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Abstract

Through completing an underspecified probability model, Maximum Entropy
(MaxEnt) supports non-monotonic inferences. Some major aspects of how this is
done by MaxEnt can be understood from the background of two principles of ra-
tional decision: the concept of Indifference and the concept of Independence. In
a formal specification MaxEnt can be viewed as (conservative) extension of these
principles; so these principles shed light on the “magical” decisions of MaxEnt.
But the other direction is true as well: Since MaxEnt is a “correct” representation
of the set of models (Concentration Theorem), it elucidates these two principles
(e.g. it can be shown, that the knowledge of independences can be of very different
information-theoretic value). These principles and their calculi are not just arbi-
trary ideas: When extended to work with qualitative constraints which are modelled
by probability intervals, each calculus can be successfully applied to V. Lifschitz’s
Benchmarks of Non-Monotonic Reasoning and is able to infer some instances of
them ([LIFSCHITZ, 1988]). Since MaxEnt is strictly stronger than the combination
of the two principles, it yields a powerful tool for decisions in situations of incom-
plete knowledge. To give an example, a well-known problem of statistical inference
(Simpson’s Paradox) will serve as an illustration throughout the paper.

1 Introduction

1.1 Background

If we want to model common sense reasoning, an important step will be the devel-
opment of systems which can make decisions under incomplete knowledge. These de-
cisions should be the best possible ones given the incomplete knowledge; they will
show non-monotonic behaviour when the knowledge is increasing. Recently, probabil-
ity theory has become more and more accepted as an appropriate tool for that pur-
pose, especially in connection with the notion of entropy ([PARIS & VENCOVSKA, 1989],
[PEARL, 1988], [CHEESEMAN, 1988]). Following [Cox, 1979], we consider probability



theory as an adequate model for one-dimensional belief of propositional expressions®. Fol-
lowing [ADAMS, 1975], we consider the conditional probability to be much more adequate
compared to the use of the Material Implication? of propositional logic when modelling the
common sense connective “If, then” of the language. Following [JAYNES, 1982] we con-
sider MaxEnt as an adequate method of choosing a probability model from an infinite set
of possible models, when only linear constraints are present. Concerning MaxEnt it is still
a problem to explain this method of inductive reasoning to any newcomers. Surely there
are various ways. One possibility is to take some intuitively plausible axioms of rational
reasoning and to show how MaxEnt is a necessary consequence of these axioms. This ap-
proach has been chosen quite a few times in the literature ([SHORE & JOHNSON, 1980],
[SKILLING, 1988], [PARIS & VENCOVSKA, 1990]). Here we choose a slightly different
approach; we take two strong properties, strong enough to define decision principles, and
we show that MaxEnt concludes strictly stronger (see 6. and the figure below) than the
two principles combined. Both principles seem to be different from MaxEnt at first glance,
and although they seem to be well-known for a long time, they are far from clear when
one looks at them in more detail:

e The principle of Indifference, viewed by [JAYNES, 1978] as a simple “demand of
consistency”, is sometimes mixed with the problem of modelling probabilities; this
leads to arguments against this principle. Therefore we have to specify how we use
this principle, especially in the presence of linear constraints.

e The principle of Independence is related to undirected graphs and to the Markov
properties of its variables; it seems that it has not been used so far as a formal
principle of reasoning (but see [PEARL, 1988]). If MaxEnt is derived from the usual
axioms, only a special case of this principle is required for the proof.

So the paper proceeds from the bottom to the top of the following figure:

P-models
with
Indifference and Independence

t t

more conclusions, less P-models

P-models P-models
with with
Indifference Independence
AN J
P-models

( propositional logic )

Lthe relation between belief, statistics and non-monotonic reasoning ist broadly discussed in
[BACCHUS ET AL., 1994]

2the Material Implication of two propositions (a,b), normally denoted by (a — b), is false iff the first
proposition (antecedens) is true and the second one is false



First, the logic on probability models (P-models) is formally described and illustrated
by use of Simpson’s paradox. The principles of Indifference and Independence are then
introduced as additional axioms on P-models. Some remarks about the relation between
MaxEnt and these principles conclude this short presentation.

1.2 Mathematical formulation

In order to illustrate the following formal definitions we start with a small example of
default-knowledge:

Default-Knowledge: | e normally animals do not fly
e birds are animals

e normally birds fly

Desired conclusion: | Animals, which are not birds, normally do not fly.

As we want to model the given common sense information in a probabilistic® way we have
to construct an appropriate measurable space first:

In this example the set of all living beings is a suitable reference space © (see
[CHOW & TEICHER, 1978]). Furthermore we get the following events (i.e. elements of
the power set P(O) of O)

e an = “beings that are animals”
e b = “beings that are birds”
e fl = “beings that can fly”

which we gather in the set R := {an, bi, fl}.* Of course, a more detailed splitting of the
elements of R (for instance the information about birds can be split into information
about nightbirds and birds that are active during the day) is possible but unnecessarily
increases the complexity of the mathematical model.

For the formulation of the following principles it is sufficient to consider events of a dis-
crete probability space that are built by the set operations N, U and — over R.? In general
this leads to the set ,
Q= {ﬂ €; | e; € {ai,—'ai}} 6

i=1
of full conjunctions over R := {ay,...,a;} where a; € PB(O),i=1,...,0. It is a well-
known fact from probability theory that the (maximal) 2° elements of © are mutually
disjoint and span the set R (i.e. any a; can be expressed by a disjunction of elements of €2) .

3and therefore set theoretic

4in general the reference space has to be a strict superset of all events that are mentioned either in
the knowledge base or in the conclusion

Sfrom an information theoretic point of view we consider R to be a minimal set of problem dependent
variables (here an , bi and fI) whose combinations (via A, V, ) are used to translate given information
into formal sentences (see definition 3)

6—a; denotes the complement of a; in © (which is not empty by the construction of © as strict superset)



Therefore the smallest (o-) algebra 2(R) that contains R is identical to A(Q2) [=PB(Q)].
For these reasons we restrict the set of elementary events (also called the set of possible
worlds) to Q instead of the underlying © and do not mention © any more.

Definition 1: Over a set R := {ay,...,a,} a measurable space (,2) ist defined by

.Q:{ﬁ@|ﬁewwwﬁ}

=1

o A=2AQ) =P(Q).

Definition 2: Let (22,2() be a measurable space over R with Q = {wy,...,w,}. A (dis-
crete) probability measure or probability model (P-model) P is an assignment
of non-negative numerical values to the elements of €2, which sum up to unity. In
symbols:

pii=Pw)>0,i=1,....,n and py+...+p, =1.

The n-tupel (pi,...,p,) is called a probability vector (P-vector).

W, (respectively Vo) denotes the set of all possible P-models (P-vectors) for (£2,2) .
Definition 3: For given (Q2,), P € Wq, a,b €A, P(a) > 0 and I C [0, 1] the term
(P(b|a)=206;6€l)

is called a sentence in (£2,2). The sentence given above is called true in P € Wy,
ifft P(b]a) € I.Otherwise it is called false.

Remarks:

e It is easy to see that P(b|a) =06 can be notated as a linear equality for the
elementary probabilities p;, 2 =1,...,n:

P(b|la)=6 & Planb)=6-Pla) & (1—-06)- > pi—6- >, p;=0.

itw;€anb Jjiwj€an-b

e The definition of a sentence can be extended to any term that can be transformed
into a linear equation.

Example:

P(b)—Pla)=6 & > pi— > pj=6.

itw; €Db Jiwj€a

Definition 4: Let DB := {s1,...,5,,} be a set of m sentences in (2,). Wpp is defined
as the set of all P-models P € W, in which sq,...,s,, are true. In this context we
call s1,...,s,, constraints on Wq and Wpp the set of all elements of Wq that are
consistent with the constraints in DB.

"P(b|a):= P(anb)/P(a) denotes the conditional probability of the event b given a .
Remark: P(b) = P(b| Q)



If Wpp consists of more than one element (here equivalent to infinitely many), the
information in DB is incomplete for determining a single P-model. If Wpg is empty,
the information in DB was inconsistent.

We want to model incomplete information, expressed by linear constraints
(premises) over a set of P-models, so the case that there are “infinitely many ele-
ments in Wpg” will be our standard case.

Definition 5: A sentence s which is true in all P-models of Wpg is called a conclusion
from DB, in symbols: DB ||~ s. Therefore, adding a conclusion to DB will not
change the set of models of Wpg.

A belief in a of a system now means to us that, if no other information is given
and the system is forced to decide between a and —a, the system will decide for a
(default decision). According to the relationship between probabilities and decisions,
we model the belief in a as

(P(a) =0;06 € (0.5,1]) € DB.

Knowledge is expressed by probability 1 (a is known to be true iff
(P(a) =1) € DB). Therefore, if a sentence of the form (P(a) = 6;6 € (0.5, 1]) for
some propositional expression @ is a conclusion from DB, the system will decide
for a given the knowledge in DB. This interpretation of defaults is quantitative;
especially this kind of belief means “in more than half of the cases”. This is weaker
than “in most cases” (similar to “normally”), but the quantitative meaning of most
is context-dependent and therefore difficult to describe; the structure of the desired
conclusions of most seems to be very similar to that of “more than half”. So we
opted for that interpretation. Conditional knowledge (belief, decisions) is of course
expressed by conditional probabilities: (P(b | a) = 6;6 € (0.5,1]) means that if the
system knows a (and nothing else), it believes (decides for) b .

Now we are able to handle the example from the beginning of this section:

DB, = {(P(~fl|an)=06y; 6, € (0.5,1]), (P(an | bi) =1.0),
(P(fl]|bi) =695 62 € (0.5,1]) }
= {(va+vs>v +uvs), (v5+v5=0), (v >v9) }

where vy ;= P(anNbi N fl), vy := PlanNbi N =fl), v3 := Plan N =biN fl),

vy = Plann=binN=fl), ..., vr:= P(mannN=biN fl), vg := P(—an N =bi N =fl).
We have to decide whether
~  Plann=bin=fl) Uy
P(—fl N —bi) = = 057 (& S wg?
( f |a’n Z) P(anm_‘bl) 'U3+U4 > ( U4 > U3 )

From the last notation of DB, we get
Vg + 04 > U1+ 03 > VU2 + 03, l.e. v4 > 3.

Therefore the desired conclusion is valid for any P-vector that is consistent with the
constraints in DBy , in symbols: DBy ||~ (P(=fl | an N —bi) = 63; 63 € (0.5,1]) .



2 Conclusions on P-models

This kind of logic on P-models (P-logic), described so far, is of course strictly stronger
than propositional logic, which can be embedded into P-logic as follows: Take the premises
of propositional logic as knowledge with probability 1 into DB and look for expressions,
being true in all remaining possible worlds. P-logic is surely useful, when modelling certain
examples of reasoning (as already shown in the previous section this logic supports the
desired conclusion from DB; ). Moreover the use of conditional probabilities instead of
Material Implication avoids some of the well-known modelling problems with the Material
Implication. Also P-logic allows for a richer language than propositional logic, but it still
has the property of being monotonic (additional knowledge won'’t revise earlier decisions).
However, we aim at something which is much stronger; because too many conclusions
which seem to be intuitively true are not supported by this P-logic.

Example: DB,

[ Weak version of Simpson’s Paradox ([BLyTH, 1973], [NEUFELD & HORTON, 1990])]:
DB, = {(P(c|a)=61;6 € (0.5,1]), (P(c|b) = 6565 € (0.5,1]) }*
Desired conclusions:  (c1) DBy ||~ (P(c | aUb) = 63;63 € (0.5,1])
(c2) DBy ||~ (P(c|anb) = b4 04 € (0.5,1])

These conclusions seem intuitively obvious although they are not true in P-logic (or
in statistics): We construct a counter-example by means of P-models, which fulfil the
premises, but not the conclusions.

not (cl): Let P(abc) =6/18°, P(ab—~c) =1/18, P(a—bc) = 1/18, P(a—b-c) = 5/18,
P(=abc) = 1/18, P(—ab—c) = 4/18, P(=a—bc) = 0 and P(—a—b-c¢) = 0. Then

Plcla) = Planec) P(abc) + P(a—bc)
~ P(a)  P(abc) + P(ab—c) + P(a—bc) + P(a—b-c)
— L — l > 057
6+1+1+5 13
Ple|b) = Pbne) P(abc) + P(—abe)
~ P(b)  P(abc) + P(ab-c) + P(=abc) + P(=ab—c)
- 0L T s
6+ 14+144 127
P(cnjaUb]) P(abe) + P(a—bc) + P(—abc)
(c]ab) P(aUb) 1 — P(=a—bc) — P(=a—b—c)
6
- OHlEL S s
18—-0—-0 18

8if the system knows a, it believes (decides for) c; if the system knows b, it believes (decides for) ¢
Yabc=anbnec,...



not (¢2): Let P(abc) =1/20, P(ab—c) =5/20, P(a—bc) =6/20, P(a—b—c) =1/20,
P(=abc) = 6/20, P(—ab—c) = 1/20, P(=a—bc) = 0 and P(—a—b-c¢) = 0. Then

7 1
P(c|a):P(c|b):B>0.5, whereas P(c|aﬂb):6<0.5.

This makes the Simpson problem a common sense paradox. Probability theory is too fine-
grained to model common sense reasoning in general. The remaining degrees of freedom
have to be filled up; to do this without adding information is still a problem, last but
not least addressed by the MaxEnt-Program of Jaynes. Filling the degrees of freedom
with correct methods will help to overcome the mistrust in statistics which can be found
even among scientifically educated people. So our goal is to look for additional (context-
sensitive) constraints (resp. principles), which are able to support rational decisions with
incomplete knowledge (e.g. the desired conclusions of the last example DB, ). This will be
done in the next sections.

3 Conclusions on P-models with Indifference

3.1 What does Indifference mean?

The history of this famous principle goes back to Laplace and Keynes. Let us quote
[JAYNES, 1978] for a short and informal version of this principle:

“If the available evidence gives us no reason to consider proposition a; either
more or less likely than as, then the only honest way we can describe that
state of knowledge is to assign them equal probabilities: P(ay) = P(az).”

Three questions arise here:

a) How to make formally precise that a system has no reason to consider a; either
more or less likely as ay in the presence of linear constraints?

b) Why should we use this principle?

¢) Given a set of linear constraints of DB: is it possible to decide on the basis of this set
which elementary events (and therefore which complex events) will be considered
to be indifferent?

We will adress these questions on the following two pages.

3.2 Mathematical formulation

Let Wpgp be the set of P-models of DB, Vpg the set of P-vectors of DB and v € Vpp
a single vector. Now look for permutations II with Vv € Vpg J0* € Vpg @ I(v) = v*,
in short form written as: II(Vpg) = Vpg . It is well-known, that any permutation can be



expressed by writing down its cycles, so we express II by describing its cycles. The principle
of Indifference now demands that all variables (we express the unknown probabilities of
elementary events by variables) within the same cycle get the same value. We define the
set Ipp as the collection of all the equations of any IT with the property II(Vpg) = Vg -
s is a consequence of a set of linear constraints with the help of the principle of Indifference
iff the following relation is valid: DB U Ipg ||~ s.

3.3 The main argument for using Indifference: Consistency

If Wpp contains P-models with the property P(a;) < P(az) and P(ay) > P(a2) and a,
is indifferent to ay as defined above, an unknown future decision process based on this
set of P-models might once choose a model with the property P(a;) < P(az) and might
choose a P-model with P(a;) > P(a3) at another time. Both models contain information
which is not present in the database. On the basis of Vpg we notice that we won’t be
able to recognize if a permutation IT (of the kind II(Vpp) = Vpg) has happened inside
our machine which switches the values of some variables (this is equivalent to renaming
the variables) and changes a model with the property P(a;) < P(ay) into a model with
the opposite property. Of course we don’t want something we can’t notice to have any
influence on future (rational) decisions. That’s what the principle of Indifference is able
to prevent: it disposes of those degrees of freedom which our constraints do not address
and which we therefore are not able to control in a rational manner.

3.4 Another argument for using Indifference: Model Quantification

Take Wypg) as the set of all P-models, which satisty the constraints in DB and the
equations in Ipg; take Vypp) as the corresponding set of all P-vectors. Given that the
MaxEnt-solution of a problem with linear constraints is the correct representation of the
set of P-models (what was proved by [JAYNES, 1982] via the Concentration Theorem, see
section 6.2), it is possible to consider every Indifference model w' € Wiops) as MaxEnt-
solution of a subproblem DB;, where W, is an element of a certain partition of Wpy (the
partition is formed by varying the values of additional constraints derived from models
in WI(DB)). Then this P-model w' is of course a correct representation of the set Wpg..
If this is the case, only a minimum amount of information is necessary to replace the set
Whpg, by the model w' (the amount tends to zero if the problem is modelled by a random
experiment of size N and N grows large) and only a minimum of information is contained
in Ipg . This means that statistically all models in Wypg) have a special representation
status.

3.5 How to detect indifferent events by the matrix M of linear con-
straints

A sufficient condition for IT to have the property of I[I(Vpg) = Vpp is the existence of an
permutation My of the columns of M, which, followed by an permutation M, of the rows
of M, is equivalent to M (formally: My - M - My = M).



Proof: Systems with the same matrix of equations have the same set of solutions.

Example: Let us take DB3 := DBy, U {6; = 63 = ¢} . The matrix M of linear constraints
has the entries

vy = Uy = vz i= vy = vs 1= Vg 1= vy = vy 1=
P(abc) P(ab—c) P(a—bc) P(a=b-c) P(-abc) P(—ab-c) P(=a—bc) P(—a—-b—c) =

1 1 1 1 1 1 1 1 1
1—-96 -0 1—-96 -0 0 0 0 0 0
1—-96 -0 0 0 1—-96 -0 0 0 0

We obtain II(Vpp,) = Vb, for the permutation II = (”1) (”2) (”3 ”5) (”4 ”6) (”7 v8) ]

U1 v2 U5 U3 Ve V4 vg vt

Equations in Ipg: {vs =5, vy = vg, v7 = Vg } .

3.6 Examples (no rules) of the use of indifference
e n = |Q| implies: QU Iy ||~ (P(w;) =1/n) Yw, € Q.

e Take DB, as equal to { (P(b]| a) = 61561 € (0.5,1]) }.
Conclusion: DB, U Ipg, ||~ (P(b| anec) = 69565 € (0.5,1]) .10

e Take DB; as equal to { (P(b| anc) =016, € (0.5,1]) }.
Conclusion: DBjs U Ipg, ||~ (P(b | a) = 6y; 6, € (0.5,1]) .1

3.7 Summary (Indifference)

Two important arguments (consistency, quantification of possible worlds) justify the use
of the principle of Indifference when decisions are necessary. Of course it does not solve
the problem of modelling, which is the problem of defining 2 and encoding our knowledge.
Some paradoxes of the use of Indifference are related to the selection of different 2’s and
therefore different results of the principle of Indifference (see e.g. [NEAPOLITAN, 1990],
[Howson & UrBacH, 1993]). The consistency (i.e. Vpg # 0 = Vipe) # ) of this prin-
ciple can be proven by the convexity of Vpp in any component of the vectors v (€ Vpg).
Moreover the MaxEnt-Model fulfils all the equations of I(DB) (which means that the
MaxEnt-Model w* is an element of WI(DB)). The decisions based on P-models and the
principle of Indifference are of course strictly stronger than that on pure P-models. The
decisions have already the property of being non-monotonic, when additional information
becomes available (indifferences might disappear, when new knowledge comes in).

YOndifference demands the equations P(abc) = P(ab-c), P(a=bc) = P(a=b-c), P(-abc) =
P(—ab—c) = P(—a—bc) = P(—~a—b-c)
UTndifference demands P(ab—c) = P(a—b—c) = P(-abc) = P(~ab-c) = P(=a—bc) = P(=a—b-c)




4 Conclusions on P-models with Independence

4.1 Basics

From the point of information theory, Independence of two events a and b in a P-model
w is given, if any knowledge about the event @ (like ¢ has (or has not) happened) does
not change the probability of b (and vice versa) in w (formally P(b | a) = P(b) ). With
the knowledge of Independence of the two events, the probability of the combined event
becomes a function of the probability of the single events. If this is the case not only for
single events, but for all values of a random variable, Independence allows to reduce the
complexity (of calculating) and the space (for storing probability models ([LEw1s, 1959]).
In Bayesian Reasoning, Independence is well-known and commonly used when completing
incomplete knowledge or when simplifying calculations (see e.g. [PEARL, 1988]). In our
context the following questions arise:

a) How to make formally precise which kind of (conditional) Independence a system
should demand?

b) Why should we use this principle?

¢) Given a set of linear constraints of DB: is it possible to decide on the basis of this
set which events will become independent?

4.2 Mathematical formulation

The principle of Independence is based on the construction of an undirected graph from
the constraints in DB by the following rules: Let us take every variable from R as a knot
and let us connect two variables by an edge, iff the two variables are both mentioned
in the same constraint. Consider the resulting undirected graph as Independence map
(I-map; see [PEARL, 1988]). We take all the statements of (conditional) Independence of
the map and translate it into (non-linear) equations between events of 2. We define Upp
as the set of all these equations.!? s is a consequence of a set of linear constraints with the
help of the principle of Independence iff the following relation is valid: DB U Upg ||~ s.

Example: The Independence map of DBy (R = {a,b,c}) is

() —()—W)

This Independence map now demands that any event of (4} is (conditionally) indepen-
dent from any event of 2y, conditioned on an elementary event of (2. .
4.3 First argument: Intuitive graphical representation

Some years ago, conditional Independence relations in P-models have been identified as
a model for a set of axioms, which describe (and conclude) connections on undirected

2the set Upp expresses many possible independences between subalgebras of 2((2)



graphs (an introduction to this topic can be obtained from [PEARL, 1988]). This means
that (conditional) Independence relations could be detected by only qualitative informa-
tion about a P-model: The quantitative information, encoded in the numerical values
of its events, is not necessary (see e.g. [PEARL, 1988]). We find this approach very im-
portant for MaxEnt, because it clarifies the relation between MaxEnt and (conditional)
Independence.'?

4.4 Second argument: Quantification of possible worlds

Take Wypg) as the set of all P-models which fulfil the constraints in DB and the equations
in Upg; take Vypp) as the corresponding set of all P-vectors. Given that the MaxEnt-
solution of a problem with linear constraints is the correct representation of the set of
P-models, it is possible to consider every Independence model w" (€ Wypg)) as MaxEnt-
solution of a subproblem DB,, where Wy, is an element of a partition of Wpp (the
partition is formed by varying the values of additional constraints derived from models in
Wums)). Then this P-model w" is of course a correct representation of the set Wpg, . If
this is the case, only a minimum amount of information is necessary to change from the
set Wpg, to the model w* and only a minimum of information is contained in Upg. This
means that statistically all models in Wypg) have a special representation status.

4.5 Example (Model Quantification)

Consider an urn with N balls, R of which are red. Let us take out n balls without
replacement. What is the most probable frequency of red balls in the sample to expect?
We model this question with a Hypergeometric distribution and we count the maximum
of models in the case of Independence (as to expect with the Independence map).

4.6 Summary (Independence)

Beside the important argument of reducing complexity two more arguments (intuitive
graphical representation, quantification of possible worlds) justify the use of the principle
of Independence when decisions are necessary. All demands of Independence, contained
in Upg, describe constraints of only little information-theoretic value to the problem;
if the decisions are based on the method of MaxEnt, these constraints in Upg have
no influence on the decisions. So assumptions of Independence can be informative or
not, depending on their relation to the I-map of the constraints. The consistency (i.e.
Vo # 0 = Vuyms) # 0) of this principle can be proven by the MaxEnt-Model, which ful-
fils all the non-linear equations of Upp (what means that the MaxEnt-Model is an element
of Vysy). The set Upg (resp. the I-maps) will clarify the relation between MaxEnt and
Independence. The decisions based on P-models and the principle of Independence are of

13an exact knowledge of this is useful, when the solution of a problem should be found by computers

itself. This knowledge allows to separate “active” (independence) constraints from “inactive” constraints.
The active constraints are necessary for the system, because they will change the result of the reasoning
process, the inactive ones are fulfilled anyway by the reasoning process



course strictly stronger than those based on pure P-models. The decisions have already
the property of being non-monotonic, when additional information gets available.

5 Conclusions on P-models with Indifference and Inde-
pendence

It can be shown that a system using both the principle of Indifference and the principle
of Independence concludes strictly stronger than the systems with the isolated principles.
An example for this is again Simpson’s Paradox: both conclusions of DBy become true in
the joined system, but they are not supported in the single systems.

6 Conclusions on P-models with MaxEnt

6.1 Mathematical formulation

Having its origin in thermodynamics the concept of entropy plays a very important role
in the description of irreversible events. As we can put the main emphasis for instance on
an energetic or an information theoretic point of view there is a whole family of different
concepts of entropy.

For the purpose of nonmonotic reasoning we chose the information theoretic aspect: Let
Q=A{wy,...,w,} and v = (vy,...,v,) € V. According to Shannon (1949) the entropy
of v is given by the average number of binary decisions that is necessary to determine
a certain element w; of €2, if w; was selected a priori with probability v;. An axiomatic
approach is given by

Definition and Theorem 6: Let v = (vy,...,v,) be a P-vector'*. The entropy H,(v)
of v is characterized by the following properties:

(P1) H,:[0,1]" - R,v — H,(v) is a real valued function that is continuous in any
argument v; .

(P2) {Hn (1 . 1)}n€N is an isotonic sequence in 7.

(P3) For any given 7 < n and 1 < k; < 7 with XT: k; = n the so-called decomposi-
1=1
tion law holds, that is:

H,(v1,v2,...,0,)

~ Uky_r 41 Uki_q 42 Uk,
= HT(y17y27"'7yT)+Zyi'chiflci,1 ( s s 1+ 7...,—) ,
i=1 Yi Yi Yi

where ky:=0, y1:=v1 + v+ ...+ U, Y2 :=Vky41 + Vkyy2+ ...+ Vkyy «.-y
Yr 7= Vg, 41+ U2+ oo+ U

Mie. Yv;=1 and 0<v; <1for1<i<n
i=1



It can be shown that the form of H,, is uniquely determined by the properties given

above:
n

H,(v) =—=>v;-log(v;)

=1
with an arbitrary logarithmic function log.

Further properties of H, (v):

P4) H, is a continuous and strictly convex function.
H,(v) > 0 for all P-vectors v.

1
sy )

H,, has a unique maximum with value log(n) at the point (%

)
)
P7) H,(1,0,...,0) = H,(0,1,0,...,0) = ... = H,(0,...,0,1) = 0.
)
)

Hop1(vry . 000,0) = Hy(vg, .0, 0,) .
H,(v) = H,(II(v)) for an arbitrary permutation II of the components of v.

As already stated in the previous sections we have to add additional contraints (i.e.
information) to most of the inference problems with incomplete knowledge in order to get
a unique answer.

By (P6) the discrete uniform distribution has the highest entropy value. On the other hand
this distribution has the lowest variation and therefore the lowest amount of additional
information between single elementary probabilities. In consequence we will try to find
the P-vector with the highest entropy value' that is still consistent with the given a priori
information. Two questions immediately arise:

a) Is the solution uniquely determined? Otherwise we would probably need a stronger
principle that superceeds the principle of maximum entropy.

b) Does a solution even exist?

As shown in section 1.2 a priori information (i.e. the constraints in DB) can be notated in
the form of linear constraints, in symbols M - v = b, where M € R"™"™ and b € R™. This
leads to the following optimization problem which we call MaxEnt-problem:

maX{Hn(UHM-v:b, dvi=1, viZO,izl,...,n}

veR” i=1
Now we are able to give an answer to the previous questions:

Theorem 7: There is a unique solution of the MaxFEnt-problem if the constraints in DB
are consistent.

Proof: Immediately by the theorem of Kuhn-Tucker ([LUENBERGER, 1973]) and
the strict convexity of H,, .
|

15i e. the P-vector which is closest to the discrete uniform distribution



The exact handling of arbitrary sentences (6 € I, see definition 3) by combining problems
of linear equalities (fixed ¢) will be given in [GREINER & SCHRAMM, 1995].

6.2 Model Quantification

MaxEnt has the best possible justification for decisions by the

Concentration Theorem: Let E be a random experiment with n possible results
{E1,...,E,} and Q be the set of possible results when E is repeated N times,
ie. Q= {wy,...,w,~} where w; € {Ey,..., E,} for 1 <i < n”. Let Wg be the set
of all probability distributions v; = (vy;,. .., v,;) with

_ total number of E; in w;

Vy4 - N

and Wpp(C Wq) the set of distributions that fulfil a given set of m linear and
independent constraints. Further let v* be the distribution with maximum entropy
in Wpg, I :=[H,(v")— AH,H,(v*)] and 1 < z < |[Wpg|. Then asymptotically the
following equation holds:

2-N-AH = X2 | e/ iWog|

where X?";a denotes the a-quantile of the y2-distribution with f degrees of freedom.

Proof: [JAYNES, 1982].
|

Therefore by increasing the number N of random experiments more and more feasible
P-models (i.e. elements of Wpg) will be in a infinitely small vicinity around the MaxEnt-
distribution v* (as H,, is a continuous function). In other words: With high probability a
randomly chosen feasible P-model will be very close to v*.

6.3 Relations between MaxEnt and Indifference/Independence

Theorem 8: MaxEnt complies with the demands of the principle of Indifference.

Proof: Without loss of generality the principle of Indifference may demand v; = v,
for two indices ¢ # j. Let II be the corresponding permutation matrix and v* be
the solution of the MaxEnt-problem. Suppose that v} # v;. As the principle of In-
difference holds for v; and v; in Vpg, there is II(v*) € Vi with v* # II(v*) and
H,(v*) = H,(I1(v*)) by (P9). However, this is a contradiction to theorem 7. There-
fore v7 = v} holds.

|



Theorem 9: MaxEnt complies with the demands of the principle of Independence.
Idea of the proof: All the equations in Upg have the form

U; U5 = Vg *Vg.

Sufficient for this equation to hold is the validity of
€pi T €pj = Epk + Epe

for all elements e,, of the matrix M, which can easily be shown by using the inde-
pendence propositions of undirected graphs (see [GREINER & SCHRAMM, 1994]).

Theorem 10: MaxEnt decides strictly stronger than the joined principles of Indifference
and Independence.

Proof: The proofs of theorem 8 and 9 show that both theorems are independent
of each other. Therefore MaxEnt complies with the joined principles. The proof
is completed by the fact that Viymps)'® contains in most cases more than one P-
vector (i.e. infinitely many). For example consider DBg := { (P(b| a) = 0.8) } and
the desired conclusion DBg ||~ (P(—a) = 6; 6 € (0.5,1]): The principle of Indiffer-
ence demands P(—ab) = P(—a—b), the principle of Independence does not demand
any new equation. The MaxEnt-solution

(P(ab) = 0.362, P(a=b) = 0.090, P(—ab) = 0.274, P(—a—b) = 0.274) € Viymn)
supports the conclusion, whereas
(P(ab) = 0.640, P(a—b) = 0.160, P(—ab) = 0.100, P(—a—b) = 0.100) € Viums)

does not.

7 Conclusions

The 5 logics (P-models, P-models with Indifference, P-models with Independence, P-
models with both principles, P-models with MaxEnt) do not only clarify some theoretical
relations between MaxEnt and these principles; they make sense by their own and are
not an ad hoc concept: When applied to a special set of benchmarks for non-monotonic
logics, collected by V. Lifschitz, each logic can infer some of the problems (MaxEnt, being
strictly stronger, solves of course nearly all problems). This gives additional information
about a problem; it makes explicit which assumptions are necessary to reach the desired
conclusions. Concerning our background aim of modelling common sense reasoning we
don’t argue that in every day reasoning humans calculate the MaxEnt-distribution. Rather
we argue that this is the formal solution of a general problem, parts of which might
be solved informally (with less accuracy) very fast; a first idea for this is given by the
qualitative reasoning in undirected graphs.

16i e. the set of all P-vectors, which fulfil the constraints in DB and the equations in Ipg and Upg
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