),omponents are modeled as relations between ommuniation histories (Setion 2.2),and systems are modeled as the omposition of omponents (Setion 2.3); omponentomposition results again in a omponent.2.1 StreamsThe ommuniation history of system hannels is modeled by streams. A stream is a�nite or in�nite sequenes of messages. The empty stream is denoted by h i. Finitestreams an be enumerated, for example: h1; 2; 3; : : :10i. For a set of messages Msg, theset of �nite streams over Msg is denoted by Msg�, that of in�nite streams by Msg1. ByMsg! we denote Msg� [Msg1.Given two streams s; t and j 2 N ,� #s denotes the length of s. If s is �nite, #s is the number of elements in s; if s isin�nite, #s =1.� s _ t denotes the onatenation of s and t . If s is in�nite, s _ t = s.� s v t holds if s is a pre�x of t :9 u 2 Msg! � s _ u = t� s j denotes the result of onatenating j opies of s; similarly, s1 results in theonatenation of in�nitely many opies of s.� s:j is the j -th element of s, if 1 � j � #s, and is unde�ned otherwise.� s# j is the pre�x of s with length j , if 0 � j � #s, and is unde�ned otherwise.� ft:s denotes the �rst element of a stream, i.e. ft:s = s:1, if s 6= h i.� rt:s is the stream s without the �rst element: s = hft:si_ rt:s for all s 6= h i.
6



The set of streams Msg! with the pre�x order v forms a CPO with least element h i. Ahain is a set f si j i 2 N g of streams, where for eah i : si v si+1. Sine the set ofstreams is a CPO, eah suh hain has a unique least upper bound s whih is denotedby Ff si j i 2 NgThe operators de�ned above as well as the notion of hains and least upper bounds anbe extended pointwise to tuples of streams.A funtion out of Msg!1 ! Msg!2 is alled a ontinuous funtion [28℄, i�Ff f (si) j i 2 Ng = f (Ff si j i 2 Ng)Continuous funtions are also monotoni:x v y ) f (x ) v f (y)An example of a ontinuous funtion is the �lter funtions; Mss is the substream ofs that ontains only messages also ontained in the set M .The �lter funtion has the following properties:Msh i = h im 2 M ) Ms(s a hmi) = (Mss)a hmim 62 M ) Ms(s a hmi) = (Mss)2.2 ComponentsDataow omponents are modeled as relations over ommuniation histories. The rela-tions are expressed using formulas in prediate logi where the formula's free variablesrange over streams. They represent the ommuniation history over the omponent'sinput and output ports.The blak box behavior of a dataow omponent U is spei�ed by giving a set of inputhannel identi�ers IU , a set of output hannel identi�ers OU (where IU \OU = ?) anda prediate (for simpliity also denoted by U ) with free variables from IU and OU . Eahhannel identi�er has an assigned type that desribes the set of messages allowed onthat hannel. We do not treat the typing of the identi�ers formally in this paper.Figure 1 shows a graphial representation of a omponent with two input hannels i1and i2 of type M1 and M2, where M1 \ M2 = ?, and a single output hannel o oftype M = M1 [ M2. The intended blak box behavior of this omponent is to mergethe messages on the two input hannels: all inputs reeived on the input hannels areforwarded to the output hannel o.This behavior is spei�ed with the sets for the input and output identi�ersIMerge df= fi1; i2g; OMerge df= fog 7



PSfrag replaementsIdentity i1 : M1i2 : M2 o : MMerge
Figure 1: Component Mergeand the prediateMerge df, M1so = i1 ^ M2so = i2stating that the messages sent on o of type Mj are exatly the messages, in the sameorder, as reeived on hannel ij (for j 2 f1; 2g).Component behavior an be spei�ed in the following more readable style:Mergein i1 : M1; i2 : M2out o : MM1so = i1M2so = i2Not all spei�ations in Fous are sensible: It is easy to speify inonsistent omponentsby prediates that restrit the possible input histories of a omponent. A omponent isrealizable, if it is possible to ahieve its behavior step by step in a way that is ausallyorret. This means in partiular that it is monotoni: It annot take bak messagesthat were sent earlier.A detailed disussion of these requirements and their formalizations an be found in [15℄.The spei�ations in this report are all onsistent and realizable.2.3 Blak Box CompositionThe blak box view of a system an be derived from the blak box views of the sys-tem's omponents by omposition. Components may share input hannels, but eahoutput hannel must be ontrolled by a single omponent. This is aptured below in thede�nition of ompatibility.
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PSfrag replaementsIdentity i1 : M1i2 : M2 o : M o1 : M1o2 : M2Merge Split
Figure 2: System MultiplexCompatibility. Two omponents U and V are ompatible if they do not share outputhannels:OU \ OV = ?Composition. Compatible omponents an be omposed. The result of the ompo-sition U 
 V is again a omponent spei�ation. Channels with idential names areonneted, the output of the omposition is the union of the two omponent's outputhannels as output, and the input of the omposition onsists of those input hannelsthat remain unonneted.IU
V df= (IU [ IV ) n (OU [ OV ); OU
V df= OU [OVThe system behavior is the onjuntion of the omponent behavior prediates:U 
 V df, U ^ VNote that we deided to keep onneted hannels visible, so that no information islost that ould be useful in formal proofs. Although not all internals are hidden inour approah we still all it a blak box view sine the behavior is only desribed inan abstrat way through a relation of streams, as opposed to state mahines that usebu�ers, states and transitions as shown in the next setion.Figure 2 shows a system that models a multiplexing data transfer hannel. In additionto the merge omponent, it onsists of a split omponent, spei�ed as:Splitin o : Mout o1 : M1; o2 : M2o1 = M1soo2 = M2so 9



The omposition of the two blak box spei�ations is shown below:Multiplexin i1 : M1; i2 : M2out o : M ; o1 : M1; o2 : M2M1so = i1M2so = i2o1 = M1soo2 = M2so2.4 Pre�x Properties and Length PropertiesA blak box spei�ation an be seen as a desription of the input and output propertiesof a omponent. In pratie, properties of dataow systems are often expressed as aonjuntion of equationsf (o) = F (i1; : : : in)where o 2 O and F is a funtion that desribes the output on o given input historiesi1; : : : in 2 I . Both f and F are assumed to be ontinuous. In many ases, f will just bethe identity funtion.Suh equations an be split into a pre�x propertyf (o) v F (i1; : : : in)and a length property#f (o) � #F (i1; : : : in)For example, the spei�ation of Merge an equivalently be formulated as follows:Mergein i1 : M1; i2 : M2out o : MM1so v i1M2so v i2#M1so � #i1#M2so � #i2Pre�x properties are safety properties: Their violation an be deteted as soon as anillegal output is produed. Length properties are liveness properties: Their violationannot be deteted by an observer, sine it is always possible that the output is produedsome time in the future. Liveness properties put demands on omplete exeutions of aomponent, while safety properties restrit partial exeutions.10



3 State MahinesIn the previous setion blak box spei�ations of omponents and systems are intro-dued. With these more abstrat spei�ations only the relation between omplete inputand output message streams is onsidered, but nothing is said about how the behaviorof a omponent is ahieved. In ontrast, state mahines desribe a behavior in a stepwisemanner.In this setion we show how dataow omponents an be spei�ed by state mahines.We use the term state mahine both for their abstrat syntax (state transition systems,Setion 3.2) and for their onrete graphial representation (state transition diagrams,Setion 3.3). Setion 3.4 de�nes the semantis of state mahines, Setion 3.5 theiromposition.First we give a formal de�nition of variable valuations for an assertion. Variable valu-ations allow us to talk about the validity of assertions in the di�erent states of a statemahine exeution.3.1 Variable ValuationsDe�ning Var as the universe of all (unprimed) variables, we de�ne a valuation � as afuntion that assigns to eah variable in Var a value from the variable's type. By free(�)we denote the set of free variables in a logial formula �. If an assertion � evaluates totrue when eah variable v 2 free(�) is replaed by �(v), we write� j= �Variable names an be primed : For example, v 0 is a new variable name that results fromputting a prime behind v . We extend priming to setsV 0 df= f v 0 j v 2 V gand to valuations: Given a valuation � of variables in Var, �0 is a valuation of variablesin V 0 with�0(v 0) = �(v) for all variables v 2 VarPriming an also be extended to prediates, funtions and other expressions: If 	 is anassertion with free(	) � V , then 	0 is the assertion that results from priming all freevariables. Thus, free(	0) = (free(	))0. Similarly, any expression expr0 just denotes theexpression expr with all variables primed.Note that an unprimed valuation � assigns values to all unprimed variables, while aprimed valuation � 0 only assigns values to all primed variables. If an assertion � ontainsboth primed and unprimed variables, we need two valuations to determine its truth. If� evaluates to true, we write�;� 0 j= � 11



Two valuations an oinide on a subset V of Var, de�ned as� V= � df, 8 v 2 V � �(v) = �(v)3.2 State Transition SystemsA state transition system (STS) S is a tuple(I ;O ;A; I;� )with the following omponents:� I ;O : Sets of input and output hannel variables with I \ O = ?. Eah variablein I and O ranges over �nite streams. These variables hold the ommuniationhistory from the environment to the omponent and from the omponent to itsenvironment, respetively.� A: A set of variables ontaining loal state attributes of the STS (variables thathold the ontrol state of the mahine or some additional data) together with theset f iÆ j i 2 I g. We assume again A \ I = ? = A \ O . The variables iÆ alsorange over �nite streams; they stand for that part of the input i that has alreadybeen proessed by the state mahine. The part of i that has not been proessedyet is denoted by i+, and uniquely de�ned viai = iÆ _ i+Sine our state mahines ensure that iÆ v i , i+ is well-de�ned. Intuitively, i+ isthe impliit ommuniation bu�er of the asynhronous ommuniation.We introdue V df= I[O[A as the set ontaining all variables of an STS. Sometimeswe refer to the variables in I as external variables, while we all the variables inO [ A ontrolled variables.� I: An assertion over the variables V whih haraterizes the set of initial states.We require that I is satis�able.This means that there is a valuation � that satis�esthe initial assertion and this validity does not depend on i 2 I nor is it restritingthe values i 2 I , i.e. the valuations for i 2 I an be exhanged arbitrarily:9� � � j= I ^ �8� � � O[A= � ) � j= I�Moreover, I asserts that initially no input has been proessed:I ) iÆ = h i for all i 2 I
12



� � : A �nite set of transitions. Eah transition � 2 � is an assertion over thevariables V [ V 0. The unprimed variables stand for variable valuations in theurrent state, the primed ones for valuations in the suessor state.Eah transition � 2 � must ful�ll the following requirements for all i 2 I ; o 2 O .It may not take bak messages it already sent, it may not undo the reeipt of amessage, it an only read what was sent to the omponent and the environment isnot allowed to take bak input:� ) o v o 0 ^ iÆ v iÆ0 ^ iÆ0 v i ^ i v i 0Transitions an only very weakly restrit the hanges of the external variables I ,sine nothing should be assumed about the environment. The only onstraint ofthe environment is that it may only extend the streams that are assoiated (bythe valuations) with the variables in I , but in an arbitrary way. This an beformalized as follows: If a transition � leads from state � to state � (valuationsan be interpreted as states), this transition an ontain some spei� hanges ofthe input variables. It must be shown that the same transition is also valid withan arbitrary extension of the input variables. This means that for all Val ;�;:�;� 0 j= � ^ � O[A=  ^ 8 i 2 I � �(i) v (i) ) �; 0 j= �In addition to the transitions in � there is always an impliit environment transi-tion � � whih abstrats the possible behavior of the environment of S. It is de�nedas follows:� � df, ^v2O[A v = v 0 ^ î2I i v i 0The environment transition leaves all ontrolled variables unhanged, while theinput variables may be extended. The environment transition, too, obeys therestritions posed on the transitions in � . The fairness of transitions is reetedin the de�nition of exeutions in Setion 3.4.Enabledness In Setion 3.4, states of an STS are formalized as valuations for thevariables V . Given a valuation �, we say that a transition � is enabled in �, i� there isa valuation � for V suh that�;� 0 j= �We write� j= En(�)for the assertion that � is enabled in �. Note that the environment transition � � isenabled in every state (with � = �). 13



To use the prediate in arbitrary (but of ourse well-formed) formulas, it an also bede�ned syntatially as follows:En(�) df= 9 v 0 2 Var0 � �If a transition is not enabled, we denote this as � j= : En(�).3.3 State Transition DiagramsTypially, an STS is not spei�ed by de�ning formally all elements of the quintuple,but by a state transition diagram (STD). We use a subset of the STD syntax from theAutoFous CASE tool [14, 21℄. The hannel identi�ers in I and O are not diretlyspei�ed in an STD; they are taken from system struture diagrams, whih desribeomponent interfaes as well as omponent interonnetion.STDs are direted graphs where the verties represent (ontrol) states and the edgesrepresent transitions between states. One vertex is a designated initial state; graphi-ally this vertex is marked by an opaque irle in its left half. Edges are labeled; eahlabel onsists of four parts: A preondition, a set of input statements, a set of outputstatements and a postondition. In STDs, transition labels are represented with thefollowing shema:fPreonditiong Inputs B Outputs fPostonditiongInputs and Outputs stand for lists of expressions of the formi?x and o!exp (i 2 I ; o 2 O), respetively, where x is a onstant value or a (transition-loal) variable of the typeof i , and exp is an expression of the type of o. The Preondition is a boolean formulaontaining data state variables and transition-loal variables as free variables, whilePostondition and exp may additionally ontain primed state variables. The distintionbetween pre- and postonditions does not inrease the expressiveness, but improvesreadability. If the pre- or postonditions are equivalent to true, they an be omitted.The informal meaning of a transition is as follows: If the available messages in the inputhannels an be mathed with Inputs, the preondition is and the postondition an bemade true by assigning proper values to the primed variables, the transition is enabled.If it is hosen, the inputs are read, the outputs are written and the postondition ismade true.Example As an example, the merge omponent from the previous setion (Figure 1)ould be spei�ed by the STD in Figure 3. The orresponding STS an be derived in ashemati way:
14



PSfrag replaements ftrueg i1?a B o!a ftrueg
ftrueg i2?a B o!a ftruegMerge

Figure 3: Merge STDI df= fi1; i2gO df= fogA df= f�; iÆ1 ; iÆ2gI df= � = Merge ^ iÆ1 = h i ^ iÆ2 = h i ^ o = h i� df= f �1; �2; � � gThe variable � holds the urrent ontrol state of the STD. It is not really neessary here(sine there is only one state) but inluded for illustration. There are no other internalvariables. Note that I assures that initially no input is read and also it does not restritthe input variables, and therefore ful�lls the neessary requirements. The transition �1is de�ned by�1 df, � = Merge ^ �0 = Merge ^9 a 2 M1 :true ^ft:i+1 = a ^ iÆ1 0 = iÆ1 _ hai ^ o 0 = o _ hai ^true ^iÆ2 0 = iÆ2 ^i1 v i 01 ^ i2 v i 02whih states the following: The soure and target state are both Merge, the emptypreondition is trivially true, there is some message a that is available on hannel i1and not yet read, whih is then input and also sent on hannel o. The postonditionis empty and therefore also trivially true. All variables not mentioned in the transitionstay unhanged. In this ase this results in a onstant iÆ2 , meaning that we don't read onhannel i2. Finally, the environment an append arbitrary input to the input hannels.Note that the variable a in the transition label in Figure 3 does not appear as a variablein V . It is a transition-loal variable.
15



Transition �2 is de�ned similarly by (now omitting \true" in the onjuntion)�2 df, � = Merge ^ �0 = Merge ^9 a 2 M2 :ft:i+2 = a ^ iÆ2 0 = iÆ2 _ hai ^ o 0 = o _ hai ^iÆ1 0 = iÆ1 ^i1 v i 01 ^ i2 v i 02The idle transition � � allows the environment to sent messages to Merge, but keeps allvariables unhanged that are under ontrol of Merge.� � df, �0 = � ^iÆ1 0 = iÆ1 ^ i 0Æ2 = iÆ2 ^ o 0 = oi1 v i 01 ^ i2 v i 02In addition to the ontrol state, omponents an have data state attributes. State at-tributes an be heked by the preonditions, and modi�ed by the ations of a transitionlabel, spei�ed in the postondition. The delaration of data state variables with theirtype and initialization an be supplied in an attahed box in an STD, as shown inFigure 10.A more detailed desription of STDs, inluding extensions of STDs that allow hierarhi-al desriptions, an be found in [21, 11℄.3.4 ExeutionsAn exeution of an STS S is an in�nite stream � of valuations of the variables V thatsatis�es the following requirements:� The �rst valuation in � satis�es the initialization assertion:�:1 j= I� Eah two subsequent valuations �:k ; �:(k+1) in � are related either by a transitionin � or by the environment transition � �:�:k ; �0:(k + 1) j= � � _ _�2� �� Eah transition � 2 � of the STS is taken in�nitely often in an exeution, unlessit is disabled in�nitely often:(8 k � 9 l � k � �:l j= : En(�)) _ (8 k � 9 l � k � �:l ; �0:(l + 1) j= �)16



The set of exeutions of an STS S is denoted by hhSii; it is de�ned byhhSii df= f � j �:1 j= I ^8 k 2 N : �:k ; �0:(k + 1) j= � � _ _�2� � ^^�2� (( 8 k � 9 l � k � �:l j= : En(�)) _(8 k � 9 l � k � �:l ; �0:(l + 1) j= �)) gBy indution it is easy to show that for eah state �:k in an exeution�:k j= iÆ v iholds. Moreover, hanges in the valuations of input variables I , output variables O andthe proessed input variables fiÆ j i 2 I g in subsequent states are restrited to the pre�xorder v.3.5 State Mahine CompositionState mahines an be omposed if they are ompatible. Similar to the ompati-bility of blak box spei�ations, two state mahines S1 = (I1;O1;A1; I1;� 1) andS2 = (I2;O2;A2; I2;� 2) are ompatible if their ontrolled variables are disjoint andif there is no onit onerning internal variables, i.e. no mahine may aess theinternal variables of the other mahine:(O1 [ A1) \ (O2 [ A2) = ? ^A1 \ I2 = ? ^ A2 \ I1 = ?Thus, the two omponents may only share variables whih are input variables of atleast one of the two omponents. In Figure 4 the separation of the variables in di�erentdisjoint sets is visualized for a omposition of two state mahines. All messages onhannels i with i 2 I1 \ I2 an be read by both mahines independently. In order toensure that the variables from A1 and A2 are disjoint in this ase, the variables iÆ haveto be renamed to iÆ1 or iÆ2 throughout the variable sets, transitions and initializationprediates of S1 and S2, respetively.
17
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A1O1 n I2O1 \ I2O2 \ I1O2 n I1A2
I1 n (I2 [O2)I1 \ I2I2 n (I1 [O1)Figure 4: Composition of State MahinesThe omposition S = S1kS2 is de�ned as the STS with the following omponents:I df= (I1 [ I2) n (O1 [ O2)O df= O1 [O2A df= A1 [ A2I df, I1 ^ I2� df= f �1 ^ � �2 j �1 2 � 1 g [ f � �1 ^ �2 j �2 2 � 2 g� � df, ^v2O[A v = v 0 ^ î2I i v i 0From the de�nition above, it is easy to see that omposition is assoiative:S1k(S2kS3) = (S1kS2)kS3The resulting STS satis�es the requirements of Setion 3.2:Proof:� The variable sets of S satisfy the disjointness and inlusion requirements posed onI , O and A.� I ful�lls the requirements9� � � j= I ^ �8� � � O[A= � ) � j= I�and I ) iÆ = h i for all i 2 Iwhat is proved here:{ I is indeed satis�able for all input valuations of I : With S1 and S2 as properSTS, we know that there exist �1 and �2 with�1 j= I1 ^ 8� � � O1[A1= �1 ) � j= I1�2 j= I2 ^ 8� � � O2[A2= �2 ) � j= I218



and we have to show9� � � j= I ^ 8� � � O[A= � ) � j= IWe now de�ne the � we are looking for on the ontrolled variables of S by�(v) = ( �1(v) if v 2 O1 [ A1�2(v) if v 2 O2 [ A2For v 2 I we allow any valuation. Note that this de�nition is onit-freesine (O1 [ A1) \ (O2 [ A2) = ? and I \ (A1 [ A2) = ?. Hene� O1[A1= �1 ^ � O2[A2= �2and therefore (instantiating � with �)� j= I1 ^ � j= I2 , � j= I1 ^ I2 , � j= IFor some � with � O[A= � we have � O1[A1= � and � O2[A2= � due to the subsetrelations, so we onlude� j= I1 ^ I2{ The seond requirement for I is also ful�lled sine all input valuations areinitially empty:I ) I1 ^ I2 ) (8 i1 2 I1 � iÆ1 = h i) ^ (8 i2 2 I2 � iÆ2 = h i)) 8 i 2 I � iÆ = h i� The set � of the omposed system has all properties it should have:{ All transitions � allow only restrited hanges of the hannel valuations:� ) o v o 0 ^ iÆ v iÆ0 ^ iÆ0 v i 0 ^ i v i 0The empty transition � � trivially ful�lls this requirement. All other transitions� onsist of �1 ^ � �2 or �2 ^ � �1 . Beause of this symmetry, we show the proofonly for the �rst ase.� , �1 ^ � �2) 8 o1 2 O1; i1 2 I1 � o1 v o 01 ^ iÆ1 v iÆ1 0 ^ iÆ1 0 v i 01 ^ i1 v i 01 ^^o22O2 o2 = o 02 ^ ^i22I2 iÆ2 = iÆ2 0 ^ ^i22I2 i2 v i 02Note that quantifying over i 2 I and over iÆ 2 A ranges over the same vari-ables in any ourrene of iÆ, aording to the de�nition of A. By rearrangingthe terms we reah8 o1 2 O1 � o1 v o 01 ^ 8 o2 2 O2 � o2 = o 028 iÆ1 2 A1 � iÆ1 v iÆ1 0 ^ 8 iÆ2 2 A2 � iÆ2 = iÆ2 0 ^8 i1 2 I1 � i1 v i 01 ^ 8 i2 2 I2 � i2 v i 0219



and therefore8 o 2 O � o v o 0 ^ 8 iÆ 2 A � iÆ v iÆ0 ^ 8 i 2 I � i v i 0Finally, with iÆ2 0 = iÆ2 (ax)v i2 v i 02 for all i2 2 I2 and 8 i1 2 I1 � iÆ1 0 v i 01 we get8 i 2 I � iÆ0 v i 0{ Additionally, we show (again for only one of the two ases) that � is restritingthe variables in I in the proper way, i.e. we assume�;� 0 j= �1 ^ � �2 (1)� O[A=  (2)8 i 2 I1 [ I2 � �(i) v (i) (3)and show�; 0 j= �1 ^ � �2�; 0 j= �1 follows diretly from the properties of �1 with the subset relationsO1 [ A1 � O [ A and I1 � I . It remains to show�; 0 j= ^v2O2[A2 v = v 0 ^ ^i22I2 i2 v i 02Assuming v 2 O2 [ A2, we prove the �rst half by�(v) (1)= � 0(v 0) (Def :)= �(v) (2)= (v) (Def :)=  0(v 0)Finally, withi1 2 I1 ) �(i1) (3)v (i1) ) �; 0 j= i1 v i 01we onlude the proof.{ There is always an environment transition � � that is de�ned exatly as inSetion 3.2.� We also prove here that omposition maintains the enabledness of transitions, i.e.it holds� j= En(�1) , � j= En(�1 ^ � �2)� j= En(�2) , � j= En(�2 ^ � �1)We only show the �rst property, and prove for an arbitrary � only that9� � �;� 0 j= �1 ) 9 � �; 0 j= �1 ^ � �220



The opposite diretion is obvious. For some � we de�ne  by(v) = ( �(v) if v 2 (O2 \ I1) [ (A2 [ (O2 n I1)) [ ((I1 [ I2) n (O1 [ O2))�(v) if v 2 (A1 [ (O1 n I2)) [ (O1 \ I2)With this de�nition we have A1[O1= � and 8 v 2 I1 � �(v) v (v)and therefore (due to the properties of �1)�; 0 j= �1For v 2 O2 [ A2 we have (v) = �(v), so�; 0 j= ^v2O2[A2 v = v 0is valid. For v 2 I2\O1 we know �(v) = (v), and from the assumption �;� 0 j= �1that �(v) v � 0(v 0), sine �1 ) v v v 0 (v 2 O1!), and this leads to �(v) v (v).For v 2 I2 nO1 we de�ned (v) = �(v), so that �;0 j= v = v 0. Together, we have�; 0 j= ^i22I2 i2 v i 02and therefore�; 0 j= �2whih �nishes the proof. 2The main property of the omposed system is that the runs of S are subsets of the runsof S1 and S2:hhS1kS2ii � hhS1ii and hhS1kS2ii � hhS2iiThe onverse does not hold: Sine eah omponent may restrit the input to the otheromponent, some exeutions of the individual omponents may not be possible afteromposition.Proof: We only need to show that eah � 2 hhS1kS2ii is also in hhS1ii; the proof for S2is symmetrial. Expanding the de�nition of hh:ii, we have to show:1. If �:1 j= I, then also �:1 j= I1.2. For all k 2 N�:k ; �0:(k + 1) j= � � _ _�2� � ) �:k ; �0:(k + 1) j= � �1 _ _�12� 1 �121



3. For all � 2 � , if(8 k � 9 l � k � �:l j= : En(�)) _ (8 k � 9 l � k � �:l ; �:(l + 1) j= �)then for all �1 2 � 1(8 k � 9 l � k � �:l j= : En(�1)) _ (8 k � 9 l � k � �:l ; �:(l + 1) j= �1)The proof for the initialization assertion is immediate, sine I ) I1.The proof of the onseution assertion distinguishes the kind of transition that S makes:� If S makes the environment transition � �, S1 also makes its environment transition� �1 .This is valid sine � � ) � �1 : All inputs of S1 are either also inputs of S (and thusan only be extended), or outputs of S2 (and thus left unhanged). The othervariables of S1 are left unhanged.� If S makes a transition that onsists of the environment transition � �1 of S1 and aproper transition �2 2 � 2, S1 also makes an environment transition.This is valid sine the ontrolled variables of S1 remain unhanged, the environmentinputs an only be extended, and the inputs onneted to outputs of S2 also anonly be extended by �2.� If S makes a transition that onsists of a proper transition �1 2 � and the envi-ronment transition � �2 of S2, S1 makes the transition �1.For the fairness assumption, it is suÆient to show the following two properties for eah�1 2 � 1:(8 k � 9 l � �:l j= : En(�1 ^ � �2))) ( 8 k � 9 l � �:l j= : En(�1))and (8 k � 9 l � k � �:l ; �:(l + 1) j= (�1 ^ � �2))) (8 k � 9 l � k � �:l ; �:(l + 1) j= �1)If we identify k and l in the onsequenes of the impliations with the k and l on theleft-hand-sides, respetively, the proofs are immediate. 2
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4 Safety PropertiesThis setion introdues proof priniples for safety properties of a state mahine. Atypial safety property is invariane, whih means that an assertion over the variablesof the state mahine holds in every state of every exeution.The proof priniples for safety properties are inspired by the UNITY theory [27℄. In Se-tion 4.1 the onstrains operator o of UNITY is adapted to our state mahine framework;Setion 4.2 introdues some veri�ation rules. In partiular, the axioms of UNITY's oare shown to be valid in our framework.4.1 Prediates and PropertiesState mahine properties are expressed using assertions that relate ommuniation his-tories and the values of the attribute variables.A state prediate of a state mahine S = (I ;O ;A; I;� ) is an assertion � where the freevariables range over the variables in V = I [ O [ A; a history prediate is a formulawhere the free variables range only over the input and output variables I [O .An example for a state prediate is the initialization assertion I of the state mahine.Below is the initialization assertion of the state mahine Merge (Figure 3):� = Merge ^ i+1 = i1 ^ iÆ1 = h i ^ i+2 = i2 ^ iÆ2 = h i ^ o = h iAn example for a history prediate is the blak box spei�ation of Merge (Setion 2.2):M1so = i1 ^ M2so = i2State prediates relate the ommuniation histories and state variables at a given pointin a system exeution. To express properties about the omplete exeution, prediatesare lifted to exeutions by one of the following two operators:� initially� holds for a state mahine S and a state prediate �, i� � is true underthe variable valuation of the �rst time point of eah system run:8 � 2 hhSii � �:1 j= �This is denoted by S j= initially�. It holds if the haraterization of the initialstates imply �, i.e. if I ) � is valid.� � o 	 holds for a state mahine S and state prediates � and 	 (� onstrains	), i� whenever � evaluates to true at a point in a system exeution, then so does	 at the subsequent point:8 � 2 hhSii � 8 k � (�:k j= �) �:(k + 1) j= 	)This is denoted by S j= � o 	. The operator o is de�ned to have a weakerbinding than all other logial operators.23



We also use the following abbreviations:S j= stable � df, S j= � o �S j= inv� df, S j= stable � and S j= initially�Informally, a prediate is stable if its validity is preserved by all transitions of a system,and we all it an invariant, if it holds in all reahable states.The abbreviations an also be expressed at the level of exeutions: By indution on k itan be shown thatS j= inv� , 8 � 2 hhSii � 8 k � �:k j= �This haraterization an be used to lift tautologies and general results from the statemahine level to the property level. If we haveS j= inv�and know8 v 2 free(�) [ free(	) � �) 	we an also dedueS j= inv	As another example, we know that in every exeution � 2 hhSii and for every input i 2 Iwe have 8 k � �:k j= iÆ v i We an apply this knowledge in property proofs sine it anbe lifted to S j= inv iÆ v i :Free variables an be introdued to relate the left and the right side of a o property. Thistehnique an be used to lift the fat that outputs are only extended within an exeution,either expressed diretly with the output variable, or with the output variable's length:S j= x = o o x v oS j= #o = k o #o � kFree variables as x and k are universally quali�ed (omparable to so-alled rigid vari-ables). In the semantis, the �rst of the two properties above is denoted by8 � 2 hhSii; k 2 N ; x 2 X � (�:k j= x = o ) �0:(k + 1) j= x v o 0)where X is the type of the variable x (whih should be the same as the type of the statemahine output variable o).Note that � ) 	 annot be onluded from � o 	, as the following ounterexampleshows: Assume a state mahine S with a integer variable x , that is initialized with thevalue 0 and that an only be inremented. Obviously we have true o x � 0, whiletrue ) x � 0 is not valid. Properties using o have only to be valid for all reahablestates, while an impliation must be true for all valuations of the variables.24



I ) �S j= initially�(a) Initiality
� ^ � � ) 	0� ^ � ) 	0 for all � 2 �S j= � o 	(b) ConseutionS j= �1 o 	1S j= �2 o 	2S j= �1 ^ �2 o 	1 ^ 	2S j= �1 _ �2 o 	1 _ 	2() Conjuntion and Disjuntion
S j= � o 	S j= 	 o �S j= � o �(d) TransitivityS j= � o 	S j= � ^ � o 	(e) LHS Strengthening
S j= � o 	S j= � o 	 _ �(f) RHS WeakeningFigure 5: Basi rules for o4.2 Veri�ation RulesWith suitable veri�ation rules it is possible to verify system properties from the abstratsyntax of state mahines, without having to expand the de�nitions of initially and oand to verify properties semantially.In this setion, we state and prove some veri�ation rules.4.2.1 Basi RulesFigure 5 shows a number rules that are frequently used in veri�ation:The initialization and onseution rules (Figure 5(a), 5(b)) lift the semanti de�nitionsof initially� and � o 	 to the level of the abstrat syntax of state mahines. The on-juntion and disjuntion rule (Figure 5()) ombine two o-properties into one. Note thesimilarity of this rule |as well as the strengthening and weakening rules in Figure 5(e),25



5(f)| to the usual rules for logial impliation. Indeed, as Misra remarks [27℄, the ooperator is a kind of temporal impliation. Finally, o is transitive (Figure 5(d)).Proof:Initialization. The validity of the initialization rule follows immediately from the de�-nition of initially�.Conseution. For the onseution rule, assume that � 2 hhSii and that �:k j= � for anarbitrary k 2 N . Then,�:k ; �0:(k + 1) j= �sine free(�) � V , i.e. � ontains no primed variables. From the de�nition of exeutions,we know that�:k ; �0:(k + 1) j= � � _ _�2� �Assume now that�:k ; �0:(k + 1) j= � �and therefore�:k ; �0:(k + 1) j= � ^ � �From the �rst premise we onlude�:k ; �0:(k + 1) j= 	0On the other hand, if for a � 2 ��:k ; �0:(k + 1) j= �we know�:k ; �0:(k + 1) j= � ^ �Beause of the seond premise also�:k ; �0:(k + 1) j= 	0Sine free(	0) � V 0,�0(k + 1) j= 	0therefore�:(k + 1) j= 	 26



whih onludes the proof.Conjuntion and Disjuntion. We just show the onjuntion part of the rule. Assumethat �:k j= �1 ^ �2or, equivalently�:k j= �1 and �:k j= �2From the premises we onlude�:(k + 1) j= 	1 and �:(k + 1) j= 	2and thus�:(k + 1) j= 	1 ^ 	2The proof of the disjuntion part is similar. The rules for the strengthening of the lefthand side and weakening of the right hand side of o are orollaries of the onjuntionand disjuntion rule.Transitivity rule. The validity of the rule is not obvious: The onlusion relates twoonseutive states, as do the two premises. Intuitively, then, � should hold not in thestate following �, but in the one after that. The rule is proven by introduing a stutteringstep via an additional environment transition into an exeution.Given arbitrary � 2 hhSii and k 2 N suh that �:k j= �, we need to show that�:(k + 1) j= �First, we onstrut a sequene b� from � by repeating the k -th state of �:b�:l = 8><>: �:l if l � k�:k if l = k + 1�:(l � 1) if l > k + 1The repetition of the state �:k orresponds to an environment transition � � whih leavesthe external variables unhanged; hene b�, too, is an exeution of S.Now, �:k j= � ) b�:k j= �; sine b�:k = �:k) b�:(k + 1) j= 	; sine S j= � o 	) b�:(k + 2) j= �; sine S j= 	 o �) �:(k + 1) j= �; sine b�:(k + 2) = �:(k + 1) 227



4.2.2 Invariant Substitution RulesThe two rules in Figure 6 are related to UNITY's substitution axiom; they are takenfrom Paulson's Isabelle formalization of UNITY [30℄.S j= inv�S j= � ^ � o 	S j= � o 	(a) LHS Invariant Elimination
S j= inv�S j= � o 	S j= � o 	 ^ �(b) RHS Invariant IntrodutionFigure 6: Invariant substitution rulesThe �rst rule allows us to remove invariants on the left hand side, while the seond oneallows us to to introdue invariants on the right hand side. The proofs of these rulesare shown below. Invariant introdution on the left side and invariant elimination onthe right side is also possible: This an be handled by the strengthening and weakeningrules of Figure 5.Proof:Invariant elimination on the left side. We need to show that if(1) 8 � 2 hhSii; k � �:k j= �and (2) 8 � 2 hhSii; k � �:k j= � ^ �) �:(k + 1) j= 	then for arbitrary � 2 hhSii, k :�:k j= �) �:(k + 1) j= 	After instantiating the quanti�ers in (2), we have�:k j= � ^ �) �:(k + 1) j= 	hene�:k j= � ^ �:k j= �) �:(k + 1) j= 	or, equivalently,�:k j= �) (�:k j= �) �:(k + 1) j= 	)28



Instantiating (1), we have�:k j= �and therefore�:k j= �) �:(k + 1) j= 	whih onludes the proof.Invariant introdution on the right side. We need to show that if(1) 8 � 2 hhSii; k � �:k j= �and (2) 8 � 2 hhSii; k � �:k j= �) �:(k + 1) j= 	then for arbitrary � 2 hhSii, k :�:k j= �) �:(k + 1) j= 	 ^ �After instantiating the quanti�ers in (2) and (1), we have�:k j= �) �:(k + 1) j= 	 and �:(k + 1) j= �Thus,�:k j= �) (�:(k + 1) j= 	 ^ �:(k + 1) j= �)whih onludes the proof. 24.3 ExampleAs an example of how to use the veri�ation rules in pratie, we ontinue our exampleof Setion 3.3 and show that the state mahine ofMerge (Figure 3) only produes outputthat has been reeived on its input hannels before:We need to show thatMerge j= invM1so v i1 and Merge j= invM2so v i2Note that this is not idential to the pre�x properties of the Merge omponent as for-mulated in Setion 2.4; here we only show that the pre�x properties hold in every stateof an exeution, not that it holds for the omplete I/O behavior of an exeution. InSetion 6, we show how to relate omplete I/O behavior with invariants.29



The two properties are symmetrial; we just show the one for i1. With i1 = iÆ1 _ i+1 weknow that(M1so) = iÆ1 ) (M1so) v i1so that aording to the observation of Setion 4.1 it suÆes to showMerge j= invM1so = iÆ1Aording to the de�nition of inv and the veri�ation rules for initially and o thisexpands to the following proof obligations:I ) M1so = iÆ1 (1)M1so = iÆ1 ^ � � ) M1so 0 = iÆ1 0 (2)M1so = iÆ1 ^ �1 ) M1so 0 = iÆ1 0 (3)M1so = iÆ1 ^ �2 ) M1so 0 = iÆ1 0 (4)Proof: Sine I implies o = iÆ1 = h i, (1) is trivial. The idle transition � � implies iÆ0 = iÆand o 0 = o, so that (2) is also obvious.Expanding �1 in (3) shows its validity:M1so 0 = iÆ1 0 ,M1s(o _ hai) = iÆ1 _ hai a2M1,(M1so)_ hai = iÆ1 _ hai ,M1so = iÆ1Using the de�nition of �2 in (4) ompletes the proof:M1so 0 = iÆ1 0 ,M1s(o _ hai) = iÆ1 a 62M1,M1so = iÆ1 24.4 CompositionalityFrom the ompositionality result of Setion 3.5 we an derive the following rules:S1 j= initially�S1kS2 j= initially� S1 j= � o 	S1kS2 j= � o 	
30



Proof: Let � be an arbitrary exeution from [[S1kS2℄℄. From Setion 3.5 we know thatthen � 2 [[S1℄℄ also holds. The premises of the two rules imply�:1 j= �and 8 k � (�:k j= �) �:(k + 1) j= 	)Sine � is also a run of [[S1kS2℄℄, this also meansS1kS2 j= initially�and S1kS2 j= � o 	 2A orollary of the above rules is that every invariant of a system remains an invariantafter omposition:S1 j= inv�S1kS2 j= inv�The ompositionality of initiality, onstraints and invariants is due to the dataow stru-ture of our systems: Components interat only by the transmission of messages, and sinethe arrival of new messages annot disable omponent transitions, omponents annotinterfere in an unexpeted way.In UNITY, omponents an interfere; hene, ompositionality rules like the ones aboveare not valid in general.
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5 Progress PropertiesSafety properties are useful to show that the system does not enter an illegal state oroutput illegal data. It is easy to build a system that ful�lls safety properties: A systemthat simply does nothing ful�lls any safety property.To ensure that a system indeed proesses its input and produes output, progress prop-erties are used. As for safety properties, the progress properties are related to UNITY[26℄. They are based on a \leadsto" operator 7! (Setion 5.1).5.1 Leads-To PropertiesProgress is expressed by the leadsto operator 7!. Intuitively, � 7! 	 means that when-ever in a state mahine exeution a state is reahed where � holds, at the same or at alater point in the exeution a state is reahed where 	 holds.The semanti de�nition of S j= � 7! 	 is as follows. For all � 2 hhSii,8 k � (�:k j= �)) (9 l � k � �:l j= 	)From the semanti de�nition it follows immediately that 7! is transitive, and that when-ever �) 	, then also � 7! 	.5.2 Veri�ation RulesFor the leadsto operator there is also a set of veri�ation rules so that properties anbe shown at the level of state transition systems without reasoning about the systemexeutions themselves.5.2.1 Basi RulesFigure 7 shows a number rules that are frequently used in veri�ation. Essentially,leadsto properties are proved as follows. With the ensure rule (Figure 7(a)) leadstoproperties that relate states that are separated by only a single proper transition areshown; this transition is alled the helpful transition. From this basis, more elaborateproperties are derived by the transitivity (Figure 7(b)) and disjuntion (Figure 7())rules.Rule 7(f) (RHS weakening) is a speial ase of Rule 7() (disjuntion). It would besuÆient for �nite state systems; the disjuntion rule is needed to show properties ofin�nite state systems (see [26℄ for a detailed explanation).Proof:Ensure. The proof is by ontradition. Assume that the premises of the rule in Fig-32



S j= � ^ : 	 o � _ 	For a transition � 2 � :� ^ : 	) En(�)and� ^ : 	 ^ � ) 	0S j= � 7! 	(a) Ensure
S j= � 7! 	S j= 	 7! �S j= � 7! �

(b) TransitivityS j= �(x ) 7! 	 for all x 2 XS j= ( 9 x 2 X � �(x )) 7! 	() Disjuntion
�) 	S j= � 7! 	(d) ImpliationS j= � 7! 	S j= � ^ � 7! 	(e) LHS Strengthening
S j= � 7! 	S j= � 7! 	 _ �(f) RHS WeakeningFigure 7: Basi rules for 7!
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ure 7(a) hold, but not its onlusion. Then there is an exeution � 2 hhSii and a k 2 Nwith �:k j= �but for all l � k�:l j= : 	In partiular, then�:k j= : 	and, by indution and the �rst premise, for all n � k :�:n j= � ^ : 	By the �rst part of the seond premise, there is a � 2 � suh that for all n � k�:n j= En(�)Beause of the fairness assumption of state mahine exeutions (Setion 3.4), this meansthat there is an m � k suh that�:m; �0:(m + 1) j= �and thus�:m; �0:(m + 1) j= � ^ : 	 ^ �Beause of the seond part of the seond premise, this implies�:m; �0:(m + 1) j= 	0hene�:(m + 1) j= 	whih ontradits the assumption that there is no l � k whih validates 	.Transitivity and impliation. These rules are immediate onsequenes of the semantide�nition of 7! (Setion 5.1).Disjuntion. Let X be an arbitrary set, �(x ) a shear of state prediates parameterizedby x 2 X . Assume that � 2 hhSii, and k and x suh that�:k j= �(x )From the premise we know that9 l � k � �:l j= 	Hene, the rule is valid.Strengthening and weakening. The validity of these rules follows immediately from thesemanti de�nition of 7!. 234



5.2.2 Indution RuleNon-trivial progress proofs often make use of some kind of a ranking funtion or measure,based on well-founded orders. This is formalized in the following rule. Let (W ;�) bea well-founded order, m a variable that ranges over W , and M a W -valued expressionwith free variables from V .S j= (p ^ M = m) 7! (p ^ M < m) _ q for all m 2WS j= p 7! qThe validity proof of this rule in analogous to the proof of this rule in [27℄.5.2.3 Invariant Substitution RulesThe UNITY substitution axiom holds for leadsto properties as well; the four rules inFigure 8 orrespond to the substitution rules for o in Setion 4.2.S j= inv�S j= � ^ � 7! 	S j= � 7! 	(a) LHS Invariant Elimination
S j= inv�S j= � 7! 	S j= � 7! 	 ^ �(b) RHS Invariant IntrodutionFigure 8: Invariant substitution rulesThe proof of these rules is analogous to the proof of the orresponding rules in Setion 4.2.Again, invariant introdution on the left side and invariant elimination on the right sidefollow immediately from the strengthening and weakening rules.5.2.4 Output Extension RuleThe typial appliation for leadsto properties in dataow systems is to show that aomponent produes output. Suh properties an be formalized using the followingproperty pattern:S j= #o = k ^ k < ` 7! #o > kwhere o 2 O is an output variable of the omponent, and ` is a N-valued expressionwith free(`) � I [ O that is monotoni in the values of its free variables.35



For output extension, the ensure rule an be further simpli�ed. For the �rst premise ofensure, we need to showS j= #o = k ^ k < ` ^ #o � ko (#o = k ^ k < `) _ #o > kBy prediate logi, this is equivalent toS j= #o = k ^ k < ` o #o � k ^ (k < ` _ #o > k)We now show that in dataow systems this property always holds. For all variablesv 2 I [O ,(1) S j= #v = k o #v � k(see Setion 4.1). This implies in partiular that ` annot beome smaller beause ` ismonotone, i.e.(2) S j= k < ` o k < `By LHS strengthening (1) with k < ` we obtainS j= #o = k ^ k < ` o #o � kSimilarly, we strengthen the LHS of (2) with #o = k and weaken its RHS with #o > k :S j= #o = k ^ k < ` o k < ` _ #o > kThese two properties an be ombined with the onjuntion rule of o to yield the �rstpremise of the ensure rule.Thus, for output extension, the following rule is already suÆient:For a transition � 2 � :#o = k ^ k < `) En(�)and#o = k ^ k < ` ^ � ) #o 0 > kS j= #o = k ^ k < ` 7! #o > kNote that this is a quite substantial redution in pratie: It redues the number ofveri�ation onditions from n + 3 to 2, where n is the number of transitions in � .The output extension rule is still valid, when o is replaed by f (o), where f is a funtionthat is monotoni aording to the pre�x order v.Another useful variation is the following rule, where the left hand sides of the 7! operatorare strengthened by �. 36



For a transition � 2 � :� ^ #o = k ^ k < `) En(�)and� ^ #o = k ^ k < ` ^ � ) #o 0 > kS j= � ^ #o = k ^ k < ` 7! #o > k
5.3 ExampleTo demonstrate the veri�ation rules for 7!, we ontinue the example of Setion 3.3 andSetion 4.3.In Setion 4.3, we learned thatMerge j= invM1so = iÆ1and thereforeMerge j= invM1so v i1This is a pure safety property: no M1-output is emitted by the merge omponent, thathas not been reeived on i1 before; moreover, the order of the messages from M1 on i1and o is idential.This property also holds for a omponent that never reads from its input hannels andnever outputs anything on its output hannel.However, for the merge omponent we an show thatMerge j= #M1so = k ^ #i1 > k 7! #M1so > kInformally, this property means that whenever data is available on the input hannel i1,the omponent will at some time output further data of type M1 on its output hannel.Note that this does not mean that the output on o is indeed the same data that theomponent reeived from i1; this has already been shown by the safety property ofSetion 4.3.Proof: In this ase, it is suÆient to just use the output extension rule. The rulehas two premises, where we have to hoose a transition � 2 � . The obvious hoie istransition �1.� For showing the �rst premise, we assume#M1so = k ^ k < #i1
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and have to show that �1 is enabled, i.e. we need values for the primed variablesthat evaluate �1 to true. From Setion 4.3 we know (M1so) = iÆ1 , so we have#i1 = #(iÆ1 _ i+1 ) = #iÆ1 +#i+1 = #(M1so) + #i+1 = k +#i+1Therefore we have with k < #i1#i+1 > 0) 9 a 2 M1 � ft:i+1 = aThe values for the remaining primed variables an be hosen aording to �1.� The seond premise states#(M1so) = k ^ k < #i1 ^ �1 ) #(M1so 0) > kand is easy to show:#(M1so 0) = #(M1so _ hai) a2M1= #(M1so) + 1 = k + 1 > kNote that we only showed that the output is eventually produed when input is availableon i1. This does not neessarily imply that indeed all input from i1 appears on o; inSetion 6 this gap is losed.The proof thatM2so is extended when messages are available on hannel i2 is analogous.25.4 CompositionalityLeadsto properties are ompositional. The validity of the following rule follows fromthe ompositionality result from Setion 3.5; the proof is similar to the ompositionalityresult of Setion 4.4.S1 j= � 7! 	S1kS2 j= � 7! 	
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6 Blak Box Views of State MahinesBoth safety and liveness properties of state mahines are based on state and historyprediates. These prediates relate ommuniation histories up to a time point andattribute values at this time point.Typial dataow properties annot be expressed in this way. For example, the Mergeomponent property that all input of hannel i1 is forwarded to the output is a propertyabout the omplete state mahine exeution, and not of the individual states in theexeution.This setion loses the gap between state mahines and blak box views that desribethe I/O behavior of a system for omplete exeutions. In Setion 6.1 the blak boxview of a state mahine is de�ned; Setions 6.2 and 6.3 show how safety and livenessproperties of a state mahine an be used to dedue properties of its blak box view.6.1 Blak Box ViewsWithin a state mahine exeution �, hanges in the valuations for the input and outputvariables I , O are restrited to the pre�x order v: For eah variable v 2 I [ O andevery k 2 N ,(�:k)(v) v (�:(k + 1))(v)Thus the valuations of eah input and output variable within an exeution form a hain,and for eah exeution and eah variable v 2 I [ O there is a least upper bound�:1(v) df= Ff (�:k)(v) j k 2 N gNote that �:1(v) is only de�ned for the input and output variables, not for the attributevariables of a state mahine.The blak box view of a state mahine S = (I ;O ;A; I;� ) is a set of valuations for thevariables I [O . It is denoted by [[S℄℄ and de�ned via the least upper bounds of the inputand output histories of the mahine's exeutions:[[S℄℄ = f � j 9 � 2 hhSii � î2I �(i) = �:1(i) ^ ô2O �(o) = �:1(o) gSine both the proper transitions � 2 � and the environment transition � � of a statemahine allow arbitrary extension of the input variable valuations, it is possible tosuessively approximate every possible input history. This means that the blak boxview [[S℄℄ is omplete with respet to the input variables of S: For an arbitrary inputthere is always some reation of the system. Formally, this reads as: For eah valuation� for the variables I [O there exists a valuation � for I [O suh that� I= � and � 2 [[S℄℄ 39



6.2 Safety PropertiesIn pratie, it is diÆult to diretly use the blak box semantis of a state mahinede�ned in Setion 6.1. Instead, we dedue properties about the blak box view fromproperties of the state mahine. Tehnially, a property of the blak box view [[S℄℄ is ahistory prediate � (see Setion 4.1) whih is valid for eah valuation in a system's blakbox view:8� 2 [[S℄℄ � � j= �We then write [[S℄℄) �.A useful lass of history prediates is that of admissible prediates [28℄. A historyprediate � is admissible in a set of variable W � free(�) if it holds for the limit of ahain of valuations for its variables, provided that it holds for eah element of the hain.If prediate � is admissible in free(�) it is simply alled admissible. The free variablesin a history prediate all range over the CPO of streams; the onepts of hain and limitare taken from Setion 2.1).If � is an admissible invariant history property of a state mahine, it holds not only inevery state of a system run, but also for the omplete ommuniation history:free(�) � I [ Oadm �S j= inv�[[S℄℄) �Proof: Expanding the de�nition of S j= inv�, we have8 � 2 hhSii; k 2 N � �:k j= �In other words, � holds when its free variables v (where v 2 I [ O) are replaed by�:k(v)for eah k 2 N . Sine � is admissible, it also holds when its free variables are replaedby the least upper bounds�:1(v)This implies the onlusion of the rule. 2It is in general not trivial to show the admissibility of a given property. However, Paulsongives in [28℄ some simple syntatial riteria for admissibility. For example, onjuntionsand disjuntions of the following expressions over streams s; t ; u are admissible in boths and t , but not in u: 40



s = t #s = #ts v t #s � #tu � s #u < #sHere s; t ; u need not be simple stream variables or onstants; they an also be termsbuilt from ontinuous funtions (aording to the pre�x order v), beause admissibilityis ompositional through ontinuous funtions.ExampleIn Setion 4.3, the following invariant property of the merge omponent has been derived:S j= M1so v i1 ^ M2so v i2Sine this property is admissible |see above|, the following blak box property of theomponent holds:[[Merge℄℄) M1so v i1 ^ M2so v i26.3 Liveness PropertiesIn general, progress properties expressed with the leadsto operator 7! annot be liftedto omplete exeutions. Still, from output extension properties (Setion 5.2), livenessproperties of a state mahine's blak box view an be derived.Let ` be an N-valued expression with free(`) � I that is monotoni in the values of itsfree variables, and o 2 O .free(`) � I [OS j= #o = � ^ � < ` 7! #o > �[[S℄℄) #o � `Proof: The proof is by ontradition. Assume that the premises of the rule hold, butnot its onlusion. Thus, there is a valuation � 2 [[S℄℄ with � j= #o < `, and hene� j= #o <1. This means that there is an exeution � 2 hhSii with�(o) = �:1(o)With � df= #�:1(o) there is an n1, suh that#�:n1(o) = �and an n2 with�:n2 j= � < ` 41



With n df= max(n1; n2) we have�:n j= #o = � ^ � < `sine o annot be extended beyond � in �, and beause of monotoniity ` annot beomesmaller, as its arguments are not shortened.Semantially, the seond premise then implies9m � n : �:m j= #o > �whih ontradits the assumption that #o does not exeed �.Hene the assumption that � j= #o < ` is invalid, and for all � 2 [[S℄℄� j= #o � ` 2In the rule above, o an be replaed by f (o), where f is a ontinuous funtion. The ruleis also valid if the onstant value1 is used for `: The omponent then produes in�niteoutput for any input.ExampleIn Setion 5.3, the following progress properties of the merge omponent have beenderived:Merge j= #M1so = k ^ #i1 > k 7! #M1so > kMerge j= #M2so = k ^ #i2 > k 7! #M2so > kWith the length funtion ` df= #i1 (and ` df= #i2 for the seond input hannel), and sines is ontinuous, the rule above allows us to onlude[[Merge℄℄) (#M1so � #i1) ^ (#M2so � #i2)6.4 MethodologyThat only length properties are lifted to the blak box spei�ation level seems to bequite restritive. In pratie, however, length properties are suÆient for the veri�ationof liveness properties of a state mahine's blak box view. In Setion 2.4 we stated thattypial dataow properties an be formulated as a set of equations, one for eah outputvariable of a omponent. Eah equation an be split into a pre�x property (the safetypart) and a length property (the liveness part).The safety part an be veri�ed using the tehniques of Setion 4; the liveness part anbe veri�ed using the tehniques of Setion 5. For both parts, properties of the blak boxview an be dedued as shown above. 42



ExampleFrom Setion 6.2, we know the following pre�x property of the Merge omponent:[[Merge℄℄) M1so v i1 ^ M2so v i2The following length property of Merge has been shown in Setion 6.3:[[Merge℄℄) (#M1so � #i1) ^ (#M2so � #i2)Together, these properties imply[[Merge℄℄) M1so = i1 ^ M2so = i2In other words, the state mahine from Figure 3 indeed ful�lls the blak box spei�ationgiven in Setion 2.2.6.5 Compatibility of the omposition operatorsThe blak box omposition operator 
 and the state mahine omposition operator jjare syntatially ompatible: They oinide on the de�nition of the input and outputhannels of the omposed system. Conerning the behavior of the resulting system, thefollowing holds:[[S1 jj S2℄℄) [[S1℄℄
 [[S2℄℄The impliation is easily proved:Proof: For the impliation, we need to show that when � 2 [[S1 jj S2℄℄, then also� 2 [[S1℄℄ and � 2 [[S2℄℄. Given the left hand side, we know that there exists an exeution� 2 hhS1 jj S2ii with8 v 2 I [O � �(v) = �:1(v)where I = (I1 [ I2) n (O1 [ O2) and O = O1 [O2.From Setion 3 we know that � is also a run of S1. Sine I1 � I [O and O1 � I [O wean onlude that� 2 [[S1℄℄Similarly, we get � 2 [[S2℄℄. 2A ounterexample shows that the opposite diretion does not hold:Proof: Assume a system S1 that reads from hannel y , and writes on hannel x .Both hannels an only transmit the message a. The system has only one state and onetransition:y?a B x !a 43



Obviously, if the system is fed with a1 as input, it reats by sending a1. System S2 issimilar, but it reads from hannel x , writes onto y .The omposed system S1
S2 has no input hannels and two output hannels. Assigninga1 to both x and y represents a possible behavior of this system.However, this is not a behavior of S1 jj S2. Here both mahines wait for a �rst messageof the other mahine; they never send output a message and the only behavior is theone that assigns h i to both x and y . 2Blak box views are an abstration of a system's behavior. In this abstration operationalinformation, suh as the ausality between input and output messages, is lost [4℄. Oneapproah to inlude the ausality information also in the blak box views is to expliitlyintrodue time into the ommuniation histories [7, 20℄; however, this makes the blakbox spei�ations more omplex.
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7 Example: Communiation SystemFigure 9 shows a ommuniation system (originally proposed by the VSE group in theDFKI, Saarbr�uken, [22℄). The system onsists of a sender and a reeiver onneted viaa queue omponent. The queue's bu�er an hold N data elements. To ensure that thebu�er does not overow a handshaking protool is used. We assume that the sender\pushes" data (it sends a datum, then waits for an aknowledgment from the queue),while the reeiver \pulls" data (it sends a request to the queue, then awaits a datum).Request and aknowledgment signals are modeled with the singleton set Signal = f~g.
PSfrag replaements

Sender Queue Reeiveri : Msg o : Msgx : Msg y : Msgak : Signal req : SignalFigure 9: Bounded Bu�erThis setion �rst gives blak box spei�ations (Setion 7.1) and state mahine spei-�ations (Setion 7.2) for the ommuniation system's omponents. Setion 7.3 proofsthat the state mahines imply the safety part of the blak box spei�ations; Setion 7.4shows the same for the liveness part. A disussion about the veri�ation tehniques isin Setion 7.5.7.1 Blak Box Spei�ationsThe spei�ation of the three omponents are divided into pre�x (safety) and length(progress) properties. The pre�x parts simply state the obvious requirement that eahomponent's output is a pre�x of its data input.Senderin i : Msg; ak : Signalout x : Msgx v i#x � min(#i ; 1 + #ak)The length property of the sender expresses its \push" behavior: The length of the out-put is one more than the number of aknowledgments reeived from the queue, providedthere is still data from the environment available.
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Reeiverin y : Msgout req : Signal; o : Signalo v y#o � #y#req = 1 +#yThe reeiver's length property expresses its \pull" behavior: It sends requests initiallyand after reeiving eah message from the queue.Note that here the length property for the requests is an equality. This is beause it alsoinorporates the safety property that the length of req must be less or equal than 1+#y ;sine it is only the number of requests that is relevant, instead of a pre�x property anumerial inequality is used as an upper bound on the length of the ommuniationhistory. Queue(N )in x : Msg; req : Signalout ak : Signal; y : Msgy v x#y � min(#x ;#req)#ak = min(#x ;#req + N � 1)The spei�ation for the omposition of sender, queue and reeiver in our example isshown below.System(N )in i : Msgout o : Signal; x : Msg; ak : Signal; y : Msg; req : Signalx v iy v xo v y#x � min(#i ; 1 + #ak)#y � min(#x ;#req)#ak = min(#x ;#req + N � 1)#o � #y#req = 1 +#yFrom the spei�ation of System(N ) above, we an immediately see that the output isa pre�x of the input. By some ase analysis it an also be shown that the length of the46



output equals the length of the input. This implieso = ifor all input streams i . The ommuniation system implements the identity relation.7.2 State Mahine Spei�ationsFigure 10 shows the state transitions diagrams of the sender, queue and reeiver ompo-nents. The queue omponent has an attribute variable q , whih holds a �nite sequeneof messages.Following Setion 3.3, the diagrams an be onverted shematially into state transitionsystems. Below is the STS for eah omponent. For brevity, the names of the STSomponents and transitions are not di�erentiated. In the proofs of the veri�ationonditions, it will be lear from the ontext, whih omponent is referred to.Sender STSThe STS for the sender is formally de�ned byI df= fi ; akgO df= fxgV df= fi ; iÆ; ak ; ak Æ; x ; �gI df= � = Transmit ^ iÆ = h i ^ ak Æ = h i ^ x = h i� df= f�1; �2gThe transitions �1 and �2 are the following assertions; they orrespond to the arrows inthe sender's STD (Figure 10).�1 df= 9 d : � = Transmit We move from the soure state^ �0 = WaitAk to the target state.^ ft :i+ = d There is a message d available in hannel i^ iÆ0 = iÆ _ hdi that we onsume^ x 0 = x _ hdi and send on hannel x ,^ ak Æ0 = ak Æ while we don't read from hannel ak .^ i v i 0 ^ ak v ak 0 The input hannels an be extended.�2 df= � = WaitAk^ �0 = Transmit^ ft :ak+ = ~^ ak Æ0 = ak Æ _ h~i^ iÆ0 = iÆ^ x 0 = x^ i v i 0 ^ ak v ak 0 47
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Figure 10: Sender, Reeiver and Queue STDs
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The environment transition � � is de�ned aording to the shema in Setion 3.2:� � df= � = �0^ iÆ0 = iÆ^ ak Æ0 = ak Æ^ x 0 = x^ i v i 0 ^ ak v ak 0Queue STSThe Queue STS ontains the setsI df= fx ; reqgO df= fy ; akgV df= fx ; x Æ; req ; reqÆ; y ; ak ; q ; �gI df= � = Empty ^ x Æ = h i ^ reqÆ = h i ^ y = h i ^ ak = h i ^ q = h i� df= f�1; �2; �3; �4; �5; �6gwhere the transitions are de�ned by�1 df= 9 d : � = Empty^ �0 = Nonempty^ ft :x+ = d^ x Æ0 = x Æ _ hdi^ reqÆ0 = reqÆ^ y 0 = y^ ak 0 = ak _ h~i^ q 0 = q _ hdi^ x v x 0 ^ req v req 0
�2 df= � = Nonempty^ �0 = Nonempty^ #q > 1^ ft :req+ = ~^ reqÆ0 = reqÆ _ h~i^ x Æ0 = x Æ^ y 0 = y _ hft :qi^ ak 0 = ak^ q 0 = rt :q^ x v x 0 ^ req v req 0�3 df= 9 d : � = Nonempty^ �0 = Nonempty^ #q < N � 1^ ft :x+ = d^ x Æ0 = x Æ _ hdi^ reqÆ0 = reqÆ^ y 0 = y^ ak 0 = ak _ h~i^ q 0 = q _ hdi^ x v x 0 ^ req v req 0
�4 df= � = Full^ �0 = Nonempty^ ft :req+ = ~^ reqÆ0 = reqÆ _ h~i^ x Æ0 = x Æ^ y 0 = y _ hft :qi^ ak 0 = ak _ h~i^ q 0 = rt :q^ x v x 0 ^ req v req 0
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�5 df= 9 d : � = Nonempty^ �0 = Full^ #q = N � 1^ ft :x+ = d^ x Æ0 = x Æ _ hdi^ reqÆ0 = reqÆ^ y 0 = y^ ak 0 = ak^ q 0 = q _ hdi^ x v x 0 ^ req v req 0
�6 df= � = Nonempty^ �0 = Empty^ #q = 1^ ft :req+ = ~^ reqÆ0 = reqÆ _ h~i^ x Æ0 = x Æ^ y 0 = y _ hft :qi^ ak 0 = ak^ q 0 = rt :q^ x v x 0 ^ req v req 0The environment transition � � is de�ned as follows:� � df= � = �0^ x Æ0 = x Æ^ reqÆ0 = reqÆ^ q 0 = q^ y 0 = y^ ak 0 = ak^ x v x 0^ req v req 0Reeiver STSThe reeiver is de�ned formally throughI df= fygO df= freq ; ogV df= fy ; yÆ; req ; o; �gI df= � = Init ^ yÆ = h i ^ req = h i ^ o = h i� df= f�1; �2gwith just the following two transitions:�1 df= � = Init^ �0 = Reeive^ yÆ0 = yÆ^ req 0 = req _ h~i^ o 0 = o^ y v y 0
�2 df= 9 d : � = Reeive^ �0 = Reeive^ ft :y+ = d^ yÆ0 = yÆ _ hdi^ o 0 = o _ hdi^ req 0 = req _ h~i^ y v y 0
50



Again, the environment transition � � is de�ned shematially:� � df= � = �0^ yÆ0 = yÆ^ req 0 = req^ o 0 = o^ y v y 07.3 Safety ProofsIn this setion we show that for eah of the system's three omponents, the state mahinespei�ation implies the safety part of the blak box spei�ation.For all omponents, the proof is strutured identially:1. Show that the data output of a omponent equals the proessed part of its input;2. Conlude that the output is a pre�x of the input;3. Conlude that this also holds for the blak box view.SenderWe show the following property:Sender j= inv x = iÆAording to the rules in setions 4.1 and 4.2 we need to proveI ) x = iÆ (5)^�2� � ^ (x = iÆ) ) x 0 = iÆ0 (6)Sine I ) x = h i = iÆ, obligation (5) is trivially ful�lled. We now show (6) for all � :� Transition �1:x = iÆ ^ �1) x _ hdi = iÆ _ hdi) x 0 = iÆ0� Transition �2:x = iÆ ^ �2) x 0 = iÆ0 51



� Transition � �:x = iÆ ^ �2) x 0 = iÆ0Sine iÆ v i is also an invariant of the sender, we an onlude thatSender j= inv x v iand therefore[[Sender ℄℄) x v iThus, the state mahine of the sender implies the safety part of the sender's blak boxspei�ation.QueueFor the queue omponent, we show the following property:Queue j= inv y _ q = x ÆSine I ) y = q = x Æ = h i the property above holds initially. We now show that isalso stable, and therefore indeed an invariant:� Transition �1:y _ q = x Æ ^ �1) y _ q _ hft:x+i = x Æ _ hft:x+i) y 0 _ q 0 = x Æ0The proof is analogous for the transitions �3 and �5.� Transition �2:y _ q = x Æ ^ �2) y _ hft :qi_ rt :q = x Æ) y 0 _ q 0 = x Æ0The proof is analogous for the transitions �4 and �6.� Transition � �:y _ q = x Æ ^ � �) y _ q = x Æ ^ y 0 = y ^ x Æ0 = x Æ ^ q 0 = q) y 0 _ q 0 = x Æ0 52



From the invariants y _ q = x Æ and the invariant x Æ v x , we onludeQueue j= inv y v xHene, the queue omponent ful�lls the safety part of its blak box spei�ation, sine[[Queue℄℄) y v xReeiverFor the reeiver, we showReeiver j= inv o = yÆThat this property holds initially is immediate sineI ) o = yÆ = h iIt remains to show that the property is stable under the two reeiver transitions �1 and�2 and the environment transition � �.� Transition �1 (the proof is analogous for � �):o = yÆ ^ �1) o 0 = yÆ0� Transition �2:o = yÆ ^ �2o _ hft:y+i = yÆ _ hft:y+i) o 0 = yÆ0Thus, o = yÆ is an invariant of the reeiver. Sine also iÆ v y is an invariant, we anonludeReeiver j= inv o v yFrom this, we an immediately onlude the safety part of the reeiver's blak boxspei�ation:[[Reeiver ℄℄) o v y
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7.4 Liveness ProofsFor eah omponent, the liveness part of the blak box spei�ation is derived from theomponent's output extension properties.Usually, the liveness proofs require some knowledge about the relation between ontrolstate, attribute values and the length or ontents of the variables iÆ. Suh relations areexpressed by additional invariants of the omponents. For the liveness proofs below, wejust list the invariants. Their proof is analogous to the proof of the pre�x properties inthe previous setion.SenderWe need to prove that the output x 2 O is extended; the length funtion ` is themin-Term of the blak box spei�ation: ` df= min(#i ; 1 + #ak).First we prove the following two properties that reet the e�et of the sender's twotransitions.� Transition �1 indeed extends the output:(1) � = Transmit ^ #x = k ^ k < ` 7! #x > k� Transition �2, however, leaves the output unhanged. The length expression maybeome larger, but in any ase it will stay larger than k :(2) � =WaitAk ^ #x = k ^ k < ` 7! � = Transmit ^ #x = k ^ k < `The �rst property is proven with the output extension rule. We need to show thefollowing premises, where we hoose �1 as the helpful transition:(1:1) � = Transmit ^ #x = k ^ k < `) En(�1)(1:2) � = Transmit ^ #x = k ^ k < ` ^ �1 ) #x 0 > kPremise (1:1) is ful�lled, sine the enabledness ondition of �1 orresponds to� = Transmit ^ #i+ > 0whih holds sine#i � min(#i ; 1 + #ak) = ` > k = #x = #iÆusing the fat that #x = #iÆ as shown in Setion 7.3. Hene, #i+ = #i �#iÆ > 0.Premise (1:2) follows immediately from the de�nition of �1 with x 0 = x _ hdi.
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For property (2), we use the ensure rule; the helpful transition in this ase is �2. Weneed to disharge the following three premises:(2:1) S j= (� = WaitAk ^ #x = k ^ ` > k) ^ : (� = Transmit ^ #x = k ^ ` > k)o(� = WaitAk ^ #x = k ^ ` > k) _ (� = Transmit ^ #x = k ^ ` > k)(2:2) (� = WaitAk ^ #x = k ^ ` > k) ^: (� = Transmit ^ #x = k ^ ` > k)) En(�2)(2:3) (� = WaitAk ^ #x = k ^ ` > k) ^ : (� = Transmit ^ #x = k ^ ` > k) ^�2 ) �0 = Transmit ^ #x 0 = k ^ `0 > kPremise (2.1) holds, sine transition �1 is not enabled in states that satisfy the premise'sleft hand side; the environment transition leaves � as well as #x unhanged, while `annot beome smaller. Finally, transition �2 leads to a state where � = Transmit ^#x = k ^ ` > k . This also implies premise (2.3).For premise (2.2), we need to show that #ak+ > 0. This premise requires an additionalinvariant, namelyS j= inv(� = Transmit ) #x = #ak Æ) ^ (� = WaitAk ) #x = 1 +#ak Æ)The proof of this invariant follows the struture of the proofs in Setion 7.3.From this invariant and the left hand side of the impliation (2:2), we onlude1 + #ak � ` > k = #x = 1 +#ak ÆHene, #ak+ = #ak �#ak Æ > 0. 2The two leadsto properties (1) and (2) an be ombined by the transitivity rule, whihyields:(3) � =WaitAk ^ #x = k ^ ` > k 7! #x > kProperties (1) and (3) are ombined by the disjuntion rule:(4) (� =WaitAk _ � = Transmit) ^ #x = k ^ ` > k 7! #x > kSine the two ontrol states WaitAk and Transmit are the only ontrol states of thesender, the disjuntion on the left hand side of (4) is equivalent to true; thus, (4) anbe simpli�ed whih yields(5) #x = k ^ ` > k 7! #x > kNow, from (5) we obtain[[Sender ℄℄) #x � min(#i ; 1 + #ak)55



2QueueThe queue has two output variables. For eah output, the following extension propertiesare valid:#y = k ^ min(#x ;#req) > k 7! #y > k#ak = k ^ min(#x ;#req + N ) > k 7! #ak > kWe want to show only the �rst property here.To prove the �rst property, we need the following invariants whih relate ontrol anddata state, as well as ontrol state and the lengths of the proessed input variables.These invariants an be shown in the same style as the pre�x property in Setion 7.3.Queue j= inv (� = Empty ^ #q = 0) _(� = Nonempty ^ 1 � #q � N � 1) _(� = Full ^ #q = N )Queue j= inv (� = Empty ) #y = #reqÆ ^ #ak = #x Æ) ^(� = Nonempty ) #y = #reqÆ ^ #ak = #x Æ) ^(� = Full ) #y = #reqÆ ^ #ak + 1 = #x Æ)Queue j= inv#x Æ = #reqÆ +#qThe transitions that extend y are �2, �4, �6. Choosing these transitions as helpful tran-sitions in the output extension rule, we an show (with ` df= min(#x ;#req)):(1) � = NonEmpty ^ #q > 1 ^ #y = k ^ ` > k 7! #y > k(2) � = Full ^ #q = N ^ #y = k ^ ` > k 7! #y > k(3) � = NonEmpty ^ #q = 1 ^ #y = k ^ ` > k 7! #y > kIn eah rule appliation, the invariants above has to be used to show that the transitions�2, �4, �6, respetively, are enabled.Examining the �rst two invariants above, we note that the only state where no helpfultransition is enabled when ` > k is the ontrol state Empty .Now, beause of the invariants, we know that when � = Empty , then also #q = 0, and#x Æ = #reqÆ = #y = k < ` � #x 56



This means that transition �1 is enabled, sine #x+ > 0. Therefore, with� � � = Empty ^ #q = 0 ^ #y = k ^ ` > k	 � � = NonEmpty ^ #q = 1 ^ #y = k ^ ` > kwe got� ^ : 	) En(�1)Sine �1 leads to the state NonEmpty and inreases the length of q to 1, without hangingy and not dereasing `, we also have� ^ : 	 ^ �1 ) 	0The property� ^ : 	 o � _ 	holds for �1, as already seen. The other transition in � are not enabled, and for � � thevalidity of � does not hange. So, we an use the ensure rule and onlude(4) � = Empty ^ #q = 0 ^ #y = k ^ ` > k7! � = NonEmpty ^ #q = 1 ^ #y = k ^ ` > kBy transitivity of 7!, we obtain from (4) and (3):(5) � = Empty ^ #q = 0 ^ #y = k ^ ` > k 7! #y > kThe properties (1), (2), (3), (5) an be ombined with a �nite variant of the disjuntionrule; after invariant elimination on the left hand side, we obtain#y = k ^ min(#x ;#req) > k 7! #y > k 2ReeiverThe liveness proof of the reeiver is quite similar to the one for the sender. We omitthe proof here. For eah output of the reeiver, it needs two appliations of the out-put extension rule, one appliation of the transitivity rule and one appliation of thedisjuntion rule.7.5 CommentsThe proofs that the state mahines satisfy the blak box spei�ations might seemfrighteningly ompliated. We believe, however, that this is less a matter of omplexity,57



and more a matter of the total size of the proof. The veri�ation onditions themselvesan be redued to impliations in prediate logi, and are not too diÆult to disharge.The deal with the sheer number of veri�ation onditions, obviously some kind of toolsupport in the form of interative theorem provers is needed. Sine the veri�ationonditions themselves are mainly �rst-order logi, and no elaborate theory of streams isneeded (see [17℄ for a disussion of the diÆulties of stream formalizations), the demandsof the prover are not very high.Another problem is the struture of the proofs. A solution might be the use of veri�ationdiagrams [5℄ whih represent proof strutures as direted diagrams. The verties arelabeled with state prediates, the labels with transitions. Eah transition represents averi�ation ondition.
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8 ConlusionThis report shows how to ombine state-based and history-based spei�ation and ver-i�ation of safety and liveness properties of distributed systems. Properties for statemahines are formulated in a UNITY-like language; sine our approah is based onproof priniples for invariants and leadsto properties, other linear-time temporal logis[25, 24℄ an be used as well.Dataow systems are interferene free: Components annot disable transitions of otheromponents. Noninterferene means that our proof system is ompositional for bothsafety and liveness properties. This has also been exploited for UNITY by Charpentierand Chandy [16℄; however, they do not use their dataow properties to reason aboutomplete ommuniation histories.Sine the number of veri�ation onditions for onrete systems an be quite large, somekind of tool support is needed. Tool support is not infeasible, sine eah ondition itselfis rather simple and an be expressed in �rst-order logi. In partiular, the blak boxproperties that refer to potentially in�nite streams are derived from state properties thatrefer only to �nite streams. Hene, the omparatively simple theory of lists is suÆientto disharge the veri�ation onditions; the diÆulties of the enoding of in�nite streamsor lazy lists |whih requires oreursion or a CPO theory [17℄| an be avoided.As a ase study in tool support, the safety properties of the ommuniation system exam-ple have been veri�ed using the STeP [2℄ proof environment. Exept for the instantiationof some stream axioms, the veri�ation onditions are disharged automatially. Using atheorem prover with stronger automatization, suh as Isabelle [29℄, would further reduethe manual e�ort for disharging the proof obligations. Reently, a Unity formalizationin Isabelle has been developed [30℄, whih ould probably be adapted to our framework.Previous work on the ombination of state mahine desriptions and the stream-basedspei�ation of Fous has dealt primarily with stream-based semantis of state ma-hines [11, 19℄; the onnetion of that work to the proof priniples in this report andBroy's veri�ation of the Alternating Bit Protool [6℄ has to be explored. An open ques-tion is also the onnetion to state mahine re�nement aluli [32℄ and re�nement ingeneral [9, 10℄. For the speial ase of arhitetural re�nement [31℄, our proof tehniquesallow the formulation and veri�ation of invariants.Our spei�ation and proof tehniques are so far only suited for time-independent sys-tems. The extension of history-based spei�ations raises some interesting questions [8℄.A straightforward solution might be to expliitly inlude \time tiks" in the messagestreams [18℄. Suh time tiks an also be used to ensure progress of a state mahine.But also without expliit time, progress is not restrited to the weak fairness onditionof Setion 3.4. An alternative would be to just demand that some transition is takenwhenever at least one transition is persistently enabled; the de�nition of interleavingomposition, however, would be slightly more ompliated.Finally, our tehniques an be adapted to di�erent state-based desription tehniques.
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SDL [1, 23℄ and ROOM [33℄, in partiular, would be good andidates for a onrete statemahine syntax, given their use in the spei�ation of ommuniation protools.Aknowledgments. This report bene�ted from many stimulating disussions withManfred Broy. We thank Stephan Merz, Bernhard Rumpe, Robert Sandner and Bern-hard Sh�atz for omments on a draft version of this report.
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