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Abstract

The application of standard multigrid methods for the solution of the Navier-Stokes equa-
tions in complicated domains causes problems in two ways. First, coarsening is not possible to
full extent since the geometry must be resolved by the coarsest grid used, and second, for semi-
implicit time stepping schemes, robustness of the convergence rates is usually not obtained for
the arising convection-diffusion problems, especially for higher Reynolds numbers.

We show that both problems can be overcome by the use of algebraic multigrid (AMG)
which we apply for the solution of the pressure and momentum equations in explicit and semi-
implicit time-stepping schemes.

We consider the convergence rates of AMG for several model problems and we demonstrate
the robustness of the proposed scheme.
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1 Introduction
In this paper, we consider a fast solver for the numerical simulation of two- and three dimen-
sional viscous, instationary, incompressible fluid flow problems in complicated geometries as
they arise for example in the study of porous media flow on a micro-scale level, in multi-
connected technical devices like cooling or heating systems or in a vast number of biological
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and medical flow simulations. Also for free boundary problems where the domain changes in
time, partial differential equations in rather complicated geometries have to be solved in each
time step.

Fig. 1 Examples for flow problems in fixed complicated geometries.
Left: a river system, Right: porous media (cross section of sandstone) [Fayers & Hewett, 1992]

If we use an explicit time discretization, for example the forward Euler scheme, most of the com-
putational effort has to be spent for the solution of the Poisson equation in a pressure correction
step. Semi-implicit discretization schemes as for examplethe backward Euler scheme allow
larger time steps. But here, besides the Poisson equation, we additionally obtain convection-
diffusion equations for each component of the velocity.
Multigrid methods are often used solvers for the arising algebraic equations. However, for con-
vection dominated convection-diffusion problems, as theyappear for high Reynolds numbers,
standard multigrid methods show a lack of robustness with respect to the convergence behavior.
This can be overcome by some special techniques for the construction of the restriction and
coarse grid operators and the use of ILU-smoothers [Kettler, 1982], [Wittum, 1989a], [Wittum,
1989b], [de Zeeuw, 1990], [Reusken, 1994]. This only works well in two spatial dimensions.
The second drawback is that the geometry of the domain must beresolved on the coarsest level
of discretization used in the multigrid method. Thus, the domain is not allowed to have a com-
plicated structure. Otherwise, there would be many unknowns on the coarsest level and an
iterative scheme would need too many smoothing steps on the coarsest grid to maintain good
convergence rates whereas direct solvers for the coarse grid equation are too expensive. Fur-
thermore, it is not possible to use grid transformation techniques to transform a non-rectangular
physical domain into a rectangular computational domain ifthe domain is too complicated. For
some other concepts on the application of multigrid methodsto problems on complex domains,
see [Bank & Xu, 1995], [Bank & Xu, 1996], [Hackbusch & Sauter,1995], or [Kornhuber &
Yserentant, 1994].
In the eigthies, algebraic multigrid methods were introduced. They do not make use of any
geometric information on the grid. Here, the coarse grid points and restriction and interpola-
tion operators are constructed by only considering the linear system and the coupling between
the different unknowns. In numerical experiments, algebraic multigrid has been shown to pos-
sess advantages on conventional multigrid methods with respect torobustness[Ruge & Stüben,
1984], [Ruge & Stüben, 1986]. Their convergence rates are bounded by a constantC < 1 in-
dependent of the PDE under consideration, also for problemswith strongly varying coefficient
functions or singular perturbed problems, like diffusion problems or convection-diffusion prob-
lems with strong anisotropy or strong convection, respectively. Robust convergence rates are
also obtained for problems on domains withcomplicated geometry, even for the additive variant
of AMG (see [Grauschopf et al., 1996]).
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We apply AMG to the equations arising from explicit and semi-implicit time-discretizations
of the Navier-Stokes equations and we present the results ofnumerical experiments where we
study the dependence of the convergence rates on the geometry, on the Reynolds number, and on
the number of unknowns. For other concepts for the application of AMG to the Navier-Stokes
equations, see [Lonsdale, 1993], [Webster, 1994], and [Raw, 1994].

2 Discretization of the Navier-Stokes Equations
The Navier-Stokes Equations

We consider the time-dependent, incompressible Navier-Stokes equations for the velocity~u and
the kinematic pressurep, which is defined as the real pressure divided by density, in an arbitrary
bounded domain
 � R2 or R3~ut � 1Re4~u+ ~u � r~u+rp = ~g; (2a)r � ~u = 0: (2b)

(2a) is the momentum equation and (2b) is the continuity equation. Re denotes the Reynolds
number and~g is the body force, for example gravity. In addition, we need suitable initial con-
ditions~ujt=0 = ~u0 and boundary conditions of inflow, outflow, slip or no-slip type. This means
that either the velocity itself is specified at the boundary (~uj� = ~u�) or its normal derivative
((@~u=@n)j� = (@~u=@n)�) where~n denotes the unit outer normal vector at the boundary�. For
a detailed description of the different boundary types, seee.g. [Hirt et al., 1975], [Griebel et al.,
1995, pp 12f].
The initial condition must satisfyr � ~u0 = 0 and~u0j� � ~n = ~u�jt=0 � ~n (see e.g. [Quaterpelle,
1993]). An initial velocity field~u0 satisfyingr�~u0 = 0 can be obtained by solving the potential
equation 4� = 0; r�j� � ~n = ~u�jt=0 � ~n (3)

and setting ~u0 := r�: (4)

Discretization in Space

For the space discretization, we use finite differences on a staggered grid with equidistant ortho-
gonal gridlines, which was first introduced by [Harlow & Welch, 1965]. The convective parts
are discretized by flux-blending, i.e. a mixture of central and upwind differences, namely the
Donor-Cell scheme, such that the discretization does not suffer from instabilities [Hirt et al.,
1975].1 If 
 is non-rectangular, we approximate
 by a domain
h such that the boundary of
h coincides with gridlines. Then, we imbed
h in a rectangular domain~
 � 
h. Thus,~
 can
be divided in the set of fluid cells representing
h and a set of boundary cells (see Figure 2).
Details of the discretization in space and of the discretization of the boundary conditions can be
found in [Hirt et al., 1975], [Griebel et al., 1995, chapter 3].1There exist several other stable discretization schemes for convection-diffusion problems, as streamline- and

upwind-diffusion methods, see [Hughes et al., 1986], [Johnson, 1987], or Petrov-Galerkin methods.
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Figure 2: Imbedding of a non-rectangular domain

Discretization in Time

For time discretization, we either use the forward Euler or the backward Euler scheme.2 The
explicit forward Euler scheme with time step�t := tn+1 � tn, leads to the coupled problem:

Find~u (n+1); p(n+1) such that~u (n+1) + �trp(n+1) = ~u (n) + �t � 1Re4~u (n) � ~u (n) � r~u (n) + ~g (n)� ; (5a)r � ~u (n+1) = 0; (5b)

where the index(n) denotes velocity and pressure at the timetn.
For its solution, we first choose a tentative velocity field~u ? := ~u (n) + �t � 1Re4~u (n) � ~u (n) � r~u (n) + ~g (n)� (6)

and then we obtain~u (n+1) by adding the gradient of the pressure in the new time step~u (n+1) = ~u ? � �trp(n+1): (7)

Substituting~u (n+1) by the right hand side of (7) in the continuity equation (5b) leads to a
Poisson equation for the pressure4p(n+1) = 1�tr � ~u ?: (8)

Thus, we first solve (8) and then compute~u (n+1) by means of (7).
For reasons of stability of the time stepping scheme, we mustobserve some restrictive conditions
for the step size�t, the so called Courant-Friedrichs-Levi conditions, whichguarantee that no
particle of the fluid can pass more than one gridline in any direction in one timestep, i.e.2There also exist more elaborated time stepping schemes, even of higher order, as the Crank-Nicholson scheme or

the fractional-step-�-scheme (see e.g. [Turek, 1995]). Note that also in those schemes, basically Poisson equations and
convection-diffusion equations have to be solved.
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maxx2
 jui(x)j �t < �xi i = 1; 2(; 3): (9)

Larger time steps are possible if we use an implicit time stepping scheme as the backward Euler
scheme, for example. Here, we apply a semi-implicit discretization of the convection term to
avoid nonlinearities in the algebraic equations. Thus, we end up with the coupled problem:

Find~u (n+1); p(n+1) such that~u (n+1) + �t �� 1Re4~u (n+1) + ~u (n) � r~u (n+1) +rp(n+1)� = ~u (n) + �t~g (n+1);(10a)r � ~u (n+1) = 0: (10b)

Again, we compute a tentative velocity field, now as the solution of the convection-diffusion
equation3 ~u ? + �t �� 1Re4~u ? + ~u (n) � r~u ? +rp(n)� = ~u (n) + �t~g (n+1): (11)

These velocities do not satisfy the continuity equation. Thus, we have to compute some correc-
tion terms~u 0 andp0 such that~u (n+1) = ~u ? + ~u 0; p(n+1) = p(n) + p0: (12)

Subtracting (11) from (10a) gives us an equation for~u 0~u 0 + �t �� 1Re4~u 0 + ~u (n) � r~u 0 +rp0� = 0 (13)

or, using the abbreviation S(~u 0) := � 1Re4~u 0 + ~u (n) � r~u 0; (14)

we obtain ~u 0 + �tS(~u 0) + �trp0 = 0: (15)

Depending on the specific choice how to approximateS(~u 0), there exist different numerical
methods in literature.
One is to approximateS(~u 0) by zero. This implies that the values of~u 0 change very little in
space. Then we plug (15) into the continuity equation, and weobtain a Poisson equation for the
pressure correction 4p0 = 1�tr � ~u ?: (16)

This approach is used for example by [Nonino & del Giudice, 1985] and [Kim & Chung, 1988]
who call this scheme SIMPLE as well as by [Cheng & Armfield, 1995] who derive this scheme
from the SMAC method (simplified marker and cell) [Amsden & Harlow, 1970]. In the follow-
ing, we call this scheme SMAC.3Note that this is a system of decoupled convection-diffusion equationsfor each component of the tentative velocity

field ~u ?.
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In the original SIMPLE scheme introduced by [Patankar & Spalding, 1972], the space dis-
cretization of the linear operatorS(~u 0) is written as a product of a matrixA which depends on
the velocities of the previous time step with the velocity correction~u 0hSh(~u 0h) = A(~u (n)h )~u 0h (17)

and (15) becomes (I + �tA(~u (n)h ))~u 0h + �trhp0h = 0: (18)

Furthermore,A(~u (n)h ) is substituted by the diagonal matrixD(~u (n)h ) := diag(A(~u (n)h )). Thus,~u 0h is assumed to be small and the off-diagonal elements are neglected. (18) gives~u 0h = ��t(I + �tD(~u (n)h ))�1rhp0h: (19)

If we substitute~u 0h by the right hand side of (19) in the continuity equation, we end up with an

equation forp0h which depends on~u (n)hrh � (I + �tD(~u (n)h ))�1rhp0h = 1�tr � ~u ?h: (20)

Here, relaxation parameters are often used for stationary problems to get better convergence
results.
The SIMPLEC algorithm [Patankar, 1981] assumes that~u 0h is nearly constant in a certain sur-

rounding and uses lumping of the matrixI + �tA(~u (n)h ) in (18). This means that we substitute

the matrixI + �tA(~u (n)h ) by a diagonal matrix where the diagonal elements are the sumsof all
elements of one row.4
Moreover, there exist schemes as SIMPLER [Patankar, 1980] which use an inner iteration of at
most two cycles for the solution of the coupled problem (10a), (10b). One cycle consists of the
computation of the tentative velocity field by (11) using thepressure computed in the previous
cycle and the computation of a pressure correction by the continuity equation.
For all these different numerical schemes, we basically have to solve Poisson or Poisson-like
equations for the pressure or the pressure correction and convection-diffusion equations for
each component of the velocity vector. In the following, we will consider the solution of these
equations by algebraic multigrid.

The Transport Equation

Besides the Navier-Stokes equations, we also consider the scalar transport equationct � �4c+ ~u � rc = 0 (21)

with the diffusion coefficient� and the velocity field~u.
This describes for example the transport of a chemical substance with concentrationc. Settingc := T , (21) is the energy equation for the temperatureT . Here, for reasons of simplicity, we
omit the recoupling of the concentration or temperature, respectively, on the momentum equa-
tions which can be modeled for example using the Boussinesq approximation (see [Oberbeck,
1879], [Boussinesq, 1903], [Bejan, 1984]).4Note that this approach is equivalent to the SMAC approach if we use conventional upwind-discretizations instead

of the Donor-Cell scheme.

6



Time discretization with the backward Euler scheme givesc(n+1) + �t(��4c(n+1) + ~u � rc(n+1)) = c(n); (22)

where~u is either an already computed stationary velocity field or~u (n+1). (22) is equivalent to
the momentum equation (11) for the tentative velocity field~u ?. The only differences are the
right hand side and the diffusion coefficient. For the discretization in space, we use again the
staggered grid and finite differences with a mixed central/upwind discretization of the convective
term. For details, see [Griebel et al., 1995, pp 134ff].

3 The Algebraic Multigrid Method and its Application
to the Navier-Stokes equations
Algebraic Multigrid

Algebraic multigrid methods for the solution of a linear systemAMuM = fM
on a fine grid levelM were introduced in [Brandt et al., 1982], [Brandt, 1983], [Ruge & Stüben,
1984], and [Ruge & Stüben, 1986]. Here, first a grid is set up on the next coarser level by using
algebraic information fromAL (L �M ) and then an appropriate interpolation schemePLL�1 is
defined. After computing AL�1 := (PLL�1)TALPLL�1 (23)

via the Galerkin identity, the process is repeated until a sufficiently coarse level system is ob-
tained. AMG is necessarily less efficient than highly specialized geometric multigrid solvers
for elliptic problems on uniform rectangular grids. However, for more complicated cases with
general domains, AMG has been shown to behave robust and thusperforms quite favorably in
terms of operation count and CPU time. AMG also works for problems where geometric multi-
grid methods are impossible to design. AMG uses no sophisticated smoother, but only standard
Gauß-Seidel. The robustness of AMG is obviously the merit ofthe appropriately chosen grid
coarsening strategy and the associated interpolations.
For algebraic multigrid, the grids should be nested as for conventional multigrid methods, but
they need not to be uniform. In fact, uniformity, if given forthe finest grid, is in general not
maintained in the process. We will nevertheless start with fine level discretizations based on the
regular grid
h. In the following we will denote the set of indices of the gridpoints correspon-
ding to levelL byNL and we demand that the index sets are nestedN1 � N2 � : : : � NM�1 � NM :
To each grid point of levelL, there corresponds an unknown of the solution vectoruL with the
same index.
For an AMG algorithm, the sequence of matricesAL must be constructed algebraically. TheAL�1; L = M; : : : ; 2 are computed successively by selecting a subset of the unknowns of the
levelL system by evaluating thestrength of the connectionsbetween the unknowns inAL. The
basis for our implementation is the AMG method described in [Ruge & Stüben, 1984, Ruge &
Stüben, 1986].
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According to the well-known variational principle, it is the best for a given interpolation to
determine the coarse-grid discretization via Galerkin-coarsening. All error components lying in
the range of the interpolation are then eliminated by a single coarse grid correction. In multigrid
theory one has to take care that those error components, which are persistent to the smoother,
are well represented on coarser grids.
The effect of Gauß-Seidel iterations on symmetric positivedefinite matricesAM is well un-
derstood and can be used to guide the construction of the coarser level systemsAL for L =M � 1; : : : ; 1: Gauß-Seidel smoothing is stalling whenever the erroreitL := uitL�uL in iterationit is big in comparison to the residualritL := ALuitL � fL.
Because ofALeL = rL; we haveALeL � 0 then. Or for a single unknown(eL)i = � 1(AL)ii nLXj=1j 6=i (AL)ij(eL)j :
This sum may be splitted into the error components visible onthe coarse grid (and thus elimi-
nated by a single coarse grid correction step) and those which are not, i.e.(eL)i = � 1(AL)ii 0B@Xj2CLj 6=i (AL)ij(eL)j + Xj2FLj 6=i (AL)ij(eL)j1CA : (24)

HereCL := NL�1 andFL := NL nNL�1: If the second sum could be eliminated on all levels,
AMG would be a direct solver. In this case, the ideal interpolation weights would be given by(PLL�1eL�1)i = 8><>: (eL�1)i ; i 2 CL� 1(AL)ii Xj2CLj 6=i (AL)ij(eL�1)j ; i 2 FL: (25)

Unfortunately, this ideal assumption can hardly be fulfilled when we want a decrease of the
number of grid points on each level. Nevertheless, we try to minimize the second sum in (24)
by choosing the coarse grid pointsCL := NL�1 fromNL appropriately.
We will briefly review the coarse grid selection part of AMG, as introduced in [Ruge & Stüben,
1984, Ruge & Stüben, 1986]. For reasons of simplicity, the level indexL is omitted. Here, we
have to define the set of strongly coupled neighboursSi of a pointi. Letd(i; I) := 1maxk 6=i f�AikgXj2I �Aij ;
whereI is any subset ofN; andSi := fj 2 N jd(i; fjg) � �g; Si;T := fj 2 N ji 2 Sjg : (26)

The partitioning in fine and coarse grid points is performed in two phases on each level. There,
we select coarse grid points in such a manner, that as many strong couplings as possible are
taken into consideration.
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Selection of coarse grid points:
Setup Phase I

1. SetC = ; and setF = ;
2. While C [ F 6= N do

Pick i 2 N n (C [ F ) with maximaljSi;T j+ jSi;T \ F j
If jSi;T j+ jSi;T \ F j = 0

then setF = N n C
elsesetC = C [ fig and setF = F [ (Si;T n C);

endif

The measurejSi;T j + jSi;T \ F j is purely heuristical. The first term is associated to the to-
tal number of strongly coupled neighbours, the second one tothe number of strongly coupled
neighbours which are inF: Domains with the same discretization stencil for most nodes(typi-
cally inner nodes), tend to have the same value of the measurejSi;T j + jSi;T \ F j for them.
Note that the action to pick an index in step 2 of the above algorithm is non-deterministic
and allows different implementations, depending on the chosen underlying data structures, see
also [Bungartz, 1988]. Furthermore, using dynamic data structures and incremental techniques,
it is possible to implement the overall setup algorithm (i.e. phase I and II) to need a number of
operations proportional to the number of fine grid unknowns.Further improvements should be
possible, if one would handle nodes situated next to the boundary of the domain and inner nodes
differently.
In a second phase the finalC-point choice is made.

Selection of coarse grid points:
Setup Phase II

1. SetT = ;
2. While T � F do

Pick i 2 F n T and setT = T [ fig
set ~C = ; and setCi = Si \ C
setF i = Si \ F
While F i 6= ; do

Pick j 2 F i and setF i = F i n fjg
If d(j; Ci)=d(i; fjg) � �

then if j ~Cj = 0
then set ~C = fjg and setCi = Ci [ fjg
elsesetC = C [ fig, setF = F n fig andGoto 2

endif

endif

setC = C [ ~C, setF = F n ~C
This second algorithm has to make sure, that each point inF is strongly coupled directly with
points inC or at least with points inF; which are strongly coupled with points inC: Again, the
strategy to force the set~C to contain at most one element is purely heuristic. The parameters�
and� which control the coarsening algorithm must be given by the user.
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After the pointsNL where divided into the setsFL andCL; we could define the interpolation as
given in (25). In the algorithm of Ruge and Stüben, a little more sophisticated interpolation is
used, which gives better results in numerical experiments:(PLL�1eL�1)i := 8>>>><>>>>: (eL�1)i ; i 2 CL�Xj2CiL ((AL)ij + cij) (eL�1)j(AL)ii + cii ; i 2 FL; (27)

where cij := Xk 62CiLk 6=i (AL)ik(AL)kj(AL)ki +Xl2CiL(AL)kl :
Once the interpolation matrixPLL�1 is constructed, the system matrixAL�1 is determined by the
Galerkin identity (23). Then, the coarsening proceeds recursively until the number of remaining
unknowns equals one.

Application to the Navier-Stokes Equations

In our algorithm, we apply AMG for the solution of the potential equation for the initial velocity
field (3) and of the Poisson equation for the pressure (8) in the explicit code or the pressure
correctionp0 (16) in the SMAC code, respectively. For these equations, one single setup step is
sufficient which consists of the setup phases I and II in the initializing phase of the algorithm,
because the equations only differ in the boundary values andthe right hand side, whereas the
setup depends only on the matrix of the linear system. For theSIMPLE scheme, we would
need a setup step for the equation for the pressure correction (20) in each time step because this
equation depends on the velocities of the previous time step. The same holds for the SIMPLEC
or SIMPLER scheme.
Moreover, we apply AMG to the momentum equation for~u ? (11) and to the transport equation
(22). Here, we have to solve convection-diffusion problemswhere the convection dominates
for high Reynolds numbers or low diffusion coefficients. Themomentum equations change
from time step to time step, because the time dependent velocities ~u (n) enter the scheme in the
convective term. Thus, we would need a setup phase in each time step.
In our numerical experiments, we also tried a sort ofadaptive setup strategyfor the momentum
equations. This means that we only apply the quite expensivesetup step if the number of AMG
V-cycles exceeds a certain given numbertolit to reduce the residual below". Otherwise, we
just keep the coarse grid and the interpolation operator of the previous time step. Thus, the
problems on the coarser grids are not exactly the problems related to the fine grid equation but
if the velocities change not too much from one time step to thenext, the coarse grid problem
based on previous velocities might still produce sufficientcoarse grid correction terms for the
fine grid equations with the new velocities.
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4 Numerical Results
In our numerical experiments, we demonstrate the robustness of the algebraic multigrid method
applied to the Navier-Stokes equations, with respect to thegeometry, to the number of unknowns
and to the diffusion coefficient in the convection-diffusion equation.
In all our experiments we used a multigrid V-cycle with one pre- and post-smoothing step. As
smoother we use Gauss-Seidel relaxation. We reduced theL2-norm of the residuals to values
below10�12 and we always measured the reduction rate, that is the quotient of theL2-norms of
the residuals of two successive iterates�it := kritk2krit�1k2
in the last iteration when the stopping criterion was reached. The AMG parameter� is always
set to 0.35 whereas� is varied as given in the tables.

4.1 Dependence of the Convergence on the Geometry

To test the behaviour of our algorithm for complicated geometries, we consider a channel flow,
where several cubic obstacles are inserted in the channel, namely 1, 2 x 2, 4 x 4, 8 x 8 and 16 x
16 cubes (see Figure 3). We used a 256 x 64 grid. The size of the cubes is chosen such that the
sum of their volumes is constant for each test case.

16x16 obstacles

no obstacles

2x2 obstacles 4x4 obstacles

1 obstacle

8x8 obstacles

Fig. 3 Test problem for the dependence on the geometry, flow from theleft to the right

First, we study the potential equation (3) for the initial velocity field. Note that the equations
for the pressure (8) in the explicit time-stepping scheme and the pressure correction (16) in the
SMAC scheme, respectively, are also Poisson equations withNeumann boundary conditions.
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They only differ in the right hand side and in the kind of the boundary conditions (inhomoge-
neous/homogeneous). Thus, the convergence properties of AMG applied to those two equations
are basically the same as for the potential problem (3).
In Table 1, we see that the reduction rates strongly depend onthe parameter�, which determines
the set of strongly coupled neighbours of a point (see (26)).The best values (underlined) are
obtained for� < 0:1. There, the reduction rates were between 0.08 and 0.18. The minimal
values for each geometry are always below 0.12, but they depend in a way on� which is not yet
fully understood. Thus, we can say that our algorithm is robust with respect to the geometry, but� must be chosen carefully. The number of coarse grid points isnearly the same for all cases,
independent of the number of obstacles and the value of�. Thus, the time which must be spent
for one V-cycle is always in the same range.

obstaclesn� 1e-6 1e-4 0.01 0.02 0.03 0.05 0.1 0.15 0.25 0.45 0.75 0.95
none 0.108 0.112 0.094 0.100 0.078 0.104 0.126 0.149 0.206 0.340 0.168 0.341

1 0.154 0.139 0.136 0.129 0.157 0.1080.164 0.166 0.289 0.216 0.295 0.662
2x2 0.114 0.133 0.134 0.135 0.116 0.121 0.143 0.178 0.212 0.351 0.444 0.764
4x4 0.142 0.126 0.110 0.129 0.111 0.124 0.176 0.169 0.193 0.352 0.509 0.789
8x8 0.148 0.118 0.116 0.152 0.161 0.161 0.150 0.202 0.253 0.463 0.468 0.774

16x16 0.117 0.138 0.174 0.112 0.122 0.147 0.173 0.136 0.251 0.372 0.488 0.838

Table 1 Dependence of the reduction rates on the number of obstaclesand on�, 2D-potential equation with
Neumann conditions

We believe that the relatively bad reduction rates for larger values of� are caused by the Neu-
mann boundary conditions or the semidefiniteness of the linear system, respectively (see also
the remark on page 9). With Dirichlet conditions we obtainedmuch better reduction rates, also
for large values of� as it can be seen in Table 2.

obstaclesn� 1e-4 0.05 0.25 0.45 0.85
0 0.081 0.079 0.099 0.101 0.035

1x1 0.088 0.066 0.095 0.061 0.035
2x2 0.095 0.067 0.101 0.089 0.033
4x4 0.090 0.080 0.100 0.058 0.033
8x8 0.080 0.079 0.100 0.081 0.149

16x16 0.082 0.079 0.098 0.128 0.091

Table 2 Dependence of the reduction rates on the number of obstaclesand on�, 2D-potential equation with
Dirichlet conditions

The same results are obtained in the 3D case, where we considered a channel with 64 x 32 x 32
grid cells and between zero and 5 obstacles in each direction(see Table 3).

obstaclesn� 1e-6 1e-4 0.01 0.02 0.03 0.05 0.10 0.15 0.25 0.45 0.75 0.95
none 0.086 0.101 0.102 0.088 0.080 0.170 0.119 0.164 0.275 0.390 0.438 0.486

1 0.140 0.160 0.116 0.134 0.131 0.1160.136 0.178 0.309 0.480 0.551 0.687
2x2x2 0.190 0.188 0.133 0.134 0.127 0.154 0.1210.167 0.346 0.447 0.559 0.694
3x3x3 0.160 0.109 0.117 0.099 0.124 0.170 0.139 0.179 0.300 0.491 0.616 0.690
4x4x4 0.094 0.112 0.147 0.110 0.121 0.217 0.152 0.189 0.334 0.541 0.583 0.706
5x5x5 0.103 0.139 0.111 0.112 0.115 0.133 0.149 0.201 0.289 0.396 0.533 0.762

Table 3 Dependence of the reduction rates on the number of obstaclesand on�, 3D-potential equation with
Neumann conditions
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4.2 Dependence of the Convergence on the Grid Size

Next, we study the dependence of the reduction rates on the grid size. As test problem, we took
the example of Subsection 4.1 with one obstacle and varied the number of cells. We show the
reduction rates for different values of� in Table 4 (2D and3D).
We have a strong dependence on� with the best results obtained for� < 0:1. Here, the
convergence rates are slightly increasing for larger grids.

grid n� 1e-6 1e-4 0.01 0.02 0.03 0.05 0.1 0.15 0.25 0.45 0.75 0.95
64x16 0.095 0.095 0.064 0.104 0.137 0.128 0.095 0.129 0.147 0.251 0.108 0.557
128x32 0.084 0.090 0.133 0.147 0.115 0.128 0.161 0.153 0.157 0.362 0.099 0.658
256x64 0.154 0.139 0.136 0.129 0.157 0.1080.164 0.166 0.289 0.216 0.295 0.662
512x128 0.142 0.115 0.144 0.144 0.312 0.137 0.151 0.257 0.259 0.443 0.263 0.727
32x16x16 0.086 0.104 0.095 0.109 0.137 0.148 0.124 0.123 0.156 0.229 0.434 0.723
64x32x32 0.140 0.160 0.116 0.134 0.131 0.1160.136 0.178 0.309 0.480 0.551 0.687
96x32x32 0.137 0.136 0.159 0.160 0.149 0.145 0.180 0.176 0.182 0.533 0.583 0.638

Table 4 Dependence of the reduction rates on the grid size and on�, potential equation with Neumann
conditions,2D and3D

But if we consider the potential equation with Dirichlet conditions (Table 5), we obtain conver-
gence rates which are in the same range, independent of the grid size. Thus, the relatively bad
convergence behaviour must be caused by the Neumann conditions.

grid n� 1e-4 0.05 0.25 0.45 0.85
64x16 0.062 0.050 0.052 0.039 0.017
128x32 0.070 0.057 0.075 0.048 0.023
256x64 0.088 0.066 0.095 0.061 0.035
512x128 0.024 0.068 0.069 0.086 0.076
32x16x16 0.0384 0.0420 0.0383 0.0437 0.0623
64x32x32 0.0518 0.0510 0.1050 0.0870 0.1622
96x32x32 0.0571 0.0510 0.0822 0.2992 0.2991

Table 5 Dependence of the reduction rates on the grid size and on�, potential equation with Dirichlet
conditions,2D and3D

4.3 Dependence of the Convergence on the Diffusion Coefficient

Now, we consider the dependence of the convergence properties of the AMG algorithm for
convection-diffusion equations like the momentum equations (11) as they appear in the SMAC
and SIMPLE scheme and the transport equation (21). This is also a problem where standard
multigrid methods fail. As test problem, we take the flow overa backward facing step with
Reynolds numberRe = 500 (see Figure 4). Here, two recirculating regions appear.
We consider the convergence behaviour of our AMG algorithm for the transport equation (21)
with Dirichlet boundary conditions on the left side and Neumann (adiabatic) boundary condi-
tions on the remaining three sides. In 2D, we employed a mesh with 300x75 cells and we used
a 80x16x16 grid in 3D. As already mentioned, the time discrete transport equation (22) is of the
same type as the momentum equations for each component of thetentative velocity (11). The
results are shown in the Tables 6 and 7. For 2D, we also presentthe complexity of the coarse
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Fig. 4 Flow over a backward facing step, streamlines,Re = 500
grids (comp), i.e. the number of the unknowns on all levels divided by the number of unknowns
on the finest level and the connectivity of the coarse grid operators (conn), i.e. the number of
non-zero entries in the matrices on all levels divided by those on the finest level. Thus, both
numbers indicate the work time which is necessary for one multigrid iteration.� 1e-4 0.01 0.05 0.15 0.25 0.45 0.85� = 1 red 0.081 0.062 0.043 0.091 0.079 0.089 0.152

comp 1.874 2.035 1.831 1.827 1.887 1.900 1.944
conn 4.368 5.349 3.360 2.752 2.968 3.024 3.083� = 10�2 red 0.025 0.040 0.032 0.045 0.066 0.105 0.406
comp 1.884 1.924 1.995 1.967 1.950 1.969 1.960
conn 4.483 4.515 4.688 3.735 3.265 3.358 2.841� = 10�4 red 0.004 0.007 0.050 0.092 0.107 0.114 0.164
comp 2.264 2.312 2.179 2.078 2.032 2.031 1.989
conn 10.01 6.952 5.051 3.571 3.127 2.688 2.311� = 10�6 red 0.003 0.004 0.012 0.058 0.085 0.101 0.192
comp 2.327 2.270 2.082 2.057 2.039 2.021 1.978
conn 9.337 5.585 4.000 3.120 2.899 2.566 2.266� = 10�8 red 0.002 0.004 0.012 0.066 0.084 0.091 0.184
comp 2.317 2.250 2.076 2.047 2.029 2.009 1.967
conn 9.417 5.591 3.863 3.183 2.882 2.539 2.249

Table 6 Dependence of the reduction rates, complexity (comp) and connectivity (conn) on the diffusion
parameter� and on�, transport equation, backward facing step,2D

� 1e-4 0.01 0.05 0.25 0.45 0.85� = 1 0.106 0.097 0.125 0.135 0.470 0.724� = 10�2 0.027 0.027 0.030 0.221 0.235 0.364� = 10�4 0.002 0.008 0.034 0.108 0.124 0.142� = 10�6 5e-4 0.005 0.036 0.105 0.115 0.135� = 10�8 6e-4 0.005 0.037 0.103 0.111 0.135

Table 7 Dependence of the reduction rates on the diffusion parameter � and on�, transport equation,
backward facing step,3D

We see that also for the convection-diffusion equation, we get the best reduction rates (� < 0:1,
for some� even below 0.01) for� � 0:15, independent of�. But for very small� and especially
small�, the connectivity is worse than for bigger values of�. Note that the recirculating regions
do not affect the convergence numbers.
Moreover, we consider the convergence rates for the transport equation in dependence on the
number of obstacles and the diffusion coefficient. Therefore, we choose again the domain with
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the cubic obstacles as shown in Figure 3 and we set the AMG parameter� = 0:05. As we
can see in Table 8, the convergence rates do not vary very muchfor a fixed diffusion coefficient
and different number of obstacles. Interestingly, the rates become better for smaller diffusion
coefficients but even for� = 1, they are still quite good.

obstaclesn� 1 10�2 10�4 10�6 10�8 10�10
none 0.053 0.047 0.077 0.0008 0.0007 0.0007

1 0.077 0.046 0.065 0.025 0.027 0.027
2x2 0.086 0.030 0.063 0.051 0.053 0.057
4x4 0.097 0.038 0.054 0.036 0.027 0.023
8x8 0.133 0.049 0.071 0.033 0.027 0.027

16x16 0.147 0.048 0.060 0.057 0.031 0.031

Table 8 Dependence of the reduction rates on the number of obstaclesand on�, transport equation,2D,� = 0:05, 256 x 64 cells

Equivalent results are obtained, if we consider the dependence of the reduction rates for the
transport equation on the grid size and on the diffusion coefficient (see Table 9).

grid n� 1 10�2 10�4 10�6 10�8 10�10
64 x 16 0.047 0.013 0.027 0.013 0.013 0.014
128 x 32 0.069 0.038 0.022 0.025 0.025 0.025
256 x 64 0.077 0.046 0.065 0.025 0.027 0.027
512 x 128 0.077 0.067 0.079 0.079 0.033 0.033

Table 9 Dependence of the reduction rates on the grid size and on�, transport equation,2D, � = 0:05, 1
obstacle

4.4 The Full Navier Stokes Solver

Now, we compare the solution process of the Navier-Stokes equations by the explicit and the
SMAC-semi-implicit scheme using AMG for the computation ofthe initial velocity field, for
the pressure in the explicit scheme and the pressure correction as the tentative velocities in the
semi-implicit scheme. Here, we also applied the above mentioned adaptive setup strategy.
As test problem, we consider the flow around an obstacle atRe = 20 and we use a mesh with
220 x 41 cells in 2D and with 60 x 12 x 12 cells in 3D. We run our program untilt = 15 was
reached. We stopped the iterations if the norm of the residual was below10�6. The explicit
time stepping scheme becomes unstable for time step sizes�t > 0:014 in 2D and�t > 0:051
in 3D whereas the semi-implicit code still shows good results for �t = 0:5, either in 2D and
3D. However, we see in the Tables 10 and 11 that the time spent for the computation for one
time step in the semi-implicit code is much larger than for the explicit code. This is due to
the time which must be spent for the setup phase. Nevertheless, because of the large number
of allocation and comparing steps, the time spent for this phase depends a lot on the hardware
platform available.5
The time spent for the semi-implicit code can be reduced, if we use the adaptive setup strategy.
Here, we performed a new setup step only if the number of iterations in the previous timestep5We used a HP 9000/712 workstation.
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was greater than or equal to the given valuetolit. Otherwise, the coarse grid correction com-
puted using the coarse grid sequence of the iteration beforeis still good enough to reduce the
error in the new timestep efficiently. As we see in the Tables 10 and 11, there are dramatic
differences in the computing times for�t = 0:05 andtolit = 1 (setup in every time step) andtolit = 4, where only 1 setup step is needed for each momentum equation, whereas the number
of iterations is not much bigger.

scheme tolit �t timesteps u-Setup v-Setup u-Iter v-Iter comp. time
explicit -:- 0.01 1500 -:- -:- -:- -:- 14m5.25s

semi-implicit 4 0.01 1500 1 1 2226 1976 1h39m6.72s

semi-implicit 4 0.02 750 1 1 1230 1098 50m28.67s

semi-implicit 1 0.05 300 300 300 514 459 1h41m53.13s
semi-implicit 4 0.05 300 1 1 560 483 23m22.48s

semi-implicit 4 0.10 150 3 3 293 257 12m40.28s

semi-implicit 3 0.20 75 23 43 174 194 17m05.46s
semi-implicit 4 0.20 75 4 4 188 199 8m36.73s
semi-implicit 5 0.20 75 2 2 213 209 8m11.94s

semi-implicit 3 0.50 30 30 30 94 92 11m39.24s
semi-implicit 4 0.50 30 9 6 99 95 5m51.10s
semi-implicit 5 0.50 30 5 4 109 104 5m06.77s
semi-implicit 10 0.50 30 2 2 149 130 4m51.65s

Table 10 Number of setup steps, number of iterations and overall computation time for the Navier Stokes
solver,Re = 20, 2D

scheme tolit �t timesteps u-Setup v-Setup w-Setup u-Iter v-Iter w-Iter comp. time
explicit -:- 0.03 500 -:- -:- -:- -:- -:- -:- 1h 0m57.40s

semi-implicit 4 0.03 500 1 1 1 900 836 724 2h17m6.40s

semi-implicit 4 0.06 250 1 1 1 497 479 423 1h16m22.69s

semi-implicit 1 0.10 150 150 150 150 308 286 242 10h16m43.39s
semi-implicit 4 0.10 150 3 2 1 316 305 279 0h55m16.78s

semi-implicit 3 0.20 75 35 30 15 182 169 142 2h 5m17.56s
semi-implicit 4 0.20 75 7 4 2 187 177 157 0h40m57.27s
semi-implicit 5 0.20 75 2 2 1 202 185 166 0h32m20.19s

semi-implicit 3 0.50 30 30 30 29 110 119 92 1h55m7.15s
semi-implicit 4 0.50 30 18 27 4 110 119 94 1h 4m36.13s
semi-implicit 5 0.50 30 4 3 2 127 124 114 0h23m1.20s
semi-implicit 10 0.50 30 2 2 2 140 137 119 0h19m45.11s

Table 11 Number of setup steps, number of iterations and overall computation time for the Navier Stokes
solver,Re = 20, 3D

So, the semi-implicit algorithm using adaptive setup is quite efficient compared with the explicit
algorithm, because the size of the timestep is not so much restricted. We assume that the differ-
ence is more severe for finer grids, but here, we must also mention, that the memory needed for
the semi-implicit algorithm is much larger, because the matrices for the momentum equations
including the coarse grid operators must be stored.
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4.5 Two other Problems with Complicated Domains

At last, we present some results of two other problems with complicated geometries, namely
the flow through a river system, here the delta of the river Ganges in Bangladesh6 , and the flow
through a porous medium on a micro-scale level.
In Figures 5 and 7, we show the geometric structure of the computational domains and the
stationary velocity fields. For the Ganges-example, we use inflow conditions at the five branches
at the top, for the porous medium example, we use inflow on the left and outflow on the right.
Figures 6 and 8 show the propagation of a chemical pollution modeled by the transport equation
(21). In the Ganges-example, the permanent source of pollution is situated at the top of the
second branch from the left, in the porous medium, the pollution is coming in in the middle of
the left boundary.
The convergence properties are in the same range as for the test problems reported above.

5 Conclusions
In this paper, we considered the application of algebraic multigrid methods to the Poisson equa-
tion and the convection-diffusion equation in complicatedgeometries. Both equations arise
in the numerical solution of the Navier-Stokes equations using explicit or semi-implicit time-
discretizations.
For equations in complicated geometries and for convection-dominated problems, the conver-
gence rates of standard multigrid methods usually deteriorate. In several numerical experiments
we demonstrated that the application of AMG leads to robust and efficient algorithms, especially
for a proper choice of the AMG-parameter� which controls the coarsening process. However,
the dependence of the convergence rates on� is not yet fully understood. Moreover, a modifi-
cation of the algorithm for Neumann boundary conditions might improve the convergence rates
for the pressure equation.
Furthermore, our experiments show that an explicit time-stepping scheme, where we have a
strong restriction on the time step size, can still compete with the semi-implicit algorithms,
concerning the run-time of the algorithms. This is due to thelarge time spent for the AMG
setup phases.
But we suppose, that the semi-implicit time discretizationis superior for finer grids where the
time step size in the explicit scheme must be reduced more andmore to preserve stability.
This holds especially for stationary problems, where we canapply an adaptive setup strategy in
which the setup is not done in every time step but only if the convergence rate gets worse than a
prescribed value.

Acknowledgement:We are grateful to Erwin Wagner, Ralph Kreissl and Markus Rykaschewski
who implemented and tested the 3D version of the AMG-Navier-Stokes solver.6Note that this two-dimensional calculation is not realistic at all. First, the resolution of the domain is far too

coarse, second, the third dimension, i.e. the deepness of the river arms, is not involved, which influences the computed
flow velocity, and third, realistic in- and outflow conditions are not known. This is only an example for complicated
geometries.
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Fig. 5 Ganges Delta, velocity plot
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Fig. 6 Pollution transport in the Ganges Delta,� = 4:6 � 10�11
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Fig. 7 Porous medium, velocity plot

Fig. 8 Pollution transport in a porous medium,� = 10�4
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342/24/95 A M. Jung, U. Rüde: Implicit Extrapolation Methods for Variable Coefficient

Problems
342/01/96 A Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Multigrid

Methods for the Solution of the Navier-Stokes Equations in Complicated
Geometrics

30



SFB 342 : Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

Reihe B

342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Specifications
342/2/90 B Jörg Desel: On Abstraction of Nets
342/3/90 B Jörg Desel: Reduction and Design of Well-behaved Free-choice Systems
342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-Jürgen Plewan: Das Werkzeug run-

time zur Beobachtung verteilter und paralleler Programme
342/1/91 B Barbara Paech1: Concurrency as a Modality
342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -

Anwenderbeschreibung
342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop über Paral-

lelisierung von Datenbanksystemen
342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods
342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared Mem-

ory Scheme: Formal Specification and Analysis
342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification and Correct-

ness Proof of a Virtually Shared Memory Scheme
342/7/91 B W. Reisig: Concurrent Temporal Logic
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support
342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner:Theorie, Hardware, Soft-

ware, Anwendungen
342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Liter-
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