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Higher Order Finite Elements on Sparse Grids *

H.-J. Bungartz '

Abstract — Zusammenfassung

Higher Order Finite Elements on Sparse Grids. We present a general technique
to construct hierarchical bases of higher order suitable for sparse grid methods without
increasing the number of degrees of freedom. For the solution of elliptic partial differen-
tial equations, this approach allows us to profit both from the efficiency of sparse grid
discretizations and from the advantages of higher order basis functions with regard to
their approximation accuracy.

We report the results of some first numerical experiments concerning piecewise biquadratic
hierarchical basis functions.

AMS(MOS) Subject Classifications: 65N22, 65N30, 65N50

Key words: Finite element method, hierarchical bases, higher order techniques, partial
differential equations, sparse grids.

Finite Elemente hoherer Ordnung auf diinnen Gittern. Wir stellen ein Verfahren
zur Konstruktion hierarchischer Basen hoherer Ordnung vor, die fiir den Einsatz in Dunn-
gitteralgorithmen geeignet sind und nicht zu einer Erhohung der Anzahl der Freiheitsgrade
fihren. Im Zusammenhang mit der Losung elliptischer partieller Differentialgleichungen
erlaubt es dieser Ansatz, sowohl die Effizienz von Dinngitterdiskretisierungen als auch
die Vorteile von Basisfunktionen hoherer Ordnung hinsichtlich ihrer Approximationsge-
nauigkeit zu nutzen.

Fir den Fall stuckweise biquadratischer hierarchischer Basisfunktionen werden die Ergeb-
nisse erster numerischer Experimente diskutiert.

1 Introduction

Since their presentation in 1990 [17], sparse grids have turned out to be a very
interesting approach for the efficient solution of elliptic partial differential equations
and for a lot of other topics in numerical analysis like numerical integration [4] or
FFT [13]. In comparison to the standard full grid approach, the number of grid
points can be reduced significantly from O(N?) to O(N(log,(N))* ™) or even O(N))
in the d-dimensional case, whereas the accuracy of the sparse grid interpolant and
of the approximation to the solution of the given boundary value problem, resp., is

*This work is supported by the Bayerische Forschungsstiftung via FORTWIHR — The Bavarian
Consortium for High Performance Scientific Computing.
fInstitut fiir Informatik der Technischen Universitit Miinchen, D-80290 Miinchen, Germany.



only slightly deteriorated: For piecewise d-linear basis functions, an accuracy of the
order O(N 2(logy(N))4 1) with respect to the Ly- or the maximum norm and of the
order O(N~1) with respect to the energy norm has been shown [6]. Furthermore,
regular sparse grids can be extended in a very simple and natural manner to adaptive
ones, which makes the hierarchical sparse grid concept applicable to problems that
require adaptive grid refinement, too.

For the two-dimensional case, the results mentioned above show that, apart from
the logarithmic factor and with respect to the Ly-norm, sparse grid techniques with
piecewise bilinear (biquadratic, bicubic, . ..) hierarchical basis functions correspond
to full grid methods of fourth (sixth, eighth, ...) order. In the three-dimensional
case, the gain in order is even more impressive. Therefore, sparse grids are well-
suited for the efficient realization of higher order finite element methods. Finally, p-
or h-p-version-type algorithms on sparse grids seem to be a very promising approach
that allows us to profit both from the sparse grid efficiency, from the advantages of
usual h-adaptivity, and from the improved approximation quality of higher order
basis functions.

In this paper, first, a short introduction to sparse grid methods recalls their most
important properties. Then, a new concept for generating higher order hierarchical
bases on sparse grids is presented, followed by some first numerical results for the
case of piecewise biquadratic basis functions. Finally, some concluding remarks and
an outlook on further work to be done will close the discussion.

2 Sparse Grids

The use of hierarchical bases for finite element discretizations as proposed by
Yserentant [16] and Bank, Dupont, and Yserentant [3] instead of standard nodal
bases stood at the beginning of the sparse grid idea, together with a tensor-product-
type approach for the generalization from the one-dimensional to the d-dimensional
case. For the corresponding subspace splitting of a full grid discretization space in
two dimensions with piecewise bilinear hierarchical basis functions as in figure (1),
it can be seen that the dimension (i.e., the number of grid points) of all subspaces
with i1 4+ iy = ¢ is 2°72. Furthermore, it has been shown in [6] that the contribution
of all those subspaces with 7; 4+ i, = ¢ to the interpolant of a function w is of the
same order O(27%¢) with respect to the Lo- or maximum norm and O(27¢) with

regard to the energy norm, if « fulfills the smoothness requirement % € C(Q)
1 2
for the two-dimensional and %Qz—dgﬁ € C°(Q) for the general d-dimensional case,
1-"7d

respectively. Here, {2 denotes the underlying domain. Therefore, it turns out to be
more reasonable to deal with a triangular subspace scheme as given in figure (2)
instead of using the quadratic scheme of figure (1). This leads us to the so-called
sparse grids. For a formal definition of sparse grids, see [6] or [17], e.g.

Besides the regular sparse grids that result from skipping certain subspaces accord-
ing to figure (2), adaptive grid refinement can be realized in the sparse grid context
in a very straightforward way. Since we use recursive dynamic data structures like
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Figure 1: Subspace splitting of a full grid space.

i,=1 i,=2 i,=3

Figure 2: Subspace splitting of a sparse grid space.

binary trees for the implementation, and since the value of a hierarchical basis func-
tion, the hierarchical surplus, can be used itself to indicate the smoothness of u at
the corresponding grid point and, consequently, the necessity to refine the grid here,
no additional work has to be done to implement adaptive refinement. Figure (3)
shows a two-dimensional regular sparse grid and a three-dimensional adaptive one
with singularities at the re-entrant corner and along the edges.

Speaking about the most important properties of sparse grids, we at least have
to look at the number of grid points involved and at the approximation accuracy
of piecewise d-linear hierarchical basis functions on sparse grids. For a detailed



Figure 3: Regular and adaptive sparse grid.

analysis, we once again refer to [6] and [17]. For a d-dimensional problem, the
approach described above and illustrated in figure (2) leads to regular sparse grids
with O(N(log,(N))4~1) grid points, if N denotes the number of grid points in one
dimension (i. ., v is the smallest mesh width occurring). A variant also discussed in
[6] even leads to regular sparse grids with O(NV) grid points. These results have to be
compared with the O(N%) points of regular full grids. Concerning the approxima-
tion quality, the accuracy of the sparse grid interpolant is only slightly deteriorated
from O(N7%) to O(N~2(log,(N))~1) with respect to the Ly- or maximum norm.
With regard to the energy norm, both the sparse grid interpolant and the finite
element approximation to the solution of the given boundary value problem stay of
the order O(N1).

Thus, sparse grids enable us to gain a factor of 2 in accuracy for arbitrary number
d of dimensions by just doubling the number of grid points. Since the smoothness
requirements can be overcome by adaptive grid refinement, sparse grids are a very
efficient approach for the solution of partial differential equations.

Recently, the class of problems that can be treated with sparse grid methods has
been significantly extended. First experiments with time-dependent problems have
been reported by Balder et al. in [2], Plaum [14] generalized the algorithm for the
solution of the Poisson equation to the case of general elliptic differential operators
of second order in two dimensions, and Dornseifer developed a mapping technique
to deal with curvilinear domains. Furthermore, systems of equations like the Stokes
equations are the focus of present sparse grid interest.

A first step towards higher order techniques on sparse grids has been done by
Stortkuhl [15]. He uses piecewise bicubic hierarchical Hermite polynomials for the
solution of the biharmonic equation. This approach with C'-elements leads to con-
tinuous and differentiable sparse grid functions and needs four degrees of freedom
per grid point. In the following, we present an alternative approach based on C°-
elements with still one degree of freedom per grid point.



3 A Concept for Generating Higher Order Hier-
archical Bases on Sparse Grids

3.1 A Quadratic Hierarchical Basis

For reasons of clarity, let us study the one-dimensional case of a regular grid with
N grid points, N = 2" + 1, n € IN, and N values to be interpolated, first. For
the construction of a piecewise quadratic interpolant, one has to fix three degrees
of freedom in each interval between two neighbouring grid points. This leads to
a total of 3N — 3 degrees of freedom for the whole problem. It is well-known
that quadratic splines are perhaps the most common way to construct a suitable
interpolant. With splines, we need N degrees of freedom to get an interpolant
and twice N — 2 degrees of freedom to make the interpolant both continuous and
differentiable at the inner grid points. With one more condition fixed (some kind
of boundary condition, e.g.), the interpolant is definitely determined. Thus, the
higher order of the polynomials used leads to more smoothness of the interpolant.
This effect is especially attractive, if smooth functions are to be interpolated, or
if partial differential equations of higher order (like the biharmonic equation, e.g.,
see [15]) have to be solved. However, in a lot of other situations (like the numerical
treatment of singularities, e. g.), it seems to be neither necessary nor desirable.

Therefore, we suggest a construction that leads to an interpolant (/N degrees of
freedom) which is only continuous (N — 2 degrees of freedom). The remaining
N —1 degrees of freedom are fixed by interpolation conditions outside the respective
interval. For instance, the parabolic interpolant between two neighbouring grid
points z and 1 + 1, 1 < ¢ < N — 1, could be determined by either the values at
the grid points ¢ — 1, 4, and i + 1 (if ¢ > 1) or the values at the nodes i, i + 1,
and i + 2 (if i < N — 1) or even the values at the grid points ¢, i + 1, and an
arbitrary third point. Since we want to define hierarchical bases, it turns out to be
the best choice to determine the third grid point for interpolation by means of an
hierarchical criterion: If 7 is a grid point on the finest level only, i.e., if ¢ is even,
then ¢ — 1, 4, and ¢ + 1 are taken into account. If, on the other hand, 7 is a coarse
grid point (i.e. odd) and if, thus, i + 1 does appear on the finest grid ounly, then i,
1+ 1, and 7 4+ 2 are the points chosen for interpolation. The result of this approach
is shown in figure (4). On the intervals 2k + 1,2k + 3], 0 < k < (N — 3)/2, the
resulting overall interpolant is quadratic, but at the (coarse) grid points 2k + 1, it
may be not differentiable.

Starting from these considerations, we now introduce a piecewise quadratic hierar-
chical basis. To explain the principles, we first look at the well-known piecewise
linear case in one dimension. If we add appropriate basis functions at the coarse
grid points to the hierarchical basis functions of each level, we get nested spaces
of piecewise linear functions on the different levels (see figure (5)). Here, a coarse
grid function can be constructed by summing up three neighbouring fine grid func-
tions with the weights %, 1, and % This is important for a simple switch from one
level to another, and it is necessary for the efficient implementation of sparse grid
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Figure 4: Piecewise quadratic C’-interpolant.

algorithms.

Figure 5: Linear hierarchical basis and nodal point bases on each level.

The quadratic case turns out to be a little bit more complicated, because it is not
possible to get a quadratic basis function on the coarse grid as a weighted sum of
three neighbouring quadratic basis functions on the fine grid. However, if we sum
up two quadratic fine grid functions with the weight i and one standard piecewise
linear coarse grid function with the weight 1 as indicated in figure (6), we get the
desired quadratic function on the coarse grid.

1 1

/NN

Figure 6: Switching from fine to coarse level with quadratic hierarchical basis func-
tions.

Now, figure (7) shows our piecewise quadratic hierarchical basis (solid lines), to-
gether with the extension to a nodal point basis on each level (dashed lines). Note
that each of these nodal bases consists of basis functions whose supports vary in
size.



Figure 7: Quadratic hierarchical basis and nodal point bases on each level.

As in the linear case, the generalization to a d-dimensional piecewise d-quadratic
hierarchical basis with d > 1 is done by the tensor product approach that is typical
for the sparse grid context.

Another important problem we have to deal with is the question how to calculate the
(quadratical) hierarchical surplus. Again, we first look at the one-dimensional case.
The linear hierarchical surplus v{Y) in a grid point m with hierarchical neighbours
e(m) and w(m) is given by

o) = = = (tte(m) + ) ) (1)

2

where Uy, Ue(m), and Uy(m) denote the values of the underlying function u at the
respective grid points. Remember that the hierarchical neighbours of a grid point
m are just the two ends of the support of the hierarchical basis function located in
m. The corresponding formula for the quadratic hierarchical surplus v(? depends
on the hierarchical relations of the involved grid points. Figure (8) illustrates the
situation if e(m) is the father of m (with respect to the underlying binary tree) and
if e(e(m)) is the father of e(m).

A short calculation leads to

W 3 B L1
(% = —35 Uyim Uy — 7 Ue(m < " Ue(e(m
o 3 tum) 1 Uetm) F 5 * Ue(e(m)
<1 L 1 ) 1(1 L 1 )
- — = " Uw(m Um — 5+ Ue(m — = | =% " Uwim Ue(m) — 5~ Ue(e(m )
5 u(m) 5+ Uelm) ) = 7 (=5 Wutm) + Uem) = 5+ Uee(my)

i.e., the quadratic hierarchical surplus at a grid point m can be easily calculated
with the help of the linear hierarchical surplus at m and the linear surplus at the
father of m:

@ — o1 (2)

m m 4 e(m)”

Thus, as in the linear case, nothing else has to be stored than the linear hierarchical
surplus. Again, the tensor product approach leads to a generalization of this result

7



w(m) m gm) e(e(m))

Figure 8: Linear and quadratic hierarchical surplus.

to the d-dimensional case with d > 1. For d = 2, e.g., we immediately get

1 1 1
@ — ,0_2.,0 _ 2 ,0 2,0

Urg = Uy 4 Ue(m) 4 Un(m) + 16 Une(m)’ (3)
where e(m) denotes the father of m in a-direction, n(m) the father of m in y-
direction, and ne(m) the father of n(m) in z-direction (see figure (9)). For arbitrary
d, the quadratic hierarchical surplus is given by

1 d
plad) = [1,—— -pbd, (4)
4
n(m) ne(m)
m e(m)

Figure 9: Calculation of the quadratic hierarchical surplus for d = 2.

3.2 Theoretical Results

Now, we turn to the approximation properties of sparse grids with the quadratic
hierarchical basis introduced above. To this end, we study the behaviour of the



interpolation error with respect to the L,-, the maximum, and the energy norm.
According to finite element theory, the latter one gives insight into the error of the
finite element solution, too.

In the main, the notation and the argumentation follow the linear case from [6].
Because of (2) and (4), we look at

Jab) . gy 1 gD (5)

e(m)

for the one-dimensional case or

1 d
Jad) . {17_1] L Jd (6)

m L[]

for the general d-dimensional case. Here, for some sufficiently smooth function u(®
of d independent variables, J{% is the integral well-known from linear sparse grid
theory,

thi  pthe 4 p ¥ (..., 1)
) ::/ Y () - Lo bd) g d 7
: (12 we) 2 0

—h1 —hg d

at a grid point m (here normed to 0) with assigned piecewise linear hierarchical
basis function [19_; w;(;),

M, if —hjnggo,

h;
wi() =4 ML 0 <@y < hy, (8)
0 otherwise.

Since we know from [6] that J(-9) is just the linear hierarchical surplus v{b? at point
m, we get

114 114
Ja0 = [1=g] a0 = f=g] el = (9)

In the following, we study the situation for d = 1, first. Together with (7) and (8)
for d =1, (5) leads to

1
() _— 700 1 @1
J 1 = J, 1 Je(m)
3hy 82u(1)(x1)
= t R Sk YA
/_h1 1) o2 T

where e(m) again denotes the hierarchical father of m with assigned support [—hy, 3h]

and
—3151 — 3h1, if — hl S T S 07

1
tl(il,’l) = g - 5%1 - Shl, if 0 S T1 S hl, (10)
- + Shl, if hl S T S Shl



By partial integration for each sub-interval [—hq,0], [0, k4], and [hy,3h;], and by
elimination of the resulting h?-terms (which is possible here in contrast to the linear
case), we get

3h1 83u(1>(x1)
Jr(rgjl) = — hy T]_(.T1> TZL’:{' dxlv (11)

where

1 —31'% — 6h1£lf1 — 3h%, if - hl S T S 07
Tl(xl) = E : 51’% — 6h11’1 — 3h%, if 0 S T S hl, (12)
—.I'% + 6h11’1 — 9h%, if hl S T S 3h1

Together with (6) and (7), this result can be used to derive the generalization for
the d-dimensional case. After a short calculation, we get

3hy 83du(d> (ilil, ceey :L’d>

3hg d
Ti(x;)) - ' drg ... d 13
—hg (]1;[1 ](x])) ox} ... Ox Ta o dry, - (13)

g = (-t [

—hy

where T)j(x;) is defined in an analogous way to (12).

With (9) and (13), we are able to give two bounds for the quadratic hierarchical
surplus v{¢9):

93y (D) 1
(@] — | jlad) R
oled| = |7led] < ‘3:{:?...8@"3 Cgathieh (14)
and
83‘1 (u(d> . Qp(d>) 17 d/2
[oled] = | ] < " (—) AR e (15)
" mo = o3...0x3 160 4

where !9 (21, ...24) denotes the characteristic function of the support of the basis

m

function located at point (hy, ..., hy), if m is normed to the origin.
Finally, we have to calculate the L,- and maximum norm of the d-quadratic hier-
archical basis function []9_, g;(x;),
B — a:) - (25 4+ I
9i(w;) = By I])hz(x]—'_ i), —h; <@j < hy, (16)

J

which is now used instead of the piecewise d-linear [[9_; w;(x;) defined in (8). We
get

d

o) =1,

o (7)
d 16 d/2

11 9i(x;) <E) ey

Jj=1 2

10



Now, we are ready to apply standard sparse grid approximation theory to the sit-
uation of piecewise d-quadratic hierarchical basis functions. We are first interested
in the difference between a sufficiently smooth function «(? and its piecewise d-
quadratic sparse grid interpolant ﬁ;d)l of level n with smallest occurring mesh width
27", Analogously to the linear case, (14), (15), and (17) lead to

3d, (d) 1\¢4
@ _ 4@ O . (L) g
o, < || B0~ (35) s 1s)
and “ @ agdu(d) 17 d/2 .
| =], 7ax§...ax32'3<nvd>'(%> 8 (19)
where

B(n,d) = 1+C§<g) (nﬂ_l).

1

(d

9 — n)I

Consequently, we get for the sparse grid interpolation error u! U

0 -

= O(s7n*") = O(NT(logy(N)*),
o =i, = 057 = O (N7 (o ().

‘ o0

(20)

where N = 2" + 1 denotes the maximum number of grid points in one direction.
Thus, in comparison to the standard regular full grid, the accuracy of the interpola-
tion is only slightly deteriorated by the logarithmic factor (log,(N))? t. Note that,
according to the above argumentation and on the analogy of the piecewise linear
case, u(¥ has to fulfill the following smoothness requirement:

83du(d)

3 3
Oxy ...0x;

e C’(Q). (21)

With respect to the energy norm, we again have to look at our d-quadratic hierar-
chical basis function H?Zl gj(x;), first:

2

_1:[193'(%‘)

E l

As above, this result concerning [1%_; g;(x;) and (14) are the starting point for
standard sparse grid analysis, which finally results in

i), = () = 0(v7), »

11



the desired bound for the sparse grid interpolation error u(® — ﬁ;d)l with regard to

the energy norm. Thus, as in the linear case, the order of the energy error does
not deteriorate when we switch from full grids to sparse ones. Since it is a well-
known fact from finite element analysis that the finite element solution @{¥ of a
given boundary value problem is a best approximation to the solution «(¥ on the
underlying grid, we also get the following result concerning the error u'¥ — @{? of
the finite element approximation:

| =@ = o(4) = 0(N?). (23)

E

4 First Numerical Experiments

In this section, we report the results of some first numerical experiments concerning
the piecewise quadratic hierarchical basis described above. For that, we study the
Laplace equation on the unit square with Dirichlet boundary conditions as a simple
model problem:

Au = 0 on Q = [0,1)%

sinh(7(1 — x))
sinh(r)

uw = sin(my) -

Figure (10) shows the approximation to the solution calculated on the regular sparse
grid of level 10 and its error.

,,,,,,,
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Figure 10: Sparse grid solution (left) and error (right) of the model problem.

For the solution of the linear system that results from the finite element discretiza-
tion on the sparse grid, a simple Gauss-Seidel-iteration was used. The numerical
results for this model problem are given in table (1). There, n denotes the level of
the regular sparse grids considered (i.e., 27" is the smallest mesh width occurring).
lle||so indicates the maximum norm of the sparse grid error u'¥ — @{9) and ||e||z
denotes its energy norm. Finally, p., and pp indicate the rates of reduction from
level n to level n+1 of the respective error, and dof, denotes the number of degrees
of freedom, i.e. the number of grid points of the respective sparse grid. In table
(1) and in figure (11), one can clearly see the O(47") = O(N~%)-behaviour of the

12



energy norm, and the convergence with respect to the maximum norm turns out to
be just slightly worse than O(87"), as it was to be expected due to the logarithmic

factor in (20).

Furthermore, in figure (12), the results for the piecewise quadratic case are compared

n |le]|oo Poo |lel| e pe | dof,
1] 2531073 o2 2.43 1071 5,02 1
2| 2.48 10-3 2'67 8.05 102 3'41 5
3] 92810 3'14 2.36 102 3'77 17
4| 296 10* 4'09 6.26 103 3'91 49
5| 7.2410°° 5'36 1.60 103 3'98 129
6| 1.3510°° 6'19 4.02 10~* 3'98 321
71 2.18 10-°¢ 6'83 1.01 10~* 4'02 769
8| 3.19 1077 ’ 2.51 1075 | 1793

7.28 3.99
9| 4.38 10~8 ~ 60 6.29 10~° Lol 4097

10 | 5.76 10~° 7'76 1.57 10°© 3'99 9217

11 | 7.42 1070 7'89 3.93 1077 4'00 20481

12 ] 9.41 101 7'94 9.82 108 3'99 45057

13 ] 1.19 101 7'97 2.46 108 4'01 98305

14 | 1.49 10712 | 6.14 1079 | 212993

Table 1: Error on the regular sparse grid of level n.

Level n of regular sparse grid

&
L A, maximum norm |
6 - _ _ _¢ energy norm ]
| L

2 4 6 8 10 12

Figure 11: Rates p. and pg of error reduction.
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to the piecewise linear situation. Here, both times, adaptive sparse grids were used.
Again, the advantages of the quadratic approach can be seen clearly.

109
1072 F .
.

5
S 10 %t .
£ I ]
g
S 1070k .
@] .
= L A » linear case i

107 8L & - _ o Qquadratic case \&\\ i

.
10-0L o o ©
10] 102 102 104 10°

Number of grid points (odaptive sparse grids)

Figure 12: Maximum error vs. number of grid points (linear and quadratic case).

5 Concluding Remarks

In this paper, some first steps towards an efficient implementation of higher order
techniques on sparse grids have been discussed. The approach of section 3 leads
to hierarchical bases of polynomials of higher degree p > 1, but still results in
CP-(sparse grid)-interpolants. However, the number of degrees of freedom per grid
point does not increase with growing p. Obviously, the concepts presented for the
quadratic case can be generalized to the situation with cubic polynomials, and so
on, which will be in the centre of future work. Finally, h-p-version-type algorithms
[1, 11, 12] are to be developed for sparse grids, too.

The following tables (2) and (3) show why higher order techniques on sparse grids
seem to be a very promising approach to the efficient numerical treatment of partial
differential equations. Each row in both tables corresponds to a fixed number d
of dimensions of the underlying problem, and each column stands for a certain
polynomial degree p of the basis functions used. If M denotes the overall number
of unknowns (i.e., M = N for a regular full grid and M = O(N(log,(N))4!) or
M = O(N), respectively, for regular sparse grids), then, we can indicate the order
of approximation with respect to the energy norm by M~®. The entries in both
tables now show the respective values of a. For example, if we want to achieve
second order with respect to the number of unknowns on full grids, i.e. a = 2,
we have to use quadratic polynomials in the one-dimensional case, quartic ones for
d = 2, and for three-dimensional problems, even polynomials of degree p = 6 have

14



to be used. With sparse grids, in contrast to that, p does not depend on d. For
a = 2, quadratic polynomials are sufficient for arbitrary d.

dp | 1 2 3 4 5 6

1 1 2 3 4 5 6
2 1/2 1 | 32 2 | 5/2
3 1/3 | 2/3 | 1 | 4/3 | 5/3 | 2

w

Table 2: Approximation order M~ for various d and p on full grids.

1 2 3 4 5) 6
2 2 3 4 5) 6
3 2 3 4 5) 6

Table 3: Approximation order M~ for various d and p on sparse grids.

At this point, we have to go into the smoothness requirements of sparse grid tech-
niques. For the quadratic case, they are given in (21). At first glance, these seem to
be quite restrictive, especially for larger p. However, as in the linear case, the inher-
ent h-adaptivity of sparse grid techniques should be able to deal with non-smooth
situations, too. Furthermore, we can learn from tables (2) and (3) that, with respect
to the overall number of unknowns, sparse grids can manage with smaller values of
p than full grids do. Therefore, especially for achieving high approximation qual-
ity for three-dimensional problems, sparse grids even turn out to be advantageous
regarding smoothness requirements.

Acknowledgements. I am indebted to Prof. Christoph Zenger for many fruitful
discussions and suggestions.
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