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ADDITIVE MULTILEVEL-PRECONDITIONERS BASED ONBILINEAR INTERPOLATION, MATRIX-DEPENDENT GEOMETRICCOARSENING AND ALGEBRAIC-MULTIGRID COARSENING FORSECOND ORDER ELLIPTIC PDEST. GRAUSCHOPF, M. GRIEBEL, H. REGLERINSTITUT F�UR INFORMATIKTECHNISCHE UNIVERSIT�AT M�UNCHEND-80290 M�UNCHEN, FRGAbstract. In this paper, we study additive multilevel preconditioners based on bilinear interpo-lation, matrix-dependent interpolations and the algebraic multigrid approach. We consider 2nd orderelliptic problems, i.e. strong elliptic ones, singular perturbation problems and problems with locallystrongly varying or discontinuous coe�cient functions. We report on the results of our numerical ex-periments which show that especially the algebraic multigrid based method is mostly robust also inthe additive case.1. Introduction. For the solution of elliptic PDEs, iterative methods based onthe multilevel principle are known to be fast solvers. They are often optimal in thesense that the number of iterations necessary to reduce the error by a prescribed valueis independent of the mesh size used in the discretization or the number of unknowns,respectively. Here, following [59], multigrid algorithms [12, 30] can be interpreted asmultiplicative Schwarz methods, whereas multilevel preconditioners [11] can be identi-�ed as their additive counterparts.For strongly elliptic symmetric PDEs of second order (i.e. basically the Laplacian)optimality of the convergence rate under moderate regularity assumptions was shown in[5, 8, 29, 30] using smoothing and approximation properties for the multigrid method.Without regularity assumptions, optimality was further shown in [4], [11], [34, 35, 36,37, 63], [18] for the additive case and [9, 10], [63] for the multiplicative case.However, for these methods in their standard version, the convergence rates arestill dependent on the coe�cient functions of the operator under consideration, boththeoretically (via the Lemma of Sobolev, i.e. by the ellipticity constants) and practicallyin numerical experiments. Thus, for singularly perturbed problems, for problems withlocally strong variation or even a jump in the coe�cient functions, the convergencerates become worse with stronger deviation from the ellipticity of the operator and thisrenders the methods useless for practical applications. They are not robust in the senseof [57].Now, at least for the multigrid method, i.e. the multiplicative variant, there existbasically two types of modi�cations of the standard method to remedy this situation.First, there are a number of approaches where the underlying sequence of grids isstill coarsened the usual standard way but the interpolation and restriction matricesand by means of the Galerkin approach also the discrete operators on the coarser gridsare chosen dependently of the �ne grid matrix. However, a simple point-wise iterativemethod used as smoother often fails to give robust convergence rates and ILU-type1



smoothers must be employed instead. Then, at least for 2D problems, a robust multigridmethod results, see [56, 57]. The algorithms of Dendy [20], Wesseling [54, 55], deZeeuw [19], Reusken [43], Wagner [52], Kuznetsov [32], Fuhrmann [23], and also, tosome extent, the more preconditioning-oriented algorithms of Axelsson and Vassilevski[2, 3], van den Ploeg [48], Botta et al. [49] belong to this type of method. All theseapproaches are more or less attempts to approximate the Block Gaussian elimination(Schur complement process) of the unknowns belonging to grid points of the �ne gridbut not belonging to the next coarser grid (recursively over all levels). For a generalframework to that, see [31]. Some of these methods are called algebraic due to thealgebraic, i.e. matrix-dependent nature of the construction of interpolation, restrictionand coarse grid operators. Nevertheless, they belong to the geometric type of multilevelmethods due to the geometric coarsening process of the involved sequence of grids.Apart from that, there exists the algebraic multigrid method due to Ruge andSt�uben [44, 45] where not only the interpolation, restriction and coarse grid operatorsare chosen in a matrix-dependent manner, but also the sequence of coarsened grids itself.In this way, an algebraic principle is used for both, the construction of coarser grids andthe construction of the inter-grid transfer operators and the discrete operators on thesecoarser grids. Thus, a method is gained where, in contrast to the previous mentionedones, a simple point-wise smoother (e.g. Gauss-Seidel or Jacobi) is su�cient for a robustconvergence behaviour of the overall method for a wide class of problems. Beside thefact that theory is missing for this method, maybe also its quite di�cult implementation,the di�culties this method gives in the adaptive re�nement case and its slightly higheroperation count were obstacles to its wider use. The latter is due to the so-called setupstep which must be programmed very carefully for maintaining an O(N) operationcount, where N is the number of unknowns, see [15]. Nevertheless, in the recent years,there is now more interest in the algebraic multigrid method, since it provides a simpleto use black box type solver which can be applied by not so experienced users in manysituations where conventional multigrid fails or must be modi�ed in a skilled way. Besidethe developments in [16, 17], [61, 62] and [41, 42] there can nowadays also block-wisevariants of AMG be found, especially for the treatment of structural analysis, elasticityproblems ([6, 51]) and 
uid dynamics applications ([7, 33, 40, 53]) where more than oneunknown is assigned to one grid point.In this paper, we use the two previously mentionedmodi�cations of multigridmeth-ods within a multilevel-type preconditioner to gain a hopefully robust additive Schwarzmethod. We are interested in the question whether and for what problem classes suchadditive methods behave as robust as their multiplicative (i.e. multigrid) counterparts.Our motivation to this study was twofold: First, we aim for a method which can beapplied to any given stable �ne grid discretization (e.g. by a nine point stencil) of anelliptic PDE of second order (with singular perturbations) and results in a robust con-vergence rate. Thus, in contrast to AMG, we are not interested in a general black boxsolver for any (M-Matrix) input matrix but study standard discretizations of PDEs in-stead. And second, for parallelization reasons, we are interested in an additive method.To this end the subproblems to be solved in the additive method should be as small as2



possible. In a level-like setting this corresponds to point-wise smoothers involving onlylocal operations. Thus, smoothers like ILU are less favorable in this context since theyare di�cult to parallelize e�ciently.In the �rst section we repeat the framework of additive Schwarz methods andgive it in both, the functional representation by means of subspace splittings and thecorresponding algebraic representation. Then, we demonstrate how, by means of a gen-erating system, a corresponding semide�nite linear system can be achieved. We furtherspecialize the additive Schwarz schemes to the case of multilevel preconditioners wherethe involved subspaces are one-dimensional but form a multilevel basis similar to theone used within the BPX-preconditioner. In contrast to the BPX-method we allow formore general subspaces on coarser levels and corresponding general mappings (inter-polations and restrictions) between these subspaces that only have to ful�ll a general(local) re�nement relation. Then, we state the three general requirements such kind ofmethods have to ful�ll, i.e. an O(N) operation count per iteration cycle, a resultingcondition number which is independent of N and the number of levels involved and,most important, a condition number which is independent of the coe�cient functionsof the operator under consideration. We further give explanations how such a generalscheme can be implemented.In the next section, we consider three speci�c examples for the construction ofthe re�nement masks and, consequently, of the underlying subspace splitting. Theycorrespond to� standard coarsening, involving bilinear interpolation and its transposed as re-striction, i.e. the BPX-method,� the coarsening scheme of Dendy as an example of matrix-dependent geometriccoarsening and� the purely algebraic coarsening process of our variant of the algebraic multigridmethod.Finally we give the results of our numerical experiments where we compare the con-dition numbers and the convergence behaviour of the corresponding additive precondi-tioning schemes for various types of problem classes of (possibly singularly perturbed)elliptic PDEs of second order with constant and varying coe�cient functions.2. Additive Schwarz preconditioners - functional and algebraic represen-tation. First, consider a stationary iterative method for solving a linear systemAu = f;(1)in the Hilbert space V , A 2 L(V; V ) ; u 2 V ; f 2 V: One iteration step is given byuit+1 = uit +B(f �Auit) ;(2)where B is an approximate inverse of A:If V is �nite-dimensional, we also �nd appropriate algebraic formulations equivalentto (1) and (2). Let n := dim(V ). Then the corresponding algebraic analogs areA� = �(3) 3



with A 2 IRn�n; � 2 IRn; the unknowns � 2 IRn and�it+1 = �it + B(� �A�it):(4)with B 2 IRn�n: Clearly, for numerical treatment only the algebraic formulations areof interest. B should have two properties: Multiplication with B can be implementede�ciently and B should approximate the inverse of A somehow. If B is a good approx-imation to the inverse of A, one may expect that�(BA) << �(A);where � denotes the condition number of a matrix. Therefore, B acts as a precondi-tioner to A: Indeed, many popular preconditioning techniques correspond to a lineariteration. For example, if we split the matrix A into its lower triangular, diagonal andupper tridiagonal parts, A = X +Y+Z; preconditioning with B := Y�1 corresponds tothe Jacobi iterative method. Preconditioning with B := (Z + Y)�1Y(X + Y)�1 corre-sponds to the symmetric Gau�-Seidel method. In this way, a better but not yet optimalcondition number is usually achieved. More e�cient preconditioning schemes are ob-tained via multilevel subspace splittings, which we will consider in the next section. We�rst give the functional representation according to (2) and then derive the algebraicrepresentation according to (4) from it. Note that there exist condition number esti-mates for the resulting functional representation [34, 35, 36, 37], [58, 59], [4, 60], whichtranslate directly to the algebraic representation.2.1. Functional representation. We use the following Hilbert space setting. LetV be some �xed, �nite-dimensional Hilbert space. The scalar product in V is denotedby (�; �). We consider a positive de�nite, symmetric bilinear form a(u; v) = (Au; v),u; v 2 V , with A : V ! V denoting the corresponding s.p.d. operator acting on V .Now, consider an arbitrary additive representation of V by the sum of a �nitenumber of subspaces Vj � V : V = sXk=1 Vk :(5)More precisely, this means that any u 2 V has at least one representation u =Psk=1 ukwhere uk 2 Vk for k = 1; : : : ; s. The operator A possesses restrictions Ak to Vk given by(Akuk; vk) = (Auk; vk) ; uk; vk 2 Vk:(6)Suppose further that the Vk are equipped with auxiliary continuous s.p.d. formsrk(uk; vk) = (Rkuk; vk)given by the s.p.d. operators Rk : Vk ! Vk. These forms might model approximativesolvers used on the subspaces, i.e. Rk is an approximative inverse of Ak:Now, we de�ne two projection operators Ek; Qk : V �! Vk bya(u; vk) = a(Eku; vk) (energy projection)4



(u; vk) = (Qku; vk) (L2-Projection)where vk 2 Vk; u 2 V . Obviously one then hasAkEk = QkA:(7)If we multiply Au = f by Qk we obtain with (7) the corresponding subspace problemAkuk = fk ;(8)where uk := Eku; fk := Qkf:With the previous de�ned operators Rk we get approximatesolutions of (8): ~uk = Rkfk:Following Xu [58, 59], we can use this framework to de�ne an iterative scheme forsolving Au = f . Assume some approximation uit to the solution u. If we could exactlysolve the residual equation Ae = rit := f �Auit ; we would have the solution, becauseu = uit+ e. But this is usually as complicated as the original problem. We can insteadsolve the restricted residual equationAkeitk = Qkritapproximately by ~eitk = RkQkritand, for k = 1; : : : ; s, add this subspace corrections to our iterate uit. Then we haveuit+1 = uit +Brit(9)with the s.p.d. operator B := sXk=1RkQk:(10)This is an additive Schwarz iteration, because the update of the values in (9) takes placeadditively for all subspaces Vk ; k = 1; : : : ; s: Now, B can also be used as preconditioner.In the next section we derive the algebraic representation of B:2.2. Algebraic representation. Assume a basis f�k1; : : : ; �knkg is given on asubspace Vk: Then, every vk 2 Vk may be uniquely represented asvk = nkXi=1 �ki�ki ; nk := dim(Vk);and the vector �k := (�k1; : : : ; �k;nk)T will be referred to as coordinate vector of vk.5



The associated mapping �k : IRnk �! Vk will be de�ned by�k�k := nkXi=1 �ki�ki:(11)Obviously �Tk vk = ((vk; �k1); : : : ; (vk; �knk))T :Now, we assume Ak 2 L(Vk; Vk): The sti�ness matrix Ak 2 IRnk�nk; as used in the �niteelement method, is de�ned by (Ak)ij := (Ak�ki; �kj):One easily veri�es Ak = �Tk Ak�k:(12)The sti�ness matrix Ak is just the algebraic representation of Ak. We also need themass matrix Mk 2 IRnk�nk : It is de�ned by(Mk)ij := (�ki; �kj);which is equivalent to Mk = �Tk idk�k = �Tk �k ;(13)where idk denotes the identity operator on Vk:In the following we reconsider the algebraic representation (4) of the iterativemethod given by (2) in a subspace Vk. We �rst start with the functional formulation ofa single step of an iterative method on the subspace Vk:uit+1k = uitk +Rk(fk �Akuitk ):With uit+1k = �k�it+1k ; uitk = �k�itk ; fk = �k�k;we obtain �k�it+1k = �k�itk +Rk(�k�k �Ak�k�itk ):(14)From this we conclude that an appropriate algebraic representation Rk of Rk is givenimplicitly by �kRk�Tk = Rk:(15)Using (12), (13) and (15), relation (14) can be transformed to�k�it+1k = �k�itk + �kRk(Mk�k �Ak�itk ):(16) 6



Since �k is invertible on Vk, (16) is equivalent to�it+1k = �itk +Rk(Mk�k �Ak�itk ):Now, given a basis f�1; : : : ; �ng of V and A 2 L(V; V ), we can de�ne the mappings �and �T and the matrices A and M for V analogously as we did for the subspace Vk:Then, an appropriate algebraic representation B of B is given implicitly by�B�T = B:(17)Note that, in contrast to � and �T , �k and �Tk are not invertible on V (but they areinvertible on Vk).Furthermore, since Vk � V , every basis function �ki of the subspace Vk possessesan unique representation in terms of the basis functions �l of V :�ki = nXl=1 �kil �l ; �kil 2 IR:(18)For the following it is practical to exploit this fact to de�ne the matrix Pk 2 IRn�nk by(Pk)ij = �kji :Now, using Pk, we can give an explicit representation of �k; i.e.�k = �Pk:(19)Furthermore, the L2-Projector Qk onto Vk can be stated as follows:Qk = �kM�1k �Tk :(20)At last, we can deduce the algebraic representation B 2 IRn�n of the additive Schwarzoperator B = Psk=1RkQk in the following way:From (17) we get B = ��1B��T = sXk=1 ��1RkQk��T :(21)Plugging the identities (15) and (20) into (21) and then using (13) and (19), we obtainB = sXk=1 ��1RkQk��T == sXk=1 ��1�kRk�Tk �kM�1k �Tk ��T =(22) = sXk=1PkRkPTk :This is the algebraic representation of the additive Schwarz preconditioner we lookedfor. 7



Now, it is easy to proof, that �(BA) = �(BA);so that if we can show condition number estimates for the functional representation,they immediately translate to the algebraic representation, and vice versa.The often-needed Galerkin identity may be shown as follows:Ak = �Tk id A id �k = �Tk (�M�1�T )A(�M�1�T )�k == (�Tk �M�1)(�TA �)(M�1�T �k)and from this we obtain with (19) Ak = PTk APk:(23)Thus, if either a discretization or a subspace operator should be consistent with thistheory, it must be constructed via the Galerkin identity.2.3. From a de�nite to a semide�nite system. In the previous section, wegave the algebraic representation of the additive Schwarz operator B = Psk=1RkQk interms of the basis f�1; : : : ; �ng of V; which wasB = sXk=1PkRkPTk :(24)Now it is an interesting task to deduce an algebraic representation of it with respectnot to a basis of V but to the generating systems[k=1f�k1; : : : ; �knkgof V which contains all the bases of the subspaces arising in the splitting (5). Then,elements of V will in general have a non-unique representation only. Let us denotenE := sXk=1 nk:Analogously to the previous section, we can de�ne the operator �E : IRnE �! V by�E�E = sXk=1 nkXl=1 �Ekl�kl ;where �E = (�11; : : : ; �1n1; : : : ; �s1; : : : ; �sns)T 2 IRnE :Furthermore, we de�ne the matrix PE 2 IRn�nE byPE = (P1; : : : ;Ps):8



It is elementary to show, that �E = �PE :(25)One step of a stationary iterative method using the generating system is now given by�E;it+1 = �E;it + BE(ME�E;it �AE�E;it) ;(26)where AE = (�E)TA �E = (PE)TA PE;and ME = (�E)T �E = (PE)TM PE:Note that the entries of AE and ME are now given by the values a(�k1;i1; �k2;i2) and(�k1 ;i1; �k2;i2) ; k1; k2 = 1; : : : ; s ; i1 = 1; : : : ; nk1 ; i2 = 1; : : : ; nk2 ; respectively. Then, weobtain the solution u of (1) from any �x-point �E of (26) byu = �E�E:More generally speaking, the solutions u; �; �E of Au = f; A� = �Tf; AE�E = (�E)Tfare connected via u = �� = �E�E:BE in (26) is again implicitly de�ned byB = �EBE(�E)T :If we plug in the multilevel preconditioner (24) for B we obtain with (25) and (17):PEBEPE = ��1B��T = B = sXk=1PkRkPTk :This equation is ful�lled, if we take as algebraic representation for BE for exampleBE = diag (R1; : : : ;Rs) :So if we look at the additive Schwarz operator from the view of our generating systeminstead of the basis of V , its algebraic representation simpli�es to a block diagonalmatrix.Note also, that if we de�ne a generalized condition number ~� as the quotient of thelargest eigenvalue and the smallest non-vanishing eigenvalue, we have�(BA) = �(BA) = ~�(BEAE) :Furthermore, modern multilevel and domain decomposition methods correspondto classical iterative methods applied to the enlarged representation of the generatingsystem: Additive Schwarz methods are then equivalent to (block-)Jacobi, multiplicativeSchwarz methods to (block-)Gau�-Seidel iterations.9



2.4. Multilevel preconditioners: nested subspace splittings. In the follow-ing we concentrate our studies on preconditioners constructed from a multilevel splittingof V which we will now introduce in terms given before.We therefore assume a splitting of V into nested subspaces VL; L = 1; : : : ;M ,V1 � V2 � : : : � VM�1 � VM = V:(27)It should be emphasized that the nestedness of these subspaces is the only prerequisitewe need. It implies an ordering to the subspaces, where the associated indices nowdenote the so-called levels. In �nite element methods usually compactly supportedbasis functions are chosen where each of them is associated to a speci�c point of thediscretization domain, such that the other basis functions vanish there. Then, thesepoints set up an associated grid1. As a consequence of the nestedness (27), if C < F ,then the grid belonging to a coarser space VC is a subset of the grid belonging to VF :We could start with such subspaces in decomposition (5). But it comes handy tore�ne the VL further into spans of single basis functions, i.e. one-dimensional subspaces:V = MXL=1 VL = MXL=1 nLXi=1 VLi ;(28)where nL := dim(VL) and VLi := spanf�Lig are one-dimensional subspaces. In thenotation above, a subspace VLi corresponds to a subspace Vk in (5) (one might imaginean appropriate reordering of the indices). To avoid notational con
icts, we use uppercaseindices in connection with levels, and lowercase indices for the single unknowns or basisfunctions.Let us now look at the concrete formulations of the operators de�ned in section2.1. By (6) we see thatALiuLi = a(uLi; �Li)(�Li; �Li) �Li ; uLi 2 VLi;which holds because any vLi 2 VLi can be represented as ��Li ; since VLi = spanf�Lig:Thus, we can set RLiuLi = (uLi; �Li)a(�Li; �Li)�Liand obtain an exact subspace solver. It can also easily be seen, that for uM 2 VM = VQLiuM = (uM ; �Li)(�Li; �Li)�Li1 Note that, at this point, we do not assume any uniformity of the grid nor that the basis functionsassociated to a grid point must be linear at all, especially on coarser levels. They can and will, as wewill see in section 5.5, consist of functions which are piecewise linear only with respect to much �nergrids. 10



and ELiuM = a(uM ; �Li)a(�Li; �Li)�Lihold. Because of our choice RLi = A�1Li we now obtain the formulasBMvM = MXL=1 nLXi=1RLiQLivM = MXL=1 nLXi=1 (vM ; �Li)a(�Li; �Li)�li ;BMAMvM = MXL=1 nLXi=1ELivM = MXL=1 nLXi=1 a(vM; �Li)a(�Li; �Li)�Li ;which are the applications of diagonal scaled versions of the multilevel-preconditionerand the multilevel-preconditioned matrix to a vector.We can also consider the algebraic representation. We haveBM = MXL=1 nLXi=1PLiRLiPTLi:Because of (28) it is clear, that nC � nF for C < F , and therefore every basis function�Ci of VC may be represented as a linear combination of basis functions �Fj of VFanalogously to (18): �Ci = nFXj=1 �CiFj�Fj ; �CiFj 2 IR:(29)If we collect the matrices PLi corresponding to one level L in a single matrix byPML := (PL1; : : : ;PLnL)and de�ne the diagonal matrixRL := diag (RL1; : : : ;RLnL) ;we obtain BM = MXL=1PML RL(PML )T :(30)RL is the inverse of the diagonal of the sti�ness matrix AL, i.e. RLi = a(�Li; �Li)�1.Note also, that AL is determined by AM ; i.e. the sti�ness matrix of the �nest level ofdiscretization, and PML : This is due to the Galerkin identity (23), which impliesAL = (PML )TAMPML :(31)PML can be de�ned by interpolation matrices between two successive levels. In ourcontext, PL+1L 2 IRnL+1�nL should be the interpolation matrix de�ned by the �LiL+1;j ;compare also (29). Then we can show thatPML = PMM�1 � : : : � PL+1L :(32) 11



These facts are essential for an e�cient implementation of the corresponding precondi-tioner.With this notation the generating system version of our preconditioner is simplythe diagonal matrix BEM = diag(R1; : : : ;RM ) ;which has to be applied to the enlarged matrixAEM = (PEM)TAPEM ;where PEM can compactly be de�ned asPEM := (PM1 ; : : : ;PMM�1;PMM )(33)(PMM is the unity matrix). This gives now the alternative representationBM = PEMBEM(PEM)Tof the preconditioner BM .Note that the enlarged matrices AEM and BEMAEM are in general semide�nite andpossess zero eigenvalues as well. But the spectrum of BEMAEM is up to the zero eigenvaluesthe same as that of BMAM . Furthermore, by using the generating system representationwe are now able to write the preconditioned matrix by(BEM)1=2(PEM)TAM PEM(BEM)1=2(34)in a symmetric form whenever AM is symmetric. This is in contrast to the de�nite butunsymmetric notation BMAM .The approach with the generating system now allows to apply standard iterativemethods to the enlarged problem, see [25, 28]. For our choice of BEM we just obtainthe Jacobi iteration. If we would apply the symmetric Gau�-Seidel iteration to theenlarged linear system associated to (34) we obtain a method exactly equivalent to themultigrid V-cycle with one pre- and one post-smoothing step using the nested spacesV1; : : : ; VM : Beside these approaches other traditional iterative methods can be appliedto (34) resulting in new multilevel algorithms. For example in [26, 27], point- instead oflevel-oriented methods are derived from just permuting the generating system properly.3. Model problem and requirements for an e�cient implementation ofthe multilevel-preconditioner. In this paper, we restrictA to be the two-dimensionalelliptic di�erential operator0@ 2Xi;j=1 aij(x1; x2) @2@xi@xj + 2Xi=1 bi(x1; x2) @@xi + c(x1; x2)1A(35)on the domain [0; 1]� [0; 1] with Dirichlet boundary conditions.12



As starting point for the initial �ne-level discretization of A serves the regular,equidistant grid 
h := f(ih; jh) : i; j = 1; : : : ; h�1 � 1g :(36)The space V is then de�ned as the span of functions �i ; i = 1; : : : ; (h�1 � 1)2 ofprincipally any type with local support. This gives us a �nite-dimensional restrictionAh of A and via Galerkin discretization its algebraic equivalent Ah:For example, as basis for V , the well-known nodal basis can be used, which spansthe space of bilinear functions over 
h. A nodal basis function centered at (a; b) isde�ned by�h(a;b)(x1; x2) := maxf0; (h� jx1 � aj)=hg �maxf0; (h� jx2 � bj)=hg :The entries in the initial discretization matrixAh are then given by the scalar productsa(�h(ih;jh); �h(kh;lh)); where a(�; �) is the weak bilinear form induced by (35)2.With Ah given, we now have the freedom to choose the interpolation matricesPML ; L = M � 1; : : : ; 1, i.e. the matrix PEM and depending on that the number of levelsM; de�ning AM := Ah: Note that, by choosing a speci�c interpolation scheme, not onlythe sti�ness matrices on the coarser levels are determined by the Galerkin approachbut also, at least implicitly, a sequence of bases �Li ; L = 1; : : : ;M ; i = 1; : : : ; nL andassociated spaces VL ; L = 1; : : : ;M is de�ned. Except for the special case of the values�L�1;jLj given in subsection 4.1 where self-similarity of the basis functions of di�erentlevels under translation and dilation is achieved, the basis functions on the coarserlevels are usually not more bilinear functions w.r.t. to that level of discretization butmerely local linear combinations of the basis functions of the �nest level, and thus arepiecewise linear with respect to the �nest grid 
h only.Optimally, the choice of the interpolation matrices should be such that the resultingpreconditioned �ne grid system or equivalently the resulting enlarged generation systemmatrix ful�lls three requirements:1. h�independent convergence rate: The condition number �(BMAM ) of the re-sulting preconditioned system should be bounded by a constant independentof the mesh size h.2. Robustness of the method: The condition number �(BMAM ) of the resultingpreconditioned system should be bounded by a constant independent of thevalues of the coe�cient functions aij(x1; x2); bi(x1; x2) and c(x1; x2) in (35).3. Work count: The number of operations necessary to perform the matrix vectormultiplication by the resulting preconditioner should be proportional to thenumber of �ne grid unknowns only.If merely requirement 1 is ful�lled, the constants forming the condition numbercan still depend on the coe�cient functions aij(x1; x2); bi(x1; x2) and c(x1; x2). Now,2 The grid (36) also serves as starting point for the �nite di�erence discretizations in our numericalexperiments presented in a later section. Often �nite di�erence discretizations can be viewed as resultof a �nite element discretization with di�erent basis functions, i.e. linear instead of bilinear ones on atriangulation of 
: 13



if one ore more of these functions possess large values in 
, the condition number canbe large as well and the corresponding solution procedure is practically useless, sinceits convergence is unacceptable slow. This is the case for singular perturbed problems,when one or more of the coe�cient functions are dominating, and causes problems alsoin the case of rapidly varying or discontinuous coe�cients as they appear in so-calledinterface problems. Thus, it is advantageous to choose the interpolations such that�(BMAM ) is independent of the coe�cient functions.One step of the resulting iterative method should only involve a number of oper-ations proportional to the unknowns on the �nest level of discretization. Usually, f.e.in a CG-type iterative method, the multiplication of a vector with the preconditioned�ne grid sti�ness matrix is the crucial task. Beside the multiplication with the matrixAM ; it also invokes the multiplication with BM : From (30) and (32) it is clear how amultiplication with BM can be implemented.Multiplication of a vector vM2VMwith BMwM = vMfor L =M; : : : ; 2:wL�1 = (PLL�1)TwLfor L = 1; : : : ;M :wL = RLwLfor l = 2; : : : ;M :wL = wL + PLL�1wL�1BMvM = wMWe want the number of operations for a single matrix-vector multiplication3 withBM to have the same order as the number of unknowns, i.e. #operations � nM :Therefore, the interpolations PLL�1 must be sparse matrices. Thus, only a boundednumber of entries in each row and column may be non-zero. This means that, in therepresentation �L�1;i = nLXj=1�L�1;iLj �Lj ;(37)only a �xed number of �L�1;iLj may be non-zero, which is equivalent to locally supportedbasis functions on all levels.Furthermore, the number of basis functions over all levels PML=1 nL must be in theorder of nM as well. In a practical approach this is ful�lled, if the number of unknownsdecreases geometrically between the levels, nL � �nL+1 ; 0 < � < 1: This automaticallyleads to the relation M � log(h�1):3 Note that the multiplication with the generating system matrix can be implemented in just thesame amount of work, see [26]. 14



4. Considered interpolation schemes. In the previous section we already statedthat the multilevel-preconditioning scheme is uniquely determined by the sti�ness ma-trix AM and the interpolation matrices PLL�1 ; l = 2; : : : ;M . Because of the Galerkinidentity (31), the inverse RL of the diagonal of AL is then determined, too. So if wehave AM , our only freedom is to choose the interpolation weights �L�1;iL;j ; both, withrespect to locality, i.e. the non-zero pattern, and with respect to the speci�c values ofthe non-zero entries. In this section we consider three di�erent interpolation schemes,i.e. bilinear interpolation which results in the standard BPX-preconditioning [11] or inits diagonal scaled variant MDS [63], respectively, matrix-dependent weighted interpo-lation with nine-point masks which results in a preconditioner that corresponds to theapproaches of Dendy and deZeeuw [20], [19], and a more general interpolation whichresults in a preconditioner that corresponds to the AMG method of Ruge and St�uben[44, 45].4.1. Standard coarsening with bilinear interpolation. Bilinear interpolationand its scaled transposed, the weighted restriction are the standard inter-grid transferoperators for multigrid methods. For many problems, especially strong-elliptic onesthey work well.We will use bilinear interpolation only in connection with regular coarsened grids
h;
2h; : : : ;
1=2 ; where h�1 should be the M th power of 2. Then, the underlying basisfor each subspace VL; L =M; : : : ; 1 should be the nodal basis de�ned by the grid 
2�L.The nodal-basis functions are then self-similar and satisfy the recurrence relation�2h(x0;y0) � 1Xi;j=�1�i;j�h(x0+ih;y0+jh) ;where ��1;�1 = ��1;1 = �1;�1 = �1;1 = 1=4 ; �0;�1 = ��1;0 = �0;1 = �1;0 = 1=2 ; �0;0 = 1 :This weights are, after reordering of the indices exactly the non-zero values �L�1;iL;j in(37). They can be stated shortly by the well-known stencil notation14 264 1 2 12 4 21 2 1 375 :Using bilinear interpolation in a multilevel preconditioning algorithm saves the setupphase for the computation of the interpolation weights. A further advantage is, that ifinterpolation and discretization can be expressed with nine-point stencils, the Galerkincoarsening leads to discretizations on coarser levels which can be expressed by nine-point stencils again. This means, that the sparsity pattern of the matrices is preservedin the coarsening process.The major disadvantage of bilinear interpolation is its lack of 
exibility which canresult in bad convergence rates, as we will see in the numerical results for singularlyperturbed problems.For this kind of interpolation the associated multilevel preconditioner (30) results inthe so-called MDS-method, see [63], which is just the variant of the BPX-preconditioner[11, 58] involving multilevel diagonal scaling.15



4.2. Standard coarsening with matrix-dependent interpolation. In con-trast to the use of a-priori �xed interpolation and restriction weights in PLL�1; L =M; : : : ; 2; as in the case of bilinear interpolation, one can take advantage of the infor-mation contained in the matrix AL; L = M; : : : ; 2; respectively. Coarsening schemesbased on this idea are called matrix-dependent, see [1, 19, 20]. In algorithmic notation:Matrix-dependent coarsening schemeGiven initially AM .for L = M; : : : ; 2:Compute PLL�1 from AL:ComputeAL�1 = (PLL�1)TALPLL�1:This approach requests an initial setup phase, where the interpolations and the Galerkincoarse grid operators are computed successively. To be competitive, the number ofoperations for the setup phase must be bounded by a constant times the number ofunknowns.In this subsection, we consider approaches with a standard coarsened grid sequenceas in subsection 4.1, but now the interpolation and restriction matrices and, by means ofthe Galerkin approach, also the discrete operators are chosen dependently of the �ne gridmatrix. In connection with this interpolations ILU-type smoothers can lead to multigridmethods with robust convergence rates, see Wittum [56, 57], Wesseling [54, 55], deZeeuw [19], Reusken [43], Wagner [52], Fuhrmann [23], and the more preconditioning-oriented algorithms of Axelsson and Vassilevski [2, 3], and van den Ploeg et al. [48, 49].As stated already in the introduction all these approaches are more or less attemptsto approximate the Block Gaussian elimination (Schur complement process) of theunknowns belonging to grid points of the �ne grid but not belonging to the next coarsergrid (recursively over all levels). For a general framework to that, see [31]. Some ofthese methods are called algebraic due to the algebraic, i.e. matrix-dependent natureof the construction of interpolation, restriction and coarse grid operators. Nevertheless,they belong to the geometric type of multilevelmethods due to the geometric coarseningprocess of the involved sequence of grids.In [20], Dendy proposes a coarsening scheme for nine-point discretizations. There,as in the case of bilinear interpolation, regular coarsened grids 
h;
2h; : : : ;
1=2 ; h =2�M are used again.Let the discretization matrix AM be given in stencil notation by264 �i;j�1;�1 �i;j�1;0 �i;j�1;1�i;j0;�1 �i;j0;0 �i;j0;1�i;j1;�1 �i;j1;0 �i;j1;1 375 ; i; j = 1; : : : ; 2L � 1:(38)The upper indices i; j should suggest that the operator may be domain-dependent andthe stencils are therefore varying from grid point to grid point. The interpolation is16



expressed by nine-point stencils, too:264 �i;j�1;�1 �i;j�1;0 �i;j�1;1�i;j0;�1 �i;j0;0 �i;j0;1�i;j1;�1 �i;j1;0 �i;j1;1 375 ; i; j = 1; : : : ; 2L�1 � 1:(39)After reordering these are our weights �L�1;iL;j of (37) again. Here,�i;j0;0 = 1 ; i; j = 1; : : : ; 2L�1 � 1;which means values in the coarse grid points are identically transfered to the corre-sponding �ne grid points, as in the bilinear interpolation. For the weights �i;j�1;0; �i;j0;�1we build two one-dimensional stencils by summing up the weights of the stencil (38) inthe coordinate directions. Then we request a grid function PLL�1uL�1; uL�1 2 IRnL�1 tosolve the local homogeneous one-dimensional problems de�ned by this stencils exactlyin the points (ihL; jhL); where i+ j is odd. Thus, we obtain the weights�I;J�1;0 = �X1s=�1 �i�1;j�1;sX1s=�1 �i�1;j0;s ;and �I;J0;�1 = �X1s=�1 �i;j�1s;�1X1s=�1 �i;j�1s;0 :Here, for convenience of notation, let (i; j) = (2I; 2J): The diagonal weights are derivedfrom the demand (ALPLL�1uL�1)(ihL; jhL) = 0 ; uL�1 2 IRnL�1for odd i and j. This leads to the formulas�I;J�1;�1 = ��i�1;j�1�1;�1 + �i�1;j�1�1;0 �I;J0;�1 + �i�1;j�10;�1 �I;J�1;0�i�1;j�10;0 ;�I;J�1;�1 = ��i�1;j�1�1;�1 + �i�1;j�1�1;0 �I;J0;�1 + �i�1;j�10;�1 �I;J�1;0�i�1;j�10;0 :Although the sequence of grids for the Dendy algorithm is the same as for the bilinearinterpolation scheme, due to the matrix-dependent choice of the weights in (37) specialbasis functions on the coarser levels are constructed implicitly which are in general notidentical to the nodal basis.In comparison with bilinear interpolation, the Dendy interpolations perform muchbetter in connection with symmetric interface problems. But for certain other problemsthey are still not robust enough. 17



4.3. Algebraic coarsening with matrix-dependent interpolations. Alge-braic multigrid methods were �rst introduced in the early eighties by Brandt, Mc-Cormick, Ruge and St�uben [13, 14, 44, 45]. Here, �rst a grid is set up on the nextcoarser level by using algebraic information from AL and then an appropriate interpo-lation scheme is de�ned. After computing AL�1 via the Galerkin identity the processis repeated until a su�ciently coarse level system is obtained analogously to the shortalgorithm in section 4.2. AMG is necessarily less e�cient than highly specialized geo-metric multigrid solvers for elliptic problems on uniform rectangular grids. However,for more complicated cases with complex domains, AMG has been shown to behaverobust and thus performs quite favorably in terms of operation count and CPU time.AMG also works for problems where geometric multigrid methods are impossible todesign. AMG uses no sophisticated smoother, but only standard Gau�-Seidel. Therobustness of AMG is obviously the merit of the appropriate chosen grid coarseningstrategy and the associated interpolations. So it is a natural approach to examine thepreconditioning properties of multilevel preconditioners with AMG-type interpolations.Algebraic multigrid goes one step further than the matrix-dependent schemes. Thegrids should be nested again, but they need not to be uniform anymore. In fact,uniformity, if given for the �nest grid, is in general not maintained in the process. Wewill nevertheless start with �ne level discretizations based on regular grids 
h whereh is a negative power of two to be able to compare the performance of AMG withthe other two coarsening schemes which depend on regular grids. In general, it alsois not predictable how many grids will be constructed by the AMG algorithm, i.e.M 6= log2(h�1): It is more appropriate to think in terms of graphs in connection withalgebraic multigrid than to think in terms of grids. In the following we will denote theset of indices of the grid corresponding to level L by NL: For the two coarsening schemesde�ned above these sets were the numbers 1; 2; : : : ; (2L�1)2: Now we only demand thatthe index sets are nested N1 � N2 � : : : � NM�1 � NM :Once again, to each grid point there corresponds a basis function with the same index.But in contrast to the geometric coarsening schemes, we now will assume that basisfunctions on di�erent levels with equal indices are centered around the same point of
: For an AMG algorithm, the sequence of matrices AL must be constructed alge-braically. The AL�1; L = M; : : : ; 2 are computed successively by selecting a subset ofthe unknowns of the level L system and by evaluating the strength of the connectionsbetween the unknowns in AL. The basis for our implementation is the AMG methodof Ruge and St�uben [44, 45] which uses the assumption that the initial discretizationmatrix AM is symmetric positive de�nite and a M-Matrix.According to a well-known variational principle it is the best for a given inter-polation to determine the coarse-grid discretization via Galerkin-coarsening. All errorcomponents lying in the range of the interpolation are then eliminated by a single coarsegrid correction. In multigrid theory one has to take care that error components whichare persistent to the smoother are well represented on coarser grids.18



The e�ect of Gau�-Seidel iterations on symmetric positive de�nite AM is well un-derstood and can be used to guide the construction of the coarser level systems AL forL = M � 1; : : : ; 1: Gau�-Seidel smoothing is stalling whenever the error eL is big incomparison to the residual rL.Because of ALeL = rL; we have ALeL � 0 then. Or for a single unknown(eL)i = � 1(AL)ii nLXj=1j 6=i (AL)ij(eL)j :This sum may be splitted into the error components visible on the coarse grid (and thuseliminated by a single coarse grid correction step) and those which are not, i.e.(eL)i = � 1(AL)ii 0BB@ Xj2CLj 6=i (AL)ij(eL)j + Xj2FLj 6=i (AL)ij(eL)j1CCA :Here CL := NL�1 and FL := NL n NL�1: If the second sum could be eliminated on alllevels, AMG would be a direct solver. In this case, the ideal interpolation weights wouldbe given by(40) (PLL�1eL�1)i = 8>><>>: (eL�1)i ; i 2 CL� 1(AL)ii Xj2CLj 6=i (AL)ij(eL�1)j ; i 2 FL:Unfortunately, this ideal assumption can hardly be ful�lled when we want a geometricdecrease of the number of grid points on each level. Nevertheless, we try to minimizethe second sum by choosing the coarse grid points CL := NL�1 from NL appropriately.We will brie
y review the coarse grid selection part of AMG, as introduced by Rugeand St�uben [44, 45]. For reasons of simplicity the level index L is omitted. Here, wehave to de�ne the set of strongly coupled neighbours Si of a point i. Letd(i; I) := 1maxk 6=i f�AikgXj2I �Aij ;where I is any subset of N; andSi := fj 2 N jd(i; fjg) � �g; Si;T := fj 2 N ji 2 Sjg :The partitioning in �ne and coarse grid points is performed in two phases on eachlevel. There, we select coarse grid points in such a manner, that as many strongcouplings as possible are taken into consideration.19



Selection of coarse grid points:Setup Phase I1. Set C = ; and set F = ;2. While C [ F 6= N doPick i 2 N n (C [ F ) with maximal jSi;T j+ jSi;T \ F jIf jSi;T j+ jSi;T \ F j = 0then set F = N n Celse set C = C [ fig and set F = F [ (Si;T n C);endifThe measure jSi;T j + jSi;T \ F j is purely heuristical. The �rst term is associated tothe total number of strongly coupled neighbours, the second one to the number ofstrongly coupled neighbours which are in F: Domains with the same discretizationstencil for most nodes (typically inner nodes), tend to have the same value of the measurejSi;T j+ jSi;T \F j for them. Note that the action to pick an index in step 4 of the abovealgorithm is non-deterministic and allows di�erent implementations, depending on thechosen underlying data structures, see also [15]. Furthermore, using dynamic datastructures and incremental techniques, it is possible to implement the overall setupalgorithm (i.e. phase I and II) to need a number of operations proportional to thenumber of �ne grid unknowns. Further improvements should be possible, if one wouldhandle nodes situated next to the boundary of the domain and inner nodes di�erently.In a second phase the �nal C-point choice is made.Selection of coarse grid points:Setup Phase II1. Set T = ;2. While T � F doPick i 2 F n T and set T = T [ figset ~C = ; and set C i = Si \ Cset F i = Si \ FWhile F i 6= ; doPick j 2 F i and set F i = F i n fjgIf d(j; C i)=d(i; fjg) � �then if j ~Cj = 0then set ~C = fjg and set C i = C i [ fjgelse set C = C [ fig, set F = F n fig and Goto 2endifendifset C = C [ ~C, set F = F n ~CThis second algorithm has to make sure, that each point in F is strongly coupleddirectly with points in C or at least with points in F; which are strongly coupled withpoints in C: Again, the strategy to force the set ~C to contain at most one element ispurely heuristic.After the points NL where divided into the sets FL and CL; we could de�ne the20



interpolation as given in (40). Indeed, in the �rst AMG implementations it was de�nedlike this. In the algorithm of Ruge and St�uben, a little more sophisticated interpolationis used, which gives much more better results in numerical experiments:(41) (PLL�1eL�1)i := 8>>>>>><>>>>>>: (eL�1)i ; i 2 CL�Xj2CiL ((AL)ij + cij) (eL�1)j(AL)ii + cii ; i 2 FL;where cij := Xk 62CiLk 6=i (AL)ik(AL)kj(AL)ki +Xl2CiL(AL)kl :Once the interpolation matrix PLL�1 is constructed, the system matrix AL�1 isdetermined by the Galerkin identity (31). Then, the coarsening proceeds recursivelyaccording to the scheme in section 4.2 until the number of remaining unknowns equalsone. Note that, in an elaborate implementation of AMG, the number of operationsneeded for the whole setup phase, i.e. the coarse grid selection and the computation ofthe interpolation and coarse grid matrices, is about 2-3 V-cycles of the correspondingmultigrid method.5. Numerical experiments. We now consider the results of our numerical ex-periments. We discretized problem (35) on the �nest grid 
h by a �nite element or�nite di�erence method. Then, in a setup phase we computed the interpolation weightswhere necessary. With these weights we built up our multilevel preconditioned matricesPEMBEM(PEM)TAM and computed their condition numbers �:From the condition number, an upper bound of the error reduction after i iterationsteps of the associated conjugate gradient method (for symmetric problems) is given by2�i where � := p�� 1p�+ 1describes the worst case convergence rate of the method. But since often, if the eigen-value spectrum is clustered somehow, a better convergence rate can be observed inpractice, we also give the number of iteration steps it the conjugate gradient methodneeds to reduce the L2-norm of the residual by a factor 10�14:We also give the measuredaverage reduction rate � :=  jritj2jrit�10j2! 110over the last 10 iteration steps of the corresponding conjugate gradient method. Asstarting vector for the iteration we used random values.21



Since, at least for the AMG coarsening process, the resulting grids and matriceson the coarser levels give an interesting insight to the method for singular perturbedproblems and operators with locally varying coe�cients, we also give certain �guresdescribing the resulting grid sequence and show snapshots of some of the coarse gridmatrices. Here, the size of a grid point indicates the coarsest level it belongs to andin the graphs of the matrices, large entries of the matrix correspond to graphicallythicker displayed edges. Furthermore, if not indicated otherwise, we used the values� = 0:25 and � = 0:35 in the AMG coarsening process since these values turned out inour experiments to produce mostly quite robust results, at least for the case 
 = [0; 1]2with Dirichlet boundary conditions.5.1. Multilevel preconditioning of the Laplacian. In the following, we con-sider the Laplace operator �� := � �2�x21 � �2�x22 :(42)Here, we discretize on the �nest grid 
h by three di�erent approaches, i.e. by bilinear�nite elements resulting in the usual 9-point stencil, by �nite di�erences resulting in thewell known 5-point stencil, and by a �nite di�erence method, giving a 5-point stencilwhich is rotated by an angle of 45 degrees with respect to the coordinate axes. We thenstudy the convergence properties of the di�erent multilevel preconditioners.5.1.1. Finite element discretization. If we discretize the Laplacian using bi-linear �nite elements, we obtain the usual 9-point stencil13h2 264 �1 �1 �1�1 8 �1�1 �1 �1 375 :(43)Interestingly, in this case, all three coarsening schemes result in almost the same en-larged system matrices, since, also for Dendy's approach and our implementation ofAMG, the standard bilinear interpolation is constructed in the interior of the domain.For Dendy's approach, this can be seen immediately by putting the 9-point stencil ofthe Laplacian in the formulas in section 4.2. For the AMG method, our speci�c im-plementation, i.e. the ordering in which the points are picked in the setup phase, isthe reason for it. Compare also Figure 1, where the hierarchy of constructed grids andthe graph of the coarse grid matrix after four coarsening steps is given for the AMGapproach. We see that AMG constructs a regular sequence of grids. However, due toboundary e�ects, its interpolation weights next to the boundary �
 are not identical tothose of bilinear interpolation and the Dendy scheme. As a consequence the conditionnumbers and convergence rates are slightly di�erent.Table 1 shows the resulting condition numbers, convergence rates and iterationcounts. Results for the Dendy scheme are omitted, because they are identical withbilinear interpolation for this problem. 22



Table 1Condition numbers, convergence rates and iteration counts for the preconditioning of the Laplaceoperator, 9-point stencil on the �nest grid.h�1 MDS AMG8 � 2.96 2.91� 0.15 0.14it 22 2216 � 3.59 3.55� 0.25 0.25it 30 3032 � 4.07 4.04� 0.31 0.30it 35 3564 � 4.46 4.43� 0.34 0.34it 39 39128 � 4.77 4.76� 0.36 0.36it 42 42
Fig. 1. AMG-Hierarchy of grids for the Laplace problem with 9-point stencil, initial meshwidthh = 1=32, and resulting coarse grid matrix after the third coarsening step.5.1.2. Finite di�erence discretization. Now, we use a �nite di�erence methodfor the discretization of the Laplacian on the �ne grid which corresponds to the well-known 5-point stencil 1h2 264 �1�1 4 �1�1 375 :(44)Once again, the Dendy scheme reproduces the weights of the bilinear interpolation. Itsresults are therefore omitted. The corresponding condition numbers, convergence ratesand iteration counts are given in Table 2. They are in general by about a factor 1.323



worse than the values from subsection 5.1.1.Table 2Condition numbers, convergence rates and iteration counts for the preconditioning of the Laplaceoperator, 5-point stencil on the �nest grid.h�1 MDS AMG8 � 4.02 4.32� 0.17 0.18it 28 2816 � 4.88 5.73� 0.33 0.34it 37 3832 � 5.65 6.12� 0.38 0.38it 43 4164 � 6.29 6.95� 0.41 0.42it 47 47128 � 6.83 8.20� 0.43 0.42it 51 52Figure 2 shows the hierarchy of grids constructed by the AMG approach for thediscretization with meshwidth h = 1=32. Now, in contrast to the 9-point stencil case, thecoarsening structure is not more totally regular and coarsening takes place mainly withrespect to 45 degree rotated coordinate axes. Furthermore, boundary e�ects becomevisible. Note that now 6 coarsening levels are produced by our AMG method. Figure2 also shows the graph of the coarse grid matrix after three coarsening steps.
Fig. 2. AMG-Hierarchy of grids for the Laplace problem with 5-point stencil, initial meshwidthh = 1=32, with 6 resulting coarse levels and coarse grid matrix after four coarsening steps.24



5.1.3. Rotated �nite di�erence discretization. It is interesting to use a �nitedi�erence discretization for the Laplacian on the �ne grid that corresponds to the 5-point stencil which is rotated by 45 degrees, i.e.12h2 264 �1 �14�1 �1 375 :Note that the associated �ne grid matrix Ah is (after permutation) a fully decoupled 2by 2 block diagonal matrix. In other words, the set of grid points (ih; jh) where i+ jis even and the set of grid points with odd i+ j are not connected in the graph of Ah.The condition numbers, convergence rates and iteration counts for our approaches aregiven in Table 3. Table 3Condition numbers, convergence rates and iteration counts for the the preconditioning of theLaplace operator, rotated 5-point stencil on the �nest grid.h�1 MDS AMG8 � 17.3 3.67� 0.09 0.16it 26 2416 � 77.6 4.49� 0.34 0.26it 61 3232 � 341 5.73� 0.60 0.33it 129 3864 � 1466 5.92� 0.76 0.36it 269 43128 � 6213 6.53� 0.86 0.40it 556 48We see that the preconditioner based on bilinear interpolation, i.e. the BPX-typemethod, gives larger and larger condition numbers and convergence rates for successively�ner discretizations. Its convergence behaviour is dependent on the mesh size and theunknowns. Its condition number grows with h�2 like that of the unpreconditioned �negrid matrix Ah itself. Once again, the interpolation weights according to the Dendyscheme reproduce the bilinear interpolation and its results are omitted. However themethod based on the AMG coarsening shows a condition number which is independenton the �ne grid mesh size. Its is slightly worse than that for the 9-point stencil butslightly better than that for the usual 5-point stencil. The AMG approach has noproblems with the decoupled �ne grid sti�ness matrix whereas the other methods do.25



It maintains a two block structure under the coarsening process, as it can be seen fromFigure 3. Here, the hierarchy of grids constructed by the AMG approach starting withthe discretization with initial meshwidth h = 1=32 is given. Now, 5 levels are producedby our AMG method. The graph of the coarse grid matrix after three coarseningsteps consists of two non-connected subgraphs showing that the 2 by 2 diagonal blockproperty of the �ne level matrix is inherited to the coarser levels also.
Fig. 3. AMG-Hierarchy of grids for the Laplace problem discretized with rotated 5-point stencil,initial meshwidth h = 1=32, with 5 resulting coarse levels and coarse grid matrix graph after threecoarsening steps.5.2. Multilevel preconditioning of the Helmholtz operator. Now, we con-sider the Helmholtz operator ��+ " � id:(45)We discretize it on the �nest grid 
h by the �nite di�erence method which results inthe 5-point stencil 4 1h2 264 �1�1 4 �1�1 375+ "264 1 375(46)and study the convergence properties of the di�erent multilevel preconditioners forvarying values ". The results are given in Table 4. We restrict our presentation here tothe case of the �nite di�erence discretization, since, in further numerical experiments,the �nite element discretization for the �nest level did not change things substantially.The results were analogous. Note that for "!1 basically the identity appears (afterscaling). If " equals ��min(��h) then the �ne grid matrix Ah gets singular5.From Table 4 the following can be seen: First, for positive values of ", the precondi-tioner based on bilinear interpolation, i.e. the BPX-type method gives rising condition4 To be able to treat the case "!1; we implemented �1"�+ id instead.5 The same holds for all other eigenvalues of the discrete Laplacian. For values " < ��min(��h) wewould have an inde�nite matrix Ah: 26



Table 4Condition numbers, convergence rates and iteration counts for the preconditioning of the Helmholtzoperator, 5-point stencil on the �nest grid." = �19 " = 100h�1 MDS Dendy AMG MDS Dendy AMG8 � 33.6 15.8 15.1 3.54 4.21 4.91� 0.14 0.20 0.25 0.18 0.21 0.20it 32 31 31 24 27 2716 � 28.4 10.9 24.9 4.92 6.07 7.40� 0.36 0.37 0.34 0.32 0.32 0.32it 42 40 41 35 38 3832 � 29.2 10.5 20.3 5.66 7.26 8.11� 0.40 0.40 0.41 0.38 0.40 0.43it 47 45 45 42 44 4764 � 30.8 10.8 21.9 6.06 7.98 8.13� 0.42 0.42 0.42 0.40 0.41 0.45it 52 49 50 46 49 52128 � 32.5 11.3 43.5 6.44 8.46 8.71� 0.44 0.44 0.57 0.43 0.43 0.45it 56 53 59 50 53 54" = 106 " =1h�1 MDS Dendy AMG MDS Dendy AMG8 � 3.52 3.00 4.00 3.51 3.00 1.00� 0.01 0.01 0.01 0.06 0.00 0.00it 13 10 11 8 3 116 � 5.44 4.00 4.00 5.44 4.00 1.00� 0.13 0.01 0.01 0.13 0.00 0.00it 28 13 11 22 5 132 � 7.58 5.01 4.00 7.57 5.00 1.00� 0.29 0.04 0.01 0.25 0.00 0.00it 42 26 12 33 8 164 � 9.82 6.06 4.00 9.78 6.00 1.00� 0.41 0.10 0.01 0.34 0.01 0.00it 54 20 13 42 10 1128 � 12.3 7.32 5.00 12.0 7.00 1.00� 0.51 0.16 0.06 0.42 0.02 0.00it 65 27 19 51 13 127



numbers and convergence rates for large values " and successively �ner discretizations.For large " its convergence behaviour seems to be dependent on the mesh size and theunknowns. Especially for the case " = 1, i.e. the identity (after scaling), the condi-tion number seems to grow faster than #levels = log2(h�1). For the Dendy approach� = #levels holds exactly there. By plugging in the corresponding values into the for-mulas in section 4.2 we see that the interpolation weights equal zero then, except forthe central weights which are 1.However, the method based on the AMG coarsening shows a condition numberwhich is independent of both, the �ne grid mesh size and the value of ". For " =1; iteven stops the coarsening process, recognizing that the unknowns are totally decoupled.For the case " = �19 all methods still behave not to bad, with Dendy's approachrelatively the best. However, as more we approach the �rst eigenvalue of the Laplacian,as worse the convergence results get for all three methods6. Altogether, the AMG basedpreconditioner provides an e�cient and robust solution method for the Helmholtz prob-lem for values of " su�ciently away from the �rst eigenvalue of the discrete Laplacian.For the initial meshwidth of the discretization h = 1=32 and the values " = 100; 1000and 106, Figure 4 shows the hierarchy of grids constructed by the AMG approach. Here,7, 7 and 3 coarse levels are set up by the method. Interestingly, for the case " =1, theAMG process does no re�nement at all. It therefore detects that the identity operatorneeds no coarsening. The coarse grid matrices for the values " = 100; 1000 and 106after 4, 3 and 2 coarsening steps, respectively, are given in Figure 5. We see for the case" = 106 that the coarse grid matrix after two coarsening steps is basically diagonal.
Fig. 4. AMG-Hierarchy of grids, initial meshwidth h = 1=32, for the Helmholtz problem with"=100, 1000 and 106, discretized by 5-point stencils. 7, 7 and 3 resulting coarse levels.5.3. Multilevel preconditioning for di�usion problems with jumps in thecoe�cients. Now we consider so-called interface problems, which arise for example inthe area of porous media 
ow or in contact problems and related questions where mediawith di�erent material properties stick together. The underlying operator isd(x1; x2) ��;(47)6 Note that by another matrix-dependent coarsening process which is based on a directional splittingof the 2D Helmholtz operator involving a energy based interpolation that stems from the resulting 1Dproblems, very good condition numbers and convergence rates can be gained also for values of " , whichare extremely close to the �rst eigenvalue of the discrete Laplacian. For details, see [24].28



Fig. 5. Coarse grid matrix graph for the the Helmholtz problem with "=100, 1000 and 106;discretized by 5-point stencils. Snapshots after 4, 3 and 2 coarsening steps, respectively.where d is assumed to be a piecewise constant scalar function, which possesses largejumps in 
. In the discrete case, this means that the di�usion coe�cient can vary bya few orders of magnitude within one mesh width.In the following, we assume that the jumps in the di�usion coe�cient are alignedexactly with the lines of the �nest grid and the di�usion value is not changing within onecell of the discretization. This implies that the di�usion coe�cient can have di�erentvalues at most in the four quadrants of the support of a �nest level basis function.Therefore, we obtain in the point (ih; jh) the stencil13h2 264 �d1 �(d1 + d2)=2 �d2�(d1 + d3)=2 2(d1 + d2 + d3 + d4) �(d2 + d4)=2�d3 �(d3 + d4)=2 �d4 375 ;(48)where d1; d2; d3 and d4 denote the values of the di�usion coe�cient in the quadrants ofthe support of the respective basis function.Now, we �rst consider the four corner problem. Here, the domain 
 is subdividedby the lines x1 = r and x2 = c into four subdomains (see �gure 6). In each subdomain
i; i = 1; : : : 4, the di�usion coe�cient can take a di�erent constant value.Fig. 6. Decomposition of the domain 
 for the four corner model problem.
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and study the convergence properties of the di�erent multilevel preconditioners forvarying values ". There, we consider two di�erent cases. In the �rst case, the linessubdivide 
 exactly into four equally spaced subdomains. This implicates that theso-called cross point is contained in all coarser grids, if standard coarsening is assumed.In the second case, we shift the jump lines by one mesh size h on the �nest grid. Thus,the jumps and especially the cross point belongs only to the �nest grid, if standardcoarsening is assumed, and are not more resolved on the coarser levels.This model problem is known to cause severe problems to standard multigrid meth-ods, whereas Dendy's approach is able to cope with it. As a matter of fact, matrix-dependent geometric coarsening methods were �rst developed for such kinds of prob-lems, see also [20] or [30], pp 212-217. In [21] and [39] and the references cited therein,there also exists some convergence theory to it.Table 5Condition numbers, convergence rates and iteration counts for the preconditioning of the fourcorner problem with jumps located at r = c = 1=2, �nite element discretization (48) on the �nest grid.h�1 " = 1 " = 2 " = 4MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG8 � 3.95 3.95 3.93 4.40 4.40 4.39 4.47 4.47 4.45� 0.16 0.17 0.17 0.15 0.15 0.16 0.12 0.13 0.14it 25 25 25 26 26 25 27 27 2516 � 5.26 5.26 5.25 6.21 6.21 6.17 6.35 6.35 4.45� 0.28 0.27 0.27 0.26 0.26 0.27 0.25 0.25 0.27it 33 33 33 35 35 33 38 38 3532 � 6.58 6.58 6.59 8.28 8.28 8.20 8.56 8.56 8.46� 0.32 0.32 0.31 0.31 0.31 0.32 0.31 0.32 0.33it 38 38 41 37 41 40 45 45 4264 � 7.90 7.90 7.92 10.6 10.6 10.5 11.1 11.1 11.0� 0.34 0.34 0.36 0.34 0.34 0.36 0.34 0.35 0.37it 43 43 44 46 46 45 50 50 47128 � 9.18 9.18 9.23 13.3 13.3 13.1 14.0 14.0 13.8� 0.36 0.36 0.38 0.36 0.36 0.40 0.46 0.46 0.42it 47 47 48 50 50 53 57 57 58The results of our experiments are given in Tables 5 and 6. We see that the precon-ditioner based on bilinear interpolation gives rising condition numbers and convergencerates for larger values " and successively �ner discretizations. Also for �xed h butvarying ", we see that the condition numbers are dependent on " for the second caser = c = 1=2 + h, whereas they are not in the �rst case r = c = 1=2.In contrast to that, for both, the approach due to Dendy and the AMG basedmethod, the condition numbers remain constant for �xed h but varying values of ".However, the results of the Laplacian can not be reached. Interestingly, the secondcase, i.e. r = c = 1=2 + h; gives even slightly better condition numbers than the �rstone. 30



Table 6Condition numbers, convergence rates and iteration counts for the preconditioning of the fourcorner problem with jumps located at r = c = 1=2 + h, �nite element discretization (48) on the �nestgrid.h�1 " = 1 " = 2 " = 4MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG8 � 4.98 3.08 5.76 6.93 3.05 5.73 7.31 3.02 5.71� 0.18 0.17 0.21 0.17 0.16 0.22 0.16 0.17 0.20it 28 25 30 30 26 30 32 28 3016 � 7.71 4.08 8.05 12.11 4.42 5.54 13.1 4.48 5.56� 0.34 0.26 0.35 0.35 0.28 0.30 0.38 0.27 0.32it 42 33 43 49 35 39 54 38 4132 � 10.2 5.15 10.6 20.3 6.03 8.23 26.1 6.11 8.15� 0.42 0.33 0.41 0.49 0.35 0.39 0.55 0.32 0.37it 52 39 50 68 42 48 76 46 4964 � 12.0 6.24 10.5 29.3 8.21 10.3 46.9 8.46 8.39� 0.50 0.39 0.46 0.58 0.40 0.44 0.60 0.38 0.43it 61 45 58 87 51 54 100 56 56128 � 13.1 7.39 11.7 36.0 10.5 10.8 74.4 11.8 10.7� 0.54 0.41 0.49 0.65 0.44 0.47 0.64 0.44 0.47it 69 50 65 103 59 64 129 66 69The hierarchy of grids for the AMG approach and the graphs of some resultingcoarse grid matrices are given in Figure 7.
Fig. 7. AMG-Hierarchy of grids for the four-corner problem h = 1=32, r; c = 1=2 + h and " = 4,with 6 resulting coarse levels and graph of the coarse grid matrix after three coarsening steps.Next, we consider the so-called staircase problem due to [1]. Here, we use howeverDirichlet boundary conditions. Figure 8 gives the decomposition of the domain 
 intosubdomains with di�erent di�usion coe�cients. They take the value 1 in 
1 and thevalue 10" in 
2. Here, one length unit corresponds to h�1=16 mesh widths.31



Fig. 8. Decomposition of the domain 
 for the staircase problem..
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1 3 5 7 9 11 13 15135791113Table 7 gives the measured convergence results. We see that the preconditionerbased on bilinear interpolation possesses the worst condition numbers. The results ofthe Dendy and the AMG approach are better.Table 7Condition numbers, convergence rates and iteration counts for the preconditioning of the staircaseproblem with Dirichlet boundary conditions, �nite element discretization (48) on the �nest grid.h�1 " = 1 " = 2 " = 4MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG16 � 10.7 5.23 7.12 22.0 7.85 6.55 25.8 8.74 6.62� 0.37 0.26 0.35 0.45 0.29 0.36 0.45 0.26 0.34it 46 33 42 56 35 41 62 36 4232 � 11.1 5.77 7.48 22.9 8.64 7.64 26.9 9.60 7.76� 0.41 0.34 0.41 0.45 0.34 0.41 0.44 0.31 0.42it 49 39 47 60 40 47 67 42 5064 � 11.8 6.24 8.58 24.2 9.23 8.82 28.4 10.2 8.97� 0.43 0.37 0.43 0.44 0.37 0.45 0.47 0.37 0.45it 54 43 52 64 46 53 71 48 56128 � 12.4 6.62 9.33 25.2 9.66 11.0 29.6 10.7 11.3� 0.44 0.39 0.44 0.46 0.39 0.49 0.48 0.39 0.48it 57 47 53 68 50 59 76 53 62The hierarchy of grids for the AMG approach and the graphs of resulting coarsegrid matrices are given in Figure 9.At last, we study a di�usion problem where the interface lines possess a spiralshaped structure. The subdivision of the domain is given in Figure 10. Again, we useDirichlet boundary conditions. The value of the di�usion coe�cient is 1 in 
1 and 10"in 
2. Now, one length unit corresponds to h�1=32 mesh widths.32



Fig. 9. AMG-Hierarchy of grids for staircase problem, initial meshwidth h = 1=32 and " = 4, with6 resulting coarse levels and graphs of the coarse grid matrices after two and three coarsening steps.Fig. 10. Decomposition of the domain 
 for the spiral problem..
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1For such a problem, conventional multigrid methods are known to have quite badconvergence rates. This is also re
ected for the preconditioner based on the bilinearinterpolation in Table 8. Interestingly, also the preconditioner based on Dendy's methodis not robust any more. The resulting condition numbers are smaller than the ones forthe bilinear interpolation coarsening, but they still grow with rising ": However theAMG based method behaves fully robust and produces for all values of " basically thesame value for �xed h.The reason why the AMG approach behaves so favourably lies in its possibility toadapt itself on the coarser levels to the physical nature of the problem under consider-ation by setting up coarser grids which allow to resolve features of the operator also oncoarser levels su�ciently. This can be observed in Figure 11. There, the hierarchy ofgrids for the AMG approach and the graphs of some resulting coarse grid matrices aregiven. We clearly see that the coarse grid matrices exhibit the spiral structure of theproblem. They become nearly tridiagonal matrices where strong couplings follow thespiral line. Then, basically semi-coarsening along the spiral takes place on the coarserlevels. 33



Table 8Condition numbers, convergence rates and iteration counts for the preconditioning of the spiralproblem, �nite element discretization (48) on the �nest grid.h�1 " = 1 " = 2 " = 4MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG32 � 15.8 6.30 8.56 126 38.0 10.2 1960 670 8.76� 0.52 0.37 0.46 0.54 0.39 0.45 0.88 0.80 0.44it 68 44 56 120 68 55 173 98 5564 � 16.8 6.79 11.4 137 40.3 10.5 2140 715 10.7� 0.49 0.39 0.46 0.54 0.44 0.49 0.94 0.72 0.48it 72 48 59 126 74 59 199 117 62128 � 17.8 7.21 12.6 145 42.2 12.6 2264 749 12.8� 0.53 0.42 0.52 0.57 0.44 0.49 0.76 0.68 0.51it 77 52 64 133 78 69 215 128 76
Fig. 11. AMG-Hierarchy of grids, initial meshwidth h = 1=32 and " = 4, with 8 resulting coarselevels and graphs of the coarse grid matrices after three and �ve coarsening steps.5.4. Multilevel preconditioning for anisotropic di�usion problems. Now,we consider the operator " �2�x21 + �2�x22 ;(49)which describes for values " 6= 1 anisotropic di�usion processes. We discretize it on the�nest grid 
h by the �nite di�erence method and obtain the 5-point stencil1h2 264 �1�" 2 + 2" �"�1 375 :(50)The convergence properties of the di�erent multilevel preconditioners for varying values" can be seen from Table 9.As it can be expected, the condition numbers and convergence rates of the pre-conditioner based on bilinear interpolation deteriorate for decaying ". The same holdsalso for the preconditioner based on Dendy's approach7 which leads to the same results,7 However, if additionally preconditioners corresponding to a line smoother or an ILU-smoother are34



Table 9Condition numbers, convergence rates and iteration counts for preconditioning of the anisotropicdi�usion problem, �nite di�erence discretization 50 on the �nest grid.h�1 " = 1 " = 0:9 " = 0:5MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG8 � 4.02 4.02 4.32 4.21 4.21 4.32 6.06 6.06 4.86� 0.16 0.16 0.19 0.27 0.27 0.20 0.22 0.22 0.20it 28 28 28 31 31 28 32 32 2916 � 4.88 4.88 5.73 5.18 5.18 5.62 8.56 8.56 5.57� 0.33 0.33 0.34 0.36 0.36 0.31 0.44 0.44 0.32it 37 37 38 39 39 37 47 47 3732 � 5.65 5.65 6.12 6.06 6.06 6.84 10.4 10.4 6.82� 0.38 0.38 0.38 0.39 0.39 0.41 0.50 0.50 0.38it 43 43 41 40 40 43 51 51 4264 � 6.29 6.29 6.95 6.79 6.79 8.50 11.9 11.9 7.05� 0.41 0.41 0.42 0.42 0.42 0.42 0.53 0.53 0.41it 47 47 47 44 44 49 57 57 48128 � 6.83 6.83 8.20 7.41 7.40 9.58 13.1 13.1 7.93� 0.43 0.43 0.42 0.45 0.45 0.46 0.55 0.55 0.45it 51 51 52 47 47 55 62 62 52h�1 " = 10�2 " = 10�3 " = 0MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG8 � 37.6 37.6 4.14 42.0 42.0 4.11 42.5 37.7 2.87� 0.19 0.19 0.16 0.26 0.26 0.08 0.07 0.03 0.00it 45 45 23 42 42 20 25 15 416 � 146 146 5.35 210 210 5.30 222 181 3.48� 0.68 0.68 0.30 0.82 0.82 0.24 0.33 0.11 0.02it 137 137 33 132 132 32 77 43 1032 � 344 346 6.68 880 880 5.49 1070 827 3.98� 0.88 0.88 0.38 0.91 0.91 0.32 0.81 0.28 0.11it 257 257 40 310 310 37 220 87 2464 � 523 523 7.57 2657 2657 6.48 4871 3643 4.39� 0.91 0.91 0.40 0.92 0.92 0.37 0.87 0.44 0.25it 342 342 45 672 672 42 487 175 33128 � 628 628 8.23 4973 4973 7.53 21516 15684 4.72� 0.92 0.92 0.45 0.96 0.96 0.40 0.94 0.51 0.29it 392 392 52 1022 1022 48 1049 353 3835



except for the case " = 0: Here, the Dendy approach leads to stencils which are equiv-alent to semi-coarsening but only on every second line. However, the preconditionerbased on the AMG approach is not a�ected if " decays. Of course, this is due to thesemi-coarsening e�ect of the AMG coarsening process, as it can be seen from Figures12. There, the hierarchy of grids for the AMG approach and the graphs of resultingcoarse grid matrices are given for the values " = 0:9; 0:1 and 0. Note that for " = 0only 5 levels are constructed due to pure semi-coarsening. On the coarsest level only adiagonal matrix associated to the middle line unknowns appears, the problem is fullydecoupled and AMG stops correctly the coarsening process. The corresponding condi-tion numbers are just that of the one-dimensional problem with MDS-preconditioningapplied to it.
Fig. 12. AMG-Hierarchy of grids for the anisotropy problem, initial meshwidth h = 1=32, " =0:9; 0:1 and 0 with 6, 7 and 4 resulting coarse levels.Since the simple anisotropic di�usion problem produced well expected results andgives no further insight into our preconditioners than the expected ones, we turn to adi�usion problem with locally varying anisotropy. To this end, we consider the problemillustrated by Figure 13. The anisotropy changes direction along the diagonal line of 
.The underlying operator is "1 �2�x21 + "2 �2�x22 ; where "1 = 1; "2 = 0; in 
1 and "1 = 0; "2 = 1;in 
2:

������������
1 
2Fig. 13. Decomposition of the domain 
 for the locally varying anisotropy problem.For the discretization, we used �nite di�erences again. Table 10 gives the resultsobtained for the di�erent preconditioning methods. We see that the condition numbersapplied on each level, good condition numbers can be regained for this model problem, at least for themultiplicative Schwarz method. 36



and convergence rates of all three methods deteriorate with �ner mesh sizes h. Howeverthe AMG based approach seems to be less sensitive.Table 10Condition numbers, convergence rates and iteration counts for the preconditioning of the di�usionoperator with jumping anisotropy, �nite di�erences discretization on the �nest grid.h�1 MDS Dendy AMG8 � 33.8 34.3 4.93� 0.23 0.22 0.23it 47 46 3016 � 189 202 7.57� 0.65 0.61 0.35it 150 149 4132 � 963 1198 12.2� 0.88 0.85 0.44it 458 464 5364 � 4652 6640 16.7� 0.98 0.97 0.49it 1078 1116 65128 � 20391 24676 25.1� 0.98 0.98 0.54it 2380 2512 82By means of the AMG process, semi-coarsening is now performed locally. This isillustrated in Figure 14 where the produced hierarchy of grids and the graph of thecoarse grid matrix after two coarsening steps are shown. Whether a di�erent choice of� than 0.25 might help to further improve the convergence behaviour of AMG for thisexample is an open question yet.
Fig. 14. AMG-Hierarchy of grids for locally varying anisotropy, initial meshwidth h = 1=32, with7 resulting coarse levels and graph of the coarse grid matrix after two coarsening steps.37



5.5. Multilevel preconditioner for convection di�usion problems. At last,we consider the convection di�usion operator��+ a(x1; x2) ��x1 + b(x1; x2) ��x2 :(51)We discretize it on the �nest grid using �nite di�erences. The 9-point stencil belongingto the discretization grid point (ih; jh) is then given by1h2 264 �1 � b+�1� a+ 4 + � �1� a��1 � b� 375 ;(52)where a� := hmax(�a((i � 1=2)h; jh); 0); b� := hmax(�b(ih; (j � 1=2)h); 0); � :=a+ + a� + b+ + b�: The convection coe�cients must be evaluated between the gridpoints to get stable discretizations. For the convection term we use here pure upwinddiscretization which results in a �rst order method only8.Now, the considered problem and the resulting matrices are not symmetric any-more. This renders any convergence theory following the lines of Xu [58, 59] or Oswald[35, 36, 37, 38] useless since it is only valid for symmetric operators. Note howeverthat the framework given in section 2 can be applied to non-symmetric problems aswell. Using the di�erent coarsening methods we still can build up an enlarged, nownon-symmetric system matrix belonging to a generating system9 or alternatively a mul-tilevel preconditioner (24). But now, the corresponding eigenvalues may be complex.Additionally, a conjugate gradient method is not working since the preconditioned sys-tem matrix is non-symmetric. Alternatively BiCGstab [50], CGsym [47], GMRES [46],or QMR [22] might be applied.Here, we simply symmetrize our diagonally scaled enlarged linear system matrix(34) by multiplying it with its transposed. Thus we obtain(BEM)1=2(PEM)T (AM )TPEM(BEM)(PEM)TAMPEM(BEM )1=2(53)and apply the conjugate gradient method to this system. Consequently, we study thesquare root of the generalized condition number of this matrix.This approach is superior to the symmetrization of the basis version of the multilevelpreconditioned matrix, PEMBEM(PEM)TAM ; since even for symmetric matrices AM thegeneralized condition number of the symmetrizised version would in general not givethe square of the condition number of the preconditioned matrix.8 Using central di�erences instead results in a second order method but gives also stability problemsfor larger values of the convection coe�cients. Note that in this case, for values of a; b resulting in astable discretization for given h and also for discretizations using arti�cial viscosity or the Il'in schemeon the �nest grid, the convergence properties of the di�erent multilevel preconditioners were basicallyanalogous to the results presented for the upwind discretization case.9 Especially for the non-symmetric case of the convection-di�usion equation, the Petrov-Galerkinapproach makes sense as well, both with respect to the overall generating system matrix and withrespect to the AMG coarse grid setup strategy itself.38



In our �rst examples we have chosen the coe�cient functions a(x1; x2) � a andb(x1; x2) � b to be constant over the whole domain 
: Then, � := arctan(b=a) givesthe angle between the convection and the x1-axis and " := pa2 + b2 gives its strength.We consider the cases b = 0 and a = b; i.e. � = 0 and � = �=4: The square root ofthe condition numbers for the enlarged matrices (53) associated to our three coarseningapproaches are given in Tables 11 and 12. We see that the enlarged matrix (53) based onbilinear interpolation gives rising condition numbers for rising values of ". Thus, it is notrobust, especially not in the case � = 0. The same holds also for the Dendy approach.However the enlarged matrix using the AMG approach results in comparison to that infairly good condition numbers. Whether an other choice of the AMG-parameters (�; �)might lead to further improvements is an open question yet.Table 11Square root of the condition numbers of (53) for the convection di�usion problem for � = 0, i.e.with convection in x1-direction, �nite di�erence upwind discretization (52) on the �nest grid.h�1 " = 100 " = 104 " =1MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG8 14.9 14.0 6.80 22.4 19.7 9.00 22.5 17.9 2.8016 26.1 22.0 9.71 88.7 59.5 13.2 90.6 50.6 3.5832 29.5 21.9 11.8 336 152 21.9 365 130 4.4164 29.7 20.0 15.2 1065 309 25.8 1468 318 5.25128 29.5 22.0 18.4 2221 394 27.7 5878 747 6.08Table 12Square root of the condition numbers of (53) for the convection di�usion problem for � = �=4, i.e.with convection in diagonal direction, �nite di�erence upwind discretization (52) on the �nest grid.h�1 " = 100 " = 104 " =1MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG8 4.75 7.20 8.94 5.25 8.02 9.57 5.25 8.03 6.0616 8.08 11.3 9.01 10.5 13.8 10.4 10.5 13.8 8.1532 12.7 15.0 13.9 21.3 20.9 17.4 21.3 21.0 11.764 17.8 17.7 16.6 42.3 31.1 20.4 43.0 31.4 16.2128 22.4 19.3 15.3 83.7 45.6 37.8 86.2 46.6 24.6In Figure 15 we give the hierarchy of grids for the AMG approach with initialmeshwidth h = 1=32, for the convection di�usion model problem and graphs of coarsegrid matrices after two coarsening steps. We see, that in the case � = 0; the matrix onthe coarser level mainly consists of the upwind stencil for the x1-derivative, whereas inthe case � = �=4 it consists of a sort of upwind stencil for @@x1 + @@x2 .Finally we consider a convection di�usion problem with locally varying coe�cientfunctions (see [44, 45]):a(x1; x2) = " � 4x1(x1 � 1)(1 � 2x2) ; b(x1; x2) = �" � 4x2(x2 � 1)(1 � 2x1) :(54) 39



Fig. 15. Left: AMG-Hierarchy of grids for the convection di�usion problem with � = 0, " = 104,initial meshwidth h = 1=32, 6 resulting coarse levels and graph of the coarse grid matrix after twocoarsening steps. Right: AMG-Hierarchy of grids for the convection di�usion problem with � = �=4," = 104, initial meshwidth h = 1=32, 6 resulting coarse levels and graph of the coarse grid matrix aftertwo coarsening steps.
Fig. 16. Direction of the convection for problem (54).Here, the direction of the convection is then almost circular around the point (1/2,1/2),see �gure 16. The measured results are given in Table 13. We see that the MDS-basedmethod has for larger values of " really bad condition numbers. The values for theDendy approach are somewhat better but far away from beeing robust. The AMG-based enlarged matrix (53), however, gives relatively good results10. Here, further workis necessary to improve the method.Figure 17 shows the hierarchy of grids produced by AMG coarsening, and addition-ally the coarse grid matrix after three coarsening steps for the case " = 105. Note that,here on the coarse grid, upwind stencils appear which follow the circular convectiondirection.Finally, it is interesting to look at the basis functions that were developed due tothe speci�c weighted interpolations induced by the Dendy and the AMG coarseningschemes. This is illustrated in Figure 18.10 Note that, for values of " up to 1015 the AMG-type method gives really robust condition numberswith basically the same values as for " = 104 and 106: However, for the exceptional case " =1; wherewe use the pure upwind stencil, AMG gives bad results.40



Table 13Square root of the condition numbers of (53) for the circular convection problem (54) �nite di�er-ence upwind discretization (52) on the �nest grid.h�1 " = 100 " = 104 " = 106MDS Dendy AMG MDS Dendy AMG MDS Dendy AMG8 8.76 10.2 6.74 17.5 34.9 8.09 17.7 36.0 8.1116 12.1 13.7 10.8 63.6 136 13.4 67.3 124 16.532 13.3 14.6 10.9 221 347 14.5 273 438 14.864 13.2 14.2 13.1 577 780 29.5 1096 1320 36.4128 12.8 14.6 18.6 984 475 35.5 4079 3444 41.1
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