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Abstract

We give an abstract denotational semantic model for the synchronous
programming language ESTEREL, which is used for the description and
implementation of reactive process control systems. We base this semantics on a
functional model of behaviour. We describe the input and output histories of
ESTEREL programs by streams carrying sets of signals. We represent the
behaviour of an ESTEREL component mathematically by a stream processing
function. The main difficulty in giving a semantics to ESTEREL consists in the
idea of instantaneous reactions of ESTEREL programs to input signals. In our
semantics, we overcome this problem by modelling the causality between the
events in every time interval by an individual fixpoint construction. The semantic
model fixes the meaning of ESTEREL.

                                    
1) This work was partially sponsored by the Sonderforschungsbereich 342 "Werkzeuge und Methoden für die Nutzung
paralleler Rechnerarchitekturen."
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1. Introduction
Synchronous languages and description formalisms have been proposed for the development of
process control systems as they are used and needed in reactive embedded systems. There are
several proposals of such synchronous languages based on the idea of perfect synchrony. A
prominent representative is the language ESTEREL (see [Berry, Gonthier 88], [Berry, Gonthier
92]). Another proposal for the description of reactive systems are statecharts (see [Harel 87]). Both
for synchronous languages and for statecharts there is a controversial and to some extent confusing
discussion about their semantics.

Synchronous languages are intended for the development of real time process control
applications as they can be found in embedded systems. Such process control systems are event
driven. Events are represented by signals that are emitted within the environment for instance by
sensors or by other parts of the process control system and that are processed by the system. The
system generates signals in response that are either internal signals to control the internal
information processing activities or external signals issued to the environment for instance to
control the actuators. These signals are processed under real time requirements.

To simplify the reasoning about time in synchronous languages the basic idea is that we may
abstract from the individual timing and collect a possibly large number of input signals, internal
signals, and output signals that occur in one time interval one point in time. We deal with this idea
of perfect synchrony by looking at the programming language ESTEREL. ESTEREL is an interesting
language for programming process control systems in real time applications. It is specifically
designed for programming reactive systems covering real time control automata. ESTEREL is
deterministic and its designers argue that its features are most adequate for typical process control
applications.

Certainly, the conceptional separation of nondeterminism, reactivity and concurrency is a
favourable step. One might expect that the semantic theory of a deterministic reactive language such
as ESTEREL should become much simpler than that of a nondeterministic one like, for instance,
CSP or its practical spin-off OCCAM. However, ESTEREL has also quite involved semantic
concepts. It has an informal description of its semantics that is puzzling. Typical phrases are found
there such as "instantaneous reaction" or an "action that does not take time". Such phrases are
obviously used to illustrate the level of abstraction that the language ESTEREL offers, but they may
make it unnecessarily difficult to explain, understand, and accept the ideas and the semantics of
ESTEREL.
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We formalise the meaning of ESTEREL by a denotational semantics in the following. The
definition of these semantics we see not just an intellectual exercise. We believe that ESTEREL

offers an acceptable conceptual programming model only if it turns out that it has a sufficiently
simple denotational semantic model that we can use also as a basis for the property-oriented
specification of ESTEREL programs and for their verification. Based on the idea of streams, we
define a fairly simple denotational model for a slightly simplified version of ESTEREL in the
following. In section 2 we introduce the fundamental semantic model, motivate its choice, and give
the denotational definition. In section 3 we deal with recursion, feedback, and the existence of
fixpoints.

2. Semantic Definition
In this section we define a very abstract denotational  semantics of ESTEREL. We do not treat the
full language ESTEREL, but only a small, but sufficiently interesting kernel which is close to what
is called pure ESTEREL. We do not include variables and assignments into this language kernel.
However, we claim that these simply can be treated in our semantic model by adding the
denotational concept of states and of environments. The introduction of environments may
complicate, however, the fixpoint treatment in the next section. Therefore, we prefer the simple
sublanguage to be able to concentrate the more fundamental aspects we are mainly interested in.

2.1 The Idea of Perfect Synchrony

The computational model of ESTEREL may most easily be explained by a model for digital
hardware such as the synchronous stream processing model of an interactive component that is
pulse driven (see [Fuchs 94]). In this model we use a very fine grained, discrete time scale. In
every interval of time on every channel at most one signal can be observed. All components are
time guarded in the sense that the output as a reaction to input is delayed at least one time tick with
respect to the input event. This leads to a very simple and direct notion of causality between input
and output events. This model is much too detailed, however, for a simple understanding of the
behaviour of a complex reactive system. Therefore, we go over to the more abstract synchrony
model where some of the time differences between input and output are abstracted away.

To explain the behaviour of an ESTEREL component and the abstraction due to the idea of perfect
synchrony we distinguish between a microscopic and a macroscopic view. In the microscopic view
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we assume such a fine discrete time scale that we can distinguish the difference in the timing of all
the signals that are in a causal relationship. In other words, if an event e1 is causal for an event e2

then the occurrence time of e1 is strictly less than the occurrence time of e2.
In the macroscopic view we use a much coarser time granularity. A set of events is collected at

each of the discrete time points. This way certain events that are in a causal relationship and
therefore occur in the microscopic view at different time points may be mapped to the same time
point in the macroscopic view. With respect to the timing at the microscopic and macroscopic level
we speak about the micro and the macro pulse of the reactive system.

At the micro pulse level as well as on the macro pulse level we model the behaviour of a reactive
component in ESTEREL by a stream processing function. The component receives a stream of sets
of signals as input and issues a stream of sets of signals as output. The i-th entry in the input stream
(or output stream respectively) is a possibly empty set of signals that represents the signals received
(or issued respectively) at the i-th time point in the micro level. At the micro level, we do assume
neither instantaneous reaction to input nor that an action does not take time. At the micro level we
assume that our time granularity is fine enough to observe a reaction to input at time point i only at a
later point in time. Thus, at the micro level, every action takes time and reaction comes with some
delay. We reflect the causality that governs the interaction of the component by the prefix
monotonicity of its behaviour function. This function is a mapping between streams of signals that
model the communication between a component and its environment.

Following this model, an input stream consists at the macro level of a stream that carries
sequences of sets of signals. Each sequence in the stream represents the sets of signals in the order
in which they have been communicated within one interval of the macro pulse. This way we can
represent the macro pulse on the input and output streams. This model is used in [Gabreau et al.
93]. It is also useful for the general modelling of switching circuits (see [Fuchs 94]).

In the sequel, we work out a more abstract semantic model for ESTEREL by replacing the
sequences of sets of signals occurring in the macro level view more abstractly by sets of signals.
We obtain these streams from the streams considered at the macro level by taking the union of the
sets in the sequences of signals at the micro level. This way we obtain a more abstract macro level
view from the mentioned macro level view of [Gabreau et al. 93] by an appropriate abstraction. For
such an abstraction, we map subsequences that represent the sequences of the sets of messages
between the clock signals of the macro level into sets at the macro level. We do this by taking the
union over the sets in the sequence.
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Fig. 1 Concrete Level of Micro and Macro Steps and Abstract Level of Macro Steps

Fig. 1 illustrates the concrete level of micro steps and the abstract level where micro steps are
abstracted away.

By this more abstract view at the macro level, an input stream consists of a stream of sets of
signals. Each set represents all the signals communicated in one macro step. It seems to be the clue
of ESTEREL that such an abstraction is possible (at least for the programs with a proper causality
flow) and that we can give a compositional denotational semantics in terms of this more abstract
model.

Let us give a mathematical description of what we just explained. For simplicity we assume that
each sequence of sets of signals in a macro step is of the same length say c ∈ N. We could do
without a constant length of the sequences of micro steps that form a macro step but this makes the
mathematical explanations in the remainder of the section a little easier. At the micro level we work
with a stream of sets ei of signals where for simplicity we assume that every macro cycle contains c
micro cycles. We assume that c is chosen sufficiently large to ensure that every computation within
a macro cycle comes to a halt. Given a stream

e0 & e1 & e2 & e3 & ... & ej  & ...

at the micro cycle level, we can map this stream onto the following stream on the more abstract
macro level:
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Only throughout the execution of each of the macro cycles, it turns out whether a signal becomes
present or definitely remains absent and whether an execution comes to a halt (a stable state) before
the time reaches the end of the macro step.
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2.2 The Semantic Model

We work with the set of signals M in our semantic model defined as follows:

M = E ∪ {†, ‡}

Here E is a predefined set of signals. The specific signal † indicates termination and ‡ indicates
pausing. The difference between pausing and termination is essential. Pausing means to stop the
activity in a macro step. Termination means that in all the future macro steps there will be no further
activity. Some of the signals in E are trap signals. Their role will be explained later. M denotes the
set of all ESTEREL signals.

In the translation above we assume that every substream xk (for k = 0, 1, ...) at the micro level
that represent a macro step where

xk = Sc*k & Sc*k+1 & Sc*k+2 & Sc*k+3 & ... & Sc*(k+1)-1

ends with the pause signal ‡ contained in some set Sc*k+i . This indicates that the computation has
stabilised and halts. Then all successive sets of signals Sc*k+j  with j > i occurring in the stream xk
till the end of the macro cycle are empty. Otherwise the end of this cycle is not defined and the
macro stream is partial and ends abnormally with this macro step. This is indicated by the absence
of the pause signal ‡ in the set of events of the macro step.

In our domain, thus we have three classes of streams of sets of signals at the macroscopic level:

• infinite streams of sets of signals all of which contain the signal pause ‡, that indicates that in
the respective time interval of the macrocycle the computation stabilised,

• finite streams with well-defined ending that consist of a sequence of sets of signals, where all
sets contain the pause signal ‡ except the last one which contains the termination signal †, that
indicates that the computation in the last time interval terminated,

• finite streams of sets of signals, where all sets contain the pause signal ‡ except the last one
which contains neither the signal ‡ nor the signal †, which indicates that in the last time interval
the computation did neither stabilise nor terminate.

The last mentioned streams are called partial, since they represent computations that did not end
properly. Therefore, for them the signal information is considered as to be incomplete.

We define the set of communication histories E∇ over the set of signals E as follows (by ℘(M)
we denote the power set over the set M and by Mω we denote the set of streams over the set M, for
a short introduction of streams see appendix):
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E∇ = { x ∈ ℘(M)ω: #x > 0 ∧

(∀ j ∈ N: 0 < j < #x ⇒ ‡ ∈ x.j ∧ ¬(† ∈ x.j)) ∧

(#x < ∞ ⇒ ¬(‡ ∈ x.#x))}

Recall that an ESTEREL history is a nonempty stream of sets of signals that is either infinite and
every set contains a pause signal or it is finite and all of its sets contain the pause signal besides its
last one. A finite stream therefore ends with a set that does not contain a pause signal. The empty
stream is excluded.

The meaning of an ESTEREL component (at the macro level) is represented by a function

f: E∇ → E∇

that maps streams carrying sets of signals onto streams carrying sets of signals. Every set on these
streams represents all signals communicated in a complete macro step.

Since the meaning of ESTEREL constructs will be defined with the help of recursion, we have to
turn the set

E∇

into a domain to be able to solve fixpoint equations. A domain is a partial ordered set with a least
element where every directed set has a least upper bound. Therefore, we need an appropriate partial
order that expresses the options to form a fixpoint at the micro level (represented by inclusion order
for sets of signals) as well at the macro level (represented by the prefix order on streams).
Combining both orderings, we use the partial order Æs specified for streams x, y ∈ E∇ by the
following equation:

x Æs y  ⇔ x = y ∨

∀ j ∈ N\{0}: j ≤ #x ⇒ (x.j ⊆ y.j ∧ ((† ∈ x.j ∨ ‡ ∈ x.j) ⇒ x.j = y.j)

Informally speaking, a stream x is an approximation of a stream y if both streams are identical or if
x is of the finite length j (and y is at least of length j) and all sets in x coincide with the respective
sets in y besides the last one that is at least a subset of the j-th set in the stream y, provided this set
does not contain the signals ‡ or †. Otherwise, also these sets have to coincide. Since both ‡ and †
indicate that the computation in the respective macro step has terminated and therefore the set of
signals cannot grow anymore.

The ordering Æs is obtained from the classical prefix ordering on streams by the abstraction
described above if we assume that we take the union over a number of successive sets of streams
that end in each macro cycle with one of the signals † or ‡1) . The least element in E∇ with respect to

                                    
1) In fact, the ordering reflects the time flow which requires that the computation in a time interval has to come to a
halt (or terminate) before we proceed to the next interval.
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the ordering Æs is the stream ‹Ø›. Note that the empty stream is not a member of E∇, since every
stream is infinite or it has to end with a set that does not contain ‡.

Given streams

x = x1 & x2 & ... & xn & xn+1 & xn+2 ...

y = y1 & y2 & ... & yn & yn+1

and the corresponding abstractions

x' = 
i 1

c

=
∪ xi   &    

i 1 c

2c

= +
∪ xi & ...

y' = 
i 1

c

=
∪ yi   &   

i 1 c

2c

= +
∪ yi & ... &   

i 1 k*c

n

= +
∪ yi

where we assume that 1+k*c ≤ n ≤ (k+1)*c we can compose the orderings on x and y on x' and
y'. Obviously, we have y' Æs x' provided that the streams y and x are in the prefix order and in all
macro cycles (besides the last) all substreams end with † or with ‡.

The relation Æs is a partial order. A proof is rather straightforward. This order takes into
account both the time flow between the pulse periods (at the macro level) and the accumulation of
signals within one pulse (at the micro level).

2.3 Semantic Equations

We give a denotational meaning to ESTEREL programs by associating with every statement a
function that maps streams of sets of signals on streams of sets of signals

 [ _ ]: ‹command› → (E∇ → E∇)

We extend the well-known operations on sets such as union ∪ to streams, and we write

∪*: E∇ × E∇ → E∇

to denote the operation that yields for two streams of sets the stream of sets that we obtain by the
union of the elements of the stream. Doing so we take care of the special roles of the signals ‡ and
† in the sets. The stream x ∪* y is defined by the following equations (for simplicity we define ∪*
also for the empty stream; let s, t ∈ ℘(E), x, y ∈ E∇):

‹› ∪* x = x ∪* ‹› = x
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(s & x) ∪* (t & y) = i f † ∈ s then (s \ {†} ∪ t) & y
elif † ∈ t then (t \ {†} ∪ s) & x
elif ‡ ∈ s ∧ ‡ ∈ t then (s ∪ t) & (x ∪* y)

else ‹(s ∪ t) \ {‡}›
f i

This definition shows that we join two streams of events by joining their signals E, but halting or
termination needs halting or termination of both of them. As already explained, we work with the
following specific signals in ESTEREL:

† indicates termination,
‡ indicates pausing.

The difference between pausing and termination is as follows. The signal ‡ indicates that the pause
command has been reached within a macro step. The computation comes to a pause and is
continued only in the next macro step. Termination is indicated by the signal †. This signal shows
that the system has come to a complete stop will not be reactivated in future time intervals.

We define the semantics of the individual statements of ESTEREL inductively on the term
structure by the following semantic definitions:

 (0) Semantics of the dummy statement nothing; it immediately terminates:

[ nothing ].x = ‹{†}›

(1) Semantics of the pausing statement; it pauses and terminates in the next macro step:

[ pause ].x = ‹{‡}›ˆ‹{†}›

(2) Semantics of the sequencing of statements:

[ C1 ; C2 ].x = seq([ C1 ].x, [ C2 ], x)

where

seq(y, f, x) = ‹› if y = ‹› and otherwise

seq(y, f, x) = if † ∈ ft.y then y ∪*  f(x) else ft.y & seq(rt.y, f, rt.x) fi

(3) Semantics of the parallel statement:

[ C1 || C2 ].x = [ C1 ].x ∪* [ C2 ].x

(4) Semantics of the infinite loop:

[ loop C end ].x = fix λ g : seq([ C ].x, g, x)

This is only the semantic transliteration of the equation
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[loop C end] = [C; loop C end]

(5) Semantics of the signal emission: the signal S is emitted and the program terminates
immediately:

[ emit S ].x = ‹{†, S}›

(6) Semantics of the test for signal presence:

[ present S then C1 else C2 end ].x = if S ∈ ft.x then [ C1 ].x else [ C2 ].x fi

(7) Semantics of the exit from a trap

[ exit T ].x = ‹{T,†}›

(8) Semantics of the trap definition

[ trap T in C end ].x = trapper([ C ].x, T)

where

trapper(y, T) = ‹› if y = ‹› and otherwise

trapper(y, T) =  if T ∈ ft.y then ‹{†} ∪ (ft.y \{T})› else ft.y & trapper(rt.y, T) fi

(9) Semantics of the suspend

[ suspend C when S ].x = if † ∈ ft.g.x then g.x

else ‹ft.g.x›ˆsus(g∝x, rt.x) fi

where

g = [ C ],

and for all functions f and all streams z and y we specify the operator ∝ as follows:

f∝y = λ z: rt.f.(‹ft.y›ˆz),

sus(f, z) = ‹› if z = ‹› and otherwise

sus(f, z) = if S ∈ ft.z then ‹{‡}›ˆsus(f, rt.z)

else ‹ft.f.z›ˆsus(f∝z, rt.z)

f i

It may be more appropriate to make a more explicit distinction between trap signals and other
signals, but for our purposes it is sufficient to treat them in this universal way.
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2.4 Execution of an ESTEREL Program

An ESTEREL program can run in parallel with another ESTEREL program used to model the
environment. The program is executed in a feedback loop with its environment. This feedback
makes sure that the signals emitted by the program are also available for it.

We execute an ESTEREL program for an input stream x that comes from the environment as
follows. Let

f: E∇ → E∇

be the behaviour of an ESTEREL program. The execution of the program represented by f with
input stream x provided by the environment is represented by the stream y where y is defined by
the recursive equation

y = f(x ∪* y)

Of course, we may also model the environment itself by a function

g: E∇ → E∇

and define the behaviour the program in co-operation with the environment by the recursive
equation

y = f(g(y) ∪* y)

In any case, we have to solve a fixpoint equation for the stream y. Since y consists of a sequence of
sets and the equation related only these sets we essentially have to solve a fixpoint equation for a set
of signals in every time interval of a macro step. The length of the stream y is determined by the
fact whether one of these sets that are the result of the interaction within a macro step does not
contain the pause signal ‡. In this case, the stream y ends and the least fixpoint is finite. However,
a fixpoint only exists if there exist fixpoints for all the sets in the stream y corresponding to the
macro steps.

Our semantic works with only one feedback loop due to the fact that we do not include the
construct for hiding signals. If we include hiding then we need local feedback loops for feeding
back hidden signals.

As a special case we can run an ESTEREL program represented by the function f also in isolation
to simulate a closed system. To do this we use the stream

x = {‡} ∞
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of pause signals as input from the environment which represents the macro pulse as input and
observe the output

y = f(x ∪* y)

Since we have for the stream x defined as above x ∪* y = y for all streams y this is equivalent to the
equation

y = f.y.
This way we can treat system models where the system is modelled by an ESTEREL program Q and
the environment is modelled by an ESTEREL program R. Then we model the behaviour by the
ESTEREL program

E || R

which we run in a feedback loop leading to an event stream x where

x = [E || R].x

If the program runs in a loop and a macro cycle contains a pause signal then a new macro cycle is
started according to our domain of streams since streams must not end with a set of signals that
contains a pause signal ‡.

For completing the semantic definition of our kernel of ESTEREL, we just need to fix the
meaning to the fixpoint operator. This is done in the next section.

2.5 Causal Loops and Fixpoints

The semantic definitions make use of the well-known fixpoint operator applied to the functions that
are associated as denotations with ESTEREL programs. This is a classical technique in denotational
semantics. However, as pointed out by Berry, not all ESTEREL programs show a proper behaviour
(are free of causal loops). Translated into our setting, this means that such programs are not
necessarily monotonic with respect to our ordering.

ESTEREL programs with causal loops do not have a monotonic (w.r.t. Æs) behaviour function,
in general. Consider the following example of a program P with a causal loop:

present S then nothing else emit S end.

We say that this program contains a causal loop, since the signal S on one hand is used as an input
for the condition, but on the other hand it is produced as output. According to our semantics, we
obtain the meaning of this program by the function [P] where [P].x is given by the expression
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if S ∈ ft.x then {†} else {†, S} fi

This function is not monotonic in our ordering, since if we increase the set ft.x (by adding the
signal S) the result is decreased. It does not have a fixpoint. The assumption of solution of the
fixpoint equation leads to a contradiction.

If we analyse our semantic equations we find three types of definitions in the semantic
equations:

• the result stream is independent of the input,
• the i-th output set depends on the i-th input set,
• the output stream is obtained by a fixpoint.

This shows that fixpoints are always formed over the sets of signals in one macro time interval1).
Therefore, we can concentrate in our treatment of the fixpoint on the sets of signals generated
within one time interval. So we only have to study fixpoints for set-valued functions that
correspond to the stabilisation of an ESTEREL program in a macro cycle.

In the case of ESTEREL programs that do not have causal loops, a fixpoint can be constructed as
follows. If (in every slice of the macro level) there are no cycles in the causality of a function

f: E∇ → E∇

this means that for the fixpoint x = f.x in each macro cycle we can find a partial ordering Æc (called
causality ordering) on the set of signals M such that for each pair of signals s1 and s2 the
proposition

s1 Æc s2

expresses that the presence or absence of the signal s1 in the output does not depend on the
presence or absence of the signal s2 in the input2) . Since the set of signals is finite we can find a
number k and define sets M0, ... , Mk for the causality ordering such that3)

M i ⊆ M i+1

s1 ∈ M i ∧ s2 ∈ M i+1\M i ⇒ s1 Æc s2

M = ∪ {M i: 0 ≤ i ≤ k}

The sets Mi reflect the causality for the signals. All signals in M0 are independent of all other
signals. All signals in M i+1\M i are independent of all the signals except those in the set M i. We
define the iterated computation of a slice at the macro cycle as follows

                                    
1) This independence of the computations in the macro cycles would change if we introduced states that allow us to
transport results from one macro cycle into the next one.
2) Note that the causality ordering on the signal set may be selected differently in each cycle.
3) Note the relationship of these sets Mi to the sequences in the micro cycle view.
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X0 = Ø

X i+1 = f(Xi) ∩ M i

So the iteration follows the causality. We obtain a chain Xi of sets of signals with X i ⊆ X i+1. Note
that for signals s1, s2 according to the proper causality flow of the function f with respect to the
causality ordering Æc we assume for all sets X ⊆ M:

s1 Æc s2 ⇒ (s1 ∈ f(X)) ≡ (s1 ∈ f(X\{s 2}))

If s1 Æc s2 then s2 is not causal for s1. Therefore the occurrence of the signal s1 in the set f(X) is
independent of the question whether the signal s2 is a member of f(X) or not. By the assumption of
a proper causality flow on the symbols we obtain the following theorem.

Theorem: Let all definitions be as above. Then

X = ∪ Xi
      i ∈ N

is the least (with respect to inclusion ordering) fixpoint of f.

Proof: We have to prove that

(1) X is a fixpoint: X = f(X)

(2) X is the least fixpoint: Y = f(Y) ⇒ X ⊆ Y

(1) We obtain the following derivation:

f(∪ X i) =

∪ (f(∪ X i) ∩ Mi) =

∪ (f(X i) ∩ Mi) =

∪ Xi+1 =

∪ Xi

This derivation proves that X = ∪ Xi is a fixpoint.

(2) Assume Y is a fixpoint of f. We prove

X i ⊆ Y

for all i by induction on i.

For i = 0 we have Xi = ø. So trivially X0 ⊆ Y.

Assume now the induction hypothesis Xi ⊆ Y. We obtain
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X i+1

= f(X i) ∩ Mi

= f(X i ∩ Mi) ∩ Mi

⊆ f(Y ∩ Mi) ∩ Mi

= f(Y) ∩ Mi

= Y ∩ Mi

Since Xi+1 ⊆ M i we obtain Xi+1 ⊆ Y. Ÿ

This shows that if there is a proper causality ordering Æc for the signals in every macro cycle there
exist a least fixpoint that is uniquely determined.

From the papers on ESTEREL it is not made very clear what it means to have a proper causality.
We supply such a hopefully intuitively acceptable formal definition. Our semantic definition works
for all ESTEREL programs that do not contain causal loops. We just have to compute a fixpoint by
an iteration that is obtained by iterations for each macro cycle. According to the theorems above this
fixpoint is unique.

3. Conclusions

We have demonstrated how to give a rather abstract denotational semantics to ESTEREL by stream
processing functions. We can use this semantic model to write ESTEREL specifications along the
lines of the specification and design method FOCUS (see [Broy 91], [FOCUS 92]) FOCUS provides
a development method including specification, refinement and verification techniques for functional
specification of systems. To carry over this method to ESTEREL on the basis of the introduced
semantic model may be treated in a future paper.

The representation of the semantics of ESTEREL programs by stream processing function also
allows  us to use ESTEREL programs side by side with other system components described by the
Focus methodology and also to refine FOCUS specifications into ESTEREL programs. This supports
interoperability.
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Appendix: Streams
In the following we suppose that interactive systems communicate asynchronously through
channels. We use streams to denote histories of communications on channels. Given a set M of
messages a stream over M is a finite or infinite sequence of elements from M. By  M* we denote
the finite sequences over M. M* includes the empty sequence which is denoted by ‹›.

By  M∞ we denote the infinite sequences over the set M. M∞ can be understood to be represented
by the total mappings from the natural numbers N into M. We denote the set of streams over the set
M by Mω. Formally we have

Mω =def M
* ∪ Μ∞.

We introduce a number of functions on streams that are useful in system descriptions.

A classical operation on streams is the concatenation  of two streams which we denote by ˆ. The
concatenation is a function that takes two streams (say s and t) and produces a stream as result
starting with s and continuing with t. Formally the concatenation has the following functionality:

.ˆ. : Mω × Mω → Mω.

If s is infinite, then concatenating s with t yields s again:

s ∈ Μ∞ ⇒ sˆt = s.

Concatenation is associative and has the empty stream ‹› as its neutral element:

rˆ(sˆt) = (rˆs)ˆt, ‹›ˆs = s = sˆ‹›.

For m ∈ M we denote by ‹m› the one element stream. For keeping our notation simple we extend
concatenation also to elements from M (treating them like one element sequences) and to tuples of
streams (by concatenating the streams elementwise).

We write for m ∈ Μ, s ∈ Μω  also m & s for ‹m›ˆs.

On the set Mω of streams we define a prefix ordering Æ. We write s Æ t for streams s and t to
express that s is a prefix of t. Formally we have for streams s and t:
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s Æ t   iff   ∃ r ∈ Mω : sˆr = t.

The prefix ordering defines a partial ordering on the set Mω of streams. If s Æ t, then we also say
that s is an approximation of t. The set of streams ordered by Æ is complete in the sense that every
directed set S ⊆ Mω of streams has a least upper bound denoted by lub S. A nonempty subset  S of
a partially ordered set is called directed, if

∀ x, y ∈ S: ∃ z ∈ S: x Æ z ∧ y Æ z .

By least upper bounds of directed sets of finite streams we may describe infinite streams. Infinite
streams are also of interest as (and can also be described by) fixpoints of prefix monotonic
functions. The streams associated with feedback loops in interactive systems correspond to such
fixpoints.

A stream processing function is a function

f: Mω → Mω

that is prefix monotonic and continuous. The function f is called prefix monotonic, if for all streams
s and t we have

s Æ t  ⇒ f.s Æ f.t .

For better readability we often write for the function application f.x instead of f(x). The function f
is called continuous, if for all directed sets S ⊆ Mω of streams we have

lub {f.s: s ∈ S} = f.lub S .

If a function is continuous, then its results for infinite input can be already predicted from its results
on all finite approximations of the input.

By ⊥ we denote the pseudo element which represents the result of diverging computations. We
write Μ⊥ for M ∪ { ⊥}. Here we assume that ⊥ is not an element of M. On Μ⊥ we define also a
simple partial ordering by:

x Æ y iff x = y ∨ x = ⊥.

We use the following functions on streams

ft: Mω → Μ⊥,

rt: Mω → Mω.

They are defined as follows: the function ft selects the first element of a stream, if the stream is not
empty. The function rt deletes the first element of a stream, if the stream is not empty. The
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properties of the functions can be expressed by the following equations that can also be used as
defining axioms for them (let m ∈ M, s ∈ Mω):

ft.‹› = ⊥, rt.‹› = ‹›, ft(mˆs) = m, rt(mˆs) = s.

All the introduced concepts and functions such as the prefix ordering and the concatenation carry
over to tuples of streams and functions on streams and tuples of streams by understanding them
pointwise.

We denote the function space of (n,m)-ary prefix continuous stream processing functions by:

[(Mω)n → (Mω)m].

The operations ft and rt are prefix monotonic and continuous, whereas concatenation ˆ as defined
above is prefix monotonic and continuous only in its second argument.

The concept of sequences is essential for modelling the stepwise proceeding of computations.
When modelling a system component by a state machine or a transition system we obtain finite or
infinite computations in the form of sequences of states.
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