TLTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

Conquering the Search Space for the
Calculation of the Maximal Frequent
Set

Clara Nippl, Angelika Reiser, Bernhard Mitschang

TUM-10012
SFB-Bericht Nr. 342/08/00 A
August 00

TUM-INFO-08-10012-0/1.—FI

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

(©2000 SFB 342 Methoden und Werkzeuge fiir

Anforderungen an:

Druck:

die Nutzung paralleler Architekturen

Prof. Dr. A. Bode

Sprecher SFB 342

Institut fiir Informatik
Technische Universitdt Miinchen
D-80290 Miinchen, Germany

Fakultat fiir Informatik der
Technischen Universitidt Miinchen

Conguering the Search Space for the Calculation of the
Maximal Frequent Set

ClaraNippl?, Angelika Reiser?, Bernhard Mitschang?

1Computer Science Department, Technische Universitat Miinchen
D - 80290 Munich, Germany
e-mail: nippl@in.tum.de, Tel: +49 (89) 48095-172, Fax: +49 (89) 48095-198

2Institut fur Parallele und Verteil te Hochstleistungsrechner, Universitat Stuttgart
D - 70565 Stuttgart, Germany

Abstract The most time consuming operation in data mining applications is the computation of
frequent itemsets. Since the search space is exponential, efficient pruning is necessary. On the other
hand, data mining on large data volumes makes the coupling of mining with database systems
increasingly important. In this paper, we propose a new operator to efficiently calculate the support of
candidate itemsets within the database engine. Based on this operator, we propose a novel approach to
reduce search complexity by combining top-down with bottom up pruning in order to obtain an
algorithmic complexity that is only proportional to the volume of the maximal frequent itemsets. In
contrast to other approaches, this strategy avoids expensive database scans as well as intermediate
result materialization.

1 Introduction

One of the entral tasksin datamining is the discovery of frequent itemsets. The most popuar example
inthisfield is association rule mining. Given a set of transactions, where each transaction refersto a set
of items, an associationruleisan expresson d the form X=>Y (X determinesY), where X and Y are sets
of items or itemsets. Eadch itemset is said to have a support s if s% of the transactions in the database
contain theitemset. The association ruleis said to have confidence cif c% of thetransadionsthat contain
X aso contain Y. Data mining of asociation rules from databases consists of finding the set of al such
rules which meet the user-spedfied minimum confidence and suppat vaues. This task can be donein
two steps. Thefirst step consists of finding frequent itemsets, i.e. itemsets that occur in the database with
certain user-specified frequency, called minimum support. Once the frequent itemsets and the crre-
spondng supparts are known, association rules can easily be generated [AY 97]. Apart from association
rule mining, frequent itemsets are dso basic constituents of various other dataminingfieldsaswell, such
ase.g. sequential pattern mining, classification problems or discovery of correlations [HGY 98].

Several solutions have been devised to the problem of computing frequent itemsets. Many alternatives
are variations of the Apriori algorithm [AM+95]. This method requires multiple passes over a database,
which e.g. in the case of voluminous data warehouses cause prohibitive overheal in terms of 1/O costs
[AY97]. Furthermore, the dgorithm employs a battom-up seach space exploration resulting in an
explicit examination d all frequent itemsets. Since thisresultsin exporential complexity w.r.t. thelength
of the longest itemset, the performance and applicability of the dgorithm deaeases for scenarios with
long petterns and high data volumes. Anacther important aspect is that espedally for complex applica
tions the need for integrating data mining with the capabilities of database systems becomes imperative.

Frequent itemsets that have no superset that is frequent are clled maximal frequent itemsets (MFI1). The
set of all maximal frequent itemsets, also cdled the maximal frequent set (MFS), implicitly defines the
set of al frequent itemsets as well. Based onthis observation, we propose anovel methoddogy to effi-
ciently evaluate the maximal frequent set only. This strategy is based on a new database operator that
efficiently calculates the suppart of candidate itemsets, aswell as of al prefix subsets. Dynamic pruning
combining both top-down as well as bottom-up techniquesis used throughou search space exploration.
As aresult, the dgorithmic complexity does not depend on the length of the longest MFI and scdes
roughly linearly with the MFS volume, being defined as the sum of the lengths of al MFIs. The most
striking dfferenceto other approachesliesin the drasticdly reduced I/O overhead. Thus, instead of per-
forming multiple scans of the whole database, only selective disk accesses are necessary, depending an
the aurrent search space status. Asa mnsequence, first experimental results[NRM99] show considerable
performance improvements for the calculation of the MFS as compared to related work.

The strategy can efficiently be embedded into the database engine, resulting in a uniform processing
scheme, without any additional intermediate result materializations or preparatory phases. In contrast to
related work, we propose anonblocking evaluation. Thus, first results (MFIs) can be delivered fast
beforethewhole MFSisderived. Dueto space restrictions, the complete description of the database inte-
gration aswell asdetailed performance evaluation can be foundin [NRM99]. In this paper, we only focus
on the search algorithm and its effective pruning techniques that guide the MFS processing. Please note
that theorem proafs as well as detailed algorithms can be foundin the appendix.

2 Related work

In [PCY97] an improvement of the Apriori algorithm was propcsed, that reduces the database size (and
implicitly complexity) in each pass. However, transactiontrimming is an impracticable methodfor inte-
grating this algorithm into an operating database engine. Other approaches [BM+97, SON95] propose
methodol ogies to reduce the number of database scans. However, they ill apply the same bottom-up
methodology as the Apriori algorithm, thus also explicitly examining all frequent itemsets. As men-
tioned above, this yields to exponential complexity. In addition, experimental results also show that the
proposed techniques cannd lower the number of database scans below 2, either. Other solutions are
based onadditional preprocessing of data[AY 99].

In order to tackle complexity, some strategies employ randomized a gorithms [GM S97]. However, these
approaches are not complete, i.e. they do not guarantee that every frequent itemset will be returned.

Recently, solutions using also top-down search strategies were proposed, such as the MaxMiner algo-
rithm [Ba98] or PincerSearch [LK98] or MaxClique and MaxEclat [ZP+97]. However, although the
pruning strategies of these algorithms reduce the search complexity considerably as compared to Apri-
ori, they still involve multiple database passes or even preparatory phases. Our measurements [NRM 99
have shown that for these goproaches the I/O costs alone exceed the overall costs of our algorithm.

3 Search Strategy and Support Evaluation

In ou approach bah generation d candidate itemsets as well as evaluation of corresponding supports

(itemset, item) (itemset, item, sup)

(100, 10) (100, 10, sup {10})

(100, 34) — — (100, 34, sup {10, 34})
(100, 55) (200, 55, sup {10, 34, 55})

Fig. 1. Functionality of the ECS operator for theitemset 100, containing items 10, 34 and 55

are mutually entwined algorithms. In order to understand the seach space optimizations, in this paper it
is aufficient to view the evaluation of given candidate itemsets as a primitive (database) operation, here
called the ECS (Evaluation of Candidate Suppats) operator, with the following functionality:

The input of the operator is a set of tuples of the form (itemset, item), defining a @ndidate itemset. The
output is constituted of the same set of tuples, supplemented with an additional attribute. This attribute
represents for each item of the itemset the suppart of the prefix that ends with that item.This drategy is
exemplified in Fig. 1 for the sample itemset 100, constituted of the items {10, 34,55}. An efficient and
resource-effective implementation of this basic functionality is proposed and evaluated in [NRM99].
This basic operation is completed by a search space strategy, called MFSSearch, that deddes on the set,
sequence, and rnumber of candidate itemsets that have to be processed in arder to determine the MFS.
Obvioudly this drategy diredly influences the overall computation and space complexity. In the next
section we introduce in a step-by-step manner our search strategy for itemset generation.

4 Generation of the Candidate Itemsets

In the following we describe the MFSSearch algorithm in detail. MFSSearch employs the functionality
of the ECS operator for candidate and prefix itemset suppart calculation.

Given aninfrequent itemset X = {1,2,...,N-1,N}, in atop-down search it is necessary to test all of its sub-
sets of level N-1. This can be done by successively eliminating the items N-1, N-2,...1 from X. It is not
necessary to dothiswith item N, since X -{N} is a prefix whose suppart isimplicitly evaluated together
with the support of X by the ECSoperator. In the following, we will cdl the set of items needed to gen-
erate all unexplored subsets of level N-1 for a given itemset X the ElimList of X or Ey.

In this case Ex = {1,2,...,N-1}. The subsets stuated on the same level will be cdled siblings. However,
if this procedure of generating subsets by eliminatingthefirst N-1 elementsis applied recursively, dupli-
cates are generated. This follows from the following observation:

Observation: If X, and X, are two subsets of itemset X, obtained by eliminating two dfferent items
from X, then X; and X, differ by only one item position.

Suppose X;= {1,2,...AZB,...N-1}, X,={1,2,...A Y,B,...,N-1}.

If this processis done recursively, one subset of X, will be obtained by eliminating item Z:
Xlz={1,2,...,A,B,...,N'1}. S|m||ar|y XZY: {1,2,...,A,B,...,N'1} and XlZ: XZY

In order to avoid duplicae generation, if X, is expanded after X, the ElimList of X, must not contain Y.
More generaly, if the siblings X4, X...,X\.1 are expanded successively, the ElimList of a given itemset
Xi must not contain any positionswhich dfferentiate thisitemset from any of its sblings Xy,..., Xj_1. This
can bedone easily, if we decreasetheoriginal ElimList of X by one dement in order to get the gopropriate
ElimList for each subset generated.

Level 6 Level 5 Level 4 Level 3 Level 2 Level 1
23456 T 7 M2346 — T 1 m236 — — 71 M6~ — — 7 Mg — — 7 B — — 7
E={12345} T~ E={1234} - E=q123t P E=(12} P e e
L 2 L 1 [S | [| [| L — % 4
\ \l—ZG —l
E={}
136 1 |§6_ ==
L B ey B
236 — — 7
E={}
L — — —
1246 N e ST me T
E={12} E={1} =
L Jiwﬂe___% LY
E={}
346 7_»b4e= ==
E=(1} . E=0 .
hogs — 4 -~
E={}
2356 — ~— 1 *125___" s — — 1 B~ — = 1
i L ST . T) SR L B e B a
\ 256
E={}
fess — — 7 Bss — T 7 |
I J_>l— = | Forward
2356 ! lorai
CE oxloratr
12456 ~ 1 1456 a 456 7
L By N L E=1} P E= . A
- - = = = = - - = Backward
\4 2456 ! ;
L B} % [S?(plotratlon
3456 — — 3456 I direction
B g LB
23456 ~— T
LB
Fig. 2. Search spacefor frequent itemset evaluation over thefiniteitem domain: 1,2,...6.

Thusfor X={1,2,...,N-1, N} and Ex = {1,2,...,N-1} we have thefollowingsibling subsets and ElimLists:

Xi= {1.2,...N-2,N}, E; = {1,2,...N-2},
Xo= {1,2,....N-3, N-1,N}, E, = {1,2,....N-3},

Xni= £2,.oN-1, N}, Epg = 0.

Fig. 2 shows a search space generated by the MFSSearch algorithm after employing oy the ElimList
technique described abowve, i.e. without any additional pruning as described later. We will call the subsets
expanded byan itemset itself direct subsets, while subsets expanded by asibling are cdled cross subsets.
For instance {36} is a direct subset of {136}, while {16} is a cross subset of {136}, expanded by {126}.

Based onthe information gven so far, we can now derive the following two besic properties.
Theorem 1: The ElimList method guarantees a full expansion of the search space withou
duplicate generation.

Asa monclusion, given asuperset X onlevel N with the ElimList E, and a subset X; generated by elimi-

natingitem N-i from X, the ElimList of X; is{1, 2,..., N-i-1}. Thismethod d successively deaeasing the

ElimList for sibling subsets guarantees a complete and duplicate-free search space expansion.

Obviously, any subset of a frequent itemset is also frequent. Hence it is only necessary to expand the
direct subsets of a given itemset if this itemset is infrequent. We cadl this form of pruning Direct Top-
Down Pruning (DTDP).
Theorem 2: The upper bourd for the number of itemsets considered by the MFSSearch
algorithm for afiniteitem domain 1,2,..., Nis 2N,
Thus, by employing this basic version of MFSSearch (ElimList technique and DTDP) the search com-
plexity has already been reduced by a magnitude of 2.

Sibling subsets can be explored either backward or forward, asmarked in Fig.2 by arrows. Thefollowing
section will detail on that and a summary of all possible and meaningful combinations of the various
pruning and search strategiesis given in Section 4.3 at the end d this chapter.

4.1 Backward Exploration (BE) of |temsets

An important property for al backward-oriented strategiesto be discussed below isgiven by the follow-
ing theorem.

Theorem 3: Giventwo itemsets X3 and X, st. X; U X, . Inthe BE scenario X4 will be pro-
cessed after X.

4.1.1 CrossTop-Down Pruning

In this section, we ae interested in finding ou how a given frequent itemset can prune aoss sibsets as
well. InFig. 2, if e.g. {1456} is frequent, direct top-down pruning eliminates {456}, but it is desirable to
prune the cross subsets {156} and {146} aswell. We al| this Cross Top-Down Pruning (CTDP).
Theorem 4: Given a finite item domain 1,2,...,N-1,N. In the backward exploration any
itemset except itemset Z={N} is a superset of at least one itemset that is not expanded yet.
Hence, once an itemset is found frequent, it can prune its (direct and cross) subsets from exploration.
However, at a given moment, the search space wnsists of itemsets that are dther a) expanded and
explored, b) expanded or ¢) unexpanded. The fully explored search spaceis given in Fig. 2. Evidently,
pruning can orly affect category b) and c), i.e. nat yet explored itemsets. Itemsets of category b) can be
pruned together with their direct subsets as 0n as afrequent superset is fourd. However, it isnot clear
how to prune itemsets of category c). In Fig. 2, if e.g. itemset X= {456} is foundto be frequent, it can
prune itemsets {56}, {46} and {6}. However, these ae itemsets on Level 2 and 1, none of which have
been expanded yet at the moment when X is explored. Thus, it is necessary to memorize X for itemsets
that have not yet been explored, if these itemsets can produce subsets of X. In this case, these ae the
itemsets {12356} and {12346}. Such a set of relevant frequent itemsets, called FrequentSet, islogically
assigned to each itemset element, similarly to its ElimList.
Theorem 5: The set of frequent itemsets F assgned to any candidate itemset contains only
maximal frequent itemsets.
Given afreguent itemset X and an expanded but unexplored itemset Y (category b), with Y having adirect
subset Z that is not expanded yet (i.e. of category c), s.t. Zisalso a aoss aubset of X. Now the question
is how to prune the search space in arder to avoid the evaluation d Z.

Theorem 6: Given afrequent itemset X and an expanded but unexplored itemset Y, X 1 Y
and the ElimList of Y being E. Y will expand a subset of X if
{ylydY,ydX} OE . Thiswill be further on referred to as Condition (1).

A relevant frequent itemset will be propagated to lower levels only if this condition is fulfilled.
Example 1: If the itemset X= {456} is frequent, it will be included in the FrequentSet of the expanded
but unexplored itemsets {12356} and {12346} that aso satisfy Condition (1). When these itemsets are

explored, they will further propagate X only to the subsets {1256}, {1246} and {1236} on Level 4. This
processcontinues and leads finally to the pruning of the itemsets {56}, {46} and {6}. [

4.1.2 Bottom-Up Pruning

Bottom-up pruning (BUP) uses the property that if a subset of an itemset in the search spaceis found
infrequent, it is no longer necessary to explore that itemset asit isinfrequent anyway. According to The-

orem 3, in the BE scenario an itemset can never be asubset of an itemset that is expanded later. Thus, an
entire itemset can never be used for BUP. However, by processing an itemset viathe ECS operator, the
suppats of al prefixes are implicitly calculated as well. Thus, we can use infrequent prefixes for BUP.
Definition 1: Given an itemset X = {1,2,...,N-1,N} with prefixes X; = {1},.... Xy ={1,2,...,N-1,N}
The maximal infrequent prefix (MIP) of Xis 0, if Xisfrequent
{ X;, st. X; infrequent and X; frequent, j < i.

Thus, an ealy termination condtion for the processing d an itemset X via the ECS operator is finding
the maximal infrequent prefix of X.

Example 2: Given aminima support of 10 and X={2,3,4,5,6}. Assume that the following supports have
been calculated: sup{2} = 88, sup{2,3} = 51, sup{2,3,4} = 9, sup{2,3,4,5} = 7, sup{2,3,4,5,6} = 1. Thus
the MIP of Xis{2,3,4} with the correspondng support 9. Oncethis prefix isfound it is not necessary to
probe the remaining elements of X, namely 5 and 6, as at this paint it is known that X isinfrequent. [

With top-down pruning as described in the previous sction, once asuperset of an itemset X has been
found frequent, we could prune X together with all its dired subsets, as they are also all frequent. This
isnot aways possible in BUP. More precisely, if asubset Y of an itemset X is foundinfrequent, we can
prune X, but not all direct subsets of X, asthey might not include Y.

Example 3: Assuming that in the backward explorationfrom Fig. 2, the MIP of itemset {23456} isfound
to be {23}, also {12356} isinfrequent and can be pruned. However, from its direct subsets only {2356}
contains {23}, while the others still have to be explored. [

Theorem 7: In batom-up pruning, a maximal infrequent prefix X can prune an itemset Y

in the search space together withitsdirect subsetsif X Y andElimListy doesn’t contain

any items from X. We will further refer to this as Condition (2).
Example 4: Suppose that in the backward exploration from Fig. 2, the MIP of itemset {456} isfoundto
be {4}. In this case, {4} can prune the whole branch rooted at {1246} sincethe ElimList of thisitem is
{12} and thus every direct subset also includes {4}. [J

Similar to top-down pruning, in order to incorporate dso unexpanded itemsetsinthe BUP, itisnecessary
to keep a set of infrequent itemsets that are relevant for the direct subsets of agiven itemset X, called IFy.

A given prefix can be evaluated multiple times, within dfferent itemsets.
Theorem 8: Given afiniteitem domain 1,2,...,N. In the BE scenario the last time a prefix
P={Pq, P1,..., P} is evaluated is within the itemset X={Py, Py,..., P, N}.
We will further refer to the prefix X\ {N} of an itemset X as PMaxy. From Theorem 8 results that given
an infrequent itemset X, its maximal infrequent prefix MIP can only be a subset of an itemset that isnot
explored yet if [IMIP| < |X]| - 1. We will further cal this formula Condition (3).
Indeed if |MIP| = |X| - 1, then MIP = PMaxy and according to Theorem 8 this prefix will not be
expanded further on.

Example5: If the MIP of itemset X={456} is{45}, thereisno senseto perform bottom-up pruning with
this prefix, asit isnat included in any itemset still to be explored. [

Another important result of Theorem 8isthat if [MIP| = | X, the prefix PMaxy isalso amaximal frequent
itemset. We will this formula Condition (4) in the dgorithm description gven in the gpendix.

Indeed, from X = {1, 2,..., N} and Xisinfrequent and [MIP| = |X], i.e. MIP = X, results that PMaxy= {1,
2,...,N-1} is frequent. According to Theorem 8, there is no other itemset in the search space still to be
explored that includes PMaxy. On the other hand, there isalso no dher superset of PMaxy explored ear-
lier that has been fourd frequent, as in this case X would have been eliminated by top-down pruning.
From this results that PMaxy is a maximal frequent itemset.

- - - -Badkward Exploration
X1

N —Dired Subsets of X3
: >Cross Subsets of X3

—— Dired Top Down Pruning
—>» Cross Top Down Pruning

a) Top-Down Pruning

X (includes 2) —> Bottom-Up Pruning

- - - - Backward Exploration (Infrequent Sets)

Prefix Y = Z = infrequent

b) Bottom-Up Pruning
Fig. 3: Pruning strategiesin backward exploration scenario

Fig. 3 shows the reduction d the search space through the pruning techniques presented so far. In Fig.
3athe frequent set X3 prunesits direct subsets aswell asits cross subsets expanded by X; and X,. In Fig.
3b the infrequent prefix Z prunes both itemset X as well as subsets of X that satisfy Condition 2.

42 Forward Exploration (FE) of Itemsets

From Theorem 3 results that in the FE scenario, an itemset A can be asubset of an itemset B that will be
explored later. If both A and B are found frequent, A canna be aMFI. Thus, contrary to BE, in the FE
scenario it is posshble to generate dso frequent itemsets that are not maximal. Hence it is necessary to
have some filter mechanisms that return only MFIs. This can be realized by e.g. explicitly maintaining
a set of maximal frequent itemsets throughaut the exploration. Once afrequent itemset X is found, it is
added to thislist and eventual subsets of X haveto be diminated, if existing. Thus, at the end d the dgo-
rithm the set contains the MFSonly.

Similar techniques are used also in [Ba98, LK98]. The disadvantage of this approach is that in this way
the maximal frequent itemsets can only be returned when the whol e search space explorationis finished.
More precisely, if FE isrealized within the database engine, thiswould yield a blocking boundary, asall
inpu has to be processed before the first output tuple, i.e. MFI, is delivered. In the BE scenario thisis
not necessary, since oncean itemset isfoundto be frequent, it can immediately be returned, as Theorem
3 guaranteesthat it is also maximal.

We will further concentrate on pruning possbilities for the FE scenario. DTDP can be realized in the
sameway asdescribed for BE. However, accordingto Theorem 3, in the FE scenario noitemset explored
at a given time has crosssubsets that are expanded later. Hence, CTDP isnot applicable at all.

4.2.1 Bottom-Up Pruning

In the FE scenario, either entire itemsets or maximal infrequent prefixes can be used for BUP. However,
contrary to BE, if we use entire itemsets for pruning, we cannot simply discard an itemset from explora-
tionif oneof its subsetsisfoundinfrequent. As srownin Section 41.2, each itemset X in the search space
stands in reality for two itemsets, namely X and PMaxy = X\ {N}. If wefindan itemset Y = {Yg, Y1,...,
N} to beinfrequent and Y U X, we aan discard X from evaluation, but we till have to evaluate PMaxy,
asthisitemset is not asuperset of Y. Only if N [J Y , X can betotally discarded from evaluation.

Example 6: If in the forward exploration from Fig. 2 itemset {246} is infrequent, it can prune {12456}
from evaluation, but it is still necessary to evaluate its prefix {1245}. However if the MIP of {246} is
{24}, {1245} isinfrequent and can be pruned aswell. [J

In the backward evaluation scenario, we dorit have to consider this problem, because & siown in Sec-
tion 4.1.2, only maximal infrequent prefixes can be used for BUP. Please note that the MFSSearch algo-
rithm for both the backward and forward exploration scenariosis given in the appendix.

43 Summary

As detailed in the previous sctions and shown in Fig. 3, the following pruning techniques have been
developed for efficient generation of maximal frequent itemsets:

¢ Dired Top-Down Pruning (DTDP) prunes the direct subsets of an itemset X. The technique
ensuresthat these subsetswill only be expanded and explored if Xisinfrequent. DTDPisapplicable
to both backward and forward exploration strategies.

® Cross Top-Down Pruning (CTDP) ensures that unexplored cross sibsets of frequent itemsets are
eliminated from exploration. CTDP makes use of alist of relevant frequent itemsets assigned to
each expanded itemset, called FrequentSet, that is propagated selectively towards not yet explored
subsets. It isonly applicable to the BE scenario.

® Bottom-Up Pruning (BUP) eliminates supersets of infrequent itemsets from exploration. Analo-
gously to CTDP, BUP makes use of alist of relevant infrequent itemsets. BUP isapplicableto both
exploration strategies. However, atailoring to the associated strategy has to be provided.

A summarizaion d the pruning techniques and their applicationto BE and FE isgiven in Table 1.

Tablel Summarizing d the pruning techniques employed by the MFSSearch algorithm
Backward Exploration (BE) Forward Exploration (FE)
DTDP (X=Frequent) * prunes direct subsets of X * prunes direct subsets of X

CTDP (X=Frequent) * adds X to FrequentSet(2), if Z ex- | « not applicable
pands a subset of X (Cond. 1)
e prunes Y and its direct subsets, if

YOX

BUP (X=Infrequent) + only possible if X is not an entire | , j x Y, but XO pMa)\(, prunes only Y

itemset (Cond. 3
() direct subsets of Y are pruned only if

+ if XOY, prunes Y; Cond. 2 satisfied:
direct subsets of Y are pruned only else adds X to InfrequentSet(Y)
if Cond. 2 satisfied;

o if XO PMa&, prunes also PMax,
else adds X to InfrequentSet(Y)

5 Performanceevaluation

For the performance evaluation d the MFSSearch algorithm we have used the MIDA'S database proto-
type [BJ+96]. We have vaidated our approach using a 100 MB database, runnng ona SUN-ULTRAL1

workstation with a143 MHz Ultra Sparc processor. Theitem domain considered isfrom 1to 7, contained
in 67.806transactions. In Fig. 4 we have shown the times that are necessary to derive the entire MFSfor
bath the badkward as well as forward exploration scenarios and varying supparts.

As results from Fig. 4a, BE is more dficient for lower supports. The reason for thisis that in this case
we have alarge number of long MFIs that can be used for top-down pruning. However, in the FE sce-
nario, CTDPisnat possible. In contrast, in the domain of higher supports and implicitly large number of
infrequent itemsets BUP is most effective. In this case FE is dightly better than BE, resulting from the
fact that in the BE scenario orly prefixes can be used for BUP. In order to compare these performances
with the Apriori algorithm that is the basis of most bottom-up approaches, we have dso presented the
time that is necessary to perform the multiple database scans gedfic to this agorithm. Please note that
thiscurve doesn’t comprise any CPU coststhat are also inherent to the Apriori algorithm. As can be seen
in Fig. 4a, both variants of the MFSSearch processing scheme show a performance that is orders of mag-
nitude better than the Apriori algorithm.

Asshown in [NRM99] MFSSearch outperforms al so solutions using top-down search strategies [Ba98,
LK98, ZP+97] as well. This result is aso influenced by the fact that in contrast to other approacdes,
MFSSearch reduces /O costs by aacessing the database only seledively, correspording to the aurrent
search space status.

When integrated into the database engine, we expect that the BE scenario achieves generally the best
performance Thisresultson one hand from the fad that it yields a non-blocking processing, hence rapid
response times. On the other hand, this grategy combines both pruning strategiesto achieve an efficient
reduction d the search spacefor any support values, as shown in the following.

A detail ed analysis on the effectiveness of the different pruning tedhniques for the BE scenario is given
in Fig. 4b. Obviously, top-down pruning is most effedive for lower supports, where large maximal fre-
guent itemsets can prune several subsets, these being also frequent. Starting with a support of 20-25%,
DTDP does not cometo application at al. Asfor CTDP this point is reached with a support of ca. 50%.
BUP is most effective with higher supports. The reason for thisis that the higher the support, the more
infrequent itemsets are found that in turn can prune their supersets. The bottom curve in Fig. 4b shows
that the best performance is achieved by the combination of al three pruning techniques. Thisleads to
overall response timesthat are only propartiond to the volume of maximal frequent itemsets. Addition-
ally, in contrast to randamized algorithms, from Theorem 1 results that MFSSearch is a'so complete.

500 360

» . oot
" l‘“‘i ~+ Apriori (Only O Costs!) 300 r . WM
. i bl
- Fomerd Elron 250 4/ M” ~-Direct + Cross Top-Down
| o . I 4 .
3 30 \ Backward Exploration 0 - (7 r h{: -+ Direct Top-Down + Bottom-Up
g | g {] " -+ Direct + Cross Top-Down + Bottom-Up
F 200 e b F / ' ~ Direct Top-Down

b=
b=

| | | | | |
T T T T T T
(o] o o o o o o]
- N Y] < 0 ©

Support (%) Support (%)

b)

70

Fig. 4. Effediveness of pruning

6 Conclusions

We have presented a processing scheme for the generation o the maximal frequent sets that employs a
new operator, caled ECS. This s£heme avoids expensive database scans and thus drasticaly reducesthe
I/0 costs as compared to conventional data mining algorithms. Only itemsets that are not supersets of
any known infregquent itemsets or subsets of any known frequent itemsets are considered. Asaresult, the
number of candidate itemsets considered is propational only to the actual number of maximal frequent
itemsets. Hence, the dgorithm is also applicable for large item domains. Another possibility isto use
MFSSearch for hybrid solutionsaswell, e.g. to restrict the mnsidered item domain by means of sampling
[FS+98]. MFSSearch is complete in the sense that it guarantees that all MFIs are derived. By using ou
candidate generation algorithm with a backward exploration o itemsets, any frequent itemset foundis
also aMFI. Thusit can immediately be returned to the user, yielding anon-blocking exeaution and thus
short response times. The underlying theory and its applicability to MFSSearch was the focus of this
paper. Another paper [NRM99] detail son how the entire procesgng scheme, i.e. ECS operator combined
with MFSSearch, can be efficiently integrated into a database engine, thus being able to make profit of
all forms of query execution optimizations, including parallelizetion [NRM99].

Literature

AM+95 R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. |. Verkamo: Fast Discovery of Association Rules, Ad-
vances in Knowledge Discovery and Data Mining, Chapter 12, AAAI/MIT Press, 1995.

AY97 C. C. Aggarwal, P. S. Yu: Mining Large ltemsets for Association Rules, TCDE Bull., 21(1), March 1998.

AY98 C. C. Aggarwal, P. S. Yu: Online Generation of Association Rules, In: DE Conf., Orlando, Florida, 1998.

Ba98 R. Bayardo: Efficiently Mining Long Patterns from Databases, In: Proc. SIGMOD Conf., Seattle, 1998.

BJ+96 G. Bozas, M. Jaedicke et al.: On Transforming a Sequential SQL-DBMS into a Parallel One: First Results
and Experiences of the MIDAS Project, In: Proceedings of the EUROPAR Conf., 1996.

BM+97 S. Brin, R. Motwani, J. Ullmann, S. Tsur: Dynamic Itemset Counting and Implication Rules for Market Bas-
ket Data, In: Proc. ACM SIGMOD Conf., 1997.

FS+98 M. Fang, N. Shivakumar et al: Computing Iceberg Queries Efficiently, In: Proc. VLDB Conf., New York,
1998.

GMS97 G. Gunopulos, H. Mannila, S. Saluja: Discovering All Most Specific Sentences by Randomized Algorithms,
In: Proc. of the 6th Intl. Conf. on Database Theory, 1997.

HGY98 J.Han, W. Gong, Y. Yin: Mining Segment-Wise Periodic Patterns in Time Related Databases, In: Proc. Intl.
Conf. on Knowledge Discovery and Data Mining, New York City, NY, August 1998.

LK98 D. Lin, Z. M. Kedem: Pincer-Search: a New Algorithm for Discovering the Maximum Frequent Set, In: Proc
EDBT Conf., Valencia, Spain.

NJM97 C. Nippl, M. Jaedicke, B. Mitschang: Accelerating Profiling Services by Parallel Database Technology, In:
Proc. Intl. Conf. on Parallel and Distributed Processing Techniques and Applications, Las Vegas, 1997.

NM98 C. Nippl, B. Mitschang: TOPAZ: a Cost-Based, Rule-Driven, Multi-Phase Parallelizer, Proc. VLDB Conf.,
New York City,1998.

NRM99 C. Nippl, A. Reiser, B. Mitschang: Towards Deep Integration of Data Mining Technology with Data Ware-
houses, Technical Report, Technische Universitat Miinchen, 1999.

PCY97 J.S. Park, M.S. Chane, P.S. Yu: Using a Hash-Based Method with Transaction Trimming for Mining Asso-
ciation Rules, In: IEEE Trans. on TKDE, 9(5), Sept. 1997.

STA98 S. Sarawagi, S. Thomas, R. Agrawal: Integrating Association Rule Mining with Relational Database Sys-
tems: Alternatives and Implications, In: Proc. ACM SIGMOD Conf, Seattle, 1998.

SON95 A. Savasare, E. Omiecinski, S. Navathe: An Efficient Algorithm for Mining Association Rules in Large Da-
tabases, In: Proc. VLDB Conf., Zurich, 1995.

ZP+97 M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li: New Algorithms for Fast Discovery of Association Rules,
In: Proc. Intl. Conf. on Knowledge Discovery and Data Mining, Newport Beach, California, 1997.

10

Appendix

Proof to Theorem 1: Obviously, for an itemset on level N al subsets of level N-1 are generated
if its ElimList containsall N elements. It is not necessary to expandits prefix of length N-1
since it isimplicitly evaluated through ECS. Hence, it is sufficient to include the first N-1
elements into the ElimList.Consider a superset X on level N with the ElimList Ex =
{1,2,...,N-1} and the sibling subsets (on level N-1) X;, X,..., X\.1- In this case, subset X; is
generated by eliminating item N-i from X, s.t. Xi = X - {N-i}. In this case we will demon-
strate that any itemy in the ElimList of X, s.t. y > N-i, generates only a duplicate subset on
level N-2.
This subset, named e.g. X; \.y, is obtained by eliminatingy from X;:
Xi Ny = Xi - {y} = X-{N-i, y}.
On the other hand, there existsasibling of X;, called Xy., such that Xy., = X - {y}. Since
y> N-i, resultsthat Xy, has been expanded before X; andthat the ElimList of Xy, also con
tains N-i. Results that Xy, has already expanded a subset Xy.y,; on level N-2 such that
XNy = Xny - {N-i} = X - {y, N-i}.
Thus, X n.y = Xi Ny @0 X .y IS expanded after X; .y Resultsthat X; .y is aduplicae. ¢
Proof to Theorem 2: Assumethat all itemsets are expanded. In the top-down search, this process
is done from higher levels to lower ones. The total number of elementsonlevel iis HH.
However, not all of these dements need to be expanded, as some of them have dready been

processed aslprefix% inlevel i+1. Thus, the dements that need to be expanded on level i
isOio. D + D

[ND
Hence, for N |tems the number of expanded itemsetsis given by:

(EN 15 END) (EN ZD N - 1D+ END)+ +(lo_ P04+ [BBJ,__.J, (_1)N1[ND)—

0N INO ~ INO
- INO 4. IN-2C Olo IN-1g, N-3Q IleI -
END+DN ++END,forNoddorDND DND+ .+ for Neven=
=2N1e

Proof to Theorem 3: By successvely reducing the size of the ElimList as described in the Expand
procedure, the dired subsets of an itemset X are only those that have not been expanded
before by anather sibling. From the nature of top-down processing, the direct subsets of an
itemset X will be processed after X. The crosssubsets are related to siblings of X that are
expanded before X. As in the backward processing siblings are processed in the opposite
order than they are expanded, results that also these aoss aubsets of X will be processed
after X. ¢

Proof to Theorem 4: For the domain 1,2,...,N-1,N, the last itemset to be expanded is itemset
Z={N}. However, Z is a subset of any itemset in the search space. ¢

Proof to Theorem 5: Assume xl, X2 OF and X1 [J X, , From Theorem 3 follows that X; will
be processed later than X,. But X, is already frequent, from which results that it prunes X,
so that X; cannot be aso included in F. Contradiction. 4

Proof to Theorem 6: As presented at the beginning d this section, the subsets of Y are obtained
by eliminating elements of E from Y. If there is one dement y Y,y U X, so that

y U E , resultsthat y will be present in all direct subsets of Y. Followsthat all subsets of Y
contain one element that is not included in X. Thus they cannat be subsets of X. ¢

Proof to Theorem 7: The dired subsets of Y are obtained by eliminating elements of ElimListy
from Y. From Xisincluded in Y, and ElimListy doesn’t cortain any elements from X, results
that all dired subsets of Y also contain X. Since X isinfrequent, these direct subsets can also
be pruned. 4

Proof to Theorem 8: Assume that there exists an itemset Y={Pg, Py,..., P, Pp+1,....N} that is
expanded after X. But X 1Y, s.t. according to Theorem 3, X must be expanded after Y.
Contradiction. 4

11

MESSearch algorithm for a finite item domain 1,2,...,N
1. X:={1,2,..N}; Ex :={1,2,....N-1}; Fy := [; IFyx := [,
2. get MIP, sup from ECS(X)

3. if (sup < minsup) /I X infrequent, MIP = PMax

4. if (MIP] <|X]|-1) /I Condition (3)

5. IFX = IFX OMIP; /I Propagate Relevant Infrequent Itemset
6. else if (JMIP| = |X]) /I Condition (4)

7. return X\ {N}; /I X\ {N} Maximal Frequent Itemset

8. EXpand(X, Ex, Fx, |Fx),

Expand(ltemset X, ElimList E, FrequentSet F, InfrequentSet IF)
1. for eachi=1, n-1 (n = size of ElimList)

2. Xi =X\ {en_i};

3. if(EFXDF,XiDFX)

4, X;"=01; // Cross Top-Down Pruning

5. else

6. Ei =E\ {en_i, . en_l};

7. Fo=0;1F:=01;

8. foreach F, OF

9. if condition (1) /I Condition (1)

10. Fi = Fi g FX ; /I Propagate Relevant Frequent ltemsets
11. foreach IF, O1 , IFXDXi

12. if condition (2) /I Condition (2)

13. X;:=0; /I Bottom-Up Pruning affecting also direct subsets
14. else

15. Mark X; as infrequent; /I Bottom-Up Pruning affecting only the itemset
16. IFi = IFi O IFX ; /I Propagate Relevant Infrequent ltemsets
17. for each Xi £0,i=n-1,1 /I Backward Exploration

18. if ﬂlnfrequent(xi)

19. get MIP, sup from ECS(X;)

20. if (sup < minsup) Il X; infrequent, MIP

21. if (IMIP] <|Xj|-1) /I Condition (3)

22. BottomUp (MIP);

23. else if (IMIP] = |Xj|) /[Condition (4)

24, return X;\ {N}; 11 X; \ {N} Maximal Frequent Itemset
25. Expand(Xi, Ei' Fi' IFi);

26. else

27. CrossTopDown(X;);

28. return X;; /I Maximal Frequent Itemset

29. else Expand(X;, E;, Fj, IFy);

CrossTopDown (Frequent_ltemset X)
1. for each candidate Y, Y expanded but unexplored

2. if condition (1)

3. FY = FYDX;

BottomUp(Infrequent_ltemset I)

1. for each candidate Y, Y expanded but unexplored

2.if 10Y

3. if condition (2)

4. Y:= [; [/l prune Y together with its direct subsets

5. else

6. Mark Y as Infrequent; /I prune only Y

7. IFY = IFYD I I/l propagate | to be taken into account for subsets of Y

Ascan be seen from MFSSearch, the procedure Expand is used to address bath pruning and seach strat-

12

egies within the given search space.

Expand(Itemset X, ElimList E, InfrequentSet IF)
1. for eachi= 1, n-1 (n = size of ElimList)

2. Xi =X\ {eni}
3. Ei:=E\{epi ... en-1h:
4. IF; :=0;
5. foreach IF, O1 , IF, OX.
6. if condition (2) X
7. X; =0; // Bottom-Up Pruning affecting also direct subsets
8. else
9. Mark X; as infrequent; // Bottom-Up Pruning affecting only the itemset
10. if 10 PMaxX_ I/ prune also PMax of X;

[
11. Mark PMa&_ as Infrequent;

i

12. IFi = IFi O IFX; /l Propagate Relevant Infrequent Itemsets
13. for each)(i 0 ,i:=1,n-1 /I Forward Exploration
14. if =Infrequent(X;) Il probe X;
15. get MIP, sup from ECS(X));
16. if (sup < minsup) /I X; infrequent, MIP = PMax
17. BottomUp (MIP);
18. if (IMIP] =|Xi]) /I condition (4)
19. UpdateMFS(X; \ {N}); /I X; \ {N} Frequent Itemset
20. Expand(X;, E;, IF);
21. else
22. UpdateMFS(X)); Il X; Frequent Itemset
23. else
24, if =Infrequent(X; —{N}) /I probe PMax of X;
25. get MIP, sup from ECS(X; \ {N});
26. if (sup > minsup)
27. UpdateMFS(X; \ {N}); /I Xi\ {N} Frequent Itemset
28. Expand(X;, E;, IF);

UpdateMFES(Frequent_ltemset X)
for each YOMFS

1.

2. if Y is a subset of X

3. eliminate Y;

4, MFS:= MFSOX ;

BottomUp(Infrequent Itemset I)

1. for each candidate Y, Y expanded but unexplored

2.if 10Y
3. if condition (2)
4. Y:=0; /I prune Y together with its direct subsets
5. else
6. Mark Y as Infrequent; /I prune only Y
7. if 1 OPMax
Y
8. Mark PMaxy as Infrequent; /I prune also PMaxy
9. IFY = IFYD I /I propagate | to be taken into account for subsets of Y

13

14

SFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/01/95 A
342/02/95 A

342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A
342/09/95 A
342/10/95 A

342/11/95 A
342/12/95 A

342/13/95 A
342/14/95 A
342/15/95 A
342/16/95 A

342/17/95 A
342/18/95 A

342/19/95 A

342/20/95 A

Liste aller erschienenen Berichte von 1990-1994
auf besondere Anforderung

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids
Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of Par-
allel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-
necker Product of Identical Servers to a Reduced Product Space

Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:
Auto-Correlation of Lag-k For Customers Departing From Semi-Markov
Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Ap-
plications to Multi-dimensional Schrodinger Problems

Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Microsys-
tem Technology

Alexander Pfaffinger: Parallel Communication on Workstation Networks
with Complex Topologies

Ketil Stelen: Assumption/Commitment Rules for Data-flow Networks -
with an Emphasis on Completeness

Ketil Stplen, Max Fuchs: A Formal Method for Hardware/Software Co-
Design

Thomas Schnekenburger: The ALDY Load Distribution System

Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
McMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via Integer
Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-to-
Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute
the Concurrency Relation of Free-Choice Signal Transition Graphs
Bernhard Schatz, Katharina Spies: Formale Syntax zur logischen Kern-
sprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations

Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismaiiller:
Workshop on PVM, MPI, Tools and Applications

Thomas Schnekenburger: Integration of Load Distribution into ParMod-
C

Ketil Stglen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Reihe A

342/21/95 A
342/22/95 A
342/23/95 A
342/24/95 A

342/01/96 A

342/02/96 A

342/03/96 A

342/04/96 A
342/05/96 A

342/06/96 A
342/07/96 A
342/08/96 A
342/09/96 A
342/10/96 A
342/11/96 A
342/12/96 A

342/13/96 A

342/14/96 A

342/15/96 A
342/16/96 A

342/17/96 A
342/18/96 A

342/01/97 A

Andreas Listl, Giannis Bozas: Performance Gains Using Subpages for
Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr Jancar, Javier Esparza: Deciding Finiteness of Petri Nets up to
Bisimulation

M. Jung, U. Riide: Implicit Extrapolation Methods for Variable Coeffi-
cient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Multigrid
Methods for the Solution of the Navier-Stokes Equations in Complicated
Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive Multilevel-
Preconditioners based on Bilinear Interpolation, Matrix Dependent Geo-
metric Coarsening and Algebraic-Multigrid Coarsening for Second Order
Elliptic PDEs

Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embed-
dings of Complete Binary Trees into Hypercubes

Thomas Huckle: Efficient Computation of Sparse Approximate Inverses
Thomas Ludwig, Roland Wismiiller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

Ekkart Kindler: A Compositional Partial Order Semantics for Petri Net
Components

Richard Mayr: Some Results on Basic Parallel Processes

Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht

P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer,
H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme
Stefan Lamberts, Thomas Ludwig, Christian Roder, Arndt Bode: PFS-
Lib — A File System for Parallel Programming Environments

Manfred Broy, Gheorghe Stefanescu: The Algebra of Stream Processing
Functions

Javier Esparza: Reachability in Live and Safe Free-Choice Petri Nets is
NP-complete

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Many-to-
Many Data-flow Networks

Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mitschang,
Angelika Reiser, Stephan Zimmermann: On Transforming a Sequential
SQL-DBMS into a Parallel One: First Results and Experiences of the
MIDAS Project

Richard Mayr: A Tableau System for Model Checking Petri Nets with
a Fragment of the Linear Time p -Calculus

Ursula Hinkel, Katharina Spies: Anleitung zur Spezifikation von mo-
bilen, dynamischen Focus-Netzen

Richard Mayr: Model Checking PA-Processes

Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model Checker
on Diet: Verification on Local States

Tobias Miiller, Stefan Lamberts, Ursula Maier, Georg Stellner:
Evaluierung der Leistungsfihigkeit eines ATM-Netzes mit parallelen
Programmierbibliotheken

Reihe A

342/02/97 A
342/03/97 A
342/04/97 A
342/05/97 A

342/06/97 A

342/07/97 A
342/08/97 A
342/09/97 A
342/10/97 A
342/11/97 A
342/12/97 A
342/13/97 A
342/14/97 A
342/15/97 A
342/16/97 A
342/17/97 A
342/18/97 A
342/19/97 A
342/20/97 A
342/21/97 A

342/22/97 A

342/23/97 A
342/24/97 A

342/25/97 A

342/26/97 A

Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: Recent
Developments for Elliptic Partial Differential Equations

Bernhard Mitschang: Technologie fiir Parallele Datenbanken - Bericht
zum Workshop

nicht erschienen

Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchis-
che Basen zur effizienten Kopplung substrukturierter Probleme der
Strukturmechanik

Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Neunho-
effer, Stefan Schulte: Fluid Structure Interaction: 3D Numerical Simu-
lation and Visualization of a Micropump

Javier Esparza, Stephan Melzer: Model Checking LTL using Constraint
Programming

Niels Reimer: Untersuchung von Strategien fiir verteiltes Last- und
Ressourcenmanagement

Markus Pizka: Design and Implementation of the GNU INSEL-Compiler
gic

Manfred Broy, Franz Regensburger, Bernhard Schatz, Katharina Spies:
The Steamboiler Specification - A Case Study in Focus

Christine Rockl: How to Make Substitution Preserve Strong Bisimilarity
Christian B. Czech: Architektur und Konzept des Dycos-Kerns

Jan Philipps, Alexander Schmidt: Traffic Flow by Data Flow

Norbert Frohlich, Rolf Schlagenhaft, Josef Fleischmann: Partitioning
VLSI-Circuits for Parallel Simulation on Transistor Level

Frank Weimer: DaViT: Ein System zur interaktiven Ausfithrung und
zur Visualisierung von INSEL-Programmen

Niels Reimer, Jiirgen Rudolph, Katharina Spies: Von FOCUS nach IN-
SEL - Eine Aufzugssteuerung

Radu Grosu, Ketil Stglen, Manfred Broy: A Denotational Model for
Mobile Point-to-Point Data-flow Networks with Channel Sharing
Christian Roder, Georg Stellner: Design of Load Management for Par-
allel Applications in Networks of Heterogenous Workstations

Frank Wallner: Model Checking LTL Using Net Unfoldings

Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen Theorem-
beweisers in einer taktikgesteuerten Beweisumgebung zur Losung eines
Beispiels aus der Hardware-Verifikation — Fallstudie —

Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated Theorem
Proving

T. Ludwig, R. Wismiiller, V. Sunderam, A. Bode: OMIS - On-line Mon-
itoring Interface Specification (Version 2.0)

Stephan Merkel: Verification of Fault Tolerant Algorithms Using PEP
Manfred Broy, Max Breitling, Bernhard Schatz, Katharina Spies: Sum-
mary of Case Studies in Focus - Part 11

Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel Pro-
cessing of Aggregat and Scalar Functions in Object-Relational DBMS
Marc Fuchs: Similarity-Based Lemma Generation with Lemma-Delaying
Tableau Enumeration

Reihe A

342/27/97 A
342/28/97 A
342/29/97 A

342/01/98 A

342/02/98 A
342/03/98 A
342/04/98 A

342/05/98 A

342/06/98 A
342/07/98 A
342/08/98 A
342/09/98 A
342/10/98 A
342/11/98 A
342/12/98 A
342/13/98 A
342/01/99 A

342/02/99 A

342/03/99 A
342/04/99 A

342/05/99 A

342/06/99 A

Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWork
for the Evaluation and Maintenance of Automated Theorem Prover Data
(incl. Documentation)

Radu Grosu, Ketil Stglen: Compositional Specification of Mobile
Systems

A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schiemann, T.
Schnekenburger (Herausgeber): “Anwendungsbezogene Lastverteilung”,
ALV’98

Ursula Hinkel: Home Shopping - Die Spezifikation einer Kommunika-
tionsanwendung in Focus

Katharina Spies: Eine Methode zur formalen Modellierung von
Betriebssystemkonzepten

Stefan Bischof, Ernst W. Mayr: On-Line Scheduling of Parallel Jobs
with Runtime Restrictions

St. Bischof, R. Ebner, Th. Erlebach: Load Balancing for Problems
with Good Bisectors and Applications in Finite Element Simulations:
Worst-case Analysis and Practical Results

Giannis Bozas, Susanne Kober: Logging and Crash Recovery in Shared-
Disk Database Systems

Markus Pizka: Distributed Virtual Address Space Management in the
MoDiS-OS

Niels Reimer: Strategien fur ein verteiltes Last- und Ressourcen-
management

Javier Esparza, Editor: Proceedings of INFINITY’98

Richard Mayr: Lossy Counter Machines

Thomas Huckle: Matrix Multilevel Methods and Preconditioning
Thomas Huckle: Approximate Sparsity Patterns for the Inverse of a
Matrix and Preconditioning

Antonin Kucera, Richard Mayr: Weak Bisimilarity with Infinite-State
Systems can be Decided in Polynomial Time

Antonin Kucera, Richard Mayr: Simulation Preorder on Simple Process
Algebras

Johann Schumann, Max Breitling: Formalisierung und Beweis einer Ver-
feinerung aus FOCUS mit automatischen Theorembeweisern — Fallstudie
M. Bader, M. Schimper, Chr. Zenger: Hierarchical Bases for the Indef-
inite Helmholtz Equation

Frank Strobl, Alexander Wisspeintner: Specification of an Elevator Con-
trol System

Ralf Ebner, Thomas Erlebach, Andreas Ganz, Claudia Gold, Clemens
Harlfinger, Roland Wismiiller: A Framework for Recording and Visual-
izing Event Traces in Parallel Systems with Load Balancing

Michael Jaedicke, Bernhard Mitschang: The Multi-Operator Method:
Integrating Algorithms for the Efficient and Parallel Evaluation of User-
Defined Predicates into ORDBMS

Reihe A
342/07/99 A
342/08/99 A

342/09/99 A

342/10/99 A
342/01/00 A
342/02/00 A
342/03/00 A

342/04/00 A
342/05/00 A

342/06/00 A

342/07/00 A

342/08/00 A

Max Breitling, Jan Philipps: Black Box Views of State Machines
Clara Nippl, Stephan Zimmermann, Bernhard Mitschang: Design, Im-
plementation and Evaluation of Data Rivers for Efficient Intra-Query
Parallelism

Robert Sandner, Michael Mauderer: Integrierte Beschreibung au-
tomatisierter Produktionsanlagen - eine FEvaluierung praxisnaher
Beschreibungstechniken

Alexander Sabbah, Robert Sandner: Evaluation of Petri Net and Au-
tomata Based Description Techniques: An Industrial Case Study
Javier Esparza, David Hansel, Peter Rossmanith, Stefan Schwoon: Effi-
cient Algorithm for Model Checking Pushdown Systems

Barbara Konig: Hypergraph Construction and Its Application to the
Compositional Modelling of Concurrency

Max Breitling and Jan Philipps: Verification Diagrams for Dataflow
Properties

Giinther Rackl: Monitoring Globus Components with MIMO

Barbara Konig: Analysing Input/Output Capabilities of Mobile Pro-
cesses with a Generic Type System

Michael Bader, Christoph Zenger: A Parallel Solver for Convec-
tion Diffusion Equations based on Nested Dissection with Incomplete
Elimination

Clara Nippl, Angelika Reiser, Bernhard Mitschang: Extending Database
Functionality to Support Frequent Itemset Processing

Clara Nippl, Angelika Reiser, Bernhard Mitschang: Conquering the
Search Space for the Calculation of the Maximal Frequent Set

SFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B

342/1/91 B
342/2/91 B

342/3/91 B

342/4/91 B
342/5/91 B

342/6/91 B
342/7/91 B
342/1/92 B
342/2/92 B

342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice Systems
Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Programme
Barbara Paech: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier-Toolbox —
Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop tiber
Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Methods
Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared
Memory Scheme: Formal Specification and Analysis

Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-
Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support
Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,
Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-
eraturiiberblick

Andreas Listl, Thomas Schnekenburger, Michael Friedrich: Zum En-
twurf eines Prototypen fiir MIDAS

