
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderfors
hungsberei
h 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Re
hnerar
hitekturen

Conquering the Sear
h Spa
e for theCal
ulation of the Maximal FrequentSetClara Nippl, Angelika Reiser, Bernhard Mits
hang

TUM-I0012SFB-Beri
ht Nr. 342/08/00 AAugust 00

TUM{INFO{08-I0012-0/1.{FIAlle Re
hte vorbehaltenNa
hdru
k au
h auszugsweise verboten

2000 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler Ar
hitekturenAnforderungen an: Prof. Dr. A. BodeSpre
her SFB 342Institut f�ur InformatikTe
hnis
he Universit�at M�un
henD-80290 M�un
hen, GermanyDru
k: Fakult�at f�ur Informatik derTe
hnis
hen Universit�at M�un
hen

1

Abstract The most time consuming operation in data mining applications is the computation of
frequent itemsets. Since the search space is exponential, efficient pruning is necessary. On the other
hand, data mining on large data volumes makes the coupling of mining with database systems
increasingly important. In this paper, we propose a new operator to efficiently calculate the support of
candidate itemsets within the database engine. Based on this operator, we propose a novel approach to
reduce search complexity by combining top-down with bottom up pruning in order to obtain an
algorithmic complexity that is only proportional to the volume of the maximal frequent itemsets. In
contrast to other approaches, this strategy avoids expensive database scans as well as intermediate
result materialization.

 1 Introduction
One of the central tasks in data mining is the discovery of frequent itemsets. The most popular example
in this field is association rule mining. Given a set of transactions, where each transaction refers to a set
of items, an association rule is an expression of the form X=>Y (X determines Y), where X and Y are sets
of items or itemsets. Each itemset is said to have a support s if s% of the transactions in the database
contain the itemset. The association rule is said to have confidence c if c% of the transactions that contain
X also contain Y. Data mining of association rules from databases consists of finding the set of all such
rules which meet the user-specified minimum confidence and support values. This task can be done in
two steps. The first step consists of finding frequent itemsets, i.e. itemsets that occur in the database with
certain user-specified frequency, called minimum support. Once the frequent itemsets and the corre-
sponding supports are known, association rules can easily be generated [AY97]. Apart from association
rule mining, frequent itemsets are also basic constituents of various other data mining fields as well, such
as e.g. sequential pattern mining, classification problems or discovery of correlations [HGY98].

Several solutions have been devised to the problem of computing frequent itemsets. Many alternatives
are variations of the Apriori algorithm [AM+95]. This method requires multiple passes over a database,
which e.g. in the case of voluminous data warehouses cause prohibitive overhead in terms of I/O costs
[AY97]. Furthermore, the algorithm employs a bottom-up search space exploration resulting in an
explicit examination of all frequent itemsets. Since this results in exponential complexity w.r.t. the length
of the longest itemset, the performance and applicability of the algorithm decreases for scenarios with
long patterns and high data volumes. Another important aspect is that especially for complex applica-
tions the need for integrating data mining with the capabili ties of database systems becomes imperative.

Conquering the Search Space for the Calculation of the
Maximal Frequent Set

Clara Nippl1, Angelika Reiser1, Bernhard Mitschang2

1Computer Science Department, Technische Universität München
D - 80290 Munich, Germany

e-mail: nippl@in.tum.de, Tel: +49 (89) 48095-172, Fax: +49 (89) 48095-198
2Institut für Parallele und Verteil te Höchstleistungsrechner, Universität Stuttgart

D - 70565 Stuttgart, Germany

2

Frequent itemsets that have no superset that is frequent are called maximal frequent itemsets (MFI). The
set of all maximal frequent itemsets, also called the maximal frequent set (MFS), implicitly defines the
set of all frequent itemsets as well. Based on this observation, we propose a novel methodology to effi-
ciently evaluate the maximal frequent set only. This strategy is based on a new database operator that
efficiently calculates the support of candidate itemsets, as well as of all prefix subsets. Dynamic pruning
combining both top-down as well as bottom-up techniques is used throughout search space exploration.
As a result, the algorithmic complexity does not depend on the length of the longest MFI and scales
roughly linearly with the MFS volume, being defined as the sum of the lengths of all MFIs. The most
striking difference to other approaches lies in the drastically reduced I/O overhead. Thus, instead of per-
forming multiple scans of the whole database, only selective disk accesses are necessary, depending on
the current search space status. As a consequence, first experimental results [NRM99] show considerable
performance improvements for the calculation of the MFS as compared to related work.

The strategy can efficiently be embedded into the database engine, resulting in a uniform processing
scheme, without any additional intermediate result materializations or preparatory phases. In contrast to
related work, we propose a non-blocking evaluation. Thus, first results (MFIs) can be delivered fast
before the whole MFS is derived. Due to space restrictions, the complete description of the database inte-
gration as well as detailed performance evaluation can be found in [NRM99]. In this paper, we only focus
on the search algorithm and its effective pruning techniques that guide the MFS processing. Please note
that theorem proofs as well as detailed algorithms can be found in the appendix.

 2 Related work
In [PCY97] an improvement of the Apriori algorithm was proposed, that reduces the database size (and
implicitly complexity) in each pass. However, transaction trimming is an impracticable method for inte-
grating this algorithm into an operating database engine. Other approaches [BM+97, SON95] propose
methodologies to reduce the number of database scans. However, they still apply the same bottom-up
methodology as the Apriori algorithm, thus also explicitly examining all frequent itemsets. As men-
tioned above, this yields to exponential complexity. In addition, experimental results also show that the
proposed techniques cannot lower the number of database scans below 2, either. Other solutions are
based on additional preprocessing of data [AY98].

In order to tackle complexity, some strategies employ randomized algorithms [GMS97]. However, these
approaches are not complete, i.e. they do not guarantee that every frequent itemset will be returned.

Recently, solutions using also top-down search strategies were proposed, such as the MaxMiner algo-
rithm [Ba98] or PincerSearch [LK98] or MaxClique and MaxEclat [ZP+97]. However, although the
pruning strategies of these algorithms reduce the search complexity considerably as compared to Apri-
ori, they still involve multiple database passes or even preparatory phases. Our measurements [NRM99]
have shown that for these approaches the I/O costs alone exceed the overall costs of our algorithm.

 3 Search Strategy and Suppor t Evaluation
In our approach both generation of candidate itemsets as well as evaluation of corresponding supports

3

are mutually entwined algorithms. In order to understand the search space optimizations, in this paper it
is sufficient to view the evaluation of given candidate itemsets as a primitive (database) operation, here
called the ECS (Evaluation of Candidate Supports) operator, with the following functionality:

The input of the operator is a set of tuples of the form (itemset, item), defining a candidate itemset. The
output is constituted of the same set of tuples, supplemented with an additional attribute. This attribute
represents for each item of the itemset the support of the prefix that ends with that item.This strategy is
exemplified in Fig. 1 for the sample itemset 100, constituted of the items {10, 34,55}. An efficient and
resource-effective implementation of this basic functionality is proposed and evaluated in [NRM99].
This basic operation is completed by a search space strategy, called MFSSearch, that decides on the set,
sequence, and number of candidate itemsets that have to be processed in order to determine the MFS.
Obviously this strategy directly influences the overall computation and space complexity. In the next
section we introduce in a step-by-step manner our search strategy for itemset generation.

 4 Generation of the Candidate I temsets
In the following we describe the MFSSearch algorithm in detail. MFSSearch employs the functionali ty
of the ECS operator for candidate and prefix itemset support calculation.

Given an infrequent itemset X = {1,2,...,N-1,N}, in a top-down search it is necessary to test all of its sub-
sets of level N-1. This can be done by successively eliminating the items N-1, N-2,...1 from X. It is not
necessary to do this with item N, since X -{N} is a prefix whose support is implicitly evaluated together
with the support of X by the ECS operator. In the following, we will call the set of items needed to gen-
erate all unexplored subsets of level N-1 for a given itemset X the ElimList of X or EX.

In this case EX = {1,2,...,N-1}. The subsets situated on the same level will be called siblings. However,
if this procedure of generating subsets by eliminating the first N-1 elements is applied recursively, dupli-
cates are generated. This follows from the following observation:

Observation: If X1 and X2 are two subsets of itemset X, obtained by eliminating two different items
from X, then X1 and X2 differ by only one item position.

Suppose X1= {1,2,...,A,Z,B,...,N-1}, X2={1,2,...,A,Y,B,...,N-1}.

If this process is done recursively, one subset of X1 wil l be obtained by eliminating item Z:
X1Z ={1,2,...,A,B,...,N-1}. Similarly X2Y = {1,2,...,A,B,...,N-1} and X1Z = X2Y.

In order to avoid duplicate generation, if X2 is expanded after X1, the ElimList of X2 must not contain Y.
More generally, if the siblings X1, X2...,XN-1 are expanded successively, the ElimList of a given itemset
Xi must not contain any positions which differentiate this itemset from any of its siblings X1,..., Xi-1. This
can be done easily, if we decrease the original ElimList of X by one element in order to get the appropriate
ElimList for each subset generated.

ECS

(itemset, item)
(100, 10)
(100, 34)
(100, 55)

(itemset, item, sup)
(100, 10, sup {10})
(100, 34, sup {10, 34})
(100, 55, sup {10, 34, 55})

Fig. 1: Functionality of the ECS operator for the itemset 100, containing items 10, 34 and 55

4

Thus for X = {1,2,..., N-1, N} and EX = {1,2,...,N-1} we have the following sibling subsets and ElimLists:

X1= {1,2,...,N-2,N}, E1 = {1,2,...,N-2},
X2= {1,2,...,N-3, N-1,N}, E2 = {1,2,...,N-3},
....
XN-1= {2,...,N-1, N}, EN-1 = .

Fig. 2 shows a search space generated by the MFSSearch algorithm after employing only the ElimList

technique described above, i.e. without any additional pruning as described later. We will call the subsets
expanded by an itemset itself direct subsets, while subsets expanded by a sibling are called cross subsets.

For instance {36} is a direct subset of {136}, while {16} is a cross subset of {136}, expanded by {126}.

Based on the information given so far, we can now derive the following two basic properties.
Theorem 1: The ElimList method guarantees a full expansion of the search space without
duplicate generation.

As a conclusion, given a superset X on level N with the ElimList Ex and a subset Xi generated by elimi-
nating item N-i from X, the ElimList of Xi is {1, 2,..., N-i-1}. This method of successively decreasing the
ElimList for sibling subsets guarantees a complete and duplicate-free search space expansion.

Obviously, any subset of a frequent itemset is also frequent. Hence it is only necessary to expand the
direct subsets of a given itemset if this itemset is infrequent. We call this form of pruning Direct Top-
Down Pruning (DTDP).

Theorem 2: The upper bound for the number of itemsets considered by the MFSSearch
algorithm for a finite item domain 1,2,..., N is 2N-1.

Thus, by employing this basic version of MFSSearch (ElimList technique and DTDP) the search com-
plexity has already been reduced by a magnitude of 2.

∅

123456
E={12345}

Level 6 Level 5 Level 4 Level 3 Level 2 Level 1

12346
E={1234}

1236
E={123}

126
E={12}

16
E={1}

6
E={}

26
E={}

136
E={1}

36
E={}

236
E={}

1246
E={12}

146
E={1}

46
E={}

246
E={}

1346
E={1}

346
E={}

2346
E={}

12356
E={123}

2356
E={}

356
E={}

1356
E={1}

256
E={}

56
E={}

156
E={1}

1256
E={12}

12456
E={12}

1456
E={1}

456
E={}

2456
E={}

3456
E={}

23456
E={}

13456
E={1}

Backward
exploration
direction

Forward
exploration
direction

Fig. 2: Search space for frequent itemset evaluation over the finite item domain: 1,2,...,6.

5

Sibling subsets can be explored either backward or forward, as marked in Fig.2 by arrows. The following
section will detail on that and a summary of all possible and meaningful combinations of the various
pruning and search strategies is given in Section 4.3 at the end of this chapter.

4.1 Backward Exploration (BE) of I temsets

An important property for all backward-oriented strategies to be discussed below is given by the follow-
ing theorem.

Theorem 3: Given two itemsets X1 and X2, s.t. . In the BE scenario X1 will be pro-
cessed after X2.

4.1.1 Cross Top-Down Pruning

In this section, we are interested in finding out how a given frequent itemset can prune cross subsets as
well. In Fig. 2, if e.g. {1456} is frequent, direct top-down pruning eliminates {456}, but it is desirable to
prune the cross subsets {156} and {146} as well . We call this Cross Top-Down Pruning (CTDP).

Theorem 4: Given a finite item domain 1,2,...,N-1,N. In the backward exploration any
itemset except itemset Z={N} is a superset of at least one itemset that is not expanded yet.

Hence, once an itemset is found frequent, it can prune its (direct and cross) subsets from exploration.
However, at a given moment, the search space consists of itemsets that are either a) expanded and
explored, b) expanded or c) unexpanded. The fully explored search space is given in Fig. 2. Evidently,
pruning can only affect category b) and c), i.e. not yet explored itemsets. Itemsets of category b) can be
pruned together with their direct subsets as soon as a frequent superset is found. However, it is not clear
how to prune itemsets of category c). In Fig. 2, if e.g. itemset X= {456} is found to be frequent, it can
prune itemsets {56}, {46} and {6}. However, these are itemsets on Level 2 and 1, none of which have
been expanded yet at the moment when X is explored. Thus, it is necessary to memorize X for itemsets
that have not yet been explored, if these itemsets can produce subsets of X. In this case, these are the
itemsets {12356} and {12346}. Such a set of relevant frequent itemsets, called FrequentSet, is logically
assigned to each itemset element, similarly to its ElimList.

Theorem 5: The set of frequent itemsets F assigned to any candidate itemset contains only
maximal frequent itemsets.

Given a frequent itemset X and an expanded but unexplored itemset Y (category b), with Y having a direct
subset Z that is not expanded yet (i.e. of category c), s.t. Z is also a cross subset of X. Now the question
is how to prune the search space in order to avoid the evaluation of Z.

Theorem 6: Given a frequent itemset X and an expanded but unexplored itemset Y,
and the ElimList of Y being E. Y will expand a subset of X if

. This will be further on referred to as Condition (1).

A relevant frequent itemset will be propagated to lower levels only if this condition is fulfilled.

Example 1: If the itemset X= {456} is frequent, it will be included in the FrequentSet of the expanded
but unexplored itemsets {12356} and {12346} that also satisfy Condition (1). When these itemsets are
explored, they wil l further propagate X only to the subsets {1256}, {1246} and {1236} on Level 4. This
process continues and leads finally to the pruning of the itemsets {56}, {46} and {6}. ❑

4.1.2 Bottom-Up Pruning

Bottom-up pruning (BUP) uses the property that if a subset of an itemset in the search space is found
infrequent, it is no longer necessary to explore that itemset as it is infrequent anyway. According to The-

X1 X2⊆

X Y⊄

y y Y y X∉,∈{ } E⊂

6

orem 3, in the BE scenario an itemset can never be a subset of an itemset that is expanded later. Thus, an
entire itemset can never be used for BUP. However, by processing an itemset via the ECS operator, the
supports of all prefixes are implicitly calculated as well. Thus, we can use infrequent prefixes for BUP.
Definition 1: Given an itemset X = {1,2,...,N-1,N} with prefixes X1 = {1},...,XN ={1,2,...,N-1,N}

The maximal infrequent prefix (MIP) of X is , if X is frequent { Xi, s.t. Xi infrequent and Xj frequent, j < i.

Thus, an early termination condition for the processing of an itemset X via the ECS operator is finding
the maximal infrequent prefix of X.

Example 2: Given a minimal support of 10 and X={2,3,4,5,6}. Assume that the following supports have
been calculated: sup{2} = 88, sup{2,3} = 51, sup{2,3,4} = 9, sup{2,3,4,5} = 7, sup{2,3,4,5,6} = 1. Thus
the MIP of X is {2,3,4} with the corresponding support 9. Once this prefix is found, it is not necessary to
probe the remaining elements of X, namely 5 and 6, as at this point it is known that X is infrequent. ❑

With top-down pruning as described in the previous section, once a superset of an itemset X has been
found frequent, we could prune X together with all its direct subsets, as they are also all frequent. This
is not always possible in BUP. More precisely, if a subset Y of an itemset X is found infrequent, we can
prune X, but not all direct subsets of X, as they might not include Y.

Example 3: Assuming that in the backward exploration from Fig. 2, the MIP of itemset {23456} is found
to be {23}, also {12356} is infrequent and can be pruned. However, from its direct subsets only {2356}

contains {23}, while the others still have to be explored. ❑
Theorem 7: In bottom-up pruning, a maximal infrequent prefix X can prune an itemset Y
in the search space together with its direct subsets if and ElimListY doesn’t contain
any items from X. We will further refer to this as Condition (2).

Example 4: Suppose that in the backward exploration from Fig. 2, the MIP of itemset {456} is found to
be {4}. In this case, {4} can prune the whole branch rooted at {1246} since the ElimList of this item is
{12} and thus every direct subset also includes {4}. ❑

Similar to top-down pruning, in order to incorporate also unexpanded itemsets in the BUP, it is necessary
to keep a set of infrequent itemsets that are relevant for the direct subsets of a given itemset X, called IFX.

A given prefix can be evaluated multiple times, within different itemsets.
Theorem 8: Given a finite item domain 1,2,...,N. In the BE scenario the last time a prefix
P={P0, P1,..., Pn} is evaluated is within the itemset X={P0, P1,..., Pn, N} .

We will further refer to the prefix X \ {N} of an itemset X as PMaxX. From Theorem 8 results that given
an infrequent itemset X, its maximal infrequent prefix MIP can only be a subset of an itemset that is not
explored yet if |MIP| < |X| - 1. We will further call this formula Condition (3).
Indeed if |MIP| = |X| - 1, then MIP = PMaxX and according to Theorem 8 this prefix wil l not be
expanded further on.

Example 5: If the MIP of itemset X={456} is {45}, there is no sense to perform bottom-up pruning with
this prefix, as it is not included in any itemset still to be explored. ❑

Another important result of Theorem 8 is that if |MIP| = |X|, the prefix PMaxX is also a maximal frequent
itemset. We will this formula Condition (4) in the algorithm description given in the appendix.

Indeed, from X = {1, 2,..., N} and X is infrequent and |MIP| = |X|, i.e. MIP = X, results that PMaxX= {1,
2,...,N-1} is frequent. According to Theorem 8, there is no other itemset in the search space still to be
explored that includes PMaxX. On the other hand, there is also no other superset of PMaxX explored ear-
lier that has been found frequent, as in this case X would have been eliminated by top-down pruning.
From this results that PMaxX is a maximal frequent itemset.

∅

X Y⊂

7

Fig. 3 shows the reduction of the search space through the pruning techniques presented so far. In Fig.
3a the frequent set X3 prunes its direct subsets as well as its cross subsets expanded by X1 and X2. In Fig.
3b the infrequent prefix Z prunes both itemset X as well as subsets of X that satisfy Condition 2.

4.2 Forward Exploration (FE) of I temsets

From Theorem 3 results that in the FE scenario, an itemset A can be a subset of an itemset B that will be
explored later. If both A and B are found frequent, A cannot be a MFI. Thus, contrary to BE, in the FE
scenario it is possible to generate also frequent itemsets that are not maximal. Hence it is necessary to
have some filter mechanisms that return only MFIs. This can be realized by e.g. explicitly maintaining
a set of maximal frequent itemsets throughout the exploration. Once a frequent itemset X is found, it is
added to this list and eventual subsets of X have to be eliminated, if existing. Thus, at the end of the algo-
rithm the set contains the MFS only.

Similar techniques are used also in [Ba98, LK98]. The disadvantage of this approach is that in this way
the maximal frequent itemsets can only be returned when the whole search space exploration is finished.
More precisely, if FE is realized within the database engine, this would yield a blocking boundary, as all
input has to be processed before the first output tuple, i.e. MFI, is delivered. In the BE scenario this is
not necessary, since once an itemset is found to be frequent, it can immediately be returned, as Theorem
3 guarantees that it is also maximal.

We will further concentrate on pruning possibilities for the FE scenario. DTDP can be realized in the
same way as described for BE. However, according to Theorem 3, in the FE scenario no itemset explored
at a given time has cross subsets that are expanded later. Hence, CTDP is not applicable at all.

4.2.1 Bottom-Up Pruning

In the FE scenario, either entire itemsets or maximal infrequent prefixes can be used for BUP. However,
contrary to BE, if we use entire itemsets for pruning, we cannot simply discard an itemset from explora-
tion if one of its subsets is found infrequent. As shown in Section 4.1.2, each itemset X in the search space
stands in reality for two itemsets, namely X and PMaxX = X \ {N}. If we find an itemset Y = {Y0, Y1,...,
N} to be infrequent and , we can discard X from evaluation, but we still have to evaluate PMaxX,
as this itemset is not a superset of Y. Only if , X can be totally discarded from evaluation.

X1 X2 X3 = frequent
Direct Subsets of X3

Cross Subsets of X3

Cross Top Down Pruning

Direct Top Down Pruning

Fig. 3: Pruning strategies in backward exploration scenar io

Backward Exploration

Prefix Y = Z = infrequent

X (includes Z)

a) Top-Down Pruning

Bottom-Up Pruning
(Infrequent Sets)

b) Bottom-Up Pruning

Backward Exploration

Y X⊂
N Y∉

8

Example 6: If in the forward exploration from Fig. 2 itemset {246} is infrequent, it can prune {12456}

from evaluation, but it is still necessary to evaluate its prefix {1245}. However if the MIP of {246} is
{24}, {1245} is infrequent and can be pruned as well. ❑

In the backward evaluation scenario, we don’t have to consider this problem, because as shown in Sec-
tion 4.1.2, only maximal infrequent prefixes can be used for BUP. Please note that the MFSSearch algo-
rithm for both the backward and forward exploration scenarios is given in the appendix.

4.3 Summary
As detailed in the previous sections and shown in Fig. 3, the following pruning techniques have been
developed for efficient generation of maximal frequent itemsets:

• Direct Top-Down Pruning (DTDP) prunes the direct subsets of an itemset X. The technique
ensures that these subsets will only be expanded and explored if X is infrequent. DTDP is applicable
to both backward and forward exploration strategies.

• Cross Top-Down Pruning (CTDP) ensures that unexplored cross subsets of frequent itemsets are
eliminated from exploration. CTDP makes use of a list of relevant frequent itemsets assigned to
each expanded itemset, called FrequentSet, that is propagated selectively towards not yet explored
subsets. It is only applicable to the BE scenario.

• Bottom-Up Pruning (BUP) eliminates supersets of infrequent itemsets from exploration. Analo-
gously to CTDP, BUP makes use of a list of relevant infrequent itemsets. BUP is applicable to both
exploration strategies. However, a tailoring to the associated strategy has to be provided.

A summarization of the pruning techniques and their application to BE and FE is given in Table 1.

 5 Per formance evaluation
For the performance evaluation of the MFSSearch algorithm we have used the MIDAS database proto-
type [BJ+96]. We have validated our approach using a 100 MB database, running on a SUN-ULTRA1

Table 1 Summarizing of the pruning techniques employed by the MFSSearch algorithm

Backward Exploration (BE) Forward Exploration (FE)

DTDP (X=Frequent) • prunes direct subsets of X • prunes direct subsets of X

CTDP (X=Frequent) • adds X to FrequentSet(Z), if Z ex-
pands a subset of X (Cond. 1)

• prunes Y and its direct subsets, if

• not applicable

BUP (X=Infrequent) • only possible if X is not an entire
itemset (Cond. 3)

• if , prunes Y;

direct subsets of Y are pruned only

if Cond. 2 satisfied;
else adds X to InfrequentSet(Y)

• if , but , prunes only Y

direct subsets of Y are pruned only if
Cond. 2 satisfied;
else adds X to InfrequentSet(Y)

• if , prunes also PMaxy

Y X⊂

X Y⊂

X Y⊂ X PMax
Y

⊄

X PMax
Y

⊂

9

workstation with a 143 MHz Ultra Sparc processor. The item domain considered is from 1 to 7, contained
in 67.806 transactions. In Fig. 4 we have shown the times that are necessary to derive the entire MFS for
both the backward as well as forward exploration scenarios and varying supports.

As results from Fig. 4a, BE is more efficient for lower supports. The reason for this is that in this case
we have a large number of long MFIs that can be used for top-down pruning. However, in the FE sce-
nario, CTDP is not possible. In contrast, in the domain of higher supports and implicitly large number of
infrequent itemsets BUP is most effective. In this case FE is slightly better than BE, resulting from the
fact that in the BE scenario only prefixes can be used for BUP. In order to compare these performances
with the Apriori algorithm that is the basis of most bottom-up approaches, we have also presented the
time that is necessary to perform the multiple database scans specific to this algorithm. Please note that
this curve doesn’t comprise any CPU costs that are also inherent to the Apriori algorithm. As can be seen
in Fig. 4a, both variants of the MFSSearch processing scheme show a performance that is orders of mag-
nitude better than the Apriori algorithm.

As shown in [NRM99] MFSSearch outperforms also solutions using top-down search strategies [Ba98,
LK98, ZP+97] as well. This result is also influenced by the fact that in contrast to other approaches,
MFSSearch reduces I/O costs by accessing the database only selectively, corresponding to the current
search space status.

When integrated into the database engine, we expect that the BE scenario achieves generally the best
performance. This results on one hand from the fact that it yields a non-blocking processing, hence rapid
response times. On the other hand, this strategy combines both pruning strategies to achieve an efficient
reduction of the search space for any support values, as shown in the following.

A detailed analysis on the effectiveness of the different pruning techniques for the BE scenario is given
in Fig. 4b. Obviously, top-down pruning is most effective for lower supports, where large maximal fre-
quent itemsets can prune several subsets, these being also frequent. Starting with a support of 20-25%,
DTDP does not come to application at all. As for CTDP this point is reached with a support of ca. 50%.
BUP is most effective with higher supports. The reason for this is that the higher the support, the more
infrequent itemsets are found, that in turn can prune their supersets. The bottom curve in Fig. 4b shows
that the best performance is achieved by the combination of all three pruning techniques. This leads to
overall response times that are only proportional to the volume of maximal frequent itemsets. Addition-
ally, in contrast to randomized algorithms, from Theorem 1 results that MFSSearch is also complete.

Fig. 4: Effectiveness of pruning
a) b)

10

 6 Conclusions
We have presented a processing scheme for the generation of the maximal frequent sets that employs a
new operator, called ECS. This scheme avoids expensive database scans and thus drastically reduces the
I/O costs as compared to conventional data mining algorithms. Only itemsets that are not supersets of
any known infrequent itemsets or subsets of any known frequent itemsets are considered. As a result, the
number of candidate itemsets considered is proportional only to the actual number of maximal frequent
itemsets. Hence, the algorithm is also applicable for large item domains. Another possibili ty is to use
MFSSearch for hybrid solutions as well , e.g. to restrict the considered item domain by means of sampling
[FS+98]. MFSSearch is complete in the sense that it guarantees that all MFIs are derived. By using our
candidate generation algorithm with a backward exploration of itemsets, any frequent itemset found is
also a MFI. Thus it can immediately be returned to the user, yielding a non-blocking execution and thus
short response times. The underlying theory and its applicability to MFSSearch was the focus of this
paper. Another paper [NRM99] details on how the entire processing scheme, i.e. ECS operator combined
with MFSSearch, can be efficiently integrated into a database engine, thus being able to make profit of
all forms of query execution optimizations, including parallelization [NRM99].

Literature

AM+95 R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo: Fast Discovery of Association Rules, Ad-
vances in Knowledge Discovery and Data Mining, Chapter 12, AAAI/MIT Press, 1995.

AY97 C. C. Aggarwal, P. S. Yu: Mining Large Itemsets for Association Rules, TCDE Bull., 21(1), March 1998.
AY98 C. C. Aggarwal, P. S. Yu: Online Generation of Association Rules, In: DE Conf., Orlando, Florida, 1998.

Ba98 R. Bayardo: Efficiently Mining Long Patterns from Databases, In: Proc. SIGMOD Conf., Seattle, 1998.
BJ+96 G. Bozas, M. Jaedicke et al.: On Transforming a Sequential SQL-DBMS into a Parallel One: First Results

and Experiences of the MIDAS Project, In: Proceedings of the EUROPAR Conf., 1996.
BM+97 S. Brin, R. Motwani, J. Ullmann, S. Tsur: Dynamic Itemset Counting and Implication Rules for Market Bas-

ket Data, In: Proc. ACM SIGMOD Conf., 1997.
FS+98 M. Fang, N. Shivakumar et al: Computing Iceberg Queries Efficiently, In: Proc. VLDB Conf., New York,

1998.
GMS97 G. Gunopulos, H. Mannila, S. Saluja: Discovering All Most Specific Sentences by Randomized Algorithms,

In: Proc. of the 6th Intl. Conf. on Database Theory, 1997.
HGY98 J. Han, W. Gong, Y. Yin: Mining Segment-Wise Periodic Patterns in Time Related Databases, In: Proc. Intl.

Conf. on Knowledge Discovery and Data Mining, New York City, NY, August 1998.
LK98 D. Lin, Z. M. Kedem: Pincer-Search: a New Algorithm for Discovering the Maximum Frequent Set, In: Proc

EDBT Conf., Valencia, Spain.
NJM97 C. Nippl, M. Jaedicke, B. Mitschang: Accelerating Profiling Services by Parallel Database Technology, In:

Proc. Intl. Conf. on Parallel and Distributed Processing Techniques and Applications, Las Vegas, 1997.
NM98 C. Nippl, B. Mitschang: TOPAZ: a Cost-Based, Rule-Driven, Multi-Phase Parallelizer, Proc. VLDB Conf.,

New York City,1998.
NRM99 C. Nippl, A. Reiser, B. Mitschang: Towards Deep Integration of Data Mining Technology with Data Ware-

houses, Technical Report, Technische Universität München, 1999.
PCY97 J. S. Park, M.S. Chane, P.S. Yu: Using a Hash-Based Method with Transaction Trimming for Mining Asso-

ciation Rules, In: IEEE Trans. on TKDE, 9(5), Sept. 1997.
STA98 S. Sarawagi, S. Thomas, R. Agrawal: Integrating Association Rule Mining with Relational Database Sys-

tems: Alternatives and Implications, In: Proc. ACM SIGMOD Conf, Seattle, 1998.
SON95 A. Savasare, E. Omiecinski, S. Navathe: An Efficient Algorithm for Mining Association Rules in Large Da-

tabases, In: Proc. VLDB Conf., Zurich, 1995.
ZP+97 M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li: New Algorithms for Fast Discovery of Association Rules,

In: Proc. Intl. Conf. on Knowledge Discovery and Data Mining, Newport Beach, California, 1997.

11

Appendix

Proof to Theorem 1: Obviously, for an itemset on level N all subsets of level N-1 are generated
if its ElimList contains all N elements. It is not necessary to expand its prefix of length N-1
since it is implicitly evaluated through ECS. Hence, it is sufficient to include the first N-1
elements into the ElimList.Consider a superset X on level N with the ElimList EX =
{1,2,...,N-1} and the sibling subsets (on level N-1) X1, X2,..., XN-1. In this case, subset Xi is
generated by eliminating item N-i from X, s.t. Xi = X - {N-i}. In this case we will demon-
strate that any item y in the ElimList of Xi, s.t. y > N-i, generates only a duplicate subset on
level N-2.
This subset, named e.g. Xi,N-y, is obtained by eliminating y from Xi:
Xi,N-y = Xi - {y} = X - {N-i, y}.
On the other hand, there exists a sibling of Xi, called XN-y such that XN-y = X - {y}. Since
y > N-i, results that XN-y has been expanded before Xi and that the ElimList of XN-y also con-
tains N-i. Results that XN-y has already expanded a subset XN-y,i on level N-2 such that
XN-y,i = XN-y - {N-i} = X - {y, N-i}.
Thus, Xi,N-y = Xi,N-y and Xi,N-y is expanded after Xi,N-y. Results that Xi,N-y is a duplicate.�

Proof to Theorem 2: Assume that all i temsets are expanded. In the top-down search, this process
is done from higher levels to lower ones. The total number of elements on level i is .
However, not all of these elements need to be expanded, as some of them have already been
processed as prefixes in level i+1. Thus, the elements that need to be expanded on level i
is - .
Hence, for N items, the number of expanded itemsets is given by:

+(-)+(- +)+...+(- + +...+ (-1)N-1)=

= + +...+ , for N odd or + +... + for N even =

= 2N-1.�
Proof to Theorem 3: By successively reducing the size of the ElimList as described in the Expand

procedure, the direct subsets of an itemset X are only those that have not been expanded
before by another sibling. From the nature of top-down processing, the direct subsets of an
itemset X wil l be processed after X. The cross subsets are related to siblings of X that are
expanded before X. As in the backward processing siblings are processed in the opposite
order than they are expanded, results that also these cross subsets of X will be processed
after X. �

Proof to Theorem 4: For the domain 1,2,...,N-1,N, the last itemset to be expanded is itemset
Z={N}. However, Z is a subset of any itemset in the search space. �

Proof to Theorem 5: Assume and , From Theorem 3 follows that X1 will
be processed later than X2. But X2 is already frequent, from which results that it prunes X1,
so that X1 cannot be also included in F. Contradiction. �

Proof to Theorem 6: As presented at the beginning of this section, the subsets of Y are obtained
by eliminating elements of E from Y. If there is one element , so that

, results that y will be present in all direct subsets of Y. Follows that all subsets of Y
contain one element that is not included in X. Thus they cannot be subsets of X. �

Proof to Theorem 7: The direct subsets of Y are obtained by eliminating elements of ElimListY
from Y. From X is included in Y, and ElimListY doesn’t contain any elements from X, results
that all direct subsets of Y also contain X. Since X is infrequent, these direct subsets can also
be pruned. �

Proof to Theorem 8: Assume that there exists an itemset Y={P0, P1,..., Pn, Pn+1,...,N} that is
expanded after X. But , s.t. according to Theorem 3, X must be expanded after Y.
Contradiction. �

i
N 

 

i
N 

  i 1+
N 

 

N
N 

  N 1–
N 

  N
N 

  N 2–
N 

  N 1–
N 

  N
N 

  1
N 

  2
N 

  3
N 

  N
N 

 

N
N 

  N 2–
N 

  1
N 

  N 1–
N 

  N 3–
N 

  1
N 

 

X1 X2, F∈ X1 X2⊂

y Y y X∉,∈
y E∉

X Y⊂

12

The MFSSearch algor ithm for the backward exploration scenar io:

MFSSearch algorithm for a finite item domain 1,2,...,N
1. X := {1,2,...,N}; EX := {1,2,...,N-1}; FX := ; IFX := ,
2. get MIP, sup from ECS(X)
3. if (sup < minsup) // X infrequent, MIP = PMax
4. if (|MIP| < |X| - 1) // Condition (3)
5. := ; // Propagate Relevant Infrequent Itemset

6. else if (|MIP| = |X|) // Condition (4)
7. return X \ {N}; // X \ {N} Maximal Frequent Itemset
8. Expand(X, EX, FX, IFX);

Expand(Itemset X, ElimList E, FrequentSet F, InfrequentSet IF)
1. for each i = 1, n-1 (n = size of ElimList)
2. Xi := X \ {en-i};
3. if ()
4. Xi := ; // Cross Top-Down Pruning
5. else
6. Ei := E \ {en-i, ..., en-1};
7. Fi := ; IFi := ;
8. for each
9. if condition (1) // Condition (1)
10. := ; // Propagate Relevant Frequent Itemsets

11. for each ,
12. if condition (2) // Condition (2)
13. Xi := ; // Bottom-Up Pruning affecting also direct subsets
14. else
15. Mark Xi as infrequent; // Bottom-Up Pruning affecting only the itemset
16. := ; // Propagate Relevant Infrequent Itemsets

17. for each , i := n-1, 1 // Backward Exploration
18. if
19. get MIP, sup from ECS(Xi)
20. if (sup < minsup) // Xi infrequent, MIP
21. if (|MIP| < |Xi| - 1) // Condition (3)
22. BottomUp (MIP);
23. else if (|MIP| = |Xi|) // Condition (4)
24. return Xi \ {N}; // Xi \ {N} Maximal Frequent Itemset
25. Expand(Xi, Ei, Fi, IFi);
26. else
27. CrossTopDown(Xi);
28. return Xi; // Maximal Frequent Itemset
29. else Expand(Xi, Ei, Fi, IFi);

CrossTopDown (Frequent_Itemset X)
1. for each candidate Y, Y expanded but unexplored
2. if condition (1)
3. := ;

BottomUp(Infrequent_Itemset I)
1. for each candidate Y, Y expanded but unexplored
2. if
3. if condition (2)
4. Y:= ; // prune Y together with its direct subsets
5. else
6. Mark Y as Infrequent; // prune only Y
7. := ; // propagate I to be taken into account for subsets of Y

As can be seen from MFSSearch, the procedure Expand is used to address both pruning and search strat-

∅ ∅

IF
X

IFX MIP∪

F
X

F Xi F
X

⊂,∈∃
∅

∅ ∅
F

X
F∈

Fi
Fi F

X
∪

IF
X

I∈ IF
X

X
i

⊂

∅

IFi IFi IF
X

∪

Xi ∅≠
Infrequent Xi()¬

F
Y

F
Y

X∪

I Y⊂

∅

IF
Y

IF
Y

I∪

13

egies within the given search space.

The Expand procedure adapted to the forward exploration scenar io:

Expand(Itemset X, ElimList E, InfrequentSet IF)
1. for each i = 1, n-1 (n = size of ElimList)
2. Xi := X \ {en-i};
3. Ei := E \ {en-i, ..., en-1};
4. IFi := ;
5. for each ,
6. if condition (2)
7. Xi := ; // Bottom-Up Pruning affecting also direct subsets
8. else
9. Mark Xi as infrequent; // Bottom-Up Pruning affecting only the itemset
10. if // prune also PMax of Xi

11. Mark as Infrequent;

12. := ; // Propagate Relevant Infrequent Itemsets

13. for each , i := 1, n-1 // Forward Exploration

14. if // probe Xi
15. get MIP, sup from ECS(Xi);
16. if (sup < minsup) // Xi infrequent, MIP = PMax
17. BottomUp (MIP);
18. if (|MIP| = |Xi|) // condition (4)
19. UpdateMFS(Xi \ {N}); // Xi \ {N} Frequent Itemset
20. Expand(Xi, Ei, IFi);
21. else
22. UpdateMFS(Xi); // Xi Frequent Itemset
23. else
24. if // probe PMax of Xi
25. get MIP, sup from ECS(Xi \ {N});
26. if (sup > minsup)
27. UpdateMFS(Xi \ {N}); // Xi \ {N} Frequent Itemset
28. Expand(Xi, Ei, IFi);

UpdateMFS(Frequent_Itemset X)
1. for each
2. if Y is a subset of X
3. eliminate Y;
4. := ;

BottomUp(Infrequent Itemset I)
1. for each candidate Y, Y expanded but unexplored
2. if
3. if condition (2)
4. Y:= ; // prune Y together with its direct subsets
5. else
6. Mark Y as Infrequent; // prune only Y
7. if

8. Mark PMaxY as Infrequent; // prune also PMaxY
9. := ; // propagate I to be taken into account for subsets of Y

∅
IF

X
I∈ IF

X
X

i
⊂

∅

I PMax
Xi

⊂

PMax
Xi

IFi IFi IF
X

∪

Xi ∅≠

Infrequent Xi()¬

Infrequent Xi N{ }–()¬

Y MFS∈

MFS MFS X∪

I Y⊂

∅

I PMax
Y

⊂

IF
Y

IF
Y

I∪

14

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRe
hnerar
hitekturenbisher ers
hienen :Reihe A Liste aller ers
hienenen Beri
hte von 1990-1994auf besondere Anforderung342/01/95 A Hans-Joa
him Bungartz: Higher Order Finite Elements on Sparse Grids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performan
e of Par-allel Computers: Order Statisti
s and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-ne
ker Produ
t of Identi
al Servers to a Redu
ed Produ
t Spa
e342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:Auto-Correlation of Lag-k For Customers Departing From Semi-MarkovPro
esses342/05/95 A Sas
ha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Ap-pli
ations to Multi-dimensional S
hr�odinger Problems342/06/95 A Maximilian Fu
hs: Formal Design of a Model-N Counter342/07/95 A Hans-Joa
him Bungartz, Stefan S
hulte: Coupled Problems in Mi
rosys-tem Te
hnology342/08/95 A Alexander PfaÆnger: Parallel Communi
ation onWorkstation Networkswith Complex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-
ow Networks -with an Emphasis on Completeness342/10/95 A Ketil St�len, Max Fu
hs: A Formal Method for Hardware/Software Co-Design342/11/95 A Thomas S
hnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement ofM
Millan's Unfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Che
king System Properties via IntegerProgramming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-Point Data
ow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Computethe Con
urren
y Relation of Free-Choi
e Signal Transition Graphs342/16/95 A Bernhard S
h�atz, Katharina Spies: Formale Syntax zur logis
hen Kern-spra
he der Fo
us-Entwi
klungsmethodik342/17/95 A Georg Stellner: Using CoChe
k on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller:Workshop on PVM, MPI, Tools and Appli
ations342/19/95 A Thomas S
hnekenburger: Integration of Load Distribution into ParMod-C342/20/95 A Ketil St�len: Re�nement Prin
iples Supporting the Transition fromAsyn
hronous to Syn
hronous Communi
ation
1

Reihe A342/21/95 A Andreas Listl, Giannis Bozas: Performan
e Gains Using Subpages forCa
he Coheren
y Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with BoundedTreewidth into Optimal Hyper
ubes342/23/95 A Petr Jan�
ar, Javier Esparza: De
iding Finiteness of Petri Nets up toBisimulation342/24/95 A M. Jung, U. R�ude: Impli
it Extrapolation Methods for Variable CoeÆ-
ient Problems342/01/96 A Mi
hael Griebel, Tilman Neunhoe�er, Hans Regler: Algebrai
 MultigridMethods for the Solution of the Navier-Stokes Equations in Compli
atedGeometries342/02/96 A Thomas Graus
hopf, Mi
hael Griebel, Hans Regler: Additive Multilevel-Pre
onditioners based on Bilinear Interpolation, Matrix Dependent Geo-metri
 Coarsening and Algebrai
-Multigrid Coarsening for Se
ond OrderEllipti
 PDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynami
 Edge-Disjoint Embed-dings of Complete Binary Trees into Hyper
ubes342/04/96 A Thomas Hu
kle: EÆ
ient Computation of Sparse Approximate Inverses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode:OMIS | On-line Monitoring Interfa
e Spe
i�
ation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semanti
s for Petri NetComponents342/07/96 A Ri
hard Mayr: Some Results on Basi
 Parallel Pro
esses342/08/96 A Ralph Raderma
her, Frank Weimer: INSEL Syntax-Beri
ht342/09/96 A P.P. Spies, C. E
kert, M. Lange, D. Marek, R. Raderma
her, F. Weimer,H.-M. Windis
h: Spra
hkonzepte zur Konstruktion verteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode: PFS-Lib { A File System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anes
u: The Algebra of Stream Pro
essingFun
tions342/12/96 A Javier Esparza: Rea
hability in Live and Safe Free-Choi
e Petri Nets isNP-
omplete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-Many Data-
ow Networks342/14/96 A Giannis Bozas, Mi
hael Jaedi
ke, Andreas Listl, Bernhard Mits
hang,Angelika Reiser, Stephan Zimmermann: On Transforming a SequentialSQL-DBMS into a Parallel One: First Results and Experien
es of theMIDAS Proje
t342/15/96 A Ri
hard Mayr: A Tableau System for Model Che
king Petri Nets witha Fragment of the Linear Time � -Cal
ulus342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezi�kation von mo-bilen, dynamis
hen Fo
us-Netzen342/17/96 A Ri
hard Mayr: Model Che
king PA-Pro
esses342/18/96 A Mi
haela Huhn, Peter Niebert, Frank Wallner: Put your Model Che
keron Diet: Veri�
ation on Lo
al States342/01/97 A Tobias M�uller, Stefan Lamberts, Ursula Maier, Georg Stellner:Evaluierung der Leistungsf�ahigkeit eines ATM-Netzes mit parallelenProgrammierbibliotheken
2

Reihe A342/02/97 A Hans-Joa
him Bungartz and Thomas Dornseifer: Sparse Grids: Re
entDevelopments for Ellipti
 Partial Di�erential Equations342/03/97 A Bernhard Mits
hang: Te
hnologie f�ur Parallele Datenbanken - Beri
htzum Workshop342/04/97 A ni
ht ers
hienen342/05/97 A Hans-Joa
him Bungartz, Ralf Ebner, Stefan S
hulte: Hierar
his-
he Basen zur eÆzienten Kopplung substrukturierter Probleme derStrukturme
hanik342/06/97 A Hans-Joa
him Bungartz, Anton Frank, Florian Meier, Tilman Neunho-e�er, Stefan S
hulte: Fluid Stru
ture Intera
tion: 3D Numeri
al Simu-lation and Visualization of a Mi
ropump342/07/97 A Javier Esparza, Stephan Melzer: Model Che
king LTL using ConstraintProgramming342/08/97 A Niels Reimer: Untersu
hung von Strategien f�ur verteiltes Last- undRessour
enmanagement342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compilergi
342/10/97 A Manfred Broy, Franz Regensburger, Bernhard S
h�atz, Katharina Spies:The Steamboiler Spe
i�
ation - A Case Study in Fo
us342/11/97 A Christine R�o
kl: How to Make Substitution Preserve Strong Bisimilarity342/12/97 A Christian B. Cze
h: Ar
hitektur und Konzept des Dy
os-Kerns342/13/97 A Jan Philipps, Alexander S
hmidt: TraÆ
 Flow by Data Flow342/14/97 A Norbert Fr�ohli
h, Rolf S
hlagenhaft, Josef Fleis
hmann: PartitioningVLSI-Cir
uits for Parallel Simulation on Transistor Level342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf�uhrung undzur Visualisierung von INSEL-Programmen342/16/97 A Niels Reimer, J�urgen Rudolph, Katharina Spies: Von FOCUS na
h IN-SEL - Eine Aufzugssteuerung342/17/97 A Radu Grosu, Ketil St�len, Manfred Broy: A Denotational Model forMobile Point-to-Point Data-
ow Networks with Channel Sharing342/18/97 A Christian R�oder, Georg Stellner: Design of Load Management for Par-allel Appli
ations in Networks of Heterogenous Workstations342/19/97 A Frank Wallner: Model Che
king LTL Using Net Unfoldings342/20/97 A Andreas Wolf, Andreas Kmo
h: Einsatz eines automatis
hen Theorem-beweisers in einer taktikgesteuerten Beweisumgebung zur L�osung einesBeispiels aus der Hardware-Veri�kation { Fallstudie {342/21/97 A Andreas Wolf, Mar
 Fu
hs: Cooperative Parallel Automated TheoremProving342/22/97 A T. Ludwig, R. Wism�uller, V. Sunderam, A. Bode: OMIS - On-line Mon-itoring Interfa
e Spe
i�
ation (Version 2.0)342/23/97 A Stephan Merkel: Veri�
ation of Fault Tolerant Algorithms Using PEP342/24/97 A Manfred Broy, Max Breitling, Bernhard S
h�atz, Katharina Spies: Sum-mary of Case Studies in Fo
us - Part II342/25/97 A Mi
hael Jaedi
ke, Bernhard Mits
hang: A Framework for Parallel Pro-
essing of Aggregat and S
alar Fun
tions in Obje
t-Relational DBMS342/26/97 A Mar
 Fu
hs: Similarity-Based Lemma Generation with Lemma-DelayingTableau Enumeration
3

Reihe A342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWorkfor the Evaluation and Maintenan
e of Automated Theorem Prover Data(in
l. Do
umentation)342/29/97 A Radu Grosu, Ketil St�len: Compositional Spe
i�
ation of MobileSystems342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. S
hiemann, T.S
hnekenburger (Herausgeber): \Anwendungsbezogene Lastverteilung",ALV'98342/02/98 A Ursula Hinkel: Home Shopping - Die Spezi�kation einer Kommunika-tionsanwendung in Fo
us342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung vonBetriebssystemkonzepten342/04/98 A Stefan Bis
hof, Ernst W. Mayr: On-Line S
heduling of Parallel Jobswith Runtime Restri
tions342/05/98 A St. Bis
hof, R. Ebner, Th. Erleba
h: Load Balan
ing for Problemswith Good Bise
tors and Appli
ations in Finite Element Simulations:Worst-
ase Analysis and Pra
ti
al Results342/06/98 A Giannis Bozas, Susanne Kober: Logging and Crash Re
overy in Shared-Disk Database Systems342/07/98 A Markus Pizka: Distributed Virtual Address Spa
e Management in theMoDiS-OS342/08/98 A Niels Reimer: Strategien f�ur ein verteiltes Last- und Ressour
en-management342/09/98 A Javier Esparza, Editor: Pro
eedings of INFINITY'98342/10/98 A Ri
hard Mayr: Lossy Counter Ma
hines342/11/98 A Thomas Hu
kle: Matrix Multilevel Methods and Pre
onditioning342/12/98 A Thomas Hu
kle: Approximate Sparsity Patterns for the Inverse of aMatrix and Pre
onditioning342/13/98 A Antonin Ku
era, Ri
hard Mayr: Weak Bisimilarity with In�nite-StateSystems
an be De
ided in Polynomial Time342/01/99 A Antonin Ku
era, Ri
hard Mayr: Simulation Preorder on Simple Pro
essAlgebras342/02/99 A Johann S
humann, Max Breitling: Formalisierung und Beweis einer Ver-feinerung aus FOCUS mit automatis
hen Theorembeweisern { Fallstudie{342/03/99 A M. Bader, M. S
himper, Chr. Zenger: Hierar
hi
al Bases for the Indef-inite Helmholtz Equation342/04/99 A Frank Strobl, Alexander Wisspeintner: Spe
i�
ation of an Elevator Con-trol System342/05/99 A Ralf Ebner, Thomas Erleba
h, Andreas Ganz, Claudia Gold, ClemensHarl�nger, Roland Wism�uller: A Framework for Re
ording and Visual-izing Event Tra
es in Parallel Systems with Load Balan
ing342/06/99 A Mi
hael Jaedi
ke, Bernhard Mits
hang: The Multi-Operator Method:Integrating Algorithms for the EÆ
ient and Parallel Evaluation of User-De�ned Predi
ates into ORDBMS
4

Reihe A342/07/99 A Max Breitling, Jan Philipps: Bla
k Box Views of State Ma
hines342/08/99 A Clara Nippl, Stephan Zimmermann, Bernhard Mits
hang: Design, Im-plementation and Evaluation of Data Rivers for EÆ
ient Intra-QueryParallelism342/09/99 A Robert Sandner, Mi
hael Mauderer: Integrierte Bes
hreibung au-tomatisierter Produktionsanlagen - eine Evaluierung praxisnaherBes
hreibungste
hniken342/10/99 A Alexander Sabbah, Robert Sandner: Evaluation of Petri Net and Au-tomata Based Des
ription Te
hniques: An Industrial Case Study342/01/00 A Javier Esparza, David Hansel, Peter Rossmanith, Stefan S
hwoon: EÆ-
ient Algorithm for Model Che
king Pushdown Systems342/02/00 A Barbara K�onig: Hypergraph Constru
tion and Its Appli
ation to theCompositional Modelling of Con
urren
y342/03/00 A Max Breitling and Jan Philipps: Veri�
ation Diagrams for Data
owProperties342/04/00 A G�unther Ra
kl: Monitoring Globus Components with MIMO342/05/00 A Barbara K�onig: Analysing Input/Output Capabilities of Mobile Pro-
esses with a Generi
 Type System342/06/00 A Mi
hael Bader, Christoph Zenger: A Parallel Solver for Conve
-tion Di�usion Equations based on Nested Disse
tion with In
ompleteElimination342/07/00 A Clara Nippl, Angelika Reiser, Bernhard Mits
hang: Extending DatabaseFun
tionality to Support Frequent Itemset Pro
essing342/08/00 A Clara Nippl, Angelika Reiser, Bernhard Mits
hang: Conquering theSear
h Spa
e for the Cal
ulation of the Maximal Frequent Set

5

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRe
hnerar
hitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebrai
 Spe
i�
ations342/2/90 B J�org Desel: On Abstra
tion of Nets342/3/90 B J�org Desel: Redu
tion and Design of Well-behaved Free-
hoi
e Systems342/4/90 B Franz Abstreiter, Mi
hael Friedri
h, Hans-J�urgen Plewan: DasWerkzeug runtime zur Beoba
htung verteilter und paralleler Programme342/1/91 B Barbara Pae
h: Con
urren
y as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier-Toolbox {Anwenderbes
hreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop �uberParallelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually SharedMemory S
heme: Formal Spe
i�
ation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Spe
i�
ation andCorre
tness Proof of a Virtually Shared Memory S
heme342/7/91 B W. Reisig: Con
urrent Temporal Logi
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelre
hner: Theorie, Hardware,Software, Anwendungen342/1/93 B Max Fu
hs: Funktionale Spezi�kation einer Ges
hwindigkeitsregelung342/2/93 B Ekkart Kindler: Si
herheits- und Lebendigkeitseigens
haften: Ein Lit-eratur�uberbli
k342/1/94 B Andreas Listl, Thomas S
hnekenburger, Mi
hael Friedri
h: Zum En-twurf eines Prototypen f�ur MIDAS

6

