Modeling Buffers with Data Refresh Semantics
in Automotive Architectures

Linh T.X. Phant Reinhard Schneider?

Samarjit Chakraborty? Insup Lee!

Department of Computer and Information Science, University of Pennsylvania, USA
2Institute for Real-Time Computer Systems, TU Munich, Germany

E-mail: {linhphan,lee}@cis.upenn.edu, reinhard

ABSTRACT

Automotive architectures consist of multiple electroroatol units
(ECUs) which run distributed control applications. SuchlEGre
connected to sensors and actuators and communicate viedshar
buses. Resource arbitration at the ECUs and also in the cemmu
nication medium, coupled with variabilities in executi@quire-
ments of tasks results in jitter in the signal/data streaxigtiag in
the system. As a result, buffers are required at the ECUs asd b
controllers. However, these buffers often implement défe se-
mantics — FIFO queuing, which is the most straightforwarffidou
ing scheme, and data refreshing, where stale data is ovtEmviy
freshly sampled data. Traditional timing and schedulgbdnaly-
sis that are used to compute, e.g., end-to-end delays, inaitto-
motive architectures can only model FIFO buffering. As ailtes
they return pessimistic delay and resource estimates bedaue-
ality overwritten data items do not get processed by theegyst
In this paper we propose an analytical framework for acelyat
modeling such data refresh semantics. Our model exploital n
feedback control mechanism and is purely functional in reatAs

a result, it is scalable and does not involve any explicitestaod-
eling. Using this model we can estimate various timing artope
mance metrics for automotive ECU networks consisting ofdraf
implementing different data handling semantics. We itiaist the
utility of this model through three case studies from themdtive
electronics domain.

1. INTRODUCTION

Automotive architectures typically consist of a colleatiaf elec-
tronic control units (ECUs) that are connected by multipbene
munication buses implementing various protocols such asl CA
and FlexRay. Such a platform is used to execute multiple dis-
tributed control applications that obtain their input fromrious
sensors. Hence, there is information processing and patipag
in the form of data/message streams, originating from serestd
terminating at actuators and passing through various EQCids a
buses. Although the sensors typically sample data at perior-
vals and tasks are also periodically activated, resoutiigration at
the ECUs and buses, coupled with variable processing desrand
tasks, introduce jitters in the data streams. As a resufetsuneed
to be placed at various positions in the architecture, atghe bus
controllers.

Given such a setup, there are two predominant data handiing s
mantics implemented in the buffers: (i) First In First OutFdFO,
where data should not be lost and the history of transmission
ordering of data is important. Data streams contairimggemen-

.schneider@rcs.ei.tum.de, samarjit@tum.de

—| datarefresh FIFO FIFO [5]
o] 2
g finite infinite infinite | &

Figure 1: Network having bufferswith different semantics.

tal information e.g., thespeed increasef a car, are buffered in
this manner. (ii) Data refresh semantics, where buffersofre-
stricted size and stale data is overwritten by freshly sathgen-
sor data. Such semantics is used where data with the nexesnt
valuesare of interest, e.g., thactual speedf a car. However,
modeling such buffer overwrites — while doing timing/perfance
analysis of the system — turns out to be a challenging prokbietn
has mostly been ignored in the past. Ignoring such oversiistac-
ceptable in streaming multimedia applications, e.g., @leeicoded
video data is stored in a buffer and existing datagseroverwrit-
ten (in fact overwriting or data loss is not desirable). Hegrefor
many control applications, stale data is not useful andptaced
by newly sampled data. Neglecting overwrites in this caadddo
pessimistic estimates on computation and communicat&ouree
requirements (since the overwritten data is also assumieel poo-
cessed in the model).

In this paper we develop an analytical model for ECU networks
containing buffers implementing both the above semantcg. (
see Fig. 1). Our model is motivated by previous work on maodgeli
and analysis of applications processing continuous degarsis us-
ing theReal-Time Calculu$RTC) framework [16]. We extend the
RTC framework using a novel feedback control mechanism that
enables the modeling of complex “state information”, whitkhis
case is the deletion of existing data in the buffer by freth.déhe
main challenge in modeling such overwrites stems from the re
atively complex overwriting process, viz., tlwddestdata in the
buffer is overwritten by freshly sampled data. Typicallgkudata
refresh semantics requires explicit state-based modeligg using
timed automata (see [8]). This leads to the well-known speze
explosion problem, which has also been reported in the gbofe
state-based modeling of applications processing datarsg¢6].
Our main contribution is to suitably modify the RTC frameWwor
with an appropriate abstraction and a feedback controltoacts
that avoids any state-based modeling, but neverthelessaety
captures the complex buffer refresh semantics.

The importance of this problem has recently been pointedhout
a number of studies. In [11] buffering mechanisms with ovérw
ing have been discussed to bridge the gap between synclsronou
semantics at the model level and the asynchronous natura-of i
plementation platforms. The semanticdag system§l] has been
used to model systems with buffers implementing the dateskf

“This research was supported in part by NSF CNS-0931239, NSF Sémantics as we do in this paper [2]. This has been extended to
CNS-0834524, NSF CNS-0721541, NSF CNS-0720703 and the model loosely time-triggered architectures in [3]. Howel of

DFG (Germany) through the SFB/TR28 Cognitive Automobiles.

these efforts were directed towards studyingftivetionalcorrect-

ness of the system. In this paper, we model the data refrestrse
tics toquantitativelycapture the load on system resources and the
volume of actual data that is processed by the system. Our goa
is to factor this into the computation of timing propertiefstioe
system, e.g., delays suffered by messages. The need fditguan
tively capturing this in performance analysis techniquas also
been pointed out in [7].

Developed on top of the Network Calculus [4] theory from the
communication networks domain, the RTC framework [5] we use
in this paper has been extensively adapted to model andznaly
heterogeneous real-time systems in a compositional maerer
see [17]). The central concept in this framework is its usarofal
functionsto model the timing properties of data streams sevice
functionsto capture the availability of resources. Specificallyheac
data stream is modeled by a pair of arrival functioa$(A) and
a'(A), which denote the upper- and lower-bound on the number of
data items that may arrive in any time interval of lengthSimi-
larly, a resource is modeled by a pair of service functi@B§A)
and ' (4), which specify the maximum and minimum number of
items that can be processed by the resource within any titae in
val of lengthA. Given the arrival functions of an input data stream
and the service functions of a resource, one can computeng usi
purely algebraic techniques — various bounds on systenepiep
such as the maximum backlog of data items at a buffer, the-maxi
mum delay suffered by the input stream, the arrival functiofthe
output stream, and the service functions of the remainisguee.
The output arrival functions can then be fed as inputs to thé n
resource whereas the remaining service functions can liktose
process the next data stream.

The arrival and service functions in the RTC framework admit
a much richer collection of arrival sequences and resouatienns
than the classical event and resource models (e.g., perispo-
radic, bounded delay) do. Its algebraic feature also epadffe
cient computation of system’s performance in a fully conitimsal
manner. However, the standard RTC formalism assumes an un-
bounded buffer size and does not model buffering schemearha
dependent on the state of the buffer. As mentioned eattiisras-
sumption is not only unrealistic but also prevents RTC framb
applicable to many common practical systems.

When data refresh semantics is implemented in a buffer, the
smaller the buffer size, fewer will be the the number of d&gens
to be processed downstream (e.g., on the ECU next to thetaictua
in Fig. 1). This is because certain data items will be ovettemiand
will therefore not have to be processed subsequently esond
the buffer which implements data refresh in Fig. 1). In suabes,
assuming that no data is lost — as in the standard RTC frankewor
results in a higher system load and hence pessimistic tiboogds
and resource estimates.

Our contributions. In this paper, we extend the existing RTC
framework to model and analyze systems with buffers impleme
ing both FIFO as well as the data refresh semantics. The leay id
in our technique is to use in combination the concept of aiairt
processor to encapsulate the data overwriting scheme ageda f
back control mechanism to capture the overflow constrai®is:
analysis relies solely on algebraic manipulations and ttausbe
computed efficiently. The technique we propose here sigmifig
enhances the modeling power of the existing RTC framewoiilewh
sidestepping the problems associated with other fine-gutaite-
space models [6, 8]. At the same time, it is modular and fudipe
positional. Through case studies, we illustrate how outhetan
be seamlessly integrated into the current RTC frameword, an
the same time we show the effects of capturing buffer oveesri

on the accuracy of the analysis. We also provide an expetahen
validation of our analysis method against simulation. lvisrth
noting, however, that our analytical method is not only dagtut
also able to provide guaranteed bounds on the system piexmert
which cannot be achieved using simulation.

Related work. The first line of work targeted towards state-
dependent systems comes from the formal methods domaiedTim
automata and related automata-theoretic formalisms hesme &m-
ployed to model task scheduling of hard real-time systerhs$8
well as systems processing data streams [6]. Although aattom
theoretic models are highly expressive, they often suffemfthe
state explosion problem when applied to realistic settings

The effect of finite buffer capacities has been studied irctre
text of data flow graphs [10]. For instance, an algorithm fame
puting the buffer capacities that satisfy throughput c@msts was
presented in [18]. Analysis of self-time scheduling for titate
data flow with finite buffer capacities was studied in [12].cBa
pressure was used in [15] as a mechanism to allow a semargics p
serving implementation of synchronous models on LooselgeTi
Triggered Architectures.

Further, as mentioned above, [2,3, 11] have proposed tgebsi
for modeling systems with data refreshing, although fromiracf
tional correctness perspective. The main goals of thesesfrerks
are to investigate communication and clock synchroningtimto-
cols that are data semantics preserving in a distributed tiig-
gered platform with asynchronous communication. This isedo
by means of tag structures [1], which hold information abitiet
freshness levels of the data, and an enforcement of comtstran
these tags to ensure correctness of data values. Unlike thels-
niques, our framework does not deal with the functional etspef
the system and imposes no constraints on the system. Instead
provides methods to compute timing and workload relatetbper
mance properties in presence the of data refresh, which afas n
addressed in [2, 3,11].

Lastly, various data management mechanisms have alsoreen i
vestigated to handle overflow conditions in bounded bufférsr
instance, [14] identifies four different overflow policiesnamely
Drop NewestDrop Oldest Drop RandonandDrop All — and presents
a simulation-based framework for analyzing propertiehsasthe
number of dropped data items and the average delay of the pro-
cessed data. The refresh semantics we consider here ical¢at
the Drop Oldestpolicy, which is most relevant in automotive ar-
chitectures that involve transmission of sensor data. \faéu ex-
tend our analysis to other data management mechanismssgipo
in [14]. It is worth noting that our method is purely analgi@and
thus applicable to safety-critical applications (whicné the case
with simulation-based approaches such as [14] that faitdwige
any guaranteed timing bounds). Our method also works faster
pared to simulation, which is time consuming.

Organization of the paper. In the next section we describe the
basic concepts of the RTC framework. Section 3 focuses on our
analysis technique for the basic data refresh semantitteyvx

by an extension to other data refresh semantics in Sectidiet.
present our case studies in Section 5 and conclude in Sektign
outlining some directions for future work.

2. RTC BACKGROUND

The RTC framework was developed based on (min,+) and (max,+)
algebra [4] and models data streams and processing resausce
ing acount-based abstractionSpecifically, an arrival pattern of
a stream is modeled as a cumulative functin) that gives the
number of items arriving over the time inten(@l t]. The set of all

arrival patterns of a stream is represented by a parfal func-
tionsa = (aY,a'), wherea'(A) anda' (A) specify the maximum
and minimum number of data items that can arrive from thesstr
over any time interval of length. In other words, for alA(t),

VA>0,vt>0: a'(8) <AD+1)—At) < al(d).

Similarly, a service pattern of a resource is captured byrauta-
tive functionC(t), with C(t) denoting the number of items that can
be processed by the resourceqt]. The set of all service patterns
of aresource is modeled by a pairsgfrvice functionf§ = (B“,B'),
whereBY(A) and ' (A) give the maximum and minimum number
of items that can be processed by the resource over any tiere in
val of lengthA respectively.

Formally, letR = RU {+oc0, —oo} whereR is the set of real num-
bers. LetF be the set of monotonic functions, i.ef; = {f :
RY - R |Vs<t, 0< f(s) < f(t)} whereR" is the set of non-
negative real numbers. The minimum operatotFindenoted by
®, is defined for allf,g € 7 as usual: vt e R*, (f@g)(t) =
min{f(t),g(t)}. Similarly, f ~giff f(t) ~g(t) for all t € RT,
where~e {<,>,=}. Further, thesupremun(sup), if it exists, of
a setSC F is the smallest € F such thath<U forallhe S
Similarly, theinfimum(inf) of Sis the largest € F such thah > L
for all h e S. The definition of sup and inf can also be similarly
defined over the s&.

We can now define the (min,+) convolutionand deconvolution
© operators as follows. For afl, g € F and for allt € R,

(feg)t)=inf{f(s)+g(t—s) | 0<s<t},
(fog)(t) = sup{f(t+u)—g(u) |u>0}.
One can verify the following results: f, (i) f <
f e g, (iil) (f®%)+0_(f+c ®g= fé??fc) %%d (|\(/))f @%gNTm
iff f~h®gwhere~e {<,>1.

Lete € F be such that(0) = 0 ande(t) = +o for allt > 0. The
sub-additive closure of is given byf* =min{ f" | n> 0}, where
f0=gandf™1=f" g fforallneN, n>0.

THEOREM2.1 ([4], THEOREM4.3.1). For any given fg €
F, the inequality h< g f(h) has one unique maximal solution,
given by h= f*(g).

We denote by the composition of two operatorg:0; 0 O2)(x) =
01(02(x)). The linear idempotent operatdy for any fixedg € F

is defined byZg(f)(t) =inf{g(t) —g(s) + f(s) | 0< s<t}. Then,
the following holds [4],
(feIg)" = (Zgof) oIy (1)

The (max,+) convolutio® and deconvolutior® operators are de-
fined as: for allf,g € F and for allt € R™,

(feg)(t) =sup{f(s)+g(t—s) | 0<s<t},

(fog)(t) =inf{f(t+u)—g(u) | u>0}.

Next, letg(0) = 0 andg(t) = —oo for all t > 0. The super-additive
closure off is defined byf* = max{ f" |n > 0}, wheref® =z and
fr+l— {13 f for all n € N, whereN is the set of natural numbers.
In the context of RTC, we often assume that upper arrival (ser

vice) functions are sub-additive and lower arrival (segyitunc-
tions are super-additive. A functiohe F is sub-additive ifff (x+
y) < f(x) + f(y) for all x andy in R*. Similarly, f is super-
additive iff f(x+y) > f(x) + f(y) for all xandy in R*. A func-
tion can be made sub-additive (super-additive) by takiagsith-
additive (super-additive) closure. In this paper, we asstimt all
given upper (lower) functions are refined to satisfy subiadty
(super-additivity) before the analysis. Further, we regjthat each

pair of upper and lower functions satisfies causality, itedoes
not include infeasible bounds. Specifically, for any giveir pf
upper and lower function$fY, f'), we must have for alt > 0,
fl(t) < f'(x)+ Ut —x) < fU(t) forall 0 < x <t.

Lastly, the maximum vertical and horizontal deviation (aiee)
between two function$, g € F are given by:

vdist(f,g) ©sup{ f(t)—g(t) [t>0} @)
hdist(f,g) ©'sup{ inf{r>0| f(t) <gt+1)} [t>0} (3)

Performance bounds with unbounded FIFO buffers. Consider
an input data stream with arrival functions= (aY, a') that is pro-
cessed by a resource with service functifins (Y, B!). Suppose
the buffer that stores the data items from the input streasirtia
nite capacity. LefA(t) be an input arrival pattern of the stream and
A/(t) be the corresponding output arrival pattern. Then, from [5]

Axp < A < Axp @)
The maximum backlog at the input buffer and the maximum de-
lay experienced by the input stream are givervh)‘ust(a”,ﬁ') and

hdist(a‘tB'), respectively. Further, the output arrival functions
a/ . and remaining service functiotf§ . are computed as follows.

apre =min{ (a"®p") o p', B} ®)
e =min{(a' 0) 0 ', '} (6)
.nf—(B”fa)@O @)
Blnf - (BI -) @ 0 (8)

Terminology. We refer to the conventional RTC fambounded
FIFO buffersdescribed above as RTC-INF and the method pro-
posed in the next section flounded buffers with data refresh se-
manticsas RTC-DRF. The subscripinf” (“ drf”) stands for the
results computed by the RTC-INF (RTC-DRF) method. Lastly, a
arrival pattern of an input/output stream is also known asnan
put/output function, and we use them interchangeably gghper.

3. MODELING FINITE BUFFERSWITH
DATA REFRESH SEMANTICS

We now extend the RTC-INFresults to capture systems contain
ing buffers that implement data refresh semantics. In systess,
buffers have bounded capacities and incoming data itenst@ned
in the buffer in the order of their arrivals. However, if amaming
item arrives at a buffer when the buffer is full, the oldesiadéem
— at the head of the buffer — is discarded/overwritten, ardrésh
data item is written to the end of the buffer.

ExampLE 1. Consider a buffer B of siZ2 Given B=[e; e, €3]
when item g arrives, where itemsiee,, e3 arrived earlier in that
order. Then, g will be overwritten and B will bée, e3 €4], which
contains the three most recent data items.

Objectives. Given such a system, our goal is to compute the
standard performance-related metrics mentioned ea8iace the
RTC-INF assumes infinite FIFO buffers, its analysis resqadtsome
overly pessimistic in presence of data refresh. We presanet dn
extension of RTC-INF to model and analyze systems with data r
fresh semantics, including methods for computing:

e The maximum delay experienced by the input stream, con-
sidering only items that are not overwritfer(Section 3.1.1)

e The arrival functions of the output stream. (Section 3.1.2)

e The remaining service functions of the PE after processing
the stream. (Section 3.1.3)

1overwritten data items are lost and hence have no notionlaj.de

We further extend our method to analyze systems with a maxtur
of FIFO and data refresh semantics (Section 3.2) and otHearbu
management schemes (Section 4).

EXAMPLE 2. Fig. 4 shows the effective input function And
the output function A(in solid lines) corresponding to a given in-
put arrival pattern A and a service pattern C, wherg)By= 3. In

Note that the maximum backlog of the buffer that implements the figure, the filled black circles represent the items tleethgough

data refresh semantics is either the buffer capacity or thg&imum
backlog computed by RTC-INF, whichever is smaller.

3.1 Systemswith asingleinput stream

Consider a system consisting of a single input stream tlabis
cessed by a processing element (PE) given in Fig. 2. As shown i
the figure, upon arriving at the system, the stream is writtea

buffer B before being processed by the PE. We assume that (i) the

input stream is modeled by the arrival functians- (a4, a'), (ii) the
resource availability of the PE is modeled by the servicetions

B = ([3”7B'), and (iii) data refresh semantics is implemented at
buffer B, which has a finite capacity @&mnax (items).
Bmax B
input @ o
stream III 7
data refresh

Figure2: A system with a buffer having data refresh semantics.

Basic modeling ideas. Let A; be an arrival pattern of the input
streamC be a service pattern of the PE, afsglbe the correspond-
ing arrival pattern of the output stream. We denote®byhe effec-
tive input functionof Aq, i.e., Ax(t) specifies the number of items
of A1 that arrive in(0,t] and that will not be overwritten. Since all
and only the items captured By will be processed by the PBg

is the actual output function @5.

A3+Bmax
r=-=-=-========-= hl
PR !
K i | A CoY !
ool @
>
stream :

g,) no data refresh

Py : avirtual processor that controls

A’z (discarded)
the data going through the system.

Figure 3: A virtual system equivalent to theonein Fig. 2.

Observe tha#; is dependent not only on the original arrival pat-
tern A; but also on the service patte@hand the size oB. To
compute an arrival function that bounds, we employ a feedback
control mechanism, where the arrival pattéeof the processed
stream is used as feedback information to control the datasit
going through the system. The original system in Fig. 2 carebe
cast as an equivalent system that has an additional virtaaépsor
R, in front of B (see Fig. 3).R, serves as an admission controller,
which splits the original input stream (captured Ay) into two
separate streams:

(i) the former, modeled by the effective input functiép, con-
sists of all items that will be processed by the PE, and

(i) the latter, modeled by the input functioi,, consists of all
items that will be overwritten, which will be discarded By

R, guarantees tha, contains as many items as possible while en-
suring that none of these items will be overwritten (i.e fféquB
never overflows). In essence, the data refresh semantics of the
buffer in the original system is now captured completelyheyro-
cessing semantics of this virtual processor; as a resuét,dbrre-
sponding buffer in the virtual system behaves exactly likeia
bounded FIFO buffeNote thatR, does not impose any additional
delay on the input items as it does not perform any real psicgs

the system (captured byA The unfilled pink circles represent the
items that are discarded by, Reaptured by 4). Each blue rectan-
gle corresponds to an item that can be processed (capturéz) by
The number associated with a blue rectangle denotes the ioide
the corresponding item inythat is processed by the PE. Note that
the second and third rightmost blue rectangles are wastedurme
there is nothing to process.

#items B=[]
B=[1] B=[23] B=[3,45] B=[67] B=[6,7,8] B=[9] n

B=[4,5,6]

Ax(1)

104 Al

j——>0 itemk isdiscarded because
k buffer Bis full when item j arrives

I ‘ ‘ 1 ‘ time
B=[5,6,7] B=[78 9]‘ =[9,10]] B=[]1B=[] B=[11]
B=[8,9] B=[10]

B=[]

B=[1,2,3] ‘
B=[2,3,4]

Figure4: Actual dataitemsthat go through the system.

One can verify that, when item 6 arrives, the buffer is fulB
[3,4,5]). Therefore, item 3 (the oldest) is overwritten and item 6 is
written to the buffer (B= [4,5,6]). Similarly, items 4 and 6 will be
overwritten when items 7 and 9 arrive, respectively. Thogshe
virtual system, Pwill discard items 3, 4, 6 when they arrive.

The performance-related metrics of the original systemnzam
be analyzed based on this virtual system as outlined in the co
ing subsections. Fundamentally, the maximum delay is coeapu
based on the conditions for which data refresh occurs. Taiobie
remaining service and output arrival functions, we first pate the
service functiorBy for R, such that?, is the largest effective func-
tion possible and never overflows (cf. Fig. 3). Thify is then
used to derive the arrival functiom, of A,. Fromay, and 3, we
can apply the RTC-INF to derive the remaining service fuorctf
the PE (sinceB behaves like an infinite FIFO buffer). Furthe;
can also be combined wit to form the overall service function
B for the entire system. We then derive the arrival functioihthe

processed stream baseda)randﬁ.

3.1.1 Computing maximum delay

Recall the virtual system in Fig. 3. Denotkt) as the delay
experienced by an input item that arrives at timeLemma 3.1
states two basic bounds aift) due to data refresh. These bounds
are shown in Fig. 5.

LEmMmMA 3.1 Let b(t) be the number of items in the buffer B at

time t, i.e., ft) = Ax(t) — Ag(t). Then, dt) < min{dy(t),d2(t)},
where
di(t) =min{A >0 | Ay(t+A)—Aq(t) > Bmax}, 9)
da(t) =min{A>0 | C(t+A)— C() > b(t)}. (10)

#items

4 b(t) items in the buffer Aqr(D)
after item e arrives 'y
E Bmax
e o< > v
d,q(t) C(t)
d(t) N
) <
b(t):
t f time

lastest instant at which

instant at which b(t) items N 3
e is processed/overwritten

are fully processed

Figure5: Upper boundson delay of an output data item.

ProoOF Consider an item of\;, callede, that arrives at time
t. Observe thatis only overwritten when it is the oldest item in
B andB is full. BecauseB contains at mosBmax items, e will
not be overwritten iff it is processed before the nByfax items of
A1 arrive. (Otherwise, it would be overwritten by tlle+ Bmax)th
item). For example, in Fig. 4, item 5 must be processed béteme
8 arrives. Thus, the delay(t) of e satisfies

d(t) <min{A>0 | Ag(t+A)—Aq(t) > Bmax} = di(t).

Further, at time, there aréb(t) = Ax(t) — As(t) items currently in
the buffer (withe included). Thusd(t) will be no more than the
amount of time needed to process thbgg items, i.e.,

d(t) <min{A>0 | C(t+A)—C(t) > b(t)} = da(t).
As aresultd(t) < min{di(t), d2(t)}. O

Further, sincar is the upper arrival function &%, andBY is the
upper service function o, A;(t) < aY(t) andC(t) < BY(t) for
allt > 0. Observe that (i) the buffer can hold at m8gfax items,
and (ii) at mostBY(t) items can be processed over any interval of
lengtht. Hence, the number of items that are not overwritten in
(0,t], given byAx(t), is no more than the minimum @f'(t) and
BY(t) + Bmax- As a result, the following corollary holds, which in
turn implies Lemma 3.3.

COROLLARY 3.2. Define a4 %f min{aY, " + Bmax}. Then,
A <al.

LEMMA 3.3. Let del(f, k) =min{t > 0| f(t) > k} forall f €

F and for all k> 0. Forallt >0,
di(t) < del(a', Bmax), (11)
da(t) < min{del(B', Bmax), hdist(a",p")}. (12)

PrRoOF. Recall thato! is the lower arrival function of;. Thus,
A1(t4+A) —A(t) > a'(A) for all t > 0 and for allA > 0. By defi-
nition of dy (t), we imply for allt > 0,

di(t) <min{A>0|a'(A) > Bmax} = del(a',Bmay).

Similarly, sinceB' is the lower service function of, we have
C(t+A)—C(t) > B' forallt > 0 and for allA > 0. Hence,

Vt>0: da(t) <min{A> 0] B'(A) > b(t)}.

Further,b(t) < Bmax. Hence, dy(t) < del(B',Bmax) forallt > 0.
The above two bounds al(t) are depicted in Fig. 6(i-ii).

We shall now prove that for all> 0, dx(t) < hdist(a",8'). In-
tuitively, this means the delay of an input item that goesulh

the system is bounded by the maximum horizontal distance be-
tweena' and B' (see Fig. 6(iii)). From Corollary 3.2, we have
Ay(t) < a(t). Consider an input itere arriving at timet. Since
there are at leagd' (t') items that can be processed t’] for any

t’ > 0, itemewill be processed latest at the first instéintt 4+ A at
which @!(t) > B'(t). In other words, the amount of time required
to proces® satisfies

do(t) <inf{A>0| a'(t) > B' (t+A)} < hdist(a",).
Thus, Eqg. (12) holds and hence the lemmal

#items L #items
o
l 1 [31
B¢ del(x ,BW): B del(B", Brax)
2
time time
o 1 2 [o 1 2 D,
(i) del(x', Brye) (i) del(B",Bmax)
#items [5” + Bmax
(Xu//"
/’/ — |
/" Co¢ — >/ B
__— hdist@", B)
-
— e au
e — B“ + Bma
......... o
time
0 to to+D;
(iii) hdist(", B')

Figure 6: The maximum delay experienced by the input
stream is the minimum of del(a',Bmax), del(B',Bmax), and
hdist(a{, 8").

From Lemma 3.3, we imply Theorem 3.4, which gives the max-
imum delay experienced by the input stream.

THEOREM 3.4. The maximum delay experienced by the input
stream is given by

delgr (0, B,Bmax) = min{del(a',Bmax), del(B',Bma), hdist(a",p')}.

Fig. 6 illustrates the delay computation given by Theore#n 3.

THEOREM 3.5. The delay bound given by Theorem 3.4 is tight.

PROOF. DenoteD = dely(a, B, Bmax) andDs = hdist(a!, g").
Then,D < Dz andD < del(a' ,Bmax). For any givenf,g e F and
t € R*, we definehdist(f,g,t) to be the horizontal distance be-
tweenf andg at timet, i.e.,

hdist(f,0,t) ©inf{A >0 | f(t) <g(t+A)}.

We denote byl,(f,g,D) the first instant at whichhdist(f,g,t) is
atleasD, i.e.,

Mn(f,0,0) ©'min{t > 0 | hdist(f,g,t) > D}.
We will construct an input arrival patterﬁl(t) constrained byx
and a service patter@(t) constrained by3, such that there is an
item of Ay (t) which will be fully processed aftdd time units. In
other words, there exis® > 0 such thahdist(A1,A3,T) =D and

AI(T +D) —AI(T) < Bmax whereﬂ}(t) is the resulting output
function ofA\l(t) when the PE offers the service patt@ft). The
first condition specifies that the amount of time requireduity f
process an item arriving at tinfeis D. The second states that there
are no more thaBmay items arriving over the intervdlT, T + D]
(which implies that the item arriving at timewill not be overwrit-
ten over this interval).

Sincea" = min{a", BY + Bmax} < oY and all the given arrival/
service functions are non-decreasing,

hdist(a¥, 8') > hdist(a",8') = D3 > D.

Hence, there exists> 0 such thahdist(a“7[3'7t) > D. Lettg be
the smallest of such, i.e., tg = I'Ih(a“,ﬁ',D). Defineﬂl(t) =
al(t) if t <t, andAq(t) = a(to) + a' (t — o) otherwise. Further,
defineC(t) = B'(t) forallt > 0. Sincea! (t) < a¥(x) +a' (t—x) <
al(t) forall0< x<t, al(t) < Aq(t) < a¥(t) forallt > 0. Hence,
A\l(t) is a valid arrival pattern of the input stream. By constroicti
C(t) is a valid service pattern of the PE.

Sincea is sub-additive ang' is super-additivea(t) > B'(t)
for all 0 <t < to. Indeed, ifa!(s) < B'(s) for somes < to, then

a'(to) — B'(to+D) < a'(s) +a'(to—) — (B'(5)+ B (to+ D —5))

< aY(to—s) — B (to—s+D).
As aresult,hdist(aY, B',t9) < hdist(aY, 8, to —s). Hence,
rlh(auvﬁlvD) S t0_S< tO = nh(au7B|7D)7
which is always false.

From the above, we impIZ\I(t) > é(t) forall0 <t <tg. This
means all resource offered Kyin [0,to+ D] will be used to pro-
cess the items. Thus, the corresponding output fun&\mtisﬁes
Ag(t) = C(t) for all 0 <t < to+D. Hence hdist(Aq,Ag,tg) = D
(recall thatg = I'Ih(a“,ﬁ' ,D). In other words, the delay of an item
e arriving atT =tg is D. BesidesD < del(aI ,Bmax) implies that
a' (D) < Bmax. Hence, the number of items arriving iy, to + D]
is ﬂz(to+ D) —ﬂ}(to) = a'(D) < Bmax Which meanis not over-

written. As a result, the constructed system consistinézcrlndé
achieves the dela® given by Theorem 3.4. []

3.1.2 Computing output arrival functions

Recall thatAx(t) is the effective input function of\;(t), which
captures the items that will indeed be processed by the RE (se
Fig. 3). Lemma 3.6 states the relationship between theséung
tions.

LEMMA 3.6. The effective input function,As bounded by:

AL® (B'+Bmax)” < Az < A1@a @ (0" @B+ Bmax)*.
PROOF SKETCH Since none of the items iy is overwritten,
be the function that maps the inpig to the outputdz, assumingf
is monotonic. ThenAz + Bmax= f(A2) + Bmax= (f + Bmax) (A2).
Further, the number of items that pass the admission te3t at
(i.e., not overwritten) over any time intervéd, t] is no more than
the number of original items that enter the system over theesa
interval. In other words,

Yt >0, VO<s<t: Ax(t) —Ax(s) <AL(t) —As(S).

Recall thatZa, (Az)(t) = inf{Ay(s) + Ax(t) —As(s) | 0<s<t}.
Then,A; < T, (A2). Hence,

A < min{AL I,/_\l(Az)7 (f+ Bmax)(AZ)}
S A<A D (I/.\1 & (f+ Bmax)) (A2).

(13)
(14)

Hence, the input function of the items that actually go tigtothe
system is the maximum solution for Eq. (14). By Theorem 2.1,

Ao = (Zp, ® (f +Bmax) " (A1).
By applying Eq. (1) (cf. Section 2), the above is equivalent t
Az = (Zp, o (f+Bmax) o Za, (A1)

DenoteC;(x) = x®z. Sincef is the mapping from#\; to Az, andf3
is the service function of the PE(Ay) < Ay BY, or equivalently,
f <Cgu. Similarly, a is the arrival function ofA; implies that
Aq(t) —Aq(s) < a'(t—s). Thus,Za, (A2) < a“®@Ag, orZa, < Cqu.
Hence,
Ap < (Coru o(Cpu+ Bmax))* 0Cqu(Ar),

which can be rewritten agy, < A1 ® (aY® BY +Bmax)* @ aY.

By similar arguments, we can also imply > A; @ (B' +Bmax)*-
This proves the lemma.]

Lemma 3.7 is derived directly from the bounds establisheithén
above lemma, which holds true dueAp® B\', <A <AL B
LEMMA 3.7. LetBY =a'® (a'® BY+Bmax)* andBl = (B' +
Bmax)*. Then,3 andB\', are valid upper and lower service func-
tions for R.
By definition, Ay @ B! < Az <Ay BY. Thus Ay @ B! @ Bl < Az <
A1®BY®BY. Hence B! = B' ® B} andBY = B! @ BY are the over-
all service functions given to the input stream when therdais
refresh. Based ofi, we can compute the output arrival functions.
THEOREM 3.8. The arrival functions of the output streamzA

when data refregh sgmantics is implemented at the inpugrisff
given bya’ = (a¥,a""), where

aur _ min{ (GU®EU) ®EI7 B’u}7
a" =min{(a' 0B 8", B'}.
with 8' = B' @ (B' + Bmax)* andB! = B @ a"@ (a¥® BY+ Bmax)*-
We note that wheBmax is unboundedﬁ =panda’ =a/ ;.
Lemma 3.9 further refines the effectjve output arrival fiorcs
to ensure the sub-additivity property of', the super-additivity of
a" and their causal relationship. Its proof can easily be éste

based on the definition of upper and lower arrival functiohke
details are available in [13].

LEMMA 3.9. Leta! = (a¥)* and@' = (a")*. Denote

(15)
(16)

alfe(a) =min{@a“(a+1)-a'(1) | >0},
al(8) =max{@ (a+1)-a"(r) | T>0}.

an
(18)

Then,a¥. (al) is a valid upper (lower) arriv/al fu,nction for the
output stream that is smaller (larger) than to& (a').

3.1.3 Computing remaining service functions
SinceB! andp), are the upper and lower service functions of the
virtual processoR, (Lemma 3.7), the effective input functiadk is
bounded by the output arrival functionsRf, given by
al =min{ (a" @ BY) 2B, BV},
ab=min{(a' oY) 2 B!, B}

Using ay = (aY,a!) as input arrival functions to the PE, we can

derive the remaining service functions of the PE as in the@on
tional case as below (since there is no buffer overflows).

B;;f = (BU_G\I/) @0
B(Ii/rf = (BI -ay) ®0

(19)
(20)

Thus, the remaining service function of the PE whpn the buffe
implements data refresh semantics is giverBfy = (Bjrfﬁ('irf).

3.2 Heterogeneous systems with a mixture of
buffer semantics

In this section, we show how one can apply the RTC-DRF pre-
sented in the previous section to analyze heterogeneotsnsys
with different buffer semantics in a compositional manfidmough
this, we demonstrate how RTC-DRF can be integrated direutity
the conventional RTC-INF while guaranteeing that the dvarel-
ysis is at least as tight as the RTC-INF alone.

The systems we consider consist of multiple input streaaragly
ority (FP) scheduling policy. Each buffer in a system canitieee
an infinite FIFO buffer or a finite buffer with data refresh sertics.

An example of such systems is shown in Fig. 7. In this example,
B is a finite buffer of sizé8hax that has data refresh semantics. On
the other hand?:’1 is an unbounded FIFO buffer. Given such a sys-
tem, we would like to compute the standard performancdeela
metrics as discussed in the previous sections.

,
. B , B, B2 .,
input o 1 B Olgrf 1 Olgrf
stream s PIE2
1 'to subsequent PE
data refresh FIFO
,

input

[05)
stream s, >

i

Buffer semantics : infinite FIFO or finite with data refresh

Figure 7. Systemswith a mixture of buffer semantics.

Consider the first PE in Fig. 7. Supposehas higher priority
thans; if i < j. Then,PE;’s resource will first be given te; and
the remaining will be given t®,, thensz and so on. Denoter
andf as the arrival function of; and the service function ¢1E;,
respectively. Applying the RTC-DRF results obtained inshwegle

, S, that are processed by a sequence of PEs under Fixed Pri-

o J I/ o / I/
LEMMA 3.10. Letor(’jrf =(af ¢ aye) a.ndori’nf =(ai, o) be
the output arrival functions of;sat PE; (Fig. 7) that are computed

using RTC-DRF and RTC-INF, respectively. Thefj, < aV..

PROOF SKETCH Sinceay, < aY (due to Lemma 3.9), the the-
orem holds ifa” < a¥;. By Theorem 3.8¢" =min{ (a'©B") ©
B', BU}. Thus,a¥ < BU. We will prove thatB! < a¥,.

By definition, we have8! = BU® a¥® (a!® BY+ Bmay)* and
cﬁ‘n'f =min{ (a¥®pY) op', BU}. Sincepieg< pUforallge F,
BY < BY. Thus,BY < al, iff

BUo@a'e(a'@BY+Bma)* < (a“@BY) op
Letf =aYeBY=pBY®a". Then,

(21)

21) & f®(f+BmaX)*§f®Bl < f®(f+Bmax)*®ﬁ|§f
& fog<f whereg= (f+Bma)* ®p',

which is always true. Henc@" < al'. and thusg" < a''.. O

THEOREM 3.11. Letaj,¢ and a/ ; be defined in Lemma 3.10.
Denote bybufy, delg,s and a ¢ (resp.bufiq¢, delins andal’ () the
maximum backlog, maximum delay and output arrival funcéibn
PE, wherea),, (resp.a/ () is used as the input arrival function to

PE;. Then,bufys < bufiy, delg,s < delinr andalfe < alfe.
PROOF Since the input buffer odPE; is a simple infinite FIFO
buffer, we analyze it using RTC-INF. L& be the service function

of PE,. Following RTC-INF and Lemma 3.10, we have:
bufges = vdist(alys, By) = sup{age(8) - By(8) | A= 0}
< sup{aic(8) - By(8) | &> 0}
vdist(a!, ¢, B)) = bufins.

<a¥

. u/
(smceadrf |nf)

Thus, bufg,s < buf;,;. The remaining properties can be proved

stream case, we compute the maximum delay using Theorem 3'4similarly. 0

and the output arrival function using Lemma 3.9. The renmgini
service functionB; ; that is used to process the next input stream
s can also be computed using Eq. (19) and (20). Basegj onwe
then analyzes,, taking into consideration the semanticsBaf If
B, is an infinite FIFO buffer, we apply the RTC-INF. However, if
B, implements data refresh semantics, we analyze using RTE-DR
as done fos;. The analysis is repeated until we reagh

At the same time, the output arrival functiorj ; of s; produced
by PE; is fed as input arrival function tBE,. At this PE, we repeat
the same analysis as above with respect to the semantisdmbitt
buffer Bj. The computed output arrival functiarj is then fed as

input to the subsequent PEs

Correctness of our compositional analysis. As seen above, the
RTC-DRF combined with the RTC-INF enables complex systems
with a mixture of different buffer types to be analyzed cosifion-

ally. We claim that RTC-DRF does not introduce any loss imer

of analysis accuracy for the overall system. Specifically;ovides

a tighter output arrival function than RTC-INF does, and deen
ensures accurate analysis at the subsequent PEs (Thedrgm 3.
Further, by taking into account data refresh, RTC-DRF i abl
capture the service unused by the overwritten items, tlyegehr-
antees more service for the lower priority streams (The@eif).

2A tighter output arrival function foPEj can be obtained by ap-
plying RTC-INF to the overall effective service functionr fpart
of the system comprisinBE; to PE; (i.e., the convolution of the
individual effective service functions).

THEOREM 3.12. Let B} (B/¢) be the remaining service func-
tion of PE; after proces/singls/which is computeq using RTC-DRF
(RTC-INF), Then, (iBl ¢ > B! and (i) B} > BY..

PROOF First, for anyf,g € F such thatf > g, we have:

VA>0: (f®0)(4A) 0<s)L(J<pAf(x) > OS)L(JBAQ(X) = (g®0)(A).

Thus,f®0 > g®0. Similarly, f 0> g®0.

_(2 Recall thatBl = (8' —a¥)®0 and Bl = (B' —a')D0,
wit
B

a".

al= min{(a'@pY) 2 B, B}
— au®(au®Bu+Bmax)*

Thus,B' —a¥ > B' —aY. Hence, (' —al)® 0> (B'
In other words, B} . > B/

<
<

—a")® 0.

(i) By definition, BY, = (BY — ay) @0 andBY, = (B~ a')Z0.
We will first show thata!, < a'. Indeed,
ah=min{(a' o BY) @B, B} < (a' 2 BY) @ B,
which implies thaw, < o' if (a' @ BY) ® B} < a'. This is equiv-
alenttoa' @ BY < o' @ B!, which always holds due 18! > ..

Froma), < a', we imply BY—a/, > pY—a'. As aresult,
(B~ ay)@ 0> (BY—a') 0. Inother wordspY, > BY,. O

4, EXTENSIONSTO OTHER BUFFER MAN- and determine the maximum and minimum number of events gen-

AGEMENT SEMANTICS erated across all the windows. Further, from the execuggnire-
ments of the generated events, we compute the workloadidmsct
Y(k) andy! (k), which give the maximum and minimum number
of processor cycles required to process &rgonsecutive events.

discardeld .(also tIF]n(ziV\;n as;rk(]Jp gltfjfestin [14]). Wet now extgnd The service functions of the processor can be then obtainogad f
our analysis method for other buffer management semarstict) the workload functions and the frequenéyusing the formulas

as those defined in [14]. We first consider thwp Newest (DN) BI(A) — yU(fA) and BU(A) = y*'(fA). We then usex and B

po(ll)cg ' whertehlrlct?]mlng |t§ms eftrgg dISC?I:d?d if tg? bUfLe“éi#l;)m as input arrival and service functions to compute the outpuval
serve that the number of items that are discarded 1the functions using RTC-DRF and RTC-INF.

and the data refresh semantics are identical. Since oniyuimder

of items that are discarded (and not which specific itemscef ~ Simulation vs. analytical results.® The upper output arrival func-
the number of items that will be processed by the PE, the num- tion computed by RTC-DRF correctly upper bounds the outjpt s
ber of items that are processed over any given time intenvadth ulation traceR};(t), and itis closer t&;(t) than the upper output
cases are the same. Hence, the system produces the same numbarrival function given by RTC-INF. Similarly, the lower quit ar-
of output items in both semantics. In other words, the ougout rival function given by RTC-DRF correctly lower boun&n,(t);

In the data refresh semantics considered thus far, if andem
rives when the input buffer is full, theldest item in the buffeis

rival functions and the remaining service functions in bafresh the RTC-INF, however, gives a wrong bound as its computeakval
semantics are the same, which are given by Lemma 3.9 and®q. (1 is above the output simulation trace. Hence, by taking iotmant
and Eq. (20). buffer refresh, our method gives a tighter upper bound thacon-

Further, note that in th®N semantics, once an input item is ventional RTC does, at the same time avoids invalid resatted
written to the buffer, it will not be overwritten. Hence, thlelay by the conventional RTC.

experienced by an input item is bounded by the maximum amount ¢tect of huffer size on theoutput stream and throughput. Fig. 8
of time required to process the item. Using the same arguasaint genicts the lower output arrival functions obtained by eehiique
the data refresh semantics case, we imply that the maximiay de \hen varying the input buffer size for the same input stree(d).
experienced by the input stream is As shown in the figure, the lower arrival function corresgogd

delpn = min{del(8', Bmax), hdist(@", B")}. to a lower buffer size is located below the one correspontting
larger buffer size. This is because, as the buffer size i®ased,
fewer items are overwritten and thus, more items are prededs
can also be observed from the figure that the output arrivad-fu
tions for buffer size8 = 10 andB = 15 coincide, which happens
when all input items are processed.

Based on similar arguments, one could also obtain the dralys
results for theDrop All andDrop Randonpolicies [14] where all
items or a random item in the buffer will be discarded when the
buffer overflows. Further, systems with multiple PEs andfoiti-
ple input streams under Fixed Priority scheduling whichlengent

a mixture of these semantics can also be analyzed in a composi _ 10
tional manner as detailed in Section 3.2. s é 100 B=15
£ f:’ B=10 B=5

5. CASE STUDY £ "

We now present three case studies to demonstrate the dypllica S § 60-
ity of our analysis methods. The first shows how our technizre Es 0L 8=
be used to compute bounds on the amount of data guaranteed to & °§ o
go through the system when the buffer implements the datestef S %
semantics. The second illustrates the effect of buffer siz¢he - T T T B TR R
freshness of output data in a traction control applicatibhe last Ams
one presents a sensitivity analysis of the variation in th&imum Figure 8: Guarantees on the output stream for different input

delay experienced by the input stream with respect to clmilge buffer sizes.
the input workload.
116 116

5.1 Casestudy 1. Output guaranteesin pres- 145
ence of data refreshing N . .
In this case study, we analyze the bounds on the output stream =5 I

of the system described in Fig. 2 using our technique in Se&il
and a SystemC simulation.

[#events/10s]

Simulation setup. Using our SystemC event simulator, we gen-
erate an arbitrary input event traBgm(t) that comprises different
event types of varying processing cycle requirements. &vieom B=1 B
Rsim(t) are first kept at a finite buffer that implements data refresh

semantics. Here, we are interested in the freshest evertemm® Figure9: Effect of buffer size on the system’s throughput.

the size of the buffer is set to 1. The processor processevémis The buffer size also has a large impact on the minimum through
from the buffer in a greedy fashion, where it is set to run at fr put of the system. As illustrated in Fig. 9, initially when weuble
quency f =5 MHz We then observe the output arrival pattern the size of the buffer, the throughput increases nearly yctof
Riim(t) of the processed stream. of two. However, the increasing factor is reduced as we éurifr-
crease the buffer size, and the throughput will finally cogeegat
valueB > 10) when the buffer is large enough to avoid overflows.

Minimum throughput

Obtainingthearrival and service functions. Based on the gener-
ated trac&Rsim(t), we derive the arrival functions!(A) anda' (A)
of the input stream by sliding a window of siaealong the time axis 3Due to space constraints, we do not show the detailed réwaris

5.2 Casestudy 2: A traction control system

Strong acceleration can lead to wheel spinning, especily
poorly prepared roads. A traction control system preveapitgng
of the driving wheels and provides an optimal traction. Hi@.
depicts a traction control system application mapped on B @A
chitecture we would like to analyze.

| Ecut [Ecuz

Fixed Priority

Fixed Priority

Residual Bus

w

111

LK

Figure 10: A traction control system on a CAN architecture.

The system consists of a wheel speed sensor clgstetwo
ECUs for computing the traction control and an actuatorquerf
ing the wheel braking. ECU1 receives the wheel-speed vélass
the sensor clustes;, and processes the current slip by executing
taskTy. The processed slip value is sent via message ECU2.
Task T4 is computing the brake force according to the input slip
value, especially if a wheel is going to spin. Subsequertlig,
brake force value is sent vias to the wheel brake actuator which
performs the brake application and therefore prevents e
ning. As the delay of such a system has to be very short, it is
important that the most recent slip value is available fanpot-
ing the brake forces and that the most recent computed boage f
value is sent to the actuator. To achieve this, the bugrandBy
are configured to non-queued buffers that allow updatinig tom-
tents with a new processed value in case the previous valud co
not be transmitted on the bus according to the CAN schedplfg
icy. This may happen if too many messages with a higher pyiori
thanm; andmy are transmitted on the CAN bus for a certain period
of time (e.g., due to some event triggered higher prioritgsages
which have to be transmitted because of changing systessgiat
other ECUs). Besides, there is a second application runoimg

ECU1 and ECUZ2. Messages are sent on the CAN bus according to

fixed priority non-preemptive scheduling (FPNS).

Given the above system, we are interested in how fresh thelwhe
speed values are when they arrive at the actuator. To déisjene
calculate the maximum end-to-end delay of the messagesutbat
transmitted from the sensef to the actuator through the colored
path (in solid blue line).

.delay(T‘)
Ddelay(ml)
Ddelayﬁ:‘)
.delay(n]')

infinite
80

60

40 36.00

31.25
21 25

Maximum end-to-end delay [ms]

o

B1 = B1=2 B1=3
RTC W|th data refresh semantics

conventional RTC

Figure 11: Maximum delay from s; to the actuator.

Analysisresults. We employ the method in [9] for modeling FPNS
policy used by the CAN bus. The residual bus depicted in Fig. 1
consists ofn strictly periodic messages with priorities higher than
m to my. The message priorityy is defined byPn, > P, > Pm, >

Pm, and the task prioritr is given byPr, > Pr, andPr, > Py,. For

the analysis, we assume a low speed CAN bus providing a data ra
of 125 kbit/s and a fixed frame length for every CAN frame in the
system. The sensor taskhas a period of 10 ms and an additional
jitter of 2 ms. BothB; and By, are finite buffers with data refresh
semantics, wherB, has a fixed size of 1 ari8h has a variable size.

Fig. 11 depicts the corresponding maximum delay expergnce
by a message originated from the sergdo the actuator when we
vary the size of the buffeB;, computed by RTC-INF (assuming
no data refresh) and by RTC-DRF. Here, the longer the ddiay, t
less fresh the data. As illustrated in the figure, accordmthe
RTC-INF, a message may experience unbounded end-to-eay del
which is overly pessimistic. By taking into consideratitie buffer
size and the data refresh semantics, our RTC-DRF method give
a finite delay. It can also be observed from the figure that, @s w
increase the buffer size, the delay increases and the detanes
more stale. This is expected because when the buffer is sinall
keeps only the most recent data items, which is not the case fo
large buffer.

Based on the above observations, it is often appropriateep k
the buffer size small in applications where the freshnesfatd is
critical. On the contrary, applications that require highoughput
often need sufficient on-chip memory to maintain the dedixeel
of quality of service.

5.3 Casestudy 3: Sensitivity analysis

To evaluate the robustness of our method as well as the rela-
tionship between input parameters and system performatated
metrics, we study the sensitivity of our analysis with retpe
variations in the input stream. Towards this, we consideina s
gle periodic-with-jitter input stream that is processedabgystem
which implements data refresh semantics, and examine thadim
of input jitter variation on the delay of the output stream.

ideal periodic points

jitter window of size J
P >
<> ' ' !

s I o B e B o B Y

e arrival input data item

Figure 12: Periodic sensor stream with jitter.

As shown in Fig. 12, such an input stream arrives at a constant
period P in average; however, the arrival times of the items may
deviate within an interval of length (called the jitter) surrounding
the ideal periodic arrival points. Besides modeling an trgmurce
that is not strictly periodic, this jitter is also often usasla means
to capture possible errors in the period measurement of @ut in
stream.

CAN bus
ot o TITHEE)-
stream

—h_> data refresh
" messagedelay?

Figure 13: Example system for sensitivity analysis.

System description. Fig. 13 shows the architecture of the system.
The periodic sensor streasy, with periodP and jitterJ, upon ar-
riving at the system will be stored in the input buftgprior to being
processed by the processRE;. Its output streans; is then writ-
ten to a transmit buffeB before being transmitted to the CAN bus

(denoting aEy). Here,b is an unbounded FIFO buffer; however,
B implements data refresh semantics.

We assume tha has a fixed depth of 1 and the CAN bus pro-

vides data rate of 125 kbit/s. The input stregjrhas a period of
10 ms and a variable jitter af ms. In our experiment, we vary

6. CONCLUDING REMARKS

We have presented an analytical framework to model and a2@aly
systems with buffers implementing data refresh semanti@ar
analysis is tight and based solely on algebraic techniqubih
can be computed efficiently and compositionally. Furthiecan

from 0 to 7 ms in steps of 0.5 ms, and compute the corresponding pe easily integrated into the existing RTC framework ane:eated

maximum delay experienced by an input message.

5 40

Figure 14: Effect of input jitter on the message delay.

o

[« bound on the

ge delay

0 05 10 15 20 25 30 3

Jitter of input stream s, [ms]

N

o

<)

o

IS

N

Maximum delay experienced by s; [ms]

o

Fig. 14 depicts the maximum delay experienced by an input mes

sage corresponding to different input jitter values. Asighan the

figure, the maximum message delay increases linearly as we in

crease the jitter of the input stream. This is expected Isecatnen
the jitter is increased, more items may arrive in a fixed irebof

time, which increases the worst case resource demand ohthe i

put stream. As a result, a more jittery stream experiencasge
maximum delay.

On the other hand, the maximum delay stabilizes after the in-

put jitter exceeds a certain value (i.6.> 3 in the figure). This
convergence of delay is guaranteed due to the enforcemelattaf
refresh semantics. Specifically, since the service funstif the

PEs do not change, the maximum workload that can be processed

to analyze similar buffer management policies. We have iiso
lustrated the utility of our method using three realistiseatud-
ies from the automotive domain. We plan to extend the theoret
cal results established in this paper to capture more congyle-
tem behaviors, such as dynamic scheduling policies, degpend
cies between input/output streams, and more complex huyffate
schemes.

7. REFERENCES

[1] A.Benveniste et al. Heterogeneous reactive systemselimad
capturing causality and the correctness of loosely tinggréred
architectures (LTTA). IEMSOFT 2004.

[2] A.Benveniste et al. Communication by sampling in tinemsitive
distributed systems. IEMSOFT 2006.

[3] A. Benveniste et al. Loosely time-triggered architeegibased on
communication-by-sampling. IBEMSOFT 2007.

[4] J.-Y.Le Boudec and P. Thiraietwork Calculus: A Theory of
Deterministic Queuing Systems for the Intervefume LNCS 2050.
Springer, 2001.

[5] S. Chakraborty, S. Kiinzli, and L. Thiele. A general framek for
analysing system properties in platform-based embeddsdray
designs. IDATE, 2003.

[6] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan. Egeant
automata: A state-based model for stream processing system
RTSS$2005.

[7] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A
compositional framework for end-to-end path delay caltiofaof
automotive systems under different path semantic€RAS 2008.

[8] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task aatam
Schedulability, decidability and undecidabilitpformation and
Computation 205(8):1149-1172, 2007.

by PE; stays constant regardless of the input demand. Further, in a [9] w. Haid and L. Thiele. Complex task activation schemesyistem

high load scenario (e.g., with high input jitter value), thaximum
number of items that wait in the buffer will be limited by thepth
of the buffer (since the excessive input items will all becdisled
due to the data refresh semantics). Hence, when the infutjites
beyond a certain threshold, the maximum number of itemsntiat
indeed be processed is only limited by the service functimhthe
buffer size. As a result, the maximum delay remains consiant
the jitter continues to increase.

From the above sensitivity analysis, one can derive theetzerr
tion between the input measurements and the system behéavior
scenarios where jitter is used to accommodate possiblé mpa-
surement errors, the tightness of the delay results isrliyngao-
portional to the tightness of the input jitter value; howe\ie is

guaranteed to be bounded by a constant accuracy despitedssw p

simistic the input measurement is.
Lastly, the RTC-DRF results also showcase interestingesyst
behaviors that are not easily visible otherwise. For instawhen

data refresh is implemented, the maximum message delay is no

longer influenced by the input load once the load is largen tha
maximum service provided added with the buffer size. On tre ¢
trary, the number of messages that are overwritten is stiblzem
input workload, especially when the input load is high. Rbhea
these observation, one can also determine the maximum oeafkl
acceptable by the system to guarantee a delay constramnunt
imize the amount of data loss. It is worth noting that sucligints
into the effects of various design parameters and theietcdfs
would have not been possible by using RTC-INF alone.

level performance analysis. ®ODES+ISSS2007.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEEF5(9):1235-1245, 1987.

[11] L. Mangeruca, M. Baleani, A. Ferrari, and
A. Sangiovanni-Vincentelli. Semantics-preserving desif
embedded control software from synchronous modEEE
Transactions on Software Engineerjr&8(8), 2007.

[12] O. Moreira and M. Bekooij. Self-timed scheduling arsyfor
real-time applicationsEURASIP Journal on Advances in Signal
Processing2007.

[13] L. T.X. Phan, R. Schneider, S. Chakraborty, and |. Leedbling
buffers with data refresh semantics in automotive archites.
Wwww.cis.upenn.edu/~linhphan/papers/emsoft10TR.pdf,
2010.

[14] J. Ray and P. Koopman. Data management mechanisms for
embedded system gatewaysO8N 2009.

[15] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovaiimcentelli,
P. Caspi, and M. Di Natale. Implementing synchronous maoaiels
loosely time triggered architecturd€EE Transactions on
Computers57(10), 2008.

[16] E. Wandeler and L. Thiele. Workload correlations in taptocessor
hard real-time systemdournal of Computer and System Sciences
(JCSS) 73(2):207-224, 2007.

[17] W. Wandeler, A. Maxiaguine, and L. Thiele. Quantitativ
characterization of event streams in analysis of hardtiee-
applicationsReal-Time System29(2-3):205-225, 2005.

[18] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient
computation of buffer capacities for multi-rate real- tisystems
with back-pressure. ISODES+ISSS2006.

