
T U M
I N S T I T U T F Ü R I N F O R M A T I K

On the Performance and Pruning Power of
Different Join Enumeration Strategies

Viktor Leis

ABCDEFGHIJKLMNO
TUM-I1106

M̈arz 11

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-03-I1106-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2011

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

On the Performance and Pruning Power of
Different Join Enumeration Strategies

Viktor Leis

Technische Universität München
leis@in.tum.de

Abstract— To find the optimal join order two different gener-
ative join enumeration strategies have been proposed. The most
commonly used one is dynamic programming which proceeds
bottom-up. The alternative is top down enumeration with mem-
oization. For both strategies algorithms exist that enumerate only
solutions without cartesian products, which is a commonly used
heuristics. With top-down enumeration it is possible to further
improve optimization time by pruning the search space while still
obtaining the optimal solution.

In this paper we compare the performance of the different
join enumeration strategies and possible pruning strategies. We
propose improvements to the pruning algorithms from the litera-
ture and empirically evaluate the effect of pruning using different
synthetic queries and cost functions in order to understand when
significant speedups can be achieved. We find that for many
queries a speedup by a factor of 2 to 10 can be expected.

I. INTRODUCTION

The problem of finding the optimal join order has been
studied extensively. The classical enumeration strategy is dy-
namic programming [1]. The dynamic programming proceeds
bottom-up, building larger logical expressions by combining
previously computed intermediate results. Another strategy
is to compute the result top-down with memoization: The
problem is broken into smaller sub-problems, which are then
solved recursively. Intermediate results are stored (”memo-
ized”) because they might be reused later.

Because the time complexity of dynamic programming for
finding the optimal join order with cartesian products is O(3n),
a common heuristics is to ignore join orders that need cartesian
products. This can be achieved using a generate and test
strategy, i.e. to check if a solution would result in a cartesian
product after creating it. Unfortunately, for large queries most
of the optimization time is spent doing this check, as most
possible solutions include cartesian products. This motivated
the development of a more efficient algorithm called DPCCP
which was developed by Moerkotte and Neumann [2]. The
algorithm uses a graph theoretic approach and operates on the
query graph with the relations of the query as vertices and
all join conditions as edges between the relations. DPCCP is
based on the observation that any connected subgraph of the
query graph can be produced without using cartesian products.
For a given query graph DPCCP enumerates all connected
subgraphs and its “complements”. A complement of a sub-
graph is a connected subgraph that is disjoint but connected
to that subgraph. This strategy ensures that these pairs can
be joined without cartesian products. DPCCP is optimal in

R1 R

RR

2

4 3

Fig. 1. Cycle join graph of a query with 4 relations

csg complement result
{R3} {R4} {R3, R4}
{R2} {R3} {R2, R3}
{R2} {R3, R4} {R2, R3, R4}
{R2, R3} {R4} {R2, R3, R4}
{R1} {R4} {R1, R4}
{R1} {R3, R4} {R1, R3, R4}
{R1} {R2} {R1, R2}
{R1} {R2, R3} {R1, R2, R3}
{R1} {R2, R3, R4} {R1, R2, R3, R4}
{R1, R2} {R4} {R1, R2, R4}
{R1, R2} {R3} {R1, R2, R3}
{R1, R2} {R3, R4} {R1, R2, R3, R4}
{R1, R4} {R3} {R1, R3, R4}
{R1, R4} {R2} {R1, R2, R4}
{R1, R4} {R2, R3} {R1, R2, R4, R4}
{R1, R2, R4} {R3} {R1, R2, R3, R4}
{R1, R2, R3} {R4} {R1, R2, R3, R4}
{R1, R3, R4} {R2} {R1, R2, R3, R4}

TABLE I
ENUMERATED CONNECTED SUBGRAPH (CSG) AND COMPLEMENT PAIRS

FOR THE CYCLE QUERY GRAPH FROM FIGURE 1

that it enumerates each connected subgraph and complement
pair (ccp) exactly once. The order of the enumerated pairs is
suitable for dynamic programming, i.e. smaller subproblems
are enumerated before bigger problems that use the smaller
ones as building blocks. Table I shows all enumerated ccps
for a cycle query with 4 relations.

A top-down enumeration algorithm that avoids cartesian
products was developed by DeHaan and Tompa [3]. The
algorithm is based on minimal cuts. A cut is a set of edges that
when deleted partitions the graph into two or more connected
components. A cut is minimal if it divides the graph into
exactly two connected components. Thus, all minimal cuts of a
graph induce connected subgraph pairs which can be produced
without using cartesian products. Each of the subgraphs are
solved be applying the same procedure recursively. Figure
2 shows all resulting partitions for a cycle graph. A more
efficient algorithm implementing this idea called MINCUT-

R1 R

RR

2

4 3

R1 R

RR

2

4 3

R1 R

RR

2

4 3

R1 R

RR

2

4 3

R1 R

RR

2

4 3

R1 R

RR

2

4 3

Fig. 2. The cycle graph from Figure 1 is partitioned into a gray and a white
subgraph, such that both of them stay connected

BRANCH was developed by Fender and Moerkotte [4].
Usually dynamic programming performs marginally better

than memoization, but the top-down approach has an advan-
tage: more information is available, which can be used to prune
the search space and to avoid exhaustively searching all of it
while still guaranteeing to find the optimal solution.

In this paper we compare the performance and pruning
power of the top-down and bottom-up join enumeration strate-
gies for queries with a single select-project-join block. We
only consider inner joins, as the optimal top-down enumeration
algorithms do not support outer joins. In order to simplify our
experiments, we also ignore the problem of interesting orders,
even though they can be taken advantage of by the bottom-up
and the top-down algorithms.

The rest of the paper is structured as follows: Based on
the work of DeHaan and Tompa we introduce in Section II
different pruning strategies and present an improved pruning
algorithm. Section III describes the experimental setup for
comparing the algorithms. Section IV evaluates the differ-
ent join enumeration strategies and pruning algorithms. We
conclude with section V by summarizing the results and
discussing if pruning is beneficial in practice.

II. PRUNING THE SEARCH SPACE

Besides enumerating only connected subgraph pairs, the
runtime of a join enumeration algorithm can be reduced by
avoiding to enumerate some of those pairs, i.e. by pruning
the search space. In this section we introduce several pruning
methods. After discussing total-cost bounding for bottom-up
enumeration, we introduce the powerful predicted-cost and
accumulated-cost bounding algorithms for top-down enumer-
ation. Finally we show some conditions that make it possible
to directly compare possible solutions and thereby dismiss
potential solutions early.

A. Total-Cost Bounding

When join alternatives are enumerated bottom-up, the fact
that the cost of each subproblem must be less than the total
cost can be used to speed up optimization time. Whenever
the costs of all possible solutions for a subproblem are higher
than the total cost bound, this subproblem cannot be part of
the optimal solution. Dynamic programming with total cost
bounding can therefore dismiss a possible solution if its left or

Algorithm 1 Predicted-cost bounding

TDPCB(G = (V,E))
1 if memo[V] = NIL
2 then for (Gl, Gr) in PARTITION(G)
3 do if C(memo[V]) ≥ JOINLB(Gl, Gr)
4 then pl ← TDPCB(Gl)
5 pr ← TDPCB(Gr)
6 p← MAKEPLAN(pl, pr)
7 if C(p) < C(bestP lan)
8 then memo[V]← p
9 return memo[V]

JOINLB(Gl = (Vl, El), Gr = (Vr, Er))
1 jc← JOINCOST(Gl, Gr)
2 return jc+ lowerBound[Vl] + lowerBound[Vr]

right subproblem is too expensive. The necessary upper bound
can be obtained by running a fast heuristics beforehand.

This simple optimization has been shown to be beneficial
for plans with cartesian products [5], because there are many
intermediate results with cartesian products that are very
expensive and can therefore be pruned. It should be noted
though that total-cost bounding is not really pruning the search
space, as all ccps are enumerated.

B. Predicted-Cost Bounding

Top-down enumeration allows for actual pruning strategies
because the algorithm has the freedom to decide whether
to recurse into the subproblem. This means that in contrast
to total cost bounding which must enumerate all ccps, an
asymptotic speedup can be achieved.

Predicted-cost bounding is shown in Algorithm 1. We
assume that the memo table is initialized with plans for all
base relations, C is the cost function which computes the
cost of a plan, and that C(NIL) = ∞. The only difference
of Algorithm 1 from a basic top-down enumeration algorithm
is the insertion of line 3, which compares the upper and lower
bound for an expression. If the lower bound is higher than
the upper bound, then it is not necessary to recurse into the
left and right subproblems. The cheapest previously computed
solution provides the upper bound for other expressions that
produce the same results. The lower bound is a conservative
prediction of the cost of an expression. Obviously, whether
such a bound can be obtained and its quality depends on
the cost function. Lower bounds for an expression might for
instance be obtained by adding the cost of reading all base
relations in that expression.

C. Accumulated-Cost Bounding

Accumulated-cost bounding, shown in Algorithm 2, main-
tains a budget which is passed down during recursion. Each
join operator decreases the budget. The new budget is used as
the budget for solving the left subproblem. After the solution
was found, the budget is decreased again by the cost of the

Algorithm 2 Accumulated-cost bounding

TDACB(G = (V,E), b)
1 if memo[V] = NIL and b ≥ lowerBound[V]
2 then lowerBound[V]← b
3 b′ ← b
4 for (Gl, Gr) in PARTITION(G)
5 do bl ← b′ − JOINCOST(Gl, Gr)
6 pl ← TDACB(Gl, bl)
7 if pl 6= NIL
8 then br ← bl − C(pl)
9 pr ← TDACB(Gr, br)

10 if pr 6= NIL
11 then p← MAKEPLAN(pl, pr)
12 memo[V]← p
13 b′ ← C(p)
14 if b < C(memo[V])
15 then return NIL
16 else return memo[V]

left subproblem and used as the budget for solving the right
subproblem.

If at some point the budget becomes negative, failure is
communicated by returning NIL up the call stack signaling
that the solution is invalid and another solution must be
found. If failure occurs i.e. the budget is lower than the
cheapest cost for an expression, then this budget is stored as
a lower bound for that expression. The next time the same
expression is requested, failure can be signaled immediately
if the new budget is lower than the stored previous lower
bound. Accumulated-cost bounding can be combined with
predicted-cost bounding by initializing the lower bounds for
all expressions with predicted costs and only processing a
possible solution if the current budget is higher than the lower
bound (see line 8 of Algorithm 3).

DeHaan and Tompa observed that accumulated-cost bound-
ing can lead to the same logical expression being processed
multiple times. This happens when the budget for the expres-
sion is too low to find a result and the same expression is pro-
cessed with a rising budget multiple times. Since without prun-
ing DPCCP and MINCUTBRANCH with memoization optimize
each expression exactly once, accumulated-cost bounding can
reduce performance. Specifically, optimizing large queries
with star graphs can be much slower with accumulated-cost
bounding than without pruning. This pathological behavior
also occurs when accumulated-cost bounding is combined with
predicted-cost bounding. Therefore this form of pruning in its
simple form can not be recommended.

D. Improvements

We developed a new algorithm called TDAPCBSORT
shown in Algorithm 3 which is based on a combination of
accumulated-cost and predicted-cost bounding. The algorithm
solves the problematic behavior of accumulated-cost bounding

Algorithm 3 Improved accumulated-cost and predicted-cost
bounding

TDAPCBSORT(G = (V,E), b)
1 if memo[V] = NIL and b ≥ lowerBound[V]
2 then if visited[V] = NIL
3 then visited[V] = T
4 b′ ← b
5 else b′ ← max(b, lowerBound[V] · 2)
6 (partitions, newLB)← SORTEDPARTITION(G, b′)
7 for (Gl, Gr) in partitions
8 do if b′ ≥ JOINLB(Gl, Gr)
9 then bl ← b′ − JOINCOST(Gl, Gr)

10 pl ← TDAPCBSORT(Gl, bl)
11 if pl 6= NIL
12 then br ← bl − C(pl)
13 pr ← TDAPCBSORT(Gr, br)
14 if pr 6= NIL
15 then p← MAKEPLAN(pl, pr)
16 memo[V]← p
17 b′ ← C(p)
18 newLB ← C(p)
19 newLB ← min(newLB, JOINLB(Gl, Gr))
20 lowerBound[V]← newLB
21 if b < C(memo[V])
22 then return NIL
23 else return memo[V]

JOINLB(Gl = (Vl, El), Gr = (Vr, Er))
1 jc← JOINCOST(Gl, Gr)
2 return jc+ lowerBound[Vl] + lowerBound[Vr]

SORTEDPARTITION(G = (V,E), b)
1 newLB ←∞
2 partitions← ∅
3 for (Gl, Gr) in PARTITION(G)
4 do if b ≥ JOINLB(Gl, Gr)
5 then partitions← partitions ∪ {(Gl, Gr)}
6 else newLB ← min(newLB, JOINLB(Gl, Gr))
7 return (SORT(partitions) by JOINLB, newLB)

which was discussed in the previous section and includes
further modifications that improve pruning effectiveness.

a) Rising budget: An expression is reprocessed when
the current budget is higher than the budget of the last
unsuccessful attempt. Therefore, one possibility to reduce the
number of times an expression is reprocessed is to artificially
increase the available budget if the expression is revisited.
Instead of using the budget that was passed from above we use
at least the doubled budget which was used the last time (line
5). This causes the budget to grow exponentially and reduces
the number of times an expression is reprocessed dramatically.
Less plans are pruned, because sometimes the result for
an expression will be calculated unnecessarily. Nevertheless,

A

R

B

X

Fig. 3. In some cases the plans {A} 1 {B,R}∪X and {B} 1 {A,R}∪X
can be compared without computing their costs

besides solving the pathological case this change proved to be
beneficial in nearly all cases tested.

b) Sorting partitions: Since the cost of cheapest plan
obtained so far is used as the budget for other join alternatives,
the efficiency of pruning depends on the order in which the
join alternatives are processed. A good choice in the beginning
may avoid work later. It is therefore beneficial to sort all join
alternatives by an estimate of their cost. The PLANBOUND
function produces such an estimate, as it includes the cost
of the top most join and lower bounds for the left and right
sub-plans. Thus the algorithm processes the possible solutions
in sorted order instead of the arbitrary order produced by
MINCUTBRANCH.

c) Improved Lower Bounds: The lowerBound structure
initially contains a conservative estimate for the cost of each
expression or 0 if no such estimate can be computed. Because
lower bounds are used to prune the search space and to sort
candidate solutions, it is very beneficial to increase them as
high as possible. Each time an expression is processed, the
lower bound can be improved. Either a solution was found for
the available budget, then the lower bound is set to the cost of
the cheapest solution (line 18). If no solution is available for
the current budget, the lower bound is increased to the cheapest
lower bound of all candidate solutions (line 19). Line 20 stores
this improved bound in the lowerBound structure.

E. Dominated Plans

Besides pruning based on upper and lower bounds top-down
enumeration allows for another form of pruning. In some cases
it is possible to show using certain necessary conditions that
a solution has a greater or equal cost than another solution
without computing their costs. Suppose we have a graph
shown in Figure 3 with relations A and B which are both only
connected to a relation R which may be connected to some
arbitrary subgraph X . This pruning technique is only efficient
for stars, as for most other query graphs this situation occurs
very infrequently.

When computing the solution for the expression that in-
cludes all these relations ({A,B,R} ∪ X), the top-down
enumeration algorithm will besides others enumerate {A} 1
({B} ∪ X) and {B} 1 ({A} ∪ X). The costs of these two
expressions can be decomposed:
• C({A} 1 {B,R}∪X) = JOINCOST({A}, {B,R}∪X)+

C({A}) + C({B,R} ∪X)

• C({B} 1 {A,R}∪X) = JOINCOST({B}, {A,R}∪X)+
C({B}) + C({A,R} ∪X)

The cost of {B} 1 ({A} ∪ X) is greater or equal than the
cost of {B} 1 {A,R} ∪X and therefore can be dismissed if
the following conditions hold:

JOINCOST({A}, {B,R}∪X) ≤ JOINCOST({B}, {A,R}∪X)
(1)

C({A}) ≤ C({B}) (2)

C({B,R} ∪X) ≤ C({A,R} ∪X) (3)

The Equation 1 can be checked directly by evaluating the
join cost function and comparing the two results. Equation
2 is trivially true, since the join cost of a single relation
is 0. To show Equation 3, we observe that the graphs of
{A,R} ∪ X and {B,R} ∪ X have the same structure. Only
the cardinality and selectivity for A or B differ. If the join
selectivities are independent, the cost function is monotonic,
and the cost function depends on cardinalities only, then a
higher cardinality and selectivity implies higher (or equal)
cost. In fact, the selectivity may be less as long as the result
cardinality of joining A to some expression is always higher
than joining B to the same expression. Therefore, the third
condition is necessarily true if:

|B| ≤ |A| ∧ |B| · sR,B ≤ |A| · sR,A (4)

Equation 4 can be precomputed once for all pairs of relations
before enumerating join orders. For each relation this results
is a set of relations that potentially dominate it. While enu-
merating join orders only Equation 1 needs to be checked.

Besides cardinalities, realistic join cost functions depend
on other variables like the tuple size or the form of the
join predicate. In this case Equation 4 is not sufficient. It
can be extended by other dimensions like tuple size if the
cost function is monotonic in it. If it is not possible to
augment Equation 4 this form of pruning must be regarded
as a heuristics.

III. EXPERIMENTAL SETUP

A. Queries

In contrast to algorithms that search the space exhaustively,
the effectiveness of pruning depends on the selectivities and
cardinalities of the query. Therefore, in order to evaluate
pruning strategies, ”realistic” queries would be desirable.
Unfortunately, the literature contains no empirical study of
real-world queries. We must therefore resort to artificial but
hopefully plausible queries.

As join graphs we use: chains, cycles, stars, grids, cliques,
random acylic graphs (trees), and random cyclic graphs. For
assigning the cardinalities and selectivities we follow the
approach of [6] which is based on [7]. There are two classes
of queries: random join queries and foreign-key queries. Ran-
dom join queries get their cardinalities and domain sizes for
attributes from the distributions in Figure 4. The selectivities
are computed by choosing two random attributes and using

1
max(dom(A1),dom(A2))

as the selectivity. Neumann observed

relation size prob.
10-100 15%

100-1,000 30%
1,000-10,000 25%

10,000-100,000 20%

domain size prob.
2-10 5%

10-100 50%
100-500 35%

500-1,000 15%

Fig. 4. Relation and domain sizes for random join queries as proposed by
Steinbrunn et al.

Star Fk-Star
i |Ri| s1,i |Ri| · s1,i |Ri| s1,i |Ri| · s1,i
1 74209 74209000
2 72719 6.44e-03 468.20 72719000 1.35e-08 0.98
3 140 4.96e-03 0.69 140000 7.14e-06 1.00
4 779 1.34e-03 1.04 779000 1.27e-06 0.99
5 6382 6.22e-03 39.70 6382000 1.57e-07 1.00

TABLE II
COMPARISON OF A RANDOM AND A FOREIGN KEY QUERY WITH A STAR

JOIN GRAPH AND ROOT R1

that this often leads to intermediate cardinalities less than 1
which are successively increased to become huge again. As
this does not seem to be realistic he proposes foreign-key join
queries.

Foreign-key join queries are based on key/foreign joins,
which are very common in practice. For relation and domain
sizes the same distributions are used as before, but the sizes
are multiplied by 1000 to get larger data sets. With 10% prob-
ability the selectivity of a join edge is computed as described
above. With 90% probability the selectivity is computed such
that the cardinality of the result is equal to the cardinality
of the relation with the foreign key. Additionally a Zipf-
distributed part is removed. Table II shows an example for
the two ways of assigning selectivities.

B. Cost Functions

To investigate the effect of the cost function on pruning
effectiveness, we compare three different cost functions. The
first function Cout computes the sum of all intermediate
cardinalities. It is commonly used in the literature and has
the plausible goal of minimizing intermediate cardinalities.
The second cost function Csm estimates the asymptotic cost
of sorting both input relations to perform a sort-merge join:
Csm(X,Y) = |X| log(|X|) + |Y | log(|Y |) + C(X) + C(Y).
The most complex cost function Cgh estimates the IO cost
of a grace hash join [8]. It distinguishes between seeks and
sequential disk accesses and must be configured with actual
disk parameters.

Of these, Cgh is computationally the most expensive func-
tion. For example, finding the solution for a star query with
18 relations using the DPCCP algorithm involves 1,114,112
invocations of the cost function. For the Cgh cost function the
total optimization time is 519ms, for Cout which involves no
computation the optimization time is 320ms. This corresponds
to around 500 clock cycles per invocation of Cgh.

For predicted-cost bounding conservative lower bounds are
necessary. For all cost function the lower bound is 0 if

the expression consists only of a single relation. For Cout

the lower bound of an expression is the cardinality of that
expression. For Csm the lower bound is

∑
R∈X |R| log |R|

where X is the set of all relations in the expression. For Cgh

we use the cost of sequentially reading each input relation
from disk.

C. General Setup

We implemented all algorithms using the same infrastruc-
ture for representing plans, accessing the hash table which
contains the plans, and computing the cardinalities. Because
DPCCP and MINCUTBRANCH use set operations very heavily,
we used machine words to represent sets. This allows set
operations to be performed very efficiently in constant time
using bit operations. This decision limits the maximum query
size to the number of bits in a machine word. All programs
were compiled using GCC 4.4.5 running Linux in 64 bit mode.
The measurements were done on an AMD Athlon II X4 640
Processor with 3.0 GHz and 2GB DDR3 RAM.

For each query type we generated 1000 random queries.
As the baseline algorithm for all comparisons we use DPCCP,
which is the fastest known dynamic programming algorithm.
The runtimes of the algorithms are scaled by the runtimes of
DPCCP, i.e. a value of 0.1 means that the algorithm is 10
times faster than DPCCP. Additionally we report the number
of cost function evaluations scaled by the respective value of
DPCCP, as we found it to be a good machine independent
measure of pruning effectiveness. All top-down algorithms use
MINCUTBRANCH to enumerate join orders. We compare the
following algorithms:
• DPCCP: bottom-up enumeration without pruning
• DPTCB: bottom-up enumeration with total-cost bounding
• TDMCB: top-down enumeration without pruning
• TDPCB: top-down enumeration with predicted-cost

bounding (Algorithm 1)
• TDAPCBSORT: top-down enumeration with improved

predicted-cost and accumulated-cost bounding (Algo-
rithm 3)

IV. EVALUATION

A. No pruning

Table III shows the scaled execution time of TDMCB in
comparison with DPCCP when the Cout cost function is used.
For all query graphs DPCCP is faster, although the difference
is bigger for graphs with cycles. For Cgh the difference is
smaller, ranging from 1.03 to 1.22, since relative to Cout

more time is spent computing the cost function as opposed
to enumerating join orders. These results show the head start
of DPCCP that must be overcome by TDMCB.

B. Total-Cost Bounding

To find out if total-cost bounding is beneficial for plans
without cartesian products, we implemented the Greedy Oper-
ator Ordering (GOO) heuristics [9] and used its result as the
upper bound. As can be seen in Table IV, total-cost bounding
improves the running time for most query graphs. Only the

graph/size DPCCP TDMCB cost fn. eval.
chain 60 10ms 1.04 35,990
cycle 60 29ms 1.03 104,430
tree 24 50ms 1.10 187,870
star 16 73ms 1.14 245,760
grid 20 138ms 1.23 462,582
cyclic 16 146ms 1.36 481,974
clique 12 58ms 1.28 261,625

TABLE III
ABSOLUTE PERFORMANCE OF DPCCP (WITH THE Cout COST FUNCTION,

MEANS FOR RANDOM GRAPHS), SCALED TIME OF TDMCB IN

COMPARISON WITH DPCCP, AND THE NUMBER OF TIMES THE COST

FUNCTION IS EVALUATED FOR THE GIVEN GRAPH

DPTCB
time cost fn. eval.

graph/size GOO optimal GOO optimal
chain 60 1.05 0.95 0.79 0.79
fk-chain 60 0.96 0.82 0.30 0.29
cycle 60 0.93 0.89 0.55 0.54
fk-cycle 60 0.85 0.81 0.22 0.17
tree 24 0.98 0.97 0.86 0.86
fk-tree 24 0.83 0.82 0.48 0.47
star 16 0.99 0.99 0.88 0.88
fk-star 16 0.93 0.93 0.81 0.81
grid 20 0.66 0.66 0.10 0.10
fk-grid 20 0.59 0.58 0.02 0.02
cyclic 16 0.67 0.66 0.09 0.09
fk-cyclic 16 0.60 0.58 0.02 0.02
clique 12 0.71 0.70 0.04 0.03
fk-clique 12 0.75 0.70 0.16 0.06

TABLE IV
AVERAGE SCALED EXECUTION TIME AND SCALED NUMBER OF COST

FUNCTION EVALUATIONS OF DPTCB RELATIVE TO DPCCP USING THE

Cout COST FUNCTION

results for Cout are shown, as the other cost functions perform
very similar. Total-cost bounding is clearly an improvement,
in particular for complex graphs with many cycles. For chains
we see a slow down, because our implementation of GOO
takes O(n3) time, just as DPCCP for this query graph. Thus,
for chains the execution time of the heuristics is larger than
the speedup from pruning. This is not the case if the more
expensive Cgh cost function is used.

For most query graphs, queries with random selectivities
benefit less from total-cost bounding than queries with foreign-
key selectivities. This is because in random queries the car-
dinalities of intermediate results differ strongly, so the total
cost is typically dominated by a few joins, while most other
joins have a cost which is orders of magnitude lower. This
means that the total cost bound is not very tight for many
subproblems.

There is a tradeoff between the pruning power which is
determined by the quality of the bound and the speed of the
heuristics. To find out what the ideal pruning power of total-
cost bounding is, we used the optimal cost as the upper bound
but didn’t include the time of obtaining it in the measurement.
Therefore, the runtimes shown for the optimal variant in Table
IV cannot be obtained in practice, but show the limits of this

TDPCB
time cost fn. eval.

graph/size Cout Csm Cgh Cout Csm Cgh

chain 60 0.84 0.98 0.93 0.45 0.43 0.55
fk-chain 60 0.98 1.13 1.01 0.59 0.59 0.65
cycle 60 0.53 0.68 0.58 0.25 0.24 0.28
fk-cycle 60 0.60 0.75 0.60 0.32 0.32 0.33
tree 24 0.15 0.18 0.32 0.09 0.08 0.21
fk-tree 24 0.57 0.69 0.64 0.40 0.39 0.44
star 16 0.10 0.12 0.16 0.06 0.06 0.10
fk-star 16 0.93 1.06 0.94 0.71 0.70 0.71
grid 20 0.05 0.07 0.05 0.02 0.02 0.02
fk-grid 20 0.07 0.09 0.07 0.03 0.03 0.03
cyclic 16 0.12 0.15 0.11 0.05 0.05 0.05
fk-cyclic 16 0.18 0.21 0.16 0.08 0.08 0.08
clique 12 0.20 0.22 0.17 0.10 0.10 0.10
fk-clique 12 0.57 0.60 0.51 0.40 0.40 0.40

TABLE V
AVERAGE SCALED EXECUTION TIME AND SCALED NUMBER OF COST

FUNCTON EVALUATIONS OF TDPCB RELATIVE TO DPCCP

pruning technique. The number of cost function evaluations for
both total-cost bounding variants differ in most cases by a few
percent only, indicating that the upper bound of GOO is good
enough for its purpose. The difference in runtime is therefore
mostly caused be the time spent running the heuristics.

C. Top-down Enumeration with Pruning

Table V shows that predicted-cost bounding is more effec-
tive than total-cost bounding. In contrast to total-cost bound-
ing, with predicted-cost bounding foreign-key queries perform
worse than random queries, because the variance of the costs
of possible solutions for an expression is lower (in other words:
many plans have a similar cost) and therefore it takes longer
to dismiss possible solutions. Obviously, the effectiveness of
predicted-cost bounding depends on the quality the lower
bound estimates for the specific cost function in use. Nev-
ertheless, even though Cout, Csm, and Cgh are quite different
functions and therefore have very different predicted lower
bounds, their predicted-cost bounding results are surprisingly
similar.

Tables VI, VII, and Figure 6 show the results for TDAPCB-
SORT. TDAPCBSORT on average clearly outperforms all other
tested algorithms. As with predicted-cost bounding, pruning is
less effective for foreign-key queries. The worst result was
obtained for foreign-key stars, where in the worst case a
slowdown of 43% over DPCCP was observed. This happens
when the particular query allows no pruning and the overhead
(e.g. for sorting the partitions) of the pruning algorithm occurs
anyway. To investigate worst case behaviour further we created
queries with cardinalities and selectivities all set to 1. All
plans of these queries have the same cost, thus no pruning was
possible. As expected TDAPCBSORT was slower than DPCCP
for all query graphs, with a maximal slowdown of 2.

As another improvement we modified TDAPCBSORT to
dismiss possible solutions if Equations 1 and 4 from Section
II E hold. The speedup was between 60% for foreign-key stars
and 100% for random stars. For all other query graphs very

TDAPCBSORT (time)
Cout Csm Cgh

graph/size mean min. 5% median 95% max. mean min. 5% median 95% max mean min 5% median 95% max.
chain 60 0.52 0.42 0.44 0.48 0.69 0.96 0.67 0.58 0.59 0.64 0.84 1.09 0.71 0.42 0.46 0.64 1.16 1.49
fk-chain 60 0.57 0.42 0.45 0.53 0.80 1.08 0.73 0.58 0.60 0.70 0.99 1.35 0.66 0.37 0.42 0.60 1.07 1.36
cycle 60 0.34 0.32 0.32 0.34 0.39 0.53 0.50 0.48 0.48 0.49 0.54 0.63 0.40 0.34 0.35 0.38 0.53 0.73
fk-cycle 60 0.35 0.32 0.33 0.34 0.41 0.55 0.51 0.48 0.48 0.50 0.57 0.68 0.35 0.30 0.31 0.34 0.46 0.57
tree 24 0.03 0.00 0.01 0.03 0.09 0.25 0.05 0.00 0.01 0.04 0.13 0.36 0.12 0.00 0.01 0.08 0.35 0.84
fk-tree 24 0.21 0.00 0.02 0.17 0.51 1.65 0.28 0.01 0.03 0.24 0.68 1.67 0.30 0.00 0.03 0.26 0.68 1.58
star 16 0.04 0.01 0.01 0.04 0.08 0.18 0.05 0.01 0.02 0.05 0.10 0.23 0.07 0.01 0.02 0.06 0.14 0.34
fk-star 16 0.67 0.03 0.11 0.53 1.18 1.29 0.78 0.04 0.13 0.62 1.37 1.43 0.71 0.03 0.12 0.57 1.24 1.38
grid 20 0.01 0.01 0.01 0.01 0.02 0.04 0.01 0.01 0.01 0.01 0.03 0.05 0.01 0.01 0.01 0.01 0.03 0.08
fk-grid 20 0.02 0.01 0.01 0.01 0.03 0.11 0.02 0.01 0.01 0.02 0.04 0.13 0.01 0.01 0.01 0.01 0.03 0.11
cyclic 16 0.06 0.02 0.04 0.06 0.10 0.23 0.08 0.03 0.05 0.07 0.12 0.27 0.06 0.02 0.03 0.05 0.10 0.29
fk-cyclic 16 0.10 0.03 0.04 0.09 0.20 0.34 0.13 0.04 0.06 0.11 0.24 0.40 0.09 0.02 0.04 0.08 0.18 0.31
clique 12 0.13 0.10 0.11 0.13 0.16 0.20 0.16 0.13 0.14 0.15 0.19 0.23 0.10 0.07 0.08 0.10 0.13 0.17
fk-clique 12 0.29 0.20 0.25 0.29 0.34 0.40 0.33 0.23 0.28 0.33 0.39 0.44 0.27 0.17 0.22 0.27 0.32 0.38

TABLE VII
SCALED EXECUTION TIME OF TDAPCBSORT

TDAPCBSORT
time cost fn. eval.

graph/size Cout Csm Cgh Cout Csm Cgh

chain 60 0.52 0.67 0.71 0.127 0.113 0.335
fk-chain 60 0.57 0.73 0.66 0.177 0.180 0.306
cycle 60 0.34 0.50 0.40 0.047 0.044 0.095
fk-cycle 60 0.35 0.51 0.35 0.056 0.055 0.079
tree 24 0.03 0.05 0.12 0.014 0.013 0.079
fk-tree 24 0.21 0.28 0.30 0.149 0.147 0.200
star 16 0.04 0.05 0.07 0.024 0.024 0.043
fk-star 16 0.67 0.78 0.71 0.566 0.561 0.566
grid 20 0.01 0.01 0.01 0.002 0.002 0.003
fk-grid 20 0.02 0.02 0.01 0.003 0.003 0.003
cyclic 16 0.06 0.08 0.06 0.013 0.012 0.016
fk-cyclic 16 0.10 0.13 0.09 0.033 0.033 0.033
clique 12 0.13 0.16 0.10 0.038 0.037 0.038
fk-clique 12 0.29 0.33 0.27 0.198 0.197 0.201

TABLE VI
AVERAGE SCALED EXECUTION TIME AND SCALED NUMBER OF COST

FUNCTON EVALUATIONS OF TDAPCBSORT RELATIVE TO DPCCP

few subproblems have the necessary graph structure so that a
small slowdown because of the added overhead was observed.

D. Discussion

We have seen that predicted-cost bounding alone achieves
a significant speedup over dynamic programming and is
faster than total-cost bounding. When predicted-cost bound-
ing is combined with accumulated-cost bounding using the
TDAPCBSORT algorithm, query optimization time can be
reduced even more. In a separate experiment we evaluated
TDAPCBSORT with predicted cost of 0 which yielded very
variable results which differed very strongly depending on the
cost function and the query graph. Predicted-cost bounds are
therefore necessary and the interaction between predicted-cost
and accumulated-cost bounding is very beneficial. Figure 5
shows the growth of the average absolute runtime for cycle,
star, and grid queries using different algorithms and the Cout

cost function. For all query graphs pruning becomes more
effective as the size of the query grows.

The effect of the cost function on pruning was fairly

small, as long as the function allows one to determine some
reasonable good predicted lower bound for an expression.
Pruning effectiveness strongly depends on the query graph.
Query graphs with many cycles like grids benefit from pruning
very much, while for simple acyclic graphs like chains pruning
is less effective. Pruning effectiveness additionally depends on
the selectivities of the query. If the different join alternatives
produce large differences in the cardinalities of intermediate
results, then pruning occurs early and is very effective. If the
opposite is the case, then the different join alternatives have
very similar costs which means that most of the search space
must be searched. This leads to the interesting observation that
pruning is least effective where it matters least, because many
different plans have almost the same cost anyway.

V. CONCLUSION

We have shown that top-down enumeration with MINCUT-
BRANCH using pruning can achieve a speedup over dynamic
programming by a factor of 2 to 10 for many query graphs
and even up to 100 for grid queries if predicted-cost and
accumulated-cost bounding is combined. These results were
observed for different cost functions. An open question which
we did not investigate is the effect of interesting orders
on pruning effectiveness. Total-cost bounding for dynamic
programming improves execution time by at most a factor of
2 and is therefore not competitive with top-down pruning.

Pruning is particularly effective for complex query graphs
with a high degree of cyclicity and for queries with a high
variance of intermediate cardinalities. Unfortunately, most real
world queries do not satisfy these properties, as they typically
use foreign-key joins and have few cycles. Therefore, it must
be considered an engineering tradeoff if the additional effort
of implementing our non-trivial pruning algorithm on top of
an already quite complex top-down enumeration algorithm is
worthwhile.

Additionally, it might be impossible or computationally too
expensive to compute predicted lower bounds for complex
real-world cost functions. But these lower bounds are nec-

Fk−Cycle

number of relations

tim
e

in
 m

s

10−0.5

100

100.5

101

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50 60

Cycle

number of relations

tim
e

in
 m

s

10−0.5

100

100.5

101

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50 60

Algorithm

● DPccp

DPtcb

TDpcb

TDapcbSort

Fk−Grid

number of relations

tim
e

in
 m

s

100

101

102

103

104

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16 18 20 22 24 26 28 30

Grid

number of relations

tim
e

in
 m

s

100

101

102

103

104

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16 18 20 22 24 26 28 30

Algorithm

● DPccp

DPtcb

TDpcb

TDapcbSort

Fk−Star

number of relations

tim
e

in
 m

s

100

100.5

101

101.5

102

102.5

103

●

●

●

●

●

●

●

●

●

●

●

10 12 14 16 18 20

Star

number of relations

tim
e

in
 m

s

100

101

102

103

●

●

●

●

●

●

●

●

●

●

●

10 12 14 16 18 20

Algorithm

● DPccp

DPtcb

TDpcb

TDapcbSort

Fig. 5. Average optimization time

essary, because accumulated-cost bounding alone is not very
effective. Another disadvantage of pruning is that optimization
time varies quite strongly for the same query graph depending
on the cardinalities and selectivities. Furthermore, in contrast
to DPCCP outer joins are currently not supported by any
optimal top-down enumeration algorithm.

REFERENCES

[1] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in SIGMOD Conference, 1979, pp. 23–34.

[2] G. Moerkotte and T. Neumann, “Analysis of two existing and one new
dynamic programming algorithm for the generation of optimal bushy join
trees without cross products,” in VLDB, 2006, pp. 930–941.

[3] D. DeHaan and F. W. Tompa, “Optimal top-down join enumeration,” in
SIGMOD Conference, 2007, pp. 785–796.

[4] P. Fender and G. Moerkotte, “A new, highly efficient, and easy to
implement top-down join enumeration algorithm,” in ICDE, 2011.

[5] B. Vance and D. Maier, “Rapid bushy join-order optimization with
cartesian products,” in SIGMOD Conference, 1996, pp. 35–46.

[6] T. Neumann, “Query simplification: Graceful degradation for join-order
optimization,” in SIGMOD Conference, 2009, pp. 403–414.

[7] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized
optimization for the join ordering problem,” VLDB J., vol. 6(3), pp. 191–
208, 1997.

[8] L. M. Haas, M. J. Carey, M. Livny, and A. Shukla, “Seeking the truth
about ad hoc join costs,” VLDB J., vol. 6(3), pp. 241–256, 1997.

[9] L. Fegaras, “A new heuristic for optimizing large queries,” in DEXA,
1998, pp. 726–735.

Chain 60

0.5x 2x 8x 32x 128x

Cost

Cout

Csm

Cgh

Fk−Chain 60

0.5x 2x 8x 32x 128x

Cycle 60

0.5x 2x 8x 32x 128x

Fk−Cycle 60

0.5x 2x 8x 32x 128x

Tree 24

0.5x 2x 8x 32x 128x

Fk−Tree 24

0.5x 2x 8x 32x 128x

Star 16

0.5x 2x 8x 32x 128x

Fk−Star 16

0.5x 2x 8x 32x 128x

Grid 20

0.5x 2x 8x 32x 128x

Fk−Grid 20

0.5x 2x 8x 32x 128x

Cyclic 16

0.5x 2x 8x 32x 128x

Fk−Cyclic 16

0.5x 2x 8x 32x 128x

Clique 12

0.5x 2x 8x 32x 128x

Fk−Clique 12

0.5x 2x 8x 32x 128x

Fig. 6. Smoothed density estimate for the speedup factor of TDAPCBSORT relative to DPCCP

