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BILINEAR INTERPOLATION, MATRIX-DEPENDENT GEOMETRIC
COARSENING AND ALGEBRAIC-MULTIGRID COARSENING FOR

SECOND ORDER ELLIPTIC PDES
T. GRAUSCHOPF, M. GRIEBEL, H. REGLER

INSTITUT FUR INFORMATIK
TECHNISCHE UNIVERSITAT MUNCHEN

D-80290 MUNCHEN, FRG

Abstract. In this paper, we study additive multilevel preconditioners based on bilinear interpo-
lation, matrix-dependent interpolations and the algebraic multigrid approach. We consider 2nd order
elliptic problems, i.e. strong elliptic ones, singular perturbation problems and problems with locally
strongly varying or discontinuous coefficient functions. We report on the results of our numerical ex-
periments which show that especially the algebraic multigrid based method is mostly robust also in
the additive case.

1. Introduction. For the solution of elliptic PDEs, iterative methods based on
the multilevel principle are known to be fast solvers. They are often optimal in the
sense that the number of iterations necessary to reduce the error by a prescribed value
is independent of the mesh size used in the discretization or the number of unknowns,
respectively. Here, following [59], multigrid algorithms [12, 30] can be interpreted as
multiplicative Schwarz methods, whereas multilevel preconditioners [11] can be identi-
fied as their additive counterparts.

For strongly elliptic symmetric PDEs of second order (i.e. basically the Laplacian)
optimality of the convergence rate under moderate regularity assumptions was shown in
[5, 8, 29, 30] using smoothing and approximation properties for the multigrid method.
Without regularity assumptions, optimality was further shown in [4], [11], [34, 35, 36,
37, 63], [18] for the additive case and [9, 10], [63] for the multiplicative case.

However, for these methods in their standard version, the convergence rates are
still dependent on the coefficient functions of the operator under consideration, both
theoretically (via the Lemma of Sobolev, i.e. by the ellipticity constants) and practically
in numerical experiments. Thus, for singularly perturbed problems, for problems with
locally strong variation or even a jump in the coefficient functions, the convergence
rates become worse with stronger deviation from the ellipticity of the operator and this
renders the methods useless for practical applications. They are not robust in the sense
of [57].

Now, at least for the multigrid method, i.e. the multiplicative variant, there exist
basically two types of modifications of the standard method to remedy this situation.

First, there are a number of approaches where the underlying sequence of grids is
still coarsened the usual standard way but the interpolation and restriction matrices
and by means of the Galerkin approach also the discrete operators on the coarser grids
are chosen dependently of the fine grid matrix. However, a simple point-wise iterative
method used as smoother often fails to give robust convergence rates and ILU-type



smoothers must be employed instead. Then, at least for 2D problems, a robust multigrid
method results, see [56, 57]. The algorithms of Dendy [20], Wesseling [54, 55], de
Zeeuw [19], Reusken [43], Wagner [52], Kuznetsov [32], Fuhrmann [23], and also, to
some extent, the more preconditioning-oriented algorithms of Axelsson and Vassilevski
[2, 3], van den Ploeg [48], Botta et al. [49] belong to this type of method. All these
approaches are more or less attempts to approximate the Block Gaussian elimination
(Schur complement process) of the unknowns belonging to grid points of the fine grid
but not belonging to the next coarser grid (recursively over all levels). For a general
framework to that, see [31]. Some of these methods are called algebraic due to the
algebraic, i.e. matrix-dependent nature of the construction of interpolation, restriction
and coarse grid operators. Nevertheless, they belong to the geometric type of multilevel
methods due to the geometric coarsening process of the involved sequence of grids.

Apart from that, there exists the algebraic multigrid method due to Ruge and
Stiiben [44, 45] where not only the interpolation, restriction and coarse grid operators
are chosen in a matrix-dependent manner, but also the sequence of coarsened grids itself.
In this way, an algebraic principle is used for both, the construction of coarser grids and
the construction of the inter-grid transfer operators and the discrete operators on these
coarser grids. Thus, a method is gained where, in contrast to the previous mentioned
ones, a simple point-wise smoother (e.g. Gauss-Seidel or Jacobi) is sufficient for a robust
convergence behaviour of the overall method for a wide class of problems. Beside the
fact that theory is missing for this method, maybe also its quite difficult implementation,
the difficulties this method gives in the adaptive refinement case and its slightly higher
operation count were obstacles to its wider use. The latter is due to the so-called setup
step which must be programmed very carefully for maintaining an O(N) operation
count, where NV is the number of unknowns, see [15]. Nevertheless, in the recent years,
there is now more interest in the algebraic multigrid method, since it provides a simple
to use black box type solver which can be applied by not so experienced users in many
situations where conventional multigrid fails or must be modified in a skilled way. Beside
the developments in [16, 17], [61, 62] and [41, 42] there can nowadays also block-wise
variants of AMG be found, especially for the treatment of structural analysis, elasticity
problems ([6, 51]) and fluid dynamics applications ([7, 33, 40, 53]) where more than one
unknown is assigned to one grid point.

In this paper, we use the two previously mentioned modifications of multigrid meth-
ods within a multilevel-type preconditioner to gain a hopefully robust additive Schwarz
method. We are interested in the question whether and for what problem classes such
additive methods behave as robust as their multiplicative (i.e. multigrid) counterparts.

Our motivation to this study was twofold: First, we aim for a method which can be
applied to any given stable fine grid discretization (e.g. by a nine point stencil) of an
elliptic PDE of second order (with singular perturbations) and results in a robust con-
vergence rate. Thus, in contrast to AMG, we are not interested in a general black box
solver for any (M-Matrix) input matrix but study standard discretizations of PDEs in-
stead. And second, for parallelization reasons, we are interested in an additive method.
To this end the subproblems to be solved in the additive method should be as small as



possible. In a level-like setting this corresponds to point-wise smoothers involving only
local operations. Thus, smoothers like ILU are less favorable in this context since they
are difficult to parallelize efficiently.

In the first section we repeat the framework of additive Schwarz methods and
give it in both, the functional representation by means of subspace splittings and the
corresponding algebraic representation. Then, we demonstrate how, by means of a gen-
erating system, a corresponding semidefinite linear system can be achieved. We further
specialize the additive Schwarz schemes to the case of multilevel preconditioners where
the involved subspaces are one-dimensional but form a multilevel basis similar to the
one used within the BPX-preconditioner. In contrast to the BPX-method we allow for
more general subspaces on coarser levels and corresponding general mappings (inter-
polations and restrictions) between these subspaces that only have to fulfill a general
(local) refinement relation. Then, we state the three general requirements such kind of
methods have to fulfill, i.e. an O(N) operation count per iteration cycle, a resulting
condition number which is independent of N and the number of levels involved and,
most important, a condition number which is independent of the coefficient functions
of the operator under consideration. We further give explanations how such a general
scheme can be implemented.

In the next section, we consider three specific examples for the construction of
the refinement masks and, consequently, of the underlying subspace splitting. They
correspond to

e standard coarsening, involving bilinear interpolation and its transposed as re-
striction, i.e. the BPX-method,

o the coarsening scheme of Dendy as an example of matrix-dependent geometric
coarsening and

o the purely algebraic coarsening process of our variant of the algebraic multigrid
method.

Finally we give the results of our numerical experiments where we compare the con-
dition numbers and the convergence behaviour of the corresponding additive precondi-
tioning schemes for various types of problem classes of (possibly singularly perturbed)
elliptic PDEs of second order with constant and varying coefficient functions.

2. Additive Schwarz preconditioners - functional and algebraic represen-
tation. First, consider a stationary iterative method for solving a linear system

(1) Au = f,
in the Hilbert space V., A € L(V,V) ,u € V | f € V. One iteration step is given by
(2) uit-l—l _ uit _I_ B(f . Auzt) 7

where B is an approximate inverse of A.
It V is finite-dimensional, we also find appropriate algebraic formulations equivalent
to (1) and (2). Let n := dim(V). Then the corresponding algebraic analogs are

(3) Ap =
3



with A € R™" n € R", the unknowns p € IR" and
(4) pt =t By — Apt).

with B € R™*". Clearly, for numerical treatment only the algebraic formulations are
of interest. B should have two properties: Multiplication with B can be implemented
efficiently and B should approximate the inverse of A somehow. If B is a good approx-
imation to the inverse of A, one may expect that

k(BA) << k(A),

where x denotes the condition number of a matrix. Therefore, B acts as a precondi-
tioner to A. Indeed, many popular preconditioning techniques correspond to a linear
iteration. For example, if we split the matrix A into its lower triangular, diagonal and
upper tridiagonal parts, 4 = X + Y+ Z, preconditioning with B := Y~ corresponds to
the Jacobi iterative method. Preconditioning with B := (Z + Y)™' V(X + Y)~! corre-
sponds to the symmetric Gau3-Seidel method. In this way, a better but not yet optimal
condition number is usually achieved. More efficient preconditioning schemes are ob-
tained via multilevel subspace splittings, which we will consider in the next section. We
first give the functional representation according to (2) and then derive the algebraic
representation according to (4) from it. Note that there exist condition number esti-
mates for the resulting functional representation [34, 35, 36, 37], [58, 59], [4, 60], which
translate directly to the algebraic representation.

2.1. Functional representation. We use the following Hilbert space setting. Let
V' be some fixed, finite-dimensional Hilbert space. The scalar product in V' is denoted
by (-,-). We consider a positive definite, symmetric bilinear form a(u,v) = (Au,v),
u,v € V, with A: V — V denoting the corresponding s.p.d. operator acting on V.

Now, consider an arbitrary additive representation of V by the sum of a finite
number of subspaces V; C V' :

(5) V=31

More precisely, this means that any v € V has at least one representation v = _7_; ug
where uy, € Vi for k = 1,...,s. The operator A possesses restrictions Ay to Vi given by

(6) (Apug,vr) = (Aug, vg) U, Vg € Vi.
Suppose further that the V} are equipped with auxiliary continuous s.p.d. forms
re(ug, vr) = (Rrug, vg)

given by the s.p.d. operators Ry : V — Vi. These forms might model approximative
solvers used on the subspaces, i.e. Ry is an approximative inverse of Ay.
Now, we define two projection operators Ky, Qr : V — V. by

a(u,v) = a( Eyu, vg) (energy projection)



(w,00) = (Quu,vr)  (La-Projection)

where vy, € Vi, u € V. Obviously one then has

(7) ArEy = Qi A.

If we multiply Au= f by Qs we obtain with (7) the corresponding subspace problem
(8) Apur = fr

where uy := Eypu, fr := Qrf. With the previous defined operators R we get approximate
solutions of (8):

ty = Ry fi.

Following Xu [58, 59], we can use this framework to define an iterative scheme for
solving Au = f. Assume some approximation u* to the solution u. If we could exactly
solve the residual equation Ae = r := f — Au' | we would have the solution, because
u = u' + e. But this is usually as complicated as the original problem. We can instead
solve the restricted residual equation

Agejl = Qpr't
approximately by

ey = RiQpr”
and, for k =1,...,s, add this subspace corrections to our iterate u*. Then we have
9) WL = it 4 gt

with the s.p.d. operator
k=1

This is an additive Schwarz iteration, because the update of the values in (9) takes place
additively for all subspaces V;. ,k=1,...,s. Now, B can also be used as preconditioner.
In the next section we derive the algebraic representation of B.

2.2. Algebraic representation. Assume a basis {¢k1,..., @pn, | is given on a
subspace Vi. Then, every vy € Vi may be uniquely represented as

g
Uk = > XkiBri 5 ng = dim(Vy),
=1
and the vector xx := (Xk1,-- -, Xk,nk)T will be referred to as coordinate vector of vy.



The associated mapping & : R™ — V; will be defined by
g
(11) EkXr 1= D Xki®ki-
=1
Obviously
fgvk = ((va ¢k1)7 sy (vkv ¢knk))T

Now, we assume Ay € L(Vi, Vi.). The stiffness matriz Ay € R™ ™ as used in the finite
element method, is defined by

(Ak)ij = (Ak¢kia ¢k1)
One easily verifies
(12) A = f;{Akfk

The stiffness matrix Ay is just the algebraic representation of Ag. We also need the
mass matriv My € R™ " Tt is defined by

(My)ij == (Pris D1j),

which is equivalent to
(13) My = Eidéy = &

where id;, denotes the identity operator on V.

In the following we reconsider the algebraic representation (4) of the iterative
method given by (2) in a subspace V. We first start with the functional formulation of
a single step of an iterative method on the subspace Vj:

uy =+ Ru(fi — Auil).

With

utt =Gt = Gails i = Gome
we obtain
(14) Ee = Eepil + Ri(Eemp — Apbrpl).

From this we conclude that an appropriate algebraic representation Ry of Ry is given
implicitly by

(15) GRiEL = Ry
Using (12), (13) and (15), relation (14) can be transformed to

(16) G = Gl + GRE (M — Awl)).
6



Since £ is invertible on Vi, (16) is equivalent to
m = g R (M — Awprl).

Now, given a basis {¢1,...,¢,} of V and A € L(V,V), we can define the mappings ¢
and ¢7 and the matrices A and M for V analogously as we did for the subspace Vj.
Then, an appropriate algebraic representation B of B is given implicitly by

(17) BT = B.

Note that, in contrast to ¢ and &7, & and &} are not invertible on V' (but they are
invertible on V;).

Furthermore, since V;, C V, every basis function ¢; of the subspace V} possesses
an unique representation in terms of the basis functions ¢; of V :

(18) Ok = T, 7 € R.
=1
For the following it is practical to exploit this fact to define the matrix P, € R™*"* by
(Pe)ij = 717

Now, using Py, we can give an explicit representation of £, i.e.

(19) & = EP.

Furthermore, the Ly-Projector (), onto Vj can be stated as follows:

(20) Qr = &ML

At last, we can deduce the algebraic representation B € IR"*" of the additive Schwarz
operator B =37 _; RpQj in the following way:
From (17) we get

(21) B=¢"BET =Y TR
k=1
Plugging the identities (15) and (20) into (21) and then using (13) and (19), we obtain
B = Y TRQuETT =

k=1
(22) = D CGREGEMIGET =

k=1

= > PiRiP[.

k=1

This is the algebraic representation of the additive Schwarz preconditioner we looked
for.



Now, it is easy to proof, that
k(BA) = k(BA),

so that if we can show condition number estimates for the functional representation,
they immediately translate to the algebraic representation, and vice versa.
The often-needed Galerkin identity may be shown as follows:

A = € id Aid & = HEMTEDAEMTET g =
= (EMHEAHMTETE)
and from this we obtain with (19)
(23) Ay = PLAP;.

Thus, if either a discretization or a subspace operator should be consistent with this
theory, it must be constructed via the Galerkin identity.

2.3. From a definite to a semidefinite system. In the previous section, we

gave the algebraic representation of the additive Schwarz operator B = >°7_; RpQ in
terms of the basis {¢1,...,¢,} of V, which was

(24) B=> P:RiPl.
k=1

Now it is an interesting task to deduce an algebraic representation of it with respect
not to a basis of V' but to the generating system

O {¢k17 .- 7¢knk}
k=1

of V' which contains all the bases of the subspaces arising in the splitting (5). Then,
elements of V' will in general have a non-unique representation only. Let us denote

s
nt = Z Nk.
k=1

Analogously to the previous section, we can define the operator ¢¥ : R —V by

s ng
N =33 o

k=1 1=1

where
7’LE
XE:(Xllv"'7X1n17'"7X517"'7X5ns)TEIR .
Furthermore, we define the matrix P¥ € R by

PE = (Py,....P,).
8



It is elementary to show, that

(25) ¢&F=¢ph .

One step of a stationary iterative method using the generating system is now given by
(26) pBitl = Bt BE(p\(ByBit _ pB Bty

where

.AE — (fE)TA fE — (PE)TA /PE7
and

Note that the entries of A” and M¥ are now given by the values a(¢y, ;,, dr,.:,) and
(Physiys Phoiy) s k1, ke = 1,008 yi1 = 1,000 ng, 12 = 1,...,nk,, respectively. Then, we
obtain the solution u of (1) from any fix-point u¥ of (26) by

=¢8P,

More generally speaking, the solutions wu, u, u¥ of Au= f, Au=¢Tf, APul = (E8)Tf
are connected via

u=Ep =",
BY in (26) is again implicitly defined by

B =¢"BA(E)T
If we plug in the multilevel preconditioner (24) for B we obtain with (25) and (17):

PEBEPE — ¢ 1pe~T = B = Z PeRIPL.
k=1
This equation is fulfilled, if we take as algebraic representation for B¥ for example
BY = diag (Ri,...,Rs).

So if we look at the additive Schwarz operator from the view of our generating system
instead of the basis of V., its algebraic representation simplifies to a block diagonal
matrix.

Note also, that if we define a generalized condition number £ as the quotient of the
largest eigenvalue and the smallest non-vanishing eigenvalue, we have

k(BA) = k(BA) = /%(BEAE) )

Furthermore, modern multilevel and domain decomposition methods correspond
to classical iterative methods applied to the enlarged representation of the generating
system: Additive Schwarz methods are then equivalent to (block-)Jacobi, multiplicative
Schwarz methods to (block-)Gaufl-Seidel iterations.

9



2.4. Multilevel preconditioners: nested subspace splittings. In the follow-
ing we concentrate our studies on preconditioners constructed from a multilevel splitting
of V which we will now introduce in terms given before.

We therefore assume a splitting of V' into nested subspaces Vi, L =1,.... M,

(27) VicVoC...C Vo C V=V

It should be emphasized that the nestedness of these subspaces is the only prerequisite
we need. It implies an ordering to the subspaces, where the associated indices now
denote the so-called levels. In finite element methods usually compactly supported
basis functions are chosen where each of them is associated to a specific point of the
discretization domain, such that the other basis functions vanish there. Then, these
points set up an associated grid'. As a consequence of the nestedness (27), if C' < F,
then the grid belonging to a coarser space Vi is a subset of the grid belonging to V.
We could start with such subspaces in decomposition (5). But it comes handy to
refine the V7, further into spans of single basis functions, i.e. one-dimensional subspaces:

M M njp
(28) V=> Vi=>> Vi,
L=1 L=11i=1
where ny, := dim(Vy) and Vi; := span{¢r;} are one-dimensional subspaces. In the

notation above, a subspace Vg, corresponds to a subspace Vi in (5) (one might imagine
an appropriate reordering of the indices). To avoid notational conflicts, we use uppercase
indices in connection with levels, and lowercase indices for the single unknowns or basis
functions.

Let us now look at the concrete formulations of the operators defined in section
2.1. By (6) we see that

a(urs, or;
Apur; = M%i , ur; € Vi,

(¢ri, OLi)

which holds because any vy; € V7; can be represented as ¢y, , since Vi, = span{¢y;}.
Thus, we can set

(v, dri)
a(ori, ori)

and obtain an exact subspace solver. It can also easily be seen, that for up; € Vay =V

QLZ'UM _ (UM, ¢Li)¢Li

(¢ri, OLi)

PLi

Rrup; =

! Note that, at this point, we do not assume any uniformity of the grid nor that the basis functions
associated to a grid point must be linear at all, especially on coarser levels. They can and will, as we
will see 1n section 5.5, consist of functions which are piecewise linear only with respect to much finer
grids.

10



and

a(uns, oL
a(ori, ori)

hold. Because of our choice Ry; = A;! we now obtain the formulas

PLi

Eriuy =

M ny, M ny, UM7 ¢L2
Byon =3 RuiQriom = Y. > ——du
L=1i=1 L=1i=1 ¢ a(PLi; OLi)
M, a(var, dri)
ByAvvnm = > Ervn = Z Z ——— 0L ,
L=1i=1 L=1i=1 ¢ a(PLi; OLi)

which are the applications of diagonal scaled versions of the multilevel-preconditioner
and the multilevel-preconditioned matrix to a vector.
We can also consider the algebraic representation. We have

M njp
By =YY PrLRLPL.

L=1:=1

Because of (28) it is clear, that ne < np for C' < F, and therefore every basis function
¢ci of Vo may be represented as a linear combination of basis functions ¢p; of Vi
analogously to (18):

ng )
(29) boi = Zﬂg}qﬁm ) mi € R.

If we collect the matrices Pr; corresponding to one level L in a single matrix by
,Py = (PLl, Cee 77DLnL)
and define the diagonal matrix
RL = dlag (RLh Ce 7RLnL) 5
we obtain
M
(30) By =3 PrRuPL)".
L=1

Ry is the inverse of the diagonal of the stiffness matrix Ay, i.e. Rp; = a(¢ri, dr;)~"
Note also, that Ay, is determined by Ay, i.e. the stiffness matrix of the finest level of
discretization, and P} . This is due to the Galerkin identity (23), which implies

(31) A = (PIOYT AuPl!

PM can be defined by interpolation matrices between two successive levels. In our
context, PrT € R™+1%"2 should be the interpolation matrix defined by the ﬂ'ffl_m ,
compare also (29). Then we can show that

(32) PV =Py ... PLTL
11



These facts are essential for an efficient implementation of the corresponding precondi-
tioner.

With this notation the generating system version of our preconditioner is simply
the diagonal matrix

BY, = diag(Ry, ..., Ru) ,
which has to be applied to the enlarged matrix
Ay = (Pa) APy
where P can compactly be defined as
(33) Pari= (P, Py 1. Par)
(PM is the unity matrix). This gives now the alternative representation
B = PuBy(Pap)”

of the preconditioner By;.

Note that the enlarged matrices A, and BI; AL, are in general semidefinite and
possess zero eigenvalues as well. But the spectrum of B, A¥, is up to the zero eigenvalues
the same as that of By Ays. Furthermore, by using the generating system representation
we are now able to write the preconditioned matrix by

(34) (B2 (Pip)" A Pag(Byp)'*

in a symmetric form whenever Ay is symmetric. This is in contrast to the definite but
unsymmetric notation Bp;Aps.

The approach with the generating system now allows to apply standard iterative
methods to the enlarged problem, see [25, 28]. For our choice of B%; we just obtain
the Jacobi iteration. If we would apply the symmetric Gaul-Seidel iteration to the
enlarged linear system associated to (34) we obtain a method exactly equivalent to the
multigrid V-cycle with one pre- and one post-smoothing step using the nested spaces
Vi,..., V. Beside these approaches other traditional iterative methods can be applied
to (34) resulting in new multilevel algorithms. For example in [26, 27], point- instead of
level-oriented methods are derived from just permuting the generating system properly.

3. Model problem and requirements for an efficient implementation of
the multilevel-preconditioner. In this paper, we restrict A to be the two-dimensional
elliptic differential operator

=1 g

2 0? 2 0
(35) ( Z aij(T1, x?)axia% + Z bi(z1, 51?2)81, + (21, 51?2))

ii=1 ]
on the domain [0, 1] x [0, 1] with Dirichlet boundary conditions.

12



As starting point for the initial fine-level discretization of A serves the regular,
equidistant grid

(36) Q= {(ih,jh) i =1, A" =1} .

The space V is then defined as the span of functions ¢; ,i = 1,...,(h7" — 1)* of
principally any type with local support. This gives us a finite-dimensional restriction
Ap, of A and via Galerkin discretization its algebraic equivalent Aj,.

For example, as basis for V, the well-known nodal basis can be used, which spans
the space of bilinear functions over ;. A nodal basis function centered at (a,b) is

defined by
Sfamy (@1, 22) 1= max{0, (h — |21 — a[)/R} - max{0, (h — |z — b])/1} .

The entries in the initial discretization matrix A, are then given by the scalar products
a(qﬁ?ih’jh), qb?kh’lh)), where a(+, ) is the weak bilinear form induced by (35)2.

With A; given, we now have the freedom to choose the interpolation matrices
PM =M —1,...,1,ie. the matrix P¥ and depending on that the number of levels
M, defining Ap; := Aj,. Note that, by choosing a specific interpolation scheme, not only
the stiffness matrices on the coarser levels are determined by the Galerkin approach
but also, at least implicitly, a sequence of bases ¢r; , L =1,....M ;2 =1,...,ny and
associated spaces Vi, , L =1,..., M is defined. Except for the special case of the values
ﬂ'fj_l’j given in subsection 4.1 where self-similarity of the basis functions of different
levels under translation and dilation is achieved, the basis functions on the coarser
levels are usually not more bilinear functions w.r.t. to that level of discretization but
merely local linear combinations of the basis functions of the finest level, and thus are
piecewise linear with respect to the finest grid € only.

Optimally, the choice of the interpolation matrices should be such that the resulting
preconditioned fine grid system or equivalently the resulting enlarged generation system
matrix fulfills three requirements:

1. h—independent convergence rate: The condition number x(BarAp) of the re-
sulting preconditioned system should be bounded by a constant independent
of the mesh size h.

2. Robustness of the method: The condition number x(BarAp) of the resulting
preconditioned system should be bounded by a constant independent of the
values of the coefficient functions a;;(x1, x2), b;(x1, x2) and ¢(xq, x2) in (35).

3. Work count: The number of operations necessary to perform the matrix vector
multiplication by the resulting preconditioner should be proportional to the
number of fine grid unknowns only.

It merely requirement 1 is fulfilled, the constants forming the condition number

can still depend on the coefficient functions a;;(x1, x3), b;i(21, x2) and e(aq1,x2). Now,

2 The grid (36) also serves as starting point for the finite difference discretizations in our numerical
experiments presented in a later section. Often finite difference discretizations can be viewed as result
of a finite element discretization with different basis functions, i.e. linear instead of bilinear ones on a
triangulation of €2.

13



if one ore more of these functions possess large values in ), the condition number can
be large as well and the corresponding solution procedure is practically useless, since
its convergence is unacceptable slow. This is the case for singular perturbed problems,
when one or more of the coefficient functions are dominating, and causes problems also
in the case of rapidly varying or discontinuous coefficients as they appear in so-called
interface problems. Thus, it is advantageous to choose the interpolations such that
k(B Anr) is independent of the coefficient functions.

One step of the resulting iterative method should only involve a number of oper-
ations proportional to the unknowns on the finest level of discretization. Usually, f.e.
in a CG-type iterative method, the multiplication of a vector with the preconditioned
fine grid stiffness matrix is the crucial task. Beside the multiplication with the matrix
Ay, it also invokes the multiplication with Bys. From (30) and (32) it is clear how a
multiplication with By, can be implemented.

Multiplication of a vector vy €EVywith By,
Wp = Up
for L =M,...,2:
Wp—1 = (Pf_l)TwL
for L=1,....M:
wy, = Rpwy,
for 1 =2,....M:
wr, = wr, + PE_jwr_1
Byvy = wyy

We want the number of operations for a single matrix-vector multiplication® with
By to have the same order as the number of unknowns, i.e. Foperations ~ nyy.
Therefore, the interpolations P¥_, must be sparse matrices. Thus, only a bounded
number of entries in each row and column may be non-zero. This means that, in the
representation

ny, .
(37) br-1i= wf}l”% )
=1

14 may be non-zero, which is equivalent to locally supported

only a fixed number of 7T£]_
basis functions on all levels.

Furthermore, the number of basis functions over all levels S | ny must be in the
order of ny; as well. In a practical approach this is fulfilled, if the number of unknowns
decreases geometrically between the levels, ny < pnry1 ,0 < p < 1. This automatically

leads to the relation M ~ log(h™1).

3 Note that the multiplication with the generating system matrix can be implemented in just the
same amount of work, see [26].
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4. Considered interpolation schemes. In the previous section we already stated
that the multilevel-preconditioning scheme is uniquely determined by the stiffness ma-
trix Ay and the interpolation matrices PX_, [ = 2,..., M. Because of the Galerkin
identity (31), the inverse Ry, of the diagonal of Ay is then determined, too. So if we
have Ay;, our only freedom is to choose the interpolation weights Ff;l’i , both, with
respect to locality, i.e. the non-zero pattern, and with respect to the specific values of
the non-zero entries. In this section we consider three different interpolation schemes,
i.e. bilinear interpolation which results in the standard BPX-preconditioning [11] or in
its diagonal scaled variant MDS [63], respectively, matrix-dependent weighted interpo-
lation with nine-point masks which results in a preconditioner that corresponds to the
approaches of Dendy and deZeeuw [20], [19], and a more general interpolation which
results in a preconditioner that corresponds to the AMG method of Ruge and Stiben
[44, 45].

4.1. Standard coarsening with bilinear interpolation. Bilinear interpolation
and its scaled transposed, the weighted restriction are the standard inter-grid transfer
operators for multigrid methods. For many problems, especially strong-elliptic ones
they work well.

We will use bilinear interpolation only in connection with regular coarsened grids
Qn, Qan, .., Q2 , where 27" should be the M power of 2. Then, the underlying basis
for each subspace Vi, L = M, ... 1 should be the nodal basis defined by the grid Q,-z.

The nodal-basis functions are then self-similar and satisty the recurrence relation

1

2h h
¢($07y0) Z 7Tivjqﬁ(ﬂb’o-l-ihﬂ/o-I-th) ’

27]:_1

where 74 1 =711 =m1,1=m1=1/4 701 =T_10=mo1 =m10=1/2 ,m90=1.
This weights are, after reordering of the indices exactly the non-zero values Fﬁ;l’i in
(37). They can be stated shortly by the well-known stencil notation

| 1 2 1

-1 2 4 2
4 1 2 1
Using bilinear interpolation in a multilevel preconditioning algorithm saves the setup
phase for the computation of the interpolation weights. A further advantage is, that if
interpolation and discretization can be expressed with nine-point stencils, the Galerkin
coarsening leads to discretizations on coarser levels which can be expressed by nine-
point stencils again. This means, that the sparsity pattern of the matrices is preserved
in the coarsening process.

The major disadvantage of bilinear interpolation is its lack of flexibility which can
result in bad convergence rates, as we will see in the numerical results for singularly
perturbed problems.

For this kind of interpolation the associated multilevel preconditioner (30) results in
the so-called MDS-method, see [63], which is just the variant of the BPX-preconditioner
[11, 58] involving multilevel diagonal scaling.
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4.2. Standard coarsening with matrix-dependent interpolation. In con-
trast to the use of a-priori fixed interpolation and restriction weights in PL |, [ =
M,....2, as in the case of bilinear interpolation, one can take advantage of the infor-
mation contained in the matrix Ay, L = M,...,2, respectively. Coarsening schemes
based on this idea are called matrix-dependent, see [1, 19, 20]. In algorithmic notation:

Matrix-dependent coarsening scheme
Given initially Apy;.
for L=M,..., 2
Compute PE_| from Aj.
Compute Ay, = (PE_)TALPE L.

This approach requests an initial setup phase, where the interpolations and the Galerkin
coarse grid operators are computed successively. To be competitive, the number of
operations for the setup phase must be bounded by a constant times the number of
unknowns.

In this subsection, we consider approaches with a standard coarsened grid sequence
as in subsection 4.1, but now the interpolation and restriction matrices and, by means of
the Galerkin approach, also the discrete operators are chosen dependently of the fine grid
matrix. In connection with this interpolations [LU-type smoothers can lead to multigrid
methods with robust convergence rates, see Wittum [56, 57], Wesseling [54, 55|, de
Zeeuw [19], Reusken [43], Wagner [52], Fuhrmann [23], and the more preconditioning-
oriented algorithms of Axelsson and Vassilevski [2, 3], and van den Ploeg et al. [48, 49].
As stated already in the introduction all these approaches are more or less attempts
to approximate the Block Gaussian elimination (Schur complement process) of the
unknowns belonging to grid points of the fine grid but not belonging to the next coarser
grid (recursively over all levels). For a general framework to that, see [31]. Some of
these methods are called algebraic due to the algebraic, i.e. matrix-dependent nature
of the construction of interpolation, restriction and coarse grid operators. Nevertheless,
they belong to the geometric type of multilevel methods due to the geometric coarsening
process of the involved sequence of grids.

In [20], Dendy proposes a coarsening scheme for nine-point discretizations. There,
as in the case of bilinear interpolation, regular coarsened grids €, Qap, ..., Q2 ,h =
2™ are used again.

Let the discretization matrix Ay be given in stencil notation by

] '
A_q,1 Qo G
.7 .7 .7 N N L
(38) Qg1 Qgo Qg , 1,7 =1,...,27" — 1.

The upper indices 2, j should suggest that the operator may be domain-dependent and
the stencils are therefore varying from grid point to grid point. The interpolation is
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expressed by nine-point stencils, too:

T-1 Tl Tl1a1
[ 7,7 [ Lo L—-1
(39) Tom1 oo Q1 , ,9=1,...,2 — 1.

9.
T1—1 T10 T

which means values in the coarse grid points are identically transfered to the corre-
sponding fine grid points, as in the bilinear interpolation. For the weights 71 o, 757
we build two one-dimensional stencils by summing up the weights of the stencil (38) in
the coordinate directions. Then we request a grid function Pf_luL_l, ur—1 € R"1 to
solve the local homogeneous one-dimensional problems defined by this stencils exactly
in the points (ihr, jhr), where ¢ + j is odd. Thus, we obtain the weights

1 i+1,5

I,J _ _25:—1 a:Fl,S
+1,0 — Zl i+l

a 9.

s=—1 0,s
and
Zl O/,J‘ﬂ
1.J s=—1 SF1
To+1 = —

1 INES N
7]
25:_1 asvo

Here, for convenience of notation, let (7, j) = (21,2.J). The diagonal weights are derived
from the demand

(ALpf—luL—l)(ihLath) =0, ur_; € R"!

for odd ¢ and j. This leads to the formulas

it1,541 i1+l _1,J i1+l _1,J
IJ Of1 51 T Q6 To4r T QoFi T4ip
7T f— JE—
:I:l +1 2:|:1 NEa ’
Qo0
1+1,5F1 ix1,5F1 _I,J Z:I:L]:Fl 1,J
I.J - Ox1 1 T Q36 Tog1 T Qotr T4ip
ﬂ-il FL T T Z:I:L]:Fl '
Qo0

Although the sequence of grids for the Dendy algorithm is the same as for the bilinear
interpolation scheme, due to the matrix-dependent choice of the weights in (37) special
basis functions on the coarser levels are constructed implicitly which are in general not
identical to the nodal basis.

In comparison with bilinear interpolation, the Dendy interpolations perform much
better in connection with symmetric interface problems. But for certain other problems
they are still not robust enough.
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4.3. Algebraic coarsening with matrix-dependent interpolations. Alge-
braic multigrid methods were first introduced in the early eighties by Brandt, Mec-
Cormick, Ruge and Stiiben [13, 14, 44, 45]. Here, first a grid is set up on the next
coarser level by using algebraic information from Ay and then an appropriate interpo-
lation scheme is defined. After computing Ay _; via the Galerkin identity the process
is repeated until a sufficiently coarse level system is obtained analogously to the short
algorithm in section 4.2. AMG is necessarily less efficient than highly specialized geo-
metric multigrid solvers for elliptic problems on uniform rectangular grids. However,
for more complicated cases with complex domains, AMG has been shown to behave
robust and thus performs quite favorably in terms of operation count and CPU time.
AMG also works for problems where geometric multigrid methods are impossible to
design. AMG uses no sophisticated smoother, but only standard Gauf-Seidel. The
robustness of AMG is obviously the merit of the appropriate chosen grid coarsening
strategy and the associated interpolations. So it is a natural approach to examine the
preconditioning properties of multilevel preconditioners with AMG-type interpolations.

Algebraic multigrid goes one step further than the matrix-dependent schemes. The
grids should be nested again, but they need not to be uniform anymore. In fact,
uniformity, if given for the finest grid, is in general not maintained in the process. We
will nevertheless start with fine level discretizations based on regular grids €2, where
h is a negative power of two to be able to compare the performance of AMG with
the other two coarsening schemes which depend on regular grids. In general, it also
is not predictable how many grids will be constructed by the AMG algorithm, i.e.
M # log,(h™!). Tt is more appropriate to think in terms of graphs in connection with
algebraic multigrid than to think in terms of grids. In the following we will denote the
set of indices of the grid corresponding to level L by Ny. For the two coarsening schemes
defined above these sets were the numbers 1,2, ..., (2F —1)2. Now we only demand that
the index sets are nested

Ny CNyC...C Ny—1 C N

Once again, to each grid point there corresponds a basis function with the same index.
But in contrast to the geometric coarsening schemes, we now will assume that basis
functions on different levels with equal indices are centered around the same point of
Q.

For an AMG algorithm, the sequence of matrices Ay must be constructed alge-
braically. The Ap_1,L = M,...,2 are computed successively by selecting a subset of
the unknowns of the level L system and by evaluating the strength of the connections
between the unknowns in Ajp. The basis for our implementation is the AMG method
of Ruge and Stiiben [44, 45] which uses the assumption that the initial discretization
matrix Ay is symmetric positive definite and a M-Matrix.

According to a well-known variational principle it is the best for a given inter-
polation to determine the coarse-grid discretization via Galerkin-coarsening. All error
components lying in the range of the interpolation are then eliminated by a single coarse
grid correction. In multigrid theory one has to take care that error components which
are persistent to the smoother are well represented on coarser grids.
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The effect of Gaufl-Seidel iterations on symmetric positive definite Ay is well un-
derstood and can be used to guide the construction of the coarser level systems Ay, for
L =M—1,...,1. GauB-Seidel smoothing is stalling whenever the error ey, is big in
comparison to the residual ry,.

Because of Apep, = rp, we have Apep ~ 0 then. Or for a single unknown

1 nL
(er)i = A %(‘AL)M(GL)] :

This sum may be splitted into the error components visible on the coarse grid (and thus
eliminated by a single coarse grid correction step) and those which are not, i.e.

1. > (An)iilen)i + > (Ar)ijlern);
( L)“ J€CE JEFL
J#e FED)
Here Cp, := Ny_1 and Fy, := Ny \ Ny_;. If the second sum could be eliminated on all
levels, AMG would be a direct solver. In this case, the ideal interpolation weights would

be given by
(eL—l)i ) U € CL
L - 1 .
(40) (pL—leL—l)Z - _(AL) Z (AL)ij(eL—l)j 5 1€ FL.
1w jecy
J#e

Unfortunately, this ideal assumption can hardly be fulfilled when we want a geometric
decrease of the number of grid points on each level. Nevertheless, we try to minimize
the second sum by choosing the coarse grid points C := Ny_; from Ny appropriately.

We will briefly review the coarse grid selection part of AMG, as introduced by Ruge
and Stiiben [44, 45]. For reasons of simplicity the level index L is omitted. Here, we
have to define the set of strongly coupled neighbours 5; of a point ¢. Let

N F— i

maxt— Al e
where [ is any subset of N, and
Si={j e NG, ) 20}, ST = {je Nies}.

The partitioning in fine and coarse grid points is performed in two phases on each
level. There, we select coarse grid points in such a manner, that as many strong
couplings as possible are taken into consideration.
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Selection of coarse grid points:
Setup Phase I
1. Set ' =0 and set F =0

2. While C U F # N do
Pick : € N\ (C U F') with maximal |S"T| + [ST N F|
If | S5T| 4+ |S* TN F| =0
then set F' = N\ C
else set C = C U {1} and set ' = F U (ST \ C);
endif

The measure |SHT| 4+ |ST N F| is purely heuristical. The first term is associated to
the total number of strongly coupled neighbours, the second one to the number of
strongly coupled neighbours which are in F. Domains with the same discretization
stencil for most nodes (typically inner nodes), tend to have the same value of the measure
|57 4 |S5T' N F| for them. Note that the action to pick an index in step 4 of the above
algorithm is non-deterministic and allows different implementations, depending on the
chosen underlying data structures, see also [15]. Furthermore, using dynamic data
structures and incremental techniques, it is possible to implement the overall setup
algorithm (i.e. phase I and II) to need a number of operations proportional to the
number of fine grid unknowns. Further improvements should be possible, if one would
handle nodes situated next to the boundary of the domain and inner nodes differently.
In a second phase the final C-point choice is made.

Selection of coarse grid points:
Setup Phase II
1. Set T =10
2. While T' C F do
Pick i € F\T and set T'=T U {1}
set C' =0 and set CP= S, NC
set F'" =S5, NF
While F' # () do
Pick j € F* and set "' = '\ {j}
I d(j, C)/dli, (7)) < 5
then if |C| =0
then set C' = {j} and set C* = C*U {j}
else set €' = C U{i}, set F'= F\ {i} and Goto 2
endif
endif
set C =CUC, set F=F\C

This second algorithm has to make sure, that each point in F' is strongly coupled
directly with points in C' or at least with points in I, which are strongly coupled with
points in C. Again, the strategy to force the set C' to contain at most one element is

purely heuristic.
After the points Ny where divided into the sets £, and Cp, we could define the
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interpolation as given in (40). Indeed, in the first AMG implementations it was defined
like this. In the algorithm of Ruge and Stiiben, a little more sophisticated interpolation
is used, which gives much more better results in numerical experiments:

(er—1)i i €Oy
L .
(41) (Pryer—1)i := e, (s +ei)(em); o
(AL)ii + ci ! L
where
o (Ap)ir(AL )k
N KgCy (AL)IW + ZIEOE(AL)M

ki

Once the interpolation matrix PE_, is constructed, the system matrix A;_; is
determined by the Galerkin identity (31). Then, the coarsening proceeds recursively
according to the scheme in section 4.2 until the number of remaining unknowns equals
one. Note that, in an elaborate implementation of AMG, the number of operations
needed for the whole setup phase, i.e. the coarse grid selection and the computation of
the interpolation and coarse grid matrices, is about 2-3 V-cycles of the corresponding
multigrid method.

5. Numerical experiments. We now consider the results of our numerical ex-
periments. We discretized problem (35) on the finest grid Q) by a finite element or
finite difference method. Then, in a setup phase we computed the interpolation weights
where necessary. With these weights we built up our multilevel preconditioned matrices
PLBY(PE)T Ay and computed their condition numbers &.

From the condition number, an upper bound of the error reduction after ¢ iteration
steps of the associated conjugate gradient method (for symmetric problems) is given by
2p' where

WE—1
N

describes the worst case convergence rate of the method. But since often, if the eigen-
value spectrum is clustered somehow, a better convergence rate can be observed in
practice, we also give the number of iteration steps ¢t the conjugate gradient method
needs to reduce the L?-norm of the residual by a factor 107!*. We also give the measured
average reduction rate

1
. ( |73t 2 )10
p=|r—
|7“it—10|2
over the last 10 iteration steps of the corresponding conjugate gradient method. As
starting vector for the iteration we used random values.
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Since, at least for the AMG coarsening process, the resulting grids and matrices
on the coarser levels give an interesting insight to the method for singular perturbed
problems and operators with locally varying coefficients, we also give certain figures
describing the resulting grid sequence and show snapshots of some of the coarse grid
matrices. Here, the size of a grid point indicates the coarsest level it belongs to and
in the graphs of the matrices, large entries of the matrix correspond to graphically
thicker displayed edges. Furthermore, if not indicated otherwise, we used the values
a = 0.25 and # = 0.35 in the AMG coarsening process since these values turned out in
our experiments to produce mostly quite robust results, at least for the case Q = [0, 1]?
with Dirichlet boundary conditions.

5.1. Multilevel preconditioning of the Laplacian. In the following, we con-
sider the Laplace operator

62 62

ox?  bad

(42) — A=

Here, we discretize on the finest grid €, by three different approaches, i.e. by bilinear
finite elements resulting in the usual 9-point stencil, by finite differences resulting in the
well known 5-point stencil, and by a finite difference method, giving a 5-point stencil
which is rotated by an angle of 45 degrees with respect to the coordinate axes. We then
study the convergence properties of the different multilevel preconditioners.

5.1.1. Finite element discretization. If we discretize the Laplacian using bi-
linear finite elements, we obtain the usual 9-point stencil

L[ -
(43) — -1 8 -1
S I

Interestingly, in this case, all three coarsening schemes result in almost the same en-
larged system matrices, since, also for Dendy’s approach and our implementation of
AMG, the standard bilinear interpolation is constructed in the interior of the domain.
For Dendy’s approach, this can be seen immediately by putting the 9-point stencil of
the Laplacian in the formulas in section 4.2. For the AMG method, our specific im-
plementation, i.e. the ordering in which the points are picked in the setup phase, is
the reason for it. Compare also Figure 1, where the hierarchy of constructed grids and
the graph of the coarse grid matrix after four coarsening steps is given for the AMG
approach. We see that AMG constructs a regular sequence of grids. However, due to
boundary effects, its interpolation weights next to the boundary 62 are not identical to
those of bilinear interpolation and the Dendy scheme. As a consequence the condition
numbers and convergence rates are slightly different.

Table 1 shows the resulting condition numbers, convergence rates and iteration
counts. Results for the Dendy scheme are omitted, because they are identical with
bilinear interpolation for this problem.
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TABLE 1
Condition numbers, convergence rates and iteration counts for the preconditioning of the Laplace
operator, 9-point stencil on the finest grid.

-l MDS | AMG
8 |k |296 |201
p|0.15 |0.14

it |22 |22

16 | x| 359 |3.55
p 025 |0.25

it 30 |30

32 |k | 4.07 |4.04
p | 031 |0.30

it 35 |35

64 | x| 4.46 | 4.43
0.34 | 0.34

it39 |39

128 | v |4.77 | 4.76
p | 0.36 |0.36

it |42 |42

Fia. 1. AMG-Hierarchy of grids for the Laplace problem with 9-point stencil, initial meshwidth
h = 1/32, and resulting coarse grid matriz after the third coarsening step.

5.1.2. Finite difference discretization. Now, we use a finite difference method
for the discretization of the Laplacian on the fine grid which corresponds to the well-
known 5-point stencil

. ~1
(44) | ! %—1

Once again, the Dendy scheme reproduces the weights of the bilinear interpolation. Its
results are therefore omitted. The corresponding condition numbers, convergence rates
and iteration counts are given in Table 2. They are in general by about a factor 1.3
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worse than the values from subsection 5.1.1.

TABLE 2
Condition numbers, convergence rates and iteration counts for the preconditioning of the Laplace
operator, 5-point stencil on the finest grid.

Bt MDS | AMG
8 | |4.02 |4.32
p | 0.17 |0.18
it |28 |28
16 |« |4.88 |5.73
p 033 |0.34
it [37 |38
32 |k |5.65 |6.12
p | 0.38 |0.38
it |43 |41
61 | |629 |6.95
p | 041 |0.42
it |47 |47
128 | © | 6.83 | 8.20
p | 0.43 |0.42
it |51 |52

Figure 2 shows the hierarchy of grids constructed by the AMG approach for the
discretization with meshwidth A = 1/32. Now, in contrast to the 9-point stencil case, the
coarsening structure is not more totally regular and coarsening takes place mainly with
respect to 45 degree rotated coordinate axes. Furthermore, boundary effects become
visible. Note that now 6 coarsening levels are produced by our AMG method. Figure
2 also shows the graph of the coarse grid matrix after three coarsening steps.

Fia. 2. AMG-Hierarchy of grids for the Laplace problem with 5-point stencil, initial meshwidth
h = 1/32, with 6 resulling coarse levels and coarse grid malriz after four coarsening steps.
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5.1.3. Rotated finite difference discretization. It is interesting to use a finite
difference discretization for the Laplacian on the fine grid that corresponds to the 5-
point stencil which is rotated by 45 degrees, i.e.

1 —1 —1

2h? 1 1
Note that the associated fine grid matrix A, is (after permutation) a fully decoupled 2
by 2 block diagonal matrix. In other words, the set of grid points (ih, jh) where ¢ + j
is even and the set of grid points with odd ¢ + j are not connected in the graph of Aj.
The condition numbers, convergence rates and iteration counts for our approaches are
given in Table 3.

TABLE 3
Condition numbers, convergence rates and iteration counts for the the preconditioning of the
Laplace operator, rotated 5-point stencil on the finest grid.

Bt MDS | AMG
8 |« |173 |3.67
p | 0.09 |0.16
it|26 |24
16 | x| 7716 | £.49
p 1034 |0.26
it |61 |32
32 |« | 341 |5.73
p | 0.60 |0.33
it | 129 |38
64 |« | 1466 | 5.92
p | 0.76 | 0.36
it | 269 |43
128 | x | 6213 | 6.53
p | 0.86 |0.40
it | 556 | 48

We see that the preconditioner based on bilinear interpolation, i.e. the BPX-type
method, gives larger and larger condition numbers and convergence rates for successively
finer discretizations. Its convergence behaviour is dependent on the mesh size and the
unknowns. Its condition number grows with A~? like that of the unpreconditioned fine
grid matrix A, itself. Once again, the interpolation weights according to the Dendy
scheme reproduce the bilinear interpolation and its results are omitted. However the
method based on the AMG coarsening shows a condition number which is independent
on the fine grid mesh size. Its is slightly worse than that for the 9-point stencil but
slightly better than that for the usual 5-point stencil. The AMG approach has no
problems with the decoupled fine grid stiffness matrix whereas the other methods do.
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It maintains a two block structure under the coarsening process, as it can be seen from
Figure 3. Here, the hierarchy of grids constructed by the AMG approach starting with
the discretization with initial meshwidth A = 1/32 is given. Now, 5 levels are produced
by our AMG method. The graph of the coarse grid matrix after three coarsening
steps consists of two non-connected subgraphs showing that the 2 by 2 diagonal block
property of the fine level matrix is inherited to the coarser levels also.

Fia. 3. AMG-Hierarchy of grids for the Laplace problem discretized with rotated 5-point stencil,
initial meshwidth h = 1/32, with § resulling coarse levels and coarse grid matriz graph after three
coarsening steps.

5.2. Multilevel preconditioning of the Helmholtz operator. Now, we con-
sider the Helmholtz operator

(45) —A+e-id

We discretize it on the finest grid €, by the finite difference method which results in
the 5-point stencil *

| ~1
(46) I S 1
~1

and study the convergence properties of the different multilevel preconditioners for
varying values . The results are given in Table 4. We restrict our presentation here to
the case of the finite difference discretization, since, in further numerical experiments,
the finite element discretization for the finest level did not change things substantially.
The results were analogous. Note that for ¢ — oo basically the identity appears (after
scaling). If ¢ equals —Apin(—Ap) then the fine grid matrix A, gets singular®.

From Table 4 the following can be seen: First, for positive values of ¢, the precondi-
tioner based on bilinear interpolation, i.e. the BPX-type method gives rising condition

* To be able to treat the case ¢ — oo, we implemented —%A + 1d instead.
5 The same holds for all other eigenvalues of the discrete Laplacian. For values ¢ < —Apin(—Ap) we
would have an indefinite matrix Ay
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TABLE 4
Condition numbers, convergence rates and iteration counts for the preconditioning of the Helmholtz
operator, 5-point stencil on the finest grid.

e=—19 e =100

Rt MDS | Dendy | AMG || MDS | Dendy | AMG
8 k| 33.6 | 15.8 15.1 3.54 | 4.21 4.91
p || 0.14 | 0.20 0.25 0.18 |0.21 0.20
it || 32 31 31 24 27 27
16 |k || 284 |10.9 24.9 4.92 |6.07 7.40
p |l 0.36 | 0.37 0.34 0.32 |0.32 0.32
it || 42 40 41 35 38 38
32 | k| 29.2 | 10.5 20.3 5.66 | 7.26 8.11
p || 0.40 | 0.40 0.41 0.38 | 0.40 0.43
it || 47 45 45 42 44 47
64 | k| 30.8 | 10.8 21.9 6.06 | 7.98 8.13
p || 042 | 0.42 0.42 0.40 |0.41 0.45
it || 52 49 50 46 49 52
128 | k || 32.5 | 11.3 43.5 6.44 | 8.46 8.71
p || 0.44 | 0.44 0.57 0.43 |0.43 0.45

it || 56 53 59 50 53 54
e =10° £ =00
Rt MDS | Dendy | AMG || MDS | Dendy | AMG

8 Kk || 3.52 | 3.00 4.00 3.51 | 3.00 1.00
p || 0.0 |0.01 0.01 0.06 | 0.00 0.00
it || 13 10 11 8 3 1
16 | & || 544 | 4.00 4.00 5.44 | 4.00 1.00
p || 0.13 | 0.01 0.01 0.13 | 0.00 0.00
it || 28 13 11 22 3 1
32 | k|| 7.58 |5.01 4.00 7.57 | 5.00 1.00
p | 0.29 | 0.04 0.01 0.25 | 0.00 0.00
it || 42 26 12 33 8 1
64 | x| 9.82 | 6.06 4.00 9.78 |6.00 1.00
0.41 | 0.10 0.01 0.34 |0.01 0.00
it || 54 20 13 42 10 1
128 | k || 12.3 | 7.32 5.00 12.0 | 7.00 1.00
p | 0.51 | 0.16 0.06 0.42 ] 0.02 0.00
it || 65 27 19 51 13 1
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numbers and convergence rates for large values ¢ and successively finer discretizations.
For large ¢ its convergence behaviour seems to be dependent on the mesh size and the
unknowns. Especially for the case ¢ = oo, i.e. the identity (after scaling), the condi-
tion number seems to grow faster than #levels = log,(~™!'). For the Dendy approach
k = #levels holds exactly there. By plugging in the corresponding values into the for-
mulas in section 4.2 we see that the interpolation weights equal zero then, except for
the central weights which are 1.

However, the method based on the AMG coarsening shows a condition number
which is independent of both, the fine grid mesh size and the value of . For ¢ = oo, it
even stops the coarsening process, recognizing that the unknowns are totally decoupled.

For the case ¢ = —19 all methods still behave not to bad, with Dendy’s approach
relatively the best. However, as more we approach the first eigenvalue of the Laplacian,
as worse the convergence results get for all three methods®. Altogether, the AMG based
preconditioner provides an efficient and robust solution method for the Helmholtz prob-
lem for values of ¢ sufficiently away from the first eigenvalue of the discrete Laplacian.

For the initial meshwidth of the discretization h = 1/32 and the values e = 100, 1000
and 10°, Figure 4 shows the hierarchy of grids constructed by the AMG approach. Here,
7, 7 and 3 coarse levels are set up by the method. Interestingly, for the case ¢ = oo, the
AMG process does no refinement at all. It therefore detects that the identity operator
needs no coarsening. The coarse grid matrices for the values ¢ = 100,1000 and 10°
after 4, 3 and 2 coarsening steps, respectively, are given in Figure 5. We see for the case
e = 10° that the coarse grid matrix after two coarsening steps is basically diagonal.

Fia. 4. AMG-Hierarchy of grids, initial meshwidth h = 1/32, for the Helmholtz problem with
=100, 1000 and 105, discretized by 5-point stencils. 7, 7 and 3 resulting coarse levels.

5.3. Multilevel preconditioning for diffusion problems with jumps in the
coefficients. Now we consider so-called interface problems, which arise for example in
the area of porous media flow or in contact problems and related questions where media
with different material properties stick together. The underlying operator is

(47) d(xq,x2) - A,

6 Note that by another matrix-dependent coarsening process which is based on a directional splitting
of the 2D Helmholtz operator involving a energy based interpolation that stems from the resulting 1D
problems, very good condition numbers and convergence rates can be gained also for values of ¢ , which
are extremely close to the first eigenvalue of the discrete Laplacian. For details, see [24].
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Fic. 5. Coarse grid matriz graph for the the Helmholtz problem with e=100, 1000 and 105,
discretized by 5-pownt stencils. Snapshots after 4, 3 and 2 coarsening steps, respectively.

where d is assumed to be a piecewise constant scalar function, which possesses large
jumps in €. In the discrete case, this means that the diffusion coefficient can vary by
a few orders of magnitude within one mesh width.

In the following, we assume that the jumps in the diffusion coefficient are aligned
exactly with the lines of the finest grid and the diffusion value is not changing within one
cell of the discretization. This implies that the diffusion coefficient can have different
values at most in the four quadrants of the support of a finest level basis function.
Therefore, we obtain in the point (¢h, jh) the stencil

| —dq —(dl +d2)/2 —ds
(48) 32 —(dy+d3)/2 2(dy +dy+ds+ds) —(da+4ds)/2 |,
—ds —(ds + d4)/2 —dy4

where dq, ds, d3 and d4 denote the values of the diffusion coefficient in the quadrants of
the support of the respective basis function.

Now, we first consider the four corner problem. Here, the domain € is subdivided
by the lines 21 = r and x5 = ¢ into four subdomains (see figure 6). In each subdomain
Q.0 =1,...4, the diffusion coefficient can take a different constant value.

Fia. 6. Decomposition of the domain Q for the four corner model problem.

Qs 0y

In our experiments, we choose d to be

1in Ql, Q4 and 106 in QQ, Qg
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and study the convergence properties of the different multilevel preconditioners for
varying values ¢. There, we consider two different cases. In the first case, the lines
subdivide € exactly into four equally spaced subdomains. This implicates that the
so-called cross point is contained in all coarser grids, if standard coarsening is assumed.
In the second case, we shift the jump lines by one mesh size h on the finest grid. Thus,
the jumps and especially the cross point belongs only to the finest grid, if standard
coarsening is assumed, and are not more resolved on the coarser levels.

This model problem is known to cause severe problems to standard multigrid meth-
ods, whereas Dendy’s approach is able to cope with it. As a matter of fact, matrix-
dependent geometric coarsening methods were first developed for such kinds of prob-
lems, see also [20] or [30], pp 212-217. In [21] and [39] and the references cited therein,
there also exists some convergence theory to it.

TABLE b
Condition numbers, convergence rates and iteration counts for the preconditioning of the four
corner problem with jumps located at r = ¢ = 1/2, finite element discretization ({8} on the finest grid.

ht e=1 e=2 e=4
MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG
8 k395 |3.95 3.93 4.40 | 4.40 4.39 447 | 4.47 4.45
p || 0.16 |0.17 0.17 0.15 | 0.15 0.16 0.12 | 0.13 0.14
it || 25 25 25 26 26 25 27 27 25
16 k|| 5.26 | 5.26 5.25 6.21 | 6.21 6.17 6.35 | 6.35 4.45
p || 0.28 |0.27 0.27 0.26 | 0.26 0.27 0.25 | 0.25 0.27
it || 33 33 33 35 35 33 38 38 35
32 k| 6.58 | 6.58 6.59 8.28 | 8.28 8.20 8.56 | 8.56 8.46
p | 0.32 |0.32 0.31 0.31 |0.31 0.32 0.31 |0.32 0.33
it || 38 38 41 37 41 40 45 45 42
64 k|| 7.90 | 7.90 7.92 10.6 | 10.6 10.5 11.1 | 11.1 11.0
p || 0.34 |0.34 0.36 0.34 | 0.34 0.36 0.34 ] 0.35 0.37
it || 43 43 44 46 46 45 50 50 47
128 k || 9.18 | 9.18 9.23 13.3 | 13.3 13.1 14.0 | 14.0 13.8
p || 0.36 | 0.36 0.38 0.36 | 0.36 0.40 0.46 | 0.46 0.42
it || 47 47 48 50 50 53 57 57 58

The results of our experiments are given in Tables 5 and 6. We see that the precon-
ditioner based on bilinear interpolation gives rising condition numbers and convergence
rates for larger values ¢ and successively finer discretizations. Also for fixed h but
varying ¢, we see that the condition numbers are dependent on ¢ for the second case
r=c¢=1/2+4 h, whereas they are not in the first case r = ¢ = 1/2.

In contrast to that, for both, the approach due to Dendy and the AMG based
method, the condition numbers remain constant for fixed h but varying values of ¢.
However, the results of the Laplacian can not be reached. Interestingly, the second
case, i.e. r = ¢ = 1/2 4 h, gives even slightly better condition numbers than the first
one.
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TABLE 6
Condition numbers, convergence rates and iteration counts for the preconditioning of the four
corner problem with jumps located at r = ¢ = 1/2+ h, finite element discretization (48) on the finest
grid.

ht e=1 e=2 e=4
MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG
8 k| 498 |3.08 5.76 6.93 | 3.05 5.73 7.31 | 3.02 5.71
p || 0.18 |0.17 0.21 0.17 |0.16 0.22 0.16 | 0.17 0.20
it || 28 25 30 30 26 30 32 28 30
16 & || 7.71 | 4.08 8.05 12.11 | 4.42 5.54 13.1 | 4.48 5.56
p || 0.34 |0.26 0.35 0.35 | 0.28 0.30 0.38 | 0.27 0.32
it || 42 33 43 49 35 39 54 38 41
32 k|| 10.2 | 5.15 10.6 20.3 | 6.03 8.23 26.1 | 6.11 8.15
p | 0.42 |0.33 0.41 0.49 |0.35 0.39 0.55 | 0.32 0.37
it || 52 39 50 68 42 48 76 46 49
64 k || 12.0 | 6.24 10.5 29.3 | 8.21 10.3 46.9 | 8.46 8.39
p || 0.50 | 0.39 0.46 0.58 | 0.40 0.44 0.60 | 0.38 0.43
it || 61 45 58 87 51 54 100 | 56 56
128 k || 13.1 | 7.39 11.7 36.0 | 10.5 10.8 744 | 11.8 10.7
p || 0.54 | 0.41 0.49 0.65 | 0.44 0.47 0.64 | 0.44 0.47
it || 69 50 65 103 59 64 129 | 66 69

The hierarchy of grids for the AMG approach and the graphs of some resulting
coarse grid matrices are given in Figure 7.

Fia. 7. AMG-Hierarchy of grids for the four-corner problem h = 1/32, r,e = 1/2+ h and ¢ = 4,
with 6 resulting coarse levels and graph of the coarse grid matriz after three coarsening steps.

Next, we consider the so-called staircase problem due to [1]. Here, we use however
Dirichlet boundary conditions. Figure 8 gives the decomposition of the domain {2 into
subdomains with different diffusion coefficients. They take the value 1 in €y and the
value 107 in . Here, one length unit corresponds to 27!/16 mesh widths.
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Fia. 8. Decomposition of the domain € for the staircase problem.
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Table 7 gives the measured convergence results. We see that the preconditioner
based on bilinear interpolation possesses the worst condition numbers. The results of
the Dendy and the AMG approach are better.

TABLE 7
Condition numbers, convergence rates and iteration counts for the preconditioning of the staircase
problem with Dirichlet boundary conditions, finite element discretization (48) on the finest grid.

ht e=1 e=2 e=4

MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG

16 « || 10.7 | 5.23 7.12 22.0 | 7.85 6.55 25.8 | 8.74 6.62
p || 037 |0.26 0.35 0.45 | 0.29 0.36 0.45 | 0.26 0.34
it || 46 33 42 56 35 41 62 36 42

32 k|| 11.1 | 5.77 7.48 22.9 | 8.64 7.64 26.9 | 9.60 7.76
p || 0.41 |0.34 0.41 0.45 | 0.34 0.41 0.44 | 0.31 0.42
it || 49 39 47 60 40 47 67 42 50

64 k || 11.8 | 6.24 8.58 24.2 1 9.23 8.82 28.4 | 10.2 8.97
p || 0.43 |0.37 0.43 0.44 | 0.37 0.45 0.47 | 0.37 0.45
it || 54 43 52 64 46 53 71 48 56

128 k || 12.4 | 6.62 9.33 25.2 | 9.66 11.0 29.6 | 10.7 11.3
p || 0.44 10.39 0.44 0.46 | 0.39 0.49 0.48 | 0.39 0.48
it || 57 47 53 68 50 59 76 53 62

The hierarchy of grids for the AMG approach and the graphs of resulting coarse
grid matrices are given in Figure 9.

At last, we study a diffusion problem where the interface lines possess a spiral
shaped structure. The subdivision of the domain is given in Figure 10. Again, we use
Dirichlet boundary conditions. The value of the diffusion coefficient is 1 in €y and 10°
in Q. Now, one length unit corresponds to A~'/32 mesh widths.
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Fia. 9. AMG-Hierarchy of grids for staircase problem, initial meshwidth h = 1/32 and ¢ = 4, with
6 resulting coarse levels and graphs of the coarse grid matrices after two and three coarsening steps.

Fia. 10. Decomposition of the domain 2 for the spiral problem.
0 4 8 12 16 2‘0 24 28 32

] Q,
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For such a problem, conventional multigrid methods are known to have quite bad
convergence rates. This is also reflected for the preconditioner based on the bilinear
interpolation in Table 8. Interestingly, also the preconditioner based on Dendy’s method
is not robust any more. The resulting condition numbers are smaller than the ones for
the bilinear interpolation coarsening, but they still grow with rising ¢. However the
AMG based method behaves fully robust and produces for all values of ¢ basically the
same value for fixed h.

The reason why the AMG approach behaves so favourably lies in its possibility to
adapt itself on the coarser levels to the physical nature of the problem under consider-
ation by setting up coarser grids which allow to resolve features of the operator also on
coarser levels sufficiently. This can be observed in Figure 11. There, the hierarchy of
grids for the AMG approach and the graphs of some resulting coarse grid matrices are
given. We clearly see that the coarse grid matrices exhibit the spiral structure of the
problem. They become nearly tridiagonal matrices where strong couplings follow the
spiral line. Then, basically semi-coarsening along the spiral takes place on the coarser
levels.
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TABLE 8
Condition numbers, convergence rates and iteration counts for the preconditioning of the spiral
problem, finite element discretization ({8) on the finest grid.

ht e=1 e=2 e=4

MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG

32 k|| 15.8 |6.30 8.56 126 | 38.0 10.2 1960 | 670 8.76
p || 0.52 | 0.37 0.46 0.54 | 0.39 0.45 0.88 | 0.80 0.44
it || 68 44 56 120 | 68 55 173 | 98 55

64 x || 16.8 | 6.79 11.4 137 | 40.3 10.5 2140 | 715 10.7
p | 0.49 |0.39 0.46 0.54 | 0.44 0.49 0.94 | 0.72 0.48
it || 72 48 59 126 | 74 59 199 117 62

128 k || 17.8 | 7.21 12.6 145 | 42.2 12.6 2264 | 749 12.8
p |l 0.53 | 0.42 0.52 0.57 | 0.44 0.49 0.76 | 0.68 0.51
it || 77 52 64 133 78 69 215 128 76

Fia. 11. AMG-Hierarchy of grids, initial meshwidth h = 1/32 and ¢ = 4, with 8 resulling coarse
levels and graphs of the coarse grid matrices after three and five coarsening steps.

5.4. Multilevel preconditioning for anisotropic diffusion problems. Now,
we consider the operator

62 62

49 — 4+ —
(49) 65$%+5:1;%7

which describes for values £ # 1 anisotropic diffusion processes. We discretize it on the
finest grid €2, by the finite difference method and obtain the 5-point stencil

(50) — | —¢ 242 —¢

The convergence properties of the different multilevel preconditioners for varying values
¢ can be seen from Table 9.

As it can be expected, the condition numbers and convergence rates of the pre-
conditioner based on bilinear interpolation deteriorate for decaying ¢. The same holds
also for the preconditioner based on Dendy’s approach” which leads to the same results,

7 However, if additionally preconditioners corresponding to a line smoother or an ILU-smoother are
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TABLE 9
Condition numbers, convergence rates and iteration counts for preconditioning of the anisotropic
diffusion problem, finite difference discretization 50 on the finest grid.

ht e=1 =009 =105
MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG
8 k| 4.02 |4.02 4.32 4.21 | 4.21 4.32 6.06 | 6.06 4.86
p || 0.16 |0.16 0.19 0.27 | 0.27 0.20 0.22 | 0.22 0.20
it || 28 28 28 31 31 28 32 32 29
16 « || 4.88 | 4.88 5.73 5.18 | 5.18 5.62 8.56 | 8.56 5.57
p || 0.33 |0.33 0.34 0.36 | 0.36 0.31 0.44 | 0.44 0.32
it || 37 37 38 39 39 37 47 47 37
32 k|| 5.65 | 5.65 6.12 6.06 | 6.06 6.84 104 | 10.4 6.82
p || 0.38 |0.38 0.38 0.39 | 0.39 0.41 0.50 | 0.50 0.38
it || 43 43 41 40 40 43 51 51 42
64 k || 6.29 | 6.29 6.95 6.79 | 6.79 8.50 11.9 | 11.9 7.05
p || 0.41 | 0.41 0.42 0.42 | 0.42 0.42 0.53 | 0.53 0.41
it || 47 47 47 44 44 49 57 57 48
128 k || 6.83 | 6.83 8.20 741 | 7.40 9.58 13.1 | 13.1 7.93
p || 0.43 |0.43 0.42 0.45 | 0.45 0.46 0.55 | 0.55 0.45
it || 51 51 52 47 47 55 62 62 52

ht e=1072 e=107" €=
MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG
8 k|| 376 |37.6 4.14 42.0 | 42.0 4.11 42.5 | 37.7 2.87
p || 0.19 |0.19 0.16 0.26 | 0.26 0.08 0.07 ]0.03 0.00
it || 45 45 23 42 42 20 25 15 4
16 & || 146 146 5.35 210 | 210 5.30 222 181 3.48
p | 0.68 |0.68 0.30 0.82 |0.82 0.24 0.33 | 0.11 0.02
it || 137 | 137 33 132 | 132 32 7 43 10
32 k|| 344 | 346 6.68 880 | 880 5.49 1070 | 827 3.98
p | 0.88 |0.88 0.38 0.91 |0.91 0.32 0.81 |0.28 0.11
it || 257 | 257 40 310 | 310 37 220 87 24
64 k|| 523 | 523 7.57 2657 | 2657 6.48 4871 | 3643 4.39
0.91 ]0.91 0.40 0.92 |0.92 0.37 0.87 | 0.44 0.25
it || 342 | 342 45 672 | 672 42 487 175 33
128 k || 628 | 628 8.23 4973 | 4973 7.53 21516 | 15684 | 4.72
p | 0.92 |0.92 0.45 0.96 | 0.96 0.40 0.94 | 0.51 0.29
it || 392 | 392 52 1022 | 1022 48 1049 | 353 38
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except for the case ¢ = 0. Here, the Dendy approach leads to stencils which are equiv-
alent to semi-coarsening but only on every second line. However, the preconditioner
based on the AMG approach is not affected if ¢ decays. Of course, this is due to the
semi-coarsening effect of the AMG coarsening process, as it can be seen from Figures
12. There, the hierarchy of grids for the AMG approach and the graphs of resulting
coarse grid matrices are given for the values ¢ = 0.9, 0.1 and 0. Note that for ¢ = 0
only 5 levels are constructed due to pure semi-coarsening. On the coarsest level only a
diagonal matrix associated to the middle line unknowns appears, the problem is fully
decoupled and AMG stops correctly the coarsening process. The corresponding condi-
tion numbers are just that of the one-dimensional problem with MDS-preconditioning
applied to it.

Fia. 12. AMG-Hierarchy of grids for the anisotropy problem, initial meshwidth h = 1/32, ¢ =
0.9,0.1 and 0 with 6, 7 and 4 resulting coarse levels.

Since the simple anisotropic diffusion problem produced well expected results and
gives no further insight into our preconditioners than the expected ones, we turn to a
diffusion problem with locally varying anisotropy. To this end, we consider the problem
illustrated by Figure 13. The amsotropy changes direction along the diagonal line of Q.
The underlying operator is 515 2 + &5 552, where 61 = 1,65 = 0,1in 4 and g1 = 0,85 = 1,

in Q.

2

Q,

Fia. 13. Decomposition of the domain S for the locally varying anisotropy problem.

For the discretization, we used finite differences again. Table 10 gives the results
obtained for the different preconditioning methods. We see that the condition numbers

applied on each level, good condition numbers can be regained for this model problem, at least for the
multiplicative Schwarz method.
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and convergence rates of all three methods deteriorate with finer mesh sizes h. However
the AMG based approach seems to be less sensitive.

TaBLE 10
Condition numbers, convergence rates and iteration counts for the preconditioning of the diffusion
operator with jumping anisotropy, finite differences discretization on the finest grid.

Rt MDS | Dendy | AMG
8 k| 33.8 | 343 4.93
pl0.23 |0.22 0.23
it | 47 46 30
16 x| 189 202 7.57
p|0.65 |0.61 0.35
it | 150 149 41
32 k| 963 1198 12.2
p|0.88 |0.85 0.44
it | 458 464 53
64 k| 4652 | 6640 16.7
p 098 |0.97 0.49
it [ 1078 | 1116 65
128 k| 20391 | 24676 | 25.1
p|0.98 |0.98 0.54
it | 2380 | 2512 82

By means of the AMG process, semi-coarsening is now performed locally. This is
illustrated in Figure 14 where the produced hierarchy of grids and the graph of the
coarse grid matrix after two coarsening steps are shown. Whether a different choice of
« than 0.25 might help to further improve the convergence behaviour of AMG for this
example is an open question yet.

563%;#35;&2%_#3::35;%2%;EEE;; g\
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Fia. 14. AMG-Hierarchy of grids for locally varying anisotropy, initial meshwidth h = 1/32, with
7 resulting coarse levels and graph of the coarse grid matriz after two coarsening steps.
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5.5. Multilevel preconditioner for convection diffusion problems. At last,
we consider the convection diffusion operator

) )
(51) — A+ a(ay, :1;2)5— + (w1, x2)—

1 51’2 '

We discretize it on the finest grid using finite differences. The 9-point stencil belonging
to the discretization grid point (¢h, jh) is then given by

1 — —
52 — | —1—=at 44+Y —-1-—a" ,
B2
—1 -5

where a* = hmax(Za((z F 1/2)h,jh),0), b* := hmax(Eb(ih,(j F 1/2)h),0), ¥ =
at +a” + bt + b~. The convection coefficients must be evaluated between the grid
points to get stable discretizations. For the convection term we use here pure upwind
discretization which results in a first order method only®.

Now, the considered problem and the resulting matrices are not symmetric any-
more. This renders any convergence theory following the lines of Xu [58, 59] or Oswald
[35, 36, 37, 38] useless since it is only valid for symmetric operators. Note however
that the framework given in section 2 can be applied to non-symmetric problems as
well. Using the different coarsening methods we still can build up an enlarged, now
non-symmetric system matrix belonging to a generating system? or alternatively a mul-
tilevel preconditioner (24). But now, the corresponding eigenvalues may be complex.
Additionally, a conjugate gradient method is not working since the preconditioned sys-
tem matrix is non-symmetric. Alternatively BiCGstab [50], CGsym [47], GMRES [46],
or QMR [22] might be applied.

Here, we simply symmetrize our diagonally scaled enlarged linear system matrix
(34) by multiplying it with its transposed. Thus we obtain

(53) (B2 (Pa) " (Ant ) PRy (B (Pip)" Av P (B

and apply the conjugate gradient method to this system. Consequently, we study the
square root of the generalized condition number of this matrix.

This approach is superior to the symmetrization of the basis version of the multilevel
preconditioned matrix, P& B (PH)T Ay, since even for symmetric matrices Ay the
generalized condition number of the symmetrizised version would in general not give
the square of the condition number of the preconditioned matrix.

8 Using central differences instead results in a second order method but gives also stability problems
for larger values of the convection coefficients. Note that in this case, for values of a, b resulting in a
stable discretization for given h and also for discretizations using artificial viscosity or the II'in scheme
on the finest grid, the convergence properties of the different multilevel preconditioners were basically
analogous to the results presented for the upwind discretization case.

9 Especially for the non-symmetric case of the convection-diffusion equation, the Petrov-Galerkin
approach makes sense as well, both with respect to the overall generating system matrix and with
respect to the AMG coarse grid setup strategy itself.
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In our first examples we have chosen the coefficient functions a(xq,22) = @ and
b(x1,22) = b to be constant over the whole domain . Then, ¢ := arctan(b/a) gives
the angle between the convection and the zq-axis and € := /a? + b? gives its strength.
We consider the cases b = 0 and @ = b, i.e. ¢ = 0 and ¢ = 7/4. The square root of
the condition numbers for the enlarged matrices (53) associated to our three coarsening
approaches are given in Tables 11 and 12. We see that the enlarged matrix (53) based on
bilinear interpolation gives rising condition numbers for rising values of ¢. Thus, it is not
robust, especially not in the case ¢ = 0. The same holds also for the Dendy approach.
However the enlarged matrix using the AMG approach results in comparison to that in
fairly good condition numbers. Whether an other choice of the AMG-parameters (a, ()
might lead to further improvements is an open question yet.

TaBLE 11
Square root of the condition numbers of (53) for the convection diffusion problem for ¢ =0, i.e.
with convection in xi-direction, finite difference upwind discretization (52) on the finest grid.

ht e =100 e=10* £ =00

MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG
8 14.9 | 14.0 6.80 22.4 | 19.7 9.00 22.5 | 17.9 2.80
16 || 26.1 | 22.0 9.71 88.7 | 59.5 13.2 90.6 | 50.6 3.58
32 11295 | 21.9 11.8 336 152 21.9 365 130 4.41
64 | 29.7 | 20.0 15.2 1065 | 309 25.8 1468 | 318 5.25
128 || 29.5 | 22.0 18.4 2221 | 394 27.7 5878 | 747 6.08

TABLE 12
Square root of the condition numbers of (53) for the convection diffusion problem for ¢ = w/4, i.e.
with convection in diagonal direction, finite difference upwind discretization (52) on the finest grid.

ht e =100 e=10* £ =00

MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG
8 4.75 | 7.20 8.94 5.25 | 8.02 9.57 5.25 | 8.03 6.06
16 || 8.08 | 11.3 9.01 10.5 | 13.8 10.4 10.5 | 13.8 8.15
32 || 12.7 | 15.0 13.9 21.3 | 20.9 17.4 21.3 | 21.0 11.7
64 || 17.8 | 17.7 16.6 42.3 | 31.1 20.4 43.0 | 314 16.2
128 || 22.4 | 19.3 15.3 83.7 | 45.6 37.8 86.2 | 46.6 24.6

In Figure 15 we give the hierarchy of grids for the AMG approach with initial
meshwidth h = 1/32, for the convection diffusion model problem and graphs of coarse
grid matrices after two coarsening steps. We see, that in the case ¢ = 0, the matrix on
the coarser level mainly consists of the upwind stencil for the x;-derivative, whereas in
the case ¢ = 7 /4 it consists of a sort of upwind stencil for 8871 + 8872.

Finally we consider a convection diffusion problem with locally varying coefficient
functions (see [44, 45]):

(54) a(xy,xq) = e -day(ar — 1)(1 = 2a3) ,  b(wq,22) = —c - dag(xy — 1)(1 — 224) .
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Fic. 15. Left: AMG-Hierarchy of grids for the convection diffusion problem with ¢ =0, ¢ = 10%,
initial meshwidth h = 1/32, 6 resulling coarse levels and graph of the coarse grid matriz after two
coarsening steps. Right: AMG-Hierarchy of grids for the convection diffusion problem with ¢ = n/4,
e = 104, initial meshwidth h = 1/32, 6 resulting coarse levels and graph of the coarse grid matriz after
two coarsening steps.

Fi1G. 16. Direction of the convection for problem (54).

Here, the direction of the convection is then almost circular around the point (1/2,1/2),
see figure 16. The measured results are given in Table 13. We see that the MDS-based
method has for larger values of ¢ really bad condition numbers. The values for the
Dendy approach are somewhat better but far away from beeing robust. The AMG-
based enlarged matrix (53), however, gives relatively good results'®. Here, further work
is necessary to improve the method.

Figure 17 shows the hierarchy of grids produced by AMG coarsening, and addition-
ally the coarse grid matrix after three coarsening steps for the case ¢ = 10°. Note that,
here on the coarse grid, upwind stencils appear which follow the circular convection
direction.

Finally, it is interesting to look at the basis functions that were developed due to
the specific weighted interpolations induced by the Dendy and the AMG coarsening
schemes. This is illustrated in Figure 18.

10 Note that, for values of € up to 10'® the AMG-type method gives really robust condition numbers
with basically the same values as for ¢ = 10 and 10°. However, for the exceptional case € = oo, where
we use the pure upwind stencil, AMG gives bad results.
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TABLE 13
Square root of the condition numbers of (53) for the circular convection problem (54) finite differ-
ence upwind discretization (52) on the finest grid.

ht e =100 e=10* e =10°

MDS | Dendy | AMG || MDS | Dendy | AMG || MDS | Dendy | AMG
8 8.76 | 10.2 6.74 17.5 | 34.9 8.09 17.7 | 36.0 8.11
16 || 12.1 | 13.7 10.8 63.6 | 136 13.4 67.3 | 124 16.5
32 || 13.3 | 14.6 10.9 221 347 14.5 273 | 438 14.8
64 || 13.2 | 14.2 13.1 577 | 780 29.5 1096 | 1320 36.4
128 || 12.8 | 14.6 18.6 984 | 475 35.5 4079 | 3444 41.1

Fic. 17. AMG-Hierarchy of grids for convection diffusion problem (54} with locally varying coef-
ficients, initial meshwidth h = 1/32 and € = 10°, with 10 resulting coarse levels (the siz finest levels
are shown only) and graph of the coarse grid matriz after three coarsening steps.

6. Concluding remarks. We considered the convergence behavior of three dif-
ferent additive multilevel preconditioners, first the BPX-type method based on bilinear
interpolation, second, an algorithm involving an example of matrix-dependent geomet-
ric coarsening due to Dendy and, third, a preconditioner using the algebraic multigrid
technique.

For 2nd order elliptic problems, the AMG-type preconditioner behaved favourably
and resulted for most considered problems in relatively good and robust convergence
rates. Since, for our implementation, the additional effort needed in its setup phase is
about the same as 2-3 iterations of the plain BPX-method, which is not robust at all, we
think that the AMG-type preconditioner is a reasonable method with respect to both,
robustness and work involved. Interestingly, the properties with respect to robustness
known from its multiplicative counterpart, i.e. the conventional AMG method, carries
over to the additive preconditioner for the considered problem class. We believe that due
to its additive construction principle, it will perform favourable when it comes to paral-
lelization. Here, a geometric coarsening method with matrix-dependent interpolations
needs additionally some ILU-type preconditioners on all levels, or in its multiplicative
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Fia. 18. Left: A selection of coarse-level basis functions as they are produced by Dendy’s approach
for the convection diffusion problem (54) with ¢ = 100, initial meshwidth h = 1/128, M =7 on level 3.
Right: A single coarse-level basis function as it is produced by the AMG approach for the convection
diffusion problem (54) with ¢ = 1000, initial meshwidth h = 1/128, M = 14 on level 4.

variant [LU-type smoothers, to gain robustness for singular perturbed problems. This
is more difficult to parallelize. But how good the setup phase needed in the AMG-based
method parallelizes is an open question yet. Furthermore, it is unclear to us, whether
the additive or the multiplicative variant of the AMG approach results in faster overall
computing times.

Finally, we remark that for the AMG-based approach no general theory analogously
to that in [10, 58, 59], [37, 38] or [4] exists, which shows both, h-independence of the
condition number and its independence from the coefficient functions of the operator
under consideration, i.e. robustness. This will be future work.
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Wolfgang Reisig: Elements of a Temporal Logic. Coping with
Concurrency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for
the singularity at the angular point of the lid driven cavity
Ekkart Kindler: Invariants, Compositionality and Substitution
Thomas Bonk, Ulrich Riide: Performance Analysis and Optimiza-
tion of Numerically Intensive Programs

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics
Problems by the Combination Technique

Ketil Stglen, Frank Dederichs, Rainer Weber: Assumption / Com-
mitment Rules for Networks of Asynchronously Communicating
Agents

Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-
grams in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Chri-
stoph Zenger: A Proof of Convergence for the Combination Techni-
que for the Laplace Equation Using Tools of Symbolic Computation
Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sor-
ting and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory
of Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distri-
buted Logic Simulation of VLSI Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incre-
mental State Saving
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Peter Slavkovsky: The Visibility Problem for Single-Valued Surface
(z = {(x,y)): The Analysis and the Parallelization of Algorithms
Ulrich Riide: Multilevel, Extrapolation, and Sparse Grid Methods
Hans Regler, Ulrich Riide: Layout Optimization with Algebraic
Multigrid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Modal
Mu-Calculus using Gaufl Elimination

Christoph Pflaum, Ulrich Riide: Gauf’ Adaptive Relaxation for
the Multilevel Solution of Partial Differential Equations on Sparse
Grids

Christoph Pflaum: Convergence of the Combination Technique for
the Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Chri-
stoph Zenger: Pointwise Convergence of the Combination Technique
for Laplace’s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas
Ludwig, Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Deve-
loping Multicomputer Applications on Networks of Workstations
Using NXLib

Max Fuchs, Ketil Stglen: Development of a Distributed Min/Max
Component

Johann K. Obermaier: Recovery and Transaction Management in
Write-optimized Database Systems

Sergej Gorlatch: Deriving Efficient Parallel Programs by Systema-
ting Coarsing Specification Parallelism

Reiner Hiittl, Michael Schneider: Parallel Adaptive Numerical
Simulation

Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Par-
allel Hierarchical Sea-of-Gates Router

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Mul-
tiple Shooting for Optimal Control Problems Under NX/2
Christian Suttner, Christoph Goller, Peter Krauss, Klaus-J6rn Lan-
ge, Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimiza-
tion of Parallel Computations

Andreas Listl: Using Subpages for Cache Coherency Control in Par-
allel Database Systems

Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach
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Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying a New Search Space Partitioning Me-
thod to Parallel Test Generation for Sequential Circuits

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stglen: An Attempt to Embed a Restricted
Version of SDL as a Target Language in Focus

Christoph  Pflaum: A Multi-Level-Algorithm for the Finite-
Element-Solution of General Second Order Elliptic Differential
Equations on Adaptive Sparse Grids

Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schétz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

Maximilian Fuchs: Technologieabhéngigkeit von Spezifikationen di-
gitaler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings
And Multilevel Iterative Methods For Anisotropic Problems
Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stglen: A Refinement Relation Supporting the Transition
from Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel
Algorithm-Implementation and Parallelization

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse
Grids Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verify-
ing the development of a Communication Protocol in FOCUS - A
Case Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the
Kronecker Product of Identical Servers to a Reduced Product Space
Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liet-
voort: Auto-Correlation of Lag-k For Customers Departing From
Semi-Markov Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:
Applications to Multi-dimensional Schrédinger Problems
Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technology
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Alexander Pfaffinger: Parallel Communication on Workstation Net-
works with Complex Topologies

Ketil Stglen: Assumption/Commitment Rules for Data-flow Net-
works - with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software
Co-Design

Thomas Schnekenburger: The ALDY Load Distribution System
Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
MecMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via
Integer Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-
to-Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-
pute the Concurrency Relation of Free-Choice Signal Transition
Graphs

Bernhard Schéatz, Katharina Spies: Formale Syntax zur logischen
Kernsprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations
Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismidiller:
Workshop on PVM, MPI, Tools and Applications

Thomas Schnekenburger: Integration of Load Distribution into
ParMod-C

Ketil Stglen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Andreas Listl, Giannis Bozas: Performance Gains Using Subpages
for Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr Jancar, Javier Esparza: Deciding Finiteness of Petri Nets up
to Bisimulation

M. Jung, U. Riide: Implicit Extrapolation Methods for Variable
Coefficient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Mul-
tigrid Methods for the Solution of the Navier-Stokes Equations in
Complicated Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix
Dependent Geometric Coarsening and Algebraic-Multigrid Coarse-
ning for Second Order Elliptic PDEs
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Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice
Systems

Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler
Programme

Barbara Paechl: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox
-Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
iiber Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation
Methods

Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis
Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-
of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fiir MIDAS



