
A Fast Algorithm for the Inexact Characteristic String
Problem

Moritz G. Maaß�
Fakulẗat für Informatik, TU München

Boltzmannstr. 3, D-85748 Garching, Germany
maass@informatik.tu-muenchen.de

August 4, 2003

Abstract

We present a new algorithm to solve the INEXACT CHARACTERISTIC STRING PROB-
LEM using Hamming distance instead of Levenshtein distance as ameasure. We embed
our new algorithm and the previously known algorithm for Levenshtein distance in a com-
mon framework which reveals an additional improvement to the Levenshtein distance al-
gorithm. The INEXACT CHARACTERISTIC STRING PROBLEM can thus be solved in timeO(jjT jj + l � jjS n T jj) for Hamming distance and in timeO(jjT jj + k � l � jjS n T jj) for
Levenshtein distance, whereS � ��, T (S (T 6= ;) is the target set, andl is the length of a
shortest string inT . The INEXACT CHARACTERISTIC STRING PROBLEM has applications
in probe and primer design.

Both algorithms need to solve the COMMON SUBSTRING PROBLEM for more than two
strings. We present an improved algorithm for this problem being simpler and faster in
practice by a constant factor than the previous algorithm.

Keywords: Algorithms and Data Structures, Pattern Matching, Computational Biology

1 Introduction

Solving the CHARACTERISTIC STRING PROBLEM requires to find a string that matches all
strings of a selected subset (the target set) and that does not match any string in the remain-
der of the given set of strings (the distance set). The solution is then characteristic for the strings
in the target set. Given an arbitrary string out of the set we can decide whether it belongs to the
target set by checking whether the characteristic string matches it.

The problem is motivated by applications in computational biology [6]. In DNA sequencing,
the techniques described here can be used to select a primer that bonds somewhere in a defined
region of a DNA strand, while excluding the possibility thatthe string hybridizes in another
region. PCR can then be used to replicate the substrings of the DNA starting at the position
where the primer hybridized. This is used in a technique called “chromosome walking” to close
gaps in DNA sequencing.�Research supported by DFG, grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr).

1

Another usage is the design of probes. A probe can be used to verify the presence (or, better,
absence) of a certain genome in a defined environment. A (short) complementary subsequence
(the probe) of the target DNA is synthesized that does not match any other DNA occurring in
the environment (e.g., the target might be a harmful one among a set of harmless bacteria). If
the probe does not hybridize, the target does not appear. If the probe hybridizes, the target might
or might not appear. Therefore, the probe needs to be carefully selected so that it does not
hybridize to other DNA occurring frequently in the defined environment. In both problems, the
primer or probe is selected to match some target DNA while notmatching other DNA from the
environment.

The hybridization process does not require an exact match. Aprobe might hybridize even if
some base pairs do no match. This motivates the definition of the INEXACT CHARACTERISTIC

STRING PROBLEM. To further reduce false hybridization, the probe is selected such that it does
not match non-target DNA (which must be known a priori) even allowing some errors.

There are multiple notions of matching with errors, most prominently Hamming distance
and LEVENSHTEIN DISTANCE1. Ito et al. [9] have presented an algorithm to solve the INEXACT

CHARACTERISTIC STRING PROBLEM in timeO(jjT jj + l2 � jS n T j + k � l � jjS n T jj), whereS � ��, T (S (T 6= ;) is the target set,S n T the distance set, andl is the length of a
shortest string inT . HerejSj is the cardinality of the setS andjjSjj is the size of all elements
of S. Levenshtein distance is used as a measure, but the algorithm is easily adapted to solve the
problem for Hamming distance in the same asymptotic time bound.

In this paper we present a new algorithm for efficiently solving the INEXACT CHARACTER-
ISTIC STRING PROBLEM for Hamming distance. The new algorithm is faster and more space
efficient than the above algorithm – it runs in timeO(jjT jj + l � jjS n T jj) – but it works only
for Hamming distance and not for Levenshtein distance. We believe that this is not a severe
restriction because Hamming distance seems to be a very natural measure with respect to DNA
hybridization. Lanctot et al. [10] argue that gaps are much more destabilizing than substitutions,
thus making Hamming distance the measure of choice for the design of short oligomers (e.g.,
probes).

We take a second look at the Levenshtein distance version of the INEXACT CHARACTERIS-
TIC STRING PROBLEM, which can be be solved more efficiently in timeO(jjT jj+k � l � jjS nT jj)
when embedded in the same framework.

Furthermore we present a practical and very efficient algorithm for the COMMON SUB-
STRING PROBLEM which improves over previous algorithms [8] by a constant factor in speed
and a much smaller memory overhead.

2 Overview and Previous Work

For our algorithm we introduce a four step framework which structures the solution into different
parts. The two major parts of the algorithm consist of computing substrings that do not match
a string from the distance set (“difference part”), and of solving the COMMON SUBSTRING

PROBLEM for the strings in the target set. Both parts use a shortest string v 2 T of lengthl as a
reference.

The same framework can be used for Levenshtein distance as distance measure and we show
how to reduce the running time by carefully embedding the core of the algorithm of Ito et al. [9]
in our framework. The computation of the substrings not matching the non-target strings (we will

1also known as edit distance

2

call themk-distant substrings) contributes the main term in the running time. Thus, the running
time depends solely on the choice between Levenshtein distance or Hamming distance in the
difference part. As a result, the Hamming distance version of the INEXACT CHARACTERISTIC

STRING PROBLEM can be solved by a factor ofk faster than the improved Levenshtein distance
version. Experimental results indicate an additional performance yield for the Levenshtein dis-
tance version even fork = 1 because no suffix trees and no constant lowest common ancestor
queries are needed. Ifk is not independent but related to an error rate�, then there is a linear
dependency betweenk and the length of the characteristic string. This length canbe bounded
from below by the size of a0-characteristic string. Szpankowski [17] has shown that the size of
a minimal string that does not occur as a substring in a stringof sizen converges almost sure to1h logn asn �!1, where0 < h <1 is related to the entropy2. So for a fixed error rate�, one
should choosek =
(log jjS n T jj).

To avoid confusion, we will say “v is a substring ofS”, if v is a substring of each string inS.
We will say that “v is a substring inS”, if there is a string inS that hasv as a substring.

A linear algorithm to solve the CHARACTERISTIC STRING PROBLEM has been published
by Nakanishi et al. [15]. The algorithm relies on generalized suffix trees and runs in time and
spaceO(jjSjj). The generalized suffix tree for all strings inS is first traversed to mark all nodes
which represent a prefix of a stringv in S n T (they have a leaf representing a suffix ofv as a
child). In a second run for each noden that is unmarked and a child of a marked nodep, it is
checked (by a linear time subtree traversal) whether the node represents a substringu of T . If a
leaf representing a suffix of a stringv is found belown for everyv 2 T , thenu is a substring
of T . Sinceu is not a substring inS n T it is a characteristic string. Every prefix ofu that is
longer than the string represented byp is a characteristic string. Among all strings thus found,
the shortest one is returned.

Ito et al. [9] have presented an algorithm to solve the INEXACT CHARACTERISTIC STRING

PROBLEM in timeO(jjT jj+ l2 � jS nT j+k � l � jjS nT jj), wherel is again the length of a shortest
string inT . The key idea here is to use the diagonal method of dynamic programming to match
every suffix of a shortest stringv in T against all strings ofS nT with k errors. (This method was
introduced by Landau and Vishkin [11] and, at the same time, Myers [14].) If for a suffix ofv the
end of the string is not reached in any such match an appropriately sized prefix of the suffix is ak-
distantv-substring. Every such substring is matched against the remaining strings inT . If every
string has a match, the substring is ak-characteristic substring. Among all these the shortest one
is selected. The algorithm can easily be improved to run in timeO(jjT jj+ k � l � jjS n T jj).

Our solution to the INEXACT CHARACTERISTIC STRING PROBLEM for Hamming distance
makes use of the fact that overlapping substrings share common matches and mismatches. For
instance, consider the stringsGTTAGGATTA andGTTAGATTA. The substringTTAGG matches
the substringTTAGA with one error. The overlapping substringsAGGATT andAGATTA match
with three errors (AGG andAGAmatch with one error and the additional substringsATT andTTA
match with two errors). For Levenshtein distance we can match the substringsAGGATT and
AGATTA with distance two, which does not depend on the previous errors made when matching
TTAGG andTTAGA with one error.

For each stringu from the distance setS nT we find for every suffixv[i℄ of the shortest stringv fromT the length of a longest substring ofumatching a prefix ofv[i℄. For each starting position
of v, we thus calculate the length of a longest match with distance k. Instead of calculating the
lengths for each position inv at once, we calculate the maximal matching lengths for each of thejuj+ jvj different alignments ofv againstu, using information from overlapping substrings.

2For a memoryless Source,h = � log(pmin).
3

The difference part of the algorithm can be implemented veryefficiently without the use of
suffix trees or other complex data structures. Only for the solution of the COMMON SUBSTRING

PROBLEM we do need suffix trees.
We also present a much simpler and (by a constant factor) faster algorithm to solve the COM-

MON SUBSTRING PROBLEM for more than two strings. Lucas Hui has given a linear time
solution to this problem that relies on constant time lowestcommon ancestor computation [8]
(see also [6]). The algorithm builds the generalized suffix tree for the given set of strings and
augments the tree with information to calculate lowest common ancestor queries (see for instance
[16]) in constant time. The resulting data structure is linear in space but with a large constant.

Our algorithm constructs the suffix tree for each string in the set one by one, at any time
keeping only one suffix tree in memory and without the overhead for lowest common ancestor
queries. Experimental results (for an alphabet of size fourand from two to one hundred strings of
sizes up to a hundred thousand characters) indicate a betterperformance of the new algorithm by
a factor of four to five. An even more space efficient version ofthe algorithm constructs only the
suffix tree for the shortest string in the set. In the computational biology domain the much lower
amount of space needed might enable researchers to tackle previously unreachable problems.

A problem related to the INEXACT CHARACTERISTIC STRING PROBLEM is the INVERSE

PATTERN MATCHING PROBLEM. To solve the INVERSE PATTERN MATCHING PROBLEM for
a given string a short pattern is searched that maximizes (minimizes) the sum of all character
mismatches when the pattern is aligned at all positions of the given string (which is the sum of
the Hamming distance between each corresponding substringand the pattern). There are variants
of the problem depending on whether a pattern is sought to come from the string itself (inter-
nal inverse pattern matching) or not (external inverse pattern matching). Amir et al. [1] have
studied the problem and have given first algorithms to solve the INVERSE PATTERN MATCHING

PROBLEM and its variants. Later, Gasieniec et al. [5] have improved the solution to the exter-
nal INVERSE PATTERN MATCHING PROBLEM. The internal INVERSE PATTERN MATCHING

PROBLEM can be solved in timeO(npm log2m), wherem is the size of the desired pattern.
The INVERSE PATTERN MATCHING PROBLEM and its external variant can be solved in timeO(n) for fixed alphabet size.

The main difference between the INVERSE PATTERN MATCHING PROBLEM and the INEX-
ACT CHARACTERISTIC STRING PROBLEM lies in the fact that the solution string for the INEX-
ACT CHARACTERISTIC STRING PROBLEM is guaranteed not to match anywhere even withk
errors, while the solution string for the INVERSE PATTERN MATCHING PROBLEM might have
the highest amount of mismatches but still match at a lot of places with few (or no for the non-
external versions) errors. The solution to the INVERSE PATTERN MATCHING PROBLEM is a
string that has a maximal average distance, while the solution to the INEXACT CHARACTERIS-
TIC STRING PROBLEM guarantees a minimal distance for each position. Hence, theINVERSE

PATTERN MATCHING PROBLEM solution pattern is not well suited for sharp classifications. The
applications of the INVERSE PATTERN MATCHING PROBLEM are such that sharp distinctions
are not necessary (see [1] for some examples).

On the other hand, the INVERSE PATTERN MATCHING PROBLEM does not require a tar-
get set. When no target set is given for the INEXACT CHARACTERISTIC STRING PROBLEM,
the given algorithms do not work. A straightforward solution supplying an adequate de Bruijn
sequence of orderm (with length j�jm) would lead to a running time ofO(j�jm � jjSjj) for
Hamming distance. It is unlikely that an algorithm with a polynomial running time exists. When
there is no target set the problem is, given a setS � �� and an integerk, to find a stringv 2 ��
such no substring inS is within Hamming distancek of v. Frances and Litman [4] have shown

4

that, given a setC � f0; 1gn and an integerk, the MAXIMUM COVERING RADIUS PROBLEM of
deciding wether there exists a stringv 2 �n with Hamming distance greaterk to every element
of C is NP-complete. Lanctot et al. [10] show that several related problems such as the DIS-
TINGUISHING STRING SELECTION PROBLEM and the FARTHEST STRING PROBLEM are also
NP-complete. For the FARTHEST STRING PROBLEM a stringv 2 �n with Hamming distance
at leastk to all strings of a setS � �n is sought, a generalization of MAXIMUM COVERING

RADIUS PROBLEM. Lanctot et al. also present a PTAS for that problem. The input of the DIS-
TINGUISHING STRING SELECTION PROBLEM is a setB � �n � ��, a setG � �n and two
thresholdsdb, dg. The objective is to find a stringv with Hamming distance at mostdb to each
substring of lengthn in B and Hamming distance at leastdg to each string inG.

3 Preliminaries

Let � be an arbitrary finite alphabet, let�� denote the set of all finite strings over� (including
the empty string�), let �+ = �� n f�g denote the set of all non-empty strings over�. Lett = t1t2t3 : : : tn be a string with charactersti 2 �, we definejtj = n to be its length. Byt[i℄ we
will refer to thei-th suffix of t: t[i℄ = ti : : : tjtj. Given a (finite) set of stringsS � ��, we denote
by jSj the number of elements ofS and byjjSjj the size ofS (jjSjj =Pu2S juj).

If
 is a condition, then we will let the expression[
℄ denote1 if
 is true and0 otherwise ([�℄
is sometimes called the indicator function). For instance,[a = b℄ is 1 if a andb represent the
same characters and it is0 otherwise.

Definition 1 (CHARACTERISTIC STRING PROBLEM). Given a setS of strings and a non-
empty setT (S, find a shortest stringu, s.t. u is a substring ofT andu is not a substring inS n T .

The idea behind this definition is that the stringu characterizes the setT in S.
In inexact pattern matching there are two classical measures for an approximate match, these

are Levenshtein distance and Hamming distance. They are defined as follows:

Definition 2 (Levenshtein distance).Let u; v 2 �� be two arbitrary strings. The Levenshtein
distancedistlev(u; v) is defined as the minimal number of insertions, deletions andreplacements
of characters needed to transferu into v. Ignoring the boundry cases, the Levenshtein distance
of u = u1 : : : un andv = v1 : : : vm can be defined recursively asdistlev(u1 : : : un; v1 : : : vm) = min8<: distlev(u2 : : : un; v2 : : : vm) + [u1 6= v1℄;distlev(u1 : : : un; v2 : : : vm) + 1;distlev(u2 : : : un; v1 : : : vm) + 1 9=; ;
where the first line represents the match/replacement case,the second line represents the deletion
case, and the third line represents the insertion case.

The Hamming distance is only defined for strings of the same length.

Definition 3 (Hamming distance). For n > 0, let u; v 2 �n be two strings. The Hamming
distance is defined as the number of characters that do not match betweenu andv:distham(u; v) = X1�i�n[ui 6= vi℄

5

With the use of a distance measuredist(u; v) we can define the inexact version of the CHAR-
ACTERISTIC STRING PROBLEM:

Definition 4 (I NEXACT CHARACTERISTIC STRING PROBLEM). Given a setS of strings, a
non-empty setT (S, and a numberk, find a shortest stringu, s.t. u is a substring ofT andu matches no substring inS n T with k or less errors. Formally, for allw 2 S n T , if w0 is a
substring ofw thendist(w0; u) > k.

For convenience, we introduce some further notions. Letu 2 �� be such that all substringsw0 of all stringsw 2 S n T havedist(w0; u) > k. Thenu is called a “k-distant string” (with
respect toSnT). If u is a substring ofv andu is ak-distant string with respect toSnT we will callu a “k-distant v-substring”. We call a string with propertyP “ right minimal ”, if u1 : : : ujuj�1
does not have propertyP . Analogously, a substringui : : : uj with propertyP is called “right
maximal”, if ui : : : uj+1 does not have propertyP .

4 A Faster Solution for the Hamming distance INEXACT

CHARACTERISTIC STRING PROBLEM

We will present anO(jjT jj+ l � jjS nT jj) algorithm, wherel is the length of some shortest stringv 2 T . The input of the algorithm consists of a set of stringsS � �� and a target setT (S.
The algorithm consists of four phases:

1. Find a shortest stringv in T .
2. For i from 1 to jvj find the right minimalk-distantv-substring
andi (if it exists).
andi

occurs at positioni in v.
3. For each candidate
andi check whether it is a common substring of all strings inT and

hence ak-characteristic string.
4. Select the shortest among allk-characteristic strings.

Observation 5. Let v 2 T be a shortest string inT . Each characteristic string is a substring ofv.

We will therefore only need to consider the shortest stringv 2 T when comparing it with
strings fromS n T .

Lemma 6. Every shortestk-characteristic string is a right minimalk-distantv-substring with
respect toS n T .

Proof. Let s be a shortestk-characteristic string. Obviously,s must be a substring ofT and
hence also ofv. By definition,s must be ak-distant string with respect toS n T . Suppose,s
were not right minimal, thens0 = s1 : : : sjsj�1 would be ak-distant string. Sinces is a common
substring ofT , so would bes0. Hence,s0 would be a shorterk-characteristic string, contradicting
the assumption.

As a consequence, by looking at all right minimalk-distantv-substrings with respect toS nT
we will also see every shortestk-characteristic string. Hence, the above scheme is correct. A key
idea to the algorithm is the following observation:

Lemma 7.
andi = vi : : : vi+l+1 is a rightminimalk-distantv-substring, iff
and0i = vi : : : vi+l is
a right maximalsubstring ofv, such that for any substringu in S nT at leastdist(
and0i; u) � k
and there is a substringu in S n T with dist(
and0i; u) = k.

6

Proof. vi : : : vi+l+1 must have distance at leastk + 1 from any substring inS n T , otherwisevi : : : vi+l would not be right maximal. Therefore,vi : : : vi+l+1 is ak-distant string. On the other
hand, there is a substring inSnT such thatvi : : : vi+l matches with distancek. Hence,vi : : : vi+l+1
is right minimal.

With Lemma 7 we can find the candidates by finding maximal length matches.
Phase 1 can easily be implemented to run in timeO(jjT jj). Let l = jvj be the length of the

shortest string inT . By Lemma 6, there are at mostl candidates after Phase 2 and Phase 3.
Hence, Phase 4 can easily be implemented in timeO(l).

In the sequel we will show how to implement Phase 2 in timeO(l � jjS n T jj) and Phase 3 in
timeO(jjT jj). This will lead to a total running time ofO(jjT jj+ l � jjS n T jj).
4.1 A Simple Algorithm for Finding All Common Substrings of a Set of

Strings in Linear Time

Definition 8 (COMMON SUBSTRING PROBLEM). LetT be a set of strings. Find all stringsv,
s.t.v is a substring of all strings inT .

Since there may be
(jjT jj2) many common substrings, one has to be careful about the output
representation. The output can be represented in linear space3, if we pick a stringv 2 T and store
the length of the longest common substring starting at position i 2 f1; : : : ; jvjg in v.

Lucas Hui has given a linear solution to this problem that relies on constant time lowest
common ancestor computation [8] (see also [6]). Hui’s algorithm is able to find at the same
time all substrings common to a fixed number ofk � jT j strings inT , while we will only find
substrings common to all strings inT . Our algorithm is much simpler and faster.

The algorithm is based on matching statistics (see [6], respectively [2]). The matching statis-
tic ms(i) for a patternp and a textt gives the length of the longest substring starting at positioni in p that is also a substring oft. All values ofms(i), i 2 f1; : : : ; jpjg, can be calculated in timeO(jpj+ jtj) with the use of a suffix tree fort. The linear time algorithm constructs the suffix tree
for t (with suffix links) in timeO(jtj). Then it finds a canonical reference pair (see the construc-
tion of suffix trees by Ukkonen [18] for a detailed description of reference pairs, suffix links,
canonizing etc.) for the longest prefixw of p that matches a substring oft by a simple search in
the suffix tree. A canonical reference pair for stringw is a noden representing a prefix ofw in
the suffix tree and a length denoting a prefix of an edge starting atn representing the remaining
part ofw. The length of the prefixw of p is the value ofms(1). The reference pair and the
length forms(i+1) is computed from the reference pair forms(i) by “shortening” the reference
pair at the front. This is done by replacing the noden with its suffix link parent and afterwards
canonizing and lengthening the reference pair as far as possible. The suffix links are a byproduct
of the suffix tree construction (see [13, 18]). For a noden representing a stringu = u1u2 : : : um,
its suffix link leads to a noden0 representing the first suffixu2 : : : um of u. The whole traversal
takes amortized timeO(jpj).

To find all common substrings ofT in timeO(jjT jj) we proceed as shown in Algorithm 1.

Theorem 9. Algorithm 1 correctly solves theCOMMON SUBSTRING PROBLEM.

Proof. Letw be a common substring of all strings inT . Thenw is also a substring of the shortest
stringv in T . W.l.o.g. letw appear at positioni in v (w = vi : : : vi+jwj). Sincew is common to all

3Only in the uniform cost model.

7

Algorithm 1 Common Substring
1: Let v be the shortest string inT .
2: for i = 1 to jvj do
3: msmin(i) = jvj � i+ 1
4: for all u 2 T; u 6= v do
5: calculate matching statisticsms(i) (i from 1 to jvj) for v andu.
6: for i = 1 to jvj do
7: msmin(i) = minfmsmin(i); ms(i)g

stringsu 2 T , in every iteration of the loop in line 4ms(i) � jwj and thereforemsmin(i) � jwj.
This is especially true for the longest common substring starting at positioni.

Suppose, after Algorithm 1msmin(i) = j. For every iteration of the loop in line 4 we havems(i) � j and there is a substring of lengthj or greater in starting ati in v that is also a substring
of the current stringu. Thereforevi : : : vi+j is a common substring of all strings inT .

Theorem 10. Algorithm 1 runs in timeO(jjT jj)
Proof. To find the shortest stringv in line 1 of the algorithm it takes timeO(jjT jj). The for-loop
of lines 2–3 takes timeO(jvj). Lines 5–7 are is executed for each stringu in T n fvg. Line 5
takes timeO(juj+ jvj) = O(juj) (becausejuj � jvj) and lines 6 – 7 take timeO(jvj) = O(juj).
Hence, Lines 4–7 take total time

Pu2TnfvgO(juj) = O(jjT nfvgjj). As a result the total running
time isO(jjT n fvgjj+ jvj+ jjT jj) = O(jjT jj).

An even more space efficient implementation uses only one suffix tree for the shortest stringv to calculate the matching statistics forv andu 2 T n fvg. This is achieved by storing a “high
water mark” for each edge as the deepest position reached by atraversal with a reference pair
as described above with stringu. A first subsequent traversal sets the “high water mark” to
maximum at all ancestors of marked edges. In a final traversalfor each leaf the maximal mark
of any parent edge is stored as the corresponding value of thematching statistics (for the leaf
representing thei-th suffix, the value is stored asms(i)). The traversal for stringu costsO(juj),
while the two subsequent traversals (and the building of thesuffix tree) costO(jvj). Hence, the
total time is alsoO(juj+ jvj). If v is smaller than the other strings in the set, this approach will
save even more space. Additional space to store the high water marks is needed, so the algorithm
needs2n more integers for the suffix tree.

Compared with Hui’s algorithm either version of this algorithm saves a considerable amount
of space. For a large number of huge strings as they are encountered in DNA databases, space
requirements make computations possible with our new algorithm which would have used a
prohibitive amount of memory with the previous algorithm.

4.2 Finding All Right Minimal k-Distant v-Substrings with Respect toSnT
This section describes how Phase 2 of the algorithm works forHamming distance as distance

measure. In Phase 2, for each positioni of the shortest stringv 2 T , the right minimalk-distantv-substrings
andi is searched for. In order to find
andi, we must align thei-th suffix v[i℄
against every suffixu[j℄ of a string inu 2 S n T and calculate the shortest prefixes ofu[j℄ andv[i℄ that have a distance greater thenk. We use Lemma 7 to calculate the right minimalk-distantv-substrings from the right maximal prefixes with distancek.

8

Algorithm 2 Minimal Prefixes with Distancek
1: Letm[℄ be an array of sizejvj, initialized to0
2: Let e[℄ be an array of sizek + 1, organized as a ring buffer, initialized to0
3: for (posv; posu) 2 f(1; l)jl = 1 : : : jujg [f(l; 1)jl = 1 : : : jvjg do
4: lenmat
h = 0
5: h = 0
6: poserr = 0
7: while poserr � k andposv + h � jvj andposu + h � juj do
8: l = l
e(posv + h; posu + h)
9: e[poserr℄ = l

10: lenmat
h = lenmat
h + l + 1
11: h = h+ l + 1
12: poserr = poserr + 1
13: while posv + h� 1 � jvj andposu + h� 1 � juj do
14: for r = 0 to e[poserr � k � 1℄ do
15: m[posv + h� lenmat
h + r℄ = maxfm[posv + h� lenmat
h + r℄; lenmat
h � rg
16: lenmat
h = lenmat
h � e[poserr � k � 1℄� 1
17: l = l
e(posv + h; posu + h)
18: e[poserr℄ = l
19: lenmat
h = lenmat
h + l + 1
20: h = h+ l + 1
21: poserr = poserr + 1
22: if posv + h� 1 = jvj+ 1 then
23: for h0 = jvj+ 2� lenmat
h to jvj do
24: m[h0℄ = jvj+ 1
25: else ifposu + h� 1 = juj+ 1 then
26: for l0 = 0 to lenmat
h do
27: if m[posv + h� l0℄ < l0 then
28: m[posv + h� l0℄ = l0

The longest common extension(lce) of two stringsu andv is defined as the longest prefix
of u that is also a prefix ofv (or vice versa). Using a generalized suffix tree forv andu we
can calculate the lce between any two suffixes in constant time by means of constant timelowest
common ancestor(lca) queries (for lca see [16]). The lce of two suffixesv[i℄ andu[j℄ is the string
represented by the lca of the leaves (which represent these suffixes) in the generalized suffix tree.
In particular we only need its length, which we can store witheach node.

The maximal prefixes ofu[j℄ andv[i℄ with distancek can thus be calculated in timeO(k).
But this simple approach would lead to an overall timeO(k � jjS n T jj � l + l � jS n T j). We
will improve this basic scheme by reducing redundant comparisons and work in preparing lce
queries.

Let u be an arbitrary string inS n T . We define the alignment offset of the i-th suffixv[i℄ ofv and thej-th suffix u[j℄ of u asoalign = i � j. In order to speed up the distance calculations
we will calculate the lengths of all maximal prefixes with distancek of all suffixes with the same
alignment offset together. This can be done by aligning the(oalign+1)-th character ofv with the
first character ofu, respectively the(�oalign + 1)-th character ofu with the first character ofv
(if oalign < 0).

9

For each such alignment ofv againstu let r be the number of aligned characters (ifoalign � 0
thenv[oalign + 1℄ is aligned againstu[1℄ andr = minfjuj; jvj � oaligng, otherwisev[1℄ is aligned
againstu[�oalign+1℄ andr = minfjuj+ oalign; jvjg). Let r(u; v) be the number of characters of
all alignments ofv andu (for all possible values ofoalign):r(u; v) = jvjXoalign=0minfjuj; jvj � oaligng+ �1Xoalign=�jujminfjuj+ oalign; jvjg
Lemma 11. r(u; v) = juj � jvj
Proof. r(u; v) = jvjXoalign=0minfjuj; jvj � oaligng+ �1Xoalign=�jujminfjuj+ oalign; jvjg= jvjXi=0 minfjuj; jvj � ig+ jujXi=0 minfjuj � i; jvjg �minfjuj; jvjg
W.o.l.g. jvj � juj: = jvj�jujXi=0 juj+ jvjXi=jvj�juj (jvj � i) + jujXi=0 (juj � i)� juj= (jvj � juj) � juj+ jujXi=0 (juj � i) + jujXi=0 (juj � i)� juj= (jvj � juj) � juj+ 2 � 12 � juj � (juj+ 1)� juj= jvj � juj � juj2 + juj2 + juj � juj= jvj � juj
Lemma 12. There areO(l � jS n T j+ jjS n T jj) different alignments of the patternv against the
strings inS n T . The total number of aligned characters isl � jjS n T jj.
Proof. For each pairv, u 2 S nT , there arejvj alignments with positiveoalign andjuj alignments
with negativeoalign. Hence, we have

Pu2SnT (jvj+ juj+1) = O(jvj � jSnT j+ jjS nT jj) different
alignments in total.

The number of alignments is
Pu2SnT jvj � juj = l �Pu2SnT juj = l � jjS n T jj

Figure 1 gives a schematic view of the way the algorithm works. Informally, for each value
of oalign the stringsu andv are aligned. A right maximal substring
and0 with k mismatches is
calculated. The next character will be a mismatch. Hence, the inclusion of this character leads
to the desired right minimalk-distantv-substring
and. If
and0 (or
and) does not start with a
mismatch, the first suffix of
and is also a candidate (and possibly its next suffix and so on). If
and0 (or
and) starts with a mismatch, the mismatch is dropped and the candidate is extended
to the next mismatch with another lce query.

10

}

lce

cand’

}oalign

} u

v

Figure 1: Schematic view of an alignment betweenv andu 2 S n T and the way previous
information is reused in the algorithm. (A black bullet denotes a mismatch, no bullet denotes a
match.)

Calculating the lengths of the minimal prefixes of all suffixes u[j℄ andv[i℄ that match with
distancek can be done in timeO(jvj � juj). Algorithm 2 correctly computes right minimalk-
distantv-substrings with respect tofug in the arraym[℄ in timeO(jvj � juj), given thatl
e(i; j)
can be computed in timeO(l
e(i; j)).
Theorem 13 (Correctness).At the end of Algorithm 2,8i; 0 < i � jvj m[i℄ = 8><>:l if a right minimalk-distantv-substring of

lengthl starts ati in v;jvj+ 1 if no k-distantv-substring starts ati in v
Proof. For the first case, supposevi : : : vi+l�1 is a right minimalk-distantv-substring. Thenvi : : : vi+l�1 matches anyl-length substringw of u with distham(vi : : : vi+l�1; w) > k. Sincevi : : : vi+l�1 is right minimal, there is a substringw0 of lengthl�1, s.t.distham(vi : : : vi+l�2; w0) =k (Lemma 7). W.l.o.g letw0 = uj : : : uj+l�2, furthermore letoalign = i � j > 0. Sincedistham(vi : : : vi+l�1; uj : : : uj+l�1) > k, eitherdistham(vi : : : vi+l�1; uj : : : uj+l�1) = k + 1 andvi+l�1 6= uj+l�1 or j + l � 2 = juj andw0 is a suffix ofu.

Lines 8–12 and lines 17–21 are identical. If this block is entered with the conditionvposv+h�1 6= uposu+h�1 ornot(posv + h� 1 2 f1; : : : ; jvjg ^ posu + h� 1 2 f1; : : : ; jujg); (1)

then afterwards condition (1) will also be true. Condition (1) is valid at the beginning because
eitherposv = 1 or posu = 1 andh = 0. Hence, (1) is invariant throughout the execution of the
algorithm.

Let hb be the value ofh before the block is entered andha the value ofh afterwards. Thenuposu+hb : : : uposu+ha�2 matchesvposv+hb : : : vposv+ha�2. The length of the matchl = ha�hb�1 is
stored in the next position of the arraye[℄ andposerr is increased by one. The block of lines 8–12
(respectively lines 17–21) is passed through once for each mismatch betweenvposv : : : vposv+h�1
anduposu : : : uposu+h�1 (if posv+h�1 2 f1; : : : ; jvjg andposu+h�1 2 f1; : : : ; jujg) and once
when the end of one of the strings is reached.

Let posv � posu = oalign = i � j be chosen in line 3. Ifvi+l�1 6= uj+l�1 anddistham(vi : : : vi+l�1; uj : : : uj+l�1) = k + 1, then the block of lines 8–12 (respectively lines 17–
21) has been passed at leastk+1 times whenposv+h�1 = i+ l�1 andposu+h�1 = j+ l�1
is reached either after the first or after the second block. The algorithm enters the for-loop

11

in lines 14–15 withlenmat
h = k + 1 + Pk+1t=1 e[poserr � t℄ and condition (1) holds forh = h � lenmat
h � 1. Hence, eitheru or v start ath � lenmat
h, or there is a mismatchuposu+h�lenmat
h�1 6= vposv+h�lenmat
h�1. Therefore,i > posv + h � lenmat
h � 1 and j >posu+h�lenmat
h�1. On the other hand,i < posv+h�lenmat
h+e[poserr�k�1℄+1 andj <posu+h� lenmat
h+ e[poserr�k�1℄+1 becauseuposu+h�lenmat
h+e[poserr�k�1℄+1 : : : uposu+h�1
and vposv+h�lenmat
h+e[poserr�k�1℄+1 : : : vposv+h�1 match with k errors. Thus, there exists anr 2 f0; : : : ; e[poserr� k� 1℄g, s.t.posv +h� lenmat
h+ r = i andposu+h� lenmat
h+ r = j
andl = lenmat
h � r will correctly be stored inm[i℄ (line 15).

If j+l�2 = juj andw0 is a suffix ofu, then the block of lines 8–12 (respectively lines 17–21)
has been passed at leastk+1 times whenposv+h�1 = i+ l�1 andposu+h�1 = j+ l�1 is
reached either after the first or after the second block. Sinceposu+h�1 = j+ l�2+1 = juj+1
the second block of the if-statement in lines 26–28 will be entered. By the same argument as
above,i > posv + h � lenmat
h � 1 andj > posu + h � lenmat
h � 1. Hence, there exists anl0 2 f0; : : : ; lenmat
h℄g, s.t. i = posv + h � l0 = i + l � l0 andl = l0 will correctly be stored inm[i℄ (line 28).

For the second case, suppose nok-distantv-substring starts at positioni in v. Then thei-th suffix of v matches with distance less thank any substring ofu, i.e. even the longest
substring ofv starting ati is matched somewhere inu with k or less mismatches. W.l.o.g.distham(vi : : : vjvj; uj : : : uj+jvj�i) � k andoalign = i� j > 0.

Let posv � posu = oalign = i� j be chosen in line 3. At some point after the block of lines
8–12 (respectively lines 17–21) has been passed, we will have posv + h � 1 62 f1; : : : ; jvjg by
condition (1). At the beginningposv + h 2 f1; : : : ; jvjg and for each call tol
e(�; �) we have
thatposv + h + l
e(posv + h; �) � 1 � jvj. Therefore,posv + h � 1 � jvj + 1. It follows thatposv + h� 1 = jvj+ 1 and the first block of the if-statement in lines 23–24 will be entered.

In lines 4 and 5,lenmat
h andh are set to zero. Throughout the first while-loop both values
are increased synchronously. Only after at leastk + 1 passes through the block of lines 8–12lenmat
h is decreased by the length of the(k + 1)-th last mismatch each time a new mismatch or
the end of the string is reached. Hence, ifh 6= lenmat
h, there are at leastk mismatches betweenuposu+h�lenmat
h : : : uposu+h�1 andvposv+h�lenmat
h : : : vposv+h�1.

Since vi : : : vjvj matchesuj : : : uj+jvj�i with no more thank errors, we have eitherh =lenmat
h and posv = i or posv + h � 1 � (lenmat
h � 1) � i. Hence, we always haveposv + h� lenmat
h � i and thereforejvj+ 2� lenmat
h � i (sinceposv + h� 1 = jvj+ 1).
As a result,h will run from jvj+ 2� lenmat
h � i to jvj � i andm[i℄ will be set tojvj+ 1 in

line 24.

Theorem 14 (Complexity). If l
e(i; j) can be computed in timeO(l
e(i; j)), Algorithm 2 has a
running time ofO(juj � jvj).
Proof. During each iteration of the while loops in lines 7 and 13,h is increased by at least one
and the lengthl = l
e(i; j) of the lce calculated in line 8, respectively line 17. The forloop of
line 14 is iteratedl times for each lce of lengthl. Hence the total number of iterations of any line
between 7 and 21 is at mosth. The for loops of line 23 and 26 are also iterated at mosth times.
Sinceh never exceeds the number of characters aligned whenv[posv℄ is aligned tou[posu℄, the
total number of iterations of any line of Algorithm 2 is at most r(u; v) = O(juj � jvj).

Executing Algorithm 2 for all strings inS n T will therefore lead to a running time ofO(l �jjS n T jj).
The longest common extension of thei-th andj-suffix l
e(i; j) can either be calculated di-

rectly inO(l
e(i; j)) or with the use of a generalized suffix tree and lca queries in constant time.

12

In practice, calculating the lce by direct comparison of characters performs much better.
Without constant time longest common extension queries no suffix tree needs to be build and
no matching statistics need to be calculated. The expected number of characters to compare for
finding the longest common extension under the assumption that the strings are generated by a
memoryless source with probabilitiesPr[xj = i℄ = pi for i 2 � is constant:E [l : xl 6= yl ^ 8j < l xj = yj℄ = 11�Pi p2i :
For a uniform distribution over a four letter alphabet, the expected length is4=3. Hence, it is no
surprise that this approach outperforms the constant time longest common ancestor calculations
by far in practice.

5 An Improvement for the Levenshtein distance INEXACT

CHARACTERISTIC STRING PROBLEM

The algorithm presented by Ito et al. [9] uses the diagonal method of dynamic programming (see
[11]) to calculate the Levenshtein distance of a suffixvi of the shortest stringv 2 T against any
suffix (and thereby substring) of a stringu 2 S n T with the help of constant time lce queries in
timeO(juj � k + jvj), where timeO(juj+ jvj) is needed for the suffix tree construction and timeO(juj � k) for calculating the Levenshtein distance of theO(juj) suffixes ofu againstvi. (This is
possible since only distances of atk + 1 are considered.) The generalized suffix tree foru andv can be used for all suffixesvi. Hence, the Levenshtein distance of all suffixes ofv against all
suffixes ofv can be calculated inO(jvj � juj �k). The second phase of calculating all right minimalk-distantv-substrings with respect toS n T can thus be implemented in timeO(k � l � jjS n T jj),
wherel is the length of the shortest string inT . The Phases 1, 3, and 4 described in Section 4
will be the same. The modified algorithm then has a running time ofO(jjT jj+ k � l � jjS n T jj).
The terml2 � jS n T j of Ito et al. disappears because suffix trees are reused in theconstruction.

6 Conclusion

We have developed an efficient algorithm for the INEXACT CHARACTERISTIC STRING PROB-
LEM for Hamming distance. It improves over previous results by afactor ofk, the number of
mismatches allowed in matching with the non-target set. Ouralgorithm is faster even fork = 1
because we do not need suffix trees and constant time lca queries in the main part of the al-
gorithm. The possibility to use different weights depending on the kind of mismatch allows a
broader field of application. We have also improved the knownINEXACT CHARACTERISTIC

STRING PROBLEM algorithm by Ito et al. [9] by incorporating both algorithmsfor Levenshtein
distance and Hamming distance in a common framework, thus pointing out the main differences.

The presented algorithm can be easily adapted to use arbitrary weights depending on the kind
of mismatch. For applications in biology this can be used to reflect different base pair bonding
strengths, thus allowing a more realistic probe design. Theadvantage of our algorithm for probe
design is that a certain distance to every substring in the model is guaranteed.

The running time depends highly on the shortest stringv in the target setT . For short se-
quences the algorithm is still feasible. Experiments with the small subunit database from the
ARB project have shown that a single run with a 1500 bp sequence target (TmgMar22) and dis-
tance set of roughly twelve thousand sequences of total size20 MB takes about 31 minutes on

13

an Athlon XP1800+. The work can easily be distributed among multiple workstations scaling
almost linearly to about 4 minutes on 10 machines.

Additionally, we presented a new practical, space efficient, and fast algorithm to solve the
COMMON SUBSTRING PROBLEM, which outperforms previously known algorithms.

The NP-completeness results for the strongly related problems DISTINGUISHING STRING

SELECTION PROBLEM and FARTHEST STRING PROBLEM make it unlikely that there exist ef-
ficient algorithms for versions of the CHARACTERISTIC STRING PROBLEM without a target set
or that allow errors in matching the target set.

References

[1] A MIR, A., APOSTOLICO, A., AND LEWENSTEIN, M. Inverse pattern matching.J. Algo-
rithms 24, 2 (1997), 325–339.

[2] CHANG, W. I., AND LAWLER, E. L. Sublinear approximate string matching and biological
applications.Algorithmica 12(1994), 327–344.

[3] DE BRUIJN, N. G. A combinatorial problem.Koninklijke Nederlandse Akademie v.
Wetenschappen(1946), 758–764.

[4] FRANCES, M., AND L ITMAN , A. On covering problems of codes.Theory of Computing
Systems 30(1997), 113–119.

[5] GASIENIEC, L., INDYK , P., AND KRYSTA, P. External inverse pattern matching. In
Combinatorial Pattern Matching(1997), pp. 90–101.

[6] GUSFIELD, D. Algorithms on Strings, Trees, and Sequences – Computer Science and
Computational Biology. Press Syndicate of the University of Cambridge, 1997.

[7] HAMMING , R. W. Error detecting and error correcting codes.Bell Syst. Tech. J.(1950),
147–160.

[8] HUI , L. Color set size problem with applications to string matching. In CPM: Proceed-
ings of the 3rd Symposium on Combinatorial Pattern Matching(1992), vol. 644 of LNCS,
Springer, pp. 230–243.

[9] I TO, M., SHIMIZU , K., NAKANISHI , M., AND HASHIMOTO, A. Polynomial-time algo-
rithms for computing characteristic strings. InCPM: Proceedings of the 5th Symposium on
Combinatorial Pattern Matching(1994), vol. 807 of LNCS, Springer, pp. 274–288.

[10] LANCTOT, J. K., LI , M., MA , B., WANG, S., AND ZHANG, L. Distinguishing string
selection problems. InProc. of the 10th SIAM-ACM Symposium on Discrete Algorithms
(1999), SIAM,ACM, pp. 633–642.

[11] LANDAU , G. M., AND V ISHKIN , U. Introducing efficient parallelism into approximate
string matching and a new serial algorithm. InProceedings of the 8th Annual ACM Sym-
posium on Theory of Computing(May 1986), ACM, ACM, pp. 220–230.

[12] LEVENSHTEIN, V. I. Binary codes capable of correcting deletions, insertions and reversals.
Doklady Akademii Nauk SSSR 163, 4 (1965), 845–848.

14

[13] MCCREIGHT, E. M. A Space-Economical Suffix Tree Construction Algorithm. J. ACM
23, 2 (April 1976), 262–272.

[14] MYERS, E. W. Ano(nd) difference algorithm and its variations.Algorithmica 1 (1986),
251–266.

[15] NAKANISHI , M., HASIDUME, M., ITO, M., AND HASHIMOTO, A. A linear-time algo-
rithm for computing characteristic strings. InProceddings of the 5th International Sympo-
sium on Algorithms and Computation(1994), vol. 834 of LNCS, Springer, pp. 315–323.

[16] SCHIEBER, B., AND V ISHKIN , U. On finding lowest common ancestors: Simplification
and parallelization.SIAM J. Comput. 17, 6 (December 1988), 1253–1262.

[17] SZPANKOWSKI, W. A generalized suffix tree and its (un)expected asymptotic behaviors.
SIAM J. Computing 22(1993), 1176–1198.

[18] UKKONEN, E. On-Line Construction of Suffix Trees.Algorithmica 14(1995), 249–260.

15

