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Abstract

We contribute to the study of inferring commercial relationships between autonomous
systems (AS relationships) from observable BGP routes. We deduce several forbidden
patterns of AS relationships that impose a certain type of acyclicity on the AS graph.
We investigate algorithms for solving the acyclic all-paths type-of-relationship problem,
i.e., given a set of AS paths, find an orientation of the edges according to some types of
AS relationships such that the oriented AS graph is acyclic (with respect to the forbid-
den patterns) and all AS paths are valley-free. As possible AS relationships we include
customer-to-provider, peer-to-peer, and sibling-to-sibling. Moreover, we examine a num-
ber of problem versions parameterized by sets K and U where K is set of edge types
available for describing explicite pre-knowledge and U is set of edge types available for
completion of partial orientations. A complete complexity classification of all 56 cases (8
type sets for pre-knowledge and 7 type sets for completion) is given. The most relevant
practical result is a linear-time algorithm for finding an acyclic and valley-free completion
using customer-to-provider relations given any kind of pre-knowledge. Interestingly, if
we allow sibling-to-sibling relations for completions then most of the non-trivial inference
problems become NP-hard.

1 Introduction

Numerous studies (e.g., [17, 21, 16, 20, 28, 22, 11] to name only few) have exposed that, in
order to understand the dynamics of Internet inter-domain routing, it is not sufficient to possess
deeper knowledge of the AS graph, i.e., the physical-connection topology among autonomous
systems (ASs). Rather, most importantly, local routing policies of independent administra-
tive domains and their interplay based on business relations have a critical influence on route
(in)stability and routing quality. As business contracts are intentionally considered to be com-
mercial secrets, many researchers have proposed methods to elicite this crucial information
indirectly (see, e.g., [12, 26, 5, 9, 6, 30, 7]).
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†Supported by DFG, grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr).
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In [12], the seminal work on inferring contractual relationships on basis of sets of AS paths
observable from BGP updates, heuristic approaches were devised to classify relationships into
customer-to-provider, peer-to-peer, and sibling-to-sibling. A key observation is that, under
rational economic behavior, AS paths exhibit a regular, so-called valley-free structure, i.e., after
traversing a provider-to-customer or peer-to-peer edge, the AS path cannot traverse a customer-
to-provider or peer-to-peer edge. Thus, each path has some top provider. To identify top
providers in AS paths, heuristics follow basically two evident assumptions (see, e.g., [15, 12, 27]):

A Providers are much larger than customers in terms of infrastructure.

B The size of an AS is proportional to its degree in the AS graph.

In principle the algorithms in [12] iteratively search for vertices with maximum degree in a given
AS path set to identify top providers. This approach has been further elaborated in [26, 30].
Degree-based heuristics are certainly practicable if we are able to get a representative sample of
all AS paths of the Internet (see [3] for a critical discussion). But, due to their over-sensitivity
to path sets, they have weaknesses in well-defined analytical test situations (such as, e.g., in
[11, 13]).

A purely combinatorial treatment, neither involving A nor B, was done in [5, 9, 6]. There,
the authors described a linear-time algorithm solving the all-paths type-of-relationship prob-
lem, suggested in [26]: given a path set P , is there an orientation of the edges (indicating
provider-to-customer or customer-to-provider relation) such that all paths of P are valley-free.
The algorithm is based on a reduction to 2-SAT which is well-known to be solvable in lin-
ear time. In contrast, finding an orientation maximizing the number of valley-free paths is
not polynomial-time approximable within factor O(n1−ε) (unless NP = ZPP). Positively, for
path lengths at most ℓ, there is a polynomial-time algorithm with approximation ratio ℓ+1

2ℓ

(sometimes better by semi-definite programming for Max 2-SAT). Though computationally
elegant and robust, these algorithms often lead to unrealistic relationships (i.e., well-known
global providers appearing as customers of small ASs [7]).

To get closer to reality, several proposals have been made. One of them calls for partialness-
to-entireness algorithms [30, 5]. The basic idea is to infer the entire AS relationships from
partial information obtainable from data sources other than BGP paths (see, e.g., [25, 30]).
Another proposal links degree-based heuristics and combinatorial optimization by considering
weighted Max 2-SAT with weights depending on degree gradients [7]. Positive experimental
results suggest the fruitfulness of incorporating degree information into a combinatorial setting.
Nevertheless, over-sensitivity to path sets when using assumption B is still problematic.

Our contribution also lies in the middle of the heuristic and the combinatorial approaches
to the inference problem. Instead of using both assumptions A and B, we will only employ
assumption A to avoid path-set over-sensitivity. The size rule A (and some similar one’s)
bears enough information to impose a global structure on oriented AS graphs. In Section 3,
we deduce several unrealistic relationship patterns which we will forbid to appear in AS graph
orientations. A fundamental pattern of this type is an oriented cycle within the graph, as
this would imply that some provider is its own customer. Acyclic orientations are constructed
by the degree-based heuristic approach of [12, 26]. In contrast, the 2-SAT-based algorithm
generally constructs cycles due to the internal computation of strongly connected components.
As an example, Figure 1 shows a path set for which all valley-free orientations impose a cycle
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Figure 1: All valley-free orientations for path set {(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)}.

on the AS graph. However, as a prerequisite for studies related to the Internet topology (see,
e.g., [13, 8]), acyclicity is a requirement for realistic AS relationships.

In this paper, we focus on algorithms solving the acyclic all-paths type-of-relationship prob-
lem (Acyclic ToR), i.e., given a path set, find an orientation of the edges according to
some types of AS relationships such that the oriented AS graph is acyclic (with respect to
our forbidden patterns) and all AS paths are valley-free. As possible AS relationships we
include customer-to-provider, peer-to-peer, and sibling-to-sibling. Furthermore, we meet the
partialness-to-entireness requirement. We examine a number of versions Acyclic ToR (K,U)
where K is the set of edge types available for describing explicite pre-knowledge and U is the
set of edge types available for completion of partial orientations. In Section 4, we give a com-
plete complexity classification of all 56 cases (8 type sets for pre-knowledge and 7 type sets
for completion). The most relevant practical result is a linear-time algorithm for finding an
acyclic and valley-free completion using customer-to-provider relations given any kind of pre-
knowledge. Interestingly, if we allow sibling-to-sibling relations for completions, then most of
the non-trivial inference problems become NP-hard.

2 An Abstract Model of BGP

We briefly describe a simple, abstract model of inter-domain routing in the Internet using BGP
(see, e.g, [29, 24, 17, 12]).

2.1 The Selective Export Rule

The elementary entities in our Internet world are IP adresses, i.e., bit strings of prescribed
length. An autonomous system (AS) is a connected group of one or more IP prefixes (i.e.,
blocks of contiguous IP adresses) run by one or more network operators which has a single
and clearly defined routing policy [18]. An AS aims at providing global reachability for its
IP adresses. To achieve this goal, ASs having common physical connections exchange routing
informations as governed by their own local routing policies. BGP is the de facto standard
protocol to manage data traffic between ASs for inter-domain routing as well as for route
propagation.

Reachability in the Internet depends on (physical) connectivity and contractual relationships
between ASs. The most fundamental binary business relationships are customer-to-provider
(where the provider sells routes to the customer), peer-to-peer (where the involved ASs provide
special routes to their customers but no transit for each other), and sibling-to-sibling (where
both ASs belong to the same administrative domain). More peculiar relationships appear in the
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AS v exports to

own routes
customer routes
provider routes
peer routes

provider customer peer sibling

Yes Yes Yes Yes
Yes Yes Yes Yes
No Yes No Yes
No Yes No Yes

Figure 2: The Selective Export Rule.

real world (see, e.g., [12]). We restrict ourselves to the three mentioned types of relationships.

More specifically, let V be a set of AS numbers. For any v ∈ V , let N(v) ⊆ V denote the
set of its neighbor ASs, i.e., all numbers of ASs sharing a physical connection with v. The
undirected graph G = (V,E) where E = { {u, v} | v ∈ N(u) } is called a connectivity graph (at
the AS level) or simply AS graph. Let v ∈ V be any AS. According to the business relationship
we divide the neighbors of v into the sets Cust(v) of all customers of v, Prov(v) of all providers
of v, Sibl(v) of all siblings of v, and Peer(v) of all peering partners of v. Some of the sets may be
empty. We let Sibl(v) contain v as well. Let R(v) denote the set of all currently active AS paths
in the BGP routing table of v, i.e., all AS paths that have been announced from neighboring
ASs at a certain time and never been withdrawn. Assumed that there are no misconfigurations
of BGP, all AS paths in R(v) are loopless and not including v. Here, we say that an AS path
is loopless whenever between two sibling ASs on the path, no non-sibling AS is passed. Based
on the neighborhood classification, we further divide R(v) into four categories. A loopless AS
path (u1, . . . , ur) ∈ R(v) is

a customer route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Cust(v),
a provider route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Prov(v),

a peer route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Peer(v),
an own route of v ⇐⇒def for all 1 ≤ i ≤ r, ui ∈ Sibl(v).

Now, typically (at least, recommendably), ASs set up their export policies according to the
Selective Export Rule [1, 19, 12] as described in Figure 2. In our simplified model, the receiving
AS gets from an AS those (locally preferred) routes destined for it and prolongated with the
number of the sending AS as the new leftmost AS number in the path.

2.2 The Valley-Free Path Model

Valley-freeness is a graph-theoretical consequence of the Selective Export Rule. Let G = (V,E)
be an undirected (simple) graph. We assume that (u, v) ∈ E ⇔ (v, u) ∈ E. A (mixed)
orientation ϕ of G is a mapping from E to T where T denotes set of possible edge-types. For
instance, a directed graph is a graph oriented with type set T = {←,→}. We consider type
sets having the following edge-types and interpretations:

→ indicating a customer-to-provider relationship
← indicating a provider-to-customer relationship
−− indicating a peer-to-peer relationship
↔ indicating a sibling-to-sibling relationship
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Throughout this paper, we only consider orientations ϕ that are consistent with respect to →.
That is, for all (u, v) ∈ E if ϕ(u, v) =← then ϕ(v, u) =→ and if ϕ(u, v) =→ then ϕ(v, u) =←.
Thus, if we allow → as a possible edge type, then we immediately allow ← as a possible edge
type as well.

We extend ϕ from edges to walks homomorphically. Let (v0, v1, . . . , vm) be any walk in
a graph G. Then ϕ(v0, v1, . . . , vm) is defined to be ϕ(v0, v1)ϕ(v1, v2) . . . ϕ(vm−1, vm), i.e., in
our setting generally, a word in {←,→,−−,↔}∗. We will typically use regular expressions
to describe walk types given an orientation. An important property of orientations is valley-
freeness, which we state here in terms of regular patterns of paths.

Definition 1. [12] Let G be any graph, and let ϕ(G) be an orientation of G. A loopless path
(v0, . . . , vm) is said to be valley-free in ϕ(G) if and only if ϕ(v0, . . . , vm) belongs to

{→,↔}∗{←,↔}∗ ∪ {→,↔}∗ −−{←,↔}∗.

The valley-freeness of paths abstracts the condition that autonomous systems never route
data from one of their providers to another of their providers because they instead of earning
money, they would have to pay twice for these data streams.

Theorem 2. [12] Let G = (V,E) be an AS graph. Let P be any subset of AS paths of all BGP
routing tables, i.e., P ⊆

⋃

v∈V R(v). If all ASs export their routes according to the Selective
Export Rule, then there exists an orientation of P such that all AS paths in P are valley-free.

3 Acyclicity Conditions

In the previous section, we have seen how in our simple, abstract BGP some rational economic
behavior implies valley-freeness of locally observable routes. These routes reflect short-term
behavior determined by routing policies based on commercial relationships. Commercial rela-
tionships typically are stable over a longer period and they impose a global structure on the
connectivity graph independent of concrete BGP routes.

In this section, we summarize common knowledge on business relations between ASs to
obtain a reasonable acyclicity structure within a connectivity graph. We do so by identifying
patterns of oriented cycles which we will forbid to be contained in the graph. An oriented cycle
can be interpreted as someone being its own provider and customer.

In Figures 3 and 4, the 16 non-isomorphic triads of the 64 possible orientations of a complete
graph on three vertices are shown. Figure 3 lists 8 forbidden triads together with plausibility
arguments why they are forbidden. The generalizations of the forbidden patterns are fairly
obvious. Plausibility is based on size rules:

1. If AS u is a customer of AS v, then AS u has much smaller size (i.e., number of routers)
than AS v (see, e.g., [15, 12, 26]). This is assumption A from the introductory section.

2. If AS u is a peering partner of AS v, then AS u and AS v are roughly of the same size
(see, e.g., [23]). Moreover, we consider roughly the same size to be a transitive relation.

3. If AS u and AS v are siblings, then they count as one AS, i.e., we assume that the size of
u is determined by its own number of routers and the number of routers of all its sibling
ASs.
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C B

A Typically, C is provider of B only if C is much larger
than B, A is provider of C only if A is much larger
than C. So, B is not much larger than A. A contra-
diction to B being provider of A.

→∗

C B

A A typical criterion for a peer-to-peer relation is
roughly the same size or traffic. This does not hold
if A is much larger than C and B is much larger than
A.

{→,−−}∗ → {→,−−}∗

C B

A Typically, as B and C are siblings, they behave like
one AS. So, B and C together are not much larger
and much smaller than A at the same time.

{→,↔}∗ → {→,↔}∗

C B

A Typically, C and A have a peer-to-peer relation if
they are roughly the same size. The same holds for
A and B. So, B should not be much larger than C.

{→,−−}∗ → {→,−−}∗

C B

A Typically, A and B have a peer-to-peer relation if A

and B together with its sibling C have roughly the
same size. So, A is not much larger than C together
with its sibling B.

{→,↔,−−}∗ → {→,↔,−−}∗

C B

A Typically, A and C have a peer-to-peer relation if A

and C together with its sibling B have roughly the
same size. So, A is not much smaller than B together
with its sibling C.

{→,↔,−−}∗ → {→,↔,−−}∗

C B

A Due to the transitivity of the sibling-to-sibling rela-
tion, A and B are siblings. So, typically, A and B do
not have a peculiar peer-to-peer relation. Note that
larger cycles with siblings and at least two peer-to-
peer relations make sense.

↔∗ −− ↔∗

C B

A Due to the transitivity of the sibling-to-sibling rela-
tion, A and B are siblings. So, A together with its
siblings B and C is not much larger than C together
with its siblings B and A.

{→,↔}∗ → {→,↔}∗

Figure 3: Forbidden triads and their generalized forbidden patterns.

6



C B

A

C B

A

C B

A

C B

A

C B

A

C B

A

C B

A

C B

A

Figure 4: Allowed triads.

Each of these rules may have its exceptions but they certainly describe typical behavior. We
idealize the BGP world in assuming that all contracts follow these rules.

The union of all generalized forbidden patterns given in Figure 3 leads to the following
definition of an oriented cycle.

Definition 3. Let G be any graph, and let ϕ(G) be an orientation of G. Let C be any minimal
cycle of G. C is said to be an oriented cycle of ϕ(G) if and only if ϕ(C) belongs to

{−−,↔}∗ → {→,−−,↔}∗ ∪ {−−,↔}∗ ← {←,−−,↔}∗ ∪ ↔∗ −− ↔∗ .

The minimality of cycles is required since we exactly count occurrences of peer-to-peer edges
in oriented cycles. To complement our view on forbidden triads, Figure 4 shows the 8 allowed
triads.

Note that in the case that ϕ does not exhaust the full type set {→,−−,↔}, the patterns of
oriented cycles simplifiy. For instance, if the type set is {→}, then we obtain that a minimal
cycle C is an oriented cycle if and only if ϕ(C) belongs to →∗ or ←∗ which is the usual
understanding of a cycle. As a second example, if the type set is {↔,−−}, then a minimal cycle
C is an oriented cycle if and only if ϕ(C) belongs to ↔∗ −− ↔∗.

We call an orientation acyclic if it contains no oriented cycles. In the forthcoming we will
need fast algorithms for testing acyclicity which are all based on standard techniques (see, e.g.,
[4]).

Lemma 4. Let K be any subset of {→,−−,↔}. Testing whether a given graph, with n vertices
and m edges, which is oriented with type set K is acyclic can be done in time O(n+m).

Proof. We briefly describe algorithms for all cases individually.

1. The cases where the type set is either {−−} or {↔} are trivial, as graphs oriented in these
ways are always acyclic.

2. Acyclicity for type set {→} can be tested by topological sort.

3. For type set {→,↔}, replace each sibling-to-sibling edge u↔ v with two edges u→ v and
v → u. Compute the strongly connected components and test whether each component
only contains sibling-to-sibling edges in the original orientation. This can be done in time
O(n+m).

7



4. Similarly, for type set {→,−−}, replace a peer-to-peer edge u−−v with two edges u→ v and
v → u. Compute the strongly connected components and test whether each component
only contains peer-to-peer edges in the original orientation. Again, this can be done in
time O(n+m).

5. For {−−,↔}, compute the simply connected components with respect to the↔ edges and
check for each oriented edge u −−v whether u und v belong to different components. If
for some edge this is not true, we have learnt that the graph is not acyclic. This can be
done in time O(n+m).

6. Given the full type set {→,−−,↔}, we first test acyclicity of the oriented graph with
type set {−−,↔} induced by ignoring customer-to-provider edges. If the graph passes
the test, then we replace in the original orientation ↔ and −− edges with directed edges
of opposite directions, compute the strongly connected components, and check for each
u → v or u −−v whether u and v belong to the different components. If for some edge
this is not true, the graph is not acyclic. Clearly, this can be done in time O(n+m).

This completes the proof of the lemma.

4 Combinatorial Inference of Relationships

Our central problem is: given any set of BGP routes, is there an orientation such that all BGP
paths are indeed valley-free and the induced connectivity graph has the additional property of
being acyclic? We bring this issue into a very general, purely combinatorial formulation. Let
K and U be two type sets.

Problem: Acyclic ToR (K,U)
Input: Undirected graph G, path set P , partial orientation ϕ given by an edge set

R with labels from K
Output: A completion of the orientation ϕ using only edge types from U such that

the completed orientation, with respect to type set K ∪U , contains no cycle
and all oriented paths in P are valley-free, or indicate that such a completion
does not exist

Interpretation. Applied to a real-world scenario, G is the AS graph, P stands for the set of
observed BGP routes, e.g., gathered at certain observation points. The set R is an explicite
pre-knowledge we have of certain relations between two ASs, as observable from several re-
sources on the Internet. The task is to find a hypothetical valley-free and acyclic orientation
in accordance with our pre-knowledge. In a test setting, G is a BGP-world model, P could
be the set of information made available to BGP speakers, and R could describe a specified
situation with types from K. Here, we want to find an orientation that guarantees valley-
freeness and acyclicity and which does not destroy the given specification. For this purpose,
an appropriate choice of a type set U is useful. The most important case, of course, is U = {→}.

Input representation. Let N always denote the input size, i.e., N = ‖V (G)‖+‖E(G)‖+|P |+|R|
where |P | and |R| are the sums of the path lengths in P and in R. The length of a path with
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k edges is the sum of the lengths of the k + 1 vertex descriptions. Since many of our algo-
rithms run in linear time, we should say a word about the representation of instances. For
the sake of simplicity we assume that all vertices and edges of G actually appear in P , i.e.,
G = G(P ) = (V (P ), E(P ) where V (P ) denotes the set of vertices appearing in P and E(P )
denotes the set of edges appearing in P . Thus, N = O(|P |). We use V (p) and E(p) to de-
note V ({p}) and E({p}). We suppose that an instance is given as an adjacency list of an AS
graph G(P ) with vertex set V (P ) and edge set E(P ), where edges from R are already labeled
according to the partial orientation. Moreover, we assume that the path set is represented as a
collection of lists having cross-links to the corresponding edges in the AS graph and vice versa.
Orientations are stored with the edges in G(P ). Since there are no more vertices and edges in
G(P ) than appearing in P , this guarantees that we can always test valley-freeness in time O(N).

Technical remarks. The complexity of the problem depends on the types of allowed orientations.
The basic (and typically considered) combinatorial problem appears as case K = ∅, i.e., where
we have no pre-knowledge. Without going into formal details, we easily see that if K ⊆ K ′, then
Acyclic ToR (K,U) is computationally not harder than Acyclic ToR (K ′, U), i.e., an algo-
rithmic upper bound for Acyclic ToR (K ′, U) is an upper bound for Acyclic ToR (K,U)
and an algorithmic lower bound for Acyclic ToR (K,U) is an algorithmic lower bound for
Acyclic ToR (K ′, U). We say that Acyclic ToR (K,U) is NP-hard if it is NP-hard to de-
cide whether for a given instance of Acyclic ToR (K,U), there is an acyclic and valley-free
orientation in the sense of the problem definition. Evidently, if Acyclic ToR (K,U) is NP-
hard, then for all K ⊆ K ′, Acyclic ToR (K ′, U) is NP-hard.

In the forthcoming we will prove the complexity classification shown in Figure 5. From Lemma
4 we immediately obtain the entries for the second and third column of our classification.

Proposition 5. Let K ⊆ {→,↔,−−} be any type set. Then, Acyclic ToR (K, {−−}) and
Acyclic ToR (K, {↔}) can be solved in time O(N).

To further reduce the number of results to be proven, in the next subsection we will see that
peer-to-peer relations can essentially be disregarded as options for completions. Subsections
4.2–4.4 then contain the remaining algorithms and hardness results.

4.1 Handling Peer-to-Peer Relations

To handle peer-to-peer edges in both type sets K and U , we first show that in an acyclic
and valley-free orientation they exhibit a very simple structure, namely they induce a partial
ordering among vertex sets. To see this, it is useful to introduce some further notation.

Suppose we are given an orientation ϕ of a graph G using the type set {→,−−} . We say
that a vertex v is P2P-reachable from vertex u in G if there exists an oriented path p from
u to v in G only consisting of peer-to-peer edges. Notice that P2P-reachability is a reflexive,
symmetric, and transitive relation; hence, an equivalence relation. The vertex set thus can be
divided into equivalence classes which we call P2P-components.

Let p = (w0, . . . , wk) be a path of any path set P . We define a set-mapping ξ[p] which for
any vertex set A ⊆ V (P ) collects all positions in p that lie between two positions of vertices of

9



K

∅

→

−−

↔

→,−−

→,↔

−−,↔

→,−−,↔

U

→ −− ↔ →,−− →,↔ −−,↔ →,−−,↔

O(N) O(N) O(N) O(N) O(N) O(N) O(N)

O(N) O(N) O(N) O(N) NP-hard O(N) NP-hard

O(N) O(N) O(N) O(N) NP-hard NP-hard NP-hard

O(N) O(N) O(N) O(N) O(N) O(N) O(N)

O(N) O(N) O(N) O(N) NP-hard NP-hard NP-hard

O(N) O(N) O(N) O(N) NP-hard O(N) NP-hard

O(N) O(N) O(N) O(N) NP-hard NP-hard NP-hard

O(N) O(N) O(N) O(N) NP-hard NP-hard NP-hard

Figure 5: Complexity classification of Acyclic ToR (K,U) for K,U ⊆ {→,−−,↔}.

A. More specifically, we define ξ[p] for A ⊆ V (P ) as

ξ[p](A) =def { i | there are ℓ ≤ i ≤ r such that [wℓ ∈ A ∧ wr ∈ A] }.

Note that if A ∩ V (p) 6= ∅, then min ξ[p](A) and max ξ[p](A) are positions where vertices from
A occur.

For any valley-free orientation ϕ of a graph G(P ) for a path set P (we also say orientation
of P ), the turning point of a path p = (w0, . . . , wk) ∈ P is the maximal position 0 ≤ i ≤ k such
that ϕ(wi−1, wi) =→. If the orientation is additionally acyclic, then we can isolate the range of
positions within paths where turning points occur. Observe that generally, in order to have an
acyclic and valley-free orientation, in each path that contains vertices s and t P2P-reachable
from each other and that are not neighbors, the orientation has to point from s in direction of
t and from t in direction of s. Otherwise we would find an oriented cycle. An easy consequence
is the following proposition.

Proposition 6. Let P be a path set. Suppose we are given an acyclic and valley-free orientation
of P using {→,−−}. Let x and y be vertices in the same P2P-component. For each path p ∈ P
containing both vertices x and y, the turning point of p belongs to ξ[p]({x, y}).

The following lemma shows that in an acyclic and valley-free orientation, all pairs of vertices
from the same P2P-component form a total ordering within each path.

Lemma 7. Let P be a path set. Suppose we are given an acyclic and valley-free orientation
using {→,−−}. Let {u, v} and {x, y} be two pairs of vertices such that u 6= v, x 6= y, {u, v} 6=
{x, y}, v is P2P-reachable from u, and y is P2P-reachable from x. For all paths p ∈ P ,
if {u, v, x, y} ⊆ V (p), then (1) {u, v} ∩ {x, y} = ∅ and (2) ξ[p]({u, v}) ⊆ ξ[p]({x, y}) or
ξ[p]({x, y}) ⊆ ξ[p]({u, v}).

Proof. Suppose we have an acyclic and valley-free orientation of P using {−−,→}. First, let
p ∈ P be any path which does not contain a peer-to-peer edge (in particular, neither u and
v are neighbors in p nor are x and y) and let both pairs {u, v} and {x, y} be contained in p.

10



From the observation above that lead us to Proposition 6, we obtain that the turning point
belongs to ξ[p]({u, v}) ∩ ξ[p]({x, y}). This excludes the case that ξ[p]({u, v}) and ξ[p]({x, y})
have at most one common element. Without loss of generality, assume that min ξ[p]({u, v}) ≤
min ξ[p]({x, y}). Consider the vertex sequence

(wmin ξ[p]({u,v}), . . . , wmin ξ[p]({x,y}), wmax ξ[p]({x,y}), . . . , wmax ξ[p]({u,v}), wmin ξ[p]({u,v})).

For this sequence not to be an oriented cycle in G(P ), it must hold that min ξ[p]({u, v}) <
min ξ[p]({x, y}) and max ξ[p]({x, y}) < max ξ[p]({u, v}). Recall that the vertices at positions
min ξ[p]({u, v}) and max ξ[p]({u, v}) can be connected in G(P ) by a path totally consisting
of peer-to-peer edges. Equally, min ξ[p]({x, y}) and max ξ[p]({x, y}) can be bridged by such a
path. The case of p having a peer-to-peer edge can be treated in a similar way. The statement
of the lemma follows.

Note that Lemma 7 also shows that in acyclic and valley-free orientations, paths contain at
most two vertices from an equivalence class according to P2P-reachability.

In addition to Lemma 7, P2P-components show on all paths the same total ordering.

Lemma 8. Let P be a path set. Suppose we are given an acyclic and valley-free orientation
using {→,−−}. Let A and B be two distinct P2P-components. If there is a path p ∈ P such
that ‖A∩V (p)‖ ≥ 2, ‖B∩V (p)‖ ≥ 2 and ξ[p](A) ⊆ ξ[p](B), then for each path q ∈ P satisfying
‖A ∩ V (q)‖ ≥ 2 and ‖B ∩ V (q)‖ ≥ 2, it holds that ξ[q](A) ⊆ ξ[q](B).

Proof. Let P be a path set which allows an acyclic and valley-free orientation ϕ of G(P ) using
{→,−−}. Let A and B be two equivalence classes according to P2P-reachability. Let p ∈ P be
a path which contains some distinct vertices xA, yA ∈ A and some distinct vertices xB, yB ∈ B
such that ξ[p]({xA, yA}) ⊆ ξ[p]({xB, yB}). We may assume that xA occurs before yA in p and
xB occurs before yB in q. Assume to the contrary that there is a path q ∈ P containing distinct
vertices uA, vA ∈ A and uB, vB ∈ B such that ξ[q]({uA, vA}) 6⊆ ξ[q]({uB, vB}). From Lemma 7,
we obtain ξ[q]({uB, vB}) ⊆ ξ[q]({uA, vA}). Here, we also may assume that uB occurs before vB

in q and uA occurs before vA in q. By Proposition 6, the turning position of p belongs ξ[p](A)
and the turning position of q belongs to ξ[q](B). It follows that G(P ) contains an oriented
cycle that can be built by a path from uA to uB belonging to →∗ (as in q), followed by a path
from uB to xB belonging to −−∗, followed by a path from xB to xA belonging to →∗ (as in p),
and followed by a path back from xA to uA belonging to −−∗. A contradiction.

We use the lemma to define an auxiliary directed graph H(ϕ, P ), depending on the path
set P and an acyclic and valley-free orientation ϕ of P with type set {→,−−}, as follows:

V (H(ϕ, P )) =def { A | A ⊆ V (P ) is a P2P-component (with respect to ϕ) }

E(H(ϕ, P )) =def { (A,B) | (∃p ∈ P )[ ξ[p](A) ⊂ ξ[p](B) ] }

By Lemma 8, this graph is always well-defined. Moreover, the graph is a directed acyclic graph
since it describes a partial ordering of the vertex subsets.

We will use this auxiliary graph to see that under certain circumstances we can disregard
peer-to-peer edges for finding acyclic and valley-free completions. Let P be a path set and let
ϕ a partial orientation of P using −−. We say that a P2P-component A is ϕ-complete if and
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only if for all edges {u, v} ∈ E(P ), if both u and v belong to A then ϕ(u, v) = −−. Notice
that the edge {u, v} cannot be oriented as a customer-to-provider edge if we want to guarantee
acyclicity.

Lemma 9. Let P be an arbitrary path set. Let ϕ be a partial orientation of P with type set
{→,−−} such that all P2P-components are ϕ-complete. There is an acyclic and valley-free
completion of ϕ on P with type set {→,−−} if and only if there is an acyclic and valley-free
completion of ϕ on P with type set {→}.

Proof. Direction (⇐) holds trivially.
For (⇒), suppose ϕ̂ is an acyclic and valley-free completion of ϕ on P with type set {→,−−}.

We show that each peer-to-peer edge introduced by the completion can be changed into a
customer-to-provider or a provider-to-customer edge without introducing oriented cycles while
keeping paths valley-free. Let us consider the auxiliary graph H(ϕ̂, P ). Suppose the vertex
set {A1, . . . , Ar} of H(ϕ̂, P ) is topologically sorted, i.e., if (Ai, Aj) is an edge in H(ϕ̂, P ) then
i < j. We define an orientation ψ, for all u, v ∈ V (P ), as follows:

ψ(u, v) =def







ϕ̂(u, v) if ϕ̂(u, v) 6= −− or both u and v lie in one P2P-component
→ if ϕ̂(u, v) = −− and u ∈ Ai, v ∈ Aj with i < j
← if ϕ̂(u, v) = −− and u ∈ Ai, v ∈ Aj with j < i

Since all P2P-components are ϕ-complete, ψ is a total function and thus, ψ is completion of ϕ.
We have to prove the ψ is acyclic and valley-free. We examine both criteria separately.

1. Valley-freeness. Let e be an edge in the graph G(P ) such that ϕ̂(e) = −−. Since ϕ̂ is a
valley-free orientation, any path p of P that contains e must have an orientation of type
→∗ −− ←∗ or →∗ −− ←∗. Orienting e either as → or as ← satisfies valley-freeness. So
does ψ.

2. Acyclicity. Let e = {u, v} be any edge of G(P ) such that ϕ̂(e) = −− and the vertices
u, v do not belong to the same P2P-component (with respect to ϕ). Let C be any cycle
containing e as its last edge. Recall from Definition 3 that an oriented cycle using type
set {→,−−} belongs to

−−∗ → {→,−−}∗ ∪ −−∗ ← {←,−−}∗.

As ϕ̂(C) is an acyclic orientation, i.e., ϕ̂(C) does not show the just-mentioned pattern,
we have the following three cases to consider:

(a) ϕ̂(C) contains an edge oriented as → before coming an edge oriented by ← and
ending with the edge e oriented as −−. Clearly, orienting e in the way ψ does does
not introduce a cycle.

(b) ϕ̂(C) contains an edge oriented as ← before coming an edge oriented by → and
ending with the edge e oriented as −−. This is similar to the case above. Thus,
orienting e in the way ψ does does not introduce a cycle.

(c) ϕ̂(C) completely consists of peer-to-peer edges. Note that a cycle has at least three
edges. Since u and v belong to different P2P-components there must exist further
edges in C with vertices from different P2P-components. Since the P2P-components
are totally ordered by natural numbers, ψ does not introduce a cycle.
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This completes the lemma.

Lemma 9 is a twofold generalization of a proposition in [5] which states that for any path set
P , there exists a valley-free orientation with type set {→,−−} if and only if there exists a valley-
free using only {→}. First, it proves the same property for additionally acyclic orientations.
Second, it proves this property independently of the initially given partial orientation. Note that
in respect thereof, the standard case of [5] appears as the nowhere-defined partial orientation.

4.2 Completing with Customer-to-Provider Relations

In this subsection we will see how we can compute, in linear time, an acyclic and valley-free
orientation no matter of which kind of information our pre-knowledge is. That is, the goal is to
show that Acyclic ToR ({→,↔,−−}, {→}) is solvable in linear time (see Theorem 16). For
the sake of clarity, it is reasonable to approach this theorem over several intermediate stages.

We start with the very base case K = ∅. For obtaining a linear time algorithm, the crucial
observation is that each vertex appearing somewhere in the middle of a path has in-degree at
least one, valley-freeness supposed. This allows us to employ a topological-sort approach.

Theorem 10. Acyclic ToR (∅, {→}) can be solved in time O(N).

Proof. Suppose we are given a path set P . Let v be a vertex such that, for each path in P , if
v lies on p then v is an endpoint of the path. If G(P ) can be acyclically oriented such that all
paths are oriented valley-free then such a vertex v must exists: for any acyclic orientation of
G(P ) there must exist at least one vertex u such that all edges {u, w} are oriented as u → w.
Since all paths are valley-free, u cannot be in the middle of any path because that would result
in an orientation containing ←→. Therefore, one vertex v can be forced.

We iteratively reduce the problem by removing such vertices v for all path-ends and orienting
the removed edges away from v as v → w for all neigbors w in P . (Note that P has changed.)
Assume a reduced path (v0, . . . , vm) is oriented as →∗←∗, then adding v to any end with the
edge u, v1 or u, vm oriented as→ results in a valley-free orientation. Furthermore, if the reduced
graph is acyclic then the graph with v added is also acyclic.

A precise description is given as Algorithm 1. Clearly, this algorithm can be implemented
in such a way that its running time is O(|P |).

The basic algorithm 1 described in Theorem 10 can be extended by additional linear-time
preprocessing phases to handle non-trivial pre-knowledge.

Theorem 11. Acyclic ToR ({→}, {→}) can be solved in time O(N).

Proof. We modify Algorithm 1 appropriately. Let ⊥ be a vertex which is neither in path set P
nor in edge set R. For each oriented edge u→ v of R, add a path (u, v,⊥) to the path set. Let
P ′ be the resulting path set. Now apply Algorithm 1 on path set P ′ where ⊥ is not considered
as a vertex of V (P ′). Clearly, this algorithm solves the problem correctly (by an argumentation
similar to Theorem 10) and runs in time O(N).

For the case K = {↔} we need some more notation. Let P be any given path set and let
ϕ be a partial orientation of G(P ) given by the set R of sibling-to-sibling edges in E(P ). We
define a vertex set U ⊆ V (P ) to be an S2S-component if for all vertices u, v ∈ U , there exists
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Algorithm 1: Linear-time algorithm for Acyclic ToR (∅, {→}).

Input: Undirected graph G, path set P

Output: Acyclic and valley-free orientation of the induced graph G(P ), if it exists, or
indication that it does not exist

foreach vertex v ∈ V (P ) do1

count(v) := 02

end3

foreach p ∈ P do4

foreach vertex v ∈ p do5

if v is not an endnode of p then6

count(v) := count(v) + 17

end8

end9

end10

U := ∅11

foreach vertex v ∈ V (P ) do12

if count(v) = 0 then13

U := U ∪ {v}14

end15

end16

V ′ := ∅17

while U 6= ∅ do18

remove a vertex u from U19

foreach vertex v such that v ∈ V \ V ′ and {u, v} ∈ E(P ) do20

orient {u, v} as u→ v21

foreach p ∈ P such that u and v are neighbors in p do22

if v has a neighbor w in p on the side opposite to u such that w ∈ V \ V ′ then23

count(v) := count(v)− 124

end25

if count(v) = 0 then26

U := U ∪ {v}27

end28

end29

end30

V ′ := V ′ ∪ {u}31

end32

if V ′ 6= V then33

return path set P fails to allow an acyclic and valley-free orientation34

end35
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a path in G(P ) from u to v consisting only of sibling-to-sibling edges. Clearly, for any given
set R the vertex set V (P ) can be divided into S2S-component which can be easily computed
in linear time. We say that an S2S-component U is S2S-complete if for all u, v ∈ U , the edge
{u, v} belongs to R, i.e., ϕ(u, v) is defined and ϕ(u, v) =↔. We say that an S2S-component
U is S2S-loopless if for each path p ∈ P , there does not occur any vertex not belonging to
U between two vertices from U on the path p. An S2S-component is S2S-closed if it is both
S2S-loopless and S2S-complete. Obviously, completeness, looplessness, and closeness can easily
be tested in linear time.

Theorem 12. Acyclic ToR ({↔}, {→}) can be solved in time O(N).

Proof. As we are not allowed to introduce new sibling-to-sibling edges, we only have to check
whether the set R of sibling-to-sibling edges induces an S2S-closed vertex set (meaning the set
of vertices V (R) occurring in R). If not reject the instance. Otherwise replace all occurrences
of vertices from an S2S-component A with a representative vertex and remove consecutive
occurrences of same vertices in all paths. Now we have an Acyclic ToR (∅, {→}) instance
which can be solved in time O(N) by Theorem 10. Note that computing the reduced instance
only needs O(N) preprocessing time.

Corollary 13. Acyclic ToR ({→,↔}, {→}) can be solved in time O(N).

Proof. Observe that the preprocessing phase of the algorithm described in the proof of The-
orem 12 does not dependent on edges oriented with types other than {↔}. Thus, after this
O(N) preprocessing step we have to solve an Acyclic ToR ({→}, {→}) instance which is just
Theorem 11.

The case K = {−−} is more complex. Recall from Lemma 7 that in acyclic and valley-free
orientations, pairs of P2P-reachable vertices build an inclusion chain within each path.

Theorem 14. Acyclic ToR ({−−}, {→}) can be solved in time O(N).

Proof. For a given instance (G,P,R), let S ⊆ P be the set of paths containing a peer-to-peer
edge from R. Let GR(P ) denote the graph induced by P which only contains the peer-to-peer
edges from R. The algorithm has two phases.

In the first, structure-testing phase of the algorithm we do the following:

1. Check for each path of S whether there is at most one peer-to-peer edge and, if there is
one, orient all edges towards that edge. If the check fails then return an indication and
stop.

2. Next check for each path p ∈ P \S whether for all pairs {u, v} ⊆ V (p) such that v is P2P-
reachable from u in GR(P ), the sets ξ[p](u, v) (introduced in the preceding subsection)
form an inclusion chain according to Lemma 7 and compute the vertex pair ep such that
ξ[p](ep) is minimal with respect to set-inclusion. Normally, this would imply a worst-case
time O(|P \ S|2 · |R|) = O(N3) (with a linear-time preprocessing step to compute the
connected components in GR(P )). However, we can do better to stay within O(N). We
simply compute some pair of vertices with minimal distance of their positions in p (using
buckets for each P2P-component) and take this pair as ep. We postpone the test of the
chain-condition until we have to test for acyclicity and valley-freeness anyway.

15



3. For each path p ∈ P \ S and its corresponding unique minimal pair ep = {u, v}, if it
exists, orient both the edge going from u in direction of v and the edge going from v in
direction of u as out-going edges. Orient all edges outside of ξ[p](ep) towards ep.

4. Now test whether the graph induced by the already oriented edges is acyclic. If not
reject the instance. Here, we would also identify cases where the above-mentioned chain-
condition is not satisfied. Otherwise proceed as follows. Eliminate from each path p ∈
P \ S all oriented edges. The remaining edges thus have indices in ξ[p](ep) not including
ep’s vertices. Notice that until we have arrived at this point, by Lemma 7, we had no
freedom of choice in orienting the edges as we did.

Let P ′ denote the remaining path set and letX denote the set of additionally oriented customer-
to-provider edges. Note that S ⊆ P ′. Since replacing all peer-to-peer edges with sibling-to-
sibling edges does not destroy an acyclic and valley-free orientation, in the second phase of the
algorithm we solve (G,P ′\S,R∪X) as an Acyclic ToR ({→,↔}, {→}) instance (where edges
in R are taken as sibling-to-sibling edges). It is important to note that by our preprocessing
phase, no new sibling-to-sibling edges have to be included. This computing step takes time
O(|P ′ \ S|+ |R ∪X|) = O(N) by Corollary 13. Finally, re-insert all peer-to-peer edges from S
in the obtained oriented graph, if the graph could be computed. Thus, the overall complexity
is O(N).

Corollary 15. Acyclic ToR ({→,−−}, {→}) can be solved in time O(N).

Proof. On a given instance (G,P,R), we use basically the same algorithm as described in the
proof of Theorem 14. The only difference is that we have additional customer-to-provider edges
in the our set R that may contradict orientations of edges as forced by the peer-to-peer edges in
a path. If we detect such a contradiction after the first phase of the algorithm, then we reject
the instance. Otherwise we proceed as in the original algorithm. This is certainly an O(N)
algorithm.

Theorem 16. Acyclic ToR ({→,↔,−−}, {→}) can be solved in time O(N).

Proof. For a given path set P and a partial orientation R, first test whether the S2S-components
are S2S-closed. If note reject the instance. This is correct since we are not allowed to introduce
new sibling-to-sibling edges and any allowed cycle in G(P ) containing only sibling-to-sibling
edges cannot be transformed into an allowed cycle by replacing one edge with a customer-to-
provider edge or a peer-to-peer edge. Otherwise compute a reduced path set P ′ and a new
partial orientation R′ which is the same as R with the sibling-to-sibling edges being removed
which is basically the same as in the preprocessing phase of the algorithms used for Theorem
12. Finally, we solve (G(P ′), P ′, R′) as an Acyclic ToR ({→,−−}, {→}) instance in time
O(|P ′|+ |R′|) = O(N) using Corollary 15.

4.3 Completions Using Peer-to-Peer Relations

We briefly discuss the implications of Theorem 16 for the inference problems where we use type
set {→,−−}. Mainly, this can be handled with Lemma 9.

Theorem 17. Acyclic ToR ({→,↔,−−}, {→,−−}) can be solved in time O(N).
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Proof. First eliminate all sibling-to-sibling edges by computing a reduced instance (G(P ′),
P ′, R′) where R′ only consists of customer-to-provider edges and peer-to-peer edges (as in
Theorem 16). Second, solve (G(P ′), P ′, R′) as an Acyclic ToR ({→,−−}, {→}) instance (as
in Corollary 15). Correctness follows from Lemma 9.

The orientations obtained by Theorem 17 do not give us much information as they ignore
peer-to-peer edges. In particular for the case K = ∅, it is therefore desirable to know how we
obtain a candidate set for peer-to-peer edges from an acyclic and valley-free orientation with
type set {→}. To find such a set of maximum cardinality is already NP-hard for the case of
only valley-free orientations [5]. Though it could be possible that we get a lower complexity
if we additionally suppose an acyclic orientation, the proof in [5] actually shows that this is
not the case: deciding whether there are at least k edges for a given path set P and a given
valley-free and acyclic orientation with type set {→} that can be oriented as −− is NP-complete.
On the other hand, we can easily compute a maximal set of peer-to-peer candidate edges in
time O(|P |2) simply by iterating over all edges and checking valley-freeness and acyclicity of
the resulting orientation after re-orienting the edges solely.

4.4 Completions Using Sibling-to-Sibling Relations

Finally, we turn to the inference problem using type sets U for completions such that ↔ lies in
U . In contrast to all cases we considered so far and which all can be solved in linear time, we
will now obtain computationally hard problems.

We first mention some exceptions that are easily solvable.

Proposition 18. Let U be any type set containing ↔. Then, Acyclic ToR (∅, U) and
Acyclic ToR ({↔}, U) can be solved in time O(N).

Proof. Orienting all not-yet-oriented edges as sibling-to-sibling edges is a solution.

Proposition 19. Let K ⊆ {→,↔} be any type set. Then, Acyclic ToR (K, {↔,−−}) can
be solved in time O(N).

Proof. Again, orient all remaining edges as sibling-to-sibling edges. In contrast to the previous
proposition, we now have to check whether the orienation is acyclic and valley-free. This can
be done in time O(N).

All remaining cases constitute NP-hard inference problems. To prove this, we take a closer
look at sibling-to-sibling relations. As sibling-to-sibling relations establish an equivalence rela-
tion in any acyclic and valley-free orientation, we obtain a partition [B1, . . . , Br] of V from our
orientation, i.e., a collection of non-empty subsets of V satisfying Bi ∩ Bj = ∅ for i 6= j, and
B1 ∪ · · · ∪Br = V , where the Bi are just equivalence classes according to the sibling-to-sibling
relation, i.e., all Bi’s are S2S-closed.

If the orientation is not already known to us then we search for suitable candidates for such
partitions. We say that a pair (P, [B1, . . . , Br]) is an admissible decomposition of P if and only
if [B1, . . . , Br] is a partition of V such that the path set obtained by replacing all vertices of
the same block with a unique representative and afterwards removing all multiple occurrences
of representatives in all paths, allows an acyclic and valley-free orientation without↔. (Notice
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that this also includes S2S-looplessness of paths.) We further define the standard refinement
relation ⊆ on partitions which allows us to order partitions. Let [A1, . . . , As] and [B1, . . . , Br]
be two partitions of the same set V . We define

[A1, . . . , As] ⊆ [B1, . . . , Br] ⇐⇒def (∀i, 1 ≤ i ≤ s) (∃j, 1 ≤ j ≤ r) [ Ai ⊆ Bj ].

Intuitively, the refinement relations holds between two partitions if we can union components
of the finer partition to obtain the coarser partition, i.e., the partition with fewer components.
We easily observe that admissible decompositions behave monotonically with respect to the
refinement relation, i.e., if for partitions A and B, A ⊆ B and A is an admissible decomposition
of P , then so is B.

The following five theorems contain the simplest cases (in terms of pre-knowledge type sets)
that are NP-hard and that all together are sufficient to imply NP-hardness for all inference
problems not considered so far.

Theorem 20. Acyclic ToR ({→}, {→,↔}) is NP-hard.

Proof. For the proof of the NP-hardness, we use Two-in-Three Sat, i.e., the problem where
we ask, given a 3CNF H , whether there is an assignment to all variables of H such that in each
clause exactly two of the three literals are true. This problem is easily seen to be NP-complete
by reduction from the well-known NP-complete problem One-in-Three SAT [14]. It will be
enough to reduce Two-in-Three Sat to the decision version of Acyclic ToR ({→}, {→,
↔}). Let H be an arbitrary 3CNF having m ≥ 3 clauses C1, . . . , Cm, each having exactly three
different literals, and variables x1, . . . , xn, i.e., H = C1 ∧ C2 ∧ · · · ∧ Cm. We construct a path
set P on the vertex set {C1, . . . , Cm, x1, . . . , xn, x1, . . . , xn}. Define the following sets of paths:

P1 =def { (C1, C2, C3), (C2, C3, C1), (C3, C1, C2) } ∪ {( C1, Cj, C2) | 4 ≤ j ≤ m}

P2 =def { (xi, xj , xi) | 1 ≤ i, j ≤ n and i 6= j} ∪ { (x1, Ci, x1) | 1 ≤ i ≤ m}

P3 =def { (li1, Ci, li2), (li2, Ci, li3), (li3, Ci, li1), (li1, li2, li3) |

1 ≤ i ≤ m and Ci = (li1 ∨ li2 ∨ li3) }

The set P1 guarantees that all clause vertices Ci belong to the same set, P2 separates the
literals from their negated literals, and P3 indicates which literals will be satisfied. Now define
P =def P1 ∪ P2 ∪ P3. Note that clearly, P can be computed in time polynomial in the number
of clauses and variables of the input. We will show that

H ∈ Two-in-Three Sat ⇐⇒

(G(P ), P, {x1→ x1}) is a solvable Acyclic ToR ({→}, {→,↔}) instance.

We prove both directions separately.
For (⇒), let I : {x1, . . . , xn} → {0, 1} be an assignment to variables witnessing that H ∈

Two-in-Three Sat. Define a set U to consist of all literals made true and all clauses. More
specifically,

U =def { xi | 1 ≤ i ≤ n and I(xi) = 1 } ∪ { xi | 1 ≤ i ≤ n and I(xi) = 0 } ∪

∪ { Ci | 1 ≤ i ≤ m }.
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Hence, U = { xi | 1 ≤ i ≤ n and I(xi) = 1 } ∪ { xi | 1 ≤ i ≤ n and I(xi) = 0 }. Clearly,
x1 ∈ U ⇔ x1 /∈ U . We are done if we can show that [U,U ] is an admissible decomposition of P .
In the following we use U (or U) to denote a representative element of U (or, U , respectively).
We now consider all path sets individually:

1. Since Ci ∈ U for all 1 ≤ i ≤ m, all paths in P1 have the form (U,U, U) which simplifies
to (U).

2. Without loss of generality, suppose xi ∈ U which immediately implies that xi /∈ U . It
follows that the paths of P2 have the form (U,U, U) or (U,U, U) which both simplify to
(U,U).

3. In each clause, exactly two literals are satisfied. Without loss of generality, suppose that
li1 and li2 are these literals for clause Ci. Then, the paths of P3 that correspond to Ci all
have forms (U,U, U), (U,U, U), or (U,U, U), thus, simplify to (U) or (U,U).

Consequently, after eliminating multiple occurrences of paths, P simplifies to a subset of
{(U), (U), (U,U), (U,U)} which, obviously, allows acyclic and valley-free orientations. Hence,
(G(P ), P, {x1 → x1}) is a solvable instance of Acyclic ToR ({→}, {→,↔}).

For (⇐), we assume that (G(P ), P, {x1 → x1}) is a solvable Acyclic ToR ({→}, {→,
↔}) instance, i.e., there exists a decomposition [U,U ] ⊂ [V ] of P such that x1 ∈ U ⇔ x1 /∈ U .
Note that we can restrict ourselves to such 2-component decompositions because of the ⊆-
monotonicity of admissible decompositions. Without loss of generality, we may assume that
C1 ∈ U . Thus, {C1, . . . , Cm} ⊆ U because of the definition of P1. Furthermore, we have for all
1 ≤ i ≤ n, xi ∈ U ⇔ xi /∈ U (otherwise U = V or U = V because of definition of P2). This
allows to define an assignment I : {x1, . . . , xn} → {0, 1} as follows

I(xi) =def

{

1 if xi ∈ U,
0 if xi ∈ U.

We have to prove that I satisfies exactly two literals in each clause. Let Ci be any clause with
literals li1, li2, and li3. As there are paths in P3 having the form (lij, Ci, lik), there is an lir ∈ U .
Without loss of generality, we assume that li1 is such a literal. Since there exists for each pairs
of literals of Ci such a path in P3, there exists another literal lis ∈ U , r 6= s. Without loss
of generality, li2 is such a literal. Due to the path (li1, li2, li3) ∈ P3, we know that li3 is not in
U . Overall, by definition of I, for each clause exactly two literals are made true. This shows
H ∈ Two-in-Three Sat.

Theorem 21. Acyclic ToR ({−−}, {→,↔}) is NP-hard.

Proof. We describe a reduction from Acyclic ToR ({→}, {→,↔}). Let (G,P,R) be an in-
stance to that problem. Let u→ v ∈ R be any oriented edge. We are done if we can force such
an edge to be oriented in the same way without using a customer-to-provider edge. This can
be achieved as follows. We add to the path set two new paths: (u, v,⊥) and (u,⊥, v) where
⊥ is neither contained in P nor in R. Furthermore, we add the peer-to-peer edge v −−⊥ to
R. (Note that we can take the same new vertex ⊥ for all edges in R.) It suffices to show
that u and v cannot be siblings. Assume to the contrary, that u and v are siblings. Then, to
avoid an oriented cycle (u, v,⊥, u), u must have a peer-to-peer edge with ⊥. However, this is
a contradiction to valley-freeness, as (u,⊥, v) now has two peer-to-peer edges.
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Theorem 22. Acyclic ToR ({−−}, {↔,−−}) is NP-hard.

Proof. For U = {↔,−−}, a careful analysis of the proof of Theorem 20 reveals that a 3CNF
H belongs to Two-in-Three Sat if and only if (G(P ), P, {x1−−x1}) is a solvable instance of
Acyclic ToR ({−−}, {↔,−−}).

Theorem 23. Acyclic ToR ({−−}, {→,↔,−−}) is NP-hard.

Proof. For U = {→,↔,−−}, note that the proof of Theorem 22 relies on a partition of the
vertex set into two components. Thus any acyclic and valley-free orientation assigns to edges
who’s vertices belong to different components the same edge type. Thus, we obtain that a
3CNF H belongs to Two-in-Three Sat if and only if (G(P ), P, {x1 −−x1}) is a solvable
Acyclic ToR ({−−}, {→,↔,−−}) instance.

Theorem 24. Acyclic ToR ({→}, {→,↔,−−}) is NP-hard.

Proof. Let K be a type set containing → but not −−. Since simultaneously replacing all
peer-to-peer edges of an acyclic and valley-free orientation with sibling-to-sibling edges main-
tains acyclicity and valley-freeness, (G,P,R) is a solvable Acyclic ToR (K, {→,↔,−−})
instance if and only if (G,P,R) is a solvable Acyclic ToR (K, {→,↔}) instance. Thus,
Acyclic ToR (K, {→,↔,−−} is NP-hard by Theorem 20.

5 Conclusion

We studied algorithmic solutions for the acyclic all-paths type-of-relationship problem. In
particular we designed a linear-time algorithm for finding an acyclic and valley-free completion
of a partial orientation of a set of AS paths, that only uses customer-to-provider relations for
completion whereas the partial orientation can be expressed with arbitrary types of standard
AS relationships. Based on some evident assumptions on the size of ASs, acyclicity conditions
are given in terms of forbidden graph patterns. The algorithm provides prospects for combining
combinatorial methods with more non-combinatorial techniques to explore the solution space of
possible Internet hierarchies. To evaluate the quality of this algorithm, we plan to supplement
the theoretical study of this paper with experimental investigations. In contrast, permitting
sibling-to-sibling relations for completion makes most of the problem versions NP-hard.

Several algorithmic problems remain open. However, from a theoretical point of view, the
most interesting open question is whether acyclicity of the Internet hierarchy can be deduced
via a game-theoretic analysis. Are acyclically oriented AS graphs Nash equilibria for classes of
network creation games (in the sense of [10, 2])?
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