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Abstract

PA (Process algebra) is the name that has become common use to denote
the algebra with a sequential and parallel operator (without communication),
plus recursion. PA-processes are a superset of both Basic Parallel Processes
(BPP) [Chr93] and context-free processes (BPA). They are a simple model
for infinite state concurrent systems.

We show that the model checking problem for the branching time temporal
logic E'F is decidable for PA-processes.
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1 Introduction

The Process Algebra PA is a simple model of infinite state concurrent systems. It has
operators for nondeterministic choice, parallel composition, sequential composition
and recursion. PA-processes and Petri nets are incomparable, meaning that neither
model is more expressive than the other one. Unlike BPPs, PA is not a syntactical
subset of CCS [Mil89], because CCS does not have an explicit operator for sequential
composition. However, as CCS can simulate sequential composition by parallel
composition and synchronization, PA is still a weaker model than CCS. PA-processes
are a superset of both Basic Parallel Processes (BPP) [Chr93] and context-free
processes (BPA).

Here we study the model checking problem for PA-processes. This is the problem
of deciding if a given PA-process satisfies a property coded as a formula in a certain
temporal logic.

For BPPs the situation is already fairly clear. It has been shown in [EK95]
that the model checking problem for BPPs is undecidable for the branching time
temporal logic EG, whose formulae are built out of the boolean operators, EX (for
some successor) and EG (for some path always in the future). On the other hand
the model checking problem is decidable for the logic EF, that uses the boolean
operators, and the temporal operators EX and EF (for some path eventually in the
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future). Therefore, the logic EF' (also called UB™ in [Esp]), seems to be the largest
branching time logic with a decidable model checking problem. The model checking
problem for BPPs and EF (UB™) is PSPACE-complete [May96a, May96b].

Here we show that the model checking problem with the logic EF' is decidable
even for PA-processes. In section 2 we define PA-processes. In section 3 we describe
the tableau system the solves the model checking problem, while in section 4 we
prove its soundness and completeness. Section 5 describes a possible extension of
the logic by adding constraints on sequences of actions. The paper closes with a
section on open problems and related work.

2 PA-Processes

The definition of PA is as follows: Assume a countably infinite set of atomic ac-
tions Act = {a,b,c,...} and a countably infinite set of process variables Var =
{X, Y., Z,...}. The class of PA expressions is defined by the following abstract
syntax

Fu=e¢|X |al |E+F | E|E|EE

A PA is defined by a family of recursive equations {X; := F; | 1 < i < n}, where
the X; are distinct and the F; are PA expressions at most containing the variables
{Xy,..., X, }. We assume that every variable occurrence in the F; is guarded, i.e.
appears within the scope of an action prefix, which ensures that PA-processes gen-
erate finitely branching transition graphs. This would not be true if unguarded
expressions were allowed. For example, the process X := a + a||X generates an
infinitely branching transition graph. For every a € Act the transition relation -
is the least relation satisfying the following inference rules:

o B ESE J N E S E

aE - a a a (X = E)
E+F5E E+FS5F X5p

E - E F E % E
E|F % E'|F E|F S E|F EF-SE.F

Alternatively, PA-processes can be represented by a state described by a term of the
form

Gi:ZE | X | Gl.G2 | G1HG2

and set of rules A of the form X < G whose application to states must respect
sequential composition. This is described by the following inference rules:

X556 (XSG eA

E - E F E % E
E|F % E'|F E|F S E|F EF-SE.F

We assume w.r. that for every variable X there is at least one rule X = ¢. The
transition relation = is extended to sequences of actions - in the standard way. If
the sequence ¢ is of no account, then we just write .
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BPPs are the subset of PA-processes without sequential composition, while
context-free processes are the subset of PA-processes without parallel composition.

Unlike for PA-processes there is a one-to-one correspondence between BPPs and
a class of labelled Petri nets, the communication-free nets [Esp]. In these nets every
transition has exactly one input place with an arc labelled by 1.

3 The Tableau System

Model checking algorithms can be divided into two classes: iterative algorithms and
tableau-based algorithms. The iterative algorithms compute all the states of the
system which have the desired property, and usually yield higher efficiency in the
worst case. The tableau-based algorithms are designed to check whether a particular
expression has a temporal property. This is called local model checking which avoids
the investigation of for the verification irrelevant parts of the process being verified.
Therefore this method is applicable for the verification of systems with infinite state
spaces. In local model checking the proof system is developed in a goal directed
fashion (top down). A property holds iff there is a proof tree with a successful leaf
which witnesses this truth. The algorithm for the following problem is tableau-based
and decides the truth of an EF-formula for a PA-process by examining only finitely
many states.

3.1 The Temporal Logic EF

The branching time temporal logic EF' of [Esp, Esp96] is used to describe properties
of PA-processes. We fix a countably infinite set of atomic actions Act. The syntax
of the calculus is as follows:

oLty | w0 | &0, | 0O

where @ € Act ranges over atomic actions. For convenience disjunction and another
modal operator O can be added by defining O := O,

Let F be the set of all EFF-formulae. Let ) be the set of all processes in the
process algebra. The denotation ||®|| of a formula @ is the set of processes inductively
defined by the following rules:

Jal S RUERS

el = o]

J@0 A @l = [[@0 ]|

|OP| = {t|FIS. Ve

The property ¢ € ||®| is also denoted by ¢ = ®. An instance of the model checking
problem is a PA process algebra, a term ¢ in the algebra and an EF-formula ®. The
question is if ¢ | ©.

In order to simplify the presentation we have left out the one-step nexttime-
operator X for now. In Section 5 we’ll show that it can be added to the logic



without causing any problems. In this framework this operator is often denoted by
[a], with @ € Act and defined by

[lal®ll = {t |3t = t" € ||@[]}

The decidability results carry over to the logic that includes the nexttime-operator
(see Section 5).

While the model checking problem with EF is undecidable for general Petri nets
[Esp], it is decidable and PSPACE-complete for BPPs [May96a, May96b]. Here we
show that model checking with the logic EF' is decidable for PA-processes.

Definition 3.1 F; C F is defined as the set of all FF-formulae with a nesting-
depth of modal operators < of at most d. (It follows that formulae in Fy contain
no modal operators.)

In order to simplify the notation we use some abbreviations:
Let A={ay,...,a,} C Act be a set of atomic actions, then

tEA e tEuan...Na,

and
tE—-A & tE-~aAN...AN—a,

The decidability proof of the model checking problem is done by induction on
the nesting depth d of modal operators in the formula. For a term ¢ and a formula
& € F,; the algorithm builds a finite tableau for ¢ = ® by using properties of the
form ¢’ = F' with F’' € F;_; as side conditions.

First we reduce the problem to a simpler form.

Definition 3.2 The set of conjunctive formulae F¢ C F is the smallest set of
formulae satisfying the following conditions:

1. AT A —A~ is a conjunctive formula for A*, A= C Act

2. AT A=A A Nier OV A Njes ~OT; is a conjunctive formula if AT A- C Act
and U, € F°and T; € F°.

Let Fj :=F,;NFe.
A formula @ is in normal form if ® = V,.; OW; s.t. the ¥, are conjunctive
formulae. F} C F; are the formulae in normal form in Fj.

Lemma 3.3 Any EF-formula ® = OV is equivalent to a formula in normal form.

Proof By induction on the nesting-depth d of modal operators in W.

1. If d = 0 then ¥ doesn’t contain any modal operators, so it can be transformed
into disjunctive normal form \/;c; AT A —A7. Therefore @ is equivalent to
Vier O(AT A —A7). This is a formula in normal form.



2. Now d > 0. By induction hypothesis we can transform all subformulae $y of
V¥ into normal from, obtaining a formula W’. Then transform ¥’ into disjunc-
tive normal form ¥” = \/;c;v;. Thus @ is equivalent to & = O(Viervi) =
Vier ©vi. This is in normal form, because all 4; are conjunctive formulae.

O

Lemma 3.4 Every model checking problem for EF is decidable iff it is decidable
for all formulae OO with & € F°.

Proof If it is decidable for formulae of the form oW with ¥ € F¢, then it is
decidable for formulae in normal form and thus by Lemma 3.3 for all formulae of
the form O®. Simple boolean operations yield the decidability of the whole model
checking problem. The other direction is trivial. O

In the sequel all EF'-formulae will be conjunctive formulae. Let ® € Fj. Then O
has the form O(AT A —A7 A Aie; QU A Njes =OY;) where AT C Act, A~ C Act
and U; € F;_, and Y; € Fj_,.

Remark 3.5 In the definition of PA algebras we assumed that every occurring vari-
able is defined. It follows that in the other representation there is at least one rule
X % G in A for every X. Therefore a PA-process cannot perform any action if
and only if it is empty. This means that t | O(—Act) <= It S e.

3.2 Decomposition

For the construction of a finite tableau that solves the model checking problem
it is necessary to split the problem into several smaller subproblems. We do this
by showing that properties of a PA-process can be expressed by properties of its
subprocesses.

Lemma 3.6 Let ty,t; be PA-terms and ® in F5. There is a set [ and terms @}, ®F €
Fi st
el
Proof OO0 = O(ATA—A7 AN QU ANy ~OT;) with A%, A7 C Aet, ¥;, T, €
Fi_4. The proot is done by induction on d.
Ll = O(AT A=AT A N\ OU; A A OT))
i€l JEJ

By definition of EF' this is equivalent to

JATUAT =AY 34 St St HEATA—A)A E (AT A—-AT)A
Nier tilltz |F QWi A Njes tilltz = =0T



By induction hypothesis there are K;, L; and c,o}’k,c,o%k,(S}Jﬁ?J € Fj_ 4 s.t. the ex-

pression is equivalent to

JATUAT = AT 3 St St i E (AT A =AY AL = (AT A —AT) A
/\( \/ t{ |: <>‘Pz1',k A tﬁ |: <>%2',k) A /\ ﬁ( \/ t{ |: 05},1 A tﬁ |: <>5]2,1)

el kekK, jed el
By De Morgan this is equivalent to

JATUAT = AT 3 St St i E (AT A =AY AL = (AT A —AT) A
/\( \/ t{ |: <>‘Pz1',k A tﬁ |: <>%2',k) A /\ /\ (t{ |: _‘<>5},1 N tﬁ |: ﬁ<>5]2,1)

el kekK, jeJ lel;

By transformation to disjunctive normal form we get
JAFUAT = AT 30 St St E (AT A AT )AL E(AFA—-AT)A
\/ [/\ t = Q@},F(i) ANty <>%2',F(z') A

F:I»—>KZ',G><HCJ><L]' el
. 1 o 2
At 08k A A gp_ﬁO@ﬂ

G.)EGXH ()EIXLj—GxH

Here F' is a total function F': [ +— U;e; K, s.t. Vi e [. F(i) € K;. G and H must
satisfy the restriction that if (j,1) € G x H, then [ € [;. Putting it together again
yields

Atud}=A+ F:I—K; GxHCJIXL;

el (G,)EGXH
ty = Q(A; AN—=AT A /\ <>%2',F(z') /\ ﬁ<>5]2,1)
iel (5,)€IxL;—GxH
This is in normal form. O

Lemma 3.7 Let ty,t; be PA-terms and ® in Fj. There are sets N, P, ) and terms
Oévﬂn S F; and "}/p,éq € 75—1 s.t. tl.tz |: Od Zﬁ

tl |: —|<>(—Act) A tl |: <>(I) vV
hiEOCav \ OB A N\ bEORA A -0

nEN pEP(n) 7€Q(n)

Proof by induction on d.

If d =0 then &G® = O(AT A —A7). The first two cases of the above disjunction are
clear. The only remaining case is t; — t| # c. t| = (AT A —A7). (Here 3t, 5 ¢.)
Choose a = false, N = Act, B, = AT U{a} A —A~, P(a) = Q(a) = 0 for every
a € Act.



Now d > 0. We can assume that OO = O(AT A —A7 A A\icf OV AN —OT5)
with AT, A~ C Act, ¥,;,Y; € Fj_,. The first two cases of the above disjunction are
obvious. In the third case we have:

4 St #e i EATA-AT AL E N\ OU AN -OT;

i€l JEJ
This is equivalent to

= O(AT A=A A=O(=Aet) A )\ QT AN\ =0TV

el JjEJ
LENA-CT AV 3 — 4[4 E (AT U {a} A —A7) A
jEJ a€Act
HE N N =0 Ab) AL /\<>x1;i]
jEJ beAct el

As W, € F;_, there are (by induction hypothesis) «;, 3, € Fj_; and v,,6, € Fj_,
s.t. this is equivalent to

i | O(AT A=A A=O(=Act) A\ QT A N\ ~OT;) v

iel jeJ
b E N\ -OT; A
jed
V 3ot EATU{abA—AT A E AN SO AD) A
aEAct jeJbeAct
At OU v | Ca; v
el
VHECBA N bEORA N tE—06))
neEN; pEP(n) 7€Q(n)

This requires some explanation. The case that ¢; cannot be reduced to € is already
considered in the first line of this formula. So we can assume that t{ | O(—Act).
Therefore in the application of the induction hypothesis we only need to add the
formula t, E OU,.

By transformation to disjunctive normal form we get

i | O(AT A=A A=O(=Act) A\ QT A N\ ~OT;) v

iel jed
b E N\ -OT; A
=
\V 3=t EATU{a A AT A E AN SO AD) A
aEAct jeJbeAct
\/ /\ tg |: <>\I/Z /\ t{ |: <>Oél'
I I CLLF(I=(I'UI7) )N, i€l il
AN HEOBro A N tEOu
eI—(I'ul’) i€I—(I'uI") keP(F (7))

A A b0

i€l —(I'UI") ke Q(F(4))



Here F' is a total function from [ — (I’ U I"”) to U;e; Ni s.t. Vi. F(i) € N;.
Putting it together again yields

b EOAT A=A A=O(=Act) A \ OU; A N\ =OT;) vV

el JEJ
\/ [N\t = =0T AN\ b | OW,
a€dAct,I' I"CI,F:(I-(I'UI"))—N; i€J iel’

A A bEOw
i€l —(I'Ul”) keP(F (1))
A A bE-CH At OATU{a}A—AT A
i€l —(I'Ul") ke Q(F(i))

AN O AB)A

jeEJ beAct

A Cain A oﬁp(i))]

el iel—(I'ul')

This has the desired form. O

3.3 The Tableau-rules

Now we can define the rules for the construction of a tableau that decides ¢ &= O®
for ® € Fj. In this construction we assume that we can already decide all problems
of the form ¢’ = OW or ¢ | =OW for any U € FJ_;. In the base case of d =0
this condition is trivially satisfied, as F°, = ). Also we assume that we can decide
problems of the form ¢ = O(—Act). (This is equivalent to 3t = ¢).

Lemma 3.8 Let t be a PA-term. It is decidable if t |= O(—Act).

Proof The algorithm proceeds by successively marking variables as being reducible
to e. First mark all variables X s.t. 3X % e. Then mark all variables Y s.t.
dX % @ where all variables occurring in G are already marked. Repeat this until
no new variables can be marked. Then ¢ | O(—Act) iff all variables occurring in ¢
are marked. O

The nodes in the tableau are marked with sets of expressions of the form ¢ - &,
where ¢ is a PA-term and ® an EF-formula. Such sets are denoted by I'. These
sets of expressions at the nodes are interpreted conjunctively, while the branches
in the tableau are interpreted disjunctively. The tableau is successful iff there is a
successful branch.

hl|t F OP
PA
R see Lemma 3.6
Loy B OO
SEQ 1h O

see Lemma 3.7



(X FORUT

t for X 5 ¢
P T eTUT [aroejur . {Lrosjur AT
. Atreawpur
{{F®,iFTUT
(tFoVU}UT
Vv
({F®lUT {tFrwlul
tEOUIUT
Induct1 % iU e Fi and t = OV
{tF-0CUIUT |
Induct?2 T it U e Fj_; and not ¢ = OW
Term1 {t|—<>(—1:40t)}UF if 3t 5 e
Term?2 {tl——|<>(}Act)}UF if At % e
tE At r
Actl % TR Y
tH—A- r «
Atz 2 ; R T

To avoid any unnecessary growth of the proof tree we define that the rules A, V,
Inductl, Induct2, Term1, Term2, Actl and Act2 take precedence over all the other
rules (PAR, SEQ and Step).

The following property follows immediately from the definition of the tableau-
rules and Lemma 3.6 and Lemma 3.7.

Proposition 3.9 For all tableau-rules the antecedent is true iff one of the conse-
quents is lrue.

Definition 3.10 (Termination conditions) A node n consisting of a set of for-
mulae I' is a terminal node if one of the following conditions is satisfied:

1. T is empty
2. t+ OV el with U € Fi_| and t £ OU
3. tF =0 €I with U € F¢_, and ¢ = OW
4.t O(—Act) €T and At S ¢

5.t =O(—Act) €T and 3t 5

6. tl—A+€FandE|a€A+./§ti>t’



7.tk —A- €l and Jac A-. It S ¢/

8. There is a previous node n’ in the same branch that is marked with set 1" s.t.

r=r

Terminals of type 1 are successful, while terminals of type 2-8 are unsuccessful.

4 Soundness and Completeness

Lemma 4.1 If the root node has the form t = OO, then for every node n in the
tableau at least one of the following conditions is satisfied:

o A tableau rule is applicable
o The node is a terminal node.

Proof The only problematic cases are the formulae of the form ¢ = =C®. If such a
formula occurs, then it must be due to the rules SEQ or Step. By definition of the
rule Step and Lemma 3.7 we know that ® € Fj_,. Therefore the node is a terminal
node or one of the rules Induct2 or Term2 is applicable. a

Lemma 4.2 The tableau s finite.

Proof There are only finitely many formulae in F§ and only finitely many rules
X % t with only finitely many subterms of the terms ¢. So there are only finitely
many different sets of expressions of the form ¢ F & in the tableau. Therefore the
branches of the tableau can only have finite length, because of termination condition
8. As the tableau is finitely branching the result follows. O

Now we prove the soundness and completeness of the tableau.

Lemma 4.3 Let ® € Fj. If there is a successful tableau with root t = O®, then
tE <o,

Proof A successful tableau has a successful branch ending with a node marked by
the empty set of formulae. As these sets are interpreted conjunctively this node is
true. By Proposition 3.9 all its ancestor-nodes must be true and thus the root-node
must be true as well. O

Lemma 4.4 Let t be a PA-term, ® € F§ and I a set of formulae. If t &= O®
then there is a sequence of rule applications s.t. there is a path from a node marked

{tEOC®}UT to a node marked T.

Proof by induction on lexicographically ordered pairs (z,y) where z is the length
of the shortest sequence o s.t. ¢+ = ' and t' = ®, and y is the size of .

The construction of the tableau is done in rounds. Each round consists of an
application of one of the rules SEQ, PAR or Step, followed by several applications
of the rules A, V, Inductl, Induct2, Terml and Term?2 to clear away unnecessary
formulae (Remember that these rules take precedence over the rules SEQ, PAR and
Step). As the node is true at least one of its successors (at the end of the round)
must be true.
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SEQ If this rule was used, then the successor has the form I'UT", where all members
of I'" are of the form ¢’ = ©O®’ where ¢’ is smaller than ¢. This means that y is
now smaller. An analysis of the proof of Lemma 3.7 shows that the value of z
cannot have increased. The result follows from the induction hypothesis.

PAR In this case the successor has the form {t; = O®q, 6, = Oy} UT sit. 4 and
ty are smaller than ¢. It follows from the proof of Lemma 3.6 that the value
of z has not increased, while the value of y is smaller. Applying the induction
hypothesis twice yields the desired result.

Step Here we have two subcases:

1. If the first branch of the Step-rule is true, then applications of the rules
A, V, Inductl, Induct2, Term1, Term2, Actl and Act2 directly lead to a
node marked by I'.

2. Otherwise choose the true successor that corresponds to the shortest se-
quence o (see above). Here the value of y may have increased, but the
value of ¥ has decreased by 1, and thus we can apply the induction hy-
pothesis.

This construction cannot be stopped by termination condition 8, because this would
contradict the minimality of the length of o. O

Corollary 4.5 Ift = OO for ® € Fj, then there is a successful tableau for t = O

Proof Applying Lemma 4.4 for the special case of an empty set I yields that a node
can be reached that is marked by the empty set. The branch from the root-node to
this node is successful and thus there is a successful tableau. O

Lemma 4.6 Let t be a PA-term and ® € Fj. t = OO iff there is a successful
tableau for t = O®.

Proof Directly from Lemma 4.3 and Corollary 4.5. O

Theorem 4.7 The model checking problem for PA-processes and the logic EF is
decidable.

Proof By Lemma 3.4 it suffices to prove decidability for formulae of the form @
with ® in Fj for any d. We prove this by induction on d. By Lemma 4.6 and
Lemma 4.2 it suffices to construct a finite tableau. During the construction we need
to decide problems of the form ¢’ | OW for W € FJ | and problems of the form
t = O(—Act). The first one is possible by induction hypothesis, and the second one
by Lemma 3.8. O
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5 Extensions

In this section we extend the logic EF by constraints on sequences. So far the
expression ¢ = O® only means that there is a sequence o s.t. ¢t = ¢ and ' = ®
without saying anything about o. Now we generalize the operator & to ¢, where
C : Act* — {true, false} are predicates on finite sequences of actions. Here these
functions are called constraints.

The semantics of the modified modal operator < is defined by:

|Cc®|| = {t|To,t'. t S AL €|®]| AClo)}

We’ll show that for a special class of constraints €' the extended logic is still decidable
for PA-processes.

Definition 5.1 (Decomposable constraints) Let a« € Act, i,k € IN and o a
sequence of actions. Decomposable constraints are of the following form

Cuo=W()>i| W) <i|[W)i=i| CtV | CiACy| first(o) =a

where W : Act* — IN is a function on sequences s.t. W(oy09) = W(oy) + W(os)
for all oy, 0. (This implies that if o is the empty sequence, then W(o) = 0).

These constraints are called “decomposable”, because a constraint (' on a se-
quence of actions o performed by a sequential- or parallel composition of processes
t; and ¢, can be expressed by constraints on sequences performed by # and ¢,.

For example let W be the function that counts the number of a-actions in a
sequence. Now if # ||ty = #{|[t; and [W(o)]3 = 0 then there are sequences oy, 0y s.t.
tp 2t and t, B3 t5 and either W(oy) = W(ay) =0 or W(oy) =1 and W(oy) =2
or W(oy) =2 and W(oy) = 1.

Definition 5.2 Let EFpc be the extension of FF' by modal operators <, where
(' is a decomposable constraint.

By using decomposability of the constraints the Lemmas 3.6 and 3.7 can be
extended to the logic EFpe. The tableau method can be adjusted accordingly and
thus the logic EFp¢ is still decidable for PA-processes.

Let A be the empty sequence of actions. The modified tableau rules are:

bl F Ocd
PA
R the modified Lemma 3.6
hla B Ocd
K
SEQ the modified Lemma 3.7
. {t|_<>clvc2q)}UF
Split
{tEFCqotul {tFOq0bUTl
Clear {tF Soinc,®} if (5 is equal to true

tE Oc @
12



Stepl

Step2

Inductl

Induct2

Term1

Term?2

Actl

Act?2

(X FOe®}UT
(XFOIUT {htOa®lUl ... {t,F O, Ul

it (), X & t; and C; = Cons(C, a;)

(X Ocd}UT
(LFOa®lUT ... {tFOq®lul

if not C'(A), X Xt and O = Cons(C, a;)

{tFdAT}UT
(tF o, tFvul

{(tFdVUIUT
({F®lUT {tFroluUT

(tFOcWlUT
T

{tF =OeU}UT
T

{tt Oo(—Aet)}UT
T

{tF =Ca(—Act)}UT
r
{tF AT}UT
r
{tF —=A"}UT
r

iftweFi | and t EOcW

it e Fj_,and not t W

if 3t %S ¢ and C(o)

if At % e with C(o)

if Vgt dt 5 ¢

if Voeq- At St

In the rules Stepl and Step2 the new constraints C; are computed from the constraint
C' and the action a; by

Cons(Cy A Cy,a) = Cons(Cy,a) A Cons(Ch, a)
Cons(W (o) > i,a) = W(o)>i— W(a)
Cons(W (o) < i,a) = W(o)<i— W(a)

Cons([W(o)i = joa) = [W(o) =L~ W(a)ls

Cons(first(c) = b,a) = if a=1b then true else false

The termination conditions are the same as in Definition 3.10 with the addition
of one more unsuccessful one. A node of the form ¢ F $g® 1s an unsuccessful
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terminal if C' is equal to false, i.e. C' = C" A false or C = C'" AN W(o) < k for some
kE <0.

Note that only finitely many different constraints can occur in a tableau, because
of the definition of the function Cons, the rule Clear and this new termination
condition. Thus the proofs of soundness and completeness of the tableau from
section 3 carry over to the extended logic with constraints.

Theorem 5.3 The model checking problem for PA-processes and the logic EFpe is
decidable.

With decomposable constraints we can also express the usual one-step next op-
erator by defining
[a] :=Cc

with C := first(c) = a A length(o) = 1.

6 Conclusion

We have shown decidability of the model checking problem for the branching time
temporal logic FF' and PA-processes. The exact complexity of the problem is left
open. While for the special case of BPPs the problem is PSPACE-complete [May96a,
May96b] the algorithm described here for PA has superexponential complexity.

It is interesting to compare the decidability results for branching time logics with
the results for the linear time p-calculus. While model checking PA-processes with
EF is decidable, it is undecidable for the linear time g-calculus [BH96]. For Petri
nets the situation is just the other way round. While model checking Petri nets
with FF' is undecidable [Esp, Esp96], it is decidable for the linear time p-calculus
[Esp]. This emphasizes the fact that PA-processes and Petri nets are incomparable
models of concurrent systems. For the modal g-calculus the model checking problem

is undecidable even for BPPs [Fsp, Esp96].

EF linear time p-calc. modal p-calc.
Petri nets || undecidable decidable, EXPSP.-hard | undecidable
PA decidable undecidable undecidable
BPP PSPACE-complete | decidable, EXPSP.-hard | undecidable
finite LTS || polynomial PSPACE-complete € NP N co-NP
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