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Non-Monotonic Reasoning on Probability Models:Indi�erence, Independence & MaxEntPart I { OverviewManfred Schramm and Michael GreinerInstitut f�ur Informatik der Technischen Universit�at M�unchen, GermanyKeywordsIndi�erence, Independence, Maximum Entropy, Non-Monotonic Reasoning, Sta-tistical Reasoning, Default Reasoning, Undirected Graphs, Decisions under Incom-plete Knowledge, Simpson's ParadoxAbstractThrough completing an underspeci�ed probability model, Maximum Entropy(MaxEnt) supports non-monotonic inferences. Some major aspects of how this isdone by MaxEnt can be understood from the background of two principles of ra-tional decision: the concept of Indi�erence and the concept of Independence. Ina formal speci�cation MaxEnt can be viewed as (conservative) extension of theseprinciples; so these principles shed light on the \magical" decisions of MaxEnt.But the other direction is true as well: Since MaxEnt is a \correct" representationof the set of models (Concentration Theorem), it elucidates these two principles(e.g. it can be shown, that the knowledge of independences can be of very di�erentinformation-theoretic value). These principles and their calculi are not just arbi-trary ideas: When extended to work with qualitative constraints which are modelledby probability intervals, each calculus can be successfully applied to V. Lifschitz'sBenchmarks of Non-Monotonic Reasoning and is able to infer some instances ofthem ([Lifschitz, 1988]). Since MaxEnt is strictly stronger than the combinationof the two principles, it yields a powerful tool for decisions in situations of incom-plete knowledge. To give an example, a well-known problem of statistical inference(Simpson's Paradox) will serve as an illustration throughout the paper.1 Introduction1.1 BackgroundIf we want to model common sense reasoning, an important step will be the devel-opment of systems which can make decisions under incomplete knowledge. These de-cisions should be the best possible ones given the incomplete knowledge; they willshow non-monotonic behaviour when the knowledge is increasing. Recently, probabil-ity theory has become more and more accepted as an appropriate tool for that pur-pose, especially in connection with the notion of entropy ([Paris & Vencovska, 1989],[Pearl, 1988], [Cheeseman, 1988]). Following [Cox, 1979], we consider probability



2 Non-Monotonic reasoning on probability modelstheory as an adequate model for one-dimensional belief of propositional expressions1. Fol-lowing [Adams, 1975], we consider the conditional probability to be much more adequatecompared to the use of the Material Implication2 of propositional logic when modelling thecommon sense connective \If, then" of the language. Following [Jaynes, 1982] we con-sider MaxEnt as an adequate method of choosing a probability model from an in�nite setof possible models, when only linear constraints are present. Concerning MaxEnt it is stilla problem to explain this method of inductive reasoning to any newcomers. Surely thereare various ways. One possibility is to take some intuitively plausible axioms of rationalreasoning and to show how MaxEnt is a necessary consequence of these axioms. This ap-proach has been chosen quite a few times in the literature ([Shore & Johnson, 1980],[Skilling, 1988], [Paris & Vencovska, 1990]). Here we choose a slightly di�erentapproach; we take two strong properties, strong enough to de�ne decision principles, andwe show that MaxEnt concludes strictly stronger (see 6. and the �gure below) than thetwo principles combined. Both principles seem to be di�erent from MaxEnt at �rst glance,and although they seem to be well-known for a long time, they are far from clear whenone looks at them in more detail:� The principle of Indi�erence, viewed by [Jaynes, 1978] as a simple \demand ofconsistency", is sometimes mixed with the problem of modelling probabilities; thisleads to arguments against this principle. Therefore we have to specify how we usethis principle, especially in the presence of linear constraints.� The principle of Independence is related to undirected graphs and to the Markovproperties of its variables; it seems that it has not been used so far as a formalprinciple of reasoning (but see [Pearl, 1988]). If MaxEnt is derived from the usualaxioms, only a special case of this principle is required for the proof.So the paper proceeds from the bottom to the top of the following �gure:
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1the relation between belief, statistics and non-monotonic reasoning ist broadly discussed in[Bacchus et al., 1994]2the Material Implication of two propositions (a; b), normally denoted by (a ! b), is false i� the �rstproposition (antecedens) is true and the second one is false



1 Introduction 3First, the logic on probability models (P-models) is formally described and illustratedby use of Simpson's paradox. The principles of Indi�erence and Independence are thenintroduced as additional axioms on P-models. Some remarks about the relation betweenMaxEnt and these principles conclude this short presentation.1.2 Mathematical formulationIn order to illustrate the following formal de�nitions we start with a small example ofdefault-knowledge:Default-Knowledge: � normally animals do not 
y� birds are animals� normally birds 
yDesired conclusion: Animals, which are not birds, normally do not 
y.As we want to model the given common sense information in a probabilistic3 way we haveto construct an appropriate measurable space �rst:In this example the set of all living beings is a suitable reference space � (see[Chow & Teicher, 1978]). Furthermore we get the following events (i.e. elements ofthe power set P(�) of �)� an � \beings that are animals"� bi � \beings that are birds"� fl � \beings that can 
y"which we gather in the set R := fan; bi; f lg .4 Of course, a more detailed splitting of theelements of R (for instance the information about birds can be split into informationabout nightbirds and birds that are active during the day) is possible but unnecessarilyincreases the complexity of the mathematical model.For the formulation of the following principles it is su�cient to consider events of a dis-crete probability space that are built by the set operations \ , [ and : over R .5 In generalthis leads to the set 
 := (\̀i=1 ei j ei 2 fai;:aig) 6of full conjunctions over R := fa1; : : : ; a`g where ai 2 P(�) , i = 1; : : : ; ` . It is a well-known fact from probability theory that the (maximal) 2` elements of 
 are mutuallydisjoint and span the set R (i.e. any ai can be expressed by a disjunction of elements of 
) .3and therefore set theoretic4in general the reference space has to be a strict superset of all events that are mentioned either inthe knowledge base or in the conclusion5from an information theoretic point of view we consider R to be a minimal set of problem dependentvariables (here an , bi and fl) whose combinations (via ^, _, :) are used to translate given informationinto formal sentences (see de�nition 3)6:ai denotes the complement of ai in � (which is not empty by the construction of � as strict superset)



4 Non-Monotonic reasoning on probability modelsTherefore the smallest (�-) algebra A(R) that contains R is identical to A(
) [ = P(
) ] .For these reasons we restrict the set of elementary events (also called the set of possibleworlds) to 
 instead of the underlying � and do not mention � any more.De�nition 1: Over a set R := fa1; : : : ; a`g a measurable space (
;A) ist de�ned by� 
 = (\̀i=1 ei j ei 2 fai;:aig)� A = A(
) = P(
) .De�nition 2: Let (
;A) be a measurable space over R with 
 = f!1; : : : ; !ng . A (dis-crete) probability measure or probability model (P-model) P is an assignmentof non-negative numerical values to the elements of 
 , which sum up to unity. Insymbols: pi := P (!i) � 0 ; i = 1; : : : ; n and p1 + : : :+ pn = 1 :The n-tupel (p1; : : : ; pn) is called a probability vector (P-vector).W
 (respectively V
) denotes the set of all possible P-models (P-vectors) for (
;A) .De�nition 3: For given (
;A) , P 2 W
 , a; b 2 A , P (a) > 0 and I � [0; 1] the termhP (b j a) = �; � 2 Ii7is called a sentence in (
;A) . The sentence given above is called true in P 2 W
i� P (b j a) 2 I . Otherwise it is called false.Remarks:� It is easy to see that P (b j a) = � can be notated as a linear equality for theelementary probabilities pi ; i = 1; : : : ; n :P (b j a) = � , P (a \ b) = � � P (a) , (1� �) � Xi:!i2a\bpi � � � Xj:!j2a\:bpj = 0 :� The de�nition of a sentence can be extended to any term that can be transformedinto a linear equation.Example: P (b)� P (a) = � , Xi:!i2b pi � Xj:!j2a pj = � :De�nition 4: Let DB := fs1; : : : ; smg be a set of m sentences in (
;A) . WDB is de�nedas the set of all P-models P 2 W
 in which s1; : : : ; sm are true. In this context wecall s1; : : : ; sm constraints on W
 and WDB the set of all elements of W
 that areconsistent with the constraints in DB.7P (b j a) := P (a \ b)=P (a) denotes the conditional probability of the event b given a .Remark: P (b) = P (b j 
)



1 Introduction 5If WDB consists of more than one element (here equivalent to in�nitely many), theinformation in DB is incomplete for determining a single P-model. If WDB is empty,the information in DB was inconsistent.We want to model incomplete information, expressed by linear constraints(premises) over a set of P-models, so the case that there are \in�nitely many ele-ments in WDB" will be our standard case.De�nition 5: A sentence s which is true in all P-models of WDB is called a conclusionfrom DB, in symbols: DB k� s . Therefore, adding a conclusion to DB will notchange the set of models of WDB .A belief in a of a system now means to us that, if no other information is givenand the system is forced to decide between a and :a, the system will decide for a(default decision). According to the relationship between probabilities and decisions,we model the belief in a ashP (a) = �; � 2 (0:5; 1]i 2 DB :Knowledge is expressed by probability 1 (a is known to be true i�hP (a) = 1i 2 DB). Therefore, if a sentence of the form hP (a) = �; � 2 (0:5; 1]i forsome propositional expression a is a conclusion from DB, the system will decidefor a given the knowledge in DB. This interpretation of defaults is quantitative;especially this kind of belief means \in more than half of the cases". This is weakerthan \in most cases" (similar to \normally"), but the quantitative meaning of mostis context-dependent and therefore di�cult to describe; the structure of the desiredconclusions of most seems to be very similar to that of \more than half". So weopted for that interpretation. Conditional knowledge (belief, decisions) is of courseexpressed by conditional probabilities: hP (b j a) = �; � 2 (0:5; 1]i means that if thesystem knows a (and nothing else), it believes (decides for) b .Now we are able to handle the example from the beginning of this section:DB1 := f hP (:fl j an) = �1; �1 2 (0:5; 1]i ; hP (an j bi) = 1:0i ;hP (fl j bi) = �2; �2 2 (0:5; 1]i g� f hv2 + v4 > v1 + v3i ; hv5 + v6 = 0i ; hv1 > v2i gwhere v1 := P (an \ bi \ fl) , v2 := P (an \ bi \ :fl) , v3 := P (an \ :bi \ fl) ,v4 := P (an \ :bi \ :fl) , : : : , v7 := P (:an \ :bi \ fl) , v8 := P (:an \ :bi \ :fl) .We have to decide whetherP (:fl j an \ :bi) = P (an \ :bi \ :fl)P (an \ :bi) = v4v3 + v4 Q 0:5 ? (, v4 Q v3 ? )From the last notation of DB1 we getv2 + v4 > v1 + v3 > v2 + v3 ; i.e. v4 > v3 :Therefore the desired conclusion is valid for any P-vector that is consistent with theconstraints in DB1 , in symbols: DB1 k� hP (:fl j an \ :bi) = �3; �3 2 (0:5; 1]i .



6 Non-Monotonic reasoning on probability models2 Conclusions on P-modelsThis kind of logic on P-models (P-logic), described so far, is of course strictly strongerthan propositional logic, which can be embedded into P-logic as follows: Take the premisesof propositional logic as knowledge with probability 1 into DB and look for expressions,being true in all remaining possible worlds. P-logic is surely useful, when modelling certainexamples of reasoning (as already shown in the previous section this logic supports thedesired conclusion from DB1 ). Moreover the use of conditional probabilities instead ofMaterial Implication avoids some of the well-known modelling problems with the MaterialImplication. Also P-logic allows for a richer language than propositional logic, but it stillhas the property of being monotonic (additional knowledge won't revise earlier decisions).However, we aim at something which is much stronger; because too many conclusionswhich seem to be intuitively true are not supported by this P-logic.Example: DB2[Weak version of Simpson's Paradox ([Blyth, 1973], [Neufeld & Horton, 1990]) ] :DB2 = f hP (c j a) = �1; �1 2 (0:5; 1]i ; hP (c j b) = �2; �2 2 (0:5; 1]i g8Desired conclusions: (c1) DB2 k� hP (c j a [ b) = �3; �3 2 (0:5; 1]i(c2) DB2 k� hP (c j a \ b) = �4; �4 2 (0:5; 1]iThese conclusions seem intuitively obvious although they are not true in P-logic (orin statistics): We construct a counter-example by means of P-models, which ful�l thepremises, but not the conclusions.not (c1) : Let P (abc) = 6=18 9; P (ab:c) = 1=18 ; P (a:bc) = 1=18 ; P (a:b:c) = 5=18 ,P (:abc) = 1=18; P (:ab:c) = 4=18; P (:a:bc) = 0 and P (:a:b:c) = 0 . ThenP (c j a) = P (a \ c)P (a) = P (abc) + P (a:bc)P (abc) + P (ab:c) + P (a:bc) + P (a:b:c)= 6 + 16 + 1 + 1 + 5 = 713 > 0:5 ;P (c j b) = P (b \ c)P (b) = P (abc) + P (:abc)P (abc) + P (ab:c) + P (:abc) + P (:ab:c)= 6 + 16 + 1 + 1 + 4 = 712 > 0:5 ;P (c j a [ b) = P (c \ [a [ b])P (a [ b) = P (abc) + P (a:bc) + P (:abc)1� P (:a:bc)� P (:a:b:c)= 6 + 1 + 118� 0� 0 = 818 < 0:5 :8if the system knows a, it believes (decides for) c; if the system knows b, it believes (decides for) c9abc � a \ b \ c ; : : :



3 Conclusions on P-models with Indi�erence 7not (c2) : Let P (abc) = 1=20 ; P (ab:c) = 5=20 ; P (a:bc) = 6=20 ; P (a:b:c) = 1=20 ,P (:abc) = 6=20; P (:ab:c) = 1=20; P (:a:bc) = 0 and P (:a:b:c) = 0 . ThenP (c j a) = P (c j b) = 713 > 0:5 ; whereas P (c j a \ b) = 16 < 0:5 :This makes the Simpson problem a common sense paradox. Probability theory is too �ne-grained to model common sense reasoning in general. The remaining degrees of freedomhave to be �lled up; to do this without adding information is still a problem, last butnot least addressed by the MaxEnt-Program of Jaynes. Filling the degrees of freedomwith correct methods will help to overcome the mistrust in statistics which can be foundeven among scienti�cally educated people. So our goal is to look for additional (context-sensitive) constraints (resp. principles), which are able to support rational decisions withincomplete knowledge (e.g. the desired conclusions of the last example DB2). This will bedone in the next sections.3 Conclusions on P-models with Indi�erence3.1 What does Indi�erence mean?The history of this famous principle goes back to Laplace and Keynes. Let us quote[Jaynes, 1978] for a short and informal version of this principle:\If the available evidence gives us no reason to consider proposition a1 eithermore or less likely than a2, then the only honest way we can describe thatstate of knowledge is to assign them equal probabilities: P (a1) = P (a2) ."Three questions arise here:a) How to make formally precise that a system has no reason to consider a1 eithermore or less likely as a2 in the presence of linear constraints?b) Why should we use this principle?c) Given a set of linear constraints of DB: is it possible to decide on the basis of this setwhich elementary events (and therefore which complex events) will be consideredto be indi�erent?We will adress these questions on the following two pages.3.2 Mathematical formulationLet WDB be the set of P-models of DB, VDB the set of P-vectors of DB and v 2 VDBa single vector. Now look for permutations � with 8v 2 VDB 9v� 2 VDB : �(v) = v� ,in short form written as: �(VDB) = VDB . It is well-known, that any permutation can be



8 Non-Monotonic reasoning on probability modelsexpressed by writing down its cycles, so we express � by describing its cycles. The principleof Indi�erence now demands that all variables (we express the unknown probabilities ofelementary events by variables) within the same cycle get the same value. We de�ne theset IDB as the collection of all the equations of any � with the property �(VDB) = VDB .s is a consequence of a set of linear constraints with the help of the principle of Indi�erencei� the following relation is valid: DB [ IDB k� s .3.3 The main argument for using Indi�erence: ConsistencyIf WDB contains P-models with the property P (a1) < P (a2) and P (a1) > P (a2) and a1is indi�erent to a2 as de�ned above, an unknown future decision process based on thisset of P-models might once choose a model with the property P (a1) < P (a2) and mightchoose a P-model with P (a1) > P (a2) at another time. Both models contain informationwhich is not present in the database. On the basis of VDB we notice that we won't beable to recognize if a permutation � (of the kind �(VDB) = VDB) has happened insideour machine which switches the values of some variables (this is equivalent to renamingthe variables) and changes a model with the property P (a1) < P (a2) into a model withthe opposite property. Of course we don't want something we can't notice to have anyin
uence on future (rational) decisions. That's what the principle of Indi�erence is ableto prevent: it disposes of those degrees of freedom which our constraints do not addressand which we therefore are not able to control in a rational manner.3.4 Another argument for using Indi�erence: Model Quanti�cationTake WI(DB) as the set of all P-models, which satisfy the constraints in DB and theequations in IDB; take VI(DB) as the corresponding set of all P-vectors. Given that theMaxEnt-solution of a problem with linear constraints is the correct representation of theset of P-models (what was proved by [Jaynes, 1982] via the Concentration Theorem, seesection 6.2), it is possible to consider every Indi�erence model wi 2 WI(DB) as MaxEnt-solution of a subproblem DBi, whereWDBi is an element of a certain partition ofWDB (thepartition is formed by varying the values of additional constraints derived from modelsin WI(DB)). Then this P-model wi is of course a correct representation of the set WDBi .If this is the case, only a minimum amount of information is necessary to replace the setWDBi by the model wi (the amount tends to zero if the problem is modelled by a randomexperiment of size N and N grows large) and only a minimum of information is containedin IDB . This means that statistically all models in WI(DB) have a special representationstatus.3.5 How to detect indi�erent events by the matrix M of linear con-straintsA su�cient condition for � to have the property of �(VDB) = VDB is the existence of anpermutation M� of the columns of M , which, followed by an permutation M� of the rowsof M , is equivalent to M (formally: M� �M �M� = M).



3 Conclusions on P-models with Indi�erence 9Proof: Systems with the same matrix of equations have the same set of solutions.Example: Let us take DB3 := DB2 [ f�1 = �2 = �g . The matrix M of linear constraintshas the entriesv1 := v2 := v3 := v4 := v5 := v6 := v7 := v8 :=P (abc) P (ab:c) P (a:bc) P (a:b:c) P (:abc) P (:ab:c) P (:a:bc) P (:a:b:c) =1 1 1 1 1 1 1 1 11� � �� 1� � �� 0 0 0 0 01� � �� 0 0 1� � �� 0 0 0We obtain �(VDB3) = VDB3 for the permutation � = �v1v1� �v2v2� �v3v5 v5v3� �v4v6 v6v4� �v7v8 v8v7� :Equations in IDB : f v3 = v5 ; v4 = v6 ; v7 = v8 g :3.6 Examples (no rules) of the use of indi�erence� n = j
j implies: ; [ I; k� hP (!i) = 1=ni 8!i 2 
 .� Take DB4 as equal to f hP (b j a) = �1; �1 2 (0:5; 1]i g .Conclusion: DB4 [ IDB4 k� hP (b j a \ c) = �2; �2 2 (0:5; 1]i .10� Take DB5 as equal to f hP (b j a \ c) = �1; �1 2 (0:5; 1]i g .Conclusion: DB5 [ IDB5 k� hP (b j a) = �2; �2 2 (0:5; 1]i .113.7 Summary (Indi�erence)Two important arguments (consistency, quanti�cation of possible worlds) justify the useof the principle of Indi�erence when decisions are necessary. Of course it does not solvethe problem of modelling, which is the problem of de�ning 
 and encoding our knowledge.Some paradoxes of the use of Indi�erence are related to the selection of di�erent 
's andtherefore di�erent results of the principle of Indi�erence (see e.g. [Neapolitan, 1990],[Howson & Urbach, 1993]). The consistency ( i.e. VDB 6= ; ) VI(DB) 6= ;) of this prin-ciple can be proven by the convexity of VDB in any component of the vectors v (2 VDB).Moreover the MaxEnt-Model ful�ls all the equations of I(DB) (which means that theMaxEnt-Model w� is an element of WI(DB)). The decisions based on P-models and theprinciple of Indi�erence are of course strictly stronger than that on pure P-models. Thedecisions have already the property of being non-monotonic, when additional informationbecomes available (indi�erences might disappear, when new knowledge comes in).10Indi�erence demands the equations P (abc) = P (ab:c) ; P (a:bc) = P (a:b:c) ; P (:abc) =P (:ab:c) = P (:a:bc) = P (:a:b:c)11Indi�erence demands P (ab:c) = P (a:b:c) = P (:abc) = P (:ab:c) = P (:a:bc) = P (:a:b:c)



10 Non-Monotonic reasoning on probability models4 Conclusions on P-models with Independence4.1 BasicsFrom the point of information theory, Independence of two events a and b in a P-modelw is given, if any knowledge about the event a (like a has (or has not) happened) doesnot change the probability of b (and vice versa) in w (formally P (b j a) = P (b) ). Withthe knowledge of Independence of the two events, the probability of the combined eventbecomes a function of the probability of the single events. If this is the case not only forsingle events, but for all values of a random variable, Independence allows to reduce thecomplexity (of calculating) and the space (for storing probability models ([Lewis, 1959]).In Bayesian Reasoning, Independence is well-known and commonly used when completingincomplete knowledge or when simplifying calculations (see e.g. [Pearl, 1988]). In ourcontext the following questions arise:a) How to make formally precise which kind of (conditional) Independence a systemshould demand?b) Why should we use this principle?c) Given a set of linear constraints of DB: is it possible to decide on the basis of thisset which events will become independent?4.2 Mathematical formulationThe principle of Independence is based on the construction of an undirected graph fromthe constraints in DB by the following rules: Let us take every variable from R as a knotand let us connect two variables by an edge, i� the two variables are both mentionedin the same constraint. Consider the resulting undirected graph as Independence map(I-map; see [Pearl, 1988]). We take all the statements of (conditional) Independence ofthe map and translate it into (non-linear) equations between events of 
. We de�ne UDBas the set of all these equations.12 s is a consequence of a set of linear constraints with thehelp of the principle of Independence i� the following relation is valid: DB [ UDB k� s .Example: The Independence map of DB2 (R = fa; b; cg ) is����fag ����fcg ����fbgThis Independence map now demands that any event of Afag is (conditionally) indepen-dent from any event of Afbg, conditioned on an elementary event of 
fcg .4.3 First argument: Intuitive graphical representationSome years ago, conditional Independence relations in P-models have been identi�ed asa model for a set of axioms, which describe (and conclude) connections on undirected12the set UDB expresses many possible independences between subalgebras of A(
)



4 Conclusions on P-models with Independence 11graphs (an introduction to this topic can be obtained from [Pearl, 1988]). This meansthat (conditional) Independence relations could be detected by only qualitative informa-tion about a P-model: The quantitative information, encoded in the numerical valuesof its events, is not necessary (see e.g. [Pearl, 1988]). We �nd this approach very im-portant for MaxEnt, because it clari�es the relation between MaxEnt and (conditional)Independence.134.4 Second argument: Quanti�cation of possible worldsTakeWU(DB) as the set of all P-models which ful�l the constraints in DB and the equationsin UDB; take VU(DB) as the corresponding set of all P-vectors. Given that the MaxEnt-solution of a problem with linear constraints is the correct representation of the set ofP-models, it is possible to consider every Independence model wu (2 WU(DB)) as MaxEnt-solution of a subproblem DBu, where WDBu is an element of a partition of WDB (thepartition is formed by varying the values of additional constraints derived from models inWU(DB)). Then this P-model wu is of course a correct representation of the set WDBu. Ifthis is the case, only a minimum amount of information is necessary to change from theset WDBu to the model wu and only a minimum of information is contained in UDB. Thismeans that statistically all models in WU(DB) have a special representation status.4.5 Example (Model Quanti�cation)Consider an urn with N balls, R of which are red. Let us take out n balls withoutreplacement. What is the most probable frequency of red balls in the sample to expect?We model this question with a Hypergeometric distribution and we count the maximumof models in the case of Independence (as to expect with the Independence map).4.6 Summary (Independence)Beside the important argument of reducing complexity two more arguments (intuitivegraphical representation, quanti�cation of possible worlds) justify the use of the principleof Independence when decisions are necessary. All demands of Independence, containedin UDB, describe constraints of only little information-theoretic value to the problem;if the decisions are based on the method of MaxEnt, these constraints in UDB haveno in
uence on the decisions. So assumptions of Independence can be informative ornot, depending on their relation to the I-map of the constraints. The consistency (i.e.VDB 6= ; ) VU(DB) 6= ;) of this principle can be proven by the MaxEnt-Model, which ful-�ls all the non-linear equations of UDB (what means that the MaxEnt-Model is an elementof VU(DB)). The set UDB (resp. the I-maps) will clarify the relation between MaxEnt andIndependence. The decisions based on P-models and the principle of Independence are of13an exact knowledge of this is useful, when the solution of a problem should be found by computersitself. This knowledge allows to separate \active" (independence) constraints from \inactive" constraints.The active constraints are necessary for the system, because they will change the result of the reasoningprocess, the inactive ones are ful�lled anyway by the reasoning process



12 Non-Monotonic reasoning on probability modelscourse strictly stronger than those based on pure P-models. The decisions have alreadythe property of being non-monotonic, when additional information gets available.5 Conclusions on P-models with Indi�erence and Inde-pendenceIt can be shown that a system using both the principle of Indi�erence and the principleof Independence concludes strictly stronger than the systems with the isolated principles.An example for this is again Simpson's Paradox: both conclusions of DB2 become true inthe joined system, but they are not supported in the single systems.6 Conclusions on P-models with MaxEnt6.1 Mathematical formulationHaving its origin in thermodynamics the concept of entropy plays a very important rolein the description of irreversible events. As we can put the main emphasis for instance onan energetic or an information theoretic point of view there is a whole family of di�erentconcepts of entropy.For the purpose of nonmonotic reasoning we chose the information theoretic aspect: Let
 = f!1; : : : ; !ng and v = (v1; : : : ; vn) 2 V
 . According to Shannon (1949) the entropyof v is given by the average number of binary decisions that is necessary to determinea certain element !i of 
 , if !i was selected a priori with probability vi . An axiomaticapproach is given byDe�nition and Theorem 6: Let v = (v1; : : : ; vn) be a P-vector14. The entropy Hn(v)of v is characterized by the following properties:(P1) Hn : [0; 1]n ! R ; v 7! Hn(v) is a real valued function that is continuous in anyargument vi .(P2) nHn � 1n ; : : : ; 1n�on2N is an isotonic sequence in n .(P3) For any given � < n and 1 � ki � � with �Pi=1 ki = n the so-called decomposi-tion law holds, that is:Hn(v1; v2; : : : ; vn)= H� (y1; y2; : : : ; y�) + �Xi=1 yi �Hki�ki�1  vki�1+1yi ; vki�1+2yi ; : : : ; vkiyi ! ;where k0 := 0 , y1 := v1 + v2 + : : :+ vk1 , y2 := vk1+1 + vk1+2 + : : :+ vk2 , : : : ,y� := vk��1+1 + vk��1+2 + : : :+ vn .14i.e. nPi=1 vi = 1 and 0 � vi � 1 for 1 � i � n



6 Conclusions on P-models with MaxEnt 13It can be shown that the form of Hn is uniquely determined by the properties givenabove: Hn(v) = � nXi=1 vi � log(vi)with an arbitrary logarithmic function log . �Further properties of Hn(v):(P4) Hn is a continuous and strictly convex function.(P5) Hn(v) � 0 for all P-vectors v .(P6) Hn has a unique maximum with value log(n) at the point � 1n ; : : : ; 1n� .(P7) Hn(1; 0; : : : ; 0) = Hn(0; 1; 0; : : : ; 0) = : : : = Hn(0; : : : ; 0; 1) = 0 .(P8) Hn+1(v1; : : : ; vn; 0) = Hn(v1; : : : ; vn) .(P9) Hn(v) = Hn(�(v)) for an arbitrary permutation � of the components of v .As already stated in the previous sections we have to add additional contraints (i.e.information) to most of the inference problems with incomplete knowledge in order to geta unique answer.By (P6) the discrete uniform distribution has the highest entropy value. On the other handthis distribution has the lowest variation and therefore the lowest amount of additionalinformation between single elementary probabilities. In consequence we will try to �ndthe P-vector with the highest entropy value15 that is still consistent with the given a prioriinformation. Two questions immediately arise:a) Is the solution uniquely determined? Otherwise we would probably need a strongerprinciple that superceeds the principle of maximum entropy.b) Does a solution even exist?As shown in section 1.2 a priori information (i.e. the constraints in DB) can be notated inthe form of linear constraints, in symbols M � v = b, where M 2 Rm;n and b 2 Rm . Thisleads to the following optimization problem which we call MaxEnt-problem:maxv2Rn ( Hn(v) jM � v = b ; nXi=1 vi = 1 ; vi � 0 ; i = 1; : : : ; n)Now we are able to give an answer to the previous questions:Theorem 7: There is a unique solution of the MaxEnt-problem if the constraints in DBare consistent.Proof: Immediately by the theorem of Kuhn-Tucker ([Luenberger, 1973]) andthe strict convexity of Hn . �15i.e. the P-vector which is closest to the discrete uniform distribution



14 Non-Monotonic reasoning on probability modelsThe exact handling of arbitrary sentences (� 2 I , see de�nition 3) by combining problemsof linear equalities (�xed �) will be given in [Greiner & Schramm, 1995].6.2 Model Quanti�cationMaxEnt has the best possible justi�cation for decisions by theConcentration Theorem: Let E be a random experiment with n possible resultsfE1; : : : ; Eng and 
 be the set of possible results when E is repeated N times,i.e. 
 = f!1; : : : ; !nNg where !i 2 fE1; : : : ; EngN for 1 � i � nN . Let W
 be the setof all probability distributions vi = (v1i; : : : ; vni) withvji := total number of Ej in !iNand WDB(� W
) the set of distributions that ful�l a given set of m linear andindependent constraints. Further let v� be the distribution with maximum entropyin WDB , I := [Hn(v�)��H;Hn(v�)] and 1 � z � jWDBj . Then asymptotically thefollowing equation holds: 2 �N ��H = �2n�1�m;z=jWDBj ;where �2f ;� denotes the �-quantile of the �2-distribution with f degrees of freedom.Proof: [Jaynes, 1982] . �Therefore by increasing the number N of random experiments more and more feasibleP-models (i.e. elements of WDB) will be in a in�nitely small vicinity around the MaxEnt-distribution v� (as Hn is a continuous function). In other words: With high probability arandomly chosen feasible P-model will be very close to v�.6.3 Relations between MaxEnt and Indi�erence/IndependenceTheorem 8: MaxEnt complies with the demands of the principle of Indi�erence.Proof: Without loss of generality the principle of Indi�erence may demand vi = vjfor two indices i 6= j. Let � be the corresponding permutation matrix and v� bethe solution of the MaxEnt-problem. Suppose that v�i 6= v�j . As the principle of In-di�erence holds for vi and vj in VDB , there is �(v�) 2 VDB with v� 6= �(v�) andHn(v�) = Hn(�(v�)) by (P9). However, this is a contradiction to theorem 7. There-fore v�i = v�j holds. �



7 Conclusions 15Theorem 9: MaxEnt complies with the demands of the principle of Independence.Idea of the proof: All the equations in UDB have the formvi � vj = vk � v` :Su�cient for this equation to hold is the validity ofe�i + e�j = e�k + e�`for all elements e�� of the matrix M , which can easily be shown by using the inde-pendence propositions of undirected graphs (see [Greiner & Schramm, 1994]).�Theorem 10: MaxEnt decides strictly stronger than the joined principles of Indi�erenceand Independence.Proof: The proofs of theorem 8 and 9 show that both theorems are independentof each other. Therefore MaxEnt complies with the joined principles. The proofis completed by the fact that VIU(DB)16 contains in most cases more than one P-vector (i.e. in�nitely many). For example consider DB6 := f hP (b j a) = 0:8i g andthe desired conclusion DB6 k� hP (:a) = �; � 2 (0:5; 1]i : The principle of Indi�er-ence demands P (:ab) = P (:a:b), the principle of Independence does not demandany new equation. The MaxEnt-solution(P (ab) = 0:362 ; P (a:b) = 0:090 ; P (:ab) = 0:274 ; P (:a:b) = 0:274) 2 VIU(DB)supports the conclusion, whereas(P (ab) = 0:640 ; P (a:b) = 0:160 ; P (:ab) = 0:100 ; P (:a:b) = 0:100) 2 VIU(DB)does not. �7 ConclusionsThe 5 logics (P-models, P-models with Indi�erence, P-models with Independence, P-models with both principles, P-models with MaxEnt) do not only clarify some theoreticalrelations between MaxEnt and these principles; they make sense by their own and arenot an ad hoc concept: When applied to a special set of benchmarks for non-monotoniclogics, collected by V. Lifschitz, each logic can infer some of the problems (MaxEnt, beingstrictly stronger, solves of course nearly all problems). This gives additional informationabout a problem; it makes explicit which assumptions are necessary to reach the desiredconclusions. Concerning our background aim of modelling common sense reasoning wedon't argue that in every day reasoning humans calculate the MaxEnt-distribution. Ratherwe argue that this is the formal solution of a general problem, parts of which mightbe solved informally (with less accuracy) very fast; a �rst idea for this is given by thequalitative reasoning in undirected graphs.16i.e. the set of all P-vectors, which ful�l the constraints in DB and the equations in IDB and UDB
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