
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Re-Engineering for Reuse:
Integrating Reuse Techniques into the

Reengineering Process

Panagiotis K. Linos, Sascha Molterer, Barbara Paech,
Chris Salzmann

ABCDEFGHIJKLMNO
TUM-I9824

November 98

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N



TUM-INFO-11-I9824-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1998

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen



Re-Engineering for Reuse: Integrating Reuse Techniques into theReengineering Process �Panagiotis K. Linos{,Sascha Molterery, Barbara Paechy, Chris SalzmannyyInstitut f�ur Informatik {Department of Computer ScienceTechnische Universit�at M�unchen Tennessee Technological University80290 M�unchen, F.R.G. Cookeville, TN 38505, USA(moltererjpaechjsalzmann)@in.tum.de linos@csc.tntech.eduAbstractIn this report, we present an overview of the existing software re-engineering process and its related concepts.We also classify existing software reuse techniques and we propose how to integrate such techniques into thesoftware re-engineering process by following a component-based approach. In addition, we demonstrate how ourmethodology can be applied on a client-server legacy system.Keywords: Re-engineering, Reverse Engineering, Reuse, Components, Software Engineering.1 IntroductionNowadays, in order to manage the masses of information a modern software system contains it is essential toreuse as much existing software as possible. Biggersta� refers to reuse as the reapplication of a variety of kindsof knowledge about one system to another in order to reduce the e�ort of development and maintenance of thatother system [BP89]. Reusing software brought up concepts like object-oriented modeling and component-basedmodeling which present today some promising success stories. For instance, Sneed presents a software recyclingmethodology and tools for extracting objects from existing legacy systems [Sne96]. In addition, Canfora andCimitile discuss various scavenging techniques for detecting reusable software components [CC95].On the other hand, software re-engineering is the process of reverse engineering followed by forward engineering.It has been a promising e�ort toward e�cient evolution of existing software systems. Some important workhas been accomplished in this area. For instance, Rugaber and Wills present a research infrastructure for re-engineering [RW96] whereas Rajlich presents a methodology for software evolution [Raj97].Moreover, various e�orts have focused on how to customize the re-engineering process towards reusing existingsoftware components [Sam97]. The term software salvaging has also been used in the literature to refer to theprocess of re-engineering systems with the intend of �nding reusable components [Arn92]. An example of such ane�ort is Galdiera's and Basili's component factory [BG91]. However, within that context, little e�ort has beengiven on how to e�ciently incorporate modern reuse techniques in the re-engineering process.�This paper originated in the project A3 of the Bayerischer Forschungsverbund Softwaretechnik (FORSOFT) and was supportedby BMW and the Bayerische Foschungsstiftung



In this report we present a methodology of how to integrate speci�c reuse techniques into the re-engineeringprocess with an emphasis on components. In order to demonstrate our approach, we discuss an example ofre-engineering a client server legacy system with the intend of reusing software components.The remainder of this report is organized as follows: In the next section we describe the existing state of softwarere-engineering and its major targets. The third section will describe existing reuse techniques and classify themwith respect to the re-engineering process. Following we introduce the integration of those reuse techniquesinto the common re-engineering process and explain its bene�ts. We illustrate this approach by an example ofre-engineering a client server legacy system. Finally, we present our conclusions in the last section.2 The Status-Quo of Re-engineeringRe-Engineering is the general term for activities during corrective, adaptive, perfective or preventive softwaremaintenance. Corrective software maintenance aims for diagnosis and correction of errors, for example, for theY2K a�ected applications. Adaptive software maintenance intents to maintain proper interfaces within a chang-ing environment. Perfective software maintenance satis�es users requests and preventive software maintenanceimproves future maintability and reliability. Speci�c tasks in a re-engineering process are for example, when alegacy complex software system is to be salvaged, when someone else's complex software must be understood andrestructured or when the design of a complex software system needs to be recovered (i.e. reverse-engineered).In this section we review the status-quo of re-engineering. Therefore, we �rst explain the basic terminology. Thisterminology is used to characterize the process of re-engineering. Then we shortly discuss Re-engineering toolsand caveats.2.1 Software Re-Engineering TerminologyIn this section, we attempt to put existing software re-engineering terms in some perspective. First of all, the termsoftware is used in this report to indicate source code, documentation and any related data [Pre97]. Speci�cally,the documentation part may include various speci�cations and designs of the existing system. The data partmay include various related data such as input and output test data. The source code may include any programswritten using one or more programming languages and integrated in a single system as well as any dependency�les (e.g. make) that are needed to compile and run the system.Today, there is no commonly accepted de�nition for the term software re-engineering and the related terminologyis not standardized. However, there exist various valid de�nitions of software re-engineering that representdi�erent point of views and perspectives. For instance, Chikofsky and Cross de�ne it as "the examination andalteration of a subject system to reconstitute it in a new form and subsequent implementation of that form intheir landmark paper [CC90]. More recently, Arnold de�nes software re-engineering as \an activity that improvesone's understanding of software, or, prepares or improves the software itself for maintainability, reusability orevolvability" in his one-volume guide to the re-engineering literature [Arn92].In this volume Arnold presents various re-engineering related technologies [Arn92]. We describe these technologiesin the following with a focus on their transformational activities. Since transformation of information is a corenotion within software re-engineering, we wish to extend Arnold's approach by considering transformation as anessential activity of re-engineering. Figure 1 shows the transformations applied to the existing code.Next, we describe each related re-engineering technology and some related pointers to the literature are given forfurther study.Software Restructuring Restructuring e�orts have appeared as early as the mid sixties [BJ66] and they referto any activities that focus on making the existing software easier to understand and eventually easier to change.According to Yourdon, restructuring refers to the reorganization of the control structure of the existing sourcecode so that it conforms to the rules of structured programming [You89]. For instance, one can transform a2



Existing Code

Component

Library

Reuse

Engineering

New Code

Restructuring,

Remodularization,

Data Re-Engineering,

Object Recovery

Redocumen-

tation

Documentation Information

Browsing,

Program

Decomposition

Measurement

DesignReverse

Engineering

Figure 1: Re-engineering Techniquesspaghetthi-code-based system into new software that uses only one-entry-one-exit programming constructs (e.g.sequence-decision and iteration). Thus the transformation goes form source code to source code.Arnold refers to restructuring as an activity that makes the source code more readable and understandable.Such activities may include indentation of statements, sorting of identi�ers, use self explanatory variable namesetc. [Arn89]. Restructuring has been fully automated and there are many tools to support its activities. Actu-ally, the �rst automated restructures opened the way toward other re-engineering tools. More information onrestructuring can be found at [GB88b].Software Remodularization This term refers to any activities related to the re-organization of the modulestructure of an existing system. During remodularization one targets high cohesion and low coupling amongthe modules that comprise the existing system. Such e�orts lead to an easier to maintain software system. Thetransformation process starts with the existing module structure and ends with an improved such structure. Moreliterature covering this area can found at [Sch91] and [SJ88].Data Re-Engineering Database schemas can be restructured, data dictionaries can be reorganized and ex-isting data records can be updated. These activities are usually done when a transformation from one databasesystem to another takes place. For instance, when one wishes to transform a relational to an object-orienteddatabase system. Related references can be found at [RDW89].Object Recovery The original software is transformed into objects with various relationships among theseobjects. Recent work attempts to convert existing software written in an non-object-oriented way into an object-oriented one. There is a lot of attention given to this area recently due to the popularity of the object-orientedtechnology. For instance, several e�orts have been made to convert C to C++ programs [BL91], [Jac91], [DK91]and [Byr91].Software Redocumentation This term refers to a serious e�ort of creating and updating documentation aboutsoftware. Any knowledge found in the existing documentation, source code or speci�cations is transformed inan updated documentation. Therefore, the transformation process here starts from existing software includingsource code, existing documentation and related data and produces an up-to-date form of documentation thatincludes both external and internal documentation (i.e. comments in the code). The documentation usually is acombination of text, diagrams, tables and/or any related �gures. Thus, it could be textual or graphical. Redocu-mentation e�orts have started as early as the 70's and are described in various reports including [HKPS78], [Sne84]and [GN81]. 3



Software Browsing The process of navigating within large amounts of information related to an existingsoftware system is known as browsing. Today, there are many hypertext-based tools that allow for di�erent textualviews of software. Cross-referencing of such information are examples of software browsers. Moreover, there existmany graphical browsers today that transform existing textual information about software into manageablepictorial representations [Lin93b]. Thus, information about software is stored in a database and presented invarious forms. There is a lot of information in this area since simple text editors were the �rst means of browsingthrough source code for better understanding. Some literature includes [RDLK90], [Lin93a] and [Rei88].Program Decomposition It refers to a collection of activities involved in the process of breaking down anexisting program into entities and relationships. The simplest example of program decomposers and tokenizersare UNIX tools such as lex, yacc and bison. These entities and relationships are stored into a database, whichare used to facilitate further program analysis, measurement and/or statistical evaluation. This is a tedious andtime consuming task and therefore many automatic tools exist that produce databases with program dependencyinformation. Such tools include [Lin96]. Also, interesting work has been done in this area that helps graphicallyvisualize statistical information about software usage [Eic98].Program Comprehension The area of program comprehension, known also as software understanding, dealswith the human side of software engineering. Speci�cally, it deals with ways of facilitating the process of un-derstanding existing complex software. The main goal here is to comprehend the internal structure and overalldesign of an existing software system. This is a very expensive and di�cult process for many reasons. A lotof work has been done in this area at di�erent levels and granularities such as programming in the large versusprogramming the small. Speci�cally, e�orts to recover the programmer's mental models have appeared as earlyas the 60's [Pen87]. Recent work includes cognitive model for large-scale software systems [vMV95]. Also, manytools exist for understanding existing code [Lin94], [MK88], [Til98] and [Big89]. There is an on-going internationalworkshop devoted to program comprehension research and practices.Reverse Engineering The existing information of a software system is transformed into a design view. Forinstance, we can recover structure charts and/or data-
ow diagrams from existing source code. This e�ort isusually done in order to recover the original design of the system. The paper by Chikofsky and Cross is a goodreference point [CC90]. There is an on-going working conference on reverse engineering.Software Reuse Engineering Any modi�cations of an existing software system with an intend of making itmore reusable is known as reuse engineering. Speci�cally, reusable software components of the existing systemare detected, extracted and stored in a repository for reuse. Various e�orts have been made in this area includingthe detection of reusable components and/or speci�c methods/techniques to �nd such components. The trans-formation here takes place from the existing software towards a database/library of reusable components. Moreinformation can be found in [Arn91], [GB88a], [RE90] and [BB90]. This technique is investigated in more detailin the following section.The following two related re-engineering techniques do not transform the code, but are used to re-engineer thecontext of the software system (Business Process Re-Engineering) and to collect information about the quality ofthe code (Software Measurement).Software Measurement This term refers to any activities related to measuring the quality of an existingsoftware system. The term quality refers to the degree of meeting the original requirement speci�cations. Thereis a lot of work on establishing metrics for software [CBOR88], [McC76], [Zus93]. Also, there is a lot of workon program slicing [Wei88] and many others [HMKD82], [RU89]. No transformation of information is done here.There is an on-going workshop on software metrics. 4



Recovered
Information

Modified
Code

Reverse
Engineering

Forward
Engineering

Re−StructuringExisting 
SoftwareFigure 2: The basic Re-engineering ProcessBusiness Process Re-Engineering This term refers to a collection of activities within an organization withthe intention of improving the overall process of doing business. Within that context the existing software systemscan be transformed into more e�cient ones. This is a general approach towards doing business "right" withinan organization with respect to the company's software systems. More literature in this area can be foundat [Ham90], [DS90].2.2 The Software Re-Engineering ProcessToday, there is no standard de�nition of the software re-engineering process. A few e�orts have been made inorder to establish a life cycle for the re-engineering process. Several authors refer to software re-engineering as theprocess of reverse engineering followed by forward engineering [CI90] [Byr91] [Lin93a]. With in this de�nition,reverse engineering is viewed as the process of recovering design information from existing source code, whereas,forward engineering refers to the traditional software development life cycle.Another author establishes three steps to describe the process of software re-engineering [Ulr90]. These stepsinclude the inventory analysis followed by the positioning and transformation steps. In the �rst step, an infor-mation base is established that includes various components of the system. In the second step, the quality of theexisting software is improved and �nally in the last step, a new architecture is created from the existing system.Figure 2 shows a generalized version of the two step-process. Software re-engineering begins with an e�ort towardunderstanding an existing software system. During this e�ort the design of the system is recovered from its sourcecode. Related activities include browsing, static/dynamic program dependency analysis, program comprehension,detecting, extracting and storing design information etc. In the next step, the software re-engineering processincludes a collection of activities that are performed in order to actually transform the existing software into adi�erent, and easier to maintain form. Related activities include decomposition , restructuring, remodularization,redocumentation, reuse engineering, data reengineering, etc. This part involves a forward engineering strategytoward an improved version of the original system. It also focuses on improving the qualities of the existingsoftware with respect to its evolvability and ease of change. Thus, it could be easier for software engineering tomaintain.2.3 Software Re-Engineering ToolsIn this section, we outline what software re-engineering tools are and how they �t into the software re-engineeringprocess. Software re-engineering tools (SRETs) are software tools that facilitate the process of re-engineeringthe structure/architecture and/or functionality/behavior of software systems with the intend of improving theirunderstand-ability, maintainability and evolvability. It is estimated that within the next 10 years, we will bespending some trillions of dollars on maintaining and up-grading existing software if we continue to follow thesame techniques known today. Software maintenance is a complex and expensive task due the rapidly paradigmshifting nature of the software technology. Thus, the need for software tools that facilitate the process of re-engineering software systems is compelling. 5



SRET class FocusDomain-based speci�c application domainLanguage-based speci�c programming language and its problemsParadigm-based speci�c programming language and its problemsDependency-Analysis based maintain static/dynamic software dependenciesHypertext-based use of hypertext techniques to understand and re-engineer structural/behavioral aspects of programsProgram-animation based use of animation to understand the behavior of a programTable 1: A taxonomy of Software Re-Engineering ToolsSome criteria can be speci�ed which characterizes software tools as SRETs. Tools that provide mechanisms todetect, extract, certify, qualify and store reusable software components from existing systems, tools that createand manage a repository of architectural and/or behavioral information about reusable software components andtools that provide e�cient search engines for retrieving reusable components from the repository are SRETs.Furthermore tools that provide transformations for going from one kind of component representation to another,tools that provide partitioning techniques for decomposing large software components into smaller manageablepieces and tools that provide abstraction mechanisms for constructing higher granularity level components areconsidered as SRETs. An �nally tools that maintain consistent and up-to-date documentation of software com-ponents and tools that provide presentation models for visualizing information about software components fall inthe SRET category.Table 1 shows a taxonomy of SRETs and the focus of each SRET class.2.4 Re-Engineering CaveatsSoftware re-engineering is not a panacea, and therefore, it won't solve all the problems of the software maintenancecrisis. It is a promising starting point towards establishing good standards for producing maintainable software.According to Arnold, there are several issues related to re-engineering that one should be aware when launchinga re-engineering project [Arn92]. Re-engineering caveats include process-related risks such as the generation ofvery high costs due to manual re-engineering activities. Sometimes, the management may not be committed fullyto an on-going re-engineering plan. In addition, various personnel related issues might arise such assistance fromsenior software engineering. Application related risks might include the lack of application experts. On the otherhand, re-engineering technology related caveats might include issues such as when the recovered information isno longer useful or needed. It also possible to face problems when inadequate or unreliable tools are used inthe project. Finally, if there is no global view and long term vision within the organization might create severalproblems with software re-engineering.3 Techniques of ReuseIn this section we collect the basic reuse concepts. We focus on software parts and software description as units ofreuse - in contrast to descriptions or parts of the environment or usage context of the software. First we introducea taxonomy of reuse techniques. Then we apply this taxonomy to the most popular techniques, in particular tocomponentware which has received considerable attention lately.The aim of this section is to classify the reuse techniques so they can be integrated into the Factory of there-engineering for reuse process by the classi�ed aspects (e.g. encapsulation) in Section 4.3.3.1 A Taxonomy of Reuse TechniquesIn this work we rely on several surveys of reuse techniques. Most similar is [Kru92] who also classi�es thetechniques according to di�erent aspects. The main di�erence with this section is that we have incorporated thenew developments since 1992, in particular the work accomplished on componentware. This also leads to slight6



changes in the aspects considered. [Kar95] provides a very comprehensive methodology for reuse, covering inparticular issues of introducing and managing reuse in a company. Here, we don't deal with the organizationalprocess of reuse, but concentrate on products and techniques for the technical reuse process.In the following we distinguish the following aspects of reuse techniques :� Level of Isolation� Level of Speci�cation� Specialization� Integration Mechanism� Interface Description� AimThe level of isolation characterizes the reuse unit in terms of its relation to the complete software product. Hereare single code elements (statements) the lowest level. The highest level o�ers a framework which o�ers a set ofservices without relying on other software parts. Patterns are also quite low, since they only describe projectionsof complete designs. A component can be self-contained, but often it will require services of other components tocomplete its functionality. The architecture describes also a complete software product, but on a very high level.The level of speci�cation characterizes the descriptions the developers are working with. These range from machinecode to domain speci�c speci�cations. The same unit can be described on di�erent level of speci�cations. Inaccordance with [Kru92] we call the lowest level the realization.[Kru92] mixes the level of isolation and the level of speci�cation into the abstraction aspect. There are somedependencies between them: for example code elements are not described on the speci�cation level. However, forthe more modern reuse techniques like components, di�erent levels of speci�cation are possible.[Kru92] also distinguishes the hidden part, the variable part and the �xed part of an abstraction. The hiddenpart is only visible in the realization, while every speci�cation can be divided into a �xed and a variable part.Because we allow several levels of speci�cation of one unit, we do not stipulate a hidden part. There can beseveral abstractions of the same unit which specify di�erent parts of the units, so no part needs to be hidden inall abstractions.Usually, it is not possible to reuse the unit as such. Instead specialization, also called customization, of the unitis necessary. There are two kinds of such specializations:� one is expected by the developers of the reusable unit. Therefore this customization can be done by changingthe variable part of the unit. The variability can be achieved by parameterization, by inheritance, but alsoby con�guration. In all cases, the realization has not to be changed.� the other is not expected by the developers. It requires changes to the �xed part of the unit.The �rst one is more interesting, of course. Reusable units are not stand-alone. They must be integrated withother reused units or with some newly build ones. Typically a technique of integration comes with the unit. Thisincludes� an integration environment which is the common glue between the di�erent reused units. This environmenttypically consists of some mechanisms (technology) to integrate the units. They are based on a particularmodel of allowed interactions between the units. The mechanisms can be applied at development-time,build-time or run-time (see also the REBOOT project [Kar95]).� an interface description of the reusable unit which makes explicit the external facets of the unit to be usedby the other units. 7



Level of Level of Specialization Integration Interface AimIsolation Description for Mechanisms Mechanisms Descriptionsthe (Re) UserCode Elements Machine Code Parameter Development time Import/Export DistributionTransparencyPattern Programming Con�guration Building time Provided Explicit structureLanguages Capabilities (property analysis)Component Speci�cation Re�nement Run-time Include High-Level-Speci�cationArchitecture Domain speci�c Constraints Ad hoc ProvidedSpeci�cation PropertiesTable 2: The relevant aspects of reuse techniquesThe interface description depends on the integration mechanism and vice versa.It is important to also record the aims for which the techniques where developed. Most often, reuse is only one aimfor the technique. Especially, the aims transparency of distribution and reuse are often quite heavily inter-twined.The former allows to combine distributed units in an integrated environment such that the distribution is notvisible to the user. The latter aims to combine reusable units which need not to be distributed. We thereforedistinguish� aims in connection with the use of the software system (e.g. transparency), and� aims in connection with the development of the software system (e.g. reuse).For reuse to successful, the collection of reusable units and their retrieval must be organized. This is calledselection in [Kru92]. [ZGWK97] gives an overview of relevant techniques. In this study we don't treat selection,since we focus on the application of units of reuse.Table 2 lists again the reuse aspects which we will be looking at, together with the typical examples.Domain speci�c speci�cation applies to solution domain as well as to the problem domain. Re�nement meansadding details constructively, while constraints add details declaratively. Development time always means integra-tion by the developers, while build time always means automatic support prior to run time. Provided Capabilitiesdescribe the data managed and the services provided to the environment. Provided Properties describe propertiesof the complete system not attributable to a single functionality.3.2 Classifying Reuse TechniquesTable 3 classi�es the major reuse techniques according to the aspects identi�ed in the last section.There are four major categories of reuse units:1. Domain speci�c architectures, like frameworks and application generators, also try to capture expe-rience. However, this is already embodied into code. Integration is not treated, since DSA are typicallyself-contained. The specialization mechanisms vary.2. Patterns aim at reuse of experience. The description is therefore very comprehensive. Specialization isdone by re�nement, integration is done at development time and the interface is only described in terms ofthe provided properties.3. Programming and speci�cation languages aim at �ne{grained speci�cation, they typically use param-eterization for specialization. Integration is done at build time or development time. Interface descriptionis not used.4. Components provide the most precise notion of interface. They do not use constraints for the specializa-tion, since this is not constructive. Speci�cation levels and integration and interface mechanisms vary.8



Technique Level of Level of Specialization Integration Interface AimIsolation Speci�cation Mechanism DescriptionArchitecture Component Component and Parameters Integration of Capabilities structure explicitComponents Connectors, no �xed Components by for reuse, designrealization notion Connectors decisions, analysisof propertiesModules Component Speci�cation Parameters Build-time, Import / Design andno �xed realization programming Export implementationnotion language structure, butindependent language indep.Classes Component Speci�cation Re�nement Build-time Provided Reusable,(in Programming (Inheritance) Capabilities data-centeredlanguage)Code Component Programming Con�guration Build-time, Include FacilitateComponents language programming installationlanguage speci�cExecution Component Machine Code None Run-time system None Describe dynamicComponent (Threads, of the programming structuresTasks) language.e.g. making use of theschedulers runtime environment,for analyzingrun-time propertiesApplication Architecture None - the architecture Constraints None None High-levelGenerator is hidden to the user speci�cation forprototyping andeasy modi�abilityFramework Architecture Programming language Inheritance or None None Reuse ofCon�guration architecturesArchitectural Pattern Domain speci�c Con�guration Development- Provided CapturePatterns speci�cation Re�nement time capabilities architecture(conceptualarchitecture)Design Pattern Domain speci�c Con�guration Development- Provided CapturePatterns speci�cation (design) Re�nement time capabilities design experienceand Programming (combination)languageIdioms Pattern Programming language None Development- Provided Capturetime capabilities implementationexperienceHigh-level Code Programming language, Parameterized Building-time None PlatformProgramming Elements realization by assembly slots (compiler) independence,Language language understandabilityConstructsDesign and Code Programming None None None Reuse which hasCode Elements language not been foreseenScavenging (small parts by the developeror largeparts withholes)Very High-level Code Speci�cation language, Parameters Building-time None General,Programming Elements realization by assembly Templates executableLanguage language speci�cationConstructsTransformation Pattern (for Speci�cation None Development time High-level spec.systems transform. (composition of for prototyping andsteps) transformations) easy modi�abilityEnterprise Component Speci�cation language Parameter Build{time Provided Distribution,Componentware (Interface Description (not mandatory) and/or run{time Capabilities transparency,Components Language) reuse of componentsApplication Component Speci�cation Parameter Build{time Provided Reuse of componentComponentware (in Programming capabilitiesComponents language) and providedpropertiesCompound Component None Scripting Run-time None Inter-applicationDocument transparency withinParts one documentTable 3: Classi�cation of some Major Reuse Techniques { see also [Kru92]9



3.2.1 Software ArchitecturesSoftware Architecture is a very popular term, but its meaning is very vague. The aim is to capture the globalstructure of a software system design [Kru92]. As stated in [GS93], however, reuse of this global structure is onlyone aspect. According to [BDRe97], a formal foundation of the notion Software Architecture is needed.Making this structure explicit also allows to make principled choices among design alter natives and is essentialto the analysis and description of high-level system properties. As stated in [SNH95] also code generation fromarchitectures is examined. Here we distinguish between two kinds of architecture reuse:- reuse of the elements of the architectural structure. Here the architecture provides a framework for ab-straction, integration and customization. As examples we treat the four di�erent architectures identi�edby [SNH95].- reuse of the architecture as the whole. Here the we look at domain speci�c architectures and frameworks.Architectures as integration mechanisms for reuse unitsConceptual Components The conceptual architecture describes the software in terms of components andconnectors. Components are speci�cation units, but they need not be identi�ed as such in the code. Thereforethere is no clear notion of realization in this technique. This is even more true for the connectors. They captureprotocols of interactions between the components.Modules Module architectures describe the system in terms of modules and their export and import interfaces.Modules are functional components which already re
ect implementation decisions. They are typically collectedinto layers to restrict import/export relations. Modules can be viewed as a realization notion for components andconnectors, where both are realized through sets of modules. Again for modules, no clear notion of realizationexists. They might be identi�ed as such in the code, but need not be. Modules typically allow for specializtionby parameterization. For integration, modules make explicit their export interface which in turn can be used asimports by other modules. However, integrating modules from di�erent sources, often leads to naming con
icts.Therefore, module interconnection languages have been developed [Kru92]. The compile time environment of theprogramming language �xes the mechanisms for integration.[Kru92] discusses more general notions of source code components: ada packages and classes in object-orientedprogramming languages. Inheritance provides a special notion of specialization for classes. Instead of providingparameters in the original unit, the specialized unit takes attributes and operations from the original unit andextends them. This has some 
avor of the design and code scavenging approach discussed below. The semanticsof this notion has been an ongoing source of debate in the OO community. Classes also use a speci�c notion ofinterface. Classes provide services to be used by other classes. The called services operate on the data of thecalled class, while the imported parts of modules operate on the data of the importing module.Code Components The code architecture re
ects the choice of the programming language and the developmentenvironment. It aim s at facilitating system building, installation and con�guration management. It can be viewedas a realization of the module architecture. The code units (�les) realize modules. They themselves are organizedinto directories and libraries. The programming language code constitutes the abstraction speci�cation (e.g.organized with include �les), while its realization is the binary code. At this level not the reuse units themselvescan be customized. Instead customization of the complete system consists of con�guration. The mechanisms ofintegration are provided by the runtime system of the programming language.Execution Components The execution architecture re
ects the choice of the runtime environment, in partic-ular wrt. performance, distribution and resource allocation. The abstractions used are thread, tasks, processes,address spaces and the like. The realization depends on the programming language. Typically there is no10



customization involved. The system model is �xed through the runtime environment. This also contains themechanisms for integration of the units. Examples for such mechanisms are schedulers, load balancing.Reuse of ArchitecturesReused architectures are also called Domain Speci�c Software. They allow for reuse of the whole developmentprocess in a speci�c domain. The domain can be either characterized by the problem features (problem domain,e.g. avionics) or by the solution features (e.g. database). In [FS97] frameworks for system infrastructure ,middleware integration and enterprise application are distinguished.Application Generators Application generators allow to produce a self contained application from a very highlevel speci�cation. Typical examples are 4GL for database applications, expert system generators and compilergenerators. They aim at high-level speci�cation for prototyping and easy modi�ability. The unit of reuse is theglobal system architecture. However, this is hidden to the developer. The realization is a complete application.Specialization consists of constraints using domain speci�c concepts which are used as additional input for thegeneration process. Integration is often not necessary, since the resulting application is self contained. Sometimes, subsystems are generated which communicate through an abstract interface.Frameworks Frameworks describe a domain speci�c, reusable architecture as a set of interdependent classes inan object- oriented language. According to [FS97], the primary bene�ts of application frameworks are modularity(through stable interfaces), reusability (through generic components) , extensibility (through hook methods) andinversion of control (through the framework's reactive dispatching mechanism). [Pre97] distinguishes White-Box-Frameworks from Black-Box-Frameworks. The distinction is due to two di�erent ways of adapting a framework.In the �rst case the classes contain many abstract methods which have to be specialized. In the second case theframework already contains di�erent subclasses which specialize the class with the abstract method. The user ofthe framework only selects the appropriate subclasses. Typically a White-Box-Framework matures to a Black-Box-Framework eventually. The customization of black-box-frameworks is much less error prone. Somewhat inbetween is the use of template methods. These methods encapsulate the variable parts of their body withinso called hook methods. Hook methods are abstract methods which are specialized in subclasses. The level ofabstraction is quite low, since the framework user needs to understand the programming language of the framework. Integration is not relevant at �rst-sight , since the specialized framework is self contained. However ,increasingly integration of di�erent frameworks is necessary [FS97].3.2.2 PatternsPatterns aim at reusing experience. Patterns specify abstraction above the level of single classes or compone nts.They typically describe the constituent components, their responsibilities and relationships, and the ways in whichthey collaborate [BMR+96]. This is a particular kind of speci�cation for structures. However, not a completesystem structure is described, but only a view of the structure which is relevant for a particular problem (systemproperty). Therefore specialization is achieved by re�nement which means adding more detail. Sometimes alsodi�erent variants are described within one pattern. Then specialization corresponds to con�guration by choosingthe adequate variant. Integration of di�erent patterns has to be done at development time by combining thepatterns to achieve combined properties. The interface of the pattern is described in terms of the properties itcan achieve. There are three levels of patterns:- architectural patterns describe conceptual architectures. In contrast to the architectural components thefocus is on the structure, not on the individual components.- design patterns describe views on the design relevant for a particular property- idioms describe solution to programming language speci�c problems.11



3.2.3 Programming and Speci�cation Languages[Kru92] emphasizes that also programming and speci�cation languages incorporate reuse techniques.Programming LanguagesHere the unit of reuse is part of the code. The aim is in general platform independence.High-Level Languages The abstractions o�ered by high-level languages are language constructs like casestatements or while loops. The realization is given by assembly language code. The translation from speci�cationto realization is automated by the compiler. Typically the high-level constructs allow for specialization byparameterized slots. The integration mechanisms are the syntax rules of the programming language.Design and Code Scavenging While the reusable units of HLL and VHLL are designed as such by thelanguage developers, design and code scavenging reuses parts which have not be designed for reused. The lattertakes a small contiguous code fragment, and the former a big code fragment eliminating parts which are notneeded or have to be changed. Thus there is no clear notion of abstraction and specialization, since there is noclear semantic relationship between the original unit and the specialized one. Also for integration no particularmechanism is provided.Speci�cation LanguagesSpeci�cation languages are similar to programming languages as a reuse technique, since the unit of reuse is partof a language. In contrast to most programming languages, they aim at general non-operational abstractions.We do not include software schemas as in [Kru92], since they particularly aim at easy selection which we do notcover here.Very High-Level Languages Very High-level languages such as SETL, PAISLey aim at executable speci�ca-tions. The abstraction is chosen as high as possible without loss of generality, but allowing for easy descriptionand modi�cation. The reali zation is still assembly language. As in high-level languages specialization is madepossible through paramet erized languages constructs and templates, and integration through syntax rules. Inaddition, very-high level language often aim at a simple declarative semantics.Transformational Systems Transformational systems, similar to application generators, aim at high-levelspeci�cation for prototyping and modi�ability. In contrast to application generators, the intermediate resultsare reused within a step by step transformation process. This allows for reuse of the generated prototype,single transformation steps or the whole development history. There is no notion of specialization, since thetransformation itself is reused. Of course, the transformation can be applied to di�erent inputs. Integration oftransformations means sequential composition. Often there are no semantic restrictions for this.3.2.4 ComponentwareBrie
y, componentware are the technical means behind Component-Based Software Engineering (CBSE). WithCBSE we mean the task of building, assembling and integrating software components. In this report, we distin-guish between- Enterprise Componentware,- Application Componentware and 12



- Compound Documents.For our classi�cation of reuse techniques, we examine the items, the di�erent componentware techniques dealwith, namely the components, not the componentware itself. As for high-level languages the compiler is thebackground technique to translate between speci�cation and realization, the componentware is the backgroundtechnique to put components to work. Nevertheless, because of the impact on re-engineering for reuse, we'llpicture how componentware works. Before we discuss the di�erent componentware technologies, the next sectionwill put some CBSE terms in some perspective.The following de�nitions are neither comprehensive nor scienti�c founded. Actually, the development of compo-nentware technologies started and happens in software companies like Sun, Microsoft or IBM and less in research.A software component is a self-contained software building block that exposes its provided capabilities and prop-erties by means of interfaces to its environment. Self-contains means that every component is an encapsulated,autonomous unit, adaptable only through its properties. Software components can be combined with other com-ponents and with newly written code to produce an application or another component. The way to use andcustomize a component distinguishes it from similar units like modules, libraries or classes. The di�erence is thestrict separation between the provided capabilities, their realization and the components' build- and run-timeenvironment. Module, libraries or classes are introduced to archive a similar separation. However, modules andclasses are caught in the programming language they are written in. An interconnection between modules orclasses written in di�erent languages is not possible. A library could be used in di�erent languages, even dynami-cally during run-time, but it depends on the operating system, for which it has been build. Furthermore, modules,classes and libraries don't provide a standardized way to customize their behavior. A software component can becustomized to suit requirements of its environment through a standardized access to a set of properties withoutrequiring access to the source code. These mechanisms make a component 
exible to �t in di�erent contexts toproduce di�erent application without having to change it and therefore a promising solution for building reusablesoftware units.A component model de�nes the basic architecture of a software component, specifying the structure of its interfacesand the mechanisms by which it interacts with its environment and with other components. The component modelprovides guidelines to create, implement and (re-)use components. A component model is necessary to make thesoftware components self-contained. A connection between two component models is called a bridge.Components can be as small as a simple GUI element like a button or as big as a complex application service likean account management function. The important aspect in adapting a component to build an application is notits size, it's the complexity of its interface, that is the manifold provided capabilities and properties. A buttoncomponent has few capabilities and properties and will be easy integrated in many environments. An accountmanagement component has myriad of capabilities and properties and its integration will be probably as complexas writing it from scratch. With component granularity, we mean the di�erent levels of the interface complexity.In the next sections we will discuss the di�erent componentware technologies and outline the applicability of theiritems, the components, as reuse technique.Enterprise ComponentwareEnterprise componentware is a middleware which provides support for a location transparent and language in-dependent cooperation between distributed software components, which in this domain are called distributedobjects. A predecessor of this technology is the Remote Procedure Call (RPC) middleware developed by Sun.The important features, an enterprise componentware has to provide are:� mechanisms to locate and communicate to other components.� standard interface description independent from speci�c programming languages and platforms.For CBSE, the main goal of enterprise componentware is the integration of components on heterogeneous plat-forms. The components itself can be any unit of executable code as long as this unit provides and implements the13



Applications

Object Request Broker (ORB)

CORBAdomains

CORBAservices CORBAfacilities

Interface Interface Interface Interface

Interface Interface Interface Interface

CORBA
Component

Figure 3: CORBA Object Management Architecture (OMA)standard interface. The unit of reuse is the component speci�ed by its interface which is written in a languageand platform independent Interface Description Language (IDL). The code which realizes the component remainshidden for the (re-)user. The builder of a component - after writing the components' implementation - has tocreate the IDL description based on the functions that should be callable from the environment of the functions.Due to the fact that enterprise componentware is the middleware to realize distributed objects, the builder hasno obligation to provide standardized properties for customization of a component. This means - in best case- that an enterprise componentware only provides its own way to specialize itself, that is, in most cases a less
exibility to (re-) use it in di�erent environments. The mechanisms to integrate an enterprise component areprovided either during building-time by compiling and binding the components' IDL in an application or duringrun-time by querying central instance to get the components' capabilities. The latter mechanism is more 
exiblebut less simple to implement.As example for an enterprise componentware, we introduce the Common Object Request Broker Architecture(CORBA). CORBA is a manufacturer independent standard for distributed objects by the Object ManagementGroup (OMG) consortium [OMG92] and several companies o�er implementations for this standard. The centralcomponent of a CORBA implementation is the Object Request Broker (ORB). The ORB provides a \componentbus" for the cooperation between the (distributed) application of objects and provides the above features of anenterprise componentware.Figure 3 shows the CORBA Object Management Architecture (OMA). The CORBAservices cover services to sup-port work with distributed objects like persistence, naming or life cycle services. CORBAfacilities include servicesfor applications like compound documents, system management and data interchange. CORBAdomains comprisedomain-speci�c services, like �nancial services or health care. CORBAservices, CORBAfacilities and CORBAdo-mains are an extension to the enterprise componentware described above. Particularly the CORBAfacilties withbridges to other componentware products qualify the OMA as framework componentware.Application ComponentwareApplication componentware facilitates the building and assembling of components and integrates them to appli-cations. It provides mechanisms for encapsulation of implemented functionality behind standardized interfaces.The assembled components not only can be integrated to build applications, but also be used to provide theirfunctionality through mechanisms of enterprise respectively document componentware. The unit of reuse is thecomponent speci�ed by its interface which is written in the programming language, the component is writtenin. In contrast to enterprise componentware, the main goal of application componentware the reuse of compo-nents in many applications written in one programming language, not the interoperability of components fromdi�erent applications. Therefore, the specialization mechanism is standardized and the builder of a componenthas the obligation to provide standardized properties for customization of a component. The application com-14



ponentware provides tools, the (re-) user can use to customize a component to �t the needs of the environment.The mechanisms to integrate components into an application are provided by the application componentwareduring build-time. The customization to �t into an speci�c environment is done during the development-time.Furthermore, the component behavior can be biased by the components' provided properties during run-time.As an example for application componentware, this section introduces the JavaBeans framework from Sun. Jav-aBeans is an extension of the Java API [Fla97] with a component model framework. The components calledbeans are created like normal Java classes, but have to be compliant to the JavaBeans naming conventions. Forexample, the access functions to properties for customizing the beans must begin with get and set. Furthermore,the builder of a bean can add additional bean information with documentation, simple property editors or a visualbean customizer. The advantage of the naming convention approach is, that the (re-) user of a bean doesn't needto employ the JavaBean framework to communicate with a bean. The bean can be used in the same manner asordinary Java classes. The disadvantage is that beans are not self-contained as described above. A JavaBean isonly applicable within a Java environment. For a connection to other component models they need a bridge orwrapper and have to run in their own Java virtual machine run-time environment.Compound DocumentsThe compound documents component model enables a document centered rather than an application centeredapproach on a desktop. That is, a document consists of several parts of di�erent types. To manipulate thetypes, the user doesn't have to call the appropriate application itself, the compound document framework callsautomatically the correct application component within the desktop. Even the editing takes place in the compounddocument itself and not in a separate window. One have to distinguish between to types of components and twodi�erent roles within compound documents model. First, there have to be components, which have to registerto the desktop and claim their ability to handle - display, edit and store - one ore more types of documentparts. These components are built and provided by software vendors. For the user of the compound documents,only the parts of the document a visible. So the unit of reuse is the hidden type handling component, whichis only true for the document user. The builder of such a component reuses only the standardized mechanismsto write, distribute and register it. Because the component itself is hidden, the user works only with parts andno speci�cation of the components. To change the behavior of a type handling component, some compounddocument models allow scripting, which means that beside the standard desktop integration, a user can adapta type handling components in a document to his own requirements. The integration is done by the desktopat run-time of the compound document application. A disadvantage of the compound document model is itsrestriction to the con�guration of a speci�c desktop. If a document has to be displayed on another desktopwithout the required type handling components, some parts are not accessible. These in
uences the exchange ofcompound documents between di�erent users and di�erent platforms.In the following, we describe Object Linking and Embedding (OLE) from Microsoft as an example for a compounddocument standard. OLE 1.0 (1991) was a standard that enabled the creation and management of compounddocuments for the Windows operating system. It allows an embedding of objects in a document together withinformation about the format and the appropriate application. The aim of this version was to link and embedobjects from one application into another and vice-versa. OLE 2.0 (1993) broaden this aim to an multi-purposeplug-in model for component oriented applications. That is, the compound document objects, the type handlingcomponents, can be plugged in to an application to extend the functionality without requiring changes. Thesecomponents are called controls. Until now, OLE has evolved into a bunch of di�erent services for di�erentpurposes. OLE consists of two major elements: the Component Object Model (COM), which is the underlyingarchitecture, and a wide range of OLE services that enable software integration [Bro95]. The OLE services are:� Services for application integration, which include Object Linking and Embedding, Visual Editing andDrag-and-Drop.� Services for developers to customize standard applications, like OLE Automation and OLE Controls.� Services for cooperation between di�erent applications, like OLE Messaging, OLE DB and DistributedComponent Object Model (DCOM) services. 15



Enterprise Application Compound documentComponentware Componentware type handlingComponent Component Componentencapsulated yes yes yesindependent yes no noautonomous yes no nostandardized no yes yespropertiesTable 4: A comparison of componentware componentsOLE is part of the Windows operating system. The disadvantage of this is the de�ciency in scaling in a hetero-genious environment from one desktop to many heterogenious desktops in an enterprise. Due to the absence ofOLE in other operating systems, the exchange of compound documents on the one hand and the reusability oftype handling components on the other is limited to the Windows world. Due to the fact that the major part ofOLE relying on Windows API functions, the task to provide OLE for other systems is not easy.Componentware Technologies comparedIn the beginning of section 3.2.4 a de�nition of an ideal software component was given. The components of thepresented componentware technologies don't ful�ll these de�nition completely. In table 4 the components arecompared to the ideal software component de�nition.An application componentware component is not independent, because bound to the used programming language,not autonomous and it depends on the application in which it's integrated. A type handling component is notindependent, cause it's bound to a desktop system and it has no standardized properties, beside scripting.4 Re-engineering for ReuseIn the last two sections we have reviewed re-engineering and reuse techniques. Re-engineering aims at providinga new structure for an existing system. Reuse aims at quality improvement and e�ort reduction by using existingsystem parts in a new context. We have examined di�erent units of reuse and their (interface) speci�cation,specialization and integration. Current reuse research concentrates mainly on domain speci�c architectures andcomponents.In this section, we present requirements for appropriate reuse techniques. With this requirements, we chooseappropriate reuse techniques and integrate them into the re-engineering for reuse process.4.1 ObjectivesRe-engineering for reuse (REfR) attempts to answer the following two questions:� How do we re-engineer existing software systems so that they may be reused in the future?� How do we extract and prepare (reusable) units from existing software so that they can be (re)used to builda new system ?The �rst question refers to the evolution of software systems. By evolving a system the major part of the systemis reused, only minor parts are removed or added. Regarding the second question the use of software units foundin previous systems to construct new ones is considered to be a new paradigm toward improving software qualityand toward increasing the productivity of software engineers.16



Component Factory

Accuire components
(COTS) from

component vendors

Create components
from scratch

Delivering
components for new

or restructured
applications

Get components
form existing
applications

Figure 4: The Component Factory4.2 The ProcessIn an e�ort to establish a model and a framework for the process of re-engineering for reuse, the idea of a"component factory" has been introduced in the late 80's [GB88b]. an organization responsible for developingand packaging reusable software components. The factory receives requests for reusable components from softwareengineers who are working on the traditional software development life cycle. When such requests are receivedthe factory searches its repository of components to �nd and then customize, if necessary, the component needed.When the requested component cannot be found or it is too costly to customize, then the software factory willdevelop it from scratch, or builds it from more primitive existing components. After certi�cation the componentis released to the requestors. Because the e�ciency of �nding reusable components is very important within thecontext of the software factory, the repository must contain enough components to minimize the possibility ofcreating a component from scratch. Figure 4 shows a the component factory model.There are two reengineering activities included in the factory: component identi�cation and component qual-i�cation. The �rst phase can be fully automated whereas the second phase would need the intervention of asoftware engineer who has knowledge about the application domain, will assist with �nding useful and interestingcandidate components for reuse.There is an overhead we have to pay for maintaining the component factory. Because of this overhead, in the shortterm, it is more expensive to develop reusable components rather than creating specialized programs. However,when we establish a large and well-organized repository of reusable components and provide an e�cient searchengine and an e�ective tailoring mechanism, then, in the long run, there will be clear economic bene�t.Figure 5 shows the framework of the re-engineering for reuse process. Speci�cally, it shows how the concepts ofsalvaging, reverse engineering and forward engineering �t within the process of re-engineering for reuse (compare
Modified
Code

Extraction,
Experience

Evolution

Library of 
Reuse Units

Existing
Software

Reuse Unit
Specialization,
Integration

Figure 5: The Re-engineering for Reuse Process17



Corresponding Classi�cation Requirements According techniquesExtraction Level of Speci�cation Speci�cation language ModulesClassesVHLLArchitecture ComponentsArchitectural PatternsDesign PatternsTransformation SystemsEnterprise Componentware(Application Componentware)Encapsulation Level of Isolation Modularization of Architecture Componentslarge application Modulessystems Enterprise ComponentwareApplication ComponentwareSelection not discussedSpecialization Specialization at least Parameter Architecture ComponentsModulesClassesApplication GeneratorFrameworkArchitectural PatternsDesign PatternsVHLLEnterprise ComponentwareApplication ComponentwareIntegration Integration Mechanism not Development-time ClassesInterface Description Provided Capabilities Enterprise ComponentwareApplication ComponentwareArchitecture ComponentsTable 5: Accordance of Classi�ed Reuse Techniques to the Requirements for Re-engineering for Reusewith Figure 2). Reverse engineering is tailored to the extraction of reusable units. This extraction can bebased on the source code, but it can also mean encapsulating experience with former software developmentprojects. Development of reusable units always consists in packaging previous experience or existing code. Forwardengineering is tailored to the selection, specialization and integration of components whereas evolution is viewedas the generalization of re-structuring.4.3 Choosing Reuse Techniques for Re-engineering for ReuseWith regard to the above mentioned tasks during the re-engineering for reuse process, namely� extraction,� encapsulation,� selection,� specialization and� integration,we have to choose an appropriate reuse technique out of the ones classi�ed in the last section.Since we concentrate on the re-engineering aspect, again we do not deal with selection. The other tasks correspondclosely with our classi�cation: extraction is dependent on the speci�cation level, encapsulation is dependent onthe level of isolation. Specialization and Integration have been included as facets of our taxonomy.For each task we choose speci�c requirements, due to the situation in our real re-engineering project: Thetechnique should not be bound to a speci�c platform or programming language. Therefore, we choose speci�cation18



Server System

Client A

Client B

Client C

business logic codeFigure 6: Initial Situation: A Client/Server Legacy Systemlanguage as the level of speci�cation. The level of isolation should be as high as possible and particularly supportthe modularization of large application systems. We do not restrict the specialization mechanism, but paramatersshould be possible at least. The integration should not be at development time to ease the burden of the designers.For the same reason, we require a clear notion of interface description.The requirements on the tasks are presented in table 5 together with the techniques ful�lling the requirementsaccording to our classi�cation.The two reuse techniques, which full�ll the requirements best are Enterprise Componentware and ApplicationComponentware. They provide the best accordance to the requirements for re-engineering for reuse. In the nextsection, we'll use these techniques to illustate a re-engineering for reuse process for an example.5 Integrating Reuse Techniques into the Re-engineering Process: An ExampleIn this section, we present an example of applying the re-engineering for reuse (REfR) methodology on a legacyobject-oriented client/server software system. Our goal is to re-engineer this system for reuse, using component-ware as a reuse technique. We �rst present some necessary de�nitions and some application-oriented assumptions.We call an object-oriented client/server system a legacy system, if� the classes and class hierarchies are not designed for reuse in di�erent environments or there's no documen-tation, how to use the reusable classes� the client is implemented as thick-client, that is, parts or all of the business logic code is on client-side and� the client/server interactions don't use an common (and documented) interface.If a business process changes, the business logic of a client/server system with thick-clients has to be changed atclient and server side. Furthermore, if there is a need for another presentation type, the business logic has to bere-implemented. Figure 6 shows the initial situation. 19



Client A

Client B

Client C

Server Component

Presentation 
Clients

business logic code

business logic
componentFigure 7: EncapsulationWe examine a client/server system with thin-clients, that is, all of the business logic is on server-side and onlythe presentation code is on client side.This facilitates the adaptation of the system to a new business process or the generation of clients with otherpresentation types, e.g. a client based on Windows AWT and a client based on Motif for Unix Workstations. Dueto the fact, that the business code is on server-side, another advantage of thin-clients is there reduced size andtherefore for example a faster downloading time, if they are provided as Java applets over the Internet. If clientand server do not interact using a common interface, it is di�cult to change the servers' internal behavior andvice-versa. For example, if a client executes SQL statements to direct access server-side data, there's no way tochange the used database without having to change the SQL statements within the clients.StepsIn this section we describe the necessary steps needed to re-engineer the above client/server example. Figure 6shows the initial situation: A client/server system with thick-clients (the business logic code is drawn grey) andno common interface (the access arrows are pointing within the server). Our goal is to re-engineer this systemfor reuse, using componentware as reuse technique.In the �rst step, enterprise componentware is used to encapsulate client and server. The goal is to have a commoninterface for the clients to access the server. Furthermore, the business logic has to be removed from the clients andput to the server to have the advantages of the thin-client approach. The rectangles in Figure 7 are the enterprisecomponentware interfaces for clients and server. Having a common interface, the next step, componentizationand integration, could be done independently for client and server. With a common interface and business logicit is possible to create and maintain di�erent presentation clients. For example, an application implemented inC++, the encapsulated C++ server can be completed with a newly build Java applet as client.In the next step, application componentware can be used to independently componentize the existing client andserver into reusable components and remaining application speci�c code and integrate them with existing reusablecomponents, which are replacing similar code, to a component-based application. The newly identi�ed softwarecomponents are checked into a enterprise-wide component factory, which serves as a means for storing, �ndingand maintaining such components. In Figure 8, the newly identi�ed and created components are grey, the existingcomponents out of the component factory are black. The former client business logic and the server are shown20



Presentation 
Clients

Server Component

Component Factory

business logic code

business login 
component

Figure 8: Componentization and Integrationas one object. This would be the ideal case. Normally, the removed business logic from the client has either tobe rewritten and would be an object of its own or its functionality has to be written to the server component.For re-engineering for reuse, step 2 is the most important and the most expendable. These expenses are onlya�ordable, if a component factory enables the usage of the components enterprise-wide.6 ConclusionIn this report, we studied the integration of reuse techniques into the re-engineering process and presented amethodology for re-engineering client/server legacy systems. To this end, we classi�ed existing and more recentreuse techniques including application and enterprise componentware.More speci�cally, we have argued in this report that from a re-engineering for reuse point of view, enterprisecomponentware is a way to encapsulate and connect applications at di�erent stages of reusability. In addition,we made an attempt to show that application componentware can be used to extract reusable components out ofexisting systems and make them available by means of a component factory.References[Arn89] R. S. Arnold. Software restructuring. In Proc. IEEE. IEEE, April 1989.[Arn91] R. S. Arnold. Risks of reengineering. In Proc. Reverse Eng. Forum, St. Louis, April 1991.[Arn92] Robert Arnold, editor. Software Reengineering. IEEE Computer Society, 1992.[BB90] J. W. Bailey and V. R. Basili. Software reclamation: Improving post-development reusability. In Proc. EighthAnn. Nat'l. Conf. On Ada Technology U. S. Army Communications Electronics Command, Fort Monmouth,N. J., pages 477{498, 1990.[BDRe97] Manfred Broy, Ernst Denert, Klaus Renzel, and Monika Schmidt (edts.). Software architectures and designpatterns in business applications. Technical Report TUM-I9746, Munich University of Technology, 1997.[BG91] V.R. Basili and G. Galdiera. Identifying and qualifying reusable software components. IEEE Computer, pages61{70, February 1991.[Big89] Ted Biggerstu�. Software Reusability. ., 1989. 21



[BJ66] C. Bohm and G. Jacopini. Flow diagrams, turing machines, and languages with only two formation rules.Comm. ACM, 9(5):366{371, May 1966.[BL91] P. T. Breuer and K. Lano. Creating Speci�cations from Code: Reverse Engineering Technique, volume 3 ofSoftware Maintenance: Research and Practice, pages 145{162. ., 1991.[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern OrientedSoftware Architecture: A System of Patterns. John Wiley & Sons, 1996.[BP89] Ted Biggersta� and Alan Perlis, editors. Software Reusability. Addison-Wesley Pub Co, 1989.[Bro95] Kraig Brockschmitt. Inside OLE 2. Microsoft Press, 1995.[Byr91] E. J. Byrne. Software reverse engineering: A case study. In Software-Practice and Experience. ., 1991.[CBOR88] V. Cote, P. Bourque, S. Oligny, and N. Rivard. Software metrics: An overview of recent results. J.Systemsand Software, 8:121{131, 1988.[CC90] E. Chikofsky and James Cross. Reverse engineering and design recovery: A taxonomy. IEEE Software, 7,1990.[CC95] Gerardo Canfora and Aniello Cimitile. Assesing modularization and code scavenging techniques. Journal ofSoftware Maintenace: Research and Practice, 7:317{331, 1995.[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery: A taxonomy. IEEESoftware, 1990.[DK91] M. F. Dunn and J. C. Knight. Software reuse in an industrial setting: A case study. In Proc. 13th Int. Conf.On Software Eng. IEEE, 1991.[DS90] T. H. Davenport and J.E. Short. The new industrial engineering; information technology and business processredesign. In Sloan Management Rev, pages 11{27, Sommer 1990.[Eic98] Steve Eick. Visualizing year 2000 program changes. In 6th International Workshop on Program Comprehension,1998.[Fla97] David Flanagan. JAVA in a Nutshell. O'Reilly & Associates, Inc., 2nd edition, 1997.[FS97] M. Fayad and D.C. Schmidt. Object-oriented application frameworks. Communication of the ACM, 40(10):32{38, 1997.[GB88a] G. Galdiera and V. Basili. Identifying and qualifying reusable software components. IEEE Software, 1988.[GB88b] G. Galdiera and V. R. Basili. Reusing existing software. Technical Report CS-TR-2116, Univ. of Maryland,College Park, 1988.[GN81] R. L. Glass and R. A. Noiseux. Software Maintenance Guidebook. Prentice-Hall, N. J., 1981.[GS93] D. Garlan and M. Shaw. An introduction to software architcture. In Advances in Software Engineering andKnowledge Engineering, volume I. World Scienti�c Publishing Company, 1993.[Ham90] M. Hammer. Reengineering work: Don't automate, obliterate. In Harvard Business Rev, pages 104{112,Juli-August 1990.[HKPS78] K. Heninger, J. Kallander, D. Parnas, and J. Shore. Software requirements for the A-7E aircraft. Technicalreport, NRL Memorandum Report 3876, 1978.[HMKD82] W. Harrison, K. Magel, R. Kluczny, and A. DeKock. Applying software complexity metrics to softwaremaintenance. Computer, 15(9):65{79, September 1982.[Jac91] I. Jacobson. Re-engineering of old systems to an object-oriented architecture. In Proc. OOPSLA, pages340{350. ACM, 1991.[Kar95] Even-Andr�e Karlsson, editor. Software Reuse { A Holistic Approach. John Wiley & Son, 1995.[Kru92] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131{183, 1992.[Lin93a] P. Linos. CARE: An environment for understanding and re-engineering C programs. In Proceedings of IEEEConference on Software Maintenance, 1993.[Lin93b] P. Linos. Facilitating the comprehension of C programs: An experimental study. In Proceedings of the 2ndWorkshop on Program Comprehension, 1993.[Lin94] P. Linos. Visualizing program dependencies. Software-Practice and Experience Journal, 1994.[Lin96] P. Linos. A tool for maintaining hybrid C++ programs. Journal of Software Maintenance, 1996.22



[McC76] T. McCabe. A complexity metric. IEEE Trans. On Software Eng., SE-2(2), December 1976.[MK88] H. A. Muller and K. Klashinsky. Rigi: A system for programming-in-the-large. In 10th International Conferenceon Software Engineering, 1988.[OMG92] OMG. Object management architecture guide { revision 2.0, 1992.[Pen87] N. Pennington. Comprehension studies in programming. In Second Workshop on Empirical Studies of Pro-grammers, 1987.[Pre97] Wolfgang Pree. Komponentenbasierte Softwareentwicklung mit Frameworks. dPunkt Verlag, 1997.[Raj97] Vaclav Rajlich. MSE: A methodology for software evolution. Software Maintenance: Research and Practice,9, 1997.[RDLK90] V. Rajlich, N. Damaskinos, P. Linos, and W. Khorshid. VIFOR: A tool for software maintenance. Software-Practice and Experience Journal, 1990.[RDW89] J. A. Ricketts, J. C. DelMonaco, and M. W. Weeks. Data reengineering for application systems. In Proc.Conf. On Software Maintenance. IEEE, 1989.[RE90] R. G. Reynolds and J. C. Esteva. Learning to recognize reusable software by induction. Technical report,Wayne State Univ., Detroit, Mich., 1990.[Rei88] S. P. Reiss. Pecan: Program development systems that support multiple views. IEEE Transactions on SoftwareEngineering, 1988.[RU89] D. H. Rombach and B. T. Ulery. Improving software maintenance through measurement. Proc. IEEE,77(4):581{595, April 1989.[RW96] Spencer Rugaber and Linda Wills. Creating a research infrastructure for re-engineering. In 3rd WorkingConference on Reverse Engineering (WCRE), 1996.[Sam97] J. Sametinger. Software Engineering with Reusable Components. Springer, 1997.[Sch91] R. W. Schwanke. An intelligent tool for re-engineering software modularity. In Proc. 13th Int. Conf. OnSoftware Eng., pages 83{92. IEEE, May 1991.[SJ88] H. M. Sneed and G. Jandrasics. Inverse transformation of software from code to speci�cation. In Proc. Conf.On Software Maintenance. IEEE, 1988.[Sne84] H. M. Sneed. Software renewal: A case study. IEEE Software, 1(3):56{63, July 1984.[Sne96] Harry Sneed. Object-oriented COBOL recycling. In 3rd Working Conference on Reverse Engineering (WCRE), pages 169{178, 1996.[SNH95] D. Soni, R. L. Nord, and C. Hofmeister. Software architecture in industrial applications. In Proceedings of theInternational Conference on Software Engineering, 1995.[Til98] Scott Tilley. A reverse-engineering environment framework. Technical Report CMU/SEI-98-TR-005, CarnigeeMellon University, 1998.[Ulr90] William M. Ulrich. Re-engineering: De�ning an integrated migration framework. CASE Trends Magazine,1990.[vMV95] A. von Mayrhauser and A. M. Vans. Program comprehension during software maintenance and evolution.IEEE Computer, 1995.[Wei88] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 1988.[You89] Edward Yourdon. Modern Structured Analysis. Englewood Cli�s, 1989.[ZGWK97] A. Zendler, S. Gastinger, W.Hesse, and P. Kosiuczenko. Advanced Concepts, Life Cycle Models and Tools forObject-Oriented Software Development. Tectum Verlag, 1997.[Zus93] Horst Zuse. Criteria for program comprehension derived from software complexity metrics. In 2nd InternationalWorkshop on Program Comprehension, 1993.
23


