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ABSTRACT

Emerging bus protocols such as FlexRay provide an expe-
dient platform for the design of automotive control systems
due to its high bandwidth and deterministic temporal be-
havior. However, the choice of suitable platform parameters
such as task and message schedules becomes a challenging
design problem as the protocol is complex in nature and en-
forces a tight coupling between local task schedules on ECUs
and global bus schedules. Although there exist several com-
mercial off-the-shelf (COTS) design tools for FlexRay and
control systems, current tools do not provide any mechanism
for automatically synthesizing the platform parameters from
the controller specifications. In this work we synthesize con-
trollers subject to specified control goals while taking into
account platform-specific properties. In particular, we trans-
late the timing constraints derived from the control design
into platform constraints that need to be satisfied by the
control-related tasks and messages. For this purpose, we
formulate and solve a constraint satisfaction problem (CSP)
to synthesize feasible platform parameters that can be real-
ized by the underlying operating systems and the FlexRay
bus. Our design flow may be easily integrated with existing
FlexRay design tools and will significantly ease (and auto-
mate) the existing design process. We show the applicabil-
ity of our results by implementing two automotive control
systems on a Hardware-in-the-Loop (HiL) setup and study
how different bus configurations affect the controller synthe-
sis and the choice of platform parameters.
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1. INTRODUCTION

Today’s automotive in-vehicle networks consist of up to
100 Electronic Control Units (ECUs), sensors, controllers
and actuators that are connected via arbitrated, shared buses
such as Ethernet, CAN, or FlexRay. In the context of such
setups, communication and signal processing of control ap-
plications require a tight conjoining and coordination be-
tween computational (cyber) units and physical resources.
Such setups are generally referred as cyber-physical sys-
tems [1]. Fig. 1 illustrates the conventional design flow of
such systems. Starting from (i) a high-level specification of
the controller-plant setup, (ii) control algorithms are typi-
cally designed based on well-defined semantics of the plant
and the controller to satisfy specified control goals such as
stability, settling time, or tracking error. Due to the dis-
tributed nature of processing resources, the control applica-
tions need to be (iii) partitioned into a number of software
tasks for sampling the plant outputs, computing the con-
trol laws, and performing actuations. These software tasks
need to be (iv) mapped and scheduled on different ECUs.
Depending on the task mappings, control signals need to be
exchanged via a shared, arbitrated network. Hence, (v) data
processed by the tasks, e.g., feedback signals, are packetized
as messages which need to be scheduled accordingly. As the
control applications have to be designed to satisfy stringent
quality and performance requirements, the actual control
performance after implementation on the distributed plat-
form might deviate from the desired behavior and violate the
specified control goals. This is because many of the assump-



tions on periodicity, signal latencies and jitter, that are made
at control design level, no longer hold after implementation
of the system on the target platform. Closing the semantic
gap between the high-level control models and their actual
implementation on a distributed platform necessitates joint
design methods. Such joint design under the constraints in-
troduced by the platform-specific properties turns out to be
a non-trivial task. For instance, the implementation plat-
form imposes constraints on the available resources, e.g.,
bus identifiers and processing capacity, whereas the control
behavior depends on the choice of scheduler parameters for
both, tasks and messages, which are driven by the real-time
and performance requirements of the control applications.
The FlexRay protocol has been developed to provide a ro-
bust, scalable, deterministic, and fault-tolerant communica-
tion system for advanced automotive control applications [2].
In particular, its high bandwidth of 10 Mbit/s, and the de-
terministic communication paradigm in the static segment
supporting synchronization of sensor tasks, control functions
and actuators, provide providential real-time properties for
the implementation of distributed control systems [3]. How-
ever, the configuration of FlexRay systems is a complex task
as the protocol provides more than 70 interdependent con-
figurable parameters [4, 5]. The influence of real-time con-
straints on the design of FlexRay networks has been dis-
cussed in [6]. Further, quite some research effort has been
spent on timing- and schedulabililty analysis of the FlexRay
protocol. The work in [7] presents a timing analysis tech-
nique for the static and dynamic segment of the FlexRay
protocol. The synthesis of communication schedules for the
FlexRay static segment has been presented in [8, 9, 10]. In
this context, [9] considers the synchronization of tasks and
messages based on OSEK and OSEKtime real-time operat-
ing systems. The scheduling problem for the dynamic seg-
ment has been addressed in [11]. Further, there has been a
significant amount of work in the area of control and schedul-
ing co-design to improve the regulation of the interacting
dynamics between the cyber and the physical parts along
the lines of [12, 13, 14]. The work in [15, 16] discusses the
synthesis of FlexRay schedules under consideration of sta-
bility and control performance objectives. However, to the
best of our knowledge, none of the previous research efforts
proposed an integrated design approach for the synthesis of
controller parameters along with the scheduler parameters
for all control-related tasks and messages.

1.1 Contributions and overview of our scheme

In this work, we present a constraint-driven design ap-
proach for the synthesis of controller parameters such as con-
troller gains along with the control-related task and message
schedules for a FlexRay-based implementation platform. In
Section 2 we introduce feedback control models and the de-
tails of the implementation platform under consideration.
Section 3 presents our proposed scheme as illustrated in
Fig. 2. The overall objective in controller design is to satisfy
specified control goals to guarantee the desired functionality
of the system. Towards this, the controller design (stage
1) essentially boils down to the problem of finding suitable
controller gains in order to achieve the desired control per-
formance. The control performance depends on how fresh or
old a feedback signal is (this is used to compute the control
input). We will refer to such timing constraints as fresh-
ness constraints. For instance, the scheduling on the ECUs
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Figure 2: Constraint-driven design flow.

and on the FlexRay bus has an impact on the delays in the
feedback signals which might deteriorate the control per-
formance of the system. On the other hand, the available
sampling intervals that can be realized by the implementa-
tion platform depend on the configuration of the FlexRay
bus and the utilization of the processors on the ECUs. To-
wards this, we propose a joint design approach that (i) takes
into account platform-specific properties for the controller
design, and (ii) translates the freshness constraints on the
feedback signals derived at controller design level into plat-
form constraints (stage 2) that must be satisfied when ac-
tually implementing the control-related tasks and messages
on the operating systems and the FlexRay bus.

FlexRay-based System Design: To obtain a feasible
platform configuration satisfying the above constraints, we
use a constraint solver (stage 3) which considers the plat-
form constraints as well as optional user-defined constraints.
In case no feasible platform parameters can be generated,
we need to relax our control goals. Finally, the resulting
platform- and controller parameters serve as an input for
the design and implementation of the system using a COTS
tool chain such as in [17, 18] which require both control laws
and FlexRay parameters to be specified. Consequently, this
technique significantly eases and complements the existing
design process since these tools do not provide any mech-
anisms for automatically deriving the platform parameters
from specified control performance constraints. The work we
present here closes this gap and in addition enables control-
architecture co-design. In Section 4, we show experimental
results for the implementation of a DC motor control appli-
cation and a car suspension system on a FlexRay HiL-setup
using the synthesized controller- and platform parameters.
We will also study how different bus configurations affect the
controller design as well as the task and message schedules.

2. SYSTEM MODEL
2.1 Feedback control model

We start our analysis with a continuous-time system of
the form

#(t) = Acx(t) + Beu(t),
Cex(t), (1)

where z(t) is the n x 1 vector for state variables, u(t) is the
control input to the system and y(t) is the output. A.isanx
n system matrix, B. and C. are input and output matrices of
appropriate dimension. Subsequently, the continuous-time
system is sampled at a constant sampling interval h. The
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resultant system is a discrete-time system of the form

zlk+1] = Ax[k] + Bulk],
ylk] = Czlk], (2)
where
A:eAch,B:/h(eActdt)-Bc,C:Cu (3)

Such feedback control systems have two physical compo-
nents: actuators (or plants) and sensors. We consider an
architecture where the actuators and the sensors are spa-
tially distributed and connected to different ECUs which
communicate via a FlexRay bus. A feedback controller is
an algorithm to compute u[k] as a function of the states
z[k] or output y[k] (feedback signals) such that z[k] or y[k]
behave according to the specified control goals.

In this work, we assume all states x[k] to be measurable
and we use full-state feedback controllers of the form

ulk] = Kazlk], (4)

where K are 1 xn state-feedback gains. The controller design
essentially boils down to choosing K such that the system
(i) is stable, i.e., the closed-loop system matrix (A+BK) has
all the eigenvalues within the unit circle, and (ii) meets per-
formance requirements in steady-state and transient phases,
e.g., minimization of the tracking error and the settling time
of the control system.

2.2 Implementation platform

Let us consider an automotive in-vehicle network where
several ECUs are connected via a FlexRay bus as depicted in
Fig. 3. The software implementation of distributed control
applications running on such architectures is typically real-
ized by model-based software development. This involves
automatic code generation from high-level control models
such as MATLAB/Simulink, along with the FlexRay driver
stack and the operating system (OS). For this, the high-level
control models are partitioned into several software tasks
that need to be mapped on different ECUs. Subsequently,
the generated code, e.g., C-code, is cross-compiled for the
target hardware and flashed on the dedicated ECUs.

FlexRay ECU. A FlexRay ECU as depicted in Fig. 3 con-
sists of (i) a host microcontroller running the OS which
schedules and executes application tasks 7T; and communica-
tion tasks Teom, (ii) a communication controller that imple-
ments the FlexRay protocol and (iii) bus drivers that realize
the conversion of the logical bit stream into physical signals
propagated on the bus. We consider a periodic time-driven
non-preemptive scheduling policy implemented by the OS.
It provides a task dispatcher, which allows cyclic task execu-
tion, synchronous and asynchronous to the FlexRay sched-
ule. Let a dispatch event for a task T; (see Fig. 4) be defined
by the tuple T; = {0i, ps, i }:

e The task offset o; specifies the duration from start time
to the first task invocation of T;.

e The task period p; specifies the time between two con-
secutive task activations of Tj.

e The worst-case execution time e; specifies the time it
takes to execute T; in the worst case.
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Figure 3: FlexRay implementation platform.

Hence, the k-th instance of task T; is triggered at
tf =0, + kpi, k € Np. (5)

The scheduler of the OS processes all tasks according to a
dispatch table in a cyclic manner where the length of the dis-
patch table is determined by the hyperperiod H = lem(p;).

Consequently, all task invocation times can be computed
offline and stored in the dispatch table. Further, the k-th
instance of T; finishes at the latest

i = 0; + kp; + ei, k € Ny. (6)

Fig. 4 shows an example where five tasks T3, ¢ € {1,...,5},
are mapped on three different ECUs. The computed out-
puts of T1, T5, and T4 are packetized as messages mi, ma,
and mg4 which are transmitted on the bus according to their
specified FlexRay schedules. For this, communication tasks
Teom write the output of the corresponding application tasks
to the dedicated transmit buffers of the communication con-
troller as depicted in the figure. Similarly, in case a message
is received by an ECU, a communication task reads the cor-
responding receive buffer and forwards the unpacked data
to the application task for further processing, e.g., m1 gets
processed by T3 in Fig. 4. Hence, every communication task
generates dispatch events according to (5) and needs to be
considered in the dispatch tables. In this work we are not
interested in explicitly synthesizing dispatch events for the
communication tasks. Instead, we account for sufficiently
large time windows of length € that capture the communi-
cation stack overhead such as frame packing and unpacking
times and write/read operations to/from the buffers of the
communication controllers. Consequently, during the win-
dow e communication tasks can easily be configured either
manually or automatically using tool support as in [17, 18].

FlexRay bus. The FlexRay communication is organized as
a sequence of 64 bus cycles that are periodically repeated [2].
The cycles are indexed by a cycle counter from 0 to 63 af-
ter which the counter is reset to 0 again. Each cycle is of
fixed duration Tp,s and consists of a static and a dynamic
segment. Further, each cycle finishes with a short Network
Idle Time (NIT) segment during which the clock synchro-
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Figure 4: Scheduling of tasks and messages.

nization is performed and no bus communication is possi-
ble. Messages m; are transmitted on the FlexRay bus in
either static or dynamic segments according to their pre-
defined bus schedules. We refer to a bus schedule as the
tuple @z = {SZ,B“Rl}

The communication slot S; determines the time window
in which a message may be transmitted. Each static seg-
ment consists of N slots, denoted by S; € {1,..., N}, that
are of fixed and equal length A as depicted in Fig. 3, e.g.,
N = 5. For instance in Fig. 4, mg is assigned S = 3 in
every cycle of the static segment. The dynamic segment is
partitioned into M equal-length minislots of fixed duration
0 << A. If a message is assigned a slot in the dynamic seg-
ment, i.e., S; € {N+1,..., N+ M}, it takes several minislots
to transmit m; depending on its size. In case no message
is transmitted, only one minislot is consumed by the bus
and the slot number is incremented with the next minis-
lot. This is illustrated in Fig. 4, where m; is assigned slot
S1 = 10 in the dynamic segment in every even cycle. In
cycle 1, my is not transmitted and hence only one minislot
is consumed. Note that compared to cycle 2, m1 gets de-
layed in cycle 0 because of the transmission of m4 which
has a higher priority than m;. Hence, messages in the dy-
namic segment may experience variable delays in every cycle
depending on the interference due to messages with higher
priorities. Further, a message can only get transmitted in
the dynamic segment if its slot is available in the current
cycle, i.e., there are enough minislots available to transmit
m; in S;. The last minislot a message is allowed to start a
transmission is denoted by the parameter pLatestTz. The
base cycle B; € {0,1,...,63} specifies the first cycle during
which S; is available. For instance in Fig. 4, ms is assigned
Bs = 0 as the first cycle in which S2 = 3 is available is cycle
0. The repetition rate R; € {1,2,4,8,16,32,64} determines
the number of cycles that must elapse between two feasible
transmissions. For example, m; is assigned repetition rate
R1 = 2, and hence in every second cycle S is available.
Similarly, me is assigned R2 = 1, therefore Sy is available
in every cycle. Further, B; < R; holds. According to the
above definitions, the schedules for m; and mso denoted in
Fig. 4 are ©; = {10,0,2}, and ©, = {3,0,1}.

Platform configuration. For each control application the
set of n control-related tasks is denoted by T3, 7 € {1,...,n}
and schedules for m messages triggered T; is denoted by
©;. Thus, a control application C; has a (n + m)-tuple of
platform parameters ®; = {7;,©;}. We also call ®; a valid
platform configuration for C;. Note that a message that is
triggered by task T; is assigned a schedule ©; = {S;, B;, R; },
otherwise ©; = {}. Let us consider a control application
C; that is partitioned into n = 5 tasks that trigger m =
3 messages, as depicted in Fig. 4. Then the correspond-

ing platform parameters are denoted by the 8-tuple &; =
{Tl7 T27 Tg, T4, T57 @1, @2, @4} Recall that T, = {Oi,pi, ei},
and ©; = {S;, B;, R;} are tuples itself. As only T1, T>, and
Ty trigger messages on the bus, O3 = {}, and ©5 = {}. The
goal is to synthesize a valid platform configuration ®; that
satisfies all control performance requirements of C;.

3. CONSTRAINT-DRIVEN CO-DESIGN

In the following we outline our proposed co-design ap-
proach in three stages. In the first stage, we design the
control law while taking into account platform-specific prop-
erties and a freshness constraint for the feedback signals. In
stage 2, we translate the specified freshness constraint into
several platform constraints by considering all implemen-
tation-specific platform details. Finally, in stage 3, we syn-
thesize a platform configuration ®; € {T;,0;}, i.e., all con-
trol-related task and message schedules, that satisfy all the
constraints.

3.1 Stage 1: Controller design

In this stage, we will discuss how platform-specific prop-
erties are already considered during controller design to op-
timize control performance and to derive constraints for the
platform configuration C;. In particular, we derive the con-
troller gains K for C;, the periods p; € T; for all control-
related tasks, and the repetition rates R; € ©;, for which
the desired control goals are satisfied. For the implementa-
tion of the discrete-time control system model shown in (2),
the sampling period needs to be a constant h. Therefore,
all control-related tasks T; belonging to C; have p, = h. To-
wards this, we require the sampling period h to be harmonic
with respect to the FlexRay bus cycle Tyys, i.e., h is a mul-
tiple of the feasible bus periods h = R;T},s. Depending on
R;, the bandwidth utilization of the bus changes, i.e., the
smaller the value of R;, the more are the number of cycles
available to transmit a message m,;, and in turn less cycles
are available for future messages. At the same time, the sam-
pling time h also changes based on the choice of R;. Hence,
the performance of the control application changes with h
and R;. Consequently, we are interested in computing the
optimal value of the sampling period h while maximizing R;
in order to increase the bandwidth utilization of the bus.
This yields

h = RTyys, (7)

where R indicates the highest R, € ©; among all control-
related schedules ©; that belong to C;. In the state-feedback
controller in (4), the control input u[k] utilizes the values of
the states x[k] at the k-th sampling instant. Therefore, the
feedback is assumed to be applied instantaneously without
any delay 7, i.e., the time difference between reading the
sensor values and applying the actuation is equal to zero.
We denote 7 as the sensor-to-actuator delay. However, in a
distributed platform, clearly task processing and message
transmissions consume a significant amount of time, i.e.,
7 >> 0, before the control input can be applied to the actu-
ator. Hence, neglecting 7 when designing the control algo-
rithm may lead to undesired behavior of the control system
when actually implemented on the target platform.

In this work, we design the controller gains K of C; using
a pole placement technique [19] assuming constant sensor-
to-actuator delays 7 to achieve asymptotic stability of the
system (2). To that effect, we ensure temporal determinism



of the feedback signals, i.e., realizing a constant delay of 7,
by choosing an appropriate platform configuration ®;. As a
result, we achieve a deterministic behavior of the controller
C; when actually implemented. More specifically, we intend
to ensure that the feedback signals experience exactly one
sampling interval delay and design the control law as

ulk] = Ka[k — 1]. (8)

Hence, the system will be asymptotically stable if all the
feedback signals z[k], Vk are delayed by 7 = h. Such de-
sign consideration poses restrictions on the freshness of the
feedback signals.

Further, the dependency of control performance on the
sampling interval h has been utilized to determine the op-
timal choice of sampling period [14]. Next, our goal is to
find a feasible sampling period h = RT},s that minimizes
specified cost functions. Here, we consider two cost func-
tions. The steady-state performance of a control application
is measured by the commonly used cost function

N (k+1)h ) -
n=3 [ bl + (1= Ve ewlat. (9)
k=07 kh

where \ is a weight, u(t) is the control input and e(t) =
ly(t) — r| is the error between the reference value r and the
output y(¢). The first term in (9) accounts for the energy
input into the system where the second term quantifies the
tracking error. According to (7) only discrete sampling pe-
riods h are available depending on the bus cycle length Tp,s
and the available repetition rates R;. As Tpus is a global
network parameter that is already fixed at the design time
of the network, we are interested in finding the repetition
rate R for all control-related messages that realize

N (k+1)éTbus
Ji = min <Z/ [)\u(t)2 +(1- )\)e(t)Te(t)]dt
R\ 20 kR Ty,

(10)
The transient performance of control systems is measured
by its settling time £&. We determine the settling time £ by
simulation according to the amount of time that the con-
trol system requires to reach and remain within 1% of the
reference value r

J5 = miné&. (11)
R

Based on the characteristics of the control applications it is
decided which cost function needs to be minimized. Alg. 1
illustrates the control design flow of this stage. We start
with a continuous-time system (line 1). Next, we discretize
the continuous-time system at the feasible sampling periods
h (line 3—5), depending on the choice of Tys and repetition
rates. Subsequently, we compute the controller gains K for
the corresponding discrete-time system (2) using pole place-
ment and simulate the system for a sufficiently long time,
i.e., N samples, with u[k] being as per (8) (line 8 — 10). For
each run, we compute the transient and/or steady-state per-
formance (line 11). Finally, we select the repetition rate R
and sampling period h for which the selected cost functions
(10), (11) were minimized (line 13).

3.2 Stage 2: Platform constraints

In the previous stage we outlined the control algorithm
design, taking into account a constant sensor-to-actuator

Algorithm 1 Controller design under platform constraints.

Require: Tyys, A\, Ac, Be, Ce, z(0)
1: contSystem(A,, B, C..)
2: for all i€ {0,...,6} do

R=2'

h = Tpus ‘R

c2d(A., B.,C., h)

K = computeGains()

u = computeControlLaw()

while simulate(z[0], N) do

getResponse()

10:  end while

11: J; = getPerformance()

12: end for

13: J; = min; J

T1
ECU1
T2

ecuz {7,

//continuous-time system (1)

//compute feasible sampling period

//conversion to discrete-time system
//pole placement
//equation (8)

//for N samples using (2) and (8)

//equation (9) or &

Figure 5: Synchronicity and schedulability consid-
ering communication stack overhead.

delay for the feedback signals. Next we translate the fresh-
ness constraint into platform constraints that realize (i) syn-
chronicity, (ii) signal correlation, and (iii) schedulability on
the implementation platform such that 7 = h.

Synchronicity constraint. The output data of T; is pack-
etized as a message m; and transmitted over the bus accord-
ing to ©;. The synchronicity constraint specifies the phase
requirement between the task finish time t; of T; and the
corresponding bus schedule ©;. The message m; can be
transmitted either via static segment or dynamic segment
as per ©,. Let T; release a message m,; with schedule ©,,
then

T +e<t(0), Vk € Ny (12)

where ¥ is the finish time of task T}, and t(©;) denotes the
starting time of slot S; according to ©; = {S;, B;, R;} as

t(@z) = BiTyus + kRTbuS + (Sl — 1)A, Vk € Np. (13)

The first term B;Tpys in (13) captures the cycle offset, i.e.,
the starting time of the first cycle where S; is available at
k = 0. The second term kRT},,s denotes the relative cycle
offset depending on the sampling instant k£ where S; is avail-
able, and (S; —1)A accounts for the slot offset within a cycle
until S; is available. The value of € in (12) accounts for a suf-
ficiently large time interval that captures the FlexRay driver
overhead during which the communication task 7T..m, can be
configured to write the output data of 7; to the FlexRay
controller before S; is available (see Fig. 5). Using (6), (7),
and (13) in (12) yields

oi +ei+e< BiTpyus + (Sl — l)A (14)
Note that (14) only depends on the bus schedule parameters
Si, B; € ©; and the task offset 0;, and is independent of the
sampling instance k.

If m; is scheduled in the dynamic segment, ¢(0;) defines the
earliest point in time S; is available according to

t(0:) = BiTyus+kRTyus +NA+(S;—1—N)d, Vk € No (15)



In (15), NA captures the blocking time of the static seg-
ment, and (S; — 1 — N) captures the number of minislots
that elapse until S; is available in the best case, i.e., no mes-
sage is transmitted with higher priority than m,. Using (6),
(7), and (15) in (12) yields

Oi+€i+6<Binus—FNA—F(Si—l—N)(S, (16)

Fig. 5 illustrates an example with two tasks 71 = {01, p1, €1},
T> = {02,p2, e2} releasing mi in the dynamic segment with
©: = {10,0,2}, and mq in the static segment with ©, =
{4,0,1}. The figure shows, that in the dynamic segment
the actual starting time of a slot is variable and depends
on the interference of messages having higher priorities. For
instance, in cycle 2, slot S1 = 10 starts earlier compared to
cycle 0 where S gets delayed due to a message transmitted
in slot 9.

Correlation constraint. The freshness constraint 7 = h
implies that the control input w[k] is utilized for actuation
at sampling instant (k + 1). The control law in (8) requires
the control input u[k] to be computed based on the state
z[k] at sampling instant k& to meet the freshness constraint.
Towards this, the correlation constraint specifies the maxi-
mum allowed time skew among input signal u[k] and each
element of the measured state z[k] that is used to compute
the input. In the following, let us consider the example
illustrated in Fig. 6 where a control application C; is par-
titioned into four tasks and three messages. Let the tasks
and messages be denoted with additional subscripts s, c, a
for sensor-, controller-, and actuator-related data. In the
example, s € {1,2}, ¢ € {1}, and a € {1}. The sensor tasks
T1,1, and T 5 read the states of the continuous signals x1 (t),
and z2(t) at every sampling interval h. The sampled data
is sent to the controller task 73,; that computes the control
law. The computed control input u[k] is sent to the actuator
which applies the control input to the system using T4 1. It
is clear from the figure that the freshness constraint on 7 is
violated at sampling instance k = 4 as the control input u[4]
gets delayed by more than one sampling interval, and hence
arrives at the actuator task T4 1 not before k = 5. Hence,
u[4] will finally be applied at kK = 6 which results in 7 = 2h
or u[4] will be overwritten by u[5].

We require (i) the time skew between all measured outputs
z[k] to be zero, i.e., all sensor tasks T; s of C; are triggered
at the same time instances tfl = t]§72 (see sensor tasks 71,1,
T2 in Fig. 6), and (ii) the control input u[k] computed by
T;,c to be applied at the actuator task T;,, at 7 = h (see
T5,1, and Ty in Fig. 6). This realizes the freshness con-
straint according to the control law defined in (8). As the
task invocations of sensor and actuator tasks coincide with
each sampling instance we have tFF! — tf, s« = h which yields

0ia+ (k+1)h — (015 + kh) = h, Vk € No, ~ (17)
and finally
o — o (18)

Consequently, we design the schedules of sensor tasks Tj s
and actuator tasks T; ., with equal task offsets, i.e., control
input is applied at equidistant time intervals and delayed by
one sampling interval h. In other words, (18) imposes con-
straints on the platform configuration to realize the freshness
assumption 7 = h that has been made in stage 1 (see (8))
to design the control law. Provided that all synchronicity

1 task triggerings
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Figure 6: Correlation constraint.

constraints are fulfilled for T; and ©;, each control-related
message m,; carries the up-to-date data of its corresponding
sender task, i.e., no message misses its slot, and hence the
most recent data is transmitted over the bus. Further, the
earliest receiving of a sensor value that is transmitted in slot
Si.s before executing T; . is bounded by

0i,c > rréax(Bi,sTbus + SisA) + €. (19)

For instance, in Fig. 6 at sampling instant k = 2 the value
of z1[2] arrives at the controller after the controller task 73 1
has been triggered at k = 2, and hence the control law is
computed based on z1[1] and z2[2] which may lead to an
unpredictable control input u[2].

The actuator task T;, is triggered not before the control
input has arrived according to ©; . = {Si.c, Bi,c, R}

O’i,E + h > Bi,chus + Si,cA + €. (20)

Similarly, in case the control-related messages are sent via
the dynamic segment of FlexRay, the conditions (19) and (20)
become

0ic > max(BisThus + (ni,s + is)0) + NA+e  (21)
and

0i,a +h > Bi Tyus + (Rie + Cic)d + NA + €. (22)

where the worst-case minislot consumption is bounded by

n; = Z (¢;j —1)+ (Si — N — 1) < pLatestTz (23)

JjEhD;

In (23), ¢; denotes the message size in terms of minislots.
The first term 3, (¢c; —1) captures the worst-case inter-
ference due to messages m; having a higher priority than m;
and the second term in (23) accounts for the number of min-
islots that elapse until S; is available. Note that the value of
pLatestTr denotes the last minislot a message transmission
is allowed to start in the dynamic segment.

Schedulability constraint. A feasible platform configura-
tion ®; needs to satisfy the schedulability constraints (i) of
all tasks T; € ®; that are executed on the ECUs, and (ii) all
bus schedules ©; € ®; of the control-related messages. Let
T; € Twn be the set of existing tasks that is mapped on ECU
N. Further, let all periods be harmonic and multiples of the



FlexRay communication cycle length Ty,s. Then, a feasible
dispatch table is realized if there exists no overlap between
any task executions within a hyperperiod Hn = lem(pj, pi).
We obtain

Hy Hy

@F < wf)v Wl >af), Vij, ke =k e =X, (24)
pi pj
where
& i +e, if task T; triggers a message
t;, otherwise
and
k th —¢, if task Ty receives a message
ti, otherwise

For any application tasks triggering or receiving messages,
we consider a sufficiently large time window e that captures
the communication task overhead due to Tecom as illustrated
in Fig. 5. Consequently, for tasks trlggermg messages, the
first condition in (24) becomes wF = #¥ 4 ¢ according to (25)
as in the case of T1, and 75 in Fig. 5. Similarly, for any task
that processes data of a receiving message, e.g., T5 process-
ing m1, we have w¥ = t¥ — ¢ according to (26).

Further, let ©; € Q be the set of schedules that is mapped
on the FlexRay bus. Then, ©, € C; are feasible FlexRay
schedules according to

(Si=8;) = (Bi+n Ri)#(Bj+n' - R;)  (27)
o 64 64
Vi, j, n € {0, ... 'R —1},7" € {0, .. Ty -1}

i.e., any intersection between bus cycles of schedules sharing
the same slot is prohibited. Further, in the static segment,
every ECU N is owner of a slot S;, i.e. messages transmitted
by different ECUs may not share the same slot. In the dy-
namic segment, different ECUs may share a slot in different
cycles using cycle multiplexing.

3.3 Stage 3: Platform configuration synthesis

The platform constraints derived in the previous stage are
used to formulate a Constraint Satisfaction Problem (CSP)
to synthesize a feasible platform configuration ®; for any
control application C;. Recall that we already derived R; =
R, and p; = h during the controller design in stage 1. We
would like to mention that we do not address the problem of
worst-case execution time analysis within the scope of this
work, and hence assume the worst-case execution time e;
of all tasks to be given. We define a CSP as a set of the
variables o; € T;, and S;, B; € ©; with finite domains

VO0<o; <h-—e; (28)

Va<S <b, (29)

where ¢ = 1,b = N in case S; is a static slot, and a =
N +1,b= N+ M in case S; is a dynamic slot.

V0<B; <R, (30)

Next, we apply the set of constraints derived in stage 2 which
define the relations that must hold among the values of the
variables, i.e., (i) synchronicity (14), (16), (ii) correlation as
defined in (19), (20), (21), (22), and (iii) schedulability on
ECUs (24), and the FlexRay bus (27). Finally, we obtain
a valid platform configuration ®; = {73,0;} that realizes
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Figure 7: Task partitioning and mapping.

the schedules of all control-related tasks and messages while
satisfying the imposed constraints. Note that user-defined
constraints may be introduced to either restrict the finite
domains, e.g., select specific slot ranges for scheduling the
applications, or impose other non-functional constraints.

4. EXPERIMENTAL RESULTS

We show the effectiveness of our approach using two com-
mon automotive control applications: (i) a DC motor speed
control application Cpc, and (ii) a car suspension system
Ccs. The continuous-time state-space representation of Cpc
is adapted from the available model in [20]

ks ka 0
ADCI[f,%S N BDC—|:L:|7CDC:[1 0] (31)
K5 K5 K5

where k1 = 0.01 l<:gm2/s27 ko = 0.1 Nms, ks = 0.01 NmA,
ke = 0.75 Q, and ks = 0.05 H. The state variables x =
[ 21 @2 |7 are the rotational speed of the motor shaft and
motor armature current, v is the motor terminal voltage.

Further, the car suspension system model Ccs is adapted
from [21]

0 1 0 0
—93 —02 o3 o2
as=|5 YTy | e
o3 o) _ (o3+06) _ (o2+05)
o4 o4 o4 a4
0
VN 1000
o1/04
Bos = o ’CCSZ[O 01 0} (33)

4
(06*(02+05)‘%)
g4

where o1 = 100 kg, o2 = 400 Ns/m, o3 = 800 N/m, o4 = 10
kg, and o5 = 200 Ns/m, and o6 = 800 N/m. The state vari-
ables z1 and z2 are the positions and velocities of the body
of the car and x3 and x4 are the positions and velocities of
the mass of the suspension system. The input u is the force
applied to the body by the suspension system. We consider
the task partitioning and mappings of both applications to
be given according to Fig. 7. Here, Ccs consists of n = 6
tasks where each of the four sensor tasks 14,75, T5, and Ty
triggers a message m; on the FlexRay bus that needs to be
scheduled according to ©1, ©2, O3, and ©4. The control law
is computed by the controller task 75 which sends the con-
trol input to the actuator task 7% via message ms.
Further, Cpc consists of n = 4 tasks where the two sensor
tasks T7, Ty trigger mr, mg according to ©7, Og, respec-
tively. The controller task Ty computes the control input
which is transmitted via mg corresponding to ©g to the ac-
tuator task Tho. Note that the controller tasks of both appli-



Table 1: FlexRay bus configuration parameters.

| Parameters | Config. T | Config. II |
bus speed [Mbit/s] 10 10
cycle length Tpys[ms] 5 12
#static slots N 25 40
static slot length A[ms] 0.10 0.16
#minislots M 230 540
minislot length d[ms] 0.01 0.01
pLatestTx 225 535

6 T

~-configuration |
st ~>configuration I
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o . . \ . .
4

8 16 32 64
Repetition rate R

Figure 8: Transient performance of Ccs for configu-
ration I and II.

cations share the same processing resources on ECUG6. Also,
we assume that each ECU is synchronized with the FlexRay
bus and executes a synchronization task Tsyn. which takes
care of the synchronization of the local ECU clocks with the
global time base on the bus. Further, we consider ECUS to
transmit 15 non-control messages on the bus, where 5 peri-
odic messages are sent in the static segment and 10 event-
triggered messages are transmitted in the dynamic segment.
Our goal is to synthesize the controller gains Kcs, Kpc,
and the platform configurations ®cs and ®pc while satis-
fying all control objectives. Note that ®cg is an 11-tuple
and ®pc is an 7-tuple. In the following we will consider two
different bus configurations as depicted in Table 1. Towards
this, we will study how different bus configurations affect
the design of the controller gains Kcs, Kpc, and platform
configurations ®cs, Ppc.

4.1 Stage 1: Controller design

At this stage, we design the controllers Ccs, and Cpe in
MATLAB/Simulink according to Alg. 1 presented in Sec-
tion 3. Since the most important requirement of the car
suspension system is a fast response time to road distur-
bances and vibrations we are mainly interested in the tran-
sient performance of Ccs, and hence we choose (11) as the
cost function to minimize the settling time . The results for
controller gains Kcg, sampling period hcs, and repetition
rate Rcg are depicted in Table 2 for both configurations. It
can be seen in Fig. 8 that the minimum cost J3, i.e., the
smallest settling time ¢, is achieved at R = 1, and therefore
hcs = Tpus in both configurations. This is expected because
faster sampling and actuation of the systems results in a bet-
ter control performance of the system. For the DC motor
application Cpc we require the motor to rotate the desired
speed, i.e., the deviation from the reference value needs to
be minimized while minimizing the required voltage of the
control input to avoid damage of the motor. To account for
both objectives we evaluate Ji using (10), and Apc = 0.001.
Fig. 9 illustrates the quadratic cost J; over repetition rate R
for both configurations. It is interesting to observe that in

Table 2: Results of stage 1: controller gain K, sampling
period h and repetition rate R.

Design parameters Configuration I | Configuration 11
hcs[ms] 5 12
Res 1 1
Kes [7712 2175 [594.9 189.6
-12141 -61] -1001.5 -4.3]
hpc|ms| 20 24
Rpc 4 2
Kpo [4.7197 -0.5444] | [-3.2687 -0.4218]

T
-x-configuration |
- configuration ||

Overall cost J,

I
1 2 4 8 16 32 64
Repetition rate R

Figure 9: Steady-state performance of Cpc for con-
figuration I and II.

configuration I the available repetition rate at the minimum
cost Ji is Rpc = 4 and hpe = 20ms, whereas in configu-
ration II, Jy is minimum at Rpc = 2, hpo = 24ms respec-
tively. This is because the available sampling frequency hpc
that can be realized depends on the bus cycle lengths Ty,
which is bms in configuration I and 12ms in configuration
2. Hence, the two configurations require different values of
R to realize the optimal available sampling frequency. Note
that the optimal sampling frequencies hpc = 20ms, and
hpc = 24ms in both configurations are quite close to each
other, however they are realized by different repetition rates
Rpc. Results for Kpc,hpe, and Rpc are shown in Table 2.

4.2 Stages 2 and 3: Platform configuration syn-
thesis

Next, we utilize the results derived in stage 1 to formu-
late the CSP and generate feasible platform configurations
for both the applications. We schedule the two control ap-
plications in a rate-monotonic fashion, i.e., we assign the
highest priority 7 to the application with the smallest sam-
pling period. Hence, mcs = 1, and mpc = 2 in both config-
urations, where mcg = 1 denotes the highest priority. We
choose ¢ = 3A to consider the frame packing/unpacking
times and buffer read/write operations of the communica-
tion tasks. The value of € has been determined empirically,
and hence might be conservative. Similarly, the worst-case
execution times have been determined experimentally and
considered with e; = 0.1ms for any control-related task of
Ccs and Cpc. The finite domains for the offsets o; have
been discretized in 0.1ms step size, i.e., 0; € {0,0.1,0.2,...}.
We implemented the CSP for Ccs and Cpe in Python using
the Labiz python-constraint library [22] which is a Python
module offering backtracking solvers, recursive backtracking
solvers, and minimum conflicts solvers over finite domains.
The CSP-solver has been executed on a dual core 1.8 GHz
processor with 3 GB RAM. Table 3 shows average run-times
of the different solvers. In every case a feasible solution could
be determined in approximately 1 sec using an appropriate



Table 3: Average run-times of different CSP-solvers. Table 5: ®pc for dynamic segment.

| Cos || Backtracking | Rec. Backtracking | Min. Conflict | Configuration I Configuration IT
I 320 sec 0.2 sec 1.5 sec ( T; of Coc ©; of Cpc T; of Cpc ©; of Cpc
I 5384 sec 1.3 sec 81.4 sec 7 || 17.2,20,0.1}) | {46,1,4] | {5.8,24,0.1} | {65,0,2)
| Coc || Backtracking | Rec. Backtracking | Min. Conflict | 8 {7.2,20,0.1} | {47,1,4} | {5.8,24,0.1} | {95,0,2}
: ST N 06 soc 9 [ {12.3,20,0.1] | {47,2,4) | {7.7,24,0.1} | {233,0,2]
il 9295 sec 3900 sec 0.1 sec 10 || {7.2,20,0.1} - {58,24,0.1} -

Car suspension system DC motor control system

Table 4: ®c5 and ®pc for static segment.

solver (see numbers in bold). Results for the platform con-
figurations ®cs, and ®pc are depicted in Table 4 for the
static segment. Table 5 shows results for ®pc for the dy-
namic segment.

4.3 Implementation and verification

We verified our design using a Hardware-in-the-Loop (HiL)
setup which is common practice in the automotive industrial
design process. A HiL can be considered as a form of real-
time simulation where in addition to simulations, real hard-
ware components are used. In our setting, the plants are
simulated but real ECUs and a real FlexRay bus have been
used. The purpose of a HiLi system is to provide the neces-
sary electrical stimuli, e.g., sensor values, which are required
to realize the functionality of the application that is executed
on real hardware components. Hence, our experiments con-
sider all implementation platform details such as processors,
driver stacks, buffers, and FlexRay configurations, that are
required to study the impact of implementation effects on
the control applications under simulation. Instead of imple-
menting the full setup as depicted in Fig. 7 our equivalent
HilL-setup essentially boils down to the consolidated archi-
tecture in Fig. 10 which consists of four ECUs, each with
a 400MHz 32-Bit Embedded PowerPC and E-Ray FlexRay
controllers, a bus monitoring unit to record the control out-
puts, and a FlexRay bus as the communication medium. We
implement a FlexRay stack according to the FlexRay spec-
ification V2.1 [2] using commercial industrial design tools
from SIMTOOLS [17] and prototyping FlexRay hardware
from Elektrobit [18]. As depicted in Fig. 10, the tasks Tcs,
and Tcp which are executed on ECUcg, and ECUpe simu-
late the plant equations for Ccs and Cpc, i.e., Tcs simulates
the sensor tasks T1,7%,T5, Ty, and the actuator task Tg of
Ccs, and Tpc simulates the sensor tasks 77, Ts, and the ac-
tuator task Tip of Cpc. Hence, Tcs computes the states
r1,T2,Ts, s, which are sent via four messages according to
©1,05,03,0,4 to ECU6 where the control law is computed
by Ts and sent back to ECUcgs using Os and simulating

Configuration 1 Configuration IT
7 T; of Ccs O; of Ccs T; of Ccs O; of Ccs
T |[ {05,501} | {11,0,1} | {3.5,12,0.1} | {27,0,1}
2 | {05,5,0.1F | {12,0,1} | {3.5,12,0.1} | {28,0,1} S Garspenson \
3 {0.5,5,0.1F | {13,0,1} | {3.5,12,0.1} | {29,0,1} S e
4 | {05,501} | {14,0,1} | {3.5,12,0.1} | {30,0,1}
5 | {18,5,0.1F | {24,0,1} | {5.3,12,0.1} | {38,0,1}
6 | {05,500 - {35.12,0.0) : oo g
| i | TiofCpc [ ©;iofCpc | TiofCpc | ©iofCpc | Figure 10: HiL setup for Cpc and Ccs.
7 [{10.2,20,0.1} | {8,2,4F | {0.7,24,0.1} | {19,0,2}
8 || {10.2,20,0.1} {9,2,4} {0.7,24,0.1} | {22,0,2} the actuation. Similarly, Thc computes the states of the
9 |[{11.3,20,0.1} | {19,2,4} | {4.4,24,0.1} | {37,0,2} DC motor application that are sent over the bus to ECU6
10 || {10.2,20,0.1} - {0.7,24,0.1} , where the control law is computed by Ty and the control

input is sent to Tpc for actuation. The task parameters
T; € {oi,pi,ei}, and message schedules ©; € {S;, B;, R;}
have been selected according to the synthesized platform
configurations depicted in Table 4 for both configurations
and applications. For the experiments, we periodically in-
troduced a step disturbance and observed the output y1 and
x1, respectively, of Ccs and Cpc using the bus monitoring
unit. Due to space constraints, we only show the plots for the
static segment configurations according to the platform con-
figurations in Table 4. The outputs for the dynamic segment
can easily be carried out in a straightforward manner. Note
that the outputs for the dynamic segment match the results
of the static segment as the imposed freshness constraint
7 = h remains the same. However, the platform parame-
ters that realize the freshness constraint are different. As an
example, the platform configurations ®pc for the dynamic
segment are depicted in Table 5. It is interesting to observe
that in the dynamic segment multiple messages sent by dif-
ferent ECUs may share the same slot, e.g., Os € {47,1,4}
and Og € {47,2,4} in configuration I.

Output car suspension. The output y; of the car suspen-
sion system is depicted in Fig. 11 for both configurations.
The reference value was set to r = 0, i.e., » = 0 indicates
the nominal positions of the suspension system and the car
body in absence of road disturbances. It can be seen from
the figure that both applications are asymptotically stable
as with ¢ — oo, y1 — 0. Note that due to the fast sampling
period hcs = 5ms the settling time is shorter in configu-
ration I compared to configuration II where hcs = 12ms.
However, the peak overshoot for yi is much higher in the
case of configuration I.

Output DC motor application. The output y; of the
DC motor application is depicted in Fig. 12. In both con-
figurations the system reaches the reference speed of r = 50
units in approximately same time and with equal peak val-
ues. This is because the sampling frequencies are quite close
to each other in both configurations, i.e., hpc = 20ms in
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Figure 12: Output y;1 of Cpc.

configuration I and hpc = 24ms in configuration II.

Constraint violation. Fig. 13 shows an example where a
platform configuration ®¢s violates the platform constraints
in configuration I. In particular, the correlation constraint
has been violated and the schedules for the two sensor mes-
sages mg and mu have been selected as ©3 = {21,0,1}, and
04 = {22,0, 1} instead of the feasible values ©3 = {13,0, 1},
and ©4 = {14,0, 1} as depicted in Table 4. As the controller
task T5 is triggered at o5 = 1.8ms (see Table 4), m3 and my
are received by ECU6 after T5 has been triggered. Hence,
the control law is computed based on the actual values of x
and z2 and the delayed values of x3 and x4, resulting in an
unstable output of the plant.

S. CONCLUDING REMARKS

In this work, we proposed a joint design approach for auto-
matically synthesizing controller gains along with their task
and message schedules on distributed FlexRay platforms.
Towards this, we first translated the timing constraints (or
freshness constraints) imposed by the high level control goals
into platform constraints. Next, the platform parameters
such as task and message schedules were designed based
on the derived platform constraints. Thus, the high level
control-related timing constraints are respected at the imple-
mentation level. The constraints are solved by formulating a
CSP and the formulation considers both the FlexRay static
and dynamic segments. Our approach automates the design
of platform parameters from given application level speci-
fications. The proposed design method can be integrated
with existing COTS design tools and significantly reduces
the design effort required for complex distributed platforms.
For future work, we plan to pursue the presented method
for heterogeneous platforms and incorporate additional op-
timization objectives for the synthesis of optimal platform
configurations.

—configuration |
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0 100 200 300 400 500 600
ms

Figure 13: Unstable output y; of Ccs.
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