T UM

INSTITUT FURINFORMATIK

A comparison of service-oriented development
approaches

Michael Meisinger, Sabine Rittmann

TUM-10825
August 08

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-08-10825-0/0.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2008

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Abstract. Software enabled systems are essential in manlcafpns domains, such as business
information systems, complex control software ael@dommunication systems; they are quickly
emerging in others, for instance in embedded systand mobile network applications. Such

systems are ever growing in size and complexityth veéimultaneously increasing demands on
quality, performance, governance and correctnebe. fumber of complex systems of systems
integration and maintenance efforts is rising. dt af paramount importance to manage the
development of such systems in an effective, timahd resource saving way. It is mandatory to
reduce complexity by raising the levels of abstmactas possible and to have effective system
development models that support it.

Service-orientation is a promising idea of managitige development, realization and

implementation of complex software enabled systdBeneral idea is to focus on the functionality

of a system delivered by interactions with its gserits services — and to abstract from more
concrete details, such as structural and implertientaspects. Many development approaches in
academia and industry label themselves as servieated. Application of services ranges from

early requirements engineering phases to the dey@noy of executable systems. However, there is
no common understanding of the meaning of the tesengice and service-orientation, even within

one application domain.

In this article, we provide an overview of the uridieg concepts of service-orientation, depict

potential benefits across development phases ancysiexisting service-oriented development

approaches. We identify criteria that enable usctmnpare the approaches and show their
commonalities and differences. We conclude the nesseof service-orientated and related

approaches and their benefits.

Keywords: Services, service-orientation, service-orientezhiéectures, model-based development,
survey

A Comparison of Service-Oriented Development Apghvea. 2

Table of Contents

IO 01 1o To (8 o1 o o HU TP PP T P TP 2
1.2, CONLBULION .. e e e e e e e e e e e e e e aeeeens 3
1.2 OULINE ettt et eereee b eeeees 4
1.3. ACKNOWIEAGEMENTS. ..o iiiiiiiieeiiiiii s et e e e e e e e e e ab b e e 4

2. Services throughout the Development ProCESScoeuevveiiiiiiiieeiiiiiiiiiiiiiee e 4
2.1. Services in Requirements ENQINEEING...........oveuurviriiiiiiieeeeeieeeeiiiiiinneeeaeens 5
2.2. Services in Modeling and Architecture DeSIgN «eeeeeeeveeeveeeeiiiiiiiiiiiieee e 6
2.3. Services in Implementation and INtegrationcccceevvviieeiiiiiiiiiiiiiiieeeeeen, 7
2.4. Services in deployment and run-tiMe.........cccccccvveeeeviiiiiiiiniiie e 8

3. Service-Orientation in Specific Application DOmains.............cccovvvvvviiiiiineeeeeeen, 10
3.1. Business Information Systems and Web ServiCes .ccc...ccoeeiivieeiiiieeiiiiinnnnnn. 10

3.1.1. BASIC CONCEPLS..uutuiuiiieeeiiiiiiiiitieeemmnntiasseeeeeeeeeeeessssnnnnssaeeeseeeennnns 11
3.1.2. Definition of WED SEIVICES............utummmmeeeeeeeieieiiiiiiiieieeeeee e 13
3.2. Telecommunication SYSIEMSuiiii i e icceeeeer e et e e e e eeeeees 14

4. Service-Oriented Approaches at TUM ... viieviiiiiiiiiiniiee e 16
4.1. The InServe MethodolOgyccoviiiiieeeieeiiiieee e 16
4.2 MEWAEDISceiiiiiiiiiiiee et 19
4.3. Services in MODIISOft...........oooiiiiiii e 19
4.4. Functional Architecture Modeling........... oo e eeeeeeeiiiiiiiiniiie e 21
4.5. The FOCUS/JANUS Approach

5. Comparison and EValuation.............cooiiiceeeeeeieiiiiiiis e eeeeeen
5.1, EVAlUtion Criterial.......coiiiiiiiit i eeeemr ettt e e e
5.2. Comparison Table..........oooiiiiiiiiii i

B. DISCUSSION ..o e et eeeeer e e e e e e e e e e e et eeenenebebeeeeeeeeees

7. SuMmMary and OULIOOK.ceeeiiiiiiiiiiiiremmme e e e e e e e e e eeeees

8. BiblOGIapNy ..vu i

1. Introduction

The complexity of software systems and of their developiserintinuously increasing,

because of growing system size, the demands for highetygaaliincreasing degree of
distribution, the increasing heterogeneity of softwanhigectures just to name a few. In
particular, reactive systems become more and morebdistd across networks, and
spread across multiple different processes, nodes,otantits and components. The
increasing distribution leads to a higher degree of coacayrwithin such systems and
significantly higher interaction complexity. The alwaygrowing demand for

interoperation among software systems, especially saapsrational boundaries, also
results in challenging problems. The heterogeneity ofribiged systems and their
sophisticated interactions must be managed systemwaticalkeep development and

A Comparison of Service-Oriented Development Apghvea 3

maintenance effective. A promising approach to addressetchallenges is tiservice-
oriented paradigm,because it provides means to structure system funktjoiao
manageable self-contained pieces — the services witagtions as the uniform concepts
to deliver services; furthermore it separates functignfiom technical details such as
component distribution over networks. Services and tfegiendencies can be specified
on a logical level and later in the development probesmapped to actual deployment
infrastructures.

The termserviceis used often and extensively within the community — $eaech and in
industry. Many service-oriented technologies, infrastmas and approaches exist, which
often target different problems or focus on different mpfibn domains. Common to
most approaches is the lack of a sufficiently precefenidion of the term service. In the
literature, there are often similar ideas, which hawen developed into service-oriented
approaches with related concepts. Among these, famiost are web services [1] [2] and
service-oriented architectures, feature-oriented systerthe telecommunication area
[3][4], and services in the context of middleware techgiet® [5][6]. Often, confusion is
the result when comparing different approaches and meti@@uaisstions such as the
following arise:

* Which domain is an approach considered for?

* What is the special focus of a service-based technique?

* What are the main concepts of an approach, besidesestvic

* What are the advantages and disadvantages of the appespattively?
* What part of the development process is addressed Ippaoagh?

» Isitaresearch result or an approach that is targetetirémt application?

At the Software and Systems Engineering Lab of thehilische Universitat Minchen,
we have done extensive research and application @ojacthe area of service-
orientation [7], software engineering and embedded systesignd&Ve are involved in

several projects dealing with service-orientation (8¢€[9], [10] for a selection). Even

within these projects, we observe a variety of diffemeotions of service and service-
oriented methodologies.

1.1. Contribution

In this article we provide armverview of existing service-oriented approaches and
concepts, and aomparisonandevaluationof them. We do not aim for completeness;
instead, we strive to give a good overview of currentiee notions from the literature
and our group. This overview should help to understand thdéepnsbof the different
approaches which are often strongly influenced by thestcaints of the underlying
domain. This can lead to an improved understanding obthes fof the respective work.

A Comparison of Service-Oriented Development Apghvea 4

We achieve this by identifying criteria based upon which evaluate the service-
oriented approaches. The result is a structured overefethe commonalities and
differences of the approaches. We isolate the essérssgvice-orientation and conclude
benefits of the service paradigm.

1.2. Outline

The article is structured as follows. In Section 2, present an overview of the
usefulness of service-oriented approaches in the diffestagtes of the development
cycle, at various levels of abstraction. In Sectiorw8, highlight certain application

domains in which notions of services and similar cpteare successful or emerging.
Section 4 presents different service-oriented developmpproaches used within the
Software & Systems Engineering Lab of the Technischevddsitat Minchen. In

Section 5, we introduce a list of 15 evaluation criteriictv we use to compare the
previously described notions of service. We presentdhgparison in form of a table. In
Section 6, we provide a conclusion based on the compaaist Section 7 summarizes
our efforts and presents an outlook into future work.

1.3. Acknowledgements

This work was partially funded by the Deutsche Forschumgsipeschaft (DFG) as part
of the project “InServe” and by the High-tech OffensiBayern in the project
“mobilSoft”.

2. Services throughout the Development Process

The termserviceis used in many different contexts in software andegystengineering

and may address quite different concepts. Talking abouicsesrientation, service-

based development and service-oriented architectures doealwsys guarantee a
common understanding. Often, the meaning depends on theagigplidomain, such as
business information systems where the notion of seice is prevalent, or mobile
systems, where services are often seen as contemxt-ama adaptive functionality.

Another important delimiter is the level of abstractibat commonly goes along with the
progression in the development process.

Figure 1 shows the development process divided into foun plzéses: requirements
analysis and specification, architecture and design, emmghtation and integration,
deployment and execution. Each of these phases can beatesstodih certain levels of
abstraction and certain sets of concepts needed and apjiiedigure shows a non-
exhaustive list of concepts that are of concern ingkpective phases.

A Comparison of Service-Oriented Development Apghvea. 5

Requirements, Architecture, Implementation, Deployment,
Specification Design Integration Execution
e System functions e Logical entities, e Interfaces e Deployment on
e Functional architecture elements e Programming infrastructures
dependencies e Logical components language constructs Middleware
e Stakeholder language ¢ Connections e Remote access Distribution, latency
e Black-box view e System states, global e API documentation Configuration
e QoS requirements conditions e Source code Initialization
. .

Feature interactions e Interactions Build and link
e Models, views

e Abstraction levels

Life-cycle support
Registration, lookup
Resource management
Context mangement

Figure 1: Development phases and primary concerns

In the following, we briefly characterize each of foar development phases, describe
the roles that service-orientation might play in thpkases and the benefits that such
approaches might bring (see also [7]).

2.1. Servicesin Requirements Engineering

Requirements Engineering Requirements engineering is concerned with capturing and
agreeing on the functional and non-functional propedfesystems in a structured way.
Classical ways to conduct requirements elicitation andysisak via structured natural
language text (using text-based tools such as Word, Doork,dsage scenarios can be
captured as use cases and dependencies depicted as usgycasesdia

The role of services in requirements engineeringA multi-functional system can be
understood as a system offering a number of separate,llpamiztually dependent
services (functions). This idea is related to captutirgdifferent use cases of a system.
Services are pieces of functionality that each prosigertial view on the functionality
of the system under certain aspects of usage. Their gnteetsidering all service
dependencies and interactions, makes up the system fufigfiomon-functional
requirements can be associated with the system oreitécas. Synonyms for this
interpretation of service are system function, fegtuse case, scenario etc. Services can
vary in their granularity or degree of precisenessabe®f a precisely defined notion of
service, the functional properties of the system camdpured in terms of services.
Services can depend on other services. The type of demgnadam be further
distinguished. Services might, for instance, “interact*amtrol” or “influence” each
other. These dependencies can be depicted in a service depyegicgn [11][12].

Benefits. Possible applications of such structured, formalizediicee models are

consistency and completeness analysis, predictionsrtafirc@roperties for the realized
system (e.g. by means of a simulation of formal sermiodels). Certain forms of feature
interaction can be detected and considered by analyzimgvices dependency graph.

A Comparison of Service-Oriented Development Apghvea. 6

Additionally, a precisely elaborated service repositoan provide the basis for a
thorough, formal system specification and can provadeprecise foundation for
requirements tracing spanning the design model and implenzentati

2.2. Servicesin Modeling and Architecture Design

Modeling and architecture design.Model-based development [13][14][15] helps to
handle the complexity that comes with the developmenistfibuted software systems.
Precisely defined models provide abstractions and notatiehinents for all
stakeholders throughout the development cycle. Modelsuaposed to provide multiple
consistent views on the system and its architeaburalifferent levels of abstraction,
tailored for specific intents. The architecture of actiga system is an essential design
artifact in the development process; it needs to tffdyg support all services of the
system in often heterogeneous, distributed environmehésd@&composition of a system
into its parts and their interconnections determinesftiither quality of the system,
influencing properties such as performance, robustneasitamability, flexibility to
change etc.

The role of services within the context of modelingnd architecture design.Services
can be used as a way of structuring both the modelinggzracel the models. In service-
based approaches to architecture, services are thgn detities that drive architecture
development and component identification. Services captufimede pieces of
functionality and are associated with elements of thisvaoé architecture (components,
patterns). In fact, services model functionality proglidy an interplay of collaborating
architectural entities. A promising way to describesiiattions in the course of service
delivery between independent entities are sequence diagravt3Cs [16].

Service Layer /
Facades

Service 1 Service 2 Service n

Figure 2: Service-Oriented Architectures

The center of concern in model-based design has socefar imdividual components
rather than their interplay. A service-oriented developnagpproach can be seen as a
seamless extension of component-based development toveartigher level of
abstraction and functional view on the system withesgswide, component crosscutting
functionality. The concept of service decouples abstraehatior from the
implementation architectures, by emphasizing the inifereectamong components.

A Comparison of Service-Oriented Development Apghvea. 7

Figure 2 shows a typical “layout” of an application comploae a set of services. Often
such systems consist of at least two distinct layars:domain layer, which houses all
domain objects and their associated logic; and onécedayer, which acts as a fagcade to
the underlying domain objects — in effect, offering aterface that shields the domain
objects from client software. Typically, services aboate workflows among the domain
objects; they call, and thus depend on, other servicese $bthe services, say Service 1
and Service 2 in our example, reside on the same physazdiine, whereas others, such
as Service n are accessible remotely via the Irttemndater steps of system design,
services are mapped freely to existing or newly designegh@oemt configurations and
architectures. Components can provide an individual utipfe services as long as the
service interfaces are consistent.

Benefits. Designing and evaluating architectures of a system igtieat part in system
development. The architecture determines the basicurmiidnal properties of such a
system, such as scalability, reliability, securighustness, maintainability etc. Certain
architectures turn out as more effective to supportstiezified services of the system
than others. Designing the architectures with a eefetiented paradigm in mind allows
designers to abstract from technical interplays of carepts and concentrate on the
services that are provided to the environment. Such taecthies promise to be, in
general, more flexible and robust to changing envirorignend requirements. Systems
are composed as an interplay or orchestration of diffemices.

Usually, stakeholders express their needs in terms ctifumality. E.g. they speak of
features or functionality to be changed, added, etc. Howthestraditional component-
based development is concerned about structure, rather fthectionality. The
consequence is a conceptual gap between requirementeenginand design. The
introduction of service-orientation before the acthponent-based design takes place
promises to make the transition between RE and desigmelnseamless and less
cumbersome.

2.3. Servicesin Implementation and I ntegration

Implementation. In the implementation phase of the development protessdesign
model is realized by actual hardware and program code. Ireptation varies
significantly depending on the applied strategy. In caseanfel-based development with
comprehensive and precise design models, code generatiobecperformed (semi-)
automatically. Manual coding where applied needs to follevddsign model to fulfill
the designed properties. Implementing a distributed systesed on a design model and
component architecture is a difficult task. Especiallg thtegration of components
requires much care and effort to create consistentjegffiand homogenous systems.
Important concepts here are packaging and robustness of mentpoavailability of
suitable syntactic and semantic component interfaces, rhigwimols and flexible
infrastructures as the basis of implementation etc.

A Comparison of Service-Oriented Development Apghvea. 8

Services in the context of implementationExisting service technologies enable to
define services as functional interfaces of component®bjects. Functionality is
encapsulated behind such service interfaces on a suigadé of abstraction and
granularity. Such service implementations are usuatgletss; they do not depend on the
caller or environment state besides the parametees giuring the service invocation.
This provides a high degree of deployment flexibility, rabass and decoupling.
Service-oriented middleware can provide local or renmaseess to the services and
applications can be structured as an interplay or workffwmultiple service
invocations.

Web service technology, for instance, defines standardsocols and methodology to
provide well defined functionalities as web services, tecdbe the interfaces using
WSDL [17], and to connect services using a service-oriemattlleware, such as
DotNET [1] to form service-oriented distributed applioas.

Feature-driven development makes features the centemoern. Systems are specified
and developed in terms of independent features thatadee ihtegrated to form a
complete system. The features are based on a system providing the basic
functionality. Features depend on and overlay each othereTieeds to be a defined
process to define the dependencies and interaction® déaltures in order to maintain
the consistency and coherence of the system. In systems, as they occur in the
telecommunications domain, extensions happen by adding newefeghat modify
existing feature functionality or that add new functidyatd the system. Features or
services are thus the basic units of increment amdigeh in the system development
process and implementation.

Benefits. Providing services as high-level, stateless encapsatatf functionality and
providing remote access points within distributed systénan important means to
decouple distributed system entities. This raises thé tdvimteraction to a level that
allows for easy interoperability in heterogeneougesysenvironments. Pieces of the
system are decoupled from the rest and can be replacedagified as long as they are
adhering to the service protocol. High level, widelgegted standard, such as XML and
SOAP help to decrease the burden of systems integrtEssage-oriented architectures
based on service invocations further decouple systemsifjyoing asynchrony and
facilitate system integration.

2.4. Servicesin deployment and run-time

Deployment and run-time. In order for a system to be executed, the executable-eode
mostly packaged in components — needs to be distributed axxnuggitational nodes,
processes, electronic control units, etc. The proocésdeployment is influenced by
infrastructure constraints, hardware and networking lay@ligbility and performance

A Comparison of Service-Oriented Development Apghvea. 9

considerations etc. In this step the actual efficienfcthe system in its environment is
determined. The final wirings and configurations of the caomepts are made and
adapted to the chosen middleware and network infrastegdtuthermore the component
execution life cycle is determined. How and when arepmrents initialized? How many
instances and replicas of components are present? ddewcomponents modified,
reconfigured and shut down?

An important consideration that often requires adaptaiiorthe side of the deployed
components is in case of dynamic middleware and netwdr&structures. In traditional
systems, the network layout and architecture is ssatit does not change during the
runtime of the system. In the emerging field of mobdenputing, for instance, execution
environments, networks and location of components — sm@®tcalled agents in this
domain — are not determined and change over time. Suchatfgpineed to distinguish
functionality and state from the environment and infragtinecthey are running on.

Services in the context of deployment and run-timeDuring the execution and run-

time of distributed systems, services can be used agligieguishable, modular,

executable, deployable entities that make up a servicetedi@rchitecture, cf. Figure 2.
Services can be instantiated, initialized, registeratl mrblished, looked up, accessed,
deployed and dynamically connected.

Important in flexible service-oriented architectures & ¢apability to dynamically look
up services during run-time. A central registry or seait# rseeds to be common
knowledge in such a system landscape. Services that mertietin syntactical criteria
and fulfill certain behavioral assumptions can be $seteand used immediately. This
collaboration is often called the service triangleebasn the three roles involved (shown
in Figure 3; see Figure 4 and Section 3.1 below for morailslet Web service
infrastructures, for instance, often contain requestetities, provider entities and
registries that communicate using standard protocols ssclSOAP for message
exchange, WSDL for service description and UDDI for iservegistration and look up.

SERVICE

REGISTRY

PUBLISH FIND

SERVICE SERVICE

REQUESTOR

PROVIDER

BIND

Figure 3: Web Service Basic architecture

A Comparison of Service-Oriented Development Apgivea 10

In mobile environments, services are the pieces ofifomadity that networks and mobile

applications make available to the user. Availabilityceftain services is subject to a
certain context or location and the service itselffmigquire adaptation depending on
the current virtual or physical environment. The envinent itself might change, as
might the location of the user relative to the envinent. Systems need to reflect that,
and adapt, reconfigure, recalibrate etc.

Benefits. Services provide a suitable level of abstraction to deipldgpendent pieces of
functionality on network infrastructures and serviceoted middlewares. Service
registration, lookup and invocation can be standardizedharsdit is possible to created
dynamically adaptable service-oriented architectures.miobile environments, the
abstraction of a service enables dynamic applicatibasadapt to a user’s or device’s
environment.

In case a service-oriented architecture is completefinate on a logical level of
abstraction [18], the actual deployment of services tariget components can be left to
the middleware. The middleware then will take caralbfelated infrastructure issues,
the initialization and provisioning of the services atite internal wiring and
communication links.

3. Service-Orientation in Specific Application Domais

In this section, we present an overview of the use oficgs and similar notions in
specific application domains. Business information sysiefor instance, are strongly
influenced by service-oriented architectures, web servelated standards and
middleware. However, the ideas of services or semfmted development have
already been applied much longer ago for telecommunicati@enss under the name
features and feature-oriented development

In the following, we present service notions within #ggtlon domains and identify
prevalent terminology and concepts. We begin with busiméssnation systems (BIS)
and the web service domain; these currently formahgekt sub-community within the
service-oriented community.

3.1. BusinessInformation Systemsand Web Services

Business Information Systems and Network/Internet ledagystems are mostly reactive
in nature and provide a number of functions or servigetheé environment to support
business processes and organization goals. This oftgalvés complex data
manipulations and legacy application integration. The adsfemétworks and distributed
resources, requirements of scalability and paralleleamal, of reliability and replication
lead to complex distributed systems.

A Comparison of Service-Oriented Development Apgivea 11

Such systems are difficult to develop. Often, very logmeous environments and
system landscapes exist in organizations where each Ipgeca defined purpose. For
instance, an enterprise information backend (e.g.)$4&6vides customer relationship
management (CRM) functions, a middle-tier applicatiomagas the order handling for
an online store and web servers provide the web frohfer end users. Data for specific
business functions, such as processing a catalog-haaetnalized order through the
online store is distributed over different locationse #nterprise backend, the order
system database and a general document archiving solution.

Integrating such applications running on servers of dffehardware, operating systems,
middleware frameworks, networks, programming languages,fdanats, with different
levels of performance, throughput, load over time, respensss, reliability and security
guarantees etc. is very tedious and error-prone. Thehatgiogeneity requires a loose
coupling of the different applications and integratiorhtegues based on open, widely
accepted standards.

Web services [2], web service-enabled middleware [1]sandce-oriented architectures
have become a major driver in innovation and technologysystems integration. The
general ideas of the web service approach are notlheffectively combines message-
driven applications, distributed object systems and opeminiett standard applications.
Proven ancestor technologies include CORBA [5], DCOM, World Wide Web, the
Java Enterprise Platform [6], and messaging middlewBue.only the combination of
those technologies and approaches, the foundation opted@asy to use standards and
the behind driving force by several major players inlthimdustry give it a big leverage.
Web service integrated systems provide loose couplingnedérogeneous systems
including legacy systems and thus create stable extersiblaple architectures.

3.1.1. Basic Concepts

The Web service architecture [19] defines that webisersystems are built upon the
following entities: First, service providers which are technical systems (agents or
servers) that make available and perform servicesherenvironment on behalf of
human or business entities. The provided services aalefined description and usage
interface. Secondservice requesterfor consumers, users), select and use the services
that satisfy their business needs. Service requegtgitarky are technical systems acting
on behalf of human or business entities. Third, optignalinediating middle instance
(registry, directory), which connects service requestacsservice providers; it provides
service registration and lookup functions to both providerd requesters. Service
providers themselves can act as service requesterbanébtm higher level services by
aggregating or composing other services. An interadi&ween service requester and
service provider is often called@nversation Figure 4 depicts these concepts (WSD
stands for web service description).

A Comparison of Service-Oriented Development Apgivea 12

Web-service systems or service-oriented architestf{8©A) are loosely coupled systems
composed out of individual components or subsystems thattaggated and connected
via web services. The focus of service-oriented ardhites is the provisioning of
individual versatile, extendible, reusable services tbatribute to the business goals of
the system’s users. Providing such first-class servaoes the ability to discover them, is
the driving factor in designing the software architectusésuch systems; thus by
integrating them, loosely coupled systems that are higlalakle, robust and extendible
can be created.

1. Parties "become known" to each other
’ — %

- ~
_____ Requester Bnfity A A Provider Entity
' I . i ! |
! Requester Do P - o
\ Human w2 Agres on semantics & eI — Provider '
: - ' ~ Human !
: ; : » .
D Rbpwe 2oL : P 3 bpu
U Semantics Vo i _: Semantics |
D & WED D D lwsn | § WD
i : \4

E 4. Interact ' Provider i
- f ,b Lgent i

Figure 4: Web Service interaction (from [19])

Web service architectures focus on interactions ktwaistributed entities based on
document exchange. An XML document, as delivered by the reguisa service

provider constitutes the sole input for the serviaavigier; XML is used here as human
readable, platform independent instrument of commupitatieither the way how the
document travels between service requester and s@magiler, nor the way the result
document is created is specified and relevant to the welice system. Thus, web
service systems emphasizedacument-centric vievon distributed architectures that
shares many commonalities with messaging infrastructuvéswing web service

architectures as a new, polished, simplified form ofrihisted object communication
does not comply with the real intention of web serviagsmely loose coupling of
asynchronous processes based on simple, document-cesigicsi20].

Although service-oriented architectures do not requirerophasize specific technical
infrastructures, specialized middleware frameworks ekistere these frameworks that
made the early, widespread success of this approacliblpos§oday, middleware
application or web server frameworks, such as DotNET] #EE [6] often provide

A Comparison of Service-Oriented Development Apgivea 13

the infrastructure to encapsulate self-contained conmdaectionality and provide it as
web services in a network where these services cdisbevered and used. Tool support
further automates development of such systems in neserlmdore ways. It is basically
a matter of minutes to define, deploy, publish and accesstinexi component
functionality, made accessible through web servicesinternet technologies, such as
HTTP on web servers.

3.1.2. Definition of Web Services

Web service related approaches and technologies ameattiiring. Supporting standards
and techniques are forming and tool support is crucial. Diffarendors follow different
strategies in marketing the web service technologieghwdften originate from existing
product portfolios of certain companies. Thus, a compré®nsoncise, commonly
accepted definition of web services and service-orikatehitectures is still missing.

The W3C glossary [21] gives definitions of the term wsebvice and related terms. We
follow the definition of [20] and define a web servicefallows:

A web service is software that processes input in for of XML
documents and produces output in form of documents. He
implementation of the service is not defined or relant — neither is the
transport medium or its characteristics. The input and output
documents follow an agreed upon XML schema that is part ofhe
service description. The documents are the only inputor state
information a service has and the output is the only redt a service
produces. Web services are bound to accessible parih a network.

Web service interactions can be arranged to form ¢eatiens. This process is called
service combination, composition, aggregation, chorg@byraor federation.

Systems that provide web services to the environraedfor that are composed out of
web services are called service-oriented architectiitesbasic principles that apply for
individual web services (e.g. small set of simple andjuitous interfaces to all
participating software agents, only generic semanticseaoeded at the interfaces,
schema constrained messages for information exchangsstem behavior prescribed
by messages, extensible interfaces) hold true forrttie esystem as well.

A commonly seen application of web service technolegypOAP RPC interactions.

Remote procedure calls (RPCs) are encoded using web simeidaces and protocols.

This is a form of distributed object communication. SORPC web services do not
fulfill the above definition, because interface contsgarescribe both system behaviors
and application semantics. System behaviors are difftoufirescribe and thus these
services are not really interoperable.

A Comparison of Service-Oriented Development Apgivea 14

In order to make use of web service infrastructures attdtectures, web services need
to be described in common, agreed upon, computer intergretatihange formats. Web
service descriptions are used to register web servicdgdctories and registries and to
make the web service interface accessible for semgquesters. The standard way to
describe web services is using W3C’s WSDL [17] formatXML based language for
describing network services based on abstract messabange descriptions between
endpoints realizing operations [22]. Web service ragistand directories keep track of
web services, accessed by service providers and seegigesters.

To form applications systematically out of a set of iflial web services, some notion
of service composition is required, based on service mddeilitating composition.
Several approaches and standards exist for web servigeosiion, such as Business
Process Modeling Language (BPML), WS Choreography Matdel, Business Process
Modeling Notation (BPMN).

3.2. Telecommunication Sysems

Many roots of service-orientation lie in the arededécommunication. In this section we
will give a short introduction of probably the most minent approach of this domain:
the one of Zave and Jackson [4][27]. The approach isd@main-specific in its nature
and mainly focuses on modeling routing problems and featimeation.

For telecommunication systems it is assumed that adfdeactionality already exists.
The main goal of feature-oriented approach is how to r@daove, modify, and combine
pieces of functionality later in the life cycle of suxystems.

A feature (of a software system) is an "optional or incrementat of functionality"
[27]. The feature specification contains an action, énghdondition, and priority. The
action is performed if the enabling condition is true &ne feature has the highest
priority. A feature-oriented descriptionis a "description of a software system organized
by features, consisting of a base description andrieatodules, each of which describes
a separate feature". The set of possible system bekasicobtained by applying a
composition operator to the base description and theuréeatlescriptions. The
composition operator must ensure that in any situatienfélature with the highest
priority must be performed. In case of features withowel priority, their enabling
conditions must be changed accordingly [27].

With perfect behavioral modularity it would be possible aditrarily change the
behavior of a system by composing features. Howeberet exists the problem of
feature interaction which is defined as "some way in which a feature atuies modify

2 This might be an existing implementation of a PQPR&in Old Telephony System) or any other system.

A Comparison of Service-Oriented Development Apgivea 15

or influence another feature in describing the systdmlsavior set" [27]. Zave and
Jackson explicitly distinguish between wanted and unwanésdure interaction.
Unwanted results of feature interaction are incompéstgn inconsistency, non-
determinism, and unimplementability. Desired featureradtion “can be” achieved
without changing any feature modules, rather by simply &dgisthe precedence
relation; i.e. the order in which feature can occua iroute. Desired feature interactions
occur for instance when there are shared resourcessafeasires due to hardware
resource limitations. All kinds of interactions howeirglicate dependencies that need to
be specified and tracked to ensure a consistent system.

Assumed, that (parts of) a system already exists, newrésaare added subsequently by
performing the following steps (see [4]).

(1) Describe new features as if they were independent (rthgnua

(2) Identifying and understand all potential interactiondph® automated analysis
necessary)

(3) Classify interactions as bad or good (manually)

(4) Adjust feature descriptions so that the result contain®ore bad interactions

To realize this process, a modular formalism is neefied.that purpose, Zave and
Jackson introduce the Distributed Feature Composition JDie@rence architecture
which is a feature-oriented virtual architecture for #pmtion and implementation of
telecommunication services. DFC is highly domain-speclfi was designed with the
following specific goals: generality, analyzability andhéaeioral modularity [28].

DFC is a virtual architecture with the basic goastipport usages. A usage is a dynamic
assembly of features, line/device interfaces and intepadls to satisfy systems
requirements to connect two end points on behalf of a uteavgiven set of requested
features. A router component is responsible for estdabjsa connection between the end
points across the source and target zones, activaiegtain number of features along
the call. All features have a certain activation prot@nd can be invoked independently
from each other. Features are connected to eachaitdeio end points by internal calls.
To avoid or control feature interaction, all featureseha priority that determines the
order in which they can be applied by the router. Thechdsa behind DFC features is
that they are autonomous, modular units that can be applgsjuence by adhering to a
standard black-box feature interface. In this way, Ei#eC architecture follows the
“Pipes-and-Filters” architectural style described inegahin [29].

The router is an essential element of DFC. It isrteual component that routes calls to
target addresses and applies features as requested. Utbe uses data on feature
subscriptions, feature precedence, and other configartd perform the routing. The
router can access global operational data and configurmtiormation (e.g. a user’s

A Comparison of Service-Oriented Development Apgivea 16

forwarding address) only through an application of festuThis ensures full feature
modularity and data partitioning. Figure 5 depicts the corepts of the DFC
architecture with the router as a central element.

BOUNAAIF — ~— == == — - mf m e -
¥

LT

¥aX

x

A iv)-
E virtual network opeﬂi(:m.-‘
|

T
T
external | |
trunks EH
. |
|
1

Figure 5: Components of the DFC architecture [4]

port-to-port

SUDSCTID- prece- TOME-
rions | 1dences || | urarion

The precedence relation defines the order in whiclufestoccur in a route. It is the only
place of the algorithm where feature relations are cagtirhe goal is to place features
with a higher priority later in the route, close ke ttarget zone. The proponents of the
methodology claim that their concept of features aradufe precedence provides a
useful degree of behavioral modularity and that it is ptsgo manage desired and
unwanted feature interactions by simply adjusting the precedeelation without
modifying any of the feature modules themselves.

4. Service-Oriented Approaches at TUM

In this section, we describe various service notiongldped at the Software & Systems
Engineering Lab at the Technische Universitat MinchMaost of these approaches come
from a practically motivated research background oudstry collaborations and have
a strong formal foundation.

4.1. The InServe Methodology

InServe [8] is a recent research projected at theirCbfa Software & Systems
Engineering. It is funded by the Deutsche Forschungsgenieift (DFG) [30]. InServe
focuses on researching and establishing a serviastilevelopment methodology based
on a solid formal foundation. This includes research sorgstion techniques, processes,
service-oriented architectures, as well as foundatioes¢arch for a comprehensive
service notion and service composition. Furthermoreeries provides prototypical
implementations to support the concepts and conducts keasesastudies to evaluate the

A Comparison of Service-Oriented Development Apgivea 17

results. InServe is joint work by a collaboration af troups of Broy and Krueger [31]
and combines concepts of both groups [9].

The service notion is very prominent in InServe aacept for modeling and design
entities. Based on a structured requirements analystensyare defined and designed in
terms of services.

Service Definition

Services are distinct, precisely defined units of fustionality that the
system or one of its components offers. Services arefihed in terms of
interactions between entities of the system and its @imonment. This
notion of service thereby models system structure, ate and behavior
that pertain to certain functionality.

In an iterative process, the system (or one of itspaments, respectively) is associated
with a global state model and can be structured intet afslogical entities. Logical
entities are connected via communication channels. y8ters state can be refined into
local states of the structural entities. A selectioombination in form of a predicate) of
logical entities and states forms roles. Serviceslafieed as interplay of roles to provide
certain functionality. Services can be annotated witita-data to contain Quality-of-
Service properties or other information.

The service definition and the logical system architecthat is implied by the service
repository do not impose any restrictions on the adaehnical implementation of the
system. Roles can be mapped flexibly to components to é@ployment architectural
configurations. This mapping can happen during design time bgmaath configuration
step of a system designer, during execution time by autornatiiguration of a
powerful middleware, and as a combination of both. In #tterl case, the system
designer specifies the technical constraints, for instéme required existence of certain
computational nodes, ECUs or legacy systems, and the ewiad performs the
remaining mapping to satisfy the constraints and Qofepties that were specified.

Service elicitation and architecture mapping are perfol in an iterative development
process, see Figure 6. The process can begin at amgnsteihanges can be made at any
point in the process. The process supports iterativigrdesefinement, refactoring of
reactive systems with services as first level eldmen

As shown in Figure 6 (left side), part (I) of the pmeeonsists of a structuring of
requirements in form of use cases, non-functional reqeineincluding QoS constraints
and other constraints for the system. Based on stasetured requirements, a common
repository of structural entities, associated state fapdele definitions and service

specifications is created and can be iteratively rdfine

A Comparison of Service-Oriented Development Apgivea 18

(I) Service Elicitation and Architecture Design (IT) Architecture Mapping and Implementation
Requirements Roles Services
Rk A
I
Syst [1
ystem 1L

QoS properties Constraints

Component
Architecture

MTBF 2 1000 h
Max. Users 2 500
Avgresptimes1s

Data Security

ECU1, ECU2

Architecture

Structure Model State Model Mapping

CTRT
C3R2

(1T’ [’

CER3 A H

M
Ry

I Services Component Design

typedef msgl =
struct { byte” b,

msc service 1

requesh

)
Deployable System

g7

Figure 6: Process phases () and (ll)

In phase (ll), depicted in Figure 6 (right side), tresrednts of the logical architecture and
design model, in particular roles and services, ardirgjapoints to elaborate a
component architecture. Roles and thereby the sysmwicas are mapped to the
architectural components. This mapping step realizes ¢paration of the logical

service-oriented behavioral model and a specific techrdeployment architecture.

Service model and architectural description together bthlkel basis to generate
executable implementations of the system.

Applications of this model-based approach for the developnoé service-oriented
systems are efficient architecture exploration and gtaeraf executable prototypes
from logical service-based behavior models [32][16], conémce testing of binary
components against the executable specification, mbeeking of the logical model,
architecture validation, and product-line development suigppmapping of one core
service repository to multiple deployment architectures.

InServe provides tool support to specify services, thependencies and target
architecture mappings, so that for instance code geomrateps can be automated
directly from that model. The SODA tool (Service-Orasht Development and
Architecture Design) [32] governs the described developmextgs and realizes a tool

A Comparison of Service-Oriented Development Apgivea 19

platform. Tool adapters are planned to the AutoFocus [38JfarioRaid tools and to the
tool suite of the S3EL team at the UCSD [32].

4.2. MEwaDis

MEwaDis [9] was funded by the Bayerische High-Tech Gffesand was running from
July 2004 to May 2006. Collaborations include the Chair oftv&oe & Systems
Engineering (Technische Universitat Minchen), the BI@&f IT, BMW F&E and the
ESG. The primary goal of the project MEwaDis is tle@elopment of techniques for the
analysis, modeling and validation of reliable, adaptoemtext-aware services, and of
process models for their development [36][37]. The resuts prototypically
implemented in the domain of automotive systems.

The notion of service in MEwaDis is rooted in requiemts engineering but influence
also early phases of system design and architecturac&eare black-box descriptions
or placeholders of functionality. More formally, seegcget input via channels from
explicit sources (users, other components) and implicitces (the environment) and
produce output. The environment is modeled externally in fdéram @nvironment model
that provides state and reactive stimulus for the een&ervices can be connected to
form service networks.

Services are related to each other with different kafdelationships [11]. Services can
interact with each other, which can be expressed evea pnecisely after a refinement
as a controlling or calling or monitoring relationsh@jr. services can be defined as being
independent from each other. This precise definitioseovice relationships allows for a
dependency and completeness analysis of the serviceaiohal model of the system.
It is possible thereby to detect feature interactionpaiential problems due to close
relationship between certain functionalities (e.gaisecurity analysis [38], by model-
checking). Furthermore, if the service network isclirirefined into a design model,
certain service relationships translate into certaichitectural or design patterns that
provide certain properties in the system implementatiodlependence of certain
functionality in the system can thereby be guaranteed.

4.3. Servicesin mobil Soft

In the mobilSoft project [9], Bavarian car manufactugerd suppliers together with four
research institutes work on software development process for automotive embedded
software The intermediate results presented in this documentcamently further
elaborated in the course of the project.

During the development of complex (embedded automotive)rsgsteany aspects have
to be taken into consideration. For example, the systeotidmality, the logical system
structure, the technical realization. Therefore, it pasven to be useful to base a
development approach atvstraction levelsThe system under consideration is described

A Comparison of Service-Oriented Development Apgivea 20

by a set of domain specific abstraction levels (in thlewing also calledmodeling
levelg which are built upon each other. Hereby, the modelinglde{respectively)
provide self-contained concepts for the representatifothe information, which are
specific for each level. In the mobilSoft project bdtte requirements engineering
process and the design process are based on abstrewtien

In the course of a model-based requirements engineering,pih@srequirements are
(partially) formalized and specified by means of modelsebig the kind of requirement
— e.g. functional, structural, technical requirements — datesithe type of model that is
used to specify the requirement. The problem is thatwdthat the end of the analysis
phase, the requirements are formalized by means of madghénts, they are not or
only loosely related to each other. It is difficult itentify unwanted interactions or
contradictory requirements.

Therefore, on the most abstract level of the dedigtraction levels, theervice levels
introduced. On this service level, the majority of thumctional requirements are
formalized consistently and related to each other @eroto detect contradictions and
interactions. The aim of the service level is thesalidation and precise specification of
those requirements that describe the black box system behidere, black box system
behavior depicts the behavior that is visible for ther ahich does not only refer to a
human user but also to another system). Figure 7 stidsvprocess graphically. We see
the service level athe interface between the requirements engineering phaké¢han
architecture design phase.

Requirements Engineering Design

Textual, (Partially)
—

informal Formal
Abstract requirements requirements Service Level
Require- | —
ments | ... Model fragments
of Functional
""" — Requirements
— Functional Level

Model fragments
of Structural
— Requirements
 — Logical Cluster Level

------ — Model fragments
...... » of Technical /
...... Deployment
~ "~ Requirements

Platform Level

Concrete | | o

nts of
R Implementation

ral

Require- | | e ——» T
ments | | ... -, Requil

Figure 7: Abstraction Levels in the mobilSoft prajéwork in progress)

A Comparison of Service-Oriented Development Apgivea 21

Services describe the black box system behavior;ateneansfunctional behaviothat

is visible to the user. A service describes a parghblior by a black-box specification
of the system. Latter is done by a mapping of input tpuduactions. Logical actions

abstract from technical signals or messages. Howewerggiresentation of data (how it
is processed by the realization of the system) isunder consideration. Only abstract
data types are used.

The project description can be found in [39]. For morermftion about model-based
requirements engineering in mobilSoft please refer to [#6§ role of services in the
mobilSoft approach is described in [41].

4.4. Functional Architecture Modeling

In this section we describe the approach of Schélk p2][43][44][45]. The main focus
of this approach lies on the explicit modeling and spetidicaof functional architectures
of distributed reactive systems. The presented appribashthe following basic idea:
First, different functions of a system are specifiedairmodular way. Later these
functions are integrated into a functional architectlite step of functional integration
makes use of well-defined, formally founded operations wumn compatibility and
consistency of the functions. The approach uses theepbrof services to encapsulate
pieces of functionality. The methodology puts fhactional integrationalready at an
early stage in the development process.

Servicesare the modular pieces of functionality that are ueedeescribe the functional
architecture of a reactive system [43]. Examples forises in automotive systems are
“Window Up” and “Child Lock Off" of a power windows contrsbftware (cf. also [43]).
A service is defined by its interface, its variablés,configurations, and its transitions.
Variables (e.g. counters, flags, values) are used to describdatiaespace of a service.
Theinterface of a service describes the input ports monitored eydce and the output
ports controlled by a service. Services communicate biiaging signals over typed
and directecthannels connecting input ports to output ports. Thupptt is a typed end
point of a channel and is part of the interface of aisenA port can have a value
received via a channel. The architectural aspects eface are defined by its input
ports, its output ports, its variables as well asatgtrol locations.

The behavior of a service is described by a colleatbnonfigurations and transitions
between configurations. Aonfiguration describes a certain state of the system. A
configuration itself may be atomic (e.g., Init, Up) antain a collection of sub-services
active in this configuration (e.g. Child Lock Off). thansition describes how a service
changes from one configuration to another. To providethodological handle for such
a state transitiorgonnectorsdescribe the entry (e.g., Start, Off) and exit poiatg.(On)

of a configuration, defining how a configuration is adii¢hand terminated. A transition

A Comparison of Service-Oriented Development Apgivea 22

thus links exit connectors to entry connectors. Thepetdational model of AutoFOCUS
is used for the specification of reactive behavior [1].

The Functional Architecture Modeling approach uses ftllewing notions [43] to
describe the behavior of a service:sfate is an assignment mapping input and output
ports as well as variables to their current valuestepis a pair of states describing the
change between the two states, called the pre-stdtihampost state. Anbservationis a
either a finite or an infinite sequence of states aitfiven starting location and — in case
of a finite sequence — an ending location. During the eiegua number of actions are
performed that change the date state as defined by the Bbiefiehavior of a service is
the set of observations performed by the service. Furtirefreince services are focused
on modeling partial behavior, the semantics introduced daquiécitly specify undefined
behavior, either in form of undefined values of vaeator ports, as defined above, or in
form of partial executions. As far as notation technigquesconcerned, so-called service
configuration diagrams are introduced to graphically rilescservices as well as their
configurations [43].

By using disjunctive combinatign services are combined to form alternative
configurations. The disjunctive combination of twovées results in a service that
makes use of the combined input and output ports as welrables of each service,

accesses the combined control locations of sergioe,exhibits the combined behavior
of each service.

The conjunctive combinatiolof two services results in a service that makes usheof
combined output ports, variables of each service, thebiwd input ports of each
service, accesses the joint control locations ofiee, and exhibits the joint behavior of
each service.

Atomic configurations are the basic building blocks of wvéral description and have
no internal structure. They only have an interfagescsting of input and output ports,
entry and exit points, and their behavioral descriptionsisting of configurations,
connections, and transitions. Combining services tdiguations basically corresponds
to a simultaneous activation of these services. SE\véce composable, if each entry
connector of the configuration is simultaneously linkkedan entry connector of each
service; and each entry connector of a service is dirtkean exit connector of the
configuration, simultaneously with an exit connector ofcheaservice of the
configuration”

® Since service construction is focused on the coathin of functionality rather then the compositioh
components, several services may simultaneouslysadtie same port. This is possible by mappings prt
different services to the same port of the configion. If these services disagree on the valuegasdito the
port, the value of this assignment is inconsistent.

A Comparison of Service-Oriented Development Apgivea 23

The approach offers two techniques for the combinati@pecification modules, joining
and merging. When joining specification modules, each spatifn module describes
an independent part of the behavior of the component weleiopment (disjunctive
combination). When merging specification modules, eaclifsggion describes the
same part of the behavior of the component concernidiffexent aspect (conjunctive
combination).

4.5. The FOCUS/JANUS Approach

A formal theory of distributed systems and serviceRésX¥ANUS approach [15]. JANUS
is based on the FOCUS theory [46]. The aim of the FO@8ry is to first specify
systems as families of components (and their intesfaand to then put the components
together ¢omposition forming the architecture. The verification of anctatecture
(prove of the interface specification of the systengnthan be achieved by the interface
specification of the components and the compositioificegiion rules.

The main goals of the JANUS approach are to give adomodel for services, layers,
and layered architectures. Furthermore, a theorydiating, composing, and refining
services, layers, and layered architectures is aimetidaanced goals are specification
and verification techniques, a methodology for designingices and respective
architectures, and design patterns for services, lagedslayered architectures.

In the following, we summarize the main concepts of FECUS approach with the
JANUS extensions for service-oriented development.rimédly, in FOCUS [46], a
system is composed of a number of components which adagpbehavior (principle of
modularity) We face aelative notion of systetnere, i.e. components can be composed
to components, again (“A system is a component isteisy [47]).

Interfaces exist between components and between comigcered the environment. The
communication takes place via directed communication e&isanA mapping of message
streams to channels represents the exchange of typed nsesgagthese channels in an
asynchronous way assuming a system wide global clock. Tlkwibelof such systems is
expressed as equations or relations relating a number adfikflyosnfinite) input
sequences to a respective set of output sequences thasatimg as part of the input.
More precisely, the communication is expressed indarfirelations on streams; streams
represent histories of communications of data messages time frame. Multiple
possible outputs for a certain input express non-detemmiriisirthermore, the channels
are divided in disjoint input and output channels for a comporesgectively.

Causality of such a system is enforced by requiring thaty@mmputed output is only
dependent on inputs of the time slots strictly befoeedtlitput happens.

A Comparison of Service-Oriented Development Apgivea 24

The behavior of components is described by their blaglbehavior, i.e. their interfaces.
The interfaces provide syntacticandsemanticmotion. The syntactic interface associates
a type for the component whereas the semantic interfescribes the observable
behavior. Letl and O be sets of typed input and output streams, respecti{ieB)
denotes theyntactic interfacef a component. It defines the types of messages that can
be exchanged by a component. Baenantic interfacaiith the syntactic interfagg, O) is
represented biz: H(1) — [(H (O)) that fulfils thetiming property A component is a

total behavior (see proceeding paragraph). Figure 8 shows a graphicakeatation of a
FOCUS component.

X, 8, f Eym:T

Figure 8 Graphical representation of a FOCUS corapbwith input channels,, ...% and output channelg,
...ymand their respective typ&s, ... Sand T, ... T,

The timing property demands that the set of possible outptdrigs for F for the first
t+1 only depends on the inputs of the firsime intervals. (The processing of messages
takes at least one time interval.) Functions thaillftiiis timing property are calletime-
guardedor strictly causal.The application of a strictly causal function leadgitber an
empty output for all input histories, or a non-empty outputafbinput histories. In the
first case, we call the functigraradoxical in the second case we caltatal.

A transmission component TMC

X~ me}@x = {m}©®y)

Figure 9: Example for a component specificatioRr@CUS [47]

Fehler! Verweisquelle konnte nicht gefunden werdgimes an example for a simple
component specification [47]. A transmission componerith(the name TMC) is
specified. It has the input chanmxelith data typel3, and the output channglwith the
same data typ&3. A structural view on the component can be seemménright upper

A Comparison of Service-Oriented Development Apgivea 25

corner of Fehler! Verweisquelle konnte nicht gefunden werden.The specifying
assertion i~y which expresses that each data on the input chanmahsnitted on the
output channel.

In the following we will see, how these basics aralusehe JANUS approach to define
service, layers, and layered architectures.

Component interfaces provide functionality. The idea isléscribe for each piece of
functionality under which conditiongfecondition) the functionality may be invoked and
which affects this hapfstconditiof. This leads to the notion of service.

A service is apartial behavior as opposed to a component which ietal behavior(see
above). Partial means that a service is defined omlg feubset of input histories. This
subset is called thservice domainThe output of a service is callegrvice rangeA
service basically is a set of interaction pattefservice fulfills the timing property only
for the input histories with nonempty output set. A serwives a partial view on the
behavior of a component. To be able to use a seméctgin access conventions must be
valid (service protocdl

Example. Figure 10 gives an example for a simple service spetidicaising the same
specification scheme as above. This time a queue isedefihich reads in some data and
gives it out on demand. Note that this specificatigueigial as it does not say what to do
when data is requested in case the queue is empty.

type QIn = {req} U Data
type QOut = Data

Queue

in x:Qln

out y: QOut

{req}#x = Data#y A y = Data®©x

Figure 10 Example of a simple service specificatiothe JANUS approach [47]

Services are partial functions. Therefore it makesedo put special emphasis on the
characterization of the service domain when spedafgervices. Both input assumptions
and output commitments are specified. Input assumptiamsotaof some input is valid
for a special service. As the conformance of inpubhiess may also depend on previous
outputs, input assumptions are specified by predicates onthmtinput and the output
histories.

A Comparison of Service-Oriented Development Apgivea 26

In a layered architecture, each layer provides an upperface éxport interfaceland
makes use of a lower interfadenport interfacg. A service layelis a layer the syntactic
interface of which is structured into two (or more) gbementary sub-interfaces. Note
that the behavior of a service is not changed, i.eséneice remains the same from a
behavioral view. Only the interface is divided into teub-interfaces. The composition
of several layers results in a layered architectiehler! Verweisquelle konnte nicht
gefunden werden.depicts this.

O,

n

Service layer - 2

I3 O, 5

n

IO OO
Service layer

Figure 11 Layered architecture in FOCUS being caseprof a set of service layers [15]

For more information of the JANUS approach and the F&@1¢ory please refer to
[15][46].

5. Comparison and Evaluation

In the previous sections, we have described sevendteariented approaches. In the
following we compare these using criteria that we intredared describe below.

In Section 5.1, we describe the evaluation criteri@araeg to which the comparison will

be done. We explain each criterion briefly and discssriportance for service-oriented
approaches and possible trade-offs. In Section 5.2. giwsea tabular comparison of the
different service-oriented approaches using the introdutiedia.

5.1. Evaluation Criteria

We have shown that services and service-oriented developappnbaches occur in
many forms throughout many different application domaireng@aring such different
concepts and approaches requires thorough analysis anthekpueific knowledge. The
main question isAccording to which criteria should the service-oriented approatiges
compared?n this section we will list evaluation criteria thae refined from analyzing
the different approaches and that play an importantmatach of those.

A Comparison of Service-Oriented Development Apgivea 27

The evaluation criteria that we will use are the follogvi

(1) Coverage of development cycle
(2) Functionality-oriented development
(a)Specification of functional properties
(b)Capturing functional dependencies and interactions
(3) Capturing global and local views on services
(4) Abstraction from system structure and deployment stfugtures
(5) Black-box service interfaces
(6) Capturing cross-cutting concerns
(a)Description of Quality-of-Service properties
(b) Specification of exceptional behavior
(c) Specification of forbidden behavior
(d)Support of data flow, transactions and data integrity
(e)Support of security properties
(7) Support of partial specifications
(8) Support of under-specification (non-determinism) and refinement
(9) Methodological and process support (steps, refinement, rtradsformations)
(10)Service description and discovery mechanisms
(11)Runtime support, middleware, infrastructures
(12)Support of dynamic execution environments and adaptivity
(13)Degree of standardization and community-acceptance
(14)Degree of formality and precision
(15)Level of direct applicability or generality
(a)Direct applicability and degree of practical support
(b)Generality and domain-independence

We consider the evaluation criteria (1) to (6) be slgmificant characteristics In the
following, we explain the evaluation criteria in detail.

(1) Coverage of development cycle. The software development process can be
partitioned on a logical level into consecutive phasesctVisider the phases

(@) Requirements elicitation, analysis and specification

(b) Architecture modeling and design

(¢) Fine-design, implementation and coding

(d) Integration and verification

(e) Deployment and configuration

® Run-time and execution

Different approaches have different emphasis. In Chapter 2we have shown the
benefits of providing methodological support for certain phashe more phases an
approach supports, the less conceptual gaps and potertalsistencies will occur,

A Comparison of Service-Oriented Development Apgivea 28

leading to more seamless, intuitive development. Addilign@ombining multiple
approaches will lead to a higher overhead, complexityratgiced traceability of results.

(2) Functionality-oriented development. The development of today’s complex multi-
functional systems, found for instance in telecommuitisator the automotive industry,
requires techniques that emphasize functions, functiongbegies and functional
dependencies rather than structural units, such as compof#mphasizing function
requires a higher level of abstraction and a closer iatiegr with requirements
engineeringWe evaluate service-oriented development approachéminystipport for

(&) Specification of functional properties

(b) Capturing functional dependencies and interactions

Criterion (a) determines if the models, notations adgsses of an approach support the
explicit specification of different functions, features services of a system, separately
from each other. Criterion (b) indicates whether fiometl dependencies can be
specified, which are often caused by complex interactidgtisnaa system or between a
system and its environment. Thereby, approaches canehiabeliaction complexity and
detect unwanted feature interactions early in developnoenta logical level, thus
reducing costly system errors and increasing systamtainability.

(3) Capturing global and local views on services. Multi-functional systems often
require in interplay of independent services. Helpful in greent are models that
provide both views:

(@) Local view, showing one service in isolation

(b) Global view, showing the interplay of multiplergees

Local views emphasize the individual service as moduldldihg block with its
syntactical and behavioral interface; they show howeavice acts as a role in a
conversation, the service protocol. One specificagtgte for instance provides pre- and
post-conditions in form of assumption/commitment spegtifims. Service users can
check the pre-conditions before they use the ser@habal views focus on the interplay
of services in order to show and realize higher-lsystem services, typically by giving
interaction choreographies. Understanding “the big pttis most significant when
designing multi-functional systems. Local and global viewservices complement each
other: locally specified services can be refined imtd anplemented by an interplay of
other services, modeled in a global view. Thus, locdlglobal views provide black-box
and white-box views on services, and in combination résa consistent understanding
of a multi-functional system, and a scalable hierart¢tgeavice-oriented development
process.

(4) Abstraction from system structure and deployment ifrastructures.

A Comparison of Service-Oriented Development Apgivea 29

The behavior of a multi-functional system is independenitsoimplementation and
structure. Approaches that separate behavior models ®&gstem structure and
deployment infrastructures support the development of lastinl, reusable, high-value
function repositories that can be applied to multiple péssiBnd changing
implementations. Through this abstraction, they also edomplexities related to the
combination of behavior and structure. Models on diffetevels of abstraction capture
different aspects of system design: Functionality and fundttemendencies on a logical
level, and implementation details on lower technicetle Structural information, such
as distribution over components, classes or other catipuél entities, can be added by
refining the functional model. Alternatively, the syatéunctionality can be mapped to a
structural model (architecture) of the system. Thistrabtion also supports software
product line engineering, because variants of the comfomuetional repository can be
mapped to similar or different target architectures.

(5) Black-box service interfaces.

Service interfaces that provide only syntactic andasdim specifications of a service
realize a black-box service interface. Any inforroatof how the service is provided is
hidden. Many possible implementations of the servige lma provided and exchanged
over time. This abstraction from implementation insesamaintainability and realizes a
higher degree of decoupling.

(6) Capturing crosscutting concerns.Cross-cutting concerns usually capture non-
functional requirements that can be associated withcgsrend other aspects that apply
to the entire service. Service-oriented approachesrdiffthe degree of support for the
specification of crosscutting concerns, non-functioeglirements, and in the degree of
formality. We evaluate the following sub-criteria:

(@) Description of Quality-of-Service properties

(b) Specification of exceptional behavior

(c) Specification of forbidden behavior

(d) Support of transactions, data flow and data integrity

(e) Support of security properties

Description of Quality-of-Service propertieQuality properties of services are a central
part of non-functional requirements attached to serviegamples are performance and
timing requirements, availability, robustness, etc. Quafpiroperties are often a
distinguishing factor when choosing from multiple availaklkervices with similar
functionality.

Specification of exceptional behavioBome approaches enable the specification of
exceptional behavior. Exceptional behavior is supposed to happase pre-conditions
of a service execution are violated or some errors bagerred. Exceptional behavior
specifications define how to handle the exceptionahsin and potentially how to roll
back to a consistent state of execution. Doing so easam overall consistent cross-

A Comparison of Service-Oriented Development Apgivea 30

cutting treatment of exceptional cases and thus datasgstdm safety and integrity.
Handling exceptional situations consistently throughogisstem is very difficult on the
entity (component) level. Fall-back and recovery striasecommonly span the interplay
of several system entities.

Specification of forbidden behaviok system must never exhibit forbidden or negative
behavior, as specified by some approaches, thereby coemiem any positive
specifications. Being able to specify negative behadeiads to much more compact and
understandable specifications, because the number aflderbibehaviors can usually be
kept small, and regular behavior uncluttered.

Support of data flow, transactions and data integiidata flow aspects are significant
for many applications and therefore need to be coreddéesides structural and
interaction concerns. Transactions associated wiérace coordinate the resources that
are involved in providing the service, ensure data irtiegaind provide defined
checkpoint and roll-back strategies in case of resowagflicts or unsuccessful
operations within a transaction.

Support of security propertieSecurity properties and requirements need to be associated
with service definitions in domains where securityaispecial concern. This includes
privacy, authenticity and access control aspects. Sgcast important cross-cutting
concern needs to be considered from early on in the geweltt, designed into the
system and verified against the specification.

(7) Support of partial specifications. Partial specifications apply only to subset of all
possible inputs and conditions. Methodically they are majpd to avoid the need of
providing complete (total) specifications early on i ttlesign process. Independent,
partially defined pieces of behavior can be combined, l&derinstance after applying a
closed world assumption and checking for consistency. Thditzon that defines the
validity of a partial specification is the service eirap condition, service protocol or
service domain. A service definition does not consteaiy other behavior that does not
fulfill the service condition. Partial specificationsable for instance to separate regular
from exceptional behavior, as discussed above. Servieated approaches are well
suited as partial behavior specifications, becausécssrean be seen as abstractions or
projections of system behavior on certain functiggalBuch partial views are less
complex and easier to understand and modify.

(8) Support of non-determinism and refinement. Non-determinism exists when a
specification enables multiple possible outputs for a iceitgput. Non-determinism is
one form of modeling under-specification. Such specificatileave room for later
refinement in case information is not yet availablesbould be left open. This is
methodically important to support a smooth, seamless aavent process. Through

A Comparison of Service-Oriented Development Apgitea 31

refinement, it is possible to add more constraints $pezification to reduce the number
of possible behaviors in order to make a specificatd@ierministic and thus

implementable. By applying non-determinism and refinemesitain properties of the

system can be defined and verified early in the devetopmAny later refinement

operation will not violate any previously proven projeert

(9) Methodological and process support.Methodological support includes refinement
and refactoring operations, consistency checks, metnexlel transformations and
automated procedures to support the development. Proceslsed the methodological
operations into workflows that lead from the requiremetds a high quality
implementation in a repeatable manner, while minimizing tisks for the project.
Supporting iterative development instead of pure top-dowmttorb-up is significant for
the practical applicability of a service-oriented depatent approach. Formally proven
powerful methodological operations increase the effayjemnd scalability of an
approach and the confidence in the correctness of ithges

(10) Service description and discovery mechanismsin dynamic systems, service
requestors have to find (discover) the services theynedihile technical issues can be
solved for instance by distributed databases that stat@eress all available services,
the actual semantical discovery (ikmowingwhich service is suitable/best for a given
problem) remains a challenge. Suitable service-orieapproaches must provide means
to specify the characteristics and requirements ofrdcsein a formal way. Then, the
discovery process of services can be automated leading h@her reliability as
compared to current techniques of pattern matching / wangaoson.

(11) Runtime support, middleware, infrastructures. Significant support in form of
technical infrastructures, communications middleware amdtime environments is
necessary to realize service-oriented systems intiggacSupporting approaches
incorporate such concepts into methodology and procasspivide assistance with
implementation, configuration and execution of softwaéréoo specific focus on specific
environments or infrastructures reduces flexibilityha# approach in general, however.

(12) Support of dynamic execution environments and adapfity. Describing
dynamic execution environments, in which the number gpest of interacting system
entities or context assumptions that about the envieahare changing, requires suitable
models and support. Context aware service-oriented sysmtake location, network
availability and topology, peer communication enviremi allowable resources into
account when providing and requiring services. Only byadyin models is it possible to
fully specify and verify such systems. Such models mustige abstractions of
changing environments and provide means to model adgpuifiihe software.

A Comparison of Service-Oriented Development Apgivea 32

(13) Degree of standardization and community-acceptance Many standards exist
ensuring interoperability and quality levels for specépplication domains. They cover
topics from process guidelines to implementation leved @@mats. More conventions
and standards exist for modeling, notations, behaviorigésas etc. Approaches can be
evaluated by the degree of adherence to standards and tee dégrceptance of these
standards in the community. The use of standards andastéred or community-
accepted technology and conventions makes practicaliadaftnew approaches much
easier and increases interoperability and formatinati

(14) Degree of formality and precision. Service-oriented approaches offer different
degrees of formality and precision. Formally founded sermim#ons can be based on
rigid, precise mathematical models that define athtiabal elements and methodological
operations of a system development model precisely. S8wumtels can express system
properties in mathematical rigor and provide means to ptieem. Clear definitions
prevent misinterpretation and enable for instancenaatio code generation.

(15) Level of direct applicability or generality. Service-oriented development
approaches can be fundamental and theoretically foundsate wthers may be very
practical and provide extensive implementation and rue-tinpport for a certain system
class or domain. We evaluate

(@) Direct applicability and degree of practical support

(b) Generality and domain-independence

The necessary effort of tailoring an approach for a 8pegpplication domain, platform
or technology influences applicability. On the other hagenerality is lost the more
technological and notational constrains an approach demands

A Comparison of Service-Oriented Development Apgivea 33

5.2. Comparison Table

The following table gives a structured overview of how difeerent evaluated service-
oriented approaches compare against each other usingténa introduced above.

Table 1: Comparison of Service-Oriented Approaches

Service-Oriented Approach
g £ '% 3 — o
s |251¢ |8 |8 |& |£&:3
¢ |EQIs |2 |% |2 |8
2 sc-14 2 = Z o =
§ |8g)= |8 |2 |8 |&8
2 | B8l L <
1.a Govers requirements) - + + + + +
1.b (architecture/design) - + + + +
1.c (mplementation) + + * - + * +
1.d (ntegration/verification) - + - + + + -
1.e @eployment/configurat.) + + + + + - R
1.f (execution) + - - - + - .
2.a (unctional properties 1 + + + + + +
2.b functional dependencips| *! + + + + - 16
3.a (ocal viewg + + + + + + +
< |3:b @lobal viewy + + + + + + +
.% 4 (Abstraction from structube *2 + + + + + +
E 5 (Black-box interfacefs + + + + + + +
5 6.a Quality-of-Servicg *3 - + *12 + *14 -
® | 6.b (exceptional behavidr *3 - 8 *12 - - %17
c_:é 6.C (orbidden behavigr - - - *12 - + +
i 6.d (data flow, transactions *3 - - - - - -
6.€e Eecurity propertigs *3 - - - + - -
7 (partial specifications - + + + + + +
8 (under-specificatich - - + + + + +
9 (methodology and process| ** + + + + 15 +
10 (description, discovely + *6 *9 *13 - - R
11 (runtime suppolt + - *10 - + i *18
12 (adaptivity) *5 - - - - . .
13(standardizat., acceptajce| + *7 *11 - - - -
14 (formality and precisioh - + + + + + +
15.a(direct applicability + * * * + . *
15.b generality - - + - - + +

A Comparison of Service-Oriented Development Apgivea 34

Legend:
+ evaluation criterion fulfilled
- evaluation criterion not fulfilled
* evaluation criterion partly fulfilled (see remarks)

Further explanations:

! Web services encapsulate behavior. However, behaviaotisspecified formally.
Dependencies are implicitly specified by web service ebgiraphy standards.

2 0On the one hand web services abstract from struesiiey encapsulate functional
behavior. Technologies can be dynamically mapped totstas (registries, UDDI,
discovery, etc.). On the other hand many current stdadér.g. WSDL) explicitly
contain structural information.

3 Additional standards exist which enable the specificaifd@oS attributes, exceptional
behavior, transaction handling, security properties.

* There are several approaches under research to enkencervice development with
methodology and process. However, there are so far ragaded not adapted by the
community.

® Due to functional abstraction and the possibility of segtion and look up, adaptivity
is supported in principle. However, adaptivity is not dlyeaddressed in the current
standards.

® Features are described abstractly and can be discosaredonnected dynamically
(DFC architecture). However, telecommunication systarasiot dynamic in the general
sense and features are predefined.

" There exist various proven approaches from reseatil@velopment in this area that
are also practically applied. However, these technolagiesot generally accepted and
there are several competing ones. New systems andbstian(IP technology) make it
difficult to apply the same methodologies.

8 Exceptional behavior can be specified independently frorer dibhavior in separate
services and later combined.

® Services are specified by interaction patterns thanelservice access interfaces and
protocols, as a significant part of a service desoripti

9 The approach enables a direct mapping of a service roatltarget architectures.
Code generators exist that generate executable protofgpesomplex distributed
systems.

1 The approach makes use of standard notations such @s, IBucture diagrams and
state transition diagrams. It provided extensions anmdsemantics to these notations.

2 The methodology foresees the specification of QaSbates, however it is not yet
integrated in the approach.

13 Due to the fact that services are described by fornealets, discovery is possible in
principle. However, dynamic systems are not scope of ntobilSoft project and
therefore discovery mechanisms are not under consiolerati

A Comparison of Service-Oriented Development Apgivea 35

4 The approach inherently supports time specificationst{rea properties).

5 The approach supports important methodological operati@imegment, splicing,
composition, partial application), but lacks an overalégnated development process
that is directly applicable.

18 Functional dependencies are expressed using required/pravidbdtations and their
interpretations [43], or through consistency/completenelsscks as part of the
methodology.

" The methodology covers the handling of exceptional dagetetection of conflicts,
resulting partiality, and canonical completion.

8 The AutoFocus execution model and the resp. infrastrudtungsed for runtime
support. Because the approach targets the embedded domigirfurationality for
implementation and deployment is used.

6. Discussion

In the previous section we have compared severalcseoviented approaches according
to our evaluation criteria. We have provided a structuredvwisw of their properties and
have given an interpretation. Analyzing the comparidohable 1 yields commonalities
of the approaches and their differences. We conclud¢hth&dcus on functionality is the
underlying paradigm of all service-oriented approaches,ngutiiinctionality in the
center of interest and providing means to specify funatity separately and combine it.

We also conclude that there are significant differerbmtween the approaches. Not only
do they target different development process phaseshéutalso have different goals

motivated by specific problems which often are inheretii¢oapplication domains. For

instance, managing interactions is a major concetimeinlomain of embedded distributed
systems. For web service based systems, dynamic rgcawd assembly of services is

the main interest.

We can state that all service-oriented approachesderbdenefits in terms of decoupling
functionality from technical details and providing struetlirviews onto system
functionality. Thus, the approaches help to develop mabast, flexible and reusable
systems.

7. Summary and Outlook

In this paper, we have given an overview of several agghres and methodologies
around the notion of service, feature and function. Rirsthave described the usefulness
of such concepts by looking at the different stages irdévelopment process and their
views on the system with different level of absti@ctand detail. We have distinguished
the stages requirements engineering, modeling and arcinéed®sign, implementation
and integration, and deployment and run-time. Second, we $tewvn existing proven
development approaches for Business Information Systesiisg Web Services
technologies and communication middleware, and for telecormation systems, where

A Comparison of Service-Oriented Development Apgivea 36

the notion of feature is prevalent. Third, we have gmted several service-oriented
approaches of our group, namely the InServe, MEwaDibjl8aft, JANUS/FOCUS and
Functional Architecture Modeling approaches.

In an effort to compare the different approaches waeehidentified and explained 15
distinct evaluation criteria. Each criterion and stbedon has an explanation and a
discussion section. The discussion shows the impartafthe respective aspect in a
service-oriented approach and possible benefits anah&dyes. If there is a trade-off, we
have shown both sides of the coin. We have compared Teemnented development
approaches using the evaluation criteria and have peestre results in a table with side
remarks where necessary.

With this paper, we contribute to a common understandintpe terms service and
service-oriented development and to general comparabiity service-oriented

development approaches from different application domaitis different intents and

purposes. This knowledge can lead to better interopeyadild to the development of a
comprehensive service notion, which is independent ofpagific context.

Future work will include the comparison of additional seewriented notions and
approaches, and steps towards establishing a common smnieiteed terminology and
comprehensive, domain-independent service-oriented appmdb mappings to the
existing approaches. Furthermore, we will work on a &jzation of a common subset
of this approach and on tool support.

8. Bibliography

[1] D. S. Platt, K. Ballingerntroducing Microsoft .NETMicrosoft Press, 2001.

[2] Aaron Walsh.UDDI, SOAP, and WSDL: The Web Services Specification Referente B
Prentice Hall, 2002.

[3] Pamela Zavereature-oriented description, formal methods, and DFCProceedings of the
FIREworks Workshop on Language Constructs for Describing Feesatpp 11-26. Springer-
Verlag, 2001.

[4] Pamela ZaveAn experiment in feature engineerintp: Annabelle Mclver and Carroll
Morgan, editors, Programming Methodology, pages 353-377, Spifaglag, New York,
2003.

[6] R. Orfali, D. Harkey, J. Edwardmstant CORBAWiley, 1997.

[6] SUN Microsystems Inc. Java Platform, Enterprise Buit{Java EE, J2EE). Available at
http://java.sun.com/javaee/. Version of 15-Nov-2006.

[7] M. Broy, N. Diernhofer, J. Griinbauer, M. Meisinger, MypRI, S. Rittmann, B. Schatz, M.
Schoenmakers, B. Spanfeln&ervice-Oriented Development - Whitepapeghrstuhl fir
Software & Systems Engineering, Technische Universitéat Kemc2006.

[8] InServe project homepage. Availablehip://www4.in.tum.de/proj/inserveNersion of 15-
Nov-06.

[9] mobilSoft project’s homepage. http://www.mobilsoft.infersion of 01-Oct-2005.

[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]

[27]

[28]
[29]

[30]
[31]

[32]

A Comparison of Service-Oriented Development Apgivea 37

MEwaDis project homepage. Available ttp://www4.in.tum.de/~mewadis¥ersion of 15-
Nov-06.

M. Deubler. Dissertation. Technische Universitat Mincheappear, 2007.

S. Rittmann:Exploring Service-Oriented Software Development for Automotive System
Diplomarbeit, Technische Universitat Miinchen, 2004.

B. Schatz, A. Pretschner, F. Huber, J. Philipdsdel-based Development of Embedded
SystemsTechnical Report TUMI-0402, TU Miinchen, 2002.

P. Braun, M. v. d. Beeck, M. Rappl, C. Schroder. AutdraoSoftware Development: A
Model-Based Approacthn-Vehicle SoftwareSAE Technical Series, 2002.

M. Broy. Service-Oriented Systems Eingineering: Specification and Desi§ervices and
Layered Architectures — The Janus ApprodchEngineering Theories of Software Intensive
Systems, pp. 47-81. Springer, 2005.

I. Kriiger, R. Mathew, M. MeisingeEfficient Exploration of Service-Oriented Architectures
using Aspectsin Proceedings of the 28th International Conference on Seftiagineering
(ICSE), 2006.

W3C: Web Service Description Language.lAtailable at: http://www.w3.org/TR/wsdl. 12-
Mar-2001 .

C. Salzmann.Modellbasierter Entwurf spontaner Komponentensystemessertation,
Technische Universitat Miinchen, 2002.

W3C: Web Services Architectur8pecification available at: www.w3.org/TR/ws-archl-
Feb-2004.

Werner VogelsWeb Services Are Not Distributed ObjedsEE Internet Computing, vol.
07, no. 6, pp. 59-66, 2003.

W3C: Web Service Choreography Interface .1\W3C Note, 8-Aug-2002. Available at
http://www.w3.org/ TR/wsci/

Barry & Associates, IndNeb services and service-oriented architectuvésbsite available
at http://www.service-architecture.com/. Version of 15-06v

OASIS: UDDI Specification Available at: http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm (as of 25.11.2005)

OASIS:ebXML Homepagevailable at: http://www.ebxml.org/ (as of 25.11.2005)

OASIS. Web Services Business Process Execution LangWd§eBPEL), Version 2.0.
Specification public draft available at http://docs.oasisaape/wsbpel/2.0/wsbpel-
specification-draft.pdf, 23-Aug-2006.

F. LeymannWeb Services Flow Language (WSFL 1T®chnical report, IBM Corporation,
2001.

Pamela Zave and Michael Jackson. New feature intemaciio mobile and Multimedia
telecommunication servicedzeature Interactions in Telecommunications and Software
Systems VI pages 51-66, 2000. 10S Press, available at:
http://www.research.att.com/~pamela/fiw6.pdf.

DFC Homepage, available at: http://www.researchaatt/epamela/dfc.html (as of 24.10.05)
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. St&8ystem of Patterns.
Pattern-Oriented Software Architectui®iley, 1996.

InServe Projektantrag. Accepted and funded by the Deutscheh&ogsgemeinschaft
(DFG), 2004.

I. Kriiger. Distributed system design with message sequéraescPhD Thesis, Technische
Universitat Miinchen, 2000.

V. Ermagan, T. Huang, |. Kriiger, M. Meisinger, M. MenarP. Moorthy. Towards Tool
Support for Service-Oriented Development of Embedded AutomoSystems. In
proceedings of the Dagstuhl Seminar on Modellbasierte Ekltwig eingebetteter Systeme
(MBEES’07), to appear in LNCS, 2007.

[33]
[34]
[35]
[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]
[44]
[45]
[46]

[47]

A Comparison of Service-Oriented Development Apgitea 38

Technische Universitdt Minchen and Validas AGAutoFocus project
http://autofocus.informatik.tu-muenchen.de/index-e.html. Varsfdl5-Nov-06.

M. Meisinger.Service-Oriented Architecture Development of Reactive Sydbessertation
Technische Universitat Minchen, To appear 2007.

G. Holzmann.The Spin Model Checker: Primer and Reference Manddtlison Wesley,
2003.

M. Deubler, J. Grinbauer, A. Holzbach, G. Popp, G. WimrKentextadaptivitat in
dienstbasierten Softwaresystem&achnischer Bericht TUM-I0511, TU Miinchen, 2005.

M. Deubler, J. Griinbauer, G. Popp, G. Wimmel, C. Salzmbomwards a Model-Based and
Incremental Development Process for Service-Based8yste:Proceedings of the IASTED
International Conference on Software Engineering (IASTED BEW.

M. Deubler, J. Grinbauer, J. Jurjens, G. Wimmel. Sound |@@went of Secure Service-
based Systems. International Conference on Service Oriented Computing (ICSZBO¥.
mobilSoft Projektantrag

A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl, i8nf@nn, and D. WildConcretization
and Formalization of Requirements for Automotive Embedded Soft@ysems
Development.Accepted at the 10th Australian Workshop on Requirements Enigigee
(AWRE) 2005, Melbourne, Australia.

S. Rittmann, A. Fleischmann, J. Hartmann, C. Pfaller Rdppl, and D. Wildlntegrating
Service Specifications on Different Levels of Abstracatepted at the IEEE International
Workshop on Service-Oriented System Engineering (SOSE) Befkg, China.

B. Schatz.Building Components from Functiondn: Electronic Notes in Theoretical
Computer Science, Volume 160. Proceedings of the Internatidoakshop on Formal
Aspects of Component Software (FACS 2005, 2005.

B. SchatzRefactoring Functional ArchitecturesU Minchen, 2005.

B. Schatz, C. Salzmanigervice-Based Systems Engineering: Consistent Combination
Services. InProceedings of ICFEM 2003, Fifth International Conference on Formal
Engineering MethodsSpringer LNCS 2885, 2003

L. Kof, B. Schatz, I. Thaler, A. Wisspeintner. Senfiased development of embedded
systems. IlNet.Object Days Conference, OOSE WorksBofurt, Germany, 2004.

M. Broy, and K. StglenSpecification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinem@&gringer, 2001.

M. Broy. Formal models for service-oriented interfaces and layered tactires.Slides for
the Marktoberdorf Summer School, 2004.

