
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Modeling the Dynamic Behavior of Objects
On Events, Messages and Methods

Ruth Breu and Radu Grosu

ABCDEFGHIJKLMNO
TUM-I9804

Februar 98

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-02-I9804-300/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1998

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Modeling the Dynamic Behavior of ObjectsOn Events, Messages and MethodsRuth Breu, Radu GrosuInstitut f�ur Informatik, TU M�unchen, D-80290 M�unchenemail:breur,grosu@informatik.tu-muenchen.deAbstract. Events, messages and methods are concepts supported bymost object-oriented analysis and design techniques. The interrelationbetween these concepts is however not yet fully understood and guide-lines and techniques for method speci�cation remain unprecise and in-complete. In this paper we provide a simple object model which we useboth to clarify the above interrelation and to devise a method for spec-ifying the dynamic behavior of objects. In a two layered approach, thismethod integrates the description of the object's life-cycles with the spec-i�cation of the object's methods. Our object model is characterized bytwo important assumptions, namely that methods are virtual objectsand that messages sent to inexistent objects are returned back as anerror. Both assumptions are supported by practical evidence and allowus to model internal concurrency, multiple threads and attribute sharingin a very simple and elegant way. Our ideas are illustrated on a simplebanking example.Keywords OO analysis, event, message, method, state transition diagram.1 IntroductionEvents, messages and methods are three central concepts for modeling the dy-namic behavior of objects. Communication between objects by sending messages,changes of object states caused by incoming events and interface design basedon methods are catchwords of object-oriented analysis and design.However, in most frameworks like OMT [9], the Booch method [2] and theforthcoming method UML [3] messages, events and methods are separate con-cepts used in di�erent parts and phases of system development. The interrelationbetween these concepts remains often unclear and is left to the interpretationof the system designer. In particular, the transition from high level event-baseddescriptions to method speci�cation and method implementation is hardly sup-ported in current object-oriented analysis frameworks.This lack of preciseness and support can cause severe problems within thedesign of sequential systems. In environments where objects coexist and act inparallel, guidelines and well-founded techniques for specifying methods are eveninevitable and a prerequisite for reliable system design.The focus of our paper is to provide clear concepts and techniques for thedynamic modeling of objects in such concurrent environments. The central de-scription technique we rely on are state transition diagrams. Most object-oriented

analysis techniques o�er some kind of state transition diagrams, often based onHarel's state charts [7].State transition diagrams support an event-based design of objects. Theyassociate each object with a �nite set of states and model state changes caused byincoming events. We use a powerful variant of state transition diagrams in whichstate transitions can be associated with outgoing events and state transitions canbe guarded by preconditions and followed by postconditions. The kind of statetransition diagrams we propose are well-founded and provided with a formalsemantics in a concurrent setting of objects [6, 4].The notion of methods we conceive is more general than to be an equivalent toprocedures in a programming language. In our intuition, methods in the analysisphase model high-level activities of objects. Examples for such methods arethe transfer of money in a bank or the reservation of a hotel room. In thisview, a general model of concurrently acting objects is inevitable since high-level activities often are conceived to be parallel while their later realization issequential.Concerning the design steps for developing a system description based onstate transition diagrams, we propose a two-layered technique. In a �rst stage, apurely event-based description by state transition diagrams is developed. Eventsare conceived as stimuli at a point in time causing reactions of the stimulatedobject. The developed state transition diagrams in this stage de�ne for eachobject allowable sequences of incoming events.In a second stage of the design, the reactions of an object initiated byevents are further speci�ed. Roughly, each such kind of reaction correspondsto a method and the initiating event corresponds to the call of the method. Wepromote a speci�cation of methods within the framework of state transition di-agrams. This has two reasons. First, the use of a uniform framework supportsstep-by-step design. Relations between di�erent stages can be established andchecked. Second and even more important, in a general framework of concur-rently acting objects methods generally cannot be modeled in an isolated waybut the whole object behavior has to be considered.Our notion of an object is not limited to the view of a sequential machinereacting to events subsequently. More general, object behavior may compriseinternal parallelism and simultaneous computation of methods. This general no-tion of objects corresponds to modern object-oriented programming languageslike Java and is a prerequisite for modeling high-level activities of objects.The structuring of the following sections is as follows. In section 2, we presentsome general considerations about the notions of events, messages and methodsand sketch our two-layered technique for specifying the dynamic behavior ofobjects. In the subsequent sections, this technique is applied in detail on a banksand accounts example.2 Objects, Events, Messages and MethodsObject-oriented techniques o�er a variety of notions and concepts that are thebasis for comprehending and structuring the dynamic behavior of objects. These

notions inherently are based on two di�erent views of objects and their commu-nication with the outside. We call these views the communication view and theinterface view.The Communication View In the communication view, objects communicatewith each other by sending messages. Messages are typed data values that areexchanged by objects. The arrival of a message at some object is called an event.Events are stimuli at some point of time that cause reactions of the stimulatedobject.In the sequel we will use the terms object communication behavior or event-based speci�cation when referring to speci�cations of dynamic object behaviorbased on messages and events.The best accepted technique for describing object communication behaviorare state transition diagrams. State transition diagrams are associated with singleobjects describing state changes initiated by events. The kind of state transitiondiagrams we use in our approach will be presented in the next sections.The Interface View In the interface view, the communication between objectsis based on the notion of methods. A method is a service o�ered by an object toits clients and calling a method is the only way a client can have access to anobject.In contrast to the notions of message and event which are atomic entitiesreferring to a single point of time, methods can be rather complex processesinvolving communication with other objects (called servers). In particular, eachmethod needs some period of time to complete. In our general setting of concur-rent objects, methods do not have to be processed sequentially within an object,but many methods can be executed in parallel. Moreover, di�erent threads of anobject may involve the same method. For these reasons, we will present a tech-nique which conceives methods as private virtual objects which act in parallelwith the methods' owner.Methods can be classi�ed according to their complexity in three categories.In the �rst category, the execution of a method involves only data local to theobject. As a consequence, no additional communication with server objects isnecessary. In the second category, the method initially performs some local com-putation and subsequently delegates the further processing to some server ob-ject. Finally, in the third category, the execution of a method involves a complexinteraction with server objects.Current object-oriented analysis frameworks do not integrate the two viewsof object behavior. As a consequence, it remains unclear how method speci�ca-tions have to be interpreted within the overall object behavior. The subsequentsections provide guidelines and techniques how an integration of the two viewscan be achieved.Interrelations between the two views A �rst simple observation is thateach method call is a message sent from the calling object to the called object(this is, in fact, the Smalltalk terminology). The arrival of such a message at the

called object is an event and causes reactions. These reactions can be understoodas the execution of the corresponding method.In a concurrent framework methods are typically accepted subsequently, buthandled in an overlapping, concurrent way. The transfer of money from one ac-count to another in our banking example will be of this kind. Since the process oftransferring money takes time, the bank should be able to process many transfersconcurrently. As a consequence, methods cannot be speci�ed in an independentway but have to be integrated within the overall object communication behavior.We pursue a two-layered technique for dynamic object speci�cation integrat-ing the event-based and the method-based view. The technique is intended togive a rough guideline and intuition for the design of concurrently acting objects.Step 1: For each class of objects a set of methods or input messages is identi�ed.Additionally, a state transition diagram is developed describing the inputbehavior of the objects, i.e. the sequences of input messages the objects canaccept.Step 2: The object reactions are further speci�ed by re�ning the state transitiondiagram resulting from the �rst step. Again, we can distinguish two substeps.Substep 1: Each method is speci�ed separately. Pre- and postconditionsdescribe the e�ect the method execution has on the object's attributes,and messages are speci�ed which are sent to server objects. In this state,typically, a set of further messages has to be introduced handling re-turned values and failure information.Substep 2: The method speci�cations are integrated in the state transitiondiagram of the �rst stage giving the whole object behavior. It is in thisstage that the designer has to decide if methods are handled subsequentlyor concurrently.The Object Model A system is represented in our object model as a set ofinteracting objects which are grouped into classes. Each class consists of a classmanager and a set of class instances .One of our main assumptions is that messages sent to inexistent objects arereturned back as an error. This assumption is supported by most standards foropen distributed systems and it is assured by the communication medium. In anobject-oriented setting this responsibility can be spread among the class man-agers if all the instance objects in a class are restricted to send their messagesthrough their associated class manager. However, we take a more decentralizedapproach which simpli�es the communication scheme. The class manager doesnot create or destroy the instance objects and does not control their intercom-munication. The class manager merely activates or deactivates instance objectsfrom a set of objects which already exist and which are parallely composed withthe class manager. Inactive objects only return an error message to each methodcall.The second assumption is that complex methods which require interactionwith other objects are modeled by private virtual objects which are also calledclerk objects. Similarly to real objects, the clerk objects associated to a method

already exist and act in parallel with the method's owner which is also calledthe organizer object. The organizer receives stimuli from the environment anddelegates their execution to the clerk objects. As a consequence, methods can actin parallel and di�erent threads for the same method are executed by di�erentclerks.As usual, we classify the communication patterns between a client and itsserver object in synchronous, asynchronous or delegating. Synchronous methodcall means that the client sends the method call and waits for the answer. Asyn-chronous method call means that the client may accept or send other messagesbetween the method call and the receiving of the answer. Delegating method callmeans that the client sends a method call together with an address to whichthe answer should be sent and proceeds. The modeling of these communicationprotocols within the framework of state transition diagrams will be exempli�edin the following sections.Note that our object model is a conceptual model which is very convenientfor the analysis or design phase because it is very simple. However, this modeldoes not prescribe the way objects and classes should be implemented. Whilein the analysis or design phase it is not relevant if all potential objects are al-ready created or if they are created as required, this is an important concernfor an e�cient implementation. Similarly, while in the analysis phase it is lessrelevant who returns an error if the addressed object does not exist, in an im-plementation this is usually the concern of the communication medium. Finally,a particular implementation could restrict the parallelism implied by the orga-nizer/clerk paradigm.The Banks and Accounts Example We illustrate our approach using abanking system example (see the �gure below). This system consists of a set of
Account a1,9999

CBank cb Bank b99Bank b1

Account a99,1 Account 99,9999aa1,1
...Accountconcurrently acting banks. Each bank has an owner and a unique bank numberranging between 1 and 99. Banks can be founded and liquidated, i.e. the bankingsystem has a dynamic structure.The main task of a bank is to organize access to an associated set of accounts.Each account belonging to a bank has an owner, a balance and a unique accountnumber ranging between 1 and 9999.Clients can interact with a bank by opening and closing an account, bycrediting money to an account, debiting money to an account and transferringan amount from one account to another account (possibly belonging to a di�erentbank). All transactions have to refer to existing banks and existing accounts.The account and the bank objects will be speci�ed in the following sections,illustrating the design steps of our design method.

3 The Speci�cation of AccountsThe speci�cation of an account object identi�ed by ac is given below. It consistsof an attribute declaration part and a state transition diagram. Attributes arede�ned by their name, their type and (optionally) an initial value. An accounthas two attributes: the owner name ow and the current amount am of money.The state transition diagram has two purposes. First, it de�nes the interfaceof the object as a set of input messages. The messages may have parameterswhich can be missing in a �rst iteration. Second, the state transition diagramde�nes the sequences of messages the object can receive. Account objects can bein two states, the closed , i.e., the inactive state and the opened state, where closedis the initial state (indicated by the small arrow). Each transition connecting twostates is associated with an input message and, optionally, with a precondition,a postcondition and one or several output messages. In order to reduce thecomplexity of the diagram, the transitions are given in tabular form. Each linein the table is an annotation of the corresponding transition in the diagram.attributesow = "" : Nameam = 0 : Int transitions
credit

debit debit

credit
open

closed opened

closename source dest in pre out postopen closed opened ac?open(o; a; r) r!ok ow0 = o; am0 = aclosed closed r!errcredit opened opened ac?credit(a; r) r!ok am0 = am+ rclosed closed r!erram � a r!ok am0 = am� rdebit opened opened ac?debit(a; r) am < a r!lowBalclose opened closed ac?close r!okFor example, if the account object ac is in the state opened and it receivesa debit message debit(a; r), written as ac?debit(a; r), where a is the amount tobe debited and r is the object to which the answer has to be sent, then if thecurrent balance am is greater than a an ok message is sent to r, written as r!ok,and the current balance is decremented by a. The new balance is written asam0 similarly to the Hoare calculus. In the other case, the error message lowBalis returned. Strictly speaking, this speci�cation corresponds to two (guarded)transitions in the diagram, one for each precondition.The reaction to the message credit is speci�ed in a similar way. The messageopen activates the account object and sets its initial amount and owner. Allmethods on account objects are of the most primitive type involving internaldata solely.The precondition (the guard) can be an arbitrary predicate over the at-tributes and the input messages. The postcondition (the e�ect) can be an arbi-

trary predicate over the unprimed attributes, the primed attributes, the inputand the output. A transition is activated only if the input matches the inputpattern, the output matches the output pattern and both the precondition andthe postcondition are true.Note that the state transition diagram of accounts is complete w.r.t. its meth-ods credit and debit, i.e., account objects accept these methods in any state andin any order. In a concurrent environment of objects completeness is an im-portant property of state transition diagrams since servers cannot restrict theirclients to send speci�c message sequences. Completeness w.r.t. the class meth-ods open and close, in contrast, has not to be required since these methods arealways sent by the class manager.4 The Speci�cation of BanksBanks are complex objects whose methods not only require additional commu-nication with servers but also can act in parallel. A bank is also a class managerfor account objects. Banks handle the transactions of the clients. In particular,they manage the access to the accounts. Similarly, the central bank is the classmanager for the banks themselves. Since it does not present new aspects, thespeci�cation of the central bank and the activation and deactivation of banksis not presented in this paper. In the speci�cation of the bank we make thebookkeeping activity explicit. However, this behavior could be assumed to beinherited from a prede�ned general class manager object.4.1 De�ne Attributes and Input Messages (Step 1)A bank has as attributes the bank's owner ow, the account numbers of its activeaccounts aA and the account numbers of the inactive accounts fA. The bank'sidenti�er is bi.attributesow ="" :NameaA= ; : SetNatfA= fi j 1�i�9999g : SetNat transitions
foundedliquidated

found

credit, debit, transferliquidatecredit, debit, transfer

open, close open, closeThe attributes aA and fA allow the bank to keep track of its server objects.The bank can receive the following input messages: found(o) { activate the bankand set the owner to o, liquidate { perform some closing work and deactivatethe bank, open(o; a) { open an account with owner o and amount a, close(k) {close the account k, credit(k; a) { credit the amount a to account k, debit(k; a){ debit the amount a to the account k and transfer(f; b; k; a) { transfer theamount a from account f to account k at bank b. These messages match exactlythe methods which a bank o�ers.Additionally, a (complete) state transition diagram describing the states ofthe bank and the input messages the bank can accept is given above. Again, for

brevity, the method arguments are ignored. The speci�cation obtained in thisstep is often called life-cycle speci�cation.4.2 Specify each Method Separately (Step 2.1)In order to specify the bank reactions for each method we have to de�ne �rst theanswer messages . Moreover, input messages in most cases have to be enhancedby an answer address indicating the object a possible answer has to be sent to.If the method requires no answer or if the return address can be derived fromother information, the return address can be omitted.For bank objects we introduce the following answer messages: noAcc { a newaccount cannot be opened, noAcc(b; k) { there is no account number k at bank b,tansferOK { transfer has been successfully completed. In complex diagrams, itis advantageous to keep tables associating the methods with their correspondinginput and output messages.The behavior of the bank object in its inactive state liquidated is similar tothe behavior of the account object in its inactive state closed. We therefore donot further describe it. In the state founded the methods open; close; credit anddebit can be speci�ed as simple annotations to the corresponding transition ofthe life-cycle diagram developed in the previous step. Their speci�cation is givenin tabular form below, where the source and the destination state founded issuppressed for brevity. The speci�cation of the methods found and liquidatecan be given in an equivalent way to the open and close methods on accounts.name in pre out postfA = ; r!noAcc fA0 = fA n fkg;fA 6= ; ai;k!open(o; a; r); aA0 = aA [fkg;open bi?open(o; a; r) r!k k = new(fA)k 62 aA r!noAcc(bi; k) aA0 = aA n fkgclose bi?close(k; r) k 2 aA ai;k!close fA0 = fA [fkgk 62 aA r!noAcc(bi; k)credit bi?credit(k; a; r) k 2 aA ai;k!credit(a; r)k 62 aA r!noAcc(bi; k)debit bi?debit(k; a; r) k 2 aA ai;k!debit(a; r)The methods open account and close account are class methods for the ac-count objects. These methods change the active-accounts and the free-accountsbank attributes and activate, respectively deactivate, the corresponding accountobjects. The open method also returns the new account number k; new(fA) isassumed to choose an element out of the set fA.Note that the new account number k is not the identi�er of the correspond-ing account, because the accounts are private to the bank, i.e., they cannot beaddressed directly. We use ai;k to denote the identi�er of account number k atbank number i. The mapping a can be imagined as an encryption mechanism

which is private to the bank. Since the maximum number of active accounts islimited in the problem statement, a call to open an account may also lead tofailure.The methods credit and debit have a similar structure. If the given accountis not in the set of actual accounts, the message noAcc is returned. In the othercases, the method is delegated to the corresponding object. Thus, referring tothe communication patterns sketched in section 2, the calls of the methods onaccount objects in the above table are delegating method calls.The methods speci�ed so far did not comprise communication with serversand thus could be speci�ed as simple annotations to the life-cycle diagram. Themethod transfer(f; b; k; a; r), in contrast, requires communication both withthe account f from which the amount a of money should be transferred andwith the bank b to which the money has to be transferred. The transfer methodthus involves a complex process described by a separate state transition diagramgiven below.
{} t?ok / B!credit(K,A,t) {}

≠{m ok} t?m / F!credit(A,R), R!m {}

{m ok}≠
t?m / R!m
{}

idle

{(F’,B’,K’,A’,R’) = (f,b,k,a,r)}

{}
{} t?ok / R!transferOk {}

t?transfer(f,b,k,a,r) / f!debit(a,t) Conceptually, each state transition diagram describes a clerk object with anown state. This object is identi�ed by an identi�er variable which will be laterbound to the state transition diagram describing the whole object behavior. Thestate of a clerk object provides the clerk with the data necessary to execute themethod.In our example, the clerk object describing the transfer method is identi�edby the variable t. It is de�ned by attributes corresponding to the parametersof the method (denoted in capitals). Informally, for transferring an amount a�rst a is withdrawn from the account f . If the withdrawal has been successful,a message to the target bank b is sent for crediting a to the account k. If thistransaction has been successful, the message TransferOK is sent back to theobject identi�ed by the return address r. In the other case, the money is creditedagain to the account f . Moreover, in all failure cases, corresponding messagesare sent back to the return address r.Note the simple and elegant way we cope with the subtle problem of objectdeletion. Before the clerk object starts its execution, it is possible that both thesource and destination bank as well as the source and the destination accountshave been deleted. In all these cases, the clerk object behaves in the expected,well behaved way.4.3 Integrate the Methods (Step 2.2)Up to now the object input behavior and the reactions to input stimuli havebeen speci�ed in an isolated way. It is in this step that the two speci�cations

are integrated and the overall object behavior is described. We distinguish twofundamental ways how the integration of methods can be handled.Sequential execution: The object receives the call of the method and per-forms the object reactions. After the method execution has been completed,the object is able to receive the next input event.Parallel execution: The object receives the call of the method and performsthe object reactions. Concurrently, the object is able to receive the nextinput event.Both kinds of method integration will be discussed below and techniques for theintegration of the respective state transition diagrams will be presented.Parallel and sequential handling of methods only give a rough guideline forthe integration. Both techniques can be combined in a very
exible way. Sinceeach method is modeled separately, some methods may be executed concurrently,while others may be executed sequentially. Moreover, sequential and parallelexecution can be combined within one method in the sense that in parts of themethod other input events may be received, whereas other parts of the methodare executed exclusively.Parallel Execution Conceptually, state transition diagrams describe objectsas sequential machines. In this framework concurrent behavior is limited to theview of these sequential machines acting in parallel. As we have discussed ear-lier, conceiving objects as sequential machines is too constraining and in manyapplications objects incorporate internal parallelism.The transfer method in our banking system is a typical example for internalparallelism within a single object. Since the communication with the destinationbank takes time (up to several days), the transferring bank of course cannotbe blocked for other transitions during this period. Thus, a bank receiving theinput stimulus to transfer money concurrently executes the transfer and is ableto receive new input stimuli. In order to cope with this kind of internal paral-lelism, we let the bank be the organizer receiving input stimuli by other objectsand delegating their execution to transfer clerks. The transfer clerks have beenspeci�ed in step 2.1. Each transfer clerk t deals with one execution of the trans-fer method. Thus, in step 2.2, it remains to complete the speci�cation of theorganizing bank. This amounts to specify the delegation of the transfer methodgiven as an annotated transition of bank objects below.name in pre out postfT 0 = fT n ftgtransfer bi?transfer(f; b; k; a; r) t!transfer(ai;f ; b; k; a; r) aT 0 = aT [ftgt = new(fT)Note that using the organizer/clerk paradigm many transfer transactions canbe executed in an overlapping way. In other words we can model both internalconcurrency and multiple threads. The bank keeps track of the active and inac-tive transfer objects by holding the corresponding lists of identi�ers aT and fT

as attributes. As a consequence, we have to add the following attribute declara-tions. aT = ; : Set TransferIdfT = ft j t 2 TransferIdg : Set TransferIdConcurrent behavior within a single object may lead to concurrent access tothe object's data, i.e. its attributes. In our conviction the early phases of designshould be concerned with behavioral aspects of objects only and questions ofdata access should be deferred to later stages of the design. In our approachconcurrent behavior within a single object is modeled by the introduction ofvirtual clerk objects having an own state space. That way, attribute sharing isreplaced by message passing between organizers and clerks.Sequential Execution Sequential execution of some method means that theobject receives the input message and subsequently executes the correspondingmethod. After the execution has been �nished, a new input message can bereceived.In the organizer and clerk objects paradigm, this amounts to a synchronouscommunication between the organizer and the clerk object. The organizer objectdelegates the execution of the method to the clerk object, but now waits forthe answer. By this kind of modeling, the modular speci�cation of methods ismaintained.
waitfounded

i

ib ?m / r!m

i,f ib ?transfer(f,b,k,a,r) / t!transfer(a ,b,k,a,b)The bank object sends a message to the transfer object giving its own identi�erfor the return address. The answer is then forwarded to the object r. Note thatin this case, only one transfer object t has to be composed in parallel with thebank object. Moreover, the identi�er t of this object is a constant attribute ofthe bank.Banks as speci�ed above receive the message to transfer money and handlethe whole transfer transaction before a new message can be received. Duringthe transfer transaction, the bank is blocked for other transactions. This kindof modeling could be adequate if the banks are related by a fast electronicconnection.Sequential and concurrent modeling of the transfer method could be com-bined in such way that the organizing bank could perform the withdrawal fromthe source account before it delegates the transaction to the clerk object. In thissense, the two techniques integrating method speci�cations and object input be-havior presented in this section just give a rough guideline how methods can becombined and the overall object behavior is de�ned.5 ConclusionIn the preceding sections we have presented a design method for modeling thedynamic behavior of objects in the framework of state transition diagrams. The

presented concepts can be applied in various object oriented analysis frame-works such as OMT or UML. A major focus has been the integration of methodspeci�cations and object life-cycle speci�cations.Based on a very simple and intuitive object model, object behavior mayinclude internal concurrency and multiple threads. Moreover, a technique formodeling object creation in state transition diagrams has been presented. Thistechnique is both formally founded and easy to handle. We considered a generalnotion of methods covering high-level activities of objects. In our approach thesemethods are modeled by own objects.Similar ideas have been discussed in the context of object-oriented businessprocess modeling. In [1] and [8], for instance, the modeling of business processeseither by methods or by own objects is compared. Our approach goes furtherin the respect that the speci�cation of high-level processes is integrated in theoverall object behavior and the distinction between modeling these processes bymethods or by own objects becomes super
uous.Concerning the speci�cation of methods, most analysis techniques suggestthe use of pre- and postconditions, e.g. [5] and [9]. Since the speci�cation ofmethods by pre- and postconditions requires methods to be atomic units, theseapproaches do not consider inter-object communication within methods and thusare limited to the design of sequential systems. In our approach, the use of pre-and postconditions for modeling concurrent systems is enabled by associatingthem with atomic events instead of complex methods.Other analysis frameworks suggest the use of techniques describing inter-object communication for specifying methods. Examples are the use of variants ofmessage sequence charts, e.g. in [9] or interaction diagrams [2]. These techniquesare aimed to specify exemplary behavior of methods and thus are not powerfulenough to describe the overall object behavior.Nevertheless, diagrams describing inter-object communication are a valuabletechnique since they support the description of chains of message calls. Thesechains of message calls are distributed along the state transition diagrams ofthe addressed objects and thus are modeled only implicitly in our approach. Infuture work, we will therefore combine the two kind of techniques in order to givethe designer more freedom to model explicitly various aspects of object behavior.Due to their expressive power and their semantic background, our framework ofstate transition diagrams can serve as a basis for such an integration.References1. M. Bauer, C. Kohl, H.C. Mayr, and J. Wassermann. Enterprise modeling usingOOA techniques. In G. Chroust et al., editor, Proc. CON 94, Work
ow Manage-ment. Oldenbourg, 1994.2. G. Booch. Object Oriented Design. The Benjamin/Cummings Publishing Company,1991.3. G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language forObject-Oriented Development, Version 0.9, 1996.

4. M. Broy, R. Grosu, and C. Klein. Reconciling real-time with asynchronous messagepassing. Will appear in FME'97 Proceedings, September 1997.5. D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremes.Object-Oriented Development: The Fusion Method. Prentice-Hall International,Inc., 1994.6. R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagrams. TechnicalReport TUM-I9606, Technische Universit�at M�unchen, June 1996.7. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-puter Programming, 8:231{274, 1987.8. G. M�uller-Luschnat, W. Hesse, and N. Heydenreich. Objektorientierte Analyse undGesch�aftsvorfallsmodellierung. In H.C. Mayr and R. Wagner, editors, Objektorien-tierte Methoden f�ur Informationssysteme. Springer, 1993.9. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object{Oriented Modeling and Design. Prentice Hall, 1991.

This article was processed using the LATEX macro package with LLNCS style

