
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen

DBFW: A Simple DataBaseFrameWork for the Evaluation andMaintenance of Automated TheoremProver Data (incl. Documentation)Peter Jakobi, Andreas Wolf

TUM-I9747SFB-Bericht Nr. 342/28/97 ANovember 97

TUM{INFO{11-I9747-130/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc1997 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

DBFW: A Simple DataBase FrameWork for the Evaluation andMaintenance of Automated Theorem Prover Data (incl.Documentation)Peter Jakobi, Andreas WolfTechnische Universit�at M�unchenInstitut f�ur InformatikD-80290 M�unchene-mail: fjakobi,wolfag@informatik.tu-muenchen.deNovember 19, 1997

AbstractThis paper describes a simple yet generic database implementation framework for medium sized datasets,as they occur during tests and applications of automated theorem provers. The implementation coversautomatic extraction of database objects from a set of text �les, a text-based interface for simple databaseoperations, and a tool for document, report and Webpage generation. This paper refers to a database ofSETHEO proof data (Setheodb) as an example. It concludes with the description of DBFW as a part of theinteractive proof system ILF [6]. The paper also serves as o�ine documentation for the framework.

1. IntroductionIn the �eld of automated theorem proving (ATP), a lot of time and resources are often spent on tuningproof systems by evaluation of di�erent parameter settings. In many (in our experience, almost all) cases,the output of such prover runs is used only to answer one speci�c question, even if the data has the potentialto be reused. A database containing the results of such runs, together with an interface to access the storeddata in an easy to automate manner, can make this possible. The database approach also saves disk space,as only relevant data is stored.ATP systems are often used within the context of a workbench for constructing and checking proofs. Here,it is of interest for the designer of the ATP system to get information about the tasks given to the proverin an real environment. That feedback can be used to determine directions for further development of theprover. The information also helps to re�ne parameter settings for speci�c domains and user requirements.In this paper, we introduce DBFW, a Perl database implementation framework. The framework provides� support for automatic extraction of database objects from text �les,� a query interface,� maintenance support for database �les, and� support for easy conversion to or from DBFW database formats.Section 2 describes the starting point for the creation of the framework and its design goals. Section 3deals with implementation and usage; the model elimination style theorem prover SETHEO [12] is used asa show-case application. Sections 4-6 o�er hints for porting, describe available database formats and theirpatterns, and sketch further applications1.Throughout the paper, the Setheodb format for SETHEO [12] run data is used for examples and as areference application for the framework. Setheodb stores the relevant information extracted from the log �lesof SETHEO program runs. Setheodb should be seen only as an example. The adaption of the scripts toanother ATP system involves little e�ort, provided that the system produces textual output containing therelevant data.We refer a reader interested in an introduction to the calculus of Tableaux to the books of Beth [3], Smullyan[16], and Fitting [9]. The special context of model elimination is considered in the book of Loveland [13] andin the paper of Stickel [17].

1An extended version including program and porting documentation is part of the DBFW distribution.

2. Problem Description and a Possible SolutionThis section describes the usual, slightly chaotic, approach to so-called Data-Mining1. We de�ne somerequirements for improving the e�ciency of the Data-Mining process and o�er a solution meeting theserequirements.2.1 Data-Mining, classical approachIn our research group, the model elimination style theorem prover SETHEO [12] is being developed. Overa long period of testing, tens of thousands of SETHEO log �les have been produced. These �les �ll severalGigabytes of disk space. Using these runs, we compare the performance of SETHEO with various sets ofparameter settings. Considering the amount of available log �les, we obviously should have been able toreplace many runs of new experiments by data from log �les of previous similar runs.Subjectively selected and extracted data has proven to be di�cult to reuse for the scientist extracting thedata. This holds doubly for reusing a colleague�s data. So, in the past, almost all experiments had to berepeated to answer a new question, even if similar runs had already been done.If you consider that testing a small set of parameters on a problem library like the TPTP [18] means asleepless night for up to 100 processors, it is worth recycling the old and useful, but often chaotic and(previously) di�cult to access, data.Another consideration is an ATP system installed outside the developing group: it is di�cult to obtainfeedback and data on the tasks (not) proved. For developers however, this data is important in adapting aprover to the user�s application domain.2.2 RequirementsTo allow better use of the available data, we postulate the following requirements for the database:� Extraction of (almost) all possibly relevant data from each log �le. Here the creator of the databaseformat has to select the \relevant" data and provide patterns for its extraction from the log �les (seeSection 3.1).� Storing the data e�ciently in terms of required space, time for access, and accessibility of the data.� Simplicity of{ format,{ query tools (including possible modi�cations by DBFW users),{ conversion into di�erent database formats.� Ease of automation of database queries and modi�cations.1For a discussion of Data-Mining and Knowledge Discovery i�n Databases (KDD), see the November 96 issue of CACM. Ourapproach is taking place earlier and \mines" the raw (full-text) data in order to extract data-sets for a database.

2.3 Solution 32.3 SolutionTo meet these requirements, we selected the following key concepts:� An object-oriented database �le format. Each object corresponds to a single line of the database �le.This line stores all object tags. Each tag starts with the tag ID extended into a unique string followedby the tag value. An example object and its tags2:_%Formula=SET001-1 _%Env=host sj30 datestamp 950804183600 _%Log=/LOGS/LOGFILE1� A software-IC approach: a set of �lters that can be combined within pipes. One of the �lters (theextractor) will accept a set of log �les and automatically extract the corresponding set of objects as anew database �le.

2For easier parsing of an object�s line in the database, tag IDs are pre�xed by %.

3. Implementation of the Database FrameworkWe decided to use the script language Perl for the implementation. Perl is well suited for small text processingscripts, due to its very powerful regular expression matching on strings. A script language has the additionaladvantage of allowing quick changes and modi�cations. The Perl interpreter is su�ciently fast1 for processingmedium sized databases.The framework consists of these main parts:� Extractor dbs gen.p2� Query-Interface db cat.p� Document Generator db m5.pThere are still other scripts in the framework. They o�er some additional functionality not described here, orpresent prede�ned queries as examples. Scripts with the pre�x db are not database-format speci�c. Scriptswith the pre�x dbs contain some speci�c code for the Setheodb format. Use the option -h to obtain onlinehelp.3.1 dbs gen.p: The ExtractorThe extractor is a script for automatic, database-format-speci�c extraction of object tag values from text�les. The input for dbs gen.p is a list of log �les. The output is a list of objects written to stdout, one foreach log �le. Command line options are available to de�ne values for individual tags.Extraction is performed by \patterns" de�ned in a separate �le. For each tag, an associated pattern isde�ned to parse the log �le with respect to the pattern and to extract the relevant information for the tag.Patterns are implemented as Perl code blocks. Tags with an empty value are omitted in the data base. Theextracted object for each log �le consists of the remaining tags. Example objects and a partial list of tagIDs are given at the end of Section 3.dbs gen.p restarts every $jobsize log �les to conserve memory. If you wish to process more than $jobsize�les, you must supply the log �le names in a �le instead of simply using stdin. $jobsize is currentlyde�ned as 499 in dbs gen.p.Usage: dbs gen.p [OPTIONS] FILEOptions include:-f <patternfile> load the sepcified pattern file-t <tag> <value> set default value for objects whose <tag> is not defined-T <tag> <value> force all tags <tag> to <value>; deletes it on value ''Usage example: Generating a database and setting the User tag to specify the owner of the runs to extract(option -T).dbs_gen.p -T User 'Peter Jakobi' < file_of_logfilenames > databaseIf the -f option is not given, the generator loads its patterns from a �le in the same directory and the samename as itself but with su�x .pat.1We abused the framework on a database �le of 80 MB. The answer time of several minutes is acceptable for a database ofthis size, especially if queries are �rst tested on smaller sample databases. The later described scripts dbs gen.p, db split.p anddb cat.p use only a few MB of memory independent of the database size.2Scripts with the pre�x db are generic, while scripts with the pre�x dbs contain some speci�c code for the Setheodb format.

3.2 db cat.p: The Query-Interface 5A log �les may also contain so-called embedded tag lines: By default, these lines consist of a single tag startingin column 1, optionally pre�xed by %dbt or #dbt. Embedded tags are copied directly into the object forthis log �le.Example:_%Formula=SET001-1#db _%Formula=SET001-1%db _%Formula=SET001-13.2 db cat.p: The Query-InterfaceThe query-interface is the core script of the framework. db cat.p is used for database maintenance andquerying the database. db cat.p reads a database from �le or stdin and writes a modi�ed database tostdout. Modi�cations include the selection and de-selection of objects, changing the contents of selectedobjects, and the removal of certain tags for all selected objects. As the shell command for a db cat.p querycan be fairly complicated, more complex queries should be stored as shell scripts for future use.Implemented concepts of the relational data model are:1. Selection - select objects for a new database �le2. Projection - select tags to keep or remove. This a�ects all selected objects.Operations on multiple database �les, such as Joins, are not implemented. Selections are performed beforethe projection.Usage: db cat [OPTIONS] FILEThe most important options are:-d <FILE> write all de-selected objects to FILE-h online help, format descriptions, etc-lowmem memory efficient, slower processingSelect database objects - multiple selections are combined by logical And and performed in sequence:-s <TAGID> <REGEXP> select objects with tags TAGID containing text orregular expression REGEXP (case insensitive)-S <PERLEXP> select objects matching PERLEXPSee the UNIX manual page perlre.1 for information on Perl regular expressions. PERLEXPs are arbitraryPerl expressions, from Perl regular expression statements (REGEXP) to complete blocks. They allow arbi-trary side e�ects including the modi�cation of objects.Project selected objects - may occur at most once:-P <PERLEXP> project objects using tags matching PERLEXP(match may include tag value; slow)Without -s/-S/-P options, db cat.p behaves similar to grep: The �rst argument is taken to be a REGEXP.Usage examples:� de-select every object with a Formula tag starting with SYNdb cat.p -S '!/ %Formula=SYN/' db� select formulae starting with SYN, print only Formula tagsdb cat.p -s Formula SYN -P / %Formula=/ db� change all tags in all objects with the tag ID \User" to the new ID \Owner"db cat.p -S s/ %User=/ %Owner=/ db� implement the query a And b Or c (a, b, c: PERLEXP)db cat.p -S a db -S b db > db.resultdb cat.p -S c db >> db.result

6 3.3 db m5.p: The Document Generator# cat db.result # or - removing duplicates:sort db.result | uniq� dbs mathquery1.p - a complex query written in Perl that generates a data�le for further evaluationusing Mathematica [22]. See also 6.2.Further examples are given throughout this paper, in the dbs q* scripts and as part of the test suite (seedb.test/README).3.2.1 Multi-line ObjectsNormally, objects consist of exactly one line. For easier editing and viewing however, multi-line objects arepartially supported. They are intended as an alternative object representation suitable for editing objectsusing standard text editors. Multi-line objects are delimited by a sequence of at least two linefeeds3. Mostof the other framework scripts also support a subset of these switches.Options:-h display usage / help text-m rudimentary multi-line object mode- object delimeter \n\n+(-mi/-mo) - -mi / -mo input/output-only multi-line objects- avoid whitespace-only lines within an object- *DON'T* split an object by inserting empty lines- *DON'T* add whitespace to object delimeters!- use empty lines to separate comments and objects- multi-line objects are supported by:db_cat.p, db_ed.pExample:db_cat.p -mo . db > db.editvi db.editdb_cat.p -mi . db.edit > db3.3 db m5.p: The Document GeneratorThe generator creates document �les from databases. Both document layout and content are stored asobjects in database �les, and can be reused later. At the core, db m5.p is a depth-�rst macro processor thatallows certain objects to contain Perl code blocks and also to loop within a set of selected objects. A liveexample returning interactive HTML forms is available on the DBFW home-page on the WWW [8].The layout speci�cation is provided as a set of so-called group objects. Group objects are ordinary objectsthat use special semantics for some tags when interpreted by the @@grp; grouping command. Importantcommands, variables and database object tags are shown below in Figures 3.1 - 3.3.db m5.p�s expressiveness is derived from its three key features:1. Depth-First Macro ExpansionEvaluation of the input database starts at the speci�ed object (defaulting to the object matching theregular expression / %Description=Main/ in the Perl array @db) by expanding the %Data tag: Anyembedded commands are recursively expanded 4 and the resulting text replaces the command string.If a complex command contains a *", its input is expanded �rst before applying the command itself.The macro expansion can be requested explicitely by calling &expand().3db fix.p -W \validates" a multi-line database, assuming that all empty lines are object delimeters.4Expansion takes place in the order shown in Figure 3.1: At �rst, all occurring @@nop�s are expanded, ... until at last,all occurring group objects are expanded. During each expansion, any embedded commands in the returned string are eitherrecursively expanded or stripped, if further expansion is disallowed. Thus, commands usually should not be used to computenames or data of other commands.

3.3 db m5.p: The Document Generator 7Commands:@@nop; nop (protects empty lines in input text, ...)@@//; line comment@@nn; newline@@code; run rest of attribute as Perl code@@inc*$VARIABLE; expand variable contents in output@@inc*#ATTRIBUTE; expand attribute contents in output@@perl*$VARIABLE; run variable contents as Perl code@@perl*#ATTRIBUTE; run attribute contents as Perl code@@obj*#SELECTION; include results of the selected object@@grp*#SELECTION; start a new group using the selected group object,optionally processing a set of objectsFigure 3.1: db m5.p commandsThe most important group object local variables:%object attributes of the active object%group attributes of the active group object%data all attributes on the path to the current object%groupdata all attributes of group objects on the path$grprc variables containing accumulated text$rc variable containing accumulated text (local to &expand())Figure 3.2: db m5.p variablesSome commands may additionally de�ne a new LaTeX-like environment which leads us to the secondkey feature.2. GroupingEach group object is invoked by a @@grp; command. The group object de�nes a new dynamic envi-ronment and optionally loops through a set of objects, applying the group�s %Data and %PreProc /%PostProc tags to the data of each object %object.3. Embedded CodeCommands can explicitely refer to Perl code blocks and include their results into the accumulated out-put. In addition, the group objects de�ning the document structure can optionally run Perl statementsto modify their output. Perl code blocks are evaluated within the current group�s environment andhave access to various data about the visited objects. See the online help for a detailed list of variables.See the online help text and the examples for more information on prede�ned variables and functions.Usage: db m5.p [OPTIONS] FILEAttributes (tags) of group objects:File expands to output �lename ('>X' to append to X)LoopSelect expands to SEL; loops over SELected objectsLoopSort expands to a Perl sorting orderError expands to a Perl code block printing the error message msggrprc contains the text for outputLoopPreProc expanded before loopPreProc expanded before expanding Data of the current objectData text content to expand, possibly containing commandsPostProc expanded after processing Data of the current objectLoopPostProc post-processing after �nishing the loopFigure 3.3: db m5.p tags

8 3.3 db m5.p: The Document GeneratorInvoking db m5.p:� explicit calling: db m5.p -m db.test/m5.demo� implicit calling using #!db m5.p as �rst line of an executable database �le.� with a wrapper like the cgi example dbs m5cgi.p.In addition, db m5.p may be invoked automatically by adding a new MIME-type to your httpd.The following example sets up a small interactive query interface on the World Wide Web. It is also includedin both the distribution and the DBFW home page.The �rst object is the root object for this document. The PreProc tag explicitely reads the exampleSetheodb database into the Perl array @DB public. Combined with using only non-recursive commandson @DB public, the script cannot compromise the security of the local host. Thus secure processing offoreign database �les is possible. The Data tag simply prints a WWW form and calls the second object toinclude the names of the user-selected formulae.1 # example inputs: _%Formula=NUM or simply NUM23 _%Description=cgi4 _%PreProc=@@code; open(fhlocal, '/home/setheo/DATABASE/bin/db.test/db.mo');5 @DB_public=<fhlocal>; close fhlocal;6 $pat=$db_cgi::args{'SEARCH'}; $pat=&m5_screenregexp($pat);7 $pat='.' if (!($pat));8 _%Data=<HTML>9 @@nop;10 <BODY>11 @@nop;12 <FORM METHOD="GET" ACTION="@@inc$act;">13 Select objects with (restricted) REGEXP:14 <INPUT NAME="search" VALUE="@@inc$pat;" SIZE=50>

15 <INPUT TYPE="submit" VALUE=" Search "> <INPUT TYPE="reset" VALUE=" Reset ">16 </FORM><p>17 @@nop;18 List of Formula tags of objects matching @@inc$pat; in database:19 20 @@grp*#Description,'Loop1b$',DB;21 <p>22 @@nop;23 </BODY></HTML>The second object is a simple loop that returns the Formula name of each data object selected by theLoopSelect tag. As the currently active object is available in the %object hash, inclusion of the variable$objectfFormulag is su�cient to return the value of the active object�s Formula tag. The �nal \nop"command simply protects the linefeed after the HTML list element tag. Otherwise, this linefeed might bemisinterpreted by Perl to mean the end of the current object (see Section 3.2.1).1 _%Description=Loop1b2 _%LoopSelect='/@@inc$pat;/','','DB_public'3 _%Data= @@inc$object{Formula};4 @@nop;In order to invoke db m5.p with these 0 objects from the http daemon, a small wrapper is su�cient:1 #!/usr/local/dist/bin/perl23 $0=~/([^\/]+)$/; $script=$1;4 $path = "/home/setheo/DATABASE/bin/db.doc/html";5 $binpath= "/home/setheo/DATABASE/bin";6 $act = "http:/cgi-bin/user-cgi/jakobi/$script";7 system("cd $path ;8 $binpath/db_m5.p -m -s Description cgi -e '\$act=\"$act\"' m5demo.txt");9 exit 0;

3.4 Other scripts 9The output of asking for all formulae of TPTP domain SYN in the example database, as seen by the Lynxbrowser:1 Select objects with (restricted) REGEXP:2 __34 SYN_______________56 List of Formula tags of objects matching SYN in database:7 * SYN127-18 * SYN128-19 * SYN129-110 * SYN130-111 * SYN132-1Another example is db m5.p -m db.test/m5.demo: A db m5.p database �le splitting a Setheodb databaseinto a set of HTML �les.db m5.p is a powerful extraction tool, however it is suitable only for fairly small databases, as it is ine�cientin both space and time. If you want to trade setup time for larger throughput, have a look at COHTML [5]or PHP [15].3.4 Other scriptsThis sections o�ers a short overview of the more interesting of the remaining scripts and example queries.Invoke the scripts with option -h or have a look at the comments in the source for further information.� db ed.p - reads a database completely into memory and allows interactive editing of selected objects inmulti-line mode. An example is given in section 3.5.3.� db �x.p - database cleanup and testing.Multi-line databases are supported by simply changing Perl�s input record separator. As a result,adding a blank to an empty line can already accidentally glue two objects together: An usage examplethat prints a warning for every possible instance of this \feature": db fix.p -w mdb� dbs form.p - an example of formatting a Setheodb database for human-only readable output.� db split.p - splits a database of single-line objects into many database �les. The name of the databasefor each object is computed by a user-supplied Perl expression. When using the -lowmem option, stdincannot be used for input of more than $jobsize objects. An example is given in section 3.5.3 and inthe test suite db test/README.� dbs q* - some prede�ned queries for the Setheodb format.3.5 Example: Setheodb - a Database Format for SETHEO Runs3.5.1 Application/Background: The Model Elimination Prover SETHEOModel Elimination, as described by Loveland [13], can be seen as a special kind of Tableau Calculus (see thebook of Smullyan [16]) that works directly with the clausal form of a formula. Furthermore, the duplicationof partial proofs used repeatedly in the tableau can be prevented using some kind of factorization (lemmageneration) [11]. In general, Model Elimination is a goal oriented top down procedure.The output of SETHEO is a PROLOG list (in a �le with the su�x .tree) describing the proof tree withreferences to the clauses involved in the inferences. The most important statistical information, like success,number of inferences, proof depth and proof time, can be extracted from the log �le.Above, we have described the output of SETHEO in such an extended way to demonstrate a generic viewof the output of theorem provers. If the user wants to adapt DBFW to his own theorem prover, only some

10 3.5 Example: Setheodb - a Database Format for SETHEO Runspatterns of the extractor have to be adapted, but the generated information and the tags used will nearlybe the same. So only a few changes in the framework are necessary.3.5.2 SETHEO Data FilesThis section shows example �les for the TPTP �le MSC006-1.lop. The commands used for this exampleare:� inwasm -foldup -cons MSC006-1 # preprocessing/compiling with constraints� sam -cons -dr MSC006-1 # proving with constraints and iterative deepening1. Lop Formula MSC006-1.lop (Input)1 #--2 # File : MSC006=NonObv-1 : TPTP v1.2.0. Released v1.0.0.3 # Domain : Miscellaneous4 # Problem : A "non-obvious" problem5 # Version :6 # English : Suppose there are two relations, P and Q. P is transitive,7 # and Q is both transitive and symmetric.8 # Suppose further the "squareness" of P and Q: any two things9 # are related either in the P manner or the Q manner. Prove10 # that either P is total or Q is total.1112 # Refs : Pelletier F.J., and Rudnicki P. (1986), Non-Obviousness,13 # In Wos L. (Ed.), Association for Automated Reasoning14 # Newsletter (6), Association for Automated Reasoning, Argonne,15 # Il, 4-5.16 # Source : [Pelletier & Rudnicki, 1986]17 # Names : nonob.lop [SETHEO]1819 # Status : unsatisfiable20 # Syntax : Number of clauses : 6 (1 non-Horn; 2 unit; 5 RR)21 # Number of literals : 12 (0 equality)22 # Maximal clause size : 323 # Number of predicates : 2 (0 propositional; 2-2 arity)24 # Number of functors : 4 (4 constant; 0-0 arity)25 # Number of variables : 10 (0 singleton)26 # Maximal term depth : 12728 # Comments : Rudnicki says "I think that what you call the non-obvious29 # problem from our write-up with Jeff should be attributed30 # to J. \Lo\'{s} (in LaTeX)." and "J. \Lo\'{s} is in LaTeX,31 # and it is the name of my Polish prof that told me that.32 # English approximation of his name can be typed as J. Los.".33 # : tptp2X: -fsetheo:sign MSC006-1.p34 #--35 # p_transitivity, hypothesis.36 p(X, Z) <-37 p(X, Y),38 p(Y, Z).3940 # q_transitivity, hypothesis.41 q(X, Z) <-42 q(X, Y),43 q(Y, Z).4445 # q_symmetry, hypothesis.46 q(Y, X) <-47 q(X, Y).4849 # all_related, hypothesis.50 p(X, Y);51 q(X, Y) <- .52

3.5 Example: Setheodb - a Database Format for SETHEO Runs 1153 # p_is_not_total, hypothesis.54 <- p(a, b).5556 # prove_q_is_total, conjecture.57 <- q(c, d).5859 #--2. stdout/stderr Output of inwasm1 inwasm V4.0 [wasm-less] Copyright TU Munich (June 96)2 command line: /home/setheo/bin.solaris/inwasm -cons -foldup MSC006-13 codegen: 116 [19997] labels, 0 colls [343 accesses]4 Assembler optimization: 67 labels read, 25 labels output5 MSC006-1.hex generated in 0.04 seconds6 Parsing input-file.7 Preprocessing: Generating weak-unification.8 Preprocessing: purity9 Message: Deleted clauses : None.10 Message: Making sortarray.11 Preprocessing: orbranch reordering12 Preprocessing: inserting tautology constraints13 Message: 5 tautology-constraints generated.14 Preprocessing: inserting subsumption constraints15 Message: 2 subsumption-constraints generated.16 Preprocessing: removing redundant constraints17 Message: 5 constraints deleted.18 Preprocessing: fanning19 Preprocessing: inserting reduction steps20 Preprocessing: inserting symmetry constraints21 Message: 2 symmetry-constraints generated.22 Preprocessing: removing redundant constraints23 Message: 4 constraints deleted.24 Preprocessing: subgoal reordering25 Codegeneration.3. sam .log File MSC006-1.log1 SAM V3.3 Copyright TU Munich (December 22, 1995)23 Options : -cons -dr MSC006-145 using antilemma-constraints6 using regularity-constraints7 using tautology-constraints8 using subsumption-constraints910 Start proving...1112 -d: 2 time < 0.01 sec inferences = 9 fails = 713 -d: 3 time < 0.01 sec inferences = 30 fails = 2314 -d: 4 time = 0.02 sec inferences = 100 fails = 7915 -d: 5 time = 0.04 sec inferences = 365 fails = 29116 -d: 6 time = 0.12 sec inferences = 1465 fails = 124417 -d: 7 time = 0.33 sec inferences = 5505 fails = 49161819 ******** SUCCESS ************2021 Number of inferences in proof : 2022 - E/R/F/L : 17/ 2/ 1/ 023 Intermediate free variables : 524 Intermediate inferences : 2625 Intermediate open subgoals : 626 Generated antilemmata : 4627 Number of unifications : 747428 - E/R/F/L : 3452/ 2665/ 1357/ 029 Number of generated constraints : 387730 - anl/reg/ts : 99/ 1612/ 2166

12 3.5 Example: Setheodb - a Database Format for SETHEO Runs

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

dbs_gen.p

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

database files

editor, ...
user scripts,

db_split.p

db_cat.p

Query-Interface

Setheo Log Files

1(2)

Extractor

Database splitting

1

n

predefined
queries,...

- Mathematica: graphics
- db_m5.p: formatted files

(dynamic WWW pages, ...)

Postprocessing:Figure 3.4: The software-IC compatibility map31 Number of fails : 656032 - unification : 207833 - depth bound : 136634 - constraints : 311635 - anl/reg/ts : 99/ 485/ 253236 Number of folding operations : 49237 - one level : 8138 - root : 11539 Instructions executed : 2446640 Abstract machine time (seconds) : 0.5341 Overall time (seconds) : 0.584. .tree File MSC006-1.tree51 [2 [~query__,[0 , ext__(0.1,5.1)] ,[3 [query__] ,4 [~p(a,b),[1 , ext__(5.2,1.1)] ,[5 [p(a,b)] ,6 [~p(a,d),[2 , ext__(1.2,1.1)] ,[7 [p(a,d)] ,8 [~p(a,c),[3 , ext__(1.2,4.1)] ,[9 [p(a,c)] ,10 [q(a,c),[4 , ext__(4.2,3.2)] ,[11 [~q(a,c)] ,12 [q(c,a),[5 , ext__(3.1,2.2)] ,[13 [~q(c,a)] ,14 [~q(a,d),[6 , ext__(2.3,4.2)] ,[15 [q(a,d)] ,16 [p(a,d), [7 , red__(4.1,2)]]]],17 [q(c,d),[8 , ext__(2.1,6.2)] ,[18 [~q(c,d)]]]]]]]]],19 [~p(c,d),[9 , ext__(1.3,4.1)] ,[20 [p(c,d)] ,21 [q(c,d),[10 , ext__(4.2,6.2)] ,[22 [~q(c,d)]]]]]]],23 [~p(d,b),[11 , ext__(1.3,1.1)] ,[24 [p(d,b)] ,25 [~p(d,c),[12 , ext__(1.2,4.1)] ,[

3.5 Example: Setheodb - a Database Format for SETHEO Runs 1326 [p(d,c)] ,27 [q(d,c),[13 , ext__(4.2,3.2)] ,[28 [~q(d,c)] ,29 [q(c,d),[14 , ext__(3.1,6.2)] ,[30 [~q(c,d)]]]]]]],31 [~p(c,b),[15 , ext__(1.3,4.1)] ,[32 [p(c,b)] ,33 [q(c,b),[16 , ext__(4.2,3.2)] ,[34 [~q(c,b)] ,35 [q(b,c),[17 , ext__(3.1,2.3)] ,[36 [~q(b,c)] ,37 [~q(d,b),[18 , ext__(2.2,4.2)] ,[38 [q(d,b)] ,39 [p(d,b), [19 , red__(4.1,11)]]]],40 [q(d,c), [20 , fac__(2.1,13)]]]]]]]]]]]]]]41].3.5.3 DBFW at Work: Software-IC Compatibility MapThe \execution" graph in Figure 3.4 shows most possible �lter combinations for the framework. Filters maybe connected by a pair of directional arrows that go through an intermediate database �le. The numbers atthe arrows denote the number of new database �les generated by a �lter6.An example for combining the �lters:cd db.test/log1. find . -name *.log* -print | dbs_gen.p > db12. db_cat.p -s Formula SYN db1 -d db2 > db33. db_ed.p -i db3 db4s Formula SYN127x4. wc db45. db_split.p -l -i 's/^.*_%Formula=(\S+).*$/$1/' db4 | wcHere we assume that log �les have the su�x .log. The �rst line generates a database �le db1 for the givenlog �les. The next line splits this database into db2 and db3 . The later database �le contains the objectsof the TPTP domain SYN. The third line interactively edits (db ed.p) all objects for formula SYN127 andwrites the changed database back to db4 . Using a standard UNIX command, line 4 returns the numberof objects in db4 . The number of lines is identical to the number of objects, as the database generatedabove contains exactly one object per line, no comments, and no empty lines. The �nal line splits db4 intoindividual databases for each formula and lists the names of the di�erent formulae, which are again countedby the UNIX command wc. Note that several objects can occur for a single formula and that no uniqueobject ID has been de�ned within Setheodb.This example demonstrates some of the scripts and their interaction with each other using database �lesas a common data format. The integration of the framework into the standard UNIX environment is alsocovered. The example is included in the distribution.3.5.4 Tag DescriptionThe Setheodb format provides tags to describe� the environment, date and owner %User of the run,� the command line parameters and other data on the SETHEO subprograms (inwasm, wasm, sam),� the name of the proven formula, and� the proof itself.5Whitespace before closing square brackets has been compressed.6For the moment, there are no �lters implemented that require multiple input �les. However, the UNIX commands sort andcomm can be used for testing multiple database �les on common objects.

14 3.5 Example: Setheodb - a Database Format for SETHEO RunsTAGID CONTENT%Formula= formula name (TPTP-style name)%Env= host, datestamp of the log �le, ...%Comment= comment%User= owner of the log �le%Errors= list of detected error strings%IVersion= inwasm (parser) version%IPar= inwasm parameter%WVersion= wasm (compiler) version%WPar= wasm parameter%SVersion= sam (inference machine) version%SPar= sam parameter%Time= runtime (cpu-relative)%Inf= inferences (all and sorted by types)%Unif= uni�cations%Fail= fails%IterDepth= greatest depth (in the proof tree) visited (-d)%IterInf= greatest number of inferences made (-i)%IterLocInf= combination bound, local inferences (-loci)%TVersion= TPTP version%FormState= state (if TPTP)%FormCl= number of clauses%FormLit= number of literals%Result= result (if tag de�ned: exactlyone of TIMEFAIL|TOTALFAIL|BOUNDFAIL|SUCCESS|ERROR,otherwise sam has had trouble or was not called)%Log= name of the object�s log �leFigure 3.5: List of standard tags of the Setheodb formatAdditional tags may be de�ned as necessary for each object (maintenance, version control, semi-privateinformation for the user, ...). Tag IDs are extended into strings matching a REGEXP (%nS+=) that byde�nition may not occur within tag values. Figure 3.5 shows the current list of tags for the Setheodb-format.Tags may also be omitted7.Example for an object:_%Formula=COL013-1 _%Result=ERROR _%SVersion= _%Env= sj22, 30. Februar 95Feel free to add new tags to this list. The database scripts are mostly independent of the tag IDs used.Unique object ID tags are not used at the moment.The database �le consists of comments (lines starting with '#' in column 1), empty lines and objects. Objectsare structured into attributes or tags: %<ID>=<VALUE>. Each tag can contain arbitrary text (except textmatching the Perl REGEXP %nS+=). To allow use of simple regular expressions in queries, please use thetags within your objects in the order given above8.See db cat.p -h setheo and the patterns in dbs setheodb.pat for further information.3.5.5 A Few Lines of the DatabaseIn this example, we will generate a database from the �les db.doc/example.log, db.doc/example1.log9 :echo example.log ; echo example1.log) | dbs_gen.p | db_cat.p -mo .The -mo switch of db cat adds a line-feed after each tag to allow easier editing of database �les using standardtext editors. Normally all tags of an object would be concatenated into a single line. The �nal dot of the7A missing tag in itself may be information: An object without %Result is generated for invalid log �les, anything from acore-dump-used-as-a-log-�le to abnormally aborted SETHEO-runs.8This order should be identical to the one used for the extractor patterns de�ned in dbs setheodb.pat.9These example log �les are cut down SETHEO logs, modi�ed to give a human readable hostname that is suitable forpublication. They also demonstrate the setting of additional tags from within log �les (DUMMY-TAG). The example �les arecontained in the distribution of DBFW [8].

3.5 Example: Setheodb - a Database Format for SETHEO Runs 15db cat.p command is necessary: it is a trivial REGEXP selecting all objects in the database. The commandabove prints these two (multi-line) objects:1 _%Formula=SET001-22 _%Env=This_run's_hostname 9607051405143 _%User=jakobi4 _%CountLop=15 _%IVersion=3.26 _%IPar=-cons -linksubs7 _%Log=example.log8 _%DUMMY-TAG=DUMMY-VALUE910 _%Formula=SET001-311 _%Env=This_run's_hostname 96070514043812 _%User=jakobi13 _%CountLop=114 _%IVersion=3.215 _%IPar=-cons -linksubs16 _%Log=example1.log17 _%DUMMY-TAG=DUMMY-VALUE

4. Porting and MaintenanceThis sections o�ers information and hints to future users of the framework.Porting of the non-Setheodb scripts should require changing only some executable paths, most notably thepath of Perl 5 binary (look for /home or /usr strings in the scripts). The framework has been tested onHP-UX, Linux and Solaris 2.4.1 Copyright, WarrantyThe framework is (C) TU M�unchen. It is provided under the terms of the GNU General Public License, acopy is provided in the distribution db.doc/LICENSE. For the copyright of the WWW-Server demo basedon the network security scanner Satan, please see �le db.www/copyright.html. Additional release notes canbe found in db.doc/README.This means - among other things - that there is no warranty on the product and that we will accept noliabilities.However, consider this:� You backup your database �les regularly (don�t you!?).� You can use the text editor of your choice to access the data in the database �les.� You can use standard UNIX tools like grep to access your database.� With a few lines of Perl, you can convert your database into any format you desire, for example. aninput format for a newly bought relational database. Similarly, you can use db m5.p to preprocess theexport format of an RDBMS.4.2 Support / How to GetThough there is no formal support. The authors are interested in improving the framework and in coordi-nating e�orts of users to port, improve or integrate the the framework in other packages. Please send aneMail to one of the authors or to setheo@informatik.tu-muenchen.de. Thank you.ILF: For further information on ILF contact dahn@mathematik.hu-berlin.de.SETHEO homepage:� http://wwwjessen.informatik.tu-muenchen.de/ setheo/� ftp://ftp.informatik.tu-muenchen.de/local/lehrstuhl/jessen/Automated Reasoning/SETHEO/Framework homepage:� http://wwwjessen.informatik.tu-muenchen.de/~setheo/database framework/� ftp://ftp.informatik.tu-muenchen.de/local/lehrstuhl/jessen/Automated Reasoning/SETHEO/database/4.3 Files and DocumentsThe �les to install can be found in directory . (or bin). Copy all �les and links to a directory and add it toyour $PATH variable. The sub-directories are optional.An overview of the �les, directories and naming conventions follows in the Figures 4.1 and 4.2.

4.4 Requirements 17File/Dir Descriptiondb.doc/ various documents and readme �les, including Setheodb-speci�c documentsin German:� admin.txt (adding new objects and maintaining the Setheodbdatabase),� db.ger.html plus examples (a short introduction talk from early in1996, see HTML source of the talk for additional notes; provided asis).This directory also contains the input data for most of the ex-amples included in this paper.db.test/ a small test suite for basic functionality tests - read and run the README�le.db.tool/ support programs like countlop. These tools are not part of the frameworkitself.db.www/ a WWW interface example (unsupported; call html.pl from within thedirectory)db * framework scripts and data �les, format independentdbs * Setheodb-speci�c scripts and data �les (mostly intended as examples ;dbs q* - some query examples)dbi * ILF-speci�c scripts and data �lesdb* *.frm format description (for display by db cat.p)db* *.pat extraction pattern for speci�c formats (for db gen.p, suitably symlinked orexplicitely requested)db* *.tpl new entry template (for db ed.p,suitably symlinked or explicitely requested)Figure 4.1: Files in the installation directory treeScript/Packages Descriptiondb cat.p query-interface, also a Perl packagedb cgi.p cgi support functions, to be used as a Perl packagedb ed.p allows editing selected objectsdb �x.p cleanup of database �les, object delimeters, etcdbs form.p prints the objects of a Setheodb database in a more structured waydb gen.p automated extractor script (for Setheodb symlink to db gen.p)db m5.p automated document generation using a description contained in adatabase, also a Perl package (cgi wrapper: dbs m5cgi.p)db split.p splits a database into several database �les according to a Perl expressionFigure 4.2: Scripts and Perl packages4.4 Requirements� a UNIX-like enviroment� Perl5. Perl5.001m or higher is required for correct globbing in the WWW-example. After replac-ing quotemeta, namespace commands and REGEXP-look-ahead-constructs (\(?X...)"), the scriptsshould also run under Perl4.036. The scripts are tested under Solaris 2, HpUX and Linux. The scriptsdo not require UNIX speci�cs, so the framework itself should be able to run under a DOS port of Perlwith few modi�cations. It may be necessary to disable the low memory hacks in some scripts that usesthe exec call to split the processing of large databases in palatable chunks.Please mail your modi�cations to the authors! Thank you.4.5 PortingMost of the dbs * / db.www scripts are o�ered as example, as they are useful only in Setheodb context.Porting of the db * scripts should only require changing of some executable paths, most notably the Perlbinary (look for /home or /usr strings).

18 4.6 Designing a Database FormatSome scripts contain code to cope with large database �les, sometimes using an internal variable $jobsizefor de�ning the size of the chunk to operate on (usually 500 objects) 1. db m5.p is requires a port of Perlwith extremly stable memory handling.4.6 Designing a Database FormatDesigning a new format is a straight forward process: write a list of tag IDs with their semantics and tellyour users about this list. The list can be easily extended: simply add some new tags to some existingobjects.In case you want to implement an automatic extractor/conversion script, you should invest some timein designing your format. Tag IDs should be expressive, and the object structure should allow for easyconversion to or from other formats. If other users or scripts use your databases, your format should allowfor easy processing of the information. Be certain to catch all relevant information in your database, especiallyif the original log �les and other data are available only temporarily.If you need relational operations like Joins, you should consider the use of the framework as an intermediatedata-extraction step before storing the data into a �nal database.To generate a new format, a user has to create (and edit) several resource �les:� a template �le for creating the tags (su�x .tpl, optional, supported by db ed.p)� a �le containing extraction patterns (su�x .pat, required for automatic extraction, used by db gen.p)� a format description (su�x .frm, optional, used by the online help facility of db cat.p)db ed.p and db gen.p load the resource �le requested by the -f switch or autoload a resource �les by chang-ing the su�x of their invocation name. So Setheodb�s dbs gen.p is simply a symbolic link to db gen.p thatcon�gures the extractor for the Setheodb format. If you want to use the extractor, modifying the extrac-tion patterns in a copy of dbs gen.pat is going to be your main task in adapting the framework to a newenvironment.If you really need to use di�erent $pattagstart and $patdatastart2 for various formats, you can de�nethese variables di�erently for each format in an if-elsif-cascade depending on its basename.4.6.1 The Extractordb gen.p uses extraction patterns (Perl code blocks) to extract the values of object attributes from thespeci�ed text �les. The Perl code blocks implement your heuristics to extract the information you want.This may include side-e�ects for other patterns like truncating the input data to scan, etc. All extractionpatterns are always run, even if the return value will be overridden by command line arguments later on.See dbs gen.p and dbs gen.pat for examples.Pseudocode of the extactor main loop generating the object:� The current line of input is the name(s) of the input �le(s) for parsing - read the �le(s) into $log and$olog.� Gather embedded tags into %logtags. Embedded tags can be overridden by option T.� Gather command line arguments (defaults and overrides) and embedded tags in the hahses %overrideand %defaults.� Run all extraction patterns, possibly using the corresponding values from %override or %defaults.Delete corresponding entries in the hashes %override and %defaults.1In part, this was made necessary by the fact that Perl leaks memory when doing many evals. This occurs for versions fromPerl 4 ranging upto at least 5.001m.2These variables are used to extend the tag ID into a unique string. They are de�ned in db cat.p and db gen.p.

4.7 Database Maintenance 19� Add remaining entries of %override and %defaults to the object.When writing the extraction patterns, you should be careful to allow and watch for binary data such as coredumps that got somehow included into the set of input �les to extract... The main loop currently restrictsall tags to less than 128 characters, marking all binary characters as '?'.To add a new set of extractor patterns in a �le called YourFormat.pat, simply add a symlink with the samebasename YourFormat.p to db gen.p. The extractor automatically looks for its con�guration in the �le withits invocation name and a su�x of .pat. Alternatively, you can use the -f option to explicitely request aspeci�c pattern �le.4.6.2 The Query-Interface as a Packagedb cat.p can be used as a package to process a database that has been read into a Perl array. The interfaceconsists of the @db cat::db array containing the input database. The array @db cat::db and @db cat::del(optional) are the output databases. $db cat::project and @db cat::pattern contain the patterns forProjection and Selection. If you wish to change the patterns, you have to reset undefine $db cat::main�rst: The patterns are compiled into a dynamically de�ned subroutine, to reduce memory leakage duringnumerous eval calls.For more information, see the� variable de�nition section at the beginning of db cat.p (package ags, etc.).� usage example at the end of db cat.p. A larger example is the script for interactive editing, db ed.p.Other packages within the framework are the document generator db m5.p and db cgi.p, which contains somesupport functions for cgi usage on the WWW. See the source of these scripts for more information.4.6.3 TestingThe �le db.test/README documents and implements a small testsuite.4.7 Database MaintenanceMaintenance heavily depends on your use of the framework. If you simply use a modi�ed extractor toobtain and massage the data for your database, maintenance is restricted to keep the extractor talking tothe database in a language the database accepts.If you don�t need the full relational model and the object metapher of the framework is su�cient, you canuse the framework�s database �les for permanent storage, using db cat.p or your texteditor to access yourobjects.Adding objects is easy: cat dbnew >> db.Removing objects is only slightly more complex:db_cat.p -s Formula SET db > dbnewmv db dboldmv dbnew dbThis eliminates all objects with an attribute %Formula containing the string \set" (case does not matterfor option -s).The challenge is what we like to call \aging" your objects. For Setheodb this means the regular removingof objects from old SETHEO versions. The �le db.doc/admin.txt o�ers a commented maintenance sessionin German. Assigning object owners may help to identify obsolete objects. Enlightening your users touse embedded tags to better document their objects-to-be in the log �les for the extractor may also help(intentions for this SETHEO run, etc). Maintenance in our case proves to be mostly a problem of de�ningand applying a processing policy for the contents of the database.

20 4.8 Finally: Bugs4.8 Finally: BugsCertainly. None known for the framework itself, excepting the number of changes per month per script,which is still quite high.A word of warning about the multi-line object mode: The mode relies on the objects being separated bywhitespace containing at least two linefeeds without any characters inbetween. It is very easy to accidentallyglue several objects together when editing the database manually. Do not rely on this \feature" to putseveral text paragraphs into a tag - use some special character to distinguish the paragraph break from anempty line and object delimeter3. db �x.p tries to �x any \empty" lines by removing all blanks and tabs.db ed.p interprets arbitrary whitespace lines in objects returned from the editor as object delimeters. GNUcat�s -A option can be used in conjunction with grep to display lines containig questionable whitespace.

3db cat.p also replaces the sequence @@nn by a linefeed in reading or writing an object.

5. Available Database Formats and PatternsThis section describes all available extractor patterns and database formats. Information on ILF-variants ofthe patterns and formats can be found in Section 6.3. See Section 3.5 for the Setheodb format.For now, the database patterns are independent of each other and do not try to translate prover speci�coutput into a generic format.5.1 Otter: dbx otter.*The Otter extractor patterns are based on version 3.0.4 (August 1995). The following description of Otter [14]is quoted from the version 3 online manual:Otter (Organized Techniques for Theorem-proving and E�ective Research) is a resolution-styletheorem-proving program for �rst-order logic with equality. Otter includes the inference rulesbinary resolution, hyperresolution, UR-resolution, and binary paramodulation. Some of its otherabilities and features are conversion from �rst-order formulas to clauses, forward and back sub-sumption, factoring, weighting, answer literals, term ordering, forward and back demodulation,evaluable functions and predicates, and Knuth-Bendix completion. Otter is coded in C, is free,and is portable to many di�erent kinds of computer.The example below uses tba gg.in as input, which can be found in the Otter testsuite.otter < tba_gg.in > tba_gg.out 2>&1echo "tba_gg.out" | db_gen.p -f dbx_otter.pat1 _%Formula=tba_gg2 _%Env=root on kefk, Sun Mar 9 14:12:48 19973 _%Version=Otter 3.0.4, August 19954 _%Par=PAR15 _%Time=0 (0 hr, 0 min, 0 sec wallclock)6 _%Length=87 _%Level=68 _%Cl_Stats=18 379 1659 _%Result=SUCCESS5.2 Discount: dbx discount.*The Discount patterns are based on version 2.1L, as maintained by Stephan Schulz. He describes Discount [7]as follows: TAGID CONTENT%Formula= formula name%Env= host, datestamp of the log �le, ...%Comment= comment%Errors= list of detected error strings%Version= version%Par= parameter%Time= runtime%Length= length of proof%Cl Stats= various statistics%Result= result (if tag de�ned: exactly SUCCESSFigure 5.1: List of standard tags of the Otter format

22 5.2 Discount: dbx discount.*TAGID CONTENT%Formula= formula name%Env= host, datestamp of the log �le, ...%Comment= comment%Errors= list of detected error strings%Version= version%Par= parameter%Time= runtime%Length= proof steps (discount facts)%Cl Stats= various statistics%Result= result (if tag de�ned: exactly SUCCESS)Figure 5.2: List of standard tags of the Discount formatThe Discount system is a distributed equational theorem prover based on the teamwork methodfor knowledge-based distribution. It uses an extended version of unfailing Knuth-Bendix com-pletion that is able to deal with arbitrarily quanti�ed goals. Discount features many di�erentcontrol strategies that cooperate using the teamwork approach. Competition between multiplestrategies, combined with reactive planning, results in an adaptation of the whole system to givenproblems, and thus in a very high degree of independence from user interaction.Discount-2.1L branched o� the main Discount line after version 2.0 and concentrated on imple-menting learning strategies suitable for the use in sequential mode. It is maintained by StephanSchulz, <schulz@informatik.tu-muenchen.de>. Important features of Discount-2.1L are occa-sionally ported back to the main Discount line (now version 3.0).Example:# input file dsc_BOO001_1discount dsc_BOO001_1 > dsc_BOO001_1.logmextract -n -n2 -s 2> dsc_BOO001_1.mextract_statisticsecho "dsc_BOO001_1.log" | db_gen.p -f dbx_discount.patThe above command sequence generates the following object:1 _%Formula=dsc_BOO001_12 _%Ordering=XKBO inverse : 1 > multiply : 1 > a : 13 _%Time=0.025 s / 0.000 s (real)4 _%Length=16 written; (read: 356 / first extraction: 16)5 _%Cl_Stats=13 Regeln 1 Gleichungen 74 kritische Paare 0 kritische Ziele6 186 Reduktionen7 _%Result=SUCCESS

6. Other ApplicationsThe �le db.doc/db.ger.html contains a short talk (in German) on the framework, including the www interfaceand the Mathematica example. The HTML code of the talk contains additional notes to the \slides".6.1 A Partial WWW InterfaceA simple WWW interface demonstration is provided in the directory db.www. The script html.pl starts asmall, personal Perl www server based on Satan (the network security scanner) and can be used with anybrowser. The server provides a restricted interface to some of the framework�s scripts. The example isunsupported and provided as-is.Due to some queries� memory requirements, it is useful to start a new server / browser pair for each useron the host (s)he is using, with this user�s priviledges.The demonstration o�ers only a subset of all possible execution paths through the framework for Setheodbdatabase �les: for example, db cat.p is called at most once.More information is available in� db.www, see also �le db.www/copyright.html� db.doc/form.ps� db.doc/result.psBugs: The Perl version must be at least 5.001m for successful globbing of USER-relative �lenames.Submitting the form in Figure 6.1 corresponds to these commands:db_cat.p -s Formula SET /home/setheo/DATABASE/DB/db.setheo |dbs_mathquery1.p6.1.1 Another WWW-InterfaceThe framework is also suitable for use as a low-cost (read no-cost) database within a cgi-bin script for normalUNIX-based websites. See the section on the document generator and the example cgi wrapper dbs m5cgi.pand database db.test/m5.demo.6.2 Complex Queries and Graphical Post-ProcessingMore complex queries can be written in Perl using the query interface as a Perl package. For example, adata �le returned by such a query can be read by Mathematica to generate a graphical answer (Figure 6.2).The script dbs mathquery1.p in combination with the Mathematica notebook (db.doc/math.gfx1.mb) is anexample for a fairly complex query returning a graphic display as answer.Bugs: The notebook is a �rst attempt at graphical postprocessing using Mathematica. It is usable andcan serve as a rough guide, however it�s no polished template for your applications. It is also a part of theGerman talk in db.doc/db.ger.html.More information is available in� dbs mathquery1.p� db.doc/math.gfx1.mb

24 6.3 Integrated Logical Functions (ILF)

Figure 6.1: A request to the server� db.doc/math.gfx1.ma.real.psFigure 6.2 shows the results of certain SETHEO runs depending on run time and TPTP problem domain.It is the result of applying the Mathematica notebook to the data�le returned by the form above. For thegraphic shown here, you have to select all relevant runs from the database, for example by changing thecontents of the �eld value1 to \.".6.3 Integrated Logical Functions (ILF)We are currently integrating the framework into ILF (Integrated Logical Functions [6]), a front-end for severalautomated theorem provers. The framework is used within ILF to collect statistics on the success of theprovers and their tactics. Beginning with SETHEO, we are adapting DBFW to cooperate with other proversintegrated in ILF, such as DISCOUNT [2], KoMeT [4], OTTER [14] and SPASS [20].6.3.1 Application/Background: ILFWe wanted to use the database tools to get some information about the relevant use of SETHEO in "real\contexts, as they occur while supporting mathematicians proving theorems or computer scientists verifyingcommunication protocols. Therefore we integrated it into the system ILF [6] developed at the Humboldt-University at Berlin. ILF is a system that integrates automated theorem provers, proof tactics for interactive

6.3 Integrated Logical Functions (ILF) 25
Depth-Folded-Runs by Reinhold

G
R
A
1

C
I
V
4

C
I
D
4

A
L
G
4

C
O
M
6

P
R
V
9

L
A
T
1
0

M
S
C
1
1

A
N
A
1
9

L
D
A
2
3

T
O
P
2
4

P
L
A
3
0

R
O
B
3
4

P
U
Z
4
0

B
O
O
5
1

C
A
T
5
9

H
E
N
6
4

R
N
G
1
0
0

C
O
L
1
0
5

G
R
P
1
4
8

G
E
O
1
6
5

L
C
L
2
7
8

S
Y
N
2
9
9

N
U
M
3
0
9

S
E
T
7
0
0

0..1

0..10

0..100

0..1000

Time

0

100

200

 Occurences

G C C
I

A
L

C
O

P
R

L
A

M
S

A
N

L
D

T
O

P
L

R
O

P
U

B
O

C
A
T

H
E
N

R
N
G

C
O
L

G
R
P

G
E
O

L
C
L

S
Y
N

N
U
M

S
E
TFigure 6.2: Graphical processing of query results using Mathematicadeductive systems and models within a graphical user interface.Research in the �eld of theorem proving in many groups in several countries has created a lot of sophisticatedtools including� automated theorem provers for various logical calculi,� rewrite systems,� proof tactics,� model �nders and� domain speci�c methods.ILF is a tool that can be con�gured in many ways to Integrate all these Logical Functions. The commonfeature of these tools that is used for this integration is that they all can be used to modify a knowledgebase.ILF is applied on two di�erent levels. It yields methods of testing the power of tools to support logicallycorrect arguments in a speci�c �eld. Several ways to combine these tools in proof tactics can be testedrapidly. When a collection of useful proof tactics has been obtained, it can be encapsulated as a set of "rulesof inference\ in a new interactive or automated deductive system. It is also possible to extend an existingsystem in this way. This new, more powerful system can be tailored to meet exactly the needs of an enduser, making available just those procedures that his kind of problems demand.Perhaps the most challenging feature of ILF is its modularity. The power of ILF can be easily extendedby integrating further systems and developing libraries of domain speci�c proof tactics. In fact, for anexperienced PROLOG programmer, it is a matter of a few days to integrate a new system that has beendeveloped somewhere else independently.Within the DFG-Schwerpunkt "Deduktion" of the Deutsche Forschungsgemeinschaft the prover SETHEOwas made available to ILF together with other automated provers.ILF can be con�gured as a ProofPad to assist a user without special knowledge in automated theorem provingin editing elementary proofs, making the best possible use of the power of automated theorem provers.

26 6.3 Integrated Logical Functions (ILF)Using ILF, there were solved problems in the domain of lattice ordered �elds, communication protocols, andprocessor veri�cation, using the support of SETHEO. The system is used not only by its creators, but alsostudents (of mathematics) used it for their diploma thesis [21].Within ILF, the context is quite di�erent to that of the TPTP. The �les are present only temporarily, so thedata base has to be updated immediately. The �lenames have no semantics, and comments contain at mosta pointer to the goal and the names of the used axioms. Other information on predicates, formula lengthand number etc. have to be derived directly from analyzing the PROLOG formulae.Interesting information will be here of another kind as in TPTP. For example, we want to know how manyaxioms were really used in the proof, which domain the problems belongs to, how many problems the proverwas able to prove using which resources and so on.6.3.2 Porting Log� The document generator immediately stressed a buggy port of Perl 5 into core dumps. Furthermore,strange core dumps occured in shell scripts, which we traced down to a crippled /bin/sh version. Perlwas subsequently upgraded to a stable 5.003 port, and we replaced the troublesome Bourne shell bycalls to bash (or alternatively: ksh).� The Setheodb database format was slightly changed for ILF (see dbi ilf setheo.*).{ Provers may attempt several di�erent strategies in parallel for proof job, that is for each proofsought by ILF:� ID tag added: %ID=ILF.PROVER.USER.DATESTAMP(#N), where N is the node number in casethere are several objects for a single proof job. Example:_%ID=ILF.SETHEO.jakobi.970215050255#1� ST ID (a.k.a. Success Task): This tag has either the value SELF or the value of the ID tagof the �rst node returning a proof. Some tags of the success task object are appended to allother objects of the current job (pre�x ST).Note that the node number is depending on machine load! Note also that the distributionof proof tasks to machines should be randomized in order to be able to obtain meaningfulstatistics for large databases.{ Some tags such as USER and ENV have been removed.{ Standardized tags for all provers within ILF: ID, Result, in addition to any embedded tagsprovided by ILF itself.� dbi mod.p performs prover-independent database postprocessing.{ Generation of ST tags for jobs with parallel prover instances.{ Appending selected objects to user-de�ned databases.{ Support for prover development: The user may automatically mail user-selected objects to theprover developers.The user options can be set in the automatically created resource �le $USERILFHOME/.dbfwrc, whichalso documents these features.Example object for a single node from a parallel proof job using SETHEO (slightly shortened):1 _%ID=ILF.SETHEO.jakobi.970314161005#52 _%ST_ID=ILF.SETHEO.jakobi.970314161005#43 _%Formula=ilf.94 _%IVersion=3.3.15 _%IPar=-cons

6.3 Integrated Logical Functions (ILF) 276 _%SVersion=3.37 _%SPar=-cons -batch -cputime 120 -cons -wdr -singledelay 2 -forcegr ...8 _%FormCl=1199 _%FormLit=30910 _%FormLength=711 _%FormPred=16 allowedOp/1 contd/3 equal/2 function_like/3 gmyeq/2 gr/2 h/1 ...12 _%ST_IPar=-cons _%ST_SPar=-cons -batch -cputime 120 -cons -wdr -dynsgreord 5 ...The integration of DBFW into ILF is completed, with SETHEO as the �rst supported prover.6.3.3 How to Add Support for A New ProverCreate a new or modify existing extractor patterns for the new prover. Then, add the following lines to thewrapper of the prover in question:1 # PROVER - directory name for the prover, e.g. setheo2 # BASENAME - basename for all files of the active ILF job3 # JOBNR - number of the ILF job (reserved)4 # MAXTASK - number of task running in parallel (1..N)5 # SUCCESSTASK - number of task returning the first proof,6 # optional (one of 1..MAXTASK)7 $database_script="$ENV{USERILFHOME}/dedsys/$PROVER/database.p";8 $database_script="$ENV{ILFHOME}/dedsys/$PROVER/database.p"9 if not -x $database_script;10 system "$database_script $BASENAME $JOBNR $MAXTASK $SUCCESSTASK11 # > /dev/null 2>&1";Finally, adapt a copy database.p, the prover speci�c database wrapper. It sets the environment for db gen.pand calls dbi mod.p to postprocess the generated database.

7. SummaryThe database framework implementation described in this paper is suitable for medium sized datasets thatcan be seen as a collection of objects. The relational operations Selection and Projection are available. Join,however, is not.The framework provides tools to extract objects from text �les, to modify collections of objects, to generatedocuments or reports from a set of objects, and to convert objects to di�erent formats.The conversion of DBFW database �les to speci�c text formats is easy. Thus it is possible to use theframework as a front-end for arbitrary database systems, to extract objects from text �les. The intermediateDBFW database can be converted and exported later on to a full-blown relational database system, suchas transbase or postgres. Similarly, the framework can be used to post-process objects from other databasesystems for access via the World Wide Web.The framework is a useful tool for supporting development, testing and application speci�c tuning of au-tomated theorem provers. The success of SETHEO at the CADE-13 system competition [19] shows thepromise of a tool that allows more e�cient tuning and testing of a prover against an extensive library ofproof tasks such as the TPTP[18] library.The framework is available under GNU GPL on the World Wide Web[8].

8. References
[1] Denzinger J., Pitz W.: Das DISCOUNT-System: Benutzerhandbuch. University of Kaiserslautern, SEKIWorking Paper SWP-92-16.[2] Avenhaus J., Denzinger J., Fuchs M.: Discount: A System for Distributed Equational Deduction. Pro-ceedings 6. RTA, pp. 397-402, Springer, 1995.[3] Beth E. W.: The Foundations Of Mathematics. North-Holland, 1969.[4] Bibel W., Br�uning S., Egly U., Rath T.: KoMeT. Proceedings of CADE-12, Springer, 1994.[5] COHTML: http://gladiole.isbe.ch:8080[6] Dahn B. I., Gehne J., Honigmann Th., Wolf A.: Integration of Automated and Interactive TheoremProving in ILF. Proceedings of CADE-14, Springer, 1997 (to appear).[7] Denzinger J., KronburgM., Schulz S.: Discount - A Distributed and Learning Equational Prover. Journalof Automated Reasoning, 1997 (to appear).[8] DBFW: http://wwwjessen.informatik.tu-muenchen.de/~setheo/database framework/[9] Fitting M. C.: First order logic and automated theorem proving. Springer, 1990.[10] Ibens O., Schumann J.: SETHEO User Manual. Technical Report, Technische Universit�at M�unchen,Institut f�ur Informatik, 1997 (in preparation).[11] Letz R., Mayr K., Goller Ch.: Controlled Integration of the Cut Rule into Connection Tableau Calculi.Journal of Automated Reasoning, 4 (1994).[12] Letz R., Schumann J., Bayerl S., Bibel W.: SETHEO: A High-Performance Theorem Prover. Journalof Automated Reasoning, 8 (1992).[13] Loveland D. W.: Automated Theorem Proving: a Logical Basis. North-Holland, 1978.[14] McCune W.: Otter 2.0. Proceedings of the 10th CADE, pp. 663-664, Springer, Berlin, 1990.[15] PHP: http://www.vex.net/php[16] Smullyan R. M.: First-Order Logic. Springer, 1968.[17] Stickel M. E.: A Prolog Technology Theorem Prover. New generation computing 2 (1984).[18] Suttner C. B., Sutcli�e G., Yemenis T.: The TPTP Problem Library. Proceedings of CADE-12, Springer,1994.[19] Sutcli�e G., Suttner C. B.: Special Issue: The CADE-13 ATP System Competition. Journal of Auto-mated Reasoning (18), 1997.[20] Weidenbach C., Gaede B., Rock G.: SPASS & FLOTTER. Proceedings of CADE-13, Springer, 1996.[21] Wolf, A.; Kmoch, A.: Einsatz eines automatischen Theorembeweisers in einer taktikgesteuerten Be-weisumgebung f�ur die Hardware-Veri�kation { Fallstudie (in German). Technical Report, TechnischeUniversit�at M�unchen, Institut f�ur Informatik, 1997 (in preparation).[22] Wolfram S.: Mathematica: A System for Doing Mathematics by Computers. Addison-Wesley, 1988.

