A Fast Algorithm for the Inexact Characteristic String
Problem

Moritz G. Maal3
Fakul&ét fur Informatik, TU Minchen
Boltzmannstr. 3, D-85748 Garching, Germany
maass@ nf ormati k. t u- nuenchen. de

August 4, 2003

Abstract

We present a new algorithm to solve théeKACT CHARACTERISTIC STRING PROB-
LEM using Hamming distance instead of Levenshtein distance rasasure. We embed
our new algorithm and the previously known algorithm for &eshtein distance in a com-
mon framework which reveals an additional improvement t ltkevenshtein distance al-
gorithm. The NEXACT CHARACTERISTIC STRING PROBLEM can thus be solved in time
O(|T|| +1-1]S \ T||) for Hamming distance and in tim@(||T’|| + k-1 - ||S \ T|) for
Levenshtein distance, whefeC ¥*, T' C S (T # 0) is the target set, arids the length of a
shortest string if". The INEXACT CHARACTERISTIC STRING PROBLEM has applications
in probe and primer design.

Both algorithms need to solve theod®MON SUBSTRING PROBLEM for more than two
strings. We present an improved algorithm for this problezmdp simpler and faster in
practice by a constant factor than the previous algorithm.

Keywords: Algorithms and Data Structures, Pattern Matching, Contjrtal Biology

1 Introduction

Solving the GHARACTERISTIC STRING PROBLEM requires to find a string that matches all
strings of a selected subset (the target set) and that daesatoh any string in the remain-
der of the given set of strings (the distance set). The swius then characteristic for the strings
in the target set. Given an arbitrary string out of the set areadecide whether it belongs to the
target set by checking whether the characteristic strinigines it.

The problem is motivated by applications in computationaldgy [6]. In DNA sequencing,
the techniques described here can be used to select a phatdrands somewhere in a defined
region of a DNA strand, while excluding the possibility thhe string hybridizes in another
region. PCR can then be used to replicate the substringsedDNA starting at the position
where the primer hybridized. This is used in a techniqueeddithromosome walking” to close
gaps in DNA sequencing.

*Research supported by DFG, grant Ma 870/5-1 (LeibnizpreistBV. Mayr).

Another usage is the design of probes. A probe can be useditp e presence (or, better,
absence) of a certain genome in a defined environment. Atjstmmplementary subsequence
(the probe) of the target DNA is synthesized that does notimahy other DNA occurring in
the environment (e.g., the target might be a harmful one gnaoset of harmless bacteria). If
the probe does not hybridize, the target does not appeae ffrobe hybridizes, the target might
or might not appear. Therefore, the probe needs to be chrefelected so that it does not
hybridize to other DNA occurring frequently in the definedrieonment. In both problems, the
primer or probe is selected to match some target DNA whilenmatiching other DNA from the
environment.

The hybridization process does not require an exact matgiroBe might hybridize even if
some base pairs do no match. This motivates the definitiomeolNEXACT CHARACTERISTIC
STRING PROBLEM. To further reduce false hybridization, the probe is sel@stuch that it does
not match non-target DNA (which must be known a priori) evibkowang some errors.

There are multiple notions of matching with errors, mostnpireently Hamming distance
and LEVENSHTEIN DISTANCE. Ito et al. [9] have presented an algorithm to solve theXACT
CHARACTERISTIC STRING PROBLEM in time O(||T|| + 1* - |S\ T|+ k- 1-||S\ T||), where
S C X5, T C S (T # 0)is the target setS \ T the distance set, andis the length of a
shortest string ir7". Here|S]| is the cardinality of the set and||S|| is the size of all elements
of S. Levenshtein distance is used as a measure, but the algosithasily adapted to solve the
problem for Hamming distance in the same asymptotic timendou

In this paper we present a new algorithm for efficiently sajvihe NEXACT CHARACTER-
ISTIC STRING PROBLEM for Hamming distance. The new algorithm is faster and moeesp
efficient than the above algorithm — it runs in tir@¥||T’|| + [- ||S \ T'||) — but it works only
for Hamming distance and not for Levenshtein distance. Wieveethat this is not a severe
restriction because Hamming distance seems to be a versahataasure with respect to DNA
hybridization. Lanctot et al. [10] argue that gaps are muohentlestabilizing than substitutions,
thus making Hamming distance the measure of choice for thigg®f short oligomers (e.g.,
probes).

We take a second look at the Levenshtein distance versidredNEXACT CHARACTERIS-
TIC STRING PROBLEM, which can be be solved more efficiently in ti®&||T|| +k-1-||S\ T||)
when embedded in the same framework.

Furthermore we present a practical and very efficient algarifor the G®MMON SuB-
STRING PROBLEM which improves over previous algorithms [8] by a constaotdain speed
and a much smaller memory overhead.

2 Overview and Previous Work

For our algorithm we introduce a four step framework whichaures the solution into different
parts. The two major parts of the algorithm consist of conmgusubstrings that do not match
a string from the distance set (“difference part”), and divisg the COMMON SUBSTRING
PROBLEM for the strings in the target set. Both parts use a shortesgst € 7 of length/ as a
reference.

The same framework can be used for Levenshtein distancstasndé measure and we show
how to reduce the running time by carefully embedding the abthe algorithm of Ito et al. [9]
in our framework. The computation of the substrings not imatgthe non-target strings (we will

lalso known as edit distance

call themk-distant substrings) contributes the main term in the nugime. Thus, the running
time depends solely on the choice between Levenshteinndistar Hamming distance in the
difference part. As a result, the Hamming distance versfdh@INEXACT CHARACTERISTIC
STRING PROBLEM can be solved by a factor éffaster than the improved Levenshtein distance
version. Experimental results indicate an additionalqgrantince yield for the Levenshtein dis-
tance version even fdr = 1 because no suffix trees and no constant lowest common ancesto
gueries are needed. Mis not independent but related to an error r@te¢hen there is a linear
dependency betweédnand the length of the characteristic string. This length lsadounded
from below by the size of 8-characteristic string. Szpankowski [17] has shown thatsike of

a minimal string that does not occur as a substring in a strirgizen converges almost sure to
%logn asn — oo, Whered < h < oo is related to the entropy So for a fixed error rate, one
should choosé = Q(log ||S\ T]).

To avoid confusion, we will say:'is a substring o6, if v is a substring of each string i
We will say that ‘v is a substring ir6”, if there is a string inS that hasy as a substring.

A linear algorithm to solve the EARACTERISTIC STRING PROBLEM has been published
by Nakanishi et al. [15]. The algorithm relies on generalizeffix trees and runs in time and
spaceO(||S||). The generalized suffix tree for all stringss$his first traversed to mark all nodes
which represent a prefix of a stringin S \ T (they have a leaf representing a suffix:oés a
child). In a second run for each nodehat is unmarked and a child of a marked ngdét is
checked (by a linear time subtree traversal) whether the nggresents a substringpf 7. If a
leaf representing a suffix of a stringis found belown for everyv € T, thenu is a substring
of T. Sinceu is not a substring irt' \ 7' it is a characteristic string. Every prefix afthat is
longer than the string representedbis a characteristic string. Among all strings thus found,
the shortest one is returned.

Ito et al. [9] have presented an algorithm to solve theXACT CHARACTERISTIC STRING
PROBLEM intime O(||T||+1*-|S\T|+k-L-||S\T||), wherel is again the length of a shortest
string inT". The key idea here is to use the diagonal method of dynamgranoming to match
every suffix of a shortest stringin 7" against all strings aof \ 7" with % errors. (This method was
introduced by Landau and Vishkin [11] and, at the same timgesl[14].) If for a suffix ofv the
end of the string is not reached in any such match an apptelyr&ized prefix of the suffix is &
distantv-substring. Every such substring is matched against thaireng strings iril". If every
string has a match, the substring i&-aharacteristic substring. Among all these the shortest on
is selected. The algorithm can easily be improved to rume®(||T|| + & -1 - ||S\ T||).

Our solution to theNMEXACT CHARACTERISTIC STRING PROBLEM for Hamming distance
makes use of the fact that overlapping substrings share conmatches and mismatches. For
instance, consider the strinG8 TAGGATTA andGTTAGATTA. The substring TAGG matches
the substringl TAGA with one error. The overlapping substring8GATT and AGATTA match
with three errorsAGGandAGA match with one error and the additional substriAg3 andTTA
match with two errors). For Levenshtein distance we can imtte substring®&GGATT and
AGATTA with distance two, which does not depend on the previougsemade when matching
TTAGGandTTAGA with one error.

For each string from the distance set\ 7" we find for every suffix[i] of the shortest string
v from T the length of a longest substring@Mmatching a prefix ob[:]. For each starting position
of v, we thus calculate the length of a longest match with dig&ndnstead of calculating the
lengths for each position imat once, we calculate the maximal matching lengths for eatiteo
|u| + |v| different alignments of againstu, using information from overlapping substrings.

2For a memoryless Source,= — log(pmin)-

The difference part of the algorithm can be implemented edfigiently without the use of
suffix trees or other complex data structures. Only for thetsm of the COMMON SUBSTRING
PROBLEM we do need suffix trees.

We also present a much simpler and (by a constant factoerfakgjorithm to solve the Qv-
MON SUBSTRING PROBLEM for more than two strings. Lucas Hui has given a linear time
solution to this problem that relies on constant time lowsshmon ancestor computation [8]
(see also [6]). The algorithm builds the generalized suffe ffor the given set of strings and
augments the tree with information to calculate lowest camancestor queries (see for instance
[16]) in constant time. The resulting data structure isdin@ space but with a large constant.

Our algorithm constructs the suffix tree for each string i $et one by one, at any time
keeping only one suffix tree in memory and without the ovedhfea lowest common ancestor
gueries. Experimental results (for an alphabet of size&odrfrom two to one hundred strings of
sizes up to a hundred thousand characters) indicate a petfermance of the new algorithm by
a factor of four to five. An even more space efficient versiothefalgorithm constructs only the
suffix tree for the shortest string in the set. In the compoat biology domain the much lower
amount of space needed might enable researchers to taekieysly unreachable problems.

A problem related to theNEXACT CHARACTERISTIC STRING PROBLEM is the INVERSE
PATTERN MATCHING PROBLEM. To solve the NVERSE PATTERN MATCHING PROBLEM for
a given string a short pattern is searched that maximizesirfniges) the sum of all character
mismatches when the pattern is aligned at all positionsefjthen string (which is the sum of
the Hamming distance between each corresponding subatrthtipe pattern). There are variants
of the problem depending on whether a pattern is sought teedoom the string itself (inter-
nal inverse pattern matching) or not (external inverseepatimatching). Amir et al. [1] have
studied the problem and have given first algorithms to sdledNVERSE PATTERN MATCHING
PROBLEM and its variants. Later, Gasieniec et al. [5] have improvedsolution to the exter-
nal INVERSE PATTERN MATCHING PROBLEM. The internal NVERSE PATTERN MATCHING
PROBLEM can be solved in timé&(n./mlog> m), wherem is the size of the desired pattern.
The INVERSE PATTERN MATCHING PROBLEM and its external variant can be solved in time
O(n) for fixed alphabet size.

The main difference between theMERSE PATTERN MATCHING PROBLEM and the NEX-
ACT CHARACTERISTIC STRING PROBLEM lies in the fact that the solution string for thedXx-
ACT CHARACTERISTIC STRING PROBLEM is guaranteed not to match anywhere even with
errors, while the solution string for th&VERSE PATTERN MATCHING PROBLEM might have
the highest amount of mismatches but still match at a lot atgd with few (or no for the non-
external versions) errors. The solution to the/ERSE PATTERN MATCHING PROBLEM is a
string that has a maximal average distance, while the soluti the NEXACT CHARACTERIS-
TIC STRING PROBLEM guarantees a minimal distance for each position. Hencd N\MERSE
PATTERN MATCHING PROBLEM solution pattern is not well suited for sharp classificagiofihe
applications of theNVERSE PATTERN MATCHING PROBLEM are such that sharp distinctions
are not necessary (see [1] for some examples).

On the other hand, then\WERSE PATTERN MATCHING PROBLEM does not require a tar-
get set. When no target set is given for tneXACT CHARACTERISTIC STRING PROBLEM,
the given algorithms do not work. A straightforward solatsupplying an adequate de Bruijn
sequence of ordem (with length|X|™) would lead to a running time o®(|X|™ - ||S]|) for
Hamming distance. It is unlikely that an algorithm with ayp@mial running time exists. When
there is no target set the problem is, given a%€t >* and an integek, to find a stringy € >*
such no substring i is within Hamming distancé of v. Frances and Litman [4] have shown

that, given a sef’ C {0,1}" and an integet, the MAXIMUM COVERING RADIUS PROBLEM Of
deciding wether there exists a stringe X" with Hamming distance greatérto every element
of C' is NP-complete. Lanctot et al. [10] show that several relggemblems such as thel®
TINGUISHING STRING SELECTION PROBLEM and the RRTHEST STRING PROBLEM are also
NP-complete. For theARTHEST STRING PROBLEM a stringv € Y™ with Hamming distance
at leastk to all strings of a se6 C X" is sought, a generalization of AkiMuM COVERING
RADIUS PROBLEM. Lanctot et al. also present a PTAS for that problem. Thetiopthe Dis-
TINGUISHING STRING SELECTION PROBLEM is a setB C ¥" x ¥*, a setG C ¥" and two
thresholdsi,, d,. The objective is to find a string with Hamming distance at mos}, to each
substring of lengtle in B and Hamming distance at leastto each string irG.

3 Preliminaries

Let X be an arbitrary finite alphabet, I8t denote the set of all finite strings over(including
the empty string), let ©* = ¥* \ {¢} denote the set of all non-empty strings over Let
t = titots .. . t, be a string with characters € X, we defingjt| = n to be its length. By [:] we
will refer to thei-th suffix of¢: t[i] = ¢;...t,. Given a (finite) set of stringS C ¥*, we denote
by |S| the number of elements ¢f and by||S|| the size ofS (||S|| = Y_,cq [u)).

If ¢ is a condition, then we will let the expressipfdenotel if ¢ is true and) otherwise [¢]
is sometimes called the indicator function). For instanee= b] is 1 if a andb represent the
same characters and ititherwise.

Definition 1 (CHARACTERISTIC STRING PROBLEM). Given a setS of strings and a non-
empty sefl” C S, find a shortest string, s.t. v is a substring ofl’ and « is not a substring in
S\T.

The idea behind this definition is that the strimgharacterizes the sétin S.
In inexact pattern matching there are two classical meagarean approximate match, these
are Levenshtein distance and Hamming distance. They areededs follows:

Definition 2 (Levenshtein distance).Letu,v € ¥* be two arbitrary strings. The Levenshtein
distancedist,., (u, v) is defined as the minimal number of insertions, deletionsrapldcements

of characters needed to transferinto v. Ignoring the boundry cases, the Levenshtein distance
ofu=w,...u, andv = v, ...v, can be defined recursively as

distyey (U . . . Uy, Vo ... V) + [ug # 1],
distyey (U -« Uy, U1 ... V) = min distye, (Ug . Up, V2o Uy) + 1, ,
distyey (U ... Uy, U1 ... V) + 1

where the first line represents the match/replacement thasesecond line represents the deletion
case, and the third line represents the insertion case.

The Hamming distance is only defined for strings of the samgtle

Definition 3 (Hamming distance). For n > 0, let u,v € X" be two strings. The Hamming
distance is defined as the number of characters that do natinistween, andwv:

distpam (v, v) = Z [u; # v5]

1<i<n

With the use of a distance measdiet(u, v) we can define the inexact version of the AR-
ACTERISTIC STRING PROBLEM:

Definition 4 (INEXACT CHARACTERISTIC STRING PROBLEM). Given a setS of strings, a
non-empty sel” C S, and a numbek, find a shortest string, s.t. v is a substring ofl" and
u matches no substring ifi \ 7" with k or less errors. Formally, for allv € S\ T, if w' is a
substring ofw thendist(w', u) > k.

For convenience, we introduce some further notions..uLet>* be such that all substrings
w' of all stringsw € S\ T havedist(w',u) > k. Thenu is called a %-distant string” (with
respectt&5'\ 7). If u is a substring of andu is ak-distant string with respect t&\ 7" we will call
u a “k-distant v-substring”. We call a string with property” “right minimal ”, if u; ... uj,—
does not have properti. Analogously, a substring; ... u; with property P is called ‘right
maximal”, if u;...u,; does not have property.

4 A Faster Solution for the Hamming distance NEXACT
CHARACTERISTIC STRING PROBLEM

We will present arO(||T'|| + - ||S\ T||) algorithm, wheré is the length of some shortest string
v € T. The input of the algorithm consists of a set of stritgs. >* and a target sét C S.
The algorithm consists of four phases:

1. Find a shortest stringin 7.

2. Fori from 1 to |v| find the right minimalk-distantv-substringcand; (if it exists). cand;
occurs at positionin v.

3. For each candidat&ind; check whether it is a common substring of all stringgiand
hence &-characteristic string.

4. Select the shortest among kltharacteristic strings.

Observation 5. Letv € T be a shortest string ifi’. Each characteristic string is a substring of
V.

We will therefore only need to consider the shortest string 7" when comparing it with
strings fromS '\ 7.

Lemma 6. Every shorteskt-characteristic string is a right minimat-distantv-substring with
respect taS' \ 7.

Proof. Let s be a shortesk-characteristic string. Obviously, must be a substring ¢f and
hence also ofi. By definition, s must be ak-distant string with respect t8 \ 7. Supposes
were not right minimal, theg’ = s, ... s,—; would be ak-distant string. Since is a common
substring ofl", so would bes’. Hence s’ would be a shortek-characteristic string, contradicting
the assumption. O

As a consequence, by looking at all right mininkadlistanty-substrings with respect 9\ 7’
we will also see every shortesicharacteristic string. Hence, the above scheme is codaty
idea to the algorithm is the following observation:

Lemma7. cand; = v; . ..v;4 41 IS @ right minimalk-distantv-substring, iffcand, = v; ... v;4 IS
a right maximalsubstring ofv, such that for any substringin S\ T at leastdist(cand}, u) > k
and there is a substring in S \ 7" with dist(cand}, u) = k.

6

Proof. v; ...v;;;41 must have distance at leastt- 1 from any substring inS \ 7', otherwise
v; . .. v, would not be right maximal. Therefore,. .. v;,;1 is ak-distant string. On the other
hand, there is a substring i\ 7" such that; . . . v;,; matches with distande Henceyp; . .. v 41

is right minimal. O

With Lemma 7 we can find the candidates by finding maximal lenggtches.

Phase 1 can easily be implemented to run in tthg7||). Let! = |v| be the length of the
shortest string irf’. By Lemma 6, there are at mostandidates after Phase 2 and Phase 3.
Hence, Phase 4 can easily be implemented in tig.

In the sequel we will show how to implement Phase 2 in tithé- ||S \ T'||) and Phase 3 in
time O(||T||). This will lead to a total running time a®(||7'|| + - ||S \ T||)-

4.1 A Simple Algorithm for Finding All Common Substrings of a Set of
Strings in Linear Time

Definition 8 (COMMON SUBSTRING PROBLEM). LetT be a set of strings. Find all strings
s.t.v is a substring of all strings iff".

Since there may b&(||T°||?) many common substrings, one has to be careful about thetoutpu
representation. The output can be represented in lineaeSjifave pick a stringy € 7" and store
the length of the longest common substring starting at jposite {1,. .., |v|} in v.

Lucas Hui has given a linear solution to this problem thaesebn constant time lowest
common ancestor computation [8] (see also [6]). Hui’'s atbor is able to find at the same
time all substrings common to a fixed numberkoK |T'| strings inT’, while we will only find
substrings common to all stringsn Our algorithm is much simpler and faster.

The algorithm is based on matching statistics (see [6].a&sgely [2]). The matching statis-
tic ms(7) for a patterrp and a text gives the length of the longest substring starting at pwsiti
i in p that is also a substring of All values ofms(i), i € {1,...,|p|}, can be calculated in time
O(|p| + |t]) with the use of a suffix tree far The linear time algorithm constructs the suffix tree
for ¢ (with suffix links) in timeO(|¢|). Then it finds a canonical reference pair (see the construc-
tion of suffix trees by Ukkonen [18] for a detailed descriptiof reference pairs, suffix links,
canonizing etc.) for the longest prefixof p that matches a substring bby a simple search in
the suffix tree. A canonical reference pair for strings a noden representing a prefix ab in
the suffix tree and a length denoting a prefix of an edge stpatin representing the remaining
part of w. The length of the prefixo of p is the value ofms(1). The reference pair and the
length forms(i+ 1) is computed from the reference pair o (i) by “shortening” the reference
pair at the front. This is done by replacing the nedeith its suffix link parent and afterwards
canonizing and lengthening the reference pair as far asip@s$he suffix links are a byproduct
of the suffix tree construction (see [13, 18]). For a nedepresenting a string = u us . . . ty,,
its suffix link leads to a node’ representing the first suffix, . . . u,, of u. The whole traversal
takes amortized timé(|p|).

To find all common substrings @f in time O(||T||) we proceed as shown in Algorithm 1.

Theorem 9. Algorithm 1 correctly solves thEoOMMON SUBSTRING PROBLEM.

Proof. Letw be a common substring of all stringsin Thenw is also a substring of the shortest
stringv inT'. W.l.o.g. letw appear at positiohin v (w = v; ... v;4,)). Sincew is common to all

30nly in the uniform cost model.

Algorithm 1 Common Substring
1: Letv be the shortest string inf.
2: fori=1to|v| do
3 MSmin(i) = |v| —i+1
4: forall uw € T,u # v do
5. calculate matching statistiess(i) (: from 1 to |v|) for v andu.
6: fori=1to |v|do
7: MSmin (1) = min{ms,, (1), ms(i)}

stringsu € T, in every iteration of the loop in line As(i) > |w| and thereforens,,;, (i) > |w|.
This is especially true for the longest common substringiataat position.

Suppose, after Algorithm ts,,;, (i) = j. For every iteration of the loop in line 4 we have
ms(i) > j and there is a substring of lengttor greater in starting atin v that is also a substring
of the current string.. Thereforey; ... v, ; is a common substring of all stringsTn O

Theorem 10. Algorithm 1 runs in timeD(||T'||)

Proof. To find the shortest stringin line 1 of the algorithm it takes tim@(||7||). The for-loop
of lines 2—3 takes timé&(|v|). Lines 5-7 are is executed for each stringh 7'\ {v}. Line 5
takes timeO(|u| + |v|) = O(|u|) (becauseu| > |v|) and lines 6 — 7 take tim@(|v|) = O(|u|).
Henge, Lines 47 take total tin}e,, . 1,, O(|u|) = O([|T\ {v}|[). As aresult the total running
time isO([[T\ {v} || + |v[+ [[T]]) = O(|T])- [

An even more space efficient implementation uses only orfiex $tde for the shortest string
v to calculate the matching statistics foandu € T\ {v}. This is achieved by storing a “high
water mark” for each edge as the deepest position reachedrbyersal with a reference pair
as described above with string A first subsequent traversal sets the “high water mark” to
maximum at all ancestors of marked edges. In a final travéss&ach leaf the maximal mark
of any parent edge is stored as the corresponding value ah#htehing statistics (for the leaf
representing théth suffix, the value is stored ass(i)). The traversal for string costsO(|u|),
while the two subsequent traversals (and the building ofti#x tree) costO(|v|). Hence, the
total time is alsa)(|u| + |v]). If v is smaller than the other strings in the set, this approatth wi
save even more space. Additional space to store the highh marks is needed, so the algorithm
need<2n more integers for the suffix tree.

Compared with Hui’s algorithm either version of this algbm saves a considerable amount
of space. For a large number of huge strings as they are eteredrin DNA databases, space
requirements make computations possible with our new ilgorwhich would have used a
prohibitive amount of memory with the previous algorithm.

4.2 Finding All Right Minimal k-Distant v-Substrings with Respect taS\T

This section describes how Phase 2 of the algorithm workid@&mnming distance as distance
measure. In Phase 2, for each positiarf the shortest string € T, the right minimalk-distant
v-substringscand; is searched for. In order to fineind;, we must align the-th suffix v[i]
against every suffix[j] of a string inu € S\ T and calculate the shortest prefixesuf] and
v[i] that have a distance greater thHer\We use Lemma 7 to calculate the right minirhadistant
v-substrings from the right maximal prefixes with distaikce

Algorithm 2 Minimal Prefixes with Distancé
1: Letm][] be an array of siz@|, initialized to0
2: Lete[] be an array of sizé + 1, organized as a ring buffer, initialized @o
3: for (pos,,pos,) € {(1, 0|l =1...|Ju|} U{(,1)|l=1...|v|]} do

4: lenmaten, = 0
5 h=0
6: pos,, =0
7: while pos,,, < k andpos, + h < |v| andpos, + h < |u| do
8: [= lce(pos, + h,pos, + h)
9 e[pos,,,] =1
10: lenmateh, = l€Nmaien, + 1+ 1
11: h=h+1+1
12: POS,,, = POSgy, + 1
13: while pos, + h — 1 < |v| andpos, + h — 1 < |u| do
14: for r = 0 to e[pos,,, — k — 1] do
15: m[pos, + h — leNmaten + 1] = max{m[pos, + h — lenmaten + |, l€Nmaten — T}
16: lenmaten = l€Nmaten — €[pose,, — k — 1] — 1
17: [= lce(pos, + h,pos, + h)
18: e[pos,,,] =1
19: lenmaten, = leNmaien, + 1+ 1
20: h=h+1+1
21: POS 4y = POSgpy + 1
22: if pos, + h—1=|v|+ 1then
23: for h' = |v| + 2 — lenaen 10 |v| dO
24: m[h]| = |v]+1
25: elseifpos, + h—1 = |u|+ 1 then
26: for I' = 0 to len,,gien dO
27: if m[pos, +h —1'] <I'then
28: mlpos, + h—=1U'] =1

The longest common extensidlte) of two stringsu andw is defined as the longest prefix
of u that is also a prefix ofy (or vice versa). Using a generalized suffix tree foand v we
can calculate the Ice between any two suffixes in constaetiiyrmeans of constant tinlewest
common ancestdlca) queries (for Ica see [16]). The Ice of two suffixég§ andu[j] is the string
represented by the Ica of the leaves (which represent théfsees) in the generalized suffix tree.
In particular we only need its length, which we can store \g#ilch node.

The maximal prefixes of[j] andv[i] with distancek can thus be calculated in tin@(k).
But this simple approach would lead to an overall tid¢: - ||S\ T|| -l +1-|S\ T|). We
will improve this basic scheme by reducing redundant compas and work in preparing Ice
gueries.

Let u be an arbitrary string it \ 7. We define the alignment offset of the i-th suffik| of
v and thej-th suffix u[j] of u asou;., = i — j. In order to speed up the distance calculations
we will calculate the lengths of all maximal prefixes withtdiscet of all suffixes with the same
alignment offset together. This can be done by aligning thg,, + 1)-th character of) with the
first character ofi, respectively thé—o,;,, + 1)-th character of: with the first character of
(If Oalign < 0)

For each such alignment ofagainst: let » be the number of aligned characterso{jf,,, > 0
thenv{oug, + 1] is aligned againsi[1] andr = min{|ul, |v| — 0uign }, Otherwisev[1] is aligned
againstu[—ogign + 1] @andr = min{|u| + 0gign, [v|}). Letr(u, v) be the number of characters of
all alignments ol andu (for all possible values af,;,,):

[l -1
rno)= Y min{lul ol ~ o} + S minflul + oy, o]}
Oa,lign:O oalign:7|’u“

Lemma 11. r(u,v) = |ul - |v|

Proof.
0| —1
r(w,0) = Y min{jul,[v] = Oaign} + > min{|ul + ouign, [v]}
Oa,lign:() oalign:_‘u|

|v] Jul

= Zmin{|u|, lv| — i} + Zmin{|u| — i, |v|} — min{|ul, |v|}
i=0 i=0

W.o.l.g.|v| > |ul:

[v]—]ul |v] |ul
= Y ful+ D (=) > (ul =) — Jul
1=0 1=|v|—|ul i=0
Jul |

= (ol = lul) - |u + Z (lul =) + Z (Juf =) = [ul

1
= (ol = ul) - Jul +2- 5 - ful - (jul + 1) = Ju]

o] - ful = ul® + Juf* + |u] = [ul

= |v[-Ju|
O

Lemma 12. There areO(l - |S\ T| + ||S \ T'||) different alignments of the patternagainst the
strings inS'\ T'. The total number of aligned charactergis||S \ T||.

Proof. For each paip, v € S\ T, there argv| alignments with positive,;,, and|u| alignments
with negativen,;g,,. Hence, we havd_, o\ 7 (|v]+[ul+1) = O(|v|- [S\T|+[[S\T|) different
alignments in total.

The number of alignments s, o\ [v] - [u| =137 o [ul =1 [[S\T]] O

Figure 1 gives a schematic view of the way the algorithm wohk&rmally, for each value
of 04ign the stringsy andv are aligned. A right maximal substrirgnd’ with k£ mismatches is
calculated. The next character will be a mismatch. Henaejrntiusion of this character leads
to the desired right minimal-distantyv-substringcand. If cand’ (or cand) does not start with a
mismatch, the first suffix ofand is also a candidate (and possibly its next suffix and so on). If
cand' (or cand) starts with a mismatch, the mismatch is dropped and theidatadis extended
to the next mismatch with another Ice query.

10

Ice

Figure 1: Schematic view of an alignment betweeandu € S \ 7 and the way previous
information is reused in the algorithm. (A black bullet degsa mismatch, no bullet denotes a
match.)

Calculating the lengths of the minimal prefixes of all suffix¢j] andv[i] that match with
distancek can be done in tim&(|v| - |u|). Algorithm 2 correctly computes right minimét
distantv-substrings with respect tpu} in the arraym|] in time O(|v| - |u|), given thatice(z, j)
can be computed in tim@(lce(i, 5)).

Theorem 13 (Correctness).At the end of Algorithm 2,

[if a right minimal k-distantv-substring of
Vi, 0 <i < |v| ml[i] = lengthi starts ati in v,
lv| +1 if no k-distantv-substring starts at in v

Proof. For the first casesupposey; ...v; ;1 IS a right minimalk-distantv-substring. Then
v; ... ;41 matches any-length substrings of u with distpe, (v; . .. v 1, w) > k. Since
;... vy isright minimal, there is a substring of lengthl—1, s.t. distjem (v; . . . vy 2, W) =
k (Lemma 7). W.lLo.g letw’ = wu;...uj4 o, furthermore leto,;,, = 7 —j > 0. Since
diStham(Ui N OFR S IV S uj+l_1) > k, eitherdistham(vi e Vi1, Uj - - uj+l_1) =k+1and
Vigi—1 7 Ujyi—1 OF j + 1 — 2 = |u] andw’ is a suffix ofu.

Lines 8-12 and lines 17-21 are identical. If this block iseesd with the condition

Vposyt+h—1 F Upos,+h—1 OMNOt(pos, +h —1 € {1,...,|v|} Apos, +h—1€{1,...,|ul}), (1)

then afterwards condition (1) will also be true. Conditidn i valid at the beginning because
eitherpos, = 1 or pos,, = 1 andh = 0. Hence, (1) is invariant throughout the execution of the
algorithm.

Let i, be the value of: before the block is entered ang the value ofh afterwards. Then
Uposythy - - - Uposy-+ha—2 MACN€ 05 41, - . - Vpos, +ha—2- T e length of the match= h,—h,—11is
stored in the next position of the arral andpos.,.. is increased by one. The block of lines 8-12
(respectively lines 17-21) is passed through once for easmatch between,s, . . . Upos, +n-1

anduyos,, - - - Upos, +h—1 (if pos, +h—1 € {1,...,|v|} andpos, +h—1 € {1,...,|ul}) and once
when the end of one of the strings is reached.
Let pos, — pos, = Ouign = % — j be chosen in line 3. ;1,1 # w4 and

distham (Vi - . - Viqi—1,uj ... uj—1) = k + 1, then the block of lines 8-12 (respectively lines 17—
21) has been passed at leflagt1 times whempos, +h—1 = i+[—1 andpos, +h—1 = j+1—1
is reached either after the first or after the second blocke dlgorithm enters the for-loop

11

in lines 14-15 withlenpue, = &+ 1 + Zf;’fe[posm — t] and condition (1) holds for
h = h — lengu — 1. Hence, eithew or v start ath — len,,aen, OF there is a mismatch
Uposu+h—len,opon—1 7 Uposst+h—len,.on—1- 1HErEfOrE,0 > pos, + h — lenyae, — 1 andj >
oSy +h—lenmqe, — 1. Onthe other hand,< pos, +h —lenpaen +€[pos,,, —k—1]+1 andj <
POSy 4 h — lenmaren + €[pos,,, — k — 1]+ 1 DECAUS® o5, +h—1en,,pon +e[pos, ., —k—1]+1 - - - Upos,+h—1
aNd Vpos, +h—lenmgon+elpos,..—k—1]+1 - - - Uposy+h—1 MAtch with & errors. Thus, there exists an
re{0,...,e[pos,,, —k—1]}, s.t.pos, + h — lenmaien, + 7 = i aNdpos, + h — lenmagen +7 = J
and! = len,qen, — r Will correctly be stored inn[i] (line 15).

If j+1—2 = |u] andw’ is a suffix ofu, then the block of lines 8-12 (respectively lines 17-21)
has been passed at least 1 times wherpos, +h—1 =i+[—1andpos,+h—1=j+[—11is
reached either after the first or after the second block.§ing, + h—1 = j+1—2+1 = |u|+1
the second block of the if-statement in lines 26—28 will beesd. By the same argument as
above,i > pos, + h — lenyaen — 1 @and;j > pos, + h — lenpqaen — 1. Hence, there exists an
'€ {0,...,lenmatenl}, St.i = pos, + h —1I' =i+ 1 — 1" andl = {" will correctly be stored in
m[i] (line 28).

For the second cassuppose nd:-distantv-substring starts at positionin »v. Then the
i-th suffix of v matches with distance less thanany substring ofu, i.e. even the longest
substring ofv starting at: is matched somewhere im with £ or less mismatches. W.l.o.g.
diStham(Ui ce U]y Uj - Uj+|v|7i) <k andoalign =1—35>0.

Let pos, — pos, = 044, = ¢ — j be chosen in line 3. At some point after the block of lines
8-12 (respectively lines 17-21) has been passed, we wllpay, + h — 1 ¢ {1,...,|v|} by
condition (1). At the beginningos, + h € {1,...,|v|} and for each call tdce(-, -) we have
thatpos, + h + lce(pos, + h,-) — 1 < |v|. Thereforepos, + h — 1 < |v| + 1. It follows that
pos, +h —1 = |v| + 1 and the first block of the if-statement in lines 23-24 will Imtezed.

In lines 4 and 5/en,,,.;c, @andh are set to zero. Throughout the first while-loop both values
are increased synchronously. Only after at léast 1 passes through the block of lines 8-12
lenmaten 1S decreased by the length of thie+ 1)-th last mismatch each time a new mismatch or
the end of the string is reached. Hencé, ¥ len,,..n, there are at leagt mismatches between
Upos, +h—lenmatch « + » Upos, +h—1 andvposv+hflenmatch -+ - Uposy+h—1-

Sincev; ... v),| matchesu;...u;,—; with no more thank errors, we have eithet —
leNmater, @N pos, = i Of pos, + h — 1 — (lenpmae, — 1) < i. Hence, we always have
posy + h — lenyaen < i and thereforév| + 2 — lenaien < i (Sincepos, + h — 1 = |v| + 1).

As aresulth will run from |v| 4+ 2 — lenpaen, < i t0 |v] > i andm/[i] will be setto|v| + 1 in
line 24. O

Theorem 14 (Complexity). If 1ce(é, j) can be computed in tim@(lce(i, j)), Algorithm 2 has a
running time ofO(|u| - |v]).

Proof. During each iteration of the while loops in lines 7 and 43s increased by at least one
and the length = Ice(i, j) of the Ice calculated in line 8, respectively line 17. Theltmp of
line 14 is iterated times for each Ice of length Hence the total number of iterations of any line
between 7 and 21 is at madst The for loops of line 23 and 26 are also iterated at mdsines.
Sinceh never exceeds the number of characters aligned when,] is aligned tou[pos,,|, the
total number of iterations of any line of Algorithm 2 is at nhogu, v) = O(|ul - |v]). O

Executing Algorithm 2 for all strings it¥' \ 7" will therefore lead to a running time @?(/ -
1S\ 7).

The longest common extension of théh andj-suffix 1ce(7, j) can either be calculated di-
rectly in O(lce(i, 7)) or with the use of a generalized suffix tree and Ica queriesstant time.

12

In practice, calculating the Ice by direct comparison ofrabters performs much better.
Without constant time longest common extension queriesufiix4ree needs to be build and
no matching statistics need to be calculated. The expectetber of characters to compare for
finding the longest common extension under the assumptatdrtitie strings are generated by a
memoryless source with probabilitiés|[xz; = i] = p; for i € ¥ is constant:

1
El :z#yAVj<l z;=y]] = —=—.
[J 3] 1 o ZZ pZQ
For a uniform distribution over a four letter alphabet, thpexted length id/3. Hence, it is no
surprise that this approach outperforms the constant mgest common ancestor calculations
by far in practice.

5 An Improvement for the Levenshtein distance NEXACT
CHARACTERISTIC STRING PROBLEM

The algorithm presented by Ito et al. [9] uses the diagon#éhatkof dynamic programming (see
[11]) to calculate the Levenshtein distance of a suffief the shortest string € T against any
suffix (and thereby substring) of a stringe S \ T with the help of constant time Ice queries in
time O(|u| - k + |v]), where timeO(|u| + |v|) is needed for the suffix tree construction and time
O(|u| - k) for calculating the Levenshtein distance of th¢u|) suffixes ofu against;. (This is
possible since only distances offat+ 1 are considered.) The generalized suffix treed’f@and

v can be used for all suffixag. Hence, the Levenshtein distance of all suffixes against all
suffixes ofv can be calculated i®(|v|-|u|- k). The second phase of calculating all right minimal
k-distantv-substrings with respect t§ \ 7' can thus be implemented in tind% - [- ||S'\ T|]),
wherel is the length of the shortest stringTh The Phases 1, 3, and 4 described in Section 4
will be the same. The modified algorithm then has a running @O (||T|| + k- 1-||S\ T||)-
The termi? - |S'\ T'| of Ito et al. disappears because suffix trees are reused @otigtruction.

6 Conclusion

We have developed an efficient algorithm for theaXACT CHARACTERISTIC STRING PROB-
LEM for Hamming distance. It improves over previous results igctor of k&, the number of
mismatches allowed in matching with the non-target set. algorithm is faster even for = 1
because we do not need suffix trees and constant time Icaeguarthe main part of the al-
gorithm. The possibility to use different weights depeigdam the kind of mismatch allows a
broader field of application. We have also improved the kndMmmxACT CHARACTERISTIC
STRING PROBLEM algorithm by Ito et al. [9] by incorporating both algorithrits Levenshtein
distance and Hamming distance in a common framework, thursipg out the main differences.

The presented algorithm can be easily adapted to use ayhiteaghts depending on the kind
of mismatch. For applications in biology this can be usecettect different base pair bonding
strengths, thus allowing a more realistic probe design.advantage of our algorithm for probe
design is that a certain distance to every substring in théefie guaranteed.

The running time depends highly on the shortest string the target sef’. For short se-
guences the algorithm is still feasible. Experiments wité small subunit database from the
ARB project have shown that a single run with a 1500 bp seqarget (TmgMar22) and dis-
tance set of roughly twelve thousand sequences of total§i2dB takes about 31 minutes on

13

an Athlon XP1800+. The work can easily be distributed amondfiple workstations scaling
almost linearly to about 4 minutes on 10 machines.

Additionally, we presented a new practical, space efficiantl fast algorithm to solve the
COMMON SUBSTRING PROBLEM, which outperforms previously known algorithms.

The NP-completeness results for the strongly related probIDSTINGUISHING STRING
SELECTION PROBLEM and FARTHEST STRING PROBLEM make it unlikely that there exist ef-
ficient algorithms for versions of theHARACTERISTIC STRING PROBLEM without a target set
or that allow errors in matching the target set.

References

[1] AMIR, A., APOSTOLICQ A., AND LEWENSTEIN, M. Inverse pattern matchingl. Algo-
rithms 24 2 (1997), 325-339.

[2] CHANG, W. |., AND LAWLER, E. L. Sublinear approximate string matching and biololgica
applications Algorithmica 12(1994), 327-344.

[3] DE BRUIIN, N. G. A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappe(l946), 758—764.

[4] FRANCES, M., AND LITMAN, A. On covering problems of code3heory of Computing
Systems 3(q1997), 113-119.

[5] GASIENIEC, L., INDYK, P., AND KRYSTA, P. External inverse pattern matching. In
Combinatorial Pattern Matchin@.997), pp. 90-101.

[6] GUsFIELD, D. Algorithms on Strings, Trees, and Sequences — Computen&eiend
Computational BiologyPress Syndicate of the University of Cambridge, 1997.

[7] HAMMING, R. W. Error detecting and error correcting cod&ll Syst. Tech. J1950),
147-160.

[8] Hul, L. Color set size problem with applications to string matgh In CPM: Proceed-
ings of the 3rd Symposium on Combinatorial Pattern Matci892), vol. 644 of LNCS,
Springer, pp. 230-243.

[9] ITO, M., SHIMIZU, K., NAKANISHI, M., AND HASHIMOTO, A. Polynomial-time algo-
rithms for computing characteristic strings.@#®M: Proceedings of the 5th Symposium on
Combinatorial Pattern Matchin@994), vol. 807 of LNCS, Springer, pp. 274-288.

[10] LANCTOT, J. K., LI, M., MA, B., WANG, S., AND ZHANG, L. Distinguishing string
selection problems. IRroc. of the 10th SIAM-ACM Symposium on Discrete Algorithms
(1999), SIAM,ACM, pp. 633-642.

[11] LANDAU, G. M., AND VISHKIN, U. Introducing efficient parallelism into approximate
string matching and a new serial algorithm. Rroceedings of the 8th Annual ACM Sym-
posium on Theory of Computingiay 1986), ACM, ACM, pp. 220-230.

[12] LEVENSHTEIN, V. |. Binary codes capable of correcting deletions, ineaeg and reversals.
Doklady Akademii Nauk SSSR 168 (1965), 845—-848.

14

[13] MCcCREIGHT, E. M. A Space-Economical Suffix Tree Construction AlgamthJ. ACM
23 2 (April 1976), 262-272.

[14] MYERS, E. W. Ano(nd) difference algorithm and its variationg\igorithmica 1 (1986),
251-266.

[15] NAKANISHI, M., HASIDUME, M., ITO, M., AND HASHIMOTO, A. A linear-time algo-
rithm for computing characteristic strings. Rroceddings of the 5th International Sympo-
sium on Algorithms and Computatidf994), vol. 834 of LNCS, Springer, pp. 315-323.

[16] SCHIEBER, B., AND VISHKIN, U. On finding lowest common ancestors: Simplification
and parallelizationSIAM J. Comput. 176 (December 1988), 1253-1262.

[17] SzpaNKOWSKI, W. A generalized suffix tree and its (un)expected asymptmhaviors.
SIAM J. Computing 231993), 1176-1198.

[18] UKKONEN, E. On-Line Construction of Suffix Treeglgorithmica 14(1995), 249-260.

15

