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Chapter 1

Introduction

In almost all fields of applications, viz. the natural sciences, economics, engineering, medi-
cine, the social sciences, etc., one is often confronted with time series, i.e. sequences of
observations on some variables of interest over time. In order to understand the ongoing
processes and to be able to make forecasts these have to be analysed and modelled. The
penultimate goal, when analysing time series, is usually to find a tractable and paramet-
ric stochastic model describing the empirical observations well. In most cases the primary
aim is to transform the observed values in such a way that the use of a linear time series
model, i.e. an ARMA one (see e.g. Brockwell and Davis (1991)), is possible. A so-called
ARMA(p,q) processes is defined via a white noise sequence Zt, t ∈ Z, and a set of para-
meters Φ1, . . . , Φp, Θ1, . . . , Θq ∈ R. If a stochastic process Xt satisfies

Xt − Φ1Xt−1 − . . .− ΦpXt−p = Zt + Θ1Zt−1 + . . . + ΘqZt−q, (1.1)

then it is called an ARMA(p,q) process.
When fitting some parametric model to empirical data, one is often confronted with

the problem that one obtains rather excellent fits over short periods of time, but that
the quality of the fits deteriorates considerably when increasing the time span. Moreover,
when looking at plots of time series, one often, even with the bare eye, detects break-
points, i.e. points of time, where the behaviour of the series changes. Using statistical
tools one can actually find apparent structural breaks in many observational series.

The purpose of Markov-switching models is to provide a tractable model with nice
probabilistic properties that over shorter time horizons behaves like a simple, e.g. an
ARMA, model, but allows for structural breaks. Furthermore, such a model should allow
for structural breaks at random times, since, if the behaviour has changed in the past,
one should clearly allow for this to happen in the future as well in order to obtain realistic
forecasts.

To exemplify what Markov-switching is all about, let us consider the so-called Markov-
switching ARMA processes. Here the idea is in principle to use (1.1) to describe the
evolution of a time series, but to allow the used parameters Φ1, . . . , Φp, Θ1, . . . , Θq to
change over time. In order to get a flexible, but still rather tractable model, one employs a
Markov chain to describe the variation of the parameters over time. As realizations of such
processes look like ones of an ARMA process when considering short time horizons and the
parameters change in a Markovian way, the term “Markov-switching ARMA” processes

1
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Figure 1.1: MS-AR(1) process Xt = Φ1tXt−1+εt with two regimes (i.e. possible parameter
values for Φ1t) Φ(1) = −0.9 and Φ(2) = 0.8. The probability of remaining in the current
regime is 0.95 throughout and εt ∼ N(0, 1) is an i.i.d. sequence. As is shown in Section
5.4.1 the process is actually stationary, although the path behaviour changes dramatically
at regime shifts. The time horizon considered is 800 to 1000 in order to ensure stationarity.

arises naturally as a name for such models. If the parameter sets for the different times
are actually an i.i.d. sequence, the term “random coefficient ARMA” is used to stress that
this is a rather special case.

Figure 1.1 depicts a simulation of an MS-AR(1) process. One can clearly observe the
structural breaks in the path behaviour due to switches in the driving parameter chain
from one state to the other. In between parameter changes the path looks like paths of
an AR(1) process corresponding to the respective parameter values. The times of the
switches were 826, 867, 873, 903, 909, 941, 979 and 998 and the original parameter at
time 800 was Φ(1) = −0.9.

When intending to use GARCH models, one is often confronted with the same problem
that the fit over short periods is very good, but the data seems to exhibit structural breaks.
Thus, Markov-switching GARCH models enter the scene. A Markov-switching GARCH
process is basically again described by the usual GARCH equations, but the parameters
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change over time in a Markovian way.

Let us now give a brief overview on the results on and use of Markov-switching models
in the existing literature. The first area where Markov-switching ARMA processes appear
to have been used extensively is electrical engineering (see Tugnait (1982) or Doucet,
Logothetis and Krishnamurthy (2000) and references therein), where the first papers on
this topic appeared in the 1970s. The main emphasis is on inference and estimation there.
Also in the 1970s the interest in random coefficient autoregressions arouse in statistics,
as can be seen from the monograph Nicholls and Quinn (1982). In econometrics the two
papers Hamilton (1989) and Hamilton (1990) started a whole industry of papers using
Markov-switching ARMA models to fit observational series from more or less all the
different fields of economics. For an overview over the early work see Hamilton (1994).
Krolzig (1997) contains a lot of useful information on Markov-switching processes, the
related statistical tools used in econometrics and some detailed studies of actually ob-
served time series. For some recent applications see e.g. Hamilton and Raj (2002). In
the statistical literature the theoretical properties of maximum likelihood estimators in
Markov-switching models like consistency were first discussed in Francq and Roussignol
(1998) and Krishnamurthy and Rydén (1998), who both considered driving chains with
finite state space. Only very recently the case of a possibly uncountable, yet compact
state space was addressed in Douc, Moulines and Rydén (2004). References to probabil-
istic work on MS-ARMA and related processes will be mentioned later when studying
these processes.

It is noteworthy that the Markov-switching ARMA models we shall consider later fall
into the hidden Markov model framework as analysed in the recent paper by Fuh (2004),
for example. However, they are more general than the more classical Hidden Markov
Models (HMM) as discussed e.g. in Poskitt and Chung (1996) and the references given
there.

The use of MS-ARCH models has begun in the econometric papers Cai (1994) and
Hamilton and Susmel (1994). General GARCH models have then been studied in Gray
(1996) and Dueker (1997). Wong and Li (2001) consider GARCH models with i.i.d. coeffi-
cients and Klaassen (2002), Rossi and Gallo (2003) and Haas, Mittnik and Paolella (2004)
various different Markov-switching GARCH formulations. Consistency of the maximum
likelihood estimator has been considered in Francq, Roussignol and Zaköıan (2001) and
we shall study an extension of the Markov-switching GARCH specification given there
later.

In this thesis we intend to study Markov-switching processes from a theoretical and
probabilistic point of view. The previously known results are rather scattered over the
literature and there seems to be no comprehensive treatment on the theoretical probabil-
istic properties so far. In particular, two somewhat different lines of research have been
established. On the one hand Markov-switching models with driving chains of finite state
space have been considered by econometricians, statisticians and engineers and employed
to model various time series, whereas probabilists on the other hand have studied either
random coefficient models or general stochastic recurrence equations with i.i.d. or ergodic
input. As far as possible, we try to unite the two lines by studying Markov-switching
models with a driving Markov chain that may have a non-finite and even uncountable
state space.



4 CHAPTER 1. INTRODUCTION

The outline of the thesis is as follows. Markov-switching models are not considered
before Chapters 5 and 6, as we first develop all the necessary tools for the analysis in
order to be able to give a streamlined account on Markov-switching ARMA and GARCH
processes.

Chapter 2, in particular, summarizes the employed notions and notations and provides
many probabilistic results needed later. Especially Sections 2.1- 2.3 are just rather short
overviews. In Section 2.4 we develop the theory of general Lp-spaces, i.e. spaces of functions
assuming values in some normed space and being p-times integrable. This is a topic that
is rarely found in the literature, but it is essential for our later studies. Section 2.5 is
on ergodicity in the general measure theoretic meaning and related concepts. It lays the
necessary foundations for analysing stationarity of Markov-switching processes. Finally,
we introduce the necessary notions from general classical Markov chain theory and the
concept of strong mixing of stochastic processes in Section 2.6. The results we report there
will only be used in Section 5.5. Moreover, the implications of strong mixing for extreme
value theory are briefly recalled.

In the third chapter we give first a short account on vague convergence of measures,
as we shall employ this notion in order to define multivariate regular variation of random
variables and sequences in general. In the second section of this chapter we introduce and
analyse several notions of regular variation, which is the essential tool we shall use later
to study the tail behaviour. It is noteworthy that the general definition we give and most
of the reported results are rather recent. The last section summarizes results on certain
combinations and transformations of regularly varying random variables. The very last
theorem is a new extension of previously known results and later enables us to analyse
regular variation of certain processes with regularly varying noise.

The fourth chapter is on the stochastic difference equation Yn = AnYn−1 + Cn with
stationary and ergodic input (An, Cn). Formulating Markov-switching processes as such a
random recurrence equation will be a key step in their probabilistic analysis later on. We
first review stationarity and ergodicity results. Then we study the finiteness of moments
and conclude by analysing the tail behaviour, where we focus on cases in which regular
variation appears in the tails. Our results on the finiteness of moments for such a stochastic
recurrence equations in more than one dimension and the analysis of the tail behaviour
in the presence of a regularly varying noise, that is not restricted to be non-negative in
all components, have, to the best of our knowledge, not been considered elsewhere yet.

Markov-switching ARMA models are considered in detail in Chapter 5. We start by
giving a definition of Markov-switching ARMA processes driven by a general state space
Markov chain. After a discussion of sufficient stationarity conditions we give sufficient
conditions ensuring the existence of moments in Section 5.2. The results on driving Markov
chains with general state space and on general moments are not to be found in the
existing literature, which only allowed for a finite state space and focused mainly on
the first and second order moments. Thereafter we discuss feasible ways of checking the
previous conditions in Section 5.3. The norm condition, in particular, seems to be new. The
following Section 5.4 explores the relationship between the stationarity of the Markov-
switching ARMA process and the stationarity of the ARMA processes related to the
individual parameter sets possible. Previously only second order stationarity issues were
considered in this respect. In Section 5.5 we give criteria, for when a Markov-Switching
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ARMA process is geometrically ergodic, and in the last section of this chapter we again
turn to the tail behaviour and examine several cases in which regularly varying tails
show up. The general geometric ergodicity results and the ones on the tail behaviour in
the presence of a regularly varying noise are again new. Some simulations of real-valued
MS-AR(1) processes are to be found in Sections 5.6.1 and 5.6.2.

Finally, we conclude the thesis by looking at Markov-switching GARCH models in
Chapter 6. Again we give a definition of such processes driven by general state space
Markov chains and a short discussion of sufficient conditions for stationarity and the
finiteness of moments.
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Chapter 2

Preliminaries

In the following we introduce briefly the notation used and give expositions of some general
concepts and results employed later in the thesis.

2.1 General Notions and Notation

The natural logarithm is abbreviated as log and empty sums, i.e. sums like
∑−1

k=0 ai, are
defined to be equal to the zero element in the appropriate space obvious from the context.
Likewise, empty products, i.e. products like

∏−1
k=0 ai, are understood to be equal to the

unit of the appropriate algebra. The same convention is used for products of the form
atat−1 · · · at−k with k < 0.

2.1.1 Set Operations

IA(·) stands for the indicator function of some set A. The symmetric difference of two sets
A and C is as usually defined as A∆C := (A\C)∪(C\A). Algebraic manipulations of sets
also have to be understood in their usual meaning, for example, if A,C are two sets, then
A + C = {a + c : a ∈ A, c ∈ C} and AC = {ac : a ∈ A, c ∈ C} (with the multiplication
operation that is obvious from the context).

2.1.2 Algebras

The term “algebra” is used both in its algebraic (cf. e.g. Heuser (1992, p.113)) and measure
theoretic (see below) definition. From the context it is in the following obvious which
definition we refer to. In a unital algebra (in the algebraic sense) I denotes the unit
element. Recall that in measure theory one defines an algebra in the following way:

Definition 2.1 (cf. Bauer (1992, Satz 1.4)) Let Ω be a set. A system A of subsets
of Ω is called algebra, if

Ω ∈ A ,

A ∈ A ⇒ Ac ∈ A and

A, B ∈ A ⇒ A ∪B ∈ A .

7



8 CHAPTER 2. PRELIMINARIES

As usual we define the complement Ac of some set A as Ω\A. The difference between an
algebra and a σ-algebra is that the later contains countable unions, whereas an algebra
only contains finite unions.

2.1.3 Expectation Operator

The expectation operator E(·) always operates solely on its argument inside the bracket,
which means that e.g. E(Y )p is understood to mean (E(Y ))p. In contrast to this the
occasionally used EY p corresponds to E(Y p) and E(Y p)r to (E(Y p))r.

2.1.4 Product Measures

Suppose that (E1, E1) and (E2, E2) are two measurable spaces and that we have a measure
ν on (E1 × E2, σ(E1 × E2) that is the product of the two measures ν1 on (E1, E1) and
ν2 on (E2, E2), then we either use the notation ν = ν1 ⊗ ν2 or a symbolic dx notation,
viz. ν(dx1, dx2) = ν1(dx1)ν2(dx2) = ν2(dx2)ν1(dx1), which is sometimes more convenient.
Note that the order in which the marginal measures appear in the dx notation does not
matter. It should be obvious, how this notation generalizes to products of more than two
spaces. In the section on multivariate regular variation we shall consider in particular Rkd

and view it as the k-fold product of Rd. So a symbolic notation like ν(dx1, dx2, . . . , dxk) =
ν2(dx2)ε0R(k−1)d

(dx1, dx3, . . . , dxk), where ε0 is the Dirac measure w.r.t. 0, is equivalent to
ν = ε0Rd

⊗ ν2 ⊗ ε0Rd
⊗ . . .⊗ ε0Rd︸ ︷︷ ︸

(k−2) factors

.

2.2 Vector Spaces, Norms, Metrics, Linear Operators

and Matrices

The m × n matrices over R (C) will be denoted by Mm,n(R) (Mm,n(C)). If n = m, we
will use the notation Mn(R) (Mn(C)) and M+

n (R) (M+
n (C)) for the symmetric positive

semidefinite matrices. The unit in Mn is denoted by In. The adjoint (transpose in the
real case) of a matrix M will be written as MT. All matrices defining our models in the
chapters to follow will be in Mn(R). However, some manipulations (Schur decomposition
etc.) may lead to complex valued matrices. Thus, when necessary, Mm,n(R) is simply
regarded as a subset of Mm,n(C) and identified with linear operators acting on complex
vector spaces. This is in particular done when considering the spectrum σ(M) of a matrix
M and its spectral radius ρ(M).

Rd is always thought to be equipped with a norm ‖ · ‖ and ‖ · ‖ will also denote
the induced operator norm on Md(R). Standard norms used on Rd (Cd) are ‖ · ‖1 :

(x1, . . . , xd)
T 7→ ∑d

i=1 |xi|, ‖·‖2 : (x1, . . . , xd)
T 7→

√∑d
i=1 |xi|2 and ‖·‖∞ : (x1, . . . , xd)

T 7→
max1≤i≤d |xi|.

On a finite product X =
∏n

i=1 Xi of normed spaces (Xi, ‖ · ‖i) the norm is understood
to be ‖ · ‖ : X → R+, (xi)i=1,...,n 7→

∑n
i=1 ‖xi‖i, if not indicated otherwise.
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All vector spaces are understood to be R-linear or, sometimes, C-linear spaces and the
dual space of a topological vector space X is X∗.

Recall that two normed spaces X and Y are isomorphic, if there is a bijective linear
map T : X → Y and constants M ≥ m > 0 such that m‖x‖ ≤ ‖Tx‖ ≤ M‖x‖∀x ∈ X (cf.
Werner (2002, Def. II.1.9)). T is referred to as an isomorphism. This concept is generalized
to metric spaces in the following definition:

Definition 2.2 Two metric vector spaces (X, d) and (Y, d) are said to be isomorphic, if
there is an isomorphism T : X → Y and constants M ≥ m > 0 such that md(x1, x2) ≤
d(Tx1, Tx2) ≤ Md(x1, x2) for all x1, x2 ∈ X. They are said to be isometric, if m = M = 1.

Using the ε− δ characterization for the continuity of functions between metric spaces, it
is clear that a mapping T with the above given properties and its inverse are continuous.

Furthermore, analogously to the familiar definition of a semi-norm (see e.g. Werner
(2002, p. 1)), we call any function d : X × X → [0,∞) (where X is some set) a semi-
metric, if it has all properties of a metric except that d(x1, x2) = 0 does not necessarily
imply x1 = x2 (cf. Werner (2002, p. 472)). The topology induced by a semi-metric does
in general not have the Hausdorff property.

In any metric space (X, d) we set, as usual, Bδ(x) = {y ∈ X : d(x, y) < δ} for the
open ball with radius δ > 0 around x ∈ X.

2.3 Random Variables and Processes

Throughout this thesis we assume the existence of a probability space (Ω,F , P ), where
all occurring random variables are defined on, i.e., for instance, all Rd valued random
variates are F − Bd-measurable mappings from Ω into Rd, where Bd denotes the usual
Borel-σ-algebra on Rd. Likewise random variables taking values in Mm,n(R) are F−Bm,n-
measurable mappings from Ω into Mm,n(R), where Bm,n is the Borel-σ-algebra on Mm,n(R)
induced by any norm. Recall that all norms induce the same topologies and thus the same
Borel-σ-algebras on finite dimensional spaces. Equality in law (distribution) of two random

variables X and Y is denoted by
D
= and convergence of a sequence of random variables

(Xn)n∈N in law to a random variable X by Xn
D→ X.

Since our random variables often take values in a product of measurable spaces, let
us give a brief reminder on general product spaces. Let I be an arbitrary index set and
{(Ωi,Fi)}i∈I be a family of measurable spaces. Then the product space

∏
i∈I Ωi is under-

stood to be equipped with the product σ-algebra
∏

i∈I Fi, which is the smallest σ-algebra
on the product space, such that all projections πn :

∏
i∈I Ωi → Ωn, (ωi)i∈I 7→ ωn, n ∈

I, are measurable. As is well known from basic measure theory,
∏

i∈I Fi is generated

by the cylinder sets Z{Fi}i∈I
=

{
(πi1 , . . . , πin)−1(A) : i1, . . . , in ∈ I, A ∈ ∏n

j=1Fij , n ∈ N
}

(note that
∏n

j=1Fij = σ
({∏n

j=1 Cij : Cij ∈ Fij

})
) as well as by the rectangular sets

R{Fi}i∈I
=

{
π−1

i1
(A1) ∩ . . . ∩ π−1

in
(An) : i1, . . . , in ∈ I, A1 ∈ Fi1 , . . . , An ∈ Fin , n ∈ N}

(cf.
Loève (1977, part 1, 1.7 and 4.2), Shiryaev (1996, ch. II §3) or Bauer (2001, § 9)).

For some set E equipped with a σ-algebra E an E-valued random process on Z (i.e.
in discrete time) is a sequence Z = (Zt)t∈Z of random variables defined on a measure
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space (Ω,F , P ) assuming values in the measurable space (E, E). Z can also be regarded
as a measurable mapping from (Ω,F) to (EZ, EZ). An immediate consequence of the
definition of the product of measurable spaces is that Z : Ω → EZ is F − EZ-measurable,
iff Zt : Ω → E is F − E-measurable for all t ∈ Z. Furthermore, the distribution of Z is
determined by its finite-dimensional marginals. Thus, the two ways of looking at random
sequences are equivalent. Confer any standard text on probability theory (e.g. Shiryaev
(1996) or Bauer (2001)) for the details.

In time series analysis the back-shift operator B is usually the map sending Xt to Xt−1.
However, we shall use the analytically convenient definition usually employed especially
in connection with ergodic theory as a linear operator acting on the whole sequence. So,
let (E, E) be some measurable space, then we define B as the right-shift operator on EZ,
i.e. B : EZ → EZ, (zi)i∈Z 7→ (zi−1)i∈Z. The rationale behind this definition is that we
get πt(X) = Xt and πt(BX) = Xt−1 for any t ∈ Z for an E-valued random sequence
X, where πt, t ∈ Z, are the coordinate projections. It is noteworthy that B is bijective
and B−1 is the left-shift operator, i.e. the forward-shift operator in a time series context.
Furthermore, B as well as B−1 are obviously measurable and map cylinder sets to cylinder
sets.

A random sequence X = (Xi)i∈Z assuming values in a measurable space (E, E) is called
stationary, if the distributions of (Xt1 , . . . , Xtk) and (Xt1−h, . . . , Xtk−h) are the same for
all t1, . . . , tk, h ∈ Z and k ∈ N. This is obviously equivalent to P (X ∈ A) = P (BhX ∈ A)
for all h ∈ N and A ∈ ZEZ or A ∈ REZ , since both the cylinder and rectangular sets are
closed under intersection (cf. Brandt, Franken and Lisek (1990, A 1) who use the left-shift
operator).

2.4 General Lp-spaces

The theory of the spaces of p-integrable real valued random variables, which can be found
in most textbooks on measure and probability theory (e.g. Loève (1977), Bauer (1992),
Shiryaev (1996)) or functional analysis (e.g. Werner (2002)), can be extended to random
variables assuming values in an arbitrary normed space (see e.g. Dunford and Schwartz
(1958)). The following brief discussion of this generalized theory presumes familiarity
with the usual Lp spaces of random variables assuming values in R at the level of Loève
(1977) and the basic concepts of functional analysis to be found e.g. in Werner (2002). We
only consider probability measures, but extensions to more general measures are obvious.
Throughout this section (Ω,F , P ) is some fixed probability space.

The definitions and results below are later useful when studying the moments of solu-
tions to a stochastic difference equation and Markov switching models. Although, we
only consider Rd or Md(R) valued random variables in those sections, we consider gen-
eral normed vector spaces here, since it seems worthwhile to give a rather general and
comprehensive discussion, as this is rarely to be found in the literature. Moreover, most
results and their proofs do not get any simpler by restricting attention to Rd and Md(R).

Definition 2.3 Let (X, ‖ · ‖) be a normed space, p > 0 and B the Borel σ-algebra of
(X, ‖ · ‖).
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Then

Lp(Ω,F , P, X, ‖ · ‖) :=

{
Y : Ω → X : Y F-B-measurable,

∫

Ω

‖Y (ω)‖pdP (ω) < ∞
}

,

L∞(Ω,F , P, X, ‖ · ‖) := {Y : Ω → X : Y F-B-measurable,∃K < ∞ s.t. ‖Y ‖ ≤ K a.s.} .

Moreover, define N = {Y : Ω → X : Y F-B-measurable, ‖Y ‖ = 0 a.s.}.
Note that, since we only use the norm of an X-valued random variable in the above

definition, all integrands are real valued and we thus do not have to discuss a notion of
integrating functions which assume values in a general normed space (see Dunford and
Schwartz (1958) for a thorough discussion on integrating Banach space valued functions).

The following lemma, which is obviously implied by the definition, allows us to deduct
most properties of the above defined spaces from the properties of the well-known special
case with X = R.

Lemma 2.4 Let (X, ‖ · ‖) be a normed space, p ∈ (0,∞] and Y be an X valued random
variable. Then Y ∈ Lp(Ω,F , P,X, ‖·‖) ⇔ ‖Y ‖ ∈ Lp(Ω,F , P,R). Furthermore, Y ∈ N ⇔
Y = 0 a.s.

Since Lp(Ω,F , P,R) is a vector space, the above lemma and the properties of a norm
imply:

Proposition 2.5 Lp(Ω,F , P,X, ‖·‖) is a linear space and N is a subspace of Lp(Ω,F , P,
X, ‖ · ‖) for all p ∈ (0,∞].

As in the classical situation this enables us to define Lp spaces:

Definition 2.6 Let (X, ‖ · ‖) be a normed space. Define for p ∈ (0,∞]

Lp(Ω,F , P, X, ‖ · ‖) := Lp(Ω,F , P, X, ‖ · ‖)/N , (2.1)

for Y, Z ∈ Lp(Ω,F , P, X, ‖ · ‖)
‖Y ‖Lp = E(‖Y ‖p)1/p for 1 ≤ p < ∞, (2.2)

‖Y ‖L∞ = inf{K ∈ R+ : ‖Y ‖ ≤ K a.s.} for p = ∞, (2.3)

dLp(Y, Z) = E(‖Y − Z‖p) for p < 1 (2.4)

and for equivalence classes [Y ], [Z] ∈ Lp(Ω,F , P,X, ‖ · ‖)
‖[Y ]‖Lp = ‖Y ‖Lp for 1 ≤ p ≤ ∞, (2.5)

dLp([Y ], [Z]) = dLp(Y, Z) for p < 1. (2.6)

Moreover, Lemma 2.4 shows together with the inclusion relations for the Lp(Ω,F , P,R,
| · |) spaces the inclusion relations for Lp spaces over general normed spaces:

Corollary 2.7 Let (X, ‖ · ‖) be a normed vector space. Then

Ls(Ω,F , P, X, ‖ · ‖) ⊆ Lr(Ω,F , P, X, ‖ · ‖)
Ls(Ω,F , P, X, ‖ · ‖) ⊆ Lr(Ω,F , P, X, ‖ · ‖)

for 0 < r ≤ s ≤ ∞. In particular, if Y ∈ Ls for s ≥ 1 then ‖Y ‖Lr ≤ ‖Y ‖Ls for all
r ∈ [1; s].
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Note that despite the above inclusion relation it is still possible to have E(‖Y ‖r) >
E(‖Y ‖s), if Y ∈ Ls, s ∈ (0, 1] and r ∈ (0, s). So the second part of the above corollary
can not be generalized to include s < 1.

In the following we briefly analyse the analytic properties of the above defined Lp

spaces.

Proposition 2.8 ‖ · ‖Lp is a semi-norm on Lp(Ω,F , P, X, ‖ · ‖) and a norm on Lp for
1 ≤ p ≤ ∞. In the case 0 < p < 1 dLp(·, ·) is a semi-metric on Lp and a metric on Lp.

As usual we will not distinguish between random variables in Lp and the corresponding
equivalence classes in Lp. Hence, we will from now on only use the symbol Lp. However,
one should bear in mind that Lp with the above defined semi-norm/metric is in contrast to
Lp not a Hausdorff topological vector space and limits are only unique up to a.s. identity.
Proof: Apart from the triangle (Minkowski) inequalities all properties of a (semi)-norm,
resp. -metric are obvious. The triangle inequality follows from the triangle inequalities in
Lp(Ω,F , P,R, | · |): Let V, Y, Z ∈ Lp(Ω,F , P,X, ‖ · ‖), then

‖Z + Y ‖Lp = E(‖Z + Y ‖p)1/p ≤ E((‖Z‖+ ‖Y ‖)p)1/p ≤ E(‖Z‖p)1/p + E(‖Y ‖p)1/p

= ‖Z‖Lp + ‖Y ‖Lp

for 1 ≤ p < ∞, respectively,

dLp(Y, Z) = E(‖Y − Z‖p) ≤ E((‖Y − V ‖+ ‖V − Z‖)p)

≤ E(‖Y − V ‖p) + E(‖V − Z‖p) = dLp(Y, V ) + dLp(V, Z)

for 0 < p < 1. For p = ∞ observe that, if Y is a.s. bounded by K and Z by K ′, Z + Y is
a.s. bounded by K + K ′. 2

In the classical set-up L2 is a Hilbert space. This can be reproduced in higher dimensions:

Theorem 2.9 Let (X, 〈·, ·〉) be an inner product space (with ‖ · ‖ denoting the canon-
ical norm). On L2(Ω,F , P,X, ‖ · ‖) define a bilinear form 〈·, ·〉L2 by setting 〈Y, Z〉L2 :=
E(〈Y, Z〉). Then 〈·, ·〉L2 is a scalar product and induces the norm ‖ · ‖L2. Moreover, for all
Y, Z ∈ L2(Ω,F , P, X, ‖ · ‖)

| 〈Y, Z〉L2 | ≤ E(‖Y ‖‖Z‖) ≤ ‖Y ‖L2‖Z‖L2 .

Proof: It suffices to show the last two inequalities. This shows that 〈·, ·〉L2 is well-defined.
That 〈·, ·〉L2 has all properties of a scalar product and induces the L2-norm can be seen
immediately. But the left inequality is simply the Cauchy Schwarz inequality in (X, 〈·, ·〉)
and the right inequality is the Cauchy-Schwarz (Hölder) inequality in L2(Ω,F , P,R, | · |),
since ‖Y ‖L2(Ω,F ,P,X,‖·‖) = ‖‖Y ‖‖L2(Ω,F ,P,R,|·|). 2

The following two theorems give natural extensions of the Hölder inequality to higher
dimensional spaces. One comes from viewing the real (complex) numbers as an algebra,
the other one from identifying them with the linear automorphisms over themselves.

Theorem 2.10 Let (X, ‖ · ‖) be a normed algebra and 1 ≤ p, q ≤ ∞ such that 1
p
+ 1

q
= 1.

For Y ∈ Lp(Ω,F , P, X, ‖ · ‖) and Z ∈ Lq(Ω,F , P, X, ‖ · ‖) the Hölder inequality holds:

‖Y Z‖L1 = E(‖Y Z‖) ≤ E(‖Y ‖‖Z‖) ≤ ‖Y ‖Lp‖Z‖Lq .



2.4. GENERAL LP -SPACES 13

Proof: The first inequality holds, since X is a normed algebra, and the second one is the
usual Hölder inequality for R-valued random variables. 2

The random variables occurring in the following proposition take values in different
normed vector spaces. All norms are denoted by ‖ · ‖.

Theorem 2.11 Let X and V be two normed vector spaces and B(X, V ) be the space
of bounded linear operators from X to V (equipped with the induced operator norm).
Moreover, let 1 ≤ p, q ≤ ∞ be such that 1

p
+ 1

q
= 1. For Y ∈ Lp(Ω,F , P,X, ‖ · ‖) and

A ∈ Lq(Ω,F , P, B(X,V ), ‖ · ‖) the Hölder inequality holds:

‖AY ‖L1 = E(‖AY ‖) ≤ E(‖A‖‖Y ‖) ≤ ‖Y ‖Lp‖A‖Lq ,

i.e. AY ∈ L1(Ω,F , P, V, ‖ · ‖)

Proof: The first inequality holds due to the definition of an operator norm and the second
one is the usual Hölder inequality for R-valued random variables. 2

The Riesz-Fischer theorem is also extendable to random variables assuming values in a
Banach space.

Theorem 2.12 (Riesz-Fischer) Let (X, ‖ · ‖) be a Banach space. Then (Lp(Ω,F , P, X,
‖ · ‖), ‖ · ‖Lp) is a Banach space for p ≥ 1 and (Lp(Ω,F , P, X, ‖ · ‖), dLp(·, ·)) is a complete
metric space for 0 < p < 1.

For 1 ≤ p < ∞ this result can be found in Dunford and Schwartz (1958, III.6.5). The
proof given there is a straightforward extension of the proof for Lp(Ω,F , P,R, | · |). Below
we give a proof of Theorem 2.12 that is an extension of the proof given in Loève (1977, p.
163) for real valued random variables and finite p. We use the following auxiliary result:

Lemma 2.13 Let (X, ‖ · ‖) be a normed space. Let Yn be a sequence in Lp(Ω,F , P, X,
‖ · ‖) and Y be an X-valued random variable. If ‖Yn − Y ‖Lp → 0, resp. dLp(Yn, Y ) → 0,
for some p ∈ (0,∞], then Y is in Lp(Ω,F , P, X, ‖ · ‖).

Proof: Note that Yn is a Cauchy sequence in the respective norm/metric. For finite p we
have E(‖Yn−Y ‖p) → 0. Thus the triangle inequality implies E(|‖Yn‖−‖Y ‖|p) → 0. From
‖Yn‖ ∈ Lp(Ω,F , P,R, | · |) and Loève (1977, 9.4 d.) we thus have ‖Y ‖ ∈ Lp(Ω,F , P,R,
| · |) and an application of Lemma 2.4 concludes the proof.

For p = ∞ one similarly obtains ‖‖Yn‖ − ‖Y ‖‖L∞ → 0. From the completeness of
L∞(Ω,F , P,R, | · |) one thus has ‖Y ‖ ∈ L∞(Ω,F , P,R, | · |), so that Lemma 2.4 again
shows the claim. 2

Proof of Theorem 2.12: Only completeness remains to be shown: Let (Yn)n∈N be a
Cauchy sequence in Lp(Ω,F , P,X, ‖ · ‖).

For finite p this implies E(‖Ym − Yn‖p) → 0 with m,n → ∞. From the Markov
inequality we thus obtain for every ε > 0:

P (‖Ym − Yn‖ ≥ ε) ≤ 1

εp
E(‖Ym − Yn‖p) → 0 with m,n →∞
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Hence, ‖Ym−Yn‖ converges to 0 for m,n →∞ in probability and a.s. along a subsequence
(Ynk

)k∈N. So, since X is a Banach space, there is some Y such that Ynk
→ Y a.s. for k →∞.

E(‖Ym − Ynk
‖p) → 0 with m, k →∞ now implies using Fatou’s Lemma:

E(‖Ym − Y ‖p) = E(lim inf
k→∞

‖Ym − Ynk
‖p) ≤ lim inf

k→∞
E(‖Ym − Ynk

‖p) → 0 as m →∞.

This shows that (Ym) converges to Y in Lp and the completeness employing the last
lemma.

For p = ∞ we have from ‖Ym− Yn‖L∞ → 0 that for any ε > 0 there is an N ∈ N such
that ‖Ym − Yn‖ < ε (∗) a.s. for all m,n ≥ N . Thus Ym is a.s. a Cauchy sequence and so
there is a random variable Y against which Ym converges a.s. By (∗) this convergence is
uniform and so taking the limit for n → ∞ in (∗) and applying the last Lemma shows
that Ym → Y in L∞ and Y ∈ L∞. 2

In order to answer the question, whether an Rd-valued random variable is in Lp (over
Rd) provided its components are in Lp (over R) and vice versa, we give some general result
on the relation between the Lp spaces over isomorphic normed spaces.

Theorem 2.14 Let (X, ‖ ·‖) and (Y, ‖ ·‖) be two isomorphic normed vector spaces. Then
the spaces Lp(Ω,F , P,X, ‖ · ‖) and Lp(Ω,F , P, Y, ‖ · ‖) with the norm ‖ · ‖Lp, resp. metric
dLp, are isomorphic for all p ∈ (0,∞]. If X and Y are moreover isometric, so are the
respective Lp spaces.

The explicit construction of the isomorphism in the proof below shows that for two equi-
valent norms ‖ · ‖1 and ‖ · ‖2 over some vector space X the sets Lp(Ω,F , P, X, ‖ · ‖1) and
Lp(Ω,F , P,X, ‖ · ‖2) agree.
Proof: Let T : X → Y be an isomorphism between X and Y such that m‖x‖ ≤ ‖Tx‖ ≤
M‖x‖ ∀x ∈ X with some constants 0 < m ≤ M , then T−1 : Y → X is an isomorphism
from Y to X and M−1‖y‖ ≤ ‖T−1y‖ ≤ m−1‖y‖ ∀y ∈ Y . On Lp(Ω,F , P,X, ‖ · ‖) now
define S : Lp(Ω,F , P, X, ‖ · ‖) → Lp(Ω,F , P, Y, ‖ · ‖), Z 7→ TZ and R : Lp(Ω,F , P, Y,
‖ · ‖) → Lp(Ω,F , P, X, ‖ · ‖), Z 7→ T−1Z. The linear operators are well defined and
bounded, since for S we have mpE(‖Z‖p) ≤ E(‖TZ‖p) ≤ MpE(‖Z‖p) for p ∈ (0,∞),
resp. m‖Z‖L∞ ≤ ‖TZ‖L∞ ≤ M‖Z‖L∞ for p = ∞, for all Z ∈ Lp and likewise results hold
for R. The bijectivity property follows from the obvious RS = I and SR = I. Finally,
the claimed isomorphicity, resp. isometricity, are an immediate consequence of the above
inequalities as well, noting that m = M = 1 can be chosen, if X and Y are isometric. 2

Corollary 2.15 Let X = (X1, X2, . . . , Xd)
T be an Rd-valued random variable, ‖ · ‖ any

norm on Rd and p ∈ (0,∞]. Then X ∈ Lp(Ω,F , P,Rd, ‖ · ‖), iff Xi ∈ Lp(Ω,F , P,R, | · |)
for i = 1, . . . , d.

Consequently the sets of p-integrable Rd-valued random variables are independent of the
particular norm on Rd.
Proof: “⇒”: Assume first ‖ · ‖ = ‖ · ‖∞. Then X ∈ Lp obviously implies Xi ∈ Lp for
all i = 1, . . . , d. For general ‖ · ‖ the identity operator on Rd is an isomorphism between
(Rd, ‖ · ‖) and (Rd, ‖ · ‖∞). Using the Theorem before (and the comment thereafter), one
thus has, that X ∈ Lp(Ω,F , P,Rd, ‖ · ‖) implies Xi ∈ Lp.
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“⇐”: Assume now first that ‖ · ‖ = ‖ · ‖1. Then, since Xi ∈ Lp implies
∑d

i=1 |Xi| ∈ Lp,
X ∈ Lp is an immediate consequence of Xi ∈ Lp for all i. That for a general norm ‖ · ‖
on Rd X ∈ Lp(Ω,F , P,Rd, ‖ · ‖) is implied by X1, . . . , Xd ∈ Lp, is now shown by applying
the last Theorem on the identity operator from (Rd, ‖ · ‖) to (Rd, ‖ · ‖1). 2

2.5 Ergodicity

In order to prove stationarity conditions for a stochastic difference equation and con-
sequently Markov switching ARMA models, we shall employ the theory of ergodic random
sequences, a subject to be found in most books on probability theory, e.g. Loève (1978,
ch. X) or Shiryaev (1996, ch. V). A comprehensive monograph on ergodicity is Krengel
(1985). In the following we provide an overview of the results needed later, following
mainly Ash and Gardner (1975). A somewhat similar but shorter summary is Appendix
1.2 of Brandt, Franken and Lisek (1990). Yet, unlike them we will state the results more
generally than only for random sequences.

The basis of ergodicity theory is formed by some special classes of sets and functions.

Definition 2.16 (cf. Ash and Gardner (1975, pp. 113, 117, 119)) Let (Ω,F , P )
be a probability space.

(i) An F-measurable map T : Ω → Ω is called a measure preserving transformation
(P -preserving or preserves P ), if P (T−1(A)) = P (A) ∀ A ∈ F .

(ii) A set A ∈ F is said to be invariant under a measure preserving transformation T ,
if A = T−1(A), and almost invariant, if P (A∆T−1(A)) = 0.

(iii) An F − B(R)-measurable function g : Ω → R is called invariant under a measure
preserving transformation T , if g(Tω) = g(ω) ∀ ω ∈ Ω, and almost invariant, if
g(Tω) = g(ω) holds almost surely.

(iv) A measure preserving transformation T is said to be ergodic, if either P (A) = 0 or
P (Ac) = 0 for every invariant set A.

(v) A measure preserving transformation T is said to be mixing, if for all A,C ∈ F
lim

n→∞
P (A ∩ T−n(C)) = P (A) · P (C).

Sometimes the term metrically transitive is used instead of ’ergodic’ (cf. Shiryaev (1996,
p. 407). To define ergodicity and the mixing property for a random sequence we use the
back-shift operator on the image space defined in Section 2.3.

Definition 2.17 A sequence X = (Xi)i∈Z of (E, E)-valued random variables defined on a
probability space (Ω,F , P ) is called ergodic (mixing), if the back-shift operator B : EZ →
EZ is an ergodic (mixing) transformation on (EZ, EZ, PX = P ◦X−1).

In Brandt, Franken and Lisek (1990) sequences are said to be ergodic, if the forward-
shift operator is an ergodic transformation on (EZ, EZ, PX = P ◦X−1). To see that both
definitions are equivalent, we need the following lemma.
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Lemma 2.18 Let (Ω,F , P ) be a probability space, T : Ω → Ω be measurable and bijective
and E = T (E ) for some subset E ⊂ F with σ(E ) = F . Then T−1 is measurable. Moreover,
if T is measure preserving (ergodic), T−1 is measure preserving (ergodic).

Note that E = T (E ) is equivalent to E = T−1(E ).
Proof: Let A ∈ E , then (T−1)−1(A) = T (A) ∈ E and this shows the measureability of
T−1 (cf. Bauer (1992, Th. 7.2)).

Let now T be measure preserving and A ∈ F , then

P
(
(T−1)−1(A)

)
=P

(
T−1

(
(T−1)−1(A)

))
= P (A),

so T−1 is measure preserving. An under T invariant A ∈ F is invariant under T−1 as well
and vice versa. Hence, T−1 is ergodic, provided T is ergodic. 2

Since the back-shift operator B and the forward-shift operator B−1 are measurable
and map the cylinder sets of EZ onto themselves, the above lemma implies the equivalence
of the definitions.

It is also possible to characterize stationarity via a measure preserving property of the
back-shift operator.

Proposition 2.19 (cf. Ash and Gardner (1975, pp. 114f)) A random sequence
X : (Ω,F) → (EZ, EZ) is stationary, iff the back-shift operator B : EZ → EZ preserves
PX .

Proof (adapted from Ash and Gardner (1975, pp. 114f)): Let B preserve PX and
be A ∈ ZEZ . Then P (X ∈ A) = PX(A) = PX(B−1A) = . . . = PX(B−kA) = P (BkX ∈ A)
for all natural k and this implies stationarity of X as noted in Section 2.3.

Conversely, the above equation shows that PX(A) = PX(B−1A) for all A ∈ ZEZ , if X
is stationary. Since G :=

{
A ∈ EZ : PX(A) = PX(B−1A)

}
is also a Dynkin system (note

that EZ is a cylinder, B−1(Ac) = (B−1A)c and let Ai ∈ EZ, i ∈ N, be disjoint, then we
have that B−1Ai, i ∈ N are disjoint), one obtains G = EZ (cf. Bauer (1992, Th. 2.4)),
because ZEZ is closed under intersections, and thus B preserves PX . 2

The following lemmata and theorems summarize the properties of ergodic transform-
ations and sequences. Their proofs can be found in Ash and Gardner (1975).

Lemma 2.20 (Ash and Gardner (1975, Lemmata 3.2.2, 3.2.3, 3.2.4))
Let (Ω,F , P ) be a probability space.

(i) For every almost invariant set A ∈ F there exists an invariant B ∈ F with
P (A∆B) = 0.

(ii) A measure preserving transformation T is ergodic, iff P (A) = 0 or P (Ac) = 0 for
every almost invariant set A ∈ F .

(iii) Let T be measure preserving. Then the following are equivalent:

(a) T is ergodic.

(b) Every almost invariant function is a.s. constant.

(c) Every invariant function is a.s. constant.
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(iv) Let T be measure preserving and A ∈ F . Then the following are equivalent:

(a) A is almost invariant.

(b) P (T−1(A)\A) = 0.

(c) P (A\T−1(A)) = 0.

Now we show that the mixing property implies ergodicity.

Theorem 2.21 (Ash and Gardner (1975, Th. 3.2.6)) Let T be a mixing transform-
ation on a probability space (Ω,F , P ). Then T is ergodic.

Proof (Ash and Gardner (1975, p. 120)):
Let A ∈ F be invariant. Since T−n(A) = A, we obtain P (A) = P (A∩A) = P (A∩T−n(A)).
Letting n → ∞ and employing the mixing property of T , one gets P (A) = P (A)2. Thus
P (A) = 0 or P (Ac) = 0 showing the ergodicity of T . 2

To show that a measure preserving transformation is mixing, it is only necessary to
verify the mixing condition on a generating algebra as the next theorem points out.

Theorem 2.22 (Ash and Gardner (1975, Th. 3.2.7)) Let T be measure preserving
on (Ω,F , P ) and F ⊂ F an algebra such that σ(F ) = F . If limn→∞ P (A ∩ T−nC) =
P (A)P (C) for all A,C ∈ F , then T is mixing.

A simple example of mixing random sequences are i.i.d. sequences. The following is a
generalization of the result given in Ash and Gardner (1975, p. 123).

Proposition 2.23 Let X = (Xi)i∈Z be a sequence of i.i.d. random variables into a meas-
urable space (E, E) having common distribution P , then X is mixing.

Proof: Since X is obviously stationary, the back-shift operator B is a measure preserving
transformation on (EZ, EZ, ⊗i∈Z P ) (cf. Prop. 2.19). For some A,C ∈ ZEZ , we have that
A = (πi1 , . . . , πim)−1(A′) for some i1, . . . , im ∈ Z, m ∈ N and A′ ∈ Fm and likewise
C = (πj1 , . . . , πjm′ )

−1(C ′) for some j1, . . . , jm′ ∈ Z, m′ ∈ N and B′ ∈ Fm′
. This gives

for all n ∈ N, n > max{j1, . . . , jm′} − min{i1, . . . , im} that PX(A ∩ B−nC) = P (X ∈
A,X ∈ B−nC) = P (X ∈ A,BnX ∈ C) = P ((Xi1 , . . . , Xim) ∈ A′, (Xj1−n, . . . , Xjm′−n) ∈
C ′) = P ((Xi1 , . . . , Xim) ∈ A′)P ((Xj1−n, . . . , Xjm′−n) ∈ C ′) = P (X ∈ A)P (BnX ∈ C) =
PX(A)PX(C). This shows that the mixing condition holds for all cylinder sets, which
implies via Theorem 2.22 that B is a mixing transformation on (EZ, EZ,⊗i∈Z P ), because
the cylinder sets clearly form an algebra. 2

Mixing sequences are especially important, since they can be combined with an ergodic
sequence to build an ergodic sequence in the product space. A proof of the following result
is to be found in Brown (1976).

Theorem 2.24 (Brown (1976, Prop. 1.6), Brandt, Franken and Lisek (1990,
Th. A 1.2.6)) Let Y1 = (Y1,n)n∈Z and Y2 = (Y2,n)n∈Z be two independent stationary
random sequences assuming values in measurable spaces (E1, E1), (E2, E2) respectively. If
Y1 is ergodic and Y2 is mixing, then Y = (Yn)n∈Z = (Y1,n, Y2,n)n∈Z is a stationary and
ergodic sequence of random variables in (E1 × E2, E1 × E2).
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Another way to obtain ergodic sequences from other ergodic sequences is given in the
following lemma.

Lemma 2.25 (cf. Brandt, Franken and Lisek (1990, Lemma A 1.2.7)) Let X =
(Xi)i∈Z be a stationary and ergodic sequence of (E, E)-valued random variables and gn :
(EZ, EZ) → (F,F), n ∈ Z, be a sequence of measurable functions such that gn−1 =
gn ◦B ∀ n ∈ Z, where B is the back-shift operator on EZ. Then Y = (gn(X))n∈Z is also a
stationary and ergodic sequence.

Proof: (adapted from Brandt, Franken and Lisek (1990, p. 303))
B will in the following denote the back-shift operator on both EZ and F Z. Choose some
h ∈ N and A = (πi1 , . . . , πim)−1(A′) for some i1, . . . , im ∈ Z, m ∈ N and A′ ∈ Fm. Then
P (BhY ∈ A) = P (Bh(gn(X))n∈Z ∈ A) = P ((gn−h(X))n∈Z ∈ A) = P ((gn(BhX))n∈Z ∈
A) = P ((gi1(B

hX), . . . , gim(BhX)) ∈ A′) = P (BhX ∈ (gi1 , . . . , gim)−1(A′))
X stationary

=
P (X ∈ (gi1 , . . . , gim)−1(A′)) = . . . = P (Y ∈ A) and so Y is stationary.

Let now A ∈ FZ be invariant under B. Then we obtain B−1 ({x ∈ E : (gn(x))n∈Z ∈ A})
= {x ∈ E : (gn(Bx))n∈Z ∈ A} = {x ∈ E : (gn−1(x))n∈Z ∈ A} = {x ∈ E : (gn(x))n∈Z ∈
B−1A} A invariant

= {x ∈ E : (gn(x))n∈Z ∈ A}, hence the pre-image of A, i.e. {x ∈ E :
(gn(x))n∈Z ∈ A} ∈ EZ, is invariant. Thus the ergodicity of X implies via PY (A) =
PX ({x ∈ E : (gn(x))n∈Z ∈ A}) the one of Y . 2

The importance of measure preserving or ergodic transformations is due to the fact
that the (conditional) expectation of a real valued functional f on the probability space
can be calculated by averaging over (f ◦ T n(ω))n∈N. In terms of random sequences this
means that ergodicity implies that a strong law of large numbers holds. These results and
their implications are the subject of the following theorems.

Theorem 2.26 (Birkhoff’s ergodic theorem, see e.g. Ash and Gardner (1975,
Theorems 3.3.6, 3.3.7)) Let T be a measure preserving transformation on a probability
space (Ω,F , P ) and f ∈ L1(Ω,F , P,R). Then there exists an f̂ ∈ L1 such that

1

n

n−1∑

k=0

f(T kω)
n→∞−→ f̂(ω)

almost surely and in L1.
If for some 1 < p < ∞ f is also in Lp, then f̂ ∈ Lp and the above convergence holds

also in Lp.

It is immediate to see that the (almost) invariant sets form σ-algebras (cf. Ash and
Gardner (1975, p. 117), Shiryaev (1996, p. 407)).

Theorem 2.27 (Ash and Gardner (1975, Lemma 3.3.8, Th. 3.3.9,3.3.10)) Let
the map T be a measure preserving transformation on a probability space (Ω,F , P ), f ∈
L1(Ω,F , P,R) and be f̂ the function from Theorem 2.26. Then f̂ is almost invariant and
G −B(R)− measurable, where G denotes the σ-algebra of all almost invariant elements in
F . Moreover, we have f̂ = E(f |G).

If T is even ergodic, f̂ = E(f) holds a.s.
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Proposition 2.28 (cf. Ash and Gardner (1975, p. 135)) Let the transformation T
be measure preserving on a probability space (Ω,F , P ) and be F ⊂ F an algebra such
that σ(F ) = F . Then the following are equivalent:

(i) T is ergodic.

(ii)
1

n

n−1∑

k=0

f(T kω)
a.s.→ E(f) for all f ∈ L1(Ω,F , P,R)

(iii)
1

n

n−1∑

k=0

IA(T kω)
a.s.→ P (A) for all A ∈ F

(iv)
1

n

n−1∑

k=0

IA(T kω)
a.s.→ P (A) for all A ∈ F

(v)
1

n

n−1∑

k=0

P (A ∩ T−kC) → P (A)P (C) for all A,C ∈ F

(vi)
1

n

n−1∑

k=0

P (A ∩ T−kC) → P (A)P (C) for all A,C ∈ F

For later reference we repeat the above results for the special case of random sequences.
Note that stationarity of a sequence implies that B is measure preserving on the image
space as shown before.

Theorem 2.29 Let X be a stationary (E, E)-valued random sequence and f ∈ L1(EZ, EZ,
PX ,R). Then there exists an f̂ ∈ L1 such that

1

n

n−1∑

k=0

f(BkX)
n→∞−→ f̂(X)

almost surely and in L1.
If for some 1 < p < ∞ f is also in Lp, then f̂ ∈ Lp and the above convergence holds

also in Lp.

Theorem 2.30 Let X be a stationary (E, E)-valued random sequence and f ∈ L1(EZ, EZ,
PX ,R) and be f̂ the function from Theorem 2.29. Then f̂ is almost invariant and G −
B(R)− measurable, where G denotes the σ-algebra of all almost invariant elements in EZ.
Moreover, we have f̂(X) = E(f(X)|G).

If T is even ergodic, f̂(X) = E(f(X)) holds a.s.

Proposition 2.31 (cf. Brandt, Franken and Lisek (1990, Th. A 1.2.2)) Let X be
a stationary random sequence assuming values in (E, E) and be E ⊂ EZ an algebra such
that σ(E ) = EZ. Then the following are equivalent:



20 CHAPTER 2. PRELIMINARIES

(i) X is ergodic.

(ii) The back-shift operator B is ergodic on (EZ, EZ, PX).

(iii)
1

n

n−1∑

k=0

f(BkX)
a.s.→ E(f(X)) for all f ∈ L1(EZ, EZ, PX ,R)

(iv)
1

n

n−1∑

k=0

IA(BkX)
a.s.→ PX(A) for all A ∈ EZ

(v)
1

n

n−1∑

k=0

IA(BkX)
a.s.→ PX(A) for all A ∈ E

(vi)
1

n

n−1∑

k=0

PX(A ∩B−kC) → PX(A)PX(C) for all A,C ∈ E

(vii)
1

n

n−1∑

k=0

PX(A ∩B−kC) → PX(A)PX(C) for all A,C ∈ EZ

Note that the cylinder sets of EZ can be taken as E above and that the back-shift operator
B can be replaced by the forward-shift operator B−1. Furthermore, the ergodicity of the
forward-shift operator B−1 can be added to the equivalences.

To conclude this introduction to ergodicity, we state briefly the ergodicity criteria
for Markov chains with at most countable state space. Note that initial distributions
are not an issue in our set-up, since we deal with doubly-infinite sequences and thus
any of the Markov chains considered are necessarily assumed to be stationary. Usually,
positive recurrent, irreducible and aperiodic Markov Chains are called “ergodic” in the
literature on countable state space Markov Chains (see e.g. Resnick (1992), Asmussen
(2003)) irrespective of, whether the chain is stationary or not, since these texts deal
with chains starting at time zero with some initial distribution. For a countable state
space Markov chain to be ergodic in the sense defined by us, it needs to be stationary,
irreducible and positive recurrent (cf. Asmussen (2003, p. 19), Ash and Gardner (1975,
section 3.5)), as shall briefly be shown below. So, aperiodicity is not required of a Markov
chain to be ergodic in our set-up. Furthermore, on a finite state space any recurrent chain
is automatically positive recurrent (cf. Resnick (1992), Asmussen (2003)).

In Ash and Gardner (1975, section 3.5) ergodicity criteria are unfortunately only
proved for Markov chains on a countable state space starting at time zero using the forward
shift operator B−1. We will now show that a doubly-infinite stationary, irreducible and
positive recurrent Markov chain is ergodic using the following result of Brémaud (1999),
which is an immediate generalization of a result to be found in all standard texts (e.g.
Resnick (1992, Proposition 2.12.4)). Brémaud (1999) also works solely with Markov chains
starting at some time “zero”, but it is obvious that this does not affect the validity of the
result.
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Lemma 2.32 (cf. Brémaud (1999, Corollary 4.1)) Let ∆ = (∆t)t∈Z be a stationary,
irreducible and positive recurrent Markov chain with countable state space E (equipped
with σ-algebra E). Let L ∈ N0 and be g : EL+1 → R a function in L1(EL+1, EL+1,
P(∆0,∆1,...,∆L),R, | · |). Then for any fixed t0 ∈ Z

lim
n→∞

1

n

n∑

k=1

g(Xk+t0 , Xk+1+t0 , . . . , Xk+L+t0) = E(g) a.s. (2.7)

A proof is to be found in Brémaud (1999) and note that we can view (∆t)t≥t0 as a Markov
chain starting with its stationary distribution at time “zero” (t0).

Theorem 2.33 Let ∆ = (∆t)t∈Z be a stationary, irreducible and positive recurrent Markov
chain with countable state space E (equipped with σ-algebra E). Then ∆ is ergodic.

Proof: According to Proposition 2.31 and the remarks thereafter it suffices to show that
for any cylinder set A in EZ

1

n

n−1∑

k=0

IA(B−k∆)
a.s.→ P∆(A)

holds.
Let A be in ZEZ then there are t0,m ∈ N0 and A′ ∈ Em+1 such that

A = (πt0+1, . . . , πt0+m+1)
−1(A′).

Hence, IA(·) = IA′((πt0+1, . . . , πt0+m+1)(·)) and so using the last lemma

1

n

n−1∑

k=0

IA(B−k∆) =
1

n

n∑

k=1

IA′(∆t0+k, . . . , ∆k+m+t0)
n→∞−→ P(∆0,...,∆m)(A

′) a.s.

But the stationarity of ∆ implies P(∆0,...,∆m)(A
′) = P(∆t0+1,...,∆t0+m+1)(A

′) = P∆(A) and
thus ∆ is ergodic. 2

2.6 Geometric Ergodicity, Strong Mixing and Extre-

me Values

The aim of this section is to give a brief outline of the concepts of geometric ergodicity of
Markov chains and of strong mixing of random sequences. Furthermore, we review briefly
the basic results from extreme value theory for stationary random sequences presuming
knowledge of the basics of extreme value theory for i.i.d. sequences. In the following
the necessary terminology from general Markov chain theory is introduced, but without
any detailed discussions. For more details the monograph Meyn and Tweedie (1993), for
instance, could be consulted. Throughout we presume the considered Markov chains to
be homogeneous and to have a subset of Rd with appropriate d or of a topologically
isomorphic vector space as state space. Moreover, the σ-algebra over the state space is



22 CHAPTER 2. PRELIMINARIES

assumed to be the restriction of the natural Borel σ-algebra to the state space. As usual,
P n(·, ·) : E×E → [0, 1] denotes the n-step transition kernel. Furthermore, we shall employ
the total variation norm, ‖ · ‖TV . Recall that for two measures µ1 and µ2 on a measurable
space (E, E) this is defined as

‖µ1 − µ2‖TV := sup
P∈P

card(P )∑
j=1

|µ1(Aj,P )− µ2(Aj,P )| ,

where P is the set of all countable measurable partitions P = {A1,P , A2,P , . . . , Acard(P ),P}
of E.

The properties for Markov chains put forward in the following definition are mainly
of interest when dealing with Markov chains that have not begun in the infinite past or
started with their stationary distribution, but with some arbitrary initial distribution at
time zero. Yet, it will turn out that these criteria are very helpful in order to study the
concept of strong mixing for Markov-switching processes.

Definition 2.34 (cf. Feigin and Tweedie (1985) or Basrak (2000)) Let X = (Xt)
be a Markov chain with state space E that is equipped with σ-algebra E.

(i) X is said to be a weak Feller chain, if E (g(X1)|X0 = y) is a continuous function
in y ∈ E for all bounded and continuous functions g : E → R.

(ii) If µ is some nondegenerate measure on (E, E) and for all x ∈ E the following
implication holds for every A ∈ E

µ(A) > 0 ⇒
∞∑

n=1

P n(x,A) > 0,

then X is called µ-irreducible.

(iii) Provided there is a probability measure π on (E, E) such that for all x ∈ E

‖P n(x, ·)− π(·)‖TV → 0

as n →∞, X is said to be Harris ergodic. If there is even a ρ ∈ (0, 1) such that

ρ−n‖P n(x, ·)− π(·)‖TV → 0

as n →∞, X is referred to as being geometrically ergodic.

Note that Harris ergodicity in particular implies ergodicity in the sense of the previous
section when dealing with stationary versions of a Markov chain. The following theorem
is often used to show geometric ergodicity of Markov chains.

Theorem 2.35 (Feigin and Tweedie (1985, Th. 1)) Let X = (Xt) be a weak Feller
chain on (E, E) and assume the existence of a measure µ and a compact set K ∈ E with
µ(K) > 0 such that
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(i) X is µ-irreducible and

(ii) there exists a non-negative continuous g : E → R satisfying

g(x) ≥ 1 ∀ x ∈ K

and
E (g(X1)|X0 = y) ≤ (1− δ)g(y) ∀y ∈ E\K

with some δ > 0.

Then X is geometrically ergodic.

A particular concept formalizing the idea of weak dependence for a stochastic process
is strong mixing. For a detailed discussion of this concept and related ones confer, for
instance, Doukhan (1994).

Definition 2.36 (cf. Leadbetter, Lindgren and Rootzén (1983, p. 52), Basrak
(2000, Def. 2.2.1) and Basrak, Davis and Mikosch (2002b)) A discrete time sta-
tionary stochastic process X = (Xn)n∈Z is called strongly mixing, if

αl := sup
{|P (A ∩B)− P (A)P (B)| : A ∈ F0

−∞, B ∈ F∞
l

} → 0

as l → ∞, where F0
−∞ := σ (. . . , X−2, X−1, X0) and F∞

l = σ (Xl, Xl+1, Xl+2, . . .). The
values αl are called mixing coefficients.

If there are constants C ∈ R+ and a ∈ (0, 1) such that αl ≤ Cal, X is said to be
strongly mixing with geometric rate.

Any strongly mixing process is in particular mixing, as an application of Theorem 2.22 to
the cylinder sets shows. The following observation is immediate from the definition, but
later turns out to be essential.

Proposition 2.37 Let (Xn, Yn)n∈Z be a bivariate stochastic process that is strongly mixing
(with geometric rate). Then both the univariate processes (Xn)n∈Z and (Yn)n∈Z are strongly
mixing (with geometric rate).

The following relation between geometric ergodicity and strong mixing for Markov chains
is very well-known. Details on the necessary arguments are to be found in Basrak, Davis
and Mikosch (2002b, Section 2), for instance.

Proposition 2.38 Let X = (Xn)n∈Z be a geometrically ergodic and stationary Markov
chain, then X is in particular strongly mixing with geometric rate.

The strong mixing property of a random process has important implications when
studying its extremal behaviour, since it implies the so called condition D and thus D(un)
for any sequence un (cf. Leadbetter (1974), Leadbetter, Lindgren and Rootzén (1983)).
Under these conditions the Fisher-Tippett theorem, viz. that any non-degenerate limit-
ing distribution of the linearly transformed maxima can only be of Gumbel, Fréchet or
Weibull type, is valid for stationary random sequences, see Leadbetter, Lindgren and
Rootzén (1983, Th. 3.3.3) or Embrechts, Klüppelberg and Mikosch (1997, Th. 4.4.1).
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Moreover, these conditions are essential when employing the concept of extremal indices
(cf. in particular Leadbetter, Lindgren and Rootzén (1983, Section 3.7)). Actually, Loynes
(1965) showed the validity of the Fisher-Tippett theorem for stationary random sequences
under strong mixing originally. For an up-to-date overview of extreme value theory for
stationary random sequences see Embrechts, Klüppelberg and Mikosch (1997).



Chapter 3

Vague Convergence and Regular
Variation

In this section we first give a brief summary on vague convergence of measures and then
apply this concept to define and study regular variation of random variables in Rd for
arbitrary d ∈ N. The later is often also referred to as multivariate regular variation, as
opposed to univariate regular variation, i.e. regular variation on R.

3.1 Vague Convergence of Measures

Vague convergence is a mode of convergence for measures intrinsically linked to, but
generally weaker than the more familiar weak convergence (convergence in distribution).
Apart from the book by Resnick (1987) a highly readable account on this concept can be
found in Bauer (1992). The following brief introduction is based on these two references.
For an alternative introduction we refer to Lindskog (2004).

E shall in the following denote any space that is endowed with a topology E such
that (E, E) is a locally compact polish (i.e. complete, separable and metrizable) space. By
ρ(·, ·) we denote a metric inducing E and E is the Borel σ-algebra (w.r.t. E). Furthermore,
M+(E) denotes the set of all non-negative Radon measures (i.e. the locally finite measures
that are regular from within and defined on the Borel σ-algebra) on (E, E). We define
Cc(E) to be the set of all real valued continuous functions with compact support, i.e.
Cc(E) = {f ∈ C(E) : supp(f) = {x ∈ E : f(x) 6= 0} compact}. Now we topologise
M+(E) by defining M+(E) to be the weakest topology that makes the maps µ 7→ µ(f) =∫

E
fdµ from M+(E) to R continuous for all f ∈ Cc(E). Thus a fundamental system of

neighbourhoods in M+(E) is given by the system of sets

Uf1,···,fn;ε(µ0) := {µ ∈ M+(E) : |µ(fi)− µ0(fi)| < ε, i = 1, . . . , n}
for n ∈ N, ε > 0 and f1, . . . , fn ∈ Cc(E). We call M+(E) the vague topology on M+(E).
Note that, since for fixed f ∈ Cc(E) the mapping µ 7→ µ(f) behaves very similar to a
linear functional on M+(E), this concept is strongly related to a general weak topology
as discussed e.g. in Werner (2002, Section VII.3). The main difference is that M+(E) is
not a vector space, but only a convex cone. A simple consequence of Riesz’ represent-
ation Theorem (cf. Bauer (1992, § 29)) is that (M+(E),M+(E)) is a Hausdorff space.

25
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This is also part of the following much more powerful result, which also shows that in
(M+(E),M+(E)) only sequences rather than nets need to be studied.

Proposition 3.1 (Resnick (1987, Proposition 3.17)) (M+(E), M+(E)) is a polish
space.

The above result is also part of Bauer (1992, § 31.5). At this stage it is necessary to state
that the definitions of the vague topology we use (based on Bauer (1992)) and the one in
Resnick (1987), where C+

c (E) (i.e. the non-negative functions in Cc(E)) is used instead of
Cc(E), are equivalent. To see this one just has to note that obviously a function f : E → R
is in Cc(E), iff both f+ and f− are in C+

c (E), where f+ is given by f+(x) = max{f(x), 0}
and f− = (−f)+.

We are now in a position to define the needed concept of convergence of measures:

Definition 3.2 Let (E, E) be a locally compact polish space. A sequence (µn)n∈N of non-
negative Radon measures on E is said to be vaguely convergent to a Radon measure µ,
denoted by µn

v→ µ, if µn
n→∞−→ µ in the vague topology.

From the above discussion we have:

Lemma 3.3 (cf. Resnick (1987, p. 140), Bauer (1992, Def. 30.1)) Vague limits
are unique and µn

v→ µ, iff

lim
n→∞

∫

E

fdµn =

∫

E

fdµ ∀ f ∈ Cc(E).

Two important characterizations of vague convergence, which we shall employ later, are
given in the following proposition.

Proposition 3.4 (Resnick (1987, Prop. 3.12), Bauer (1992, Satz 30.2)) Let µ ∈
M+(E) and (µn)n∈N be a sequence in M+(E). Then the following are equivalent:

(i) µn
v→ µ for n →∞.

(ii) µn(B) → µ(B) for n →∞ for all relatively compact B in the Borel-σ-algebra E that
are µ-boundaryless, i.e. µ(∂B) = 0.

(iii) lim supn→∞ µn(K) ≤ µ(K) and lim infn→∞ µn(G) ≥ µ(G) for all compact K ∈ E
and all open relatively compact G.

The µ-boundaryless sets are henceforth denoted by Bµ, i.e. Bµ := {B ∈ E : µ(∂B) = 0}.
To end this brief introduction into vague convergence we show that a continuous map

from one locally compact polish space under some additional assumptions induces a map
between the Radon measures on these spaces that is continuous w.r.t. the vague topologies.

Theorem 3.5 (Resnick (1987, Proposition 3.18)) Let (E1,E1) and (E2,E2) be loc-
ally compact polish spaces and T : E1 → E2 be a continuous mapping such that T−1(K)
is compact for every compact K ⊆ E2. Define T̂ : M+(E1) → M+(E2) by T̂ (µ) = µ ◦T−1.
Then T̂ is continuous with respect to the vague topologies. In particular,

µn
v→ µ ⇒ T̂ (µn)

v→ T̂ (µ). (3.1)
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We include a proof of this result, since, as we shall show by a counterexample below, one
topological assertion used in the proof given in Resnick (1987) does not hold in general.
However, apart from correcting for this we follow the lines of proof given there.
Proof: Due to Proposition 3.1 it suffices to establish (3.1). Let thus (µn)n∈N be a sequence
of Radon measures on E1 converging vaguely to a Radon measure µ. For any f ∈ Cc(E2)
and ν ∈ M+(E1) we have by the transformation theorem of elementary integration theory
that ∫

E2

fdT̂ (ν) =

∫

E2

fd(ν ◦ T−1) =

∫

E1

f ◦ Tdν. (3.2)

It is immediate that {x ∈ E1 : f ◦ T (x) 6= 0} = T−1 ({y ∈ E2 : f(y) 6= 0}) and thus

supp(f ◦ T ) = {x ∈ E1 : f ◦ T (x) 6= 0} = T−1 ({y ∈ E2 : f(y) 6= 0})
⊆ T−1

(
{y ∈ E2 : f(y) 6= 0}

)
= T−1 (supp(f)) .

The inclusion relation is shown as follows: For each x ∈ T−1 ({y ∈ E2 : f(y) 6= 0}) there
is a sequence xn ∈ T−1 ({y ∈ E2 : f(y) 6= 0}) such that xn → x. From the continuity of
T one obtains that the sequence T (xn) ∈ {y ∈ E2 : f(y) 6= 0} converges to T (x) ∈
{y ∈ E2 : f(y) 6= 0} and, hence, x ∈ T−1(T (x)) ⊆ T−1

(
{y ∈ E2 : f(y) 6= 0}

)
.

From the above inclusion, the property that pre-images of compact sets under T are
compact and the fact that supp(f ◦ T ) is closed by definition, we obtain that supp(f ◦ T )
is compact using the well known fact that closed subsets of compacts are compact (see
e.g. Rudin (1976, Th. 2.34)). Thus f ◦T ∈ Cc(E1). Using Lemma 3.3 and (3.2) this shows

lim
n→∞

∫

E2

fdT̂ (µn) = lim
n→∞

∫

E1

f ◦ Tdµn →
∫

E1

f ◦ Tdµ =

∫

E2

fdT̂ (µ)

and again from Lemma 3.3 it follows that T̂ (µn)
v→ T̂ (µ). 2

In the proof to be found in Resnick (1987) the identity supp(f ◦ T ) = T−1(supp(f)) is
used. This equality does, however, not hold in general as the following counterexample
shows. R with the usual topology is a locally compact polish space. Define f : R→ R by

f(x) =

{
sin(x) for x ∈ (0, π)
0 otherwise

.

Obviously f ∈ Cc(R) and even f ∈ C+
c (R). Moreover, consider the map T : R→ R given

by

T (x) =





x for x ∈ (0,∞)
0 for x ∈ [−1, 0]
x + 1 for x ∈ (−∞,−1)

.

Then T is continuous and thus T−1(A) is closed for all closed sets A. One sees immediately
that moreover T−1(B) is bounded for all bounded sets B. Hence, T−1(K) is compact for
all compact sets K. But we have:

{y ∈ R : f(y) 6= 0} = (0, π),

supp(f) = [0, π],
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T−1 ((0, π)) = (0, π),

T−1 ([0, π]) = [−1, π],

supp(f ◦ T ) = T−1 ({y ∈ R : f(y) 6= 0}) = [0, π],

T−1(supp(f)) = [−1, π].

Thus supp(f ◦T ) 6= T−1(supp(f)), so the inclusion supp(f ◦T ) ⊆ T−1(supp(f)) employed
in the above proof is strict for this choice of E1, E2, f and T .

3.2 Multivariate Regular Variation

To extend the well-established concept of regular variation from the classical univariate
framework to a multivariate one, vague convergence is employed. In the following we briefly
review the concept of multivariate regular variation of random vectors, mainly based on
Basrak (2000) and Mikosch (2003) (see Resnick (1987, Section 5.4.2) for an earlier account
and Lindskog (2004) for a very thorough introduction emphasizing especially the geometry
of the employed spaces). An extension of the concept to stochastic processes is Hult and
Lindskog (2004). We presume familiarity with the basics of univariate regular variation
(see Bingham, Goldie and Teugels (1989), Resnick (1987) or Embrechts, Klüppelberg and
Mikosch (1997)). Recall in particular that for a function f : R+ → R univariate regular
variation at infinity means that for large x ∈ R the function behaves roughly like xα for
some α ∈ R, which is called the index of regular variation. Formally we have the following
definition:

Definition 3.6 (Regular variation on R+) A Lebesgue measurable function f : R+ →
R+ is said to be regularly varying at infinity with index α, if for all x > 0

lim
t→∞

f(tx)

f(t)
= xα. (3.3)

In the case α = 0, we speak of slow variation.
An R-valued random variable X with distribution function F is said to be regularly

varying with index α > 0, if F̄ (x) := 1 − F (x) is regularly varying with index −α at
infinity.

In the following we will employ the space Rd\{0}. For d = 1 this is obtained as follows:
Take the space R with the usual topology and form the usual two point compactification
by setting R = R∪{∞,−∞} and adding the neighbourhoods of ±∞, i.e. the sets [−∞, a)
and (a,∞] with a ∈ R, to the basic open sets. Then take R\{0} and remove the open
neighbourhoods of 0 from the topology. This is also referred to as one point uncompac-
tification. For the d-dimensional case one takes the two point compactification Rd, which
is simply the d-fold product of R, and the product topology. Then one removes the point
0 from Rd and the open neighbourhoods of 0 from the topology. One can interpret this
procedure as interchanging the roles of zero and infinity. In Rd\{0} compact sets can by
characterized by being closed (in the usual sense) and bounded away from zero. By this
procedure we obtain a locally compact polish space, actually a possible metric on R\{0}
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is given by d(x, y) := |x−1 − y−1| (cf. Resnick (1987, p. 225f)). For the construction of a
possible metric on Rd\{0} see Lindskog (2004, Th. 1.5), for instance.

Now we can define multivariate regular variation following Basrak (2000, p. 27ff) with
a slight, but necessary, modification due to Lindskog (2004, Th. 1.21), viz. to demand
nondegeneracy of the limiting measure. The reason, why one needs to exclude µX = 0 is
that otherwise Proposition 3.9 (ii) is violated for the zero measure, as an inspection of
the arguments given in Basrak (2000) shows.

Definition 3.7 (Regular variation on Rd)

(i) Let X be an Rd-valued random variable. If there exists a non-zero µX in M+(Rd\{0})
with µX(Rd\Rd) = 0, a relatively compact set E in B(Rd), i.e. a Borel set, and a
dense subset T ⊂ (0,∞), such that tE ∈ BµX

∀ t ∈ T and

µX,t(·) :=
P (X ∈ t·)
P (X ∈ tE)

v→ µX(·)

in M+(Rd\{0}) for t →∞, then X is said to be (multivariate) regularly varying.

(ii) A random sequence (Xn)n∈Z is said to be (multivariate) regularly varying, if all its
finite dimensional distributions are regularly varying.

It is important to note that not any Radon measure µX can appear, when X is regularly
varying:

Proposition 3.8 (cf.Basrak (2000, Th. 2.1.4)) If X is a regularly varying random
variable, then there exists an α > 0 such that µX(uS) = u−αµX(S) for all S ∈ BµX

and
u > 0. Moreover, ∂Bδ(0) ∈ BµX

for all δ > 0. In particular, µX has no atoms.

That α has to be strictly positive rather than only non-negative as demanded in Basrak
(2000) is observed in Lindskog (2004), since α = 0 and a non-zero µX would result in
a contradiction to µX(Rd\Rd) = 0. This applies also to all other theorems taken from
Basrak (2000).

Several equivalent ways can be used to define multivariate regular variation, for a
first account see Mikosch (1999). The following theorem combines the results given in
Basrak (2000, Th. 2.1.8, p. 31) and Lindskog (2004, Th. 1.8, 1.14, 1.15 and 1.21). As
usual ‖ · ‖ below denotes an arbitrary, fixed norm on Rd and Sd−1 the unit sphere in Rd,
i.e. Sd−1 = ∂B1(0), w.r.t. to this norm ‖ · ‖.
Theorem 3.9 Let X be an Rd-valued random variable. Then the following are equivalent:

(i) X is regularly varying.

(ii) There exists an Sd−1-valued random variable θ such that for some α > 0 and every
u > 0

P
(
‖X‖ > tu, X

‖X‖ ∈ ·
)

P (‖X‖ > t)

v→ u−αP (θ ∈ ·)

in M+(Sd−1) for t →∞.
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(iii) There exists an Sd−1-valued random variable θ and a positive sequence (an)n∈N,
an →∞, such that for some α > 0 and every u > 0

nP

(
‖X‖ > uan,

X

‖X‖ ∈ ·
)

v→ u−αP (θ ∈ ·)

in M+(Sd−1) for n →∞.

(iv) There exists a positive sequence (an)n∈N, an →∞, and a non-zero νX ∈ M+

(
Rd\{0}

)

with νX

(
Rd\Rd

)
= 0 such that

nP (X ∈ an·) v→ νX(·)

in M+

(
Rd\{0}

)
for n →∞.

If (iv) holds, then there exists an α > 0 such that νX(tA) = t−αν(A) for all Borel sets A
and ∂Bδ(0) ∈ BνX

for all δ > 0. In particular, νX has no atoms.
α is called the index of regular variation, P (θ ∈ ·) ∈ M+(Sd−1) the spectral measure

of regular variation of X and νX the measure of regular variation of X.

Note that our definition of regular variation and (iv) is norm-free. This implies that one
can take any norm in (ii) and (iii). However, the spectral measures and, of course, the unit
spheres are different for different norms, see Hult and Lindskog (2002) for a discussion of
the implications of using different norms.

Moreover, one deducts from (ii) that for a regularly varying random variable X and
any norm ‖X‖ is regularly varying with the same index. In particular, one has for every

u > 0 that limt→∞
P (‖X‖>tu)
P (‖X‖>t)

= u−α.

Proof: The equivalence of (i) − (iii) is shown in Basrak (2000) and that (iv) holds for
regularly varying X can be found in Mikosch (2003), indeed, it is intuitively rather obvious
from (iii). The equivalence of (ii) and (iv), as well as the implications of (iv) for νX are
shown in Lindskog (2004). Below we give an alternative proof that (iv) implies (ii) that
we developed in temporary ignorance of the work by Lindskog (2004).

Note that due to the scaling relation νX(tA) = t−αν(A) and the nondegeneracy of

νX , we have, if (iv) holds, that there exists a relatively compact K ∈ B
(
Rd\{0}

)
with

νX(K) > 0 or equivalently that νX

(
(1,∞]Sd−1

)
> 0. (Recall the definition of the product

of two sets given in Section 2.1.1.)
We will now briefly show (iv) ⇒ (ii).
For all sufficiently large t ∈ R there is an n ∈ N such that an ≤ t ≤ an+1 (w.l.o.g. one

may assume an is strictly increasing). For any set S ∈ B(Sd−1) with (1,∞]S ∈ BνX
(see

Figure 3.1 for an example of such a set) we have

n(n + 1)P (‖X‖ > uan+1, X/‖X‖ ∈ S)

(n + 1)nP (‖X‖ > an)
≤ P (‖X‖ > ut, X/‖X‖ ∈ S)

P (‖X‖ > t)

≤ (n + 1)nP (‖X‖ > uan, X/‖X‖ ∈ S)

n(n + 1)P (‖X‖ > an+1)
.
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Figure 3.1: A set of the form (u,∞]S with S ∈ B(S1) and u ∈ R+.

For any r ∈ R+ obviously (r,∞]S ∈ BνX
and, moreover, (r,∞]Sd−1 ∈ BνX

, since

∂
(
(r,∞]Sd−1

)
= rSd−1 = ∂Br(0).

From (iv) and Proposition 3.4 it follows that for t →∞ (implies n →∞)

(n + 1)P (‖X‖ > uan+1, X/‖X‖ ∈ S) → νX ((u,∞]S)

nP (‖X‖ > an) → νX

(
(1,∞]Sd−1

)

nP (‖X‖ > uan, X/‖X‖ ∈ S) → νX ((u,∞]S)

(n + 1)P (‖X‖ > an+1) → νX

(
(1,∞]Sd−1

)
.

Hence for t →∞:

P (‖X‖ > ut, X/‖X‖ ∈ S)

P (‖X‖ > t)
→ νX ((u,∞]S)

νX ((1,∞]Sd−1)
=

u−ανX ((1,∞]S)

νX ((1,∞]Sd−1)
.

Setting

µ̃(A) =
νX ((1,∞]A)

νX ((1,∞]Sd−1)

for all A ∈ B(Sd−1) defines a (Radon) probability measure µ̃ on Sd−1, i.e. µ̃(·) = P (θ ∈ ·)
for some Sd−1-valued random vector θ, since by (iv) the denominator does not vanish.
Using the obvious S ∈ Bµ̃ ⇔ (1,∞]S ∈ BνX

((1,∞]∂S ∪ S̊ = ∂((1,∞]S) and νX(S) = 0)
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Proposition 3.4 gives (ii). 2

In the following we will mainly rely on the last characterization of regular variation
given in the above theorem. To compare some of our results to previous ones we need to
compare our notion of regular variation to another one which dates back to the work of
Kesten (1973) and has frequently been used when studying the tail behaviour of random
recurrence equations (e.g. LePage (1983), Klüppelberg and Pergamenchtchikov (2004)
and Saporta (2004a)). The basic idea of this notion of multivariate regular variation is
to demand that all linear functionals of an Rd-valued random variable are univariate
regularly varying. Formally this means:

Definition 3.10 (cf. Basrak, Davis and Mikosch (2002a)) An Rd-valued random
variable X is called regularly varying in the sense of Kesten, if there exists an α > 0 and
a slowly varying L : (0,∞) → R+ such that for all x ∈ Rd

lim
u→∞

P (〈x,X〉 > u)

u−αL(u)
= w(x) (3.4)

exists and there is one x0 6= 0 with w(x0) > 0.

〈·, ·〉 denotes the Euclidean scalar product and α is again called index of regular variation.
In most cases our notion of regular variation is equivalent to the one of Kesten. Problems
occur, however, when α is an integer. The best known result linking the different notions
is given in Basrak, Davis and Mikosch (2002a).

Theorem 3.11 (Basrak, Davis and Mikosch (2002a, Th. 1.1)) Let X be an Rd-
valued random variable.

(i) If X is regularly varying with index α > 0, then it is regularly varying in the sense
of Kesten with the same index.

(ii) If X is regularly varying in the sense of Kesten with a noninteger index α > 0,
then X is regularly varying with the same index and the spectral measure is uniquely
determined.

(iii) If X assumes values in [0,∞)d and satisfies (3.4) for all x ∈ [0,∞)d\{0} with a
noninteger α > 0 and w(x0) > 0 for some x0 ∈ [0,∞)d\{0}, then X is regularly
varying with index α and the spectral measure is uniquely determined.

(iv) If X assumes values in [0,∞)d and is regularly varying in the sense of Kesten with
index α that is an odd integer, then X is regularly varying with the same index and
the spectral measure is uniquely determined.

From the remark after Theorem 3.9 and the well-known results on univariate regu-
larly varying random variables (cf. e.g. Embrechts, Klüppelberg and Mikosch (1997)) we
immediately infer:
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Proposition 3.12 Let X be an Rd-valued multivariate regularly varying random variable
with index α. Then:

X ∈ Lβ ∀ 0 < β < α

X 6∈ Lβ ∀ β > α

Observe that X may or may not be in Lα. We shall briefly show this for the case d = 1:
Let X be an R+-valued random variable with regularly varying tail of index α > 0. There
exists a slowly varying function l(x) such that P (X > x) = l(x)x−α and

E(|X|α) =

∫ ∞

0

P (|X|α > x) dx

=

∫ ∞

0

P (|X| > x1/α) dx

=

∫ ∞

0

l(x1/α)
1

x
dx.

Thus it suffices to show that the very last integral can be finite as well as infinite. Consider

l(x) := (log(xα))−2 , x ≥ 2,

then l(·) is slowly varying, since l’Hospital’s rule gives

lim
y→∞

log(y)

log(yxα)
= lim

y→∞
1/y

xα/(yxα)
= 1

and thus

lim
t→∞

(log(tαxα))−2

(log(tα))−2

y:=tα

= lim
y→∞

(
log(y)

log(yxα)

)2

= 1

for any x > 0. One obtains
∫ ∞

2

1

x(log x)2
dx =

∫ ∞

log 2

1

eyy2
ey dy =

∫ ∞

log 2

1

y2
dy < ∞.

Thus it is possible for the above integral to be finite and thus E|X|α < ∞. That the
integral can as well be infinite is obvious using e.g. l(x) = 1.

3.3 Transformations of Regularly Varying Random

Variables

Now we summarize results on the regular variation of combinations and transformations
of regularly varying random variables. Finally, we will give a new theorem on the be-
haviour of series of linearly transformed regularly varying i.i.d. random variables, which
is a considerable, but (at least in our set-up) straightforward extension of Resnick and
Willekens (1991, Th 2.1).

We first note some well-known result on the combination of i.i.d. multivariate regularly
varying random variates. As usual ε0 denotes the Dirac measure w.r.t. 0.
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Lemma 3.13 Let X1, X2, . . . , Xk with k ∈ N be i.i.d. regularly varying Rd-valued ran-
dom variables with index α, measure νX and normalizing sequence (an) such that (iv) in
Theorem 3.9 holds. Then X = (XT

1 , . . . , XT
k )T is a regularly varying Rkd-valued random

variable with index α and measure

ν(dx1, . . . , dxk) = νX(dx1)ε0(dx2, dx3, . . . , dxk) + νX(dx2)ε0(dx1, dx3, dx4, . . . , dxk)

+ . . . + νX(dxk)ε0(dx1, dx2, . . . , dxk−1)

(where νX is assumed to be extended to Rd by setting νX({0}) = 0 and the usual convention
0 · ∞ = 0 is employed).

Recall that any relatively compact set is bounded away from zero (in Rkd) and thus for
a relatively compact set of the form A1 × . . . × Ak with Ai ∈ B(Rd), i.e. a “rectangle”,
there is at least one index j such that Aj is bounded away from zero (in Rd) and, thus,
assuming j = 1, one has ν(A1× . . .×Ak) = ν(A1)ε0(A2× . . .×Ak). In particular, if there
is also an l ∈ 2, . . . , k such that Al does not contain 0, then ν(A1 × . . . × Ak) = 0. This
shows that ν concentrates on the “axes”. For d > 1 this means that it concentrates on(
Rd × 0Rd × 0Rd × . . .× 0Rd

)∪(
0Rd × Rd × 0Rd × . . .× 0Rd

)∪. . .∪(
0Rd × . . .× 0Rd × Rd

)
.

Figure 3.2 exemplifies this fact that for two independent real-valued regularly varying ran-
dom variables (in this example symmetric Cauchy ones, i.e. the index of regular variation
is one) the measure of regular variation concentrates on R×{0} and {0}×R, which means
that the two random variables are never both “large” at the same time.
Unfortunately a proof in full rigour seems to be lacking in the literature (the necessary
arguments are, however, briefly stated in the proof of Lindskog (2004, Th. 1.28) and for
the case of R+-valued random variables in Resnick (1987, p. 227)). We need the following
auxiliary result:

Lemma 3.14 (cf. Lindskog (2004, Lemma 1.10 and remark thereafter)) Let
µ, µ1, µ2, . . . be in M+(Rd\{0}) such that µ(Rd\Rd) = 0 and µ(uB) = u−αµ(B) holds
for all u > 0 and Borel sets A with some α > 0. Assume that

µn ([a1, b1)× [a2, b2)× . . .× [ad, bd)) → µ ([a1, b1)× [a2, b2)× . . .× [ad, bd))

as n →∞ for all a1, a2, . . . , ad, b1, b2, . . . bd ∈ R with ai < bi such that [a1, b1)× [a2, b2)×
. . .× [ad, bd) is bounded away from zero (in Rd) and µ-boundaryless. Then µn

v→ µ.

Lindskog (2004, Lemma 1.10) states the above result assuming only that (a1, . . . , ab)
T

and (b1, . . . , bd)
T are non-zero instead of demanding that the rectangles be µ-boundaryless.

This is due to the fact that he concludes in the arguments leading to the above Lemma that
for any µ satisfying the above conditions all rectangles bounded away from zero are ne-
cessarily µ-boundaryless. Unfortunately, this does not hold in general. A counterexample
can be given using the set-up of Lemma 3.13. Take d = 1, k = 2 and [a1, b1) ⊂ R bounded
away from zero and such that νX([a1, b1)) > 0. Note that nP ((X1, X2)

T ∈ ·) plays the role
of µn, and ν as defined in Lemma 3.13 satisfies all conditions on µ in the above Lemma.
Take now a2 = 0 and b2 > 0. Then [a1, b1)× [a2, b2) is bounded away from zero in R2 and
we have ∂ ([a1, b1)× [a2, b2)) = {a1}×[a2, b2]∪{b1}×[a2, b2]∪[a1, b1]×{a2}∪[a1, b1]×{b2}.
Noting that ν ([a1, b1]× {a2}) = 1 · νX([a1, b1)] > 0, we see that [a1, b1) × [a2, b2) is not
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Figure 3.2: Scatter plot of 10.000 simulations from a pair (X1, X2) of independent standard
Cauchy random variables

ν-boundaryless. By the way, the same result is obtained when choosing b2 = 0 and a2 < 0.
The crucial point is that {0} × [a1, b1] is not contained in any appropriately scaled unit
sphere (w.r.t. ‖ · ‖∞).
Proof of Lemma 3.13: Note that by the definition of ν we have that ν(Rd\Rd) = 0 and
the scaling property ν(u·) = u−αν(·) holds with α being the index of regular variation of
the random variables Xi. Hence, we can apply the above Lemma. For some set A of the
form [a11, b11) × [a12, b12) × . . . × [a1d, b1d) × [a21, b21) × [a22, b22) × . . . × [a2d, b2d) × . . . ×
[ak1, bk1)× [ak2, bk2)× . . .× [akd, bkd) which is bounded away from 0 in Rkd there is at least
one index j such that Aj := [aj1, bj1)× [aj2, bj2)× . . .× [ajd, bjd) is bounded away from 0
in Rd. For the ease of notation assume w.l.o.g. j = 1. Now only two cases may occur.
Either there is an l ∈ 2, . . . , k such that Al is bounded away from 0 and so we have

nP (X ∈ anA) ≤ nP (X1 ∈ anA1)nP (Xl ∈ anAl)

n
→ 0

as n → ∞, since nP (X1 ∈ anA1) → νX(A1) < ∞ and nP (Xl ∈ anAl) → νX(Al) < ∞.
This gives nP (X ∈ anA) → ν(A).

Otherwise A2 × . . .× Ak contains the zero in R(k−1)d. Now we again distinguish three
cases. If 0 is in the interior (w.r.t. R(k−1)d) of A2 × . . .× Ak, then

lim
n→∞

P ((XT
2 , . . . , XT

k )T ∈ an(A2 × . . .× Ak)) = 1

and so

nP (X ∈ anA) = nP (X1 ∈ anA1)P ((XT
2 , . . . , XT

k )T ∈ an(A2×. . .×Ak)) → νX(A1) = ν(A).
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If νX(A1) = 0, we have that

nP (X ∈ anA) ≤ nP (X1 ∈ anA1) → 0

and thus nP (X ∈ anA) → ν(A). The case remaining to consider is that νX(A1) > 0 and
0 is on the boundary (w.r.t. R(k−1)d) of A2 × . . . × Ak. Then A1 × {0R(k−1)d} ⊆ ∂A, but
ν(A1 × {0R(k−1)d}) = νX(A1) and thereby A is not ν-boundaryless, so the behaviour of
nP (X ∈ anA) does not matter when considering vague convergence to ν.

A straightforward application of the foregoing Lemma now concludes the proof. 2

The following extension can be shown using basically the same arguments, but a slightly
more tedious notation.

Lemma 3.15 Let X1, X2, . . . , Xk with k ∈ N be independent regularly varying Rd-valued
random variables with common index α, measures νX1 , . . . , νXk

and a common normalizing
sequence (an) such that (iv) in Theorem 3.9 holds. Then X = (XT

1 , . . . , XT
k )T is a regularly

varying Rkd-valued random variable with index α and measure

ν(dx1, . . . , dxk) = νX1(dx1)ε0(dx2, dx3, . . . , dxk) + νX2(dx2)ε0(dx1, dx3, dx4 . . . , dxk)

+ . . . + νXk
(dxk)ε0(dx1, dx2, . . . , dxk−1)

(where νXi
is assumed to be extended to Rd by setting νXi

({0}) = 0 and the usual conven-
tion 0 · ∞ = 0 is employed).

It should also be obvious that the above result can be extended to the case where Xi

assumes values in Rdi for possibly different di. Since we do not at all need such a result
later, we refrain from stating it in its details.

Furthermore, it can be shown that comparatively light-tailed random linear transform-
ations preserve regular variation. This extension of a result from Breiman (1965) to the
multivariate set-up is due to Basrak, Davis and Mikosch (2002b) (see also Basrak (2000,
Prop. 2.1.18, Cor. 2.1.19)).

Theorem 3.16 (cf. Basrak, Davis and Mikosch (2002b, Prop. A1), Basrak (2000,
Cor. 2.1.19)) Let X be an Rd-valued random variable that is regularly varying with index
α, measure ν and normalizing sequence (an), i.e. nP (X ∈ an·) v→ ν(·). Assume that A is
an Mqd(R)-valued random variable independent of X and A ∈ Lγ for some γ > α. Then

nP (AX ∈ an·) v→ ν̃(·) := E(ν ◦ A−1(·))

in M+

(
Rq\{0}).

In particular, provided there is a relatively compact K ∈ B (
Rq\{0}) such that

E
(
ν

(
A−1(K)

))
> 0,

AX is regularly varying with index α, measure ν̃ and normalizing sequence (an).
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Figure 3.3: Scatter plot of (X1, X1/2 − X2/2) using the 10.000 simulations from a pair
(X1, X2) of independent standard Cauchy random variables from Figure 3.2

Note that A−1 does not mean the inverse of the matrix A, but that the pre-image under the
linear map A is taken. A does not have to be invertible or of full rank. Note, moreover,
that the pre-image of a set not containing 0 under a continuous linear mapping never
contains zero and pre-images of sets bounded away from zero are bounded away from
zero.

To exemplify this result, Figure 3.3 depicts the independent Cauchy random variables

simulated for Figure 3.2 after applying the deterministic linear map A =

(
1 0

1/2 −1/2

)
.

A straightforward calculation shows that the measure of regular variation of the trans-
formed pair (X1, X1/2−X2/2) concentrates on (1, 1/2)TR and {0} × R.
Proof: For a proof of the first, i.e. the vague convergence, part we refer to Basrak, Davis
and Mikosch (2002b).

The second part is to be found in Basrak (2000). However, as the proof is rather
short and adds some important insights, we include it here. Note that ν̃

(
Rq\Rq

)
= 0

is implied by the fact that ν(Rd\Rd) = 0 and every element of Mqd(R) maps Rd to
Rq. The assumption of the existence of a relatively compact K ∈ B (

Rq\{0}) such that
E (ν (A−1(K))) > 0 gives that ν̃ is non-zero. ν̃ is a Radon, i.e. locally finite, measure, since
any relatively compact K is contained in a set of the form (r,∞]Sq−1 for an appropriate
r > 0 and

ν̃((r,∞]Sq−1) = E
(
ν

(
A−1((r,∞]Sq−1)

))
= E

(
ν

(
A−1((r,∞]Sq−1)

)
IMqd(R)\{0}(A)

)

≤ E
(
ν

(‖A‖−1(r,∞]Sq−1
)
IMqd(R)\{0}(A)

)

= E
(‖A‖αν

(
(r,∞]Sq−1

)
IMqd\{0}(A)

)
= ν

(
(r,∞]Sq−1

)
E (‖A‖α) < ∞
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using that A−1((r,∞]Sq−1) = ∅, if A = 0, and A−1((r,∞]Sq−1) ⊆ ‖A‖−1(r,∞]Sq−1 other-
wise. Combining these facts shows that (iv) in Theorem 3.9 holds and so AX is regularly
varying with measure ν̃ and normalizing sequence (an). Moreover, for any u > 0 and Borel
set C we have ν̃(uC) = E(ν(A−1(uC))) = E(ν(uA−1(C))) = E(u−αν(A−1(C))) and thus
the index of regular variation is α. 2

By combining the previous results we can now show that finite sums of appropriate
random linear transformations of independent multivariate regularly varying random vari-
ables are again regularly varying. This is an extension of Resnick and Willekens (1991,
Eq. (2.4)) and can also be interpreted as a generalization of Davis and Resnick (1996,
Lemma 2.1) (cf. also Resnick (1987, p. 225)) to the multivariate random case, a similar
one is given in Konstantinides and Mikosch (2004, p. 10). Whereas the previous results
were formulated for random variables in (R+)d, respectively R+, only, we consider general
Rd-valued random variables. However, the reasoning in the proof given below is basically
the same as for the previous results except that using Theorem 3.16 rather than the more
general Theorem 3.5 shortens the argumentation.

Theorem 3.17 Let X1, X2, . . . , Xk with k ∈ N be independent regularly varying Rd-
valued random variables with common index α, measures νX1 , . . . , νXk

and a common
normalizing sequence (an) such that (iv) in Theorem 3.9 holds. Assume, moreover, that
A1, . . . , Ak are Mqd(R)-valued random variables independent of X = (XT

1 , . . . , XT
k )T and

Ai ∈ Lγ ∀i ∈ {1, . . . , k} for some γ > α. Then

nP

(
k∑

i=1

AiXi ∈ an·
)

v→ ν(·) :=
k∑

i=1

E
(
νXi

◦ A−1
i (·))

in M+

(
Rq\{0}).

In particular, provided there is a relatively compact K ∈ B (
Rq\{0}) and an index

j ∈ {1, . . . , k} such that E
(
νXj

(
A−1

j (K)
))

> 0, Y =
∑k

i=1 AiXi is regularly varying with
index α, measure ν and normalizing sequence (an).

One possible immediate extension is that the random variables Xi are Rdi-valued with
possibly different di. Furthermore, note that the matrices A1, . . . , Ak are not assumed
to be independent, but may have any dependence structure as long as {Ai}i=1,...,k and
{Xi}i=1,...,k are independent. This actually is the crucial fact, why this theorem will turn
out to be most helpful in later sections.
Proof: By Lemma 3.15 we have that X = (XT

1 , . . . , XT
k )T is a regularly varying Rkd-valued

random variable with index α, normalizing sequence (an) and measure

ν̄(dx1, . . . , dxk) = νX1(dx1)ε0(dx2, dx3, . . . , dxk) + νX2(dx2)ε0(dx1, dx3, dx4 . . . , dxk)

+ . . . + νXk
(dxk)ε0(dx1, dx2, . . . , dxk−1).

By setting

A =
(

A1 A2 . . . Ak

)
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we obtain an Mq,kd(R)-valued random variable that is independent of X and in Lγ (using
Th. 2.14 and Cor. 2.15). Thus Theorem 3.16 gives that

nP (AX ∈ an·) = nP

(
k∑

i=1

AiXi ∈ an·
)

v→ ν(·) := E(ν̄ ◦ A−1(·)).

Now we only need to analyse ν. Let C be any measurable subset of Rq\{0}. It is immediate
that A−1(C) =

(
A−1

1 (C)× 0R(k−1)d

)∪(
0Rd × A−1

2 (C)× 0R(k−2)d

)∪. . .∪(
0R(k−1)d × A−1

k (C)
)∪⋃k

i=1

⋃k
j=i+1 Cij for appropriately chosen sets Cij ⊆ Rkd such that Cij ∩ R(i−1)d × 0Rd ×

R(k−i)d = ∅ as well as Cij ∩ R(j−1)d × 0Rd × R(k−j)d = ∅ holds. In other words Cij is
the part of A−1(C) where both the i-th and j-th (“d-dimensional”) coordinates are dif-
ferent from zero. Note that necessarily 0 6∈ A−1

i (C) and thus the sets A−1
1 (C) × 0R(k−1)d ,

0Rd×A−1
2 (C)×0R(k−2)d , . . . , 0R(k−1)d×A−1

k (C) are pairwise disjoint. Furthermore, it follows
from the way we have selected the Cij that ν̄(Cij) = 0. Hence, we obtain

ν̄ ◦ A−1(C) =
k∑

i=1

νXi
(A−1

i (C)) =
k∑

i=1

νXi
◦ A−1

i (C).

Since C was arbitrary, taking the expectation gives

nP

(
k∑

i=1

AiXi ∈ an·
)

v→ ν(·) = E

(
k∑

i=1

νXi
◦ A−1

i (·)
)

.

The other claims are now shown as in the proof of Theorem 3.16. 2

We now aim at generalizing the last theorem to series of linearly transformed i.i.d.
random variables that satisfy an appropriate summability condition. It will turn out
that a straightforward extension of Resnick and Willekens (1991, Th. 2.1), who consider
(R+)d-valued random variables, to general Rd-valued ones is possible. Basically all their
arguments carry through in our set-up. Below we shall give a proof for the general case,
which basically imitates the second part of the proof in Resnick and Willekens (1991) and
uses Resnick and Willekens (1991, Th. 2.1) for R+-valued random variables. Thereby we
avoid repeating the highly technical first part of Resnick and Willekens’ proof employing
Pratt’s lemma. Let us thus first recall the result on (R+)d. ‖ · ‖ denotes any fixed norms
on Rd and Rq and their induced operator norm. By Mqd((R+)d) we denote the real q × d
matrices that have only non-negative entries.

Theorem 3.18 (cf. Resnick and Willekens (1991, Th. 2.1)) Let X = (Xk)k∈N0 be

a sequence of i.i.d. regularly varying (R+)
d
-valued random variables with index α, measure

ν and normalizing sequence (an) such that (iv) in Theorem 3.9 holds. Assume, moreover,
that A = (Ak)k∈N0 is a sequence of Mqd(R+)-valued random variables independent of X.

If α < 1, assume that there is an 0 < η < α with α + η < 1 such that Ak ∈ Lα+η for
all k ∈ N0 and

∞∑

k=0

E
(‖Ak‖α+η

)
< ∞ as well as

∞∑

k=0

E
(‖Ak‖α−η

)
< ∞. (3.5)
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If α ≥ 1, assume that there is an 0 < η < α such that Ak ∈ Lα+η for all k ∈ N0 and

∞∑

k=0

E
(‖Ak‖α+η

)1/(α+η)
< ∞,

∞∑

k=0

E
(‖Ak‖α−η

)1/(α+η)
< ∞. (3.6)

Then the tail behaviour of Y =
∑∞

k=0 AkXk is given by

nP

( ∞∑

k=0

AkXk ∈ an·
)

v→ ν̃(·) :=
∞∑

k=0

E
(
ν ◦ A−1

k (·))

in M+

(
(R+)q\{0}

)
. When taking pre-images the linear operators Ak are regarded as

mappings Ak : (R+)
d → (R+)d.

In particular, provided there is a relatively compact K ∈ B((R+)q\{0}) and an index
j ∈ N0 such that E

(
ν

(
A−1

j (K)
))

> 0, Y =
∑∞

k=0 AkXk is regularly varying with index α,
measure ν̃ and normalizing sequence (an).

For a proof of the vague convergence part we refer to Resnick and Willekens (1991). In
the case q = d = 1 we can regard the matrices Ak as mappings from R to R. Note that
the equivalence of all norms over finite dimensional linear spaces ensures that condition
(3.5), resp. (3.6), is independent of the actually employed norm.
Proof: We shall only show that ν̃ is locally finite, since the remainder is obvious in view
of the arguments given for Theorem 3.16.

First we note that for all k ∈ N0

‖Ak‖α ≤ max{‖Ak‖α+η, ‖Ak‖α−η} ≤ ‖Ak‖α+η + ‖Ak‖α−η

which implies
E(‖Ak‖α) ≤ E(‖Ak‖α+η + ‖Ak‖α−η).

For α < 1 one thus immediately obtains

∞∑

k=0

E (‖Ak‖α) < ∞

from (3.5). For α ≥ 1 the same follows using (3.6) after noting that for large enough k
one has that E(‖Ak‖α+η + ‖Ak‖α−η) < 1 and so

E(‖Ak‖α) ≤ E(‖Ak‖α+η + ‖Ak‖α−η)

≤ E(‖Ak‖α+η + ‖Ak‖α−η)1/(α+η)

≤ E(‖Ak‖α+η)1/(α+η) + E(‖Ak‖α−η)1/(α+η),

because |a + b|r ≤ |a|r + |b|r for all a, b ∈ R and 0 < r ≤ 1 (see e.g. Loève (1977, p. 157)).
As in the proof of Theorem 3.16 it suffices to consider the sets (r,∞]Sq−1

+ for r > 0,
where Sq−1

+ := Sq−1∩(R+)q is the “unit sphere” in (R+)q. From the above result we obtain

ν̃((r,∞]Sq−1
+ ) =

∞∑

k=0

E
(
ν

(
A−1

k ((r,∞]Sq−1
+ )

))
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=
∞∑

k=0

E
(
ν

(
A−1

k ((r,∞]Sq−1
+ )

)
IMqd(R)\{0}(Ak)

)

≤
∞∑

k=0

E
(
ν

(‖Ak‖−1(r,∞]Sq−1
+

)
IMqd(R)\{0}(Ak)

)

=
∞∑

k=0

E
(‖Ak‖αν

(
(r,∞]Sq−1

+

)
IMqd\{0}(Ak)

)

= ν
(
(r,∞]Sq−1

+

) ∞∑

k=0

E (‖Ak‖α) < ∞

using that A−1
k ((r,∞]Sq−1

+ ) = ∅, if Ak = 0, and A−1
k ((r,∞]Sq−1

+ ) ⊆ ‖Ak‖−1(r,∞]Sq−1
+

otherwise. 2

Getting rid of the positivity restrictions on the matrices Ak and i.i.d. Xk we obtain:

Theorem 3.19 Let X = (Xk)k∈N0 be a sequence of i.i.d. regularly varying Rd-valued
random variables with index α, measure ν and normalizing sequence (an) such that (iv)
in Theorem 3.9 holds. Assume, moreover, that A = (Ak)k∈N0 is a sequence of Mqd(R)-
valued random variables independent of X.

If α < 1, assume that there is an 0 < η < α with α + η < 1 such that Ak ∈ Lα+η for
all k ∈ N0 and

∞∑

k=0

E
(‖Ak‖α+η

)
< ∞ as well as

∞∑

k=0

E
(‖Ak‖α−η

)
< ∞. (3.7)

If α ≥ 1, assume that there is an 0 < η < α such that Ak ∈ Lα+η for all k ∈ N0 and

∞∑

k=0

E
(‖Ak‖α+η

)1/(α+η)
< ∞,

∞∑

k=0

E
(‖Ak‖α−η

)1/(α+η)
< ∞. (3.8)

Then the tail behaviour of Y =
∑∞

k=0 AkXk is given by

nP

( ∞∑

k=0

AkXk ∈ an·
)

v→ ν̃(·) :=
∞∑

k=0

E
(
ν ◦ A−1

k (·)) (3.9)

in M+

(
Rq\{0}).

In particular, provided there is a relatively compact K ∈ B (
Rq\{0}) and an index

j ∈ N0 such that E
(
ν

(
A−1

j (K)
))

> 0, Y =
∑∞

k=0 AkXk is regularly varying with index α,
measure ν̃ and normalizing sequence (an).

Again condition (3.7), resp. (3.8), is independent of the norm used. The proof below
indicates that under appropriately adapted summability conditions one should be able to
extend the result to independent (Xk) that are regularly varying with common index and
normalizing sequence, but different measures νXk

, and further to the case of Rdk-valued Xi

and Mqdk
-valued Ak with possibly different di. Since such extensions are of no relevance

in our later studies, we do not pursue them.
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Proof: We only prove (3.9). The other assertions are shown as in Theorems 3.16 and
3.18.

To prove (3.9) we employ Proposition 3.4. Let K be a compact subset of Rd\{0}. Let
ε := dist(K, 0) denote the distance of the set K from 0 w.r.t. ‖ · ‖. For 0 < δ < ε the set
Kδ = {x ∈ Rd : dist(K, x) ≤ δ} ∪K is compact in Rd\{0} (the union with K is taken to
avoid notational ambiguities for K ∩Rd\Rd 6= ∅). The event

∑∞
k=0 AkXk ∈ anK is part of

the event that
∑L

k=0 AkXk ∈ anKδ or a−1
n

∥∥∑∞
k=L+1 AkXk

∥∥ > δ for any integer L. From

the triangle inequality it is immediate that a−1
n

∥∥∑∞
k=L+1 AkXk

∥∥ > δ is in turn part of the
event

∑∞
k=L+1 ‖Ak‖‖Xk‖ > anδ. Thus:

nP

( ∞∑

k=0

AkXk ∈ anK

)
≤ nP

(
L∑

k=0

AkXk ∈ anKδ

)
+ nP

( ∞∑

k=L+1

‖Ak‖‖Xk‖ > anδ

)

Letting n → ∞ we can apply Theorem 3.17 in connection with Proposition 3.4 (iii) on
the first and Theorem 3.18 (with d = 1) in connection with Proposition 3.4 (ii) to the
second term:

lim sup
n→∞

nP

( ∞∑

k=0

AkXk ∈ anK

)
≤ lim sup

n→∞
nP

(
L∑

k=0

AkXk ∈ anKδ

)

+ lim sup
n→∞

nP

( ∞∑

k=L+1

‖Ak‖‖Xk‖ > anδ

)

≤
L∑

k=0

E
(
ν ◦ A−1

k (Kδ)
)

+ δ−αν((1,∞])
∞∑

k=L+1

E(‖Ak‖α).

As in Theorem 3.18 it is shown that
∑∞

k=0 E(‖Ak‖α) < ∞ and so the second term vanishes
for L →∞. Since Radon measures on polish spaces are regular (cf. Bauer (1992, Def. 25.3
and Korollar 26.4), it holds that E

(
ν ◦ A−1

k (Kδ)
) → E

(
ν ◦ A−1

k (K)
)

for δ → 0. Moreover,
for all δ < ε it is immediate to see that

∑∞
k=0 E

(
ν ◦ A−1

k (Kδ)
)

is finite and monotonically
increasing in δ. Thus letting first L →∞ and afterwards δ → 0:

lim sup
n→∞

nP

( ∞∑

k=0

AkXk ∈ anK

)
≤

∞∑

k=0

E
(
ν ◦ A−1

k (K)
)
.

Consider now any open relatively compact subset G of Rd\{0}. There exists a sequence
(Gm) of open relatively compact sets of G such that Gm ⊂ Gm ⊂ Gm+1 ↗ G (strict
inclusions). This implies dist(Gm, Gc) > 0 and so for fixed integers L,m there exists an
ε > 0 which only depends upon m such that, if

L∑

k=0

AkXk ∈ anGm and

∥∥∥∥∥
∞∑

k=L+1

AkXk

∥∥∥∥∥ ≤ anε,

then ∞∑

k=0

AkXk ∈ anG
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holds.
Therefore

nP

( ∞∑

k=0

AkXk ∈ anG

)
≥ nP

(
L∑

k=0

AkXk ∈ anGm,

∥∥∥∥∥
∞∑

k=L+1

AkXk

∥∥∥∥∥ ≤ anε

)

≥ nP

(
L∑

k=0

AkXk ∈ anGm

)
− nP

(∥∥∥∥∥
∞∑

k=L+1

AkXk

∥∥∥∥∥ > anε

)

≥ nP

(
L∑

k=0

AkXk ∈ anGm

)
− nP

( ∞∑

k=L+1

‖Ak‖‖Xk‖ > anε

)
,

where we used P (A ∩ B) = P (A\Bc) ≥ P (A) − P (Bc) in the second and the triangle
inequality in the last step. Letting n →∞ we can apply Theorem 3.17 in connection with
Proposition 3.4 (iii) on the first and Theorem 3.18 in connection with Proposition 3.4 (ii)
to the second term and obtain:

lim inf
n→∞

nP

( ∞∑

k=0

AkXk ∈ anG

)
≥ lim inf

n→∞
nP

(
L∑

k=0

AkXk ∈ anGm

)

− lim inf
n→∞

nP

( ∞∑

k=L+1

‖Ak‖‖Xk‖ > anε

)

≥
L∑

k=0

E
(
ν ◦ A−1

k (Gm)
)− ε−αν((1,∞])

∞∑

k=L+1

E(‖Ak‖α).

For L → ∞ the second term vanishes as before. Since ν̃ is a Radon measure, one ob-
tains that

∑∞
k=0 E

(
ν ◦ A−1

k (G)
)

is finite and due to the regularity E
(
ν ◦ A−1

k (Gm)
) →

E
(
ν ◦ A−1

k (G)
)

as m → ∞ monotonically. A bounded convergence argument thus es-
tablishes

∑∞
k=0 E

(
ν ◦ A−1

k (Gm)
) → ∑∞

k=0 E
(
ν ◦ A−1

k (G)
)

as m → ∞. Thus letting first
L →∞ and afterwards m →∞:

lim inf
n→∞

nP

( ∞∑

k=0

AkXk ∈ anG

)
≥

∞∑

k=0

E
(
ν ◦ A−1

k (G)
)
.

Combining the above results for compact and open relatively compact sets gives (3.9)
using Proposition 3.4 (iii). 2

The criteria involving the finiteness of series in the foregoing two theorems are more or
less motivated by the lines of proof, they are minimally necessary for the used arguments
to work. However, one will in general prefer more straightforward sufficient criteria. A
first step is the following.

Lemma 3.20 Assume that (Ak)k∈N0 is a sequence of Mqd(R)-valued random variables
and that there is an β > 0 such that Ak ∈ Lβ for all k ∈ N0. If, moreover,

lim sup
k→∞

E
(‖Ak‖β

)1/k
< 1, (3.10)



44 CHAPTER 3. VAGUE CONVERGENCE AND REGULAR VARIATION

then it holds for all 0 < γ ≤ β and τ > 0 that

∞∑

k=0

E (‖Ak‖γ) < ∞

and ∞∑

k=0

E (‖Ak‖γ)1/τ < ∞.

Note that condition (3.10) is independent of the employed norm. Similar conditions are
used heavily throughout the thesis.
Proof: Jensen’s inequality applied to the concave map x 7→ x

γ
β gives E(‖Ak‖γ) ≤

E(‖Ak‖β)
γ
β . Noting that for any positive sequence (ck) and arbitrary r > 0 we have

that
lim sup

k→∞
ck < 1 ⇔ lim sup

k→∞
cr
k < 1,

all claims immediately follow from the root criterion of standard analysis. 2

Lemma 3.21 Consider the basic set-up of Theorem 3.19. If, moreover, for some β > α

lim sup
k→∞

E
(‖Ak‖β

)1/k
< 1, (3.11)

then the condition (3.7), resp. (3.8), is satisfied for all admissible η with η ≤ β − α.



Chapter 4

A First Order Stochastic Difference
Equation

In this section we first give a general theorem on the existence of a unique stationary
solution to a general stochastic difference equation of the form Yn = AnYn−1 + Cn due to
Brandt (1986) (cf. also Brandt, Franken and Lisek (1990, Section 9.1)). The version we
give below is a straightforward extension of Brandt’s result and has first been noted in
Bougerol and Picard (1992b). Later on the existence of moments is studied.

4.1 Stationary Solutions to Yn = AnYn−1 + Cn

Our aim is to establish a general theorem for a stochastic difference equation of the type
Yn = AnYn−1 + Cn to have a stationary and ergodic solution:

Theorem 4.1 (cf. Brandt (1986, Th. 1), Bougerol and Picard (1992b, Th. 1.1))
Let (An, Cn) ∈ Md(R)×Rd, n ∈ Z, be a stationary ergodic process with finite E(log+ ‖A0‖)
and E(log+ ‖C0‖) (where log+(x) := max(0, log(x))). Assume furthermore that

γ := inf
n∈N0

(
1

n + 1
E (log ‖A0A−1 · · ·A−n‖)

)
< 0. (4.1)

Then the stochastic process X = (Xn)n∈Z defined by

Xn =
∞∑

k=0

AnAn−1 · · ·An−k+1Cn−k = Cn +
∞∑

k=1

AnAn−1 · · ·An−k+1Cn−k (4.2)

is the unique stationary solution of the stochastic difference equation Yn = AnYn−1 + Cn.
Moreover, X is ergodic and the series in equation (4.2) converges almost surely absolutely.

Let V0 be an arbitrary Rd-valued random variable defined on the same probability space
as (An, Cn)n∈Z and define (Vn)n∈N recursively via Vn = AnVn−1 + Cn then

‖Xn − Vn‖ a.s.→ 0 with n →∞ (4.3)

and, in particular,

Vn
D→ X0 with n →∞, (4.4)

i.e. the distribution of Vn converges to the stationary distribution of Xn.

45
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‖ · ‖ denotes any norm on Rd and the induced operator norm on Md(R). Furthermore, γ
as defined in (4.1) is usually called (top) Lyapunov coefficient or exponent (in the special
case d = 1 we have γ = infn∈N0 ((1/(n + 1))

∑n
k=0 E(log |A−k|)) = E(log |A0|)). Generally

a simple condition ensuring γ < 0 is E(log ‖A0‖) < 0. Unfortunately, this condition is
too restrictive to be of use in most interesting cases with d being greater than one. To be
able to prove the above result we need the following lemma on the behaviour of ergodic
sequences of random matrices, which is Theorem 1 of Furstenberg and Kesten (1960)
slightly adapted to our set-up. An inspection of the proof in Furstenberg and Kesten
(1960) immediately gives (4.5) and shows that their result holds for any algebra norm
and not only for the column-sum norm they employ.

Lemma 4.2 (cf. Furstenberg and Kesten (1960, Th. 1)) Let A = (An)n∈Z be an
Md(R)-valued stationary random sequence and let ‖·‖ denote any algebra norm on Md(R).
Then

lim
n→∞

1

n + 1
E(log ‖A0A−1 · · ·A−n‖) = inf

n∈N0

(
1

n + 1
E(log ‖A0A−1 · · ·A−n‖)

)
=: γ (4.5)

and, provided A is also ergodic and E(log+ ‖A0‖) < ∞,

lim sup
n→∞

1

n + 1
log ‖Am · · ·Am−n‖ ≤ γ a.s. ∀m ∈ Z (4.6)

and

lim sup
n→∞

1

n + 1
log ‖Am+n · · ·Am‖ ≤ γ a.s. ∀m ∈ Z. (4.7)

Moreover, γ is independent of the algebra norm used and E(log+ ‖A0‖) is finite for all
norms, if it is finite for only one.

We prove below only the very last claim. The proof of the other results proceeds totally
along the lines of the proof of Theorem 1 in Furstenberg and Kesten (1960) and is thus
omitted. The first assertion (4.5) is a consequence of the submultiplicativity of ‖ · ‖ and
a lemma on subadditive sequences to be found e.g. in Hille and Phillips (1957):

Lemma 4.3 (Hille and Phillips (1957, Lemma 4.7.1)) Let (an)n∈N be a subadditive

sequence of real numbers, i.e. an+m ≤ an + am for all n,m ∈ N, then lim
n→∞

an

n
= inf

n∈N
an

n
.

The second assertion (4.6) then follows from the first one by using the properties of ergodic
sequences given in Section 2.5.

Actually, it can be shown that in (4.6) and (4.7) “lim sup” can be replaced by “lim”
and that equality holds (see Furstenberg and Kesten (1960, Th. 2)), but the proof of this
result is rather involved and for our purposes (4.6) suffices. Note, however, that (4.6) with
equality is also an immediate consequence of the results on general subadditive processes
reported in Kingman (1968) and Kingman (1973).
Proof of Th. 4.2: As said before, only the fact that γ is independent of the algebra norm
and that finiteness of E(log+ ‖A0‖) for one norm implies finiteness for all norms are to be
shown.
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Let ‖ · ‖ and ‖ · ‖∗ be two norms and E(log+ ‖A0‖) < ∞. There exists a finite M >
0 with ‖ · ‖∗ ≤ M‖ · ‖. Thus E(max(0, log ‖A0‖∗)) ≤ E(max(0, log ‖A0‖ + log M)) ≤
E(max(0, log ‖A0‖)) + | log M | < ∞.

Assume now that ‖ · ‖ and ‖ · ‖∗ are algebra norms. There exists also a 0 < m ≤ M
such that ‖ · ‖∗ ≥ m‖ · ‖. This gives for all natural n

1

n + 1
log ‖A0 · · ·A−n‖+log m

n + 1
≤ 1

n + 1
log ‖A0 · · ·A−n‖∗ ≤ 1

n + 1
log ‖A0 · · ·A−n‖+log M

n + 1
.

Hence,

lim
n→∞

1

n + 1
E(log ‖A0 · · ·A−n‖) = lim

n→∞
1

n + 1
E(log ‖A0 · · ·A−n‖∗)

and so γ is independent of the particular algebra norm used. 2

Proof of Theorem 4.1: (adapted from Brandt (1986) and Bougerol and
Picard (1992b))
Step 1: Convergence of the series in (4.2).
E(log+ ‖C0‖) < ∞ implies via

E(log+ ‖C0‖) =

∫ ∞

0

P (log+ ‖C0‖ > x)dx = −γ

2

∫ ∞

0

P (log+ ‖C0‖ > −γ

2
s)ds

the stationarity of (Cn) and the integral comparison criterion from standard analysis that

∞∑

k=0

P

(
log+ ‖Cn−k‖ > −kγ

2

)
< ∞.

Since

lim sup
k→∞

{
ω ∈ Ω :

log+ ‖Cn−k(ω)‖
k

>
−γ

2

}
⊇

{
ω ∈ Ω : lim sup

k→∞

log+ ‖Cn−k(ω)‖
k

>
−γ

2

}
,

the Borel-Cantelli lemma implies that

lim sup
k→∞

1

k
log+ ‖Cn−k‖ ≤ −γ

2
a.s.

Together with Lemma 4.2 and the stationarity of (An)n∈Z we thus obtain

lim sup
k→∞

1

k
log ‖An · · ·An−k+1Cn−k‖ ≤ lim sup

k→∞

1

k
(log ‖An · · ·An−k+1‖+ log ‖Cn−k‖) ≤ γ

2

a.s. This yields

lim sup
k→∞

‖An · · ·An−k+1Cn−k‖1/k ≤ exp
(γ

2

)
< 1 a.s.

and so by the root criterion from standard analysis the series
∑∞

k=0 AnAn−1 · · ·An−k+1Cn−k

converges almost surely absolutely.
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Step 2: X is a solution of Yn = AnYn−1 + Cn.

AnXn−1 + Cn = An

(
Cn−1 +

∞∑

k=1

An−1 · · ·An−kCn−k−1

)
+ Cn

= Cn + AnCn−1 +
∞∑

k=2

An · · ·An−k+1Cn−k = Xn

Step 3: Stationarity and Ergodicity of X
On the range D ⊂ (Md(R) × Rd)Z of (An, Cn)n∈Z define for n ∈ Z the functions gn as
gn((ai, ci)i∈Z) =

∑∞
k=0 an · · · an−k+1cn−k. The sequence (gn(Ai, Ci)i∈Z)n∈Z is according to

step 1 a.s. a sequence with all elements being finite, since Z is countable, and we have
X = (gn ((Ai, Ci)i∈Z))n∈Z. Moreover, each gn is obviously a limit of measurable functions
and thus measurable. A trivial calculation shows that gn−1 = gn ◦ B with B being the
back-shift operator on (Md(R)×Rd)Z. Now Lemma 2.25 shows that X is stationary and
ergodic.
Step 4: Uniqueness of the solution.
Let X = (Xn) and Z = (Zn) be two solutions of Yn = AnYn−1 + Cn. For k ∈ N we have

‖Xn − Zn‖ = ‖An · · ·An−k(Xn−k−1 − Zn−k−1)‖ ≤ ‖An · · ·An−k‖ · (‖Xn−k−1‖+ ‖Yn−k−1‖)
and from 0 > γ ≥ lim supk→∞ log(‖An · · ·An−k‖)/k we get

‖An · · ·An−k‖ = exp (log(‖An · · ·An−k‖)/k)k k→∞−→ 0 a.s.

This gives that ‖An · · ·An−k‖ · (‖Xn−k−1‖+ ‖Yn−k−1‖) converges to zero in probability
(use e.g. Brockwell and Davis (1991, Prop. 6.1.1 (ii))) and thus a.s. along a subsequence.
Hence, ‖Xn − Zn‖ is necessarily a.s. zero, so X

a.s.
= Z.

Step 5: Convergence to the stationary solution for arbitrary starting values V0.
The recursive definition of (Vn)n∈N immediately gives for all n ∈ N:

Vn = Cn +
n−1∑

k=1

AnAn−1 · · ·An−k+1Cn−k + An · · ·A1V0. (4.8)

Thus

‖Xn − Vn‖ =

∥∥∥∥∥
∞∑

k=n

An · · ·An−k+1Cn−k − An · · ·A1V0

∥∥∥∥∥

=

∥∥∥∥∥An · · ·A1

(
C0 +

∞∑

k=n+1

A0 · · ·An−k+1Cn−k − V0

)∥∥∥∥∥
= ‖An · · ·A1(X0 − V0)‖
≤ ‖An · · ·A1‖(‖X0 + Y0‖) a.s.→ 0 with n →∞,

since ‖An · · ·A1‖ = exp (log(‖An · · ·A1‖)/n)n n→∞−→ 0 a.s. as argued above. (4.4) now is
implied by the standard theory on convergence in distribution (see e.g. Brockwell and
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Davis (1991, Prop. 6.3.3)), since Xn
D
= X0 for all n ∈ Z. 2

The following result on the Lyapunov exponent is sometimes useful to show that strict
negativity of γ is a necessary condition for some particular stochastic recurrence equation
to have a solution.

Lemma 4.4 (Bougerol and Picard (1992b, Lemma 3.4)) Let (An)n∈Z be an er-
godic and stationary sequence of random matrices in Md(R). If E(log+ ‖A0‖) is finite and
limn→∞ ‖A0A−1 · · ·A−n‖ = 0 a.s., then the top Lyapunov exponent

γ = inf
n∈N0

(
1

n + 1
E (log ‖A0A−1 · · ·A−n‖)

)

is strictly negative.

4.2 Existence of Moments

In the following we give conditions ensuring that the solution of Yn = AnYn−1 + Cn with
stationary and ergodic(An, Cn) is in Lp for some p > 0. For a stochastic difference equation
with (An, Cn) being a sequence in R2 some results are already to be found in Karlsen
(1990b). Saporta (2004a) briefly mentions conditions for the existence of moments, if (An)
and (Cn) are assumed to be independent, and the one dimensional case is further shortly
studied in Saporta (2004b). First we note that instead of considering the limit behaviour of
the logarithm of the norm of a product of random matrices (i.e. the Lyapunov coefficient)
one can look at any positive power.

Lemma 4.5 Let A = (At)t∈Z be an Md(R) valued stationary random sequence and ‖ · ‖
be any algebra norm over Md(R). If for some s > 0

lim sup
n→∞

E(‖A0 · · ·A−n‖s)1/(n+1) =: γs < 1

or
lim sup

n→∞
‖A0 · · ·A−n‖1/(n+1)

L∞ =: γ∞ < 1,

then

lim
n→∞

1

n + 1
E(log ‖A0 · · ·A−n‖) < 0.

All limits above are independent of the algebra norm used.

Obviously, one has lim supn→∞ E(‖A0 · · ·A−n‖s)1/(n+1) < 1, if and only if lim supn→∞ ‖A0

· · ·A−n‖1/(n+1)
Ls < 1, in the case 1 ≤ s < ∞.

Proof: The independence from the algebra norm employed is again an immediate con-
sequence of the equivalence of any two norms and the fact that we have limn→∞ m1/(n+1) =
1 for any m > 0.

Assume now that the L∞-condition above holds. Then for some ε such that γ∞ <
ε < 1 there is an N ∈ N such that ‖A0 · · ·A−n‖1/(n+1) < ε < 1 a.s. ∀n ≥ N . Taking
the logarithm, the expectation and the limit for n → ∞ (which exists by Lemma 4.2)
concludes the proof.
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If the asymptotic moment condition holds for some s > 0, we get from the concavity
of the logarithm, Jensen’s inequality and again Lemma 4.2

0 >
1

s
lim sup

n→∞
log

(
E (‖A0 · · ·A−n‖s)1/(n+1)

)

≥ lim sup
n→∞

1

s(n + 1)
E (log ‖A0 · · ·A−n‖s) = lim

n→∞
1

n + 1
E(log ‖A0 · · ·A−n‖).

2

In some cases it is possible to replace the limes superior by a limit in the Lemma above.

Lemma 4.6 Let A = (At)t∈Z be an Md(R) valued stationary random sequence and ‖ · ‖
be any algebra norm over Md(R).

(i) If A0 ∈ L∞,

γ∞ = lim
n→∞

‖A0 · · ·A−n+1‖1/n
L∞ = inf

n∈N
‖A0 · · ·A−n+1‖1/n.

(ii) If (At) is an i.i.d. sequence and A0 ∈ Ls for some s ∈ R+, it holds that

γs = lim
n→∞

E(‖A0 · · ·A−n+1‖s)1/n = inf
n∈N

E(‖A0 · · ·A−n+1‖s)1/n.

Note that for notational ease we often writelim sup generally in the following, even if the
above Lemma is applicable.
Proof: In the case (i) we have

log ‖A0 · · ·A−(n+m)+1‖L∞ ≤ log ‖A0 · · ·A−n+1‖L∞ + log ‖A−n · · ·A−n−m+1‖L∞

= log ‖A0 · · ·A−n+1‖L∞ + log ‖A0 · · ·A−m+1‖L∞

and this gives via Lemma 4.3

lim
n→∞

1

n
log ‖A0 · · ·A−n+1‖L∞ = lim

n→∞
log ‖A0 · · ·A−n+1‖1/n

L∞ = inf
n∈N

log ‖A0 · · ·A−n+1‖1/n
L∞ .

The continuity and strict monotonicity of the exponential function now shows (i). For (ii)
one observes

log E(‖A0 · · ·A−(n+m)+1‖s) ≤ log E(‖A0 · · ·A−n+1‖s) + log E(‖A−n · · ·A−n−m+1‖s)

= log E(‖A0 · · ·A−n+1‖s) + log E(‖A0 · · ·A−m+1‖s)

and proceeds analogously. 2

The next Theorem gives an extension of Theorem 4.1 by considering moments of the
solution of the difference equation and is a straightforward extension of Karlsen (1990b,
Th. 3.1) to the multidimensional set-up.
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Theorem 4.7 Let (An, Cn) ∈ Md(R) × Rd, n ∈ Z, be a stationary ergodic process with
finite E(log+ ‖A0‖) and E(log+ ‖C0‖) (where log+(x) := max(0, log(x))). Assume fur-
thermore that

γ := inf
n∈N0

(
1

n + 1
E (log ‖A0A−1 · · ·A−n‖)

)
< 0, (4.9)

that A0 · · ·A−k+1C−k ∈ Lp holds for all k ∈ N0 and some p > 0 and that for 1 ≤ p ≤ ∞
∞∑

k=0

‖A0 · · ·A−k+1C−k‖Lp , (4.10)

respectively for 0 < p < 1

∞∑

k=0

E(‖A0 · · ·A−k+1C−k‖p) =
∞∑

k=0

dLp(A0 · · ·A−k+1C−k, 0), (4.11)

converges. Then the stochastic process X = (Xn)n∈Z defined by

Xn =
∞∑

k=0

AnAn−1 · · ·An−k+1Cn−k = Cn +
∞∑

k=1

AnAn−1 · · ·An−k+1Cn−k (4.12)

is the unique stationary solution of the stochastic difference equation Yn = AnYn−1 + Cn.
Moreover, X is ergodic and in Lp and the series in equation (4.12) converges almost surely
absolutely and in Lp.

It is clear that, if (4.10) holds for some p ≥ 1, it holds for all r ∈ [1, p] as well. However, if
(4.11) holds for some p ∈ (0, 1) this does not imply that it holds for all smaller values of p as
well. Yet, of course, if X ∈ Lp for some p > 0, then X ∈ Lr for all r ∈ (0, p]. Note, however,
that the asymptotic conditions given in the next lemmata are much better behaved.
If there is one p ∈ (0,∞] that fulfils the asymptotic condition, then the asymptotic
conditions for all s ∈ (0, p] are satisfied as well (use Jensen’s inequality as in the proof of
Lemma 3.20).
Proof: Only the convergence of the series in Lp needs to be shown, since this implies that
(Xt) is a sequence of random variables in Lp. Furthermore, due to the stationarity only
X0 needs to be considered. If 1 ≤ p ≤ ∞, the assumed absolute convergence (in Lp) (4.10)
of the series immediately gives the convergence of the series defining X0 in Lp, since Lp

is a Banach space for such p.
Consider now the case 0 < p < 1. The following properties of dLp are obvious from

the definition:

dLp(X, Y ) = dLp(X − Y, 0) ∀X, Y ∈ Lp, (4.13)

dLp(X + Y, 0) = dLp(X,−Y ) ≤ dLp(X, 0) + dLp(Y, 0) ∀X, Y ∈ Lp. (4.14)

So one obtains for m,n ∈ N, m > n,

dLp

(
m∑

k=0

A0 · · ·A−k+1C−k,

n∑

k=0

A0 · · ·A−k+1C−k

)
= dLp

(
m∑

k=n+1

A0 · · ·A−k+1C−k, 0

)

≤
m∑

k=n+1

dLp (A0 · · ·A−k+1C−k, 0) .
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Thus the assumptions imply that (
∑m

k=0 A0 · · ·A−k+1C−k)m∈N is a Cauchy sequence in Lp

and hence convergent, since by Theorem 2.12 Lp is complete. 2

The next theorems are concerned with conditions ensuring (4.10), resp. (4.11). A simple
consequence of the root criterion of standard analysis is:

Lemma 4.8 Let 1 ≤ p ≤ ∞, resp. 0 < p < 1, and assume that

lim sup
k→∞

‖A0 · · ·A−k+1C−k‖1/k
Lp < 1,

resp.

lim sup
k→∞

(E(‖A0 · · ·A−k+1C−k‖p))1/k < 1,

holds. Then (4.10), resp. (4.11), is fulfilled.

Note that for finite p ≥ 1 one has

lim sup
k→∞

‖A0 · · ·A−k+1C−k‖1/k
Lp < 1 ⇔ lim sup

k→∞
(E(‖A0 · · ·A−k+1C−k‖p))1/k < 1.

Using the Hölder inequality one can give a criterion to check (4.10), resp. (4.11), that
also ensures the negativity of the Lyapunov coefficient. For the one-dimensional case a
similar result is Karlsen (1990b, Corollary 3.1).

Proposition 4.9 Let p ∈ (0,∞). If there exist r, s ≥ 1 with 1/r + 1/s = 1, such that
A0 · · ·A−k+1 ∈ Lpr ∀k ∈ N, lim supk→∞ E(‖A0 · · ·A−k+1‖pr)1/k < 1 for 0 < pr < ∞, resp.

limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 for pr = ∞, and C0 ∈ Lps, then (4.9) and (4.10) for p ≥ 1,

resp. (4.11) for 0 < p < 1, hold.

Proof: (4.9) is implied by Lemma 4.5. The Hölder inequality gives

E(‖A0 · · ·A−k+1C−k‖p) ≤ ‖A0 · · ·A−k+1‖p
Lpr‖C−k‖p

Lps ,

which implies

lim sup
k→∞

E(‖A0 · · ·A−k+1C−k‖p)1/k ≤ lim sup
k→∞

(
‖A0 · · ·A−k+1‖p/k

Lpr‖C−k‖p/k
Lps

)
< 1.

Thus the assumptions of Lemma 4.8 are fulfilled and this gives that (4.10), resp. (4.11),
holds. 2

An important consequence is that, provided A0 · · ·A−k+1 ∈ L∞ for all natural k, which
especially is the case, if the stationary distribution of An has bounded or finite support,
and limk→∞ ‖A0 · · ·A−k+1‖1/k

L∞ < 1, the solution (Xn) to the stochastic difference equation
has a p-th moment, if the noise sequence (Cn) has one.

It remains to give a criterion for Xn to be in L∞:

Proposition 4.10 If A0 ∈ L∞, limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 and C0 ∈ L∞, then (4.9)

and (4.10) with p = ∞ hold.
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Proof: A0 ∈ L∞ gives A0 · · ·A−k+1 ∈ L∞ for all k ∈ N and (4.9) is implied by Lemma
4.5. Furthermore, we have

lim sup
k→∞

‖A0 · · ·A−k+1C−k‖1/k
L∞ ≤ lim sup

k→∞

(
‖A0 · · ·A−k+1‖1/k

L∞‖C−k‖1/k
L∞

)
< 1.

Thus the assumptions of Lemma 4.8 are fulfilled with p = ∞ and this gives that (4.10)
holds. 2

It is straightforward to obtain a very simple condition ensuring

lim
k→∞

‖A0 · · ·A−k+1‖1/k
L∞ < 1.

Lemma 4.11 If there is a c < 1 such that ‖A0‖ < c a.s., then limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ <

1 holds.

The proof is trivial and unfortunately the above lemma is too restrictive to be (at least
straightforwardly) applicable in most interesting cases. Note that ‖A0‖ < c a.s. with c < 1
is equivalent to ‖A0‖L∞ < 1. Furthermore, it may at a first glance look strange to demand
‖A0‖ < c a.s. for some c < 1 instead of ‖A0‖ < 1 a.s.. But in the later case it is possible

to have ‖A0‖L∞ = 1 and even ‖A0 · · ·A−k+1‖1/k
L∞ = 1 for all natural k (a simple example

is that (At) are i.i.d. random variables drawn from the uniform distribution on (0; 1)).

4.3 Regularly Varying Tails

The aim of this section is to study the tail behaviour of the stationary solution of the
stochastic difference equation Yn = AnYn−1 + Cn with stationary and ergodic input
(An, Cn) ∈ Md(R) × Rd. We restrict ourselves to two important and essentially differ-
ent cases when regularly varying tail behaviour shows up. In both cases we cannot work
with a general stationary and ergodic input (An, Cn) but need rather heavy independence
assumptions.

4.3.1 Regularly Varying Noise

For the remainder of this section we assume (Cn)n∈Z to be an i.i.d. regularly varying noise
sequence and further that the sequences (An)n∈Z and (Cn)n∈Z are independent of each
other. However, no restrictions whatsoever are imposed upon the dependence structure of
(An). Our results obtained in the following are a generalization of Resnick and Willekens
(1991, Sec. 3), who demand that also (An) be i.i.d. They are also similar to those of Grey
(1994) and Konstantinides and Mikosch (2004), where the one dimensional case with the
joint sequence (An, Cn)n∈Z being assumed to be i.i.d., but possible dependence between
An and Cn is studied. Another related paper is Davis and Resnick (1996) who studied
bilinear processes.

Using Theorem 4.1 it follows rather immediately from Theorem 3.19 that under appro-
priate technical conditions the stationary distribution of the solution X0 to the stochastic
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difference equation is regularly varying with the same index and normalizing sequence
as the noise C0. For d = 1 this means, in particular, that the distributions of X0 and
ε0 are tail equivalent and, provided the upper tail is nondegenerate, both belong to the
maximum domain of attraction of the Fréchet distribution Φα, where α is the common
index of regular variation (see Leadbetter, Lindgren and Rootzén (1983), Resnick (1987,
Sec. 1.2, 1.5) or Embrechts, Klüppelberg and Mikosch (1997, Sec. 3.3.1)). Note that at
least one of the two tails is always non-degenerately regularly varying.

Theorem 4.12 Let An ∈ Md(R), n ∈ Z, be a stationary ergodic process and Cn a se-
quence of i.i.d. regularly varying Rd-valued random variables with index α > 0, measure
ν and normalizing sequence (an) such that (iv) in Theorem 3.9 holds. Assume that the
sequences (An)n∈Z and (Cn)n∈Z are independent of one another and, furthermore, that

γ := inf
n∈N0

(
1

n + 1
E (log ‖A0A−1 · · ·A−n‖)

)
< 0. (4.15)

If α < 1, assume there is an 0 < η < α with α + η < 1 such that A0 · · ·A−k+1 ∈ Lα+η

for all k ∈ N0 and that

∞∑

k=0

E
(‖A0 · · ·A−k+1‖α+η

)
< ∞,

∞∑

k=0

E
(‖A0 · · ·A−k+1‖α−η

)
< ∞. (4.16)

If α ≥ 1, assume there is 0 < η < α such that A0 · · ·A−k+1 ∈ Lα+η for all k ∈ N0 and

∞∑

k=0

E
(‖A0 · · ·A−k+1‖α+η

)1/(α+η)
< ∞,

∞∑

k=0

E
(‖A0 · · ·A−k+1‖α−η

)1/(α+η)
< ∞. (4.17)

Then the assertions of Theorem 4.1 hold. Moreover, X0 (and therefore the “one”-
dimensional marginal distribution of X = (Xn)n∈Z, i.e. the unique stationary solution of
the stochastic difference equation Yn = AnYn−1+Cn) is multivariate regularly varying with
index α, normalizing sequence (an) and measure

ν̃(·) =
∞∑

k=0

E
(
ν ◦ (A0A−1 · · ·A−k+1)

−1 (·)) = ν(·) +
∞∑

k=1

E
(
ν ◦ (A0A−1 · · ·A−k+1)

−1 (·)) .

(4.18)
Moreover, X0 is in Lβ for all 0 < β < α. If C0 ∈ Lα, then also X0 ∈ Lα.

Proof: It mainly remains to show that all conditions of Theorems 4.1 and 3.19 are satisfied
under the assumptions made. Proposition 2.23 and Theorem 2.24 give that (An, Cn)n∈Z is
a stationary and ergodic sequence. Since A0 ∈ Lα+η, E(log+ ‖A0‖) is finite (because log(x)
is for large x ultimately bounded by any positive power of x). As C0 is regularly varying
with index α, C0 ∈ Lβ for all 0 < β < α (cf. Proposition 3.12) and thus E(log+ ‖C0‖) < ∞.
From (4.18) it is obvious that ν̃ ≥ ν. So the nondegeneracy of ν ensures that there is a
relatively compact K with ν̃(K) > 0.

X0 ∈ β for all 0 < β < α is an immediate consequence of Proposition 3.12. This could
alternatively be shown using Theorem 4.7.
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Assume now C0 ∈ Lα. For α ≥ 1, (4.17) implies immediately that

∞∑

k=0

‖A0 · · ·A−k+1‖Lα < ∞.

Using the independence of (Ak) and (Ck) this gives

∞∑

k=0

‖A0 · · ·A−k+1C−k‖Lα ≤ ‖C0‖Lα

∞∑

k=0

‖A0 · · ·A−k+1‖Lα < ∞.

For 0 < α < 1, (4.16) implies immediately that

∞∑

k=0

E (‖A0 · · ·A−k+1‖α) < ∞.

Using the independence of (Ak) and (Ck) this gives

∞∑

k=0

E (‖A0 · · ·A−k+1C−k‖) ≤ E (‖C0‖α)
∞∑

k=0

E (‖A0 · · ·A−k+1‖α) < ∞.

So Theorem 4.7 gives that X0 ∈ Lα and that the series defining Xn converges in Lα. 2

The above theorem naturally raises the question, whether the regular variation of the
“one”-dimensional marginal distribution of the series X = (Xn)n∈Z is all that can be
shown or whether one can also establish regular variation of the whole sequence X. For
the later one needs to show that all finite dimensional distributions of X are regularly
varying. Unfortunately, a short proof along the lines of Basrak, Davis and Mikosch (2002b,
Cor 2.7) cannot be given in our case, since (Ai)i>k does not have to be independent of Xk.
However, one can still give a rather straightforward but notationally tedious proof using
Theorem 3.19.

Theorem 4.13 If the conditions of Theorem 4.12 are satisfied, the solution X = (Xn)n∈Z
is even regularly varying as a sequence with index α.

Proof: It remains only to show that all finite dimensional distributions of X = (Xn) are
regularly varying. We restrict ourselves to show that the “two”-dimensional marginals are
again regularly varying. It should be obvious that the very same arguments can be used for
all higher dimensional marginals, but the general case is notationally most burdensome.

W.l.o.g. we only consider the joint distribution of X0 and Xh for h ∈ N. From
the series representations of X0 = C0 +

∑∞
k=1 A0A−1 · · ·A−k+1C−k and Xh = Ch +∑∞

k=1 AhAh−1 · · ·Ah−k+1Ch−k we can construct a series representation of (XT
0 , XT

h )T as
follows. Set

Ah =

(
0Md(R)

Id

)

Ah−k =

(
0Md(R)

AhAh−1 · · ·Ah−k+1

)
for k = 1, 2, . . . , h− 1
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A0 =

(
Id

AhAh−1 · · ·A1

)

Ah−k =

(
A0A−1 · · ·Ah−k+1

AhAh−1 · · ·Ah−k+1

)
for k = h + 1, h + 2, . . . .

Obviously one has (XT
0 , XT

h )T =
∑∞

k=0 Ah−kCh−k and that the sequences (Ah−k)k∈N0 and
(Ch−k)k∈N0 are independent of each other. On R2d now consider the norm ‖ ·‖∗ defined via
the norm ‖·‖ used on Rd by ‖(xT

1 , xT
2 )T‖ = max{‖x1‖, ‖x2‖}. For any matrix A ∈ M2d,d(R)

with A = (AT
1 , AT

2 )T where A1, A2 ∈ Md(R) it holds that ‖A‖∗ ≤ max{‖A1‖, ‖A2‖} ≤
‖A1‖ + ‖A2‖. Using (4.16), resp. (4.17), we thus obtain from the definition of Ah−i that
Ah−i ∈ Lα+η for all i ∈ N0 and

∞∑

k=0

E
(‖Ah−k‖α+η

)
< ∞,

∞∑

k=0

E
(‖Ah−k‖α−η

)
< ∞,

if α < 1, respectively
∞∑

k=0

E
(‖Ah−k‖α+η

)1/(α+η)
< ∞,

∞∑

k=0

E
(‖Ah−k‖α−η

)1/(α+η)
< ∞,

if α ≥ 1. So Theorem 3.19 gives that

nP
(
(XT

0 , XT
h )T ∈ an·

) v→ ν̄(·) :=
∞∑

k=0

E
(
ν ◦A−1

h−k(·)
)

as n →∞. Since A−1
h (0Rd ×K) = K for all K ⊆ Rd, the nondegeneracy of ν ensures the

nondegeneracy of ν̄ and, in particular, that (XT
0 , XT

h )T is multivariate regularly varying
with index α, measure ν̄ and normalizing sequence (an). 2

Employing the Lemmata 3.21 and 4.5 we obtain the following result from the above
two theorems which will usually suffice to deal with almost all situations one actually
encounters.

Corollary 4.14 Let An ∈ Md(R), n ∈ Z, be a stationary ergodic process and Cn a
sequence of i.i.d. regularly varying Rd-valued random variables with index α > 0, measure
ν and normalizing sequence (an) such that (iv) in Theorem 3.9 holds. Assume that the
sequences (An)n∈Z and (Cn)n∈Z are independent of one another and furthermore that there
is a β > α such that A0A−1 · · ·A−n ∈ Lβ for all n ∈ N0 and

lim sup
n→∞

E
(‖A0A−1 · · ·A−n‖β

)1/(n+1)
< 1. (4.19)

Then the assertions of Theorem 4.1 hold. Moreover, X0 (and therefore the “one”-
dimensional marginal distribution of X = (Xn)n∈Z, i.e. the unique stationary solution of
the stochastic difference equation Yn = AnYn−1+Cn) is multivariate regularly varying with
index α, normalizing sequence (an) and measure

ν̃(·) =
∞∑

k=0

E
(
ν ◦ (A0A−1 · · ·A−k+1)

−1 (·)) = ν(·) +
∞∑

k=1

E
(
ν ◦ (A0A−1 · · ·A−k+1)

−1 (·)) .

(4.20)
The whole sequence X is also regularly varying with index α.

Furthermore, X0 is in Lβ for all 0 < β < α. If C0 ∈ Lα, then also X0 ∈ Lα.
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4.3.2 Light-Tailed Noise

A by now classical result of Kesten (1973) (and the accompanying paper Kesten (1974))
is that very light-tailed noise can result in a heavy-tailed stationary solution of the ran-
dom difference equation Yn = AnYn−1 + Cn with (An, Cn) ∈ Md(R) × Rd being an i.i.d.
sequence, provided An can have operator norm greater one. Extensions are to be found
in LePage (1983), Saporta, Guivarc’h and LePage (2004) and Saporta (2004a). A very
detailed discussion for the special case d = 1, including an alternative proof, is given
in Goldie (1991). Furthermore examples that light-tailed noise can as well result in a
light-tailed stationary solution, if An is bound to be a contraction, are to be found in
Goldie and Grübel (1996). Recently results in the spirit of those of Kesten were given
in Klüppelberg and Pergamenchtchikov (2004) and the accompanying paper Klüppelberg
and Pergamenchtchikov (2003) together with a streamlined proof. As they focused on
the tail behaviour of autoregressive processes with random coefficients, we will not dis-
cuss their results here, but come back to them in a later section on the tails of random
coefficient ARMA processes.

Let us now briefly repeat the main results below. Note that these results play an im-
portant role in many recent papers, e.g. Davis and Mikosch (1998), Mikosch and Stărică
(2000), Basrak (2000), Basrak, Davis and Mikosch (2002b), Fasen, Klüppelberg and Lind-
ner (2004) and Lindner and Maller (2004) to name a few. As the proofs are rather lengthy
and technical we omit them and refer to the original literature instead. To compare the
results to the ones from the previous section, where we analysed the case of a regularly
varying noise, one only needs to employ Theorem 3.11. It is most noteworthy that the
noise (Cn) in all the coming theorems can be basically arbitrarily light-tailed. This in-
dicates that the regular variation encountered in the stationary solution of the stochastic
recurrence equation is not at all related to the noise, but emerges due to the possible
occurrence of consecutive “large” values in the sequence (An). Moreover, all following
theorems presume that the joint sequence (An, Cn)n∈N is i.i.d., but for fixed n the random
variables An and Cn may well depend upon each other.

The following summary of Kesten’s results under the assumption that (An, Cn) are
positive is taken from Mikosch (2003).

Theorem 4.15 (Kesten (1973, Theorems 3, 4)) Let ((An, Cn))n∈Z be an i.i.d. se-
quence of random matrices An ∈ Md(R) with non-negative entries Aij and of (R+)d-valued
random variables Cn 6= 0 a.s. Assume that the following conditions are satisfied:

(i) There is some η > 0 such that E(‖A1‖η
2) < 1.

(ii) A1 has no zero rows a.s.

(iii) The set

{log ‖anan−1 · · · a1‖2 : n ∈ N, anan−1 · · · a1 > 0 and an, an−1, . . . , a1 ∈ supp(PA1)}

generates a dense subgroup in R with respect to summation and the Euclidean topo-
logy. Here PA1 denotes the distribution of A1 and anan−1 · · · a1 > 0 means that all
entries of the matrix are strictly positive.
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(iv) There exists a κ > 0 such that

E

(
min

i∈{1,...,d}

d∑
j=1

Aij

)κ

≥ dκ/2

and

E
(‖A1‖κ

2 log+ ‖A1‖2

)
< ∞.

Then the following statements hold:

(1) There exists a unique solution κ̃ ∈ (0, κ] to the equation

lim
n→∞

1

n
log E(‖An · · ·A1‖κ̃

2) = 0.

(2) If E(‖C1‖κ̃
2) < ∞, there exists a unique stationary solution (Xn) to the stochastic

recurrence equation Yn = AnYn−1 + Cn which is given by (4.2).

(3) If E(‖C1‖κ̃
2) < ∞, then X1 has the following regular variation (in the sense of

Kesten) properties:
For all x ∈ Rd\{0}, limt→∞ tκ̃P (〈x,X1〉 > t) = w(x) exists and is strictly positive
for all (R+)d-valued vectors x 6= 0.

In particular, all components of X1 are regularly varying with index κ̃.

Observe that condition (i) implies strict negativity of the top Lyapunov coefficient.
Unfortunately, the general case, where the An, Cn are no longer restricted to be

non-negative, is considerably more involved. Below we first repeat the results for the
d-dimensional case from Kesten and then the one-dimensional ones of Goldie (1991).

Theorem 4.16 (Kesten (1973, Theorem 6)) Let ((An, Cn))n∈Z be an i.i.d. sequence
of matrices An ∈ Md(R) and Rd-valued random variables Cn 6= 0 a.s. Assume that the
following conditions are satisfied:

(i) E(log+ ‖A1‖2) < ∞ and the top Lyapunov exponent

γ := inf
n∈N0

(
1

n
E (log ‖A1A2 · · ·An‖2)

)

is strictly negative.

(ii) A1 is invertible a.s.

(iii) For every open set U ∈ Sd−1 and x ∈ Sd−1 there exists an n ∈ N such that

P

(
xTA1A2 · · ·An

‖xTA1A2 · · ·An‖2

∈ U

)
> 0.
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(iv) There exists an n ∈ N, a cube K ⊂ Rd2
and an η > 0 such that the distribution of

A1A2 · · ·An (after using an obvious isomorphism from Md(R) to Rd2
like vec) has a

non-singular (w.r.t. the Lebesgue measure on Rd2
) component with a density f such

that f(x) ≥ η ∀ x ∈ K.

(v) The set

{log ‖anan−1 · · · a1‖2 : n ∈ N, anan−1 · · · a1 ∈ Mρ and an, an−1, . . . a1 ∈ supp(PA1)}
generates a dense subgroup in R with respect to summation and the Euclidean to-
pology. Here PA1 denotes the distribution of A1 and Mρ ⊂ Md(R) are the d × d
matrices over R that have the spectral radius as an algebraically simple eigenvalue
and all other eigenvalues are strictly less in modulus.

(vi) P (C1 = (Id − A1)r) < 1 for all r ∈ Rd.

(vii) There exists a κ > 0 such that

E

((
ρ

((
A1A

T
1

)−1
))−κ/2

)
≥ 1,

E
(‖A1‖κ

2 log+ ‖A1‖2

)
< ∞,

E(‖C1‖κ
2) < ∞.

Then the following statements hold:

(1) There exists a unique stationary solution (Xn) to the stochastic recurrence equation
Yn = AnYn−1 + Cn given by (4.2).

(2) Some κ̃ ∈ (0, κ] exists such that X1 has the following regular variation (in the sense
of Kesten) properties:
For all x ∈ Rd\{0}, limt→∞ tκ̃P (〈x,X1〉 > t) = w(x) exists and is strictly positive.

In particular, all components of X1 are regularly varying with index κ̃.

For refinements see LePage (1983) and Saporta (2004a) and note that the above definition
of the top Lyapunov exponent is equivalent to the one we used previously.

Theorem 4.17 (Goldie (1991, Theorem 4.1)) Let ((An, Cn))n∈Z be an i.i.d. sequence
of R-valued random variables An and Cn. Assume that there is some κ > 0 such that:

(i) E(|A1|κ) = 1,

(ii) E
(|A1|κ log+ |A1|

)
< ∞,

(iii) E(|C1|κ) < ∞.

If, moreover, the conditional law of log |A1| given A1 6= 0 is non-arithmetic, i.e. not
concentrated on any lattice rZ for some r ∈ R, then the following statements hold:

(1) There exists a unique stationary solution (Xn) to the stochastic recurrence equation
Yn = AnYn−1 + Cn given by (4.2).
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(2) X1 has the following regular variation properties:

P (X1 > t) ∼ K+t−κ, t →∞ (4.21)

P (X1 < −t) ∼ K−t−κ, t →∞ (4.22)

with some constants K+ ≥ 0 and K− ≥ 0. Furthermore K+ + K− > 0, iff P (C1 =
(1− A1)r) < 1 for each fixed r ∈ R.

Let (A,C)
D
= (A1, C1) be independent of X

D
= X1. If A ≥ 0 holds almost surely, then

K+ =
E

((
(C + AX)+)κ − (

(AX)+)κ)

κE(|A|κ log |A|) (4.23)

K− =
E

((
(C + AX)−

)κ − (
(AX)−

)κ)

κE(|A|κ log |A|) (4.24)

and else

K+ = K− =
E (|C + AX|κ − |AX|κ)

2κE(|A|κ log |A|) .

As usual ∼ denotes asymptotic equivalence and (x)− = max{−x, 0}. Observe that K+ >
0, resp. K− > 0, imply that the upper, resp. lower, tail of the stationary solution is
regularly varying with index κ. Of course, we do not have to resort to multivariate regular
variation above, but use the one-dimensional Definition 3.6.

From the results of all three theorems above one can under appropriate conditions
rather immediately conclude that the solution (Yn)n∈Z of the stochastic difference equation
is regularly varying as a sequence (see Basrak, Davis and Mikosch (2002b, Cor. 2.7) for
the details). In particular one needs to have that Y1 is regularly varying in the sense of
Kesten, i.e. the limits in the above theorems have to be non-zero, and that the conditions
of Theorem 3.11 (ii), (iii) or (iv) are satisfied.



Chapter 5

Markov-Switching ARMA Models

The aim of this chapter is to introduce (multivariate) Markov switching autoregressive
moving-average (MS-ARMA) time series models, provide conditions for the existence of
a stationary solution of an MS-ARMA equation and study some of their properties.

5.1 Definition

In time series analysis a stationary stochastic process Xt ∈ Rd, t ∈ Z, is said to be a
d-dimensional ARMA(p, q) process (cf. Brockwell and Davis (1991, Definition 11.3.1 and
Definition 3.1.2 for the univariate case)), if

Xt − Φ1Xt−1 − . . .− ΦpXt−p = Zt + Θ1Zt−1 + . . . + ΘqZt−q (5.1)

holds for all t ∈ Z, where Φ1, . . . , Φp, Θ1, . . . , Θq ∈ Md(R) are the parameters and
(Zt)t∈Z ∼ WN(0, Σ) is d-dimensional white noise, i.e. a sequence of uncorrelated ran-
dom variables in Rd with common mean 0 and covariance matrix Σ. The parameters
Φ1, . . . , Φp and Θ1, . . . , Θq are called AR and MA coefficients, respectively. (5.1) is said to
be an ARMA equation. The definition above implies that an ARMA process has mean 0.
If a process (Xt)t∈Z has mean µ ∈ Rd and (Xt−µ)t∈Z is an ARMA(p, q) process, one calls
X an ARMA(p, q) process with mean µ. There are also extensions of ARMA processes to
the case where (Zt) is not (square) integrable (see e.g. Brockwell and Davis (1991, Section
13.3)).

ARMA(p, q) processes are highly tractable and their behaviour and properties are
well-known, see e.g. Brockwell and Davis (1991) and references therein. Yet, they are
incapable of modelling non-linearities in time series. To deal with time series that exhibit
only piecewise linear behaviour, several modifications of the ARMA model have been
used. One such modification are MS-ARMA processes, where the ARMA coefficients are
allowed to change over time according to a Markov chain. Another one is the autoregressive
threshold (TAR) model (see e.g. Brachner (2004) and references therein), where the AR
coefficients vary dependent upon the current value of the process.

Definition 5.1 (MS-ARMA(p, q) process) Let p, q ∈ N0, p + q ≥ 1 and

∆ = (µt, Σt, Φ1t, . . . , Φpt, Θ1t, . . . , Θqt)t∈Z (5.2)

61
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be a stationary and ergodic Markov chain with some (measurable) subset E of the linear
space Rd ×Md(R)1+p+q as state space. Moreover, let ε = (εt)t∈Z be an i.i.d. sequence of
Rd-valued random variables independent of ∆ and set Zt := Σtεt (i.e. the matrix-vector
product of Σt and εt). A stationary process (Xt)t∈Z in Rd is called MS-ARMA(p, q, ∆, ε)
process, if

Xt − Φ1tXt−1 − · · · − ΦptXt−p = µt + Zt + Θ1tZt−1 + · · ·+ ΘqtZt−q (5.3)

holds for all t ∈ Z.
Furthermore, a stationary process (Xt)t∈Z is said to be an MS-ARMA(p, q) process, if

it is an MS-ARMA(p, q, ∆, ε) process for some ∆ and ε satisfying the above conditions.

If p, respectively q, is zero, it is implicitly understood that the autoregressive, respectively
moving-average, terms vanish. Actually, we shall presume p ≥ 1 from now on in order to
avoid degeneracies in the employed representations. This does not effect the generality of
our results, as we can always simply set Φ1t ≡ 0, whenever p was zero otherwise.

The different values that the Markov chain ∆ can assume are called regimes and
w.l.o.g. one can take the sequence (εt) to have zero mean, if εt ∈ L1. If εt is even in L2,
one has cov(Zt|Σt) = Σtcov(εt)Σ

T
t .

The above definition is mainly taken from Francq and Zaköıan (2001). Yet, it is, in
some respects, more general, since we do not require the Markov chain ∆ to have only
a finite state space and the noise to have a finite variance. But on the other hand we
restrict ourselves to an i.i.d. noise sequence (εt) instead of a d-dimensional white noise
sequence. Note, however, that the results in the next sections on stationarity conditions
can immediately be extended to the case of ε being not an i.i.d. but a stationary and
mixing sequence. The above definition is motivated by our interest in studying MS-ARMA
processes in the presence of a noise sequence, that may have no finite second moment,
and the fact that the results on the existence and uniqueness of a stationary solution
to equation (5.3) for given ∆ and ε, given e.g. in Francq and Zaköıan (2001), carry
immediately over to the more general situation characterized above as well. To the best
of our knowledge, MS-ARMA(p, q) processes with driving Markov Chains that may have
non-finite state spaces have not been discussed explicitly in the available literature so far
from a probabilistic point of view. However, regarding maximum likelihood estimation a
compact state space has been allowed in Douc, Moulines and Rydén (2004). Note that
the above definition implies that autoregressive models with i.i.d. random coefficients, as
studied for example by Nicholls and Quinn (1982) or Klüppelberg and Pergamenchtchikov
(2004), are special cases of MS-ARMA models.

5.2 Stationarity and Basic Properties of MS-ARMA

Processes

In this section we will prove conditions under which there exists a unique stationary solu-
tion to an MS-ARMA equation (5.3) for a given parameter chain ∆ and noise sequence
ε. This issue has already been studied by several authors under the assumption of a finite
state space Markov chain ∆. Francq and Zaköıan (2001) give the general stationarity
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condition, which we shall show to be valid for our set-up in the following. Moreover, they
also give conditions for the solution to be second order stationary. Yao (2001) studies
the existence of stationary and square-integrable MS-AR(p) (i.e. MS-ARMA(p,0)) pro-
cesses and Yang (2000) solely studies covariance stationary processes and gives sufficient
conditions that can be considerably weakened, as pointed out in Francq and Zaköıan
(2002). The L2-stationarity and -structure of MS-ARMA models has also been considered
in Zhang and Stine (2001). Related work is furthermore Yao and Attali (2000), who study
non-linear MS-AR processes, i.e. processes that satisfy Xn = f∆n(Xn−1)+εn for a Markov
chain ∆ and a noise sequence ε. They especially look at the cases of sublinear or Lipschitz
continuous functions f∆n . The ergodicity and stationarity of certain non-linear Markov
switching autoregressions is furthermore considered in Francq and Roussignol (1998).

5.2.1 Sufficient Conditions for the Existence of Stationary MS-
ARMA Processes

Using the general results on stochastic difference equations of the form Yn = AnYn−1 +Cn,
we are in a position to give sufficient conditions for the existence of a unique stationary
and ergodic solution to a d-dimensional MS-ARMA(p, q, ∆, ε) equation given by (5.3),

Xt − Φ1tXt−1 − . . .− ΦptXt−p = µt + Zt + Θ1tZt−1 + . . . + ΘqtZt−q,

where as in Definition 5.1 ∆ = (µt, Σt, Φ1t, . . . , Φpt, Θ1t, . . . , Θqt)t∈Z is a stationary and
ergodic Markov chain with some subset of Rd ×Md(R)1+p+q as state space, (εt)t∈Z is an
i.i.d. sequence of Rd-valued random variables independent of ∆ and Zt := Σtεt.

The basic idea is to employ a higher dimensional representation, partly similar to
the state space representation for ARMA-models (see e.g. Brockwell and Davis (1991,
Examples 12.1.5, 12.1.6)), since then the result of Brandt (1986) given previously can be
applied straightforwardly. Note that all zeros appearing below denote the zero in Mm,n(R),
resp. Rd, with the appropriate dimensions m,n, resp. d, being obvious from the context.
We define

Xt =




Xt

Xt−1
...

Xt−p+1

Zt
...

Zt−q+1




∈ Rd(p+q), (5.4)

mt =




µt

0
...
0


 ∈ Rd(p+q), (5.5)
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Σt =




Σt

0
...
0





p− 1

Σt

0
...
0





q − 1




∈ Md(p+q),d(R), (5.6)

Φt =




Φ1t · · · Φ(p−1)t Φpt

Id 0 · · · · · · 0

0
. . . . . .

...
0 · · · 0 Id 0


 ∈ Mdp(R), (5.7)

Θt =




Θ1t · · · Θ(q−1)t Θqt

0 · · · · · · 0

0 · · · · · · ...
0 · · · · · · 0


 ∈ Mdp,dq(R), (5.8)

J =




0 · · · · · · 0
Id 0 · · · 0

0
. . . 0 · · · ...

0 · · · 0 Id 0


 ∈ Mdq(R), (5.9)

At =




Φ1t · · · Φ(p−1)t Φpt Θ1t · · · Θ(q−1)t Θqt

Id 0 · · · · · · 0 0 · · · · · · 0

0
. . . . . . 0 0 · · · · · · ...

0 · · · 0 Id 0 0 · · · · · · ...
0 · · · · · · 0 0 · · · · · · 0
0 · · · · · · 0 Id 0 · · · 0
...

. . . . . .
... 0

. . . 0 · · · ...
0 · · · · · · 0 0 · · · 0 Id 0




=

(
Φt Θt

0 J

)
∈ Md(p+q),d(p+q)(R), (5.10)

Ct = mt + Σtεt. (5.11)

(In the case of a purely autoregressive MS-ARMA equation, i.e. q = 0, it is impli-

citly understood above that Jt and Θt vanish, Xt =
(
XT

t , XT
t−1, . . . , X

T
t−p+1

)T
, Σt =(

ΣT
t , 0T, . . . , 0T

)T
and At = Φt. Moreover, recall that we presume p ≥ 1 w.l.o.g.)

Then (5.3) has the representation

Xt = AtXt−1 + Ct (5.12)

in this higher dimensional set-up. We obviously have that any (stationary) solution of
(5.3) leads via the above transformations to a (stationary) solution of (5.12) and, vice
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versa, that the first component of a (stationary) solution of (5.12) is also a (station-
ary) solution of (5.3). Moreover, an ergodic solution of (5.12) gives also an ergodic
solution of (5.3), as a straightforward application of Lemma 2.25 to the map Xt =
(Xt, . . . , Xt−p+1, Zt, . . . , Zt−q+1)

T 7→ Xt shows.

Proposition 2.23 and Theorem 2.24 imply that the joint random sequence (∆, ε) =
((∆t, εt))t∈Z is stationary and ergodic and thus an obvious application of Lemma 2.25
shows that the transformed sequence (A,C) = ((At,Ct))t∈Z is stationary and ergodic.
Hence, we obtain the following result from Theorem 4.1 stating sufficient conditions for
(5.3) to have a solution.

Theorem 5.2 The MS-ARMA(p, q, ∆, ε) equation (5.3) has a unique stationary and er-
godic solution, if E(log+ ‖A0‖), E(log+ ‖C0‖) are finite and the Lyapunov exponent sat-
isfies

γ = inf
t∈N0

(
1

t + 1
E (log ‖A0A−1 · · ·A−t‖)

)
< 0.

The unique stationary solution X = (Xt) is formed by the first d coordinates of

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k, (5.13)

which is the unique stationary and ergodic solution of (5.12). The series defining X con-
verges absolutely a.s. (cf. Francq and Zaköıan (2001, Th. 1))

Let V0 be an arbitrary Rd(p+q)-valued random variable defined on the same probability
space as (∆t, εt)t∈Z and define (Vt)t∈N recursively via (5.12) (or let V0, . . . , V−p+1, Z0, . . . ,
Z−q+1 be arbitrary Rd valued random variables and define (Vt)t∈N via (5.3), Vt := (Vt, . . . ,
Vt−p+1, Zt, . . . , Zt−q+1)

T). Then

‖Xt −Vt‖ a.s.→ 0 as t →∞ (5.14)

and, in particular,

Vt
D→ X0 as t →∞, (5.15)

i.e. the distribution of Vt converges to the stationary distribution of Xt.

Note that in view of Lemma 4.2 it suffices to verify that E(log+ ‖A0‖), respectively
E(log+ ‖C0‖), holds for some arbitrary norm on Md(p+q)(R), respectively Rd(p+q), and

inf
t∈N

E
1

t + 1
(log ‖A0A−1 · · ·A−t‖) < 0 for some (possibly different) algebra norm in order

to be able to employ the above theorem. The next technical lemmata will lead to the
insight that it is sufficient to study the behaviour of the AR-coefficients (Φt) to be able

to judge, whether inf
t∈N

1

t + 1
E (log ‖A0A−1 · · ·A−t‖) is strictly negative or not. We follow,

with some minor differences, the sketch provided in Francq and Zaköıan (2001), who give
only the main ideas but no detailed proofs.
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Lemma 5.3 (cf. Francq and Zaköıan (2001, p. 343)) For all k ∈ N and t ∈ Z:

AtAt−1 · · ·At−k+1 =
 ΦtΦt−1 · · ·Φt−k+1 ΘtJ

k−1 +
k−2∑

l=0

ΦtΦt−1 · · ·Φt−k+l+2Θt−k+l+1J
l

0 Jk


 (5.16)

If, moreover, k ≥ q + 1:

AtAt−1 · · ·At−k+1 =


 ΦtΦt−1 · · ·Φt−k+1

q−1∑

l=0

ΦtΦt−1 · · ·Φt−k+l+2Θt−k+l+1J
l

0 0




(5.17)

Proof: For k = 1 (5.16) is the definition of At given in (5.10). Assume now that (5.16)
holds for some k ∈ N. Then we have for k + 1

At · · ·At−k =


 ΦtΦt−1 · · ·Φt−k+1 ΘtJ

k−1 +
k−2∑

l=0

ΦtΦt−1 · · ·Φt−k+l+2Θt−k+l+1J
l

0 Jk




×
(

Φt−k Θt−k

0 J

)

=


 Φt · · ·Φt−k Φt · · ·Φt−k+1Θt−k + ΘtJ

k +
k−2∑

l=0

Φt · · ·Φt−k+l+2Θt−k+l+1J
l+1

0 Jk+1




=


 Φt · · ·Φt−k ΘtJ

k +
k−1∑

l=0

Φt · · ·Φt−k+l+1Θt−k+lJ
l

0 Jk+1


 .

Hence, (5.16) is shown by induction. (5.17) immediately follows by noting that J is nil-
potent with index q, i.e. Jq = 0. 2

Lemma 5.4 (cf. Francq and Zaköıan (2001, p. 343)) For all natural k ≥ q + 1 and
t ∈ Z the following identities hold:

At · · ·At−k+1 =

(
Φt 0
0 0

)(
Φt−1 0

0 0

)
· · ·

(
Φt−k+q+2 0

0 0

)
At−k+q+1 · · ·At−k+1,

(5.18)
(

Φt 0
0 0

)
· · ·

(
Φt−k+1 0

0 0

)

= AtAt−1 · · ·At−k+q+2

(
Φt−k+q+1 0

0 0

)
· · ·

(
Φt−k+1 0

0 0

)
(5.19)
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Proof: For k = q + 1 the first identity (5.18) obviously holds. Assume now that (5.18) is
valid for some k ≥ q + 1 and all t, then using (5.18) for t− 1 and k one obtains for k + 1:

(
Φt 0
0 0

)(
Φt−1 0

0 0

)
· · ·

(
Φt−(k+1)+q+2 0

0 0

)
At−(k+1)+q+1 · · ·At−(k+1)+1 =

=

(
Φt 0
0 0

)
At−1 · · ·At−1−k+1

(5.17)
=

(
Φt 0
0 0

)(
Φt−1 · · ·Φt−1−k+1

∑q−1
l=0 Φt−1 · · ·Φt−1−k+l+2Θt−1−k+l+1J

l

0 0

)

=

(
ΦtΦt−1 · · ·Φt−(k+1)+1

∑q−1
l=0 ΦtΦt−1 · · ·Φt−(k+1)+l+2Θt−(k+1)+l+1J

l

0 0

)

(5.17)
= At · · ·At−(k+1)+1.

This shows (5.18).
(5.19) is a simple consequence of (5.16):

AtAt−1 · · ·At−k+q+2

(
Φt−k+q+1 0

0 0

)
· · ·

(
Φt−k+1 0

0 0

)

(5.16)
=

(
Φt · · ·Φt−k+q+2 ?

0 ?

)(
Φt−k+q+1 · · ·Φt−k+1 0

0 0

)
=

(
Φt · · ·Φt−k+1 0

0 0

)

=

(
Φt 0
0 0

)(
Φt−1 0

0 0

)
· · ·

(
Φt−k+1 0

0 0

)
.

2

Proposition 5.5 Assume that E
(
log+ ‖A0‖

)
is finite, then for arbitrary algebra norms

on Md(p+q)(R) and Mdp(R):

lim
k→∞

1

k
E (log ‖A0 · · ·A−k+1‖) = lim

k→∞
1

k
E (log ‖Φ0 · · ·Φ−k+1‖) .

Proof: W.l.o.g. we can assume that ‖ · ‖ is an operator norm (cf. Lemma 4.2) on
Md(p+q)(R). For all k ≥ q + 1 (5.18) gives

1

k
E (log ‖A0 · · ·A−k+1‖)

=
1

k
E

(
log

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−k+q+2 0

0 0

)
A−k+q+1 · · ·A−k+1

∥∥∥∥
)

≤ 1

k
E

(
log

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−k+q+2 0

0 0

)∥∥∥∥
)

+
1

k
E (log ‖A−k+q+1 · · ·A−k+1‖)

≤ 1

k
E

(
log

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−k+q+2 0

0 0

)∥∥∥∥
)

+ (q + 1)E

(
1

k
log+ ‖A0‖

)
.

Since lim
k→∞

(q + 1)E

(
1

k
log+ ‖A0‖

)
= 0, we thus obtain

lim
k→∞

E

(
1

k
log ‖A0 · · ·A−k+1‖

)
≤ lim

k→∞
E

(
1

k
log

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−k+1 0

0 0

)∥∥∥∥
)

.



68 CHAPTER 5. MARKOV-SWITCHING ARMA MODELS

Noting that the operator norm properties ensure
∥∥∥∥
(

Φ0 0
0 0

)∥∥∥∥ ≤
∥∥∥∥
(

Φ0 Θ0

0 J

)∥∥∥∥ = ‖A0‖,

an analogous argument using (5.19) shows

lim
k→∞

1

k
E

(
log

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−k+1 0

0 0

)∥∥∥∥
)
≤ lim

k→∞
1

k
E (log ‖A0 · · ·A−k+1‖) .

Hence,

lim
k→∞

1

k
E

(
log

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−k+1 0

0 0

)∥∥∥∥
)

= lim
k→∞

1

k
E (log ‖A0 · · ·A−k+1‖) .

The operator norm ‖ · ‖ on Md(p+q)(R) induces an algebra norm on Mdp(R) by setting

‖X‖ =

∥∥∥∥
(

X 0
0 0

)∥∥∥∥ for X ∈ Mdp(R). Since obviously ‖XY ‖ =

∥∥∥∥
(

X 0
0 0

)(
Y 0
0 0

)∥∥∥∥,

one obtains

lim
k→∞

1

k
E (log ‖A0 · · ·A−k+1‖) = lim

k→∞
1

k
E (log ‖Φ0 · · ·Φ−k+1‖) .

Using this induced algebra norm and an application of Lemma 4.2 concludes the proof.
2

Corollary 5.6 (cf. Francq and Zaköıan (2001, p. 343)) Assume that E
(
log+ ‖A0‖

)
is finite, then for arbitrary algebra norms on Md(p+q)(R) and Mdp(R):

inf
t∈N0

(
1

t + 1
E (log ‖A0A−1 · · ·A−t‖)

)
= inf

t∈N0

(
1

t + 1
E (log ‖Φ0Φ−1 · · ·Φ−t‖)

)
(5.20)

Proof: Combine Proposition 5.5 and Lemma 4.2. 2

This shows that the Lyapunov coefficient of (At) can be replaced by the Lyapunov
coefficient of (Φt), the autoregressive part, in our sufficient conditions for the existence
of a stationary solution of (5.3). For later reference we restate Theorem 5.2 with these
modified conditions.

Theorem 5.7 The MS-ARMA(p, q, ∆, ε) equation (5.3) has a unique stationary and er-
godic solution, if E(log+ ‖A0‖), E(log+ ‖C0‖) are finite and the Lyapunov exponent sat-
isfies

γ̃ = inf
t∈N0

(
1

t + 1
E (log ‖Φ0Φ−1 · · ·Φ−t‖)

)
< 0.

The unique stationary solution X = (Xt) is formed by the first d coordinates of

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k,

which is the unique stationary and ergodic solution of (5.12). The series defining X con-
verges absolutely a.s. (cf. Francq and Zaköıan (2001, Th. 1))
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Let V0 be an arbitrary Rd(p+q)-valued random variable defined on the same probability
space as (∆t, εt)t∈Z and define (Vt)t∈N recursively via (5.12) (or let V0, . . . , V−p+1, Z0, . . . ,
Z−q+1 be arbitrary Rd valued random variables and define (Vt)t∈N via (5.3), Vt := (Vt, . . . ,
Vt−p+1, Zt, . . . , Zt−q+1)

T). Then

‖Xt −Vt‖ a.s.→ 0 as t →∞ (5.21)

and, in particular,

Vt
D→ X0 as t →∞, (5.22)

i.e. the distribution of Vt converges to the stationary distribution of Xt.

5.2.2 Analysis of the Sufficient Conditions

The above theorem shows that, once the conditions E(log+ ‖A0‖), E(log+ ‖C0‖) < ∞
are satisfied, only the behaviour of the AR part matters. This is comparable to the con-
ditions for classical ARMA models (see Brockwell and Davis (1991, Th. 3.1.1+Remark 1,
Th. 11.3.1)) to have a causal solution, which only impose restrictions on the AR coeffi-
cients. Note that the solution we obtain above for the MS-ARMA equation is also causal
in the sense that it is constructed solely from the past and present of (∆, ε). That we
need the condition E log+ ‖A0‖ < ∞ is due the fact that our ARMA coefficients are
random. E log+ ‖A0‖ depends on both the AR and MA coefficients. If the Markov chain
∆ has only finitely many states or the state space is bounded, E log+ ‖A0‖ < ∞ is
automatically fulfilled. Likewise, E(log+ ‖C0‖) < ∞ is basically a condition on the noise
sequence comparable to the condition for classical ARMA models (with infinite variance)
that the noise is square integrable (cf. Brockwell and Davis (1991, p. 78)) or has Pareto-
like tails (see Brockwell and Davis (1991, § 13.3)). Actually, assume that µ0 and Σ0 are
bounded and (εt) is a sequence of i.i.d. random variables in Lδ for some (finite) δ > 0 (this
is fulfilled by a square integrable noise or one with Pareto-like tails), then we have that
C0 = m0+Σ0ε0 ∈ Lδ and thus E log+ ‖C0‖ < ∞, since log+ is ultimately bounded by any
positive power (for any δ > 0 using l’Hospital’s rule: lim

x→∞
log(x)/(xδ) = lim

x→∞
1/(δxδ) = 0).

Furthermore, it follows, using Hölder’s inequality and Corollary 2.15, that C0 ∈ Lδ,
if µ0 ∈ Lδ, Σ0 ∈ Lδr and ε0 ∈ Lδs for some r, s ≥ 1 such that 1

r
+ 1

s
= 1, since

E(‖Σ0ε0‖δ) ≤ E((‖Σ0‖‖ε0‖)δ) ≤ E(‖Σ0‖δr)1/rE(‖ε0‖δs)1/s < ∞.
If the AR coefficients are not random but constants, γ̃ < 0 translates into ρ(Φ0) =

limn→∞ ‖Φn
0‖1/n < 1 (for any algebra norm), which is equivalent to require that det(Idp−

zΦ) 6= 0 for all z ∈ B̄1(0). This is just the condition on a state space model to be
causal (or stable) as defined in Brockwell and Davis (1991, p. 467). Moreover, for d = 1
det(Idp − zΦ) 6= 0 for all z ∈ B̄1(0) is obviously equivalent to the condition that the
AR-polynomial 1−Φ1z − . . .−Φpz

p vanishes nowhere on the closed unit disc; this is the
sufficient condition for a classical ARMA-process to be causal (see Brockwell and Davis
(1991, Th. 3.1.1 + Remark 1 and especially p. 468)).

The above considerations show that, if an MS-ARMA(p,q) model actually is an AR-
MA(p,q) model, the sufficient conditions for the existence of a stationary (“causal”) solu-
tion become the sufficient conditions for the ARMA(p,q) model to have a causal solution.
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Note that the latter are also necessary provided the AR and MA polynomial have no
common zeros.

So far we have, however, no condition feasible in general, for when γ̃ (or γ) is actually
strictly negative. For a constant AR part Φt we have seen above that a spectral radius
less than one gives γ̃ < 0. From the representation of γ̃ as an infimum it obviously follows
that E(log ‖Φ0‖) < 0 suffices to ensure γ̃ < 0 (recall from the remark after Theorem 4.1
that for p = 1 and d = 1 one even has γ̃ = E(log |Φ0|)). Naturally, Φ0 can be replaced
by A0 and γ̃ by γ in this considerations. At a first glance this condition seems to be only
helpful for MS-ARMA(1,q) processes, since for p > 1 the matrix Φ0 used in the higher
dimensional representation is of the form




? · · · ? · · · ?
Id 0 · · · · · · 0

0
. . . . . . · · · ...

...
. . . . . . . . .

...
0 · · · 0 Id 0




and will thus have operator norm one or larger for all norms on Rdp, which assign the same
length to all vectors in the canonical basis, and all usual norms satisfy this condition. When
discussing feasible conditions for γ̃ to be negative in a later section, we shall, however, see
that this observation is most valuable, since under certain conditions norms on Rd can
be constructed such that a matrix of the above form has operator norm strictly less than
one. Conditions requiring that matrices with a structure very similar to ours above may
have (operator) norm less than one are heavily used in Basrak (2000, Section 3.2). Yet,
Basrak (2000) does not discuss possible norms for which the conditions can actually be
fulfilled. Similarly, E(log ‖Φ0 · · ·Φ−n‖) < 0 for some n ∈ N ensures γ̃ < 0 using Lemma
4.2.

To the best of our knowledge there are no general necessary and sufficient condi-
tions known for the existence of a stationary solution to a MS-ARMA(p,q) or a general
stochastic difference equation of the type Yn = AnYn−1 + Cn, so it is hard to say, whether
or not our sufficient condition that the Lyapunov coefficient is strictly negative is close
to necessity. For the stochastic difference equation Yn = AnYn−1 + Cn with (An, Cn)n∈Z
being an i.i.d. sequence in Md(R) × Rd Bougerol and Picard (1992b) show that under
some technical conditions the strict negativity of the Lyapunov coefficient actually is ne-
cessary for the existence of a stationary solution that can be represented as a function of
past and present values of (An, Cn) (i.e. a “causal” solution). This indicates that in our
more general Markov chain set-up there is hope for our sufficient conditions to be close
to necessity. Yet, generalizing the results of Bougerol and Picard (1992b) to a Markov
Chain set-up seems to be rather involved and will not be pursued in the present thesis.
Goldie and Maller (2000) give necessary and sufficient conditions for the existence of a
stationary solution to the stochastic recurrence equation Yn = AnYn−1 + Cn with i.i.d.
input (An, Cn) in the one-dimensional case, i.e. that all random variables assume values
in R. Their conditions are considerably weaker than ours, since they do not demand that
the solution should be “causal”. However, in our Markovian and the usual linear time
series set-up it appears to be natural to study stationary solutions that are representable
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by past values of (An, Cn). Thus we have chosen not to discuss other possible solutions.
Related earlier work is also Vervaat (1979).

5.2.3 Existence of Moments

In the theorems to follow sufficient conditions for the existence of moments of an MS-
ARMA(p, q, ∆, ε) process are inferred from the general results given in Section 4.2. It is
immediate that Lemmata 4.5 and 4.6 can be applied to both the sequences (At) and
(Φt). Observe that we now use p̃ when considering the finiteness of moments, as p denotes
already the autoregressive order of the MS-ARMA process.

The general Theorem 4.7 becomes for MS-ARMA processes:

Theorem 5.8 Assume the conditions of Theorem 5.2 or 5.7 are fulfilled. If moreover for
some p̃ ∈ (1,∞]

∞∑

k=0

‖A0 · · ·A−k+1C−k‖Lp̃ (5.23)

or for some p̃ ∈ (0, 1)
∞∑

k=0

E
(‖A0 · · ·A−k+1C−k‖p̃

)
(5.24)

converges, then the solution Xt of the MS-ARMA equation (5.3) and its higher dimen-
sional representation Xt are in Lp̃. Moreover, the series defining Xt (as given in Theorem
5.2 or 5.7) converges in Lp̃.

It is clear that, if (5.23) holds for some p̃ ≥ 1, it holds for all r ∈ [1, p̃] as well. However, if
(5.24) holds for some p̃ ∈ (0, 1) this does not imply that it holds for all smaller values of p̃ as
well. Yet, of course, if X ∈ Lp̃ for some p̃ > 0 then X ∈ Lr for all r ∈ (0, p̃]. Note, however,
that the asymptotic conditions given in the next lemmata are much better behaved.
If there is one p̃ ∈ (0,∞] that fulfils the asymptotic condition, then the asymptotic
conditions for all s ∈ (0, p̃] are satisfied as well (use Jensen’s inequality as in the proof of
Lemma 3.20).
Proof: Combine Theorems 5.2/5.7 and 4.7 to obtain the results on Xt. Xt ∈ Lp̃ is now a
consequence of Xt ∈ Lp̃ and Corollary 2.15. 2

For later reference we also restate Propositions 4.9 and 4.10 for the special case of MS-
ARMA processes.

Proposition 5.9 Let p̃ ∈ (0,∞). If there exist r, s ≥ 1 with 1/r + 1/s = 1, such that
A0 · · ·A−k+1 ∈ Lp̃r ∀k ∈ N, lim supk→∞ E(‖A0 · · ·A−k+1‖p̃r)1/k < 1 for 0 < p̃r < ∞,

resp. limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 for p̃r = ∞, and C0 ∈ Lp̃s, then γ < 0 and (5.23)

for p̃ ≥ 1, resp. (5.24) for 0 < p̃ < 1, hold.

Again one especially obtains that, provided A0 ∈ L∞ (and thus A0 · · ·A−k+1 ∈ L∞)

and limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1, the MS-ARMA process Xt and its higher dimensional

representation Xt are in Lp̃, if C0 ∈ Lp̃. Note again that the condition A0 ∈ L∞ is
automatically satisfied, if A0 has a finite or bounded state space.
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Proposition 5.10 If A0 ∈ L∞ ∀k ∈ N, limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 and C0 ∈ L∞,

then γ < 0 and (5.23) with p̃ = ∞ hold.

Furthermore, note again that ‖A0‖ < c a.s. for some c < 1 implies the validity of

limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 (cf. Lemma 4.11 and the brief discussion thereafter). If we

have that A = (At) is a sequence of independent random variables (as it is for example
the case in the random coefficient autoregressive models studied in Nicholls and Quinn
(1982), Klüppelberg and Pergamenchtchikov (2004) and other papers), E(‖A0‖p̃) < 1
ensures limk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1, since ‖ · ‖ is submultiplicative. These obser-
vations may seem to be of limited interest now, especially in view of the discussion in
Section 5.2.2, but later on in the discussion of feasible sufficient conditions they turn out
to be helpful.

The most straightforward moment conditions are obtainable under the assumption
that A = (At) and C = (Ct) are independent. This happens, if Σt and µt are constants
or at least independent from the other components of the Markov chain ∆. In this case
one obtains the following simplification of Proposition 5.9.

Proposition 5.11 Let A0A−1 · · ·A−k+1 be independent of C−k for all k ∈ N and p̃ ∈
(0,∞). If A0 · · ·A−k+1 ∈ Lp̃ ∀ k, C0 ∈ Lp̃ and lim supk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1,
then (5.23) for p̃ ≥ 1, resp. (5.24) for 0 < p̃ < 1, holds.

The prerequisite independence is in particular satisfied, if A and C are independent or
(Ak,Ck)k∈Z is an i.i.d. sequence.
Proof: Proceed along the lines of the proof of Proposition 4.9, but instead of the Hölder in-
equality use the independence, which gives E(‖A0 · · ·A−k+1C−k‖p̃) ≤ E(‖A0 · · ·A−k+1‖p̃)
E(‖C0‖p̃). 2

Just as the Lyapunov coefficient γ formed by the sequence (At) could be replaced by γ̃,
the one formed by the AR-part (Φt), when discussing the existence of stationary solutions,
the asymptotic moment conditions on (At) can be replaced by analogous conditions on
(Φt). This relation is strongest in L∞.

Proposition 5.12 Let A0 ∈ L∞. Then limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞(Ω,F ,P,Md(p+q)(R),‖·‖) < 1,

iff limk→∞ ‖Φ0 · · ·Φ−k+1‖1/k
L∞(Ω,F ,P,Mdp(R),‖·‖) < 1.

Note that in view of Lemma 4.5 it does not matter which algebra norms ‖ · ‖ are actually
used on Md(p+q) and Mdp. Moreover, in view of (5.18) and (5.19) there is a k ∈ N such
that A0 · · ·A−m = 0 a.s. ∀m ≥ k, iff there is a k′ ∈ N such that Φ0 · · ·Φ−m = 0 a.s.
∀m ≥ k′. Hence, we presume in the proof of this and the following propositions w.l.o.g.
that there is no k ∈ N such that A0 · · ·A−k = 0 a.s.
Proof: By Theorem 2.14 and Corollary 2.15 Φ0 is in L∞. Furthermore, for all k ∈ N we
have A0 · · ·A−k+1 ∈ L∞ and Φ0 · · ·Φ−k+1 ∈ L∞. (5.18) gives:

lim
n→∞

‖A0 · · ·A−n+1‖1/n
L∞ ≤ lim

n→∞

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−n+q+2 0

0 0

)∥∥∥∥
1/n

L∞

×‖A−n+q+1 · · ·A−n+1‖1/n
L∞︸ ︷︷ ︸

→1
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= lim
n→∞

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−n+q+2 0

0 0

)∥∥∥∥
1/n

L∞

= lim
n→∞

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−(n−q−1)+1 0

0 0

)∥∥∥∥
1/(n−q−1)

L∞

= lim
n→∞

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−n+1 0

0 0

)∥∥∥∥
1/n

L∞
.

Since an analogous argument using (5.19) shows the above inequality with “≥” instead
of “≤”, we get using Lemma 4.5 and the same arguments as in the proof of Proposition
5.5

lim
k→∞

‖A0 · · ·A−k+1‖1/k
L∞ = lim

k→∞
‖Φ0 · · ·Φ−k+1‖1/k

L∞ .

2

Literally the same proof can be used for general positive p̃ instead of ∞ given (At) is an
i.i.d. sequence. In this case one obtains:

Proposition 5.13 Let (At) be i.i.d, p̃ ∈ (0,∞) and A0 ∈ Lp̃.

Then limk→∞ E
(‖A0 · · ·A−k+1‖p̃

)1/k
< 1, iff limk→∞ E

(‖Φ0 · · ·Φ−k+1‖p̃
)1/k

< 1.

For general Markov-switching models one has to employ the Hölder inequality in one
direction. This leads to the need of stronger assumptions and we cannot show equivalence
of lim supk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1 and lim supk→∞ E(‖Φ0 · · ·Φ−k+1‖p̃)1/k < 1 in
general.

Proposition 5.14 Let p̃ ∈ (0,∞) and A0 · · ·A−k+1 ∈ Lp̃ for all natural k.

(i) If lim supk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1, then lim supk→∞ E(‖Φ0 · · ·Φ−k+1‖p̃)1/k <
1.

(ii) If there are r, s ∈ [1,∞] with Φ0 · · ·Φ−k+1 ∈ Lp̃r ∀k ∈ N, A0 · · ·A−q ∈ Lp̃s and
lim supk→∞ E(‖Φ0 · · ·Φ−k+1‖p̃r)1/k < 1 for p̃r < ∞, respectively limk→∞ ‖Φ0 · · ·
Φ−k+1‖1/k

L∞ < 1 for p̃r = ∞, then lim supk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1.

Proof: Corollary 2.15 and Lemma 5.3 ensure Φ0 · · ·Φ−k+1 ∈ Lp̃ for all natural k. From
Lemma 5.3 one moreover obtains for any operator norm:

∥∥∥∥
(

Φ0 · · ·Φ−k+1 0
0 0

)∥∥∥∥ ≤ ‖A0 · · ·A−k+1‖.

Using an induced algebra norm as in the proof of Proposition 5.5 and the asymptotic
independence from the norm as given in Lemma 4.5 this gives (i).

To prove (ii) choose a strictly increasing sequence (kn)n∈N such that

lim
n→∞

E(‖A0 · · ·A−kn+1‖p̃)1/kn = lim sup
k→∞

E(‖A0 · · ·A−k+1‖p̃)1/k

and ∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−kn+q+2 0

0 0

)∥∥∥∥
1/kn

Lp̃r
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converges in R. Using (5.18) and the Hölder inequality we get

lim
n→∞

E(‖A0 · · ·A−kn+1‖p̃)1/kn ≤ lim sup
n→∞

E

(∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−kn+q+2 0

0 0

)∥∥∥∥
p̃

× ‖A−kn+q+1 · · ·A−kn+1‖p̃
)1/kn

≤ lim
n→∞

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−kn+q+2 0

0 0

)∥∥∥∥
p̃/kn

Lp̃r

×‖A0 · · ·A−q‖p̃/kn

Lp̃s︸ ︷︷ ︸
→1

= lim
n→∞

∥∥∥∥
(

Φ0 0
0 0

)
· · ·

(
Φ−(kn−q−1)+1 0

0 0

)∥∥∥∥
p̃/(kn−q−1)

Lp̃r

≤ lim sup
k→∞

‖Φ0 · · ·Φ−k+1‖p̃/k

Lp̃r < 1

using once more Lemma 4.5 and the construction from the proof of Proposition 5.5. 2

The following corollary shows that, if (At) has a bounded (finite) state space, then it
makes generally no difference, whether one studies the asymptotic behaviour of (At) or
(Φt).

Corollary 5.15 Let p̃ ∈ (0,∞) and A0 ∈ L∞. Then lim supk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k <
1, iff lim supk→∞ E(‖Φ0 · · ·Φ−k+1‖p̃)1/k < 1.

Proof: Obviously A0 · · ·A−k+1 ∈ Lp̃ for all natural k. Now the result follows immediately
from Proposition 5.14, since r = 1 and s = ∞ can be chosen in (ii). 2

The above theorems show that in many cases, especially those usually occurring in applic-
ations, only the long run behaviour of the autoregressive part matters in the conditions
ensuring finiteness of some moments of an MS-ARMA process.

5.3 Feasible Sufficient Conditions

In the previous section we have given conditions ensuring the existence of stationary
MS-ARMA processes and the finiteness of moments. However, whereas most of the con-
ditions involving only A0, Φ0 or C0 are straightforward to check, it is in general far
from trivial to check the essential conditions like limn→∞ 1

n+1
E(log ‖A0 · · ·A−n‖) < 0 or

lim supn→∞ E(‖A0 · · ·A−n+1‖p̃)1/n < 1. Thus, the aim of the present section is to study
some rather easy to check conditions, which imply these complicated ones. Yet, it should
be obvious that all of these simplifications may well fail to indicate the existence of a
stationary solution to an MS-ARMA equation, although there actually is one. The next
section will then address the question of whether there is a general relation between the
stationarity properties of the individual regimes and those of the overall Markov switching
process.
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5.3.1 Norm Conditions

In 5.2.2 we already noted that E(log ‖A0‖) < 0, resp. E(log ‖Φ0‖) < 0, for some algebra
norm would ensure the strict negativity of the Lyapunov coefficient γ, resp. γ̃. Similarly
we saw in the section on moment conditions that ‖A0‖ < c a.s. for some c < 1 or
E(‖A0‖s) < 1 in the case of i.i.d. (At) would ensure the validity of critical conditions for
the finiteness of moments. Yet, we already noted that all norms over Rd usually considered
have the property that they assign the same “length” to all the canonical basis vectors and
thus lead to A0 and Φ0 having operator norm of at least one, if one has a MS-ARMA(p,q)
model with p or q being greater than one (resp. as far as Φ0 alone is regarded, if p > 1).
Yet, the following theorem shows that norms can be given such that a given matrix is
within the unit circle provided all of its eigenvalues are less than one in modulus. Since
the spectrum is involved, we study complex matrices and automatically consider Md(R)
as a subset of Md(C).

Theorem 5.16 (Ciarlet (1989, Th. 1.4-3)) Let A be any matrix in Md(C) with spec-
tral radius ρ(A) < 1. Then for every ε > 0 there is a norm ‖ · ‖ε on Cd such that
‖A‖ε < ρ(A) + ε holds, where ‖ · ‖ε also denotes the induced operator norm.

Note that as pointed out in 5.2.2 for a classical ARMA model the stationarity condition
is exactly that A0 has spectral radius smaller than one. Since the above Theorem shows
that for any matrix with spectrum within the unit circle there is an operator norm such
that the matrix has norm less than one, the classical ARMA condition is equivalent to
demand that E(log ‖A0‖) < 0 for some operator norm.

Furthermore one should bear in mind that the definitions of At and Φt immediately
imply σ(At) = σ(Φt) ∪ {0} and that Φt is invertible, iff Φpt is invertible, whereas At is
never invertible (for q > 0).
Proof (cf. Ciarlet (1989, pp. 29f)): For A ∈ Md(C) there is a unitary U ∈ Md(C)
such that

U−1AU =




λ1 t1,2 · · · t1,d

0
. . . . . .

...
...

. . . . . . td−1,d

0 · · · 0 λd




with σ(A) = {λ1, . . . λd} (Schur decomposition). For some ε > 0 choose δ > 0 so small
that

∑d
j=i+1 |δj−iti,j| < ε for 1 ≤ i ≤ d− 1 and set

Dδ =




δ 0 · · · 0

0 δ2 . . .
...

...
. . . . . . 0

0 · · · 0 δd


 .

A straightforward calculation gives

D−1
δ U−1AUDδ =




λ1 t1,2δ
2−1 · · · t1,dδ

d−1

0
. . . . . .

...
...

. . . . . . td−1,dδ
d−(d−1)

0 · · · 0 λd


 = (ci,j)1≤i,j≤d
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with ci,i = λi, ci,j = ti,jδ
j−i for j > i and ci,j = 0 for j < i. This gives

‖D−1
δ U−1AUDδ‖∞ = max

1≤i≤d

(
|λi|+

d∑
j=i+1

|δj−iti,j|
)

< ρ(A) + ε

by the choice of δ. Define ‖ · ‖A : Md(C) → R, B 7→ ‖(UDδ)
−1B(UDδ)‖∞, then ‖ · ‖A is

obviously an algebra norm over Md(R) with ‖A‖A < ρ(A) + ε.
So it remains to show that ‖ · ‖A is an operator norm. To this end define a norm ‖ · ‖A

over Cd via ‖x‖A := ‖(UDδ)
−1x‖∞. We have for all B ∈ Md(C) and x ∈ Cd

‖Bx‖A = ‖(UDδ)
−1Bx‖∞ = ‖(UDδ)

−1B(UDδ)(UDδ)
−1x‖∞

≤ ‖(UDδ)
−1B(UDδ)‖∞‖(UDδ)

−1x‖∞ = ‖B‖A‖x‖A.

Moreover, for B ∈ Md(C) there is a uB 6= 0 ∈ Cd such that ‖(UDδ)
−1BUDδuB‖∞ =

‖(UDδ)
−1BUDδ‖∞‖uB‖∞. Set vB = UDδuB, then vB 6= 0 and

‖BvB‖A = ‖(UDδ)
−1BUDδuB‖∞ = ‖(UDδ)

−1BUDδ‖∞‖uB‖∞ = ‖B‖A‖vB‖A.

So ‖ · ‖A is the operator norm induced on Md(C) by the norm ‖ · ‖A on Cd. 2

The above results suggest the following possibility to check the existence of a stationary
solution to an MS-ARMA(p, q, ∆, ε) equation provided the state space of (At), resp. (Φt),
contains a matrix with spectrum within the unit ball. Take one such matrix from the
state space of (At), resp. (Φt), and an operator norm ‖ · ‖ such that this matrix has
norm less than one (e.g. the one explicitly constructed in the above proof), then check, if
E(log ‖A0‖) < 0, resp. E(log ‖Φ0‖) < 0, using this norm. In general there will be many
matrices in the state space of (At), resp. (Φt), that satisfy ρ(·) < 1, since in applications
one will choose most (though probably not all) regimes to be stationary ARMA regimes. In
principle one can repeat the procedure for all of those regimes, until the crucial stationarity
condition on E(log ‖A0‖), resp. E(log ‖Φ0‖), is fulfilled, since the outcome will in general
be different for the different norms, as the norm constructed in the above proof is highly
dependent on the individual matrix. If (At) is an i.i.d. sequence one can proceed similarly,
to find an operator norm ensuring E(‖A0‖s) < 1. If A0, resp. Φ0, has almost sure only
eigenvalues of modulus less than one (i.e. all individual regimes are stationary), one may
also try to find an operator norm giving ‖A0‖ < c, resp. ‖Φ0‖ < c, a.s. for some c < 1. It
is clear that the search for such a norm is bound to fail, if there is a positive probability
for the spectral radius to be greater than or equal to one.

However, there is also a simple negative result regarding the search for an appropriate
norm making it straightforward to show that the Lyapunov exponent is strictly negative:
Suppose the state space of A0 contains two matrices A(1) and A(2) such that ρ(A(1)) < 1
and ρ(A(1)) < 1, but ρ(A(1)A(2)) ≥ 1 (for a concrete example of such matrices see Section
5.4.2), then there obviously cannot be any algebra norm ‖ · ‖∗ such that ‖A(1)‖∗ < 1 and
‖A(2)‖∗ ≤ 1. Otherwise ‖A(1)A(2)‖∗ < 1 would be a contradiction to ρ(A(1)A(2)) ≥ 1 and
the classical result of Beurling and Gelfand (cf. Werner (2002, Satz IX.1.3(e))) that the
spectral radii of the elements of a Banach algebra are less than or equal to their norm.

One may still regard the above construction of an operator norm ensuring that some
matrix is within the unit ball as rather complicated. Indeed, we think that the high degree
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of dependence of the obtained norm on the individual matrix is a major drawback. On
the other hand no information on the special structure of A0, resp. Φ0, is used above.
Thus, we will now focus on the possibility of constructing operator norms that ensure
that a (possibly uncountable) set of matrices, which has this very special structure, has
norm less than one. Yet, this can, at least as it seems to us, only be done under rather
restrictive conditions. In the end, however, this will give a criterion for the stationarity of
an MS-ARMA process that is equivalent to the best known general stationarity criterion
for TAR-models (cf. An and Huang (1996), Brachner (2004)). Actually, our results are
slightly more general, since the TAR literature is on R-valued processes only. In our
general vector valued case we obtain some additional freedom from the possibility of
choosing different norms. To the best of our knowledge the criterion we give below is new
in the context of MS-ARMA processes, as are the constructions of the specific norms we
give in the following two theorems.

Since it is notationally less involved and illustrates the basic idea, we study matrices
with the structure of Φt first.

Theorem 5.17 Let d, p be natural numbers and A ⊂ Mdp(R) a set of matrices such that
for each A ∈ A there are A1(A), . . . , Ap(A) ∈ Md(R) with

A =




A1(A) · · · A(p−1)(A) Ap(A)
Id 0 · · · · · · 0

0
. . . . . .

...
0 · · · 0 Id 0


 .

Assume moreover that there is a norm ‖ · ‖d on Rd and a c < 1 such that

sup
A∈A

p∑
i=1

‖Ai(A)‖d < c

holds for the induced operator norm. Then there is a norm ‖ · ‖p on Rdp = (Rd)p and a
c′ < 1 such that

sup
A∈A

‖A‖p < c′

in the induced operator norm.
Especially, ‖X0X1 · · ·Xk‖p < (c′)k+1 for all natural k and sequences (Xn)n∈N0 with

elements in A.

Proof: Choose c1, . . . , cp ∈ R such that 1 = c1 > c2 > . . . > cp > c. Then

sup
A∈A

p∑
i=1

‖Ai(A)‖d

ci

≤ sup
A∈A

p∑
i=1

‖Ai(A)‖d

cp

<
c

cp

< 1.

Now define a norm ‖ · ‖p on (Rd)p via ‖(xT
1 , . . . , xT

p )T‖p = max{c1‖x1‖d, . . . , cp‖xp‖d} and
identify B((Rd)p) with Mdp(R). For some (xT

1 , . . . , xT
p )T ∈ Rdp and A ∈ A we have

∥∥∥∥∥∥∥
A




x1
...

xp




∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥∥




∑p
i=1 Ai(A)xi

x1
...

xp−1




∥∥∥∥∥∥∥∥∥
p
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= max

{
c1

∥∥∥∥∥
p∑

i=1

Ai(A)xi

∥∥∥∥∥
d

, c2‖x1‖d, . . . , cp‖xp−1‖d

}

= max

{∥∥∥∥∥
p∑

i=1

Ai(A)xi

∥∥∥∥∥
d

,
c2

c1

c1‖x1‖d, . . . ,
cp

cp−1

cp−1‖xp−1‖d

}

≤ max

{∥∥∥∥∥
p∑

i=1

Ai(A)xi

∥∥∥∥∥
d

, max
2≤k≤p

{
ck

ck−1

}
‖(xT

1 , . . . , xT
p )T‖p

}

and, moreover,

∥∥∥∥∥
p∑

i=1

Ai(A)xi

∥∥∥∥∥
d

≤
p∑

i=1

‖Ai(A)‖d‖xi‖d ≤ max {c1‖x1‖d, . . . , cp‖xp‖d}
p∑

i=1

‖Ai(A)‖d

ci

≤
∥∥(xT

1 , . . . , xT
p )T

∥∥
p

p∑
i=1

‖Ai(A)‖d

cp

.

From this one deduces

sup
A∈A

‖A‖p ≤ max

{
sup
A∈A

p∑
i=1

‖Ai(A)‖d

cp

, max
2≤k≤p

{
ck

ck−1

}}

≤ max

{
c

cp

, max
2≤k≤p

{
ck

ck−1

}}
=: c′ < 1

which concludes the proof. 2

Under an additional assumption the above theorem can be generalized to matrices
with the structure of At.

Theorem 5.18 Let d, p, q be natural numbers and A ⊂ Md(p+q)(R) a set of matrices such
that for each A ∈ A there are A1(A), . . . , Ap(A), B1(A), . . . , Bq(A) ∈ Md(R) with

A =




A1(A) · · · Ap−1(A) Ap(A) B1(A) · · · Bq−1(A) Bq(A)
Id 0 · · · · · · 0 0 · · · · · · 0

0
. . . . . . 0 0 · · · · · · ...

0 · · · 0 Id 0 0 · · · · · · ...
0 · · · · · · 0 0 · · · · · · 0
0 · · · · · · 0 Id 0 · · · 0
...

. . . . . .
... 0

. . . 0 · · · ...
0 · · · · · · 0 0 · · · 0 Id 0




.

Assume moreover that there is a norm ‖ · ‖d on Rd and a c < 1 such that

sup
A∈A

p∑
i=1

‖Ai(A)‖d < c and sup
A∈A

q∑
i=1

‖Bi(A)‖d < ∞
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hold for the induced operator norm. Then there is a norm ‖ · ‖p on Rd(p+q) = (Rd)(p+q)

and a c′ < 1 such that
sup
A∈A

‖A‖p < c′

in the induced operator norm.
Especially, ‖X0X1 · · ·Xk‖p < (c′)k+1 for all natural k and sequences (Xn)n∈N0 with

elements in A.

Proof: Choose c1, . . . , cp ∈ R such that 1 = c1 > c2 > . . . > cp > c. Then

sup
A∈A

p∑
i=1

‖Ai(A)‖d

ci

≤ sup
A∈A

p∑
i=1

‖Ai(A)‖d

cp

<
c

cp

< 1.

So, choose moreover M ∈ (c/cp, 1) and c̃ ∈ R+ such that

sup
A∈A

p∑
i=1

‖Ai(A)‖d

cp

+ sup
A∈A

q∑
i=1

‖Bi(A)‖d

c̃
< M < 1

and cp+1, . . . , cp+q ∈ R with cp+1 > . . . > cp+q > c̃. Now define a norm ‖ · ‖p on (Rd)p+q

via

‖(xT
1 , . . . , xT

p , yT
1 , . . . , yT

q )T‖p = max{c1‖x1‖d, . . . , cp‖xp‖d, cp+1‖y1‖d, . . . , cp+q‖yq‖d}
and identify B((Rd)p+q) with Md(p+q)(R). For some (xT

1 , . . . , xT
p , yT

1 , . . . , yT
q )T ∈ Rd(p+q)

and A ∈ A we have

∥∥∥∥∥∥∥∥∥∥∥∥∥

A




x1
...

xp

y1
...
yq




∥∥∥∥∥∥∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




∑p
i=1 Ai(A)xi +

∑q
i=1 Bi(A)yi

x1
...

xp−1

0
y1
...

yq−1




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
p

= max

{
c1

∥∥∥∥∥
p∑

i=1

Ai(A)xi +

q∑
i=1

Bi(A)yi

∥∥∥∥∥
d

, c2‖x1‖d, . . . , cp‖xp−1‖d,

0, cp+2‖y1‖d, . . . , cp+q‖yq−1‖d}

= max

{∥∥∥∥∥
p∑

i=1

Ai(A)xi +

q∑
i=1

Bi(A)yi

∥∥∥∥∥
d

,
c2

c1

c1‖x1‖d, . . . ,
cp

cp−1

cp−1‖xp−1‖d,

0,
cp+2

cp+1

cp+1‖y1‖d, . . . ,
cp+q

cp+q−1

cp+q−1‖yq−1‖d

}

≤ max

{∥∥∥∥∥
p∑

i=1

Ai(A)xi +

q∑
i=1

Bi(A)yi

∥∥∥∥∥
d

,

max
2≤k≤p+q,k 6=p+1

{
ck

ck−1

}
‖(xT

1 , . . . , xT
p , yT

1 , . . . , yT
q )T‖p

}
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and, moreover,

∥∥∥∥∥
p∑

i=1

Ai(A)xi +

q∑
i=1

Bi(A)yi

∥∥∥∥∥
d

≤
p∑

i=1

‖Ai(A)‖d‖xi‖d +

p∑
i=1

‖Bi(A)‖d‖yi‖d

≤
(

p∑
i=1

‖Ai(A)‖d

ci

+

q∑
i=1

‖Bi(A)‖d

cp+i

)

×max {c1‖x1‖d, . . . , cp‖xp‖d, cp+1‖y1‖d, . . . , cp+q‖yq‖d}

≤
(

p∑
i=1

‖Ai(A)‖d

ci

+

q∑
i=1

‖Bi(A)‖d

cp+i

)

×
∥∥(xT

1 , . . . , xT
p , yT

1 , . . . , yT
q )T

∥∥
p
.

From this one deduces

sup
A∈A

‖A‖p ≤ max

{
sup
A∈A

p∑
i=1

‖Ai(A)‖d

cp

+ sup
A∈A

q∑
i=1

‖Bi(A)‖d

c̃
, max
2≤k≤p+q,k 6=p+1

{
ck

ck−1

}}

≤ max

{
M, max

2≤k≤p+q,k 6=p+1

{
ck

ck−1

}}
=: c′ < 1

which concludes the proof. 2

It is now straightforward to deduce conditions for the strict negativity of the Lyapunov
coefficient and the existence of moments of Markov-switching models.

Corollary 5.19 Assume there is a c̄ < 1 and a norm ‖·‖ on Rd such that
∑p

i=1 ‖Φi0‖ ≤ c̄

a.s. Then γ̃ < 0, Φ0 ∈ L∞, limk→∞ ‖Φ0 · · ·Φ−k+1‖1/k
L∞ < 1 and lim supk→∞ E(‖Φ0 · · ·

Φ−k+1‖s)1/k < 1 for all s ∈ R+.

Proof: Apply Theorem 5.17 on the subset A = {Φ0 :
∑p

i=1 ‖Φi0‖ ≤ c̄} of the state space
of Φ0 to obtain an operator norm ‖ · ‖ which ensures ‖Φ0‖ < c′ a.s. for some c′ < 1. This
immediately implies the above claims. 2

An analogous result for (At) follows from Theorem 5.18:

Corollary 5.20 Assume that there is a c̄ < 1, M ∈ R+ and a norm ‖ · ‖ on Rd such
that

∑p
i=1 ‖Φi0‖ ≤ c̄ and

∑q
i=1 ‖Θi0‖ ≤ M a.s. Then it holds that γ < 0, A0 ∈ L∞,

limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 and lim supk→∞ E(‖A0 · · ·A−k+1‖s)1/k < 1 for all s ∈ R+.

Recalling Theorem 5.8, Proposition 5.9 and the comment thereafter leads to the follow-
ing theorem giving feasible sufficient conditions for the existence of a stationary solution
of an MS-ARMA equation and moments thereof. The condition on

∑p
i=1 ‖Φi0‖ corres-

ponds to the general stationarity condition for TAR models given in e.g. An and Huang
(1996) and Brachner (2004), as promised above. The additional condition on

∑p
i=1 ‖Θi0‖

is only necessary because we in general consider models that may have a moving average
component, whereas TAR models are purely autoregressive ones.
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Theorem 5.21 Assume that there is a c̄ < 1, M ∈ R+ and a norm ‖ · ‖ on Rd such that∑p
i=1 ‖Φi0‖ ≤ c̄ and

∑q
i=1 ‖Θi0‖ ≤ M a.s. Let, moreover, E(log+ ‖C0‖) be finite. Then

all conditions of Theorem 5.2 or 5.7 are satisfied and thus there is a unique stationary
and ergodic solution X = (Xt) to the MS-ARMA(p, q, ∆, ε) equation (5.3).

If C0 ∈ Lp̃ for some p̃ ∈ (0,∞], then the solution Xt of the MS-ARMA equation (5.3)
and its higher dimensional representation Xt are in Lp̃. Moreover, the series defining Xt

(as given in Theorem 5.2 or 5.7) converges in Lp̃.

Although the above results on norms seem to be tailor-made to obtain Theorem 5.21,
they can also be of use, if

∑p
i=1 ‖Φi0‖ ≤ c̄ with c̄ < 1 does not hold almost sure. However,

assume the latter condition is satisfied for a subset A of the state space of At, resp. Φt,
that has a positive probability. Then one can use the above results to construct a norm
such that ‖At‖ < c, resp. ‖Φt‖ < c, for some c < 1 on this subset and calculate e.g.
E(log ‖A0‖), resp. E(log ‖Φ0‖), for this norm, since there now clearly is some hope that
the latter are less than zero, especially if the probability of A is close to one.

5.3.2 A Spectral Radius Condition

Now we turn to studying conditions ensuring stationarity and finiteness of moments of
MS-ARMA processes that presume a finite state space of the driving Markov chain ∆.
Note that in the literature (apart from the ML-estimator discussion in Douc, Moulines
and Rydén (2004)) only this finite state space case has been discussed and used for
modelling purposes until now. The spectral radius condition we give below and some
similar conditions have to the best of our knowledge first appeared in Karlsen (1990a)
and have been heavily used in several papers (e.g. Zhang and Stine (2001), Francq and
Zaköıan (2001), Francq and Zaköıan (2002)) to obtain wide sense stationarity, i.e. the
expected value, variance and covariances are independent of time (see e.g. Brockwell
and Davis (1991, Definition 1.3.2)), of an MS-ARMA(p, q, ∆, ε) process. The only work
employing such a condition to ensure (strict) stationarity seems to be Yao (2001), who
studies MS-AR(p) processes driven by a finite state space Markov chain. For non-linear
Markov switching autoregressions somewhat similar conditions are used in Francq and
Roussignol (1998) and Yao and Attali (2000). Restricted to linear autoregression their
approach means replacing the tensor products appearing below by norms.

For the remainder of this section we presume that the stationary and ergodic Markov
chain ∆ has l possible states ∆(i) given by ∆(i) = (µ(i), Σ(i), Φ

(i)
1 , . . . , Φ

(i)
p , Θ

(i)
1 , . . . , Θ

(i)
q )

for i = 1, 2, . . . , l. Moreover, the stationary distribution of ∆ is called π and in the
usual notation for a finite state space Markov chain we write π = (π(1), π(2), . . . , π(l))
and P = (pij)1≤i,j≤l with pij = P (∆t = ∆(j)|∆t−1 = ∆(i)) for the transition matrix.
Furthermore, we define

Φ(i) =




Φ
(i)
1 · · · Φ

(i)
p−1 Φ

(i)
p

Id 0 · · · · · · 0

0
. . . . . .

...
0 · · · 0 Id 0


 ∈ Mdp(R), (5.25)
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A(i) =




Φ
(i)
1 · · · Φ

(i)
p−1 Φ

(i)
p Θ

(i)
1 · · · Θ

(i)
q−1 Θ

(i)
q

Id 0 · · · · · · 0 0 · · · · · · 0

0
. . . . . . 0 0 · · · · · · ...

0 · · · 0 Id 0 0 · · · · · · ...
0 · · · · · · 0 0 · · · · · · 0
0 · · · · · · 0 Id 0 · · · 0
...

. . . . . .
... 0

. . . 0 · · · ...
0 · · · · · · 0 0 · · · 0 Id 0




, (5.26)

Σ(i) =
(
Σ(i)T, 0, . . . , 0, Σ(i)T, 0, . . . , 0

)T

∈ Md(p+q),d(R) (5.27)

and

m(i) =
(
µ(i)T, 0, . . . , 0

)T

∈ Rd(p+q). (5.28)

We also need some more notions from standard matrix algebra. In the following ⊗
denotes the tensor (Kronecker) product of matrices, tr(·) the trace of a square mat-
rix and vec(·) the vectorized form of a matrix (recall vec ((aij)1≤i≤m,1≤j≤n) = (a11, a21,
. . . , am1, a12, . . . , amn)T, cf. e.g. Nicholls and Quinn (1982, p. 11)). Observe that we have
tr ∈ B(Md(R),R), respectively B(Md(C),C), and vec ∈ B(Mm,n(R),Rmn), respect-
ively B(Mm,n(C),Cmn). vec is actually a topological isomorphism (regardless of the ac-
tual norms used). Moreover, one obtains a scalar product over Md(R) (Md(C)) by set-
ting 〈A,B〉 = tr(ABT) for A,B ∈ Md(R) (Md(C)). The norm induced by this scalar
product (sometimes called Froebenius norm) is an algebra, but not an operator norm
(see Heuser (1992, pp. 126, 128)) and will be denoted by ‖ · ‖t in the following (note
‖(aij)‖2

t =
∑

i,j |aij|2). Since we finally look at the spectral radius, we again simply regard
the real matrices as a subset of the complex ones.

Via a technical lemma we shall now show that the Lyapunov coefficient γ is strictly
negative, if

QA :=




A(1) ⊗A(1) 0 · · · 0

0 A(2) ⊗A(2) . . .
...

...
. . . . . . 0

0 · · · 0 A(l) ⊗A(l)




(
PT ⊗ I(d(p+q))2

)
(5.29)

=




p11A
(1) ⊗A(1) p21A

(1) ⊗A(1) · · · pl1A
(1) ⊗A(1)

p12A
(2) ⊗A(2) . . . . . .

...
...

. . . . . . pl(l−1)A
(l−1) ⊗A(l−1)

p1lA
(l) ⊗A(l) · · · p(l−1)lA

(l) ⊗A(l) pllA
(l) ⊗A(l)




or

QΦ :=




Φ(1) ⊗Φ(1) 0 · · · 0

0 Φ(2) ⊗Φ(2) . . .
...

...
. . . . . . 0

0 · · · 0 Φ(l) ⊗Φ(l)




(
PT ⊗ I(dp)2

)
(5.30)



5.3. FEASIBLE SUFFICIENT CONDITIONS 83

=




p11Φ
(1) ⊗Φ(1) p21Φ

(1) ⊗Φ(1) · · · pl1Φ
(1) ⊗Φ(1)

p12Φ
(2) ⊗Φ(2) . . . . . .

...
...

. . . . . . pl(l−1)Φ
(l−1) ⊗Φ(l−1)

p1lΦ
(l) ⊗Φ(l) · · · p(l−1)lΦ

(l) ⊗Φ(l) pllΦ
(l) ⊗Φ(l)




has spectral radius less than one. Furthermore, we will show that this also implies that
the MS-ARMA process is square integrable, if εt is so.

Lemma 5.22 Set IA =
(
I(d(p+q))2 , I(d(p+q))2 , . . . , I(d(p+q))2

) ∈ M(d(p+q))2,l(d(p+q))2 and IΦ =(
I(dp)2 , I(dp)2 , . . . , I(dp)2

) ∈ M(dp)2,l(dp)2. Then the following identities hold for all t ∈ Z and
k ∈ N0:




E
(
vec

(
AtAt−1 · · ·At−kA

T
t−k · · ·AT

t−1A
T
t

)
I{∆(1)}(∆t)

)
E

(
vec

(
AtAt−1 · · ·At−kA

T
t−k · · ·AT

t−1A
T
t

)
I{∆(2)}(∆t)

)
...

E
(
vec

(
AtAt−1 · · ·At−kA

T
t−k · · ·AT

t−1A
T
t

)
I{∆(l)}(∆t)

)


 = Qk

A




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)




,

(5.31)




E
(
vec

(
ΦtΦt−1 · · ·Φt−kΦ

T
t−k · · ·ΦT

t−1Φ
T
t

)
I{∆(1)}(∆t)

)
E

(
vec

(
ΦtΦt−1 · · ·Φt−kΦ

T
t−k · · ·ΦT

t−1Φ
T
t

)
I{∆(2)}(∆t)

)
...

E
(
vec

(
ΦtΦt−1 · · ·Φt−kΦ

T
t−k · · ·ΦT

t−1Φ
T
t

)
I{∆(l)}(∆t)

)


 = Qk

Φ




π(1)vec
(
Φ(1)Φ(1)T

)

π(2)vec
(
Φ(2)Φ(2)T

)

...

π(l)vec
(
Φ(l)Φ(l)T

)




,

(5.32)

E
(
vec

(
AtAt−1 · · ·At−kA

T
t−k · · ·AT

t−1A
T
t

))
= IAQk

A




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)




(5.33)

and

E
(
vec

(
ΦtΦt−1 · · ·Φt−kΦ

T
t−k · · ·ΦT

t−1Φ
T
t

))
= IΦQk

Φ




π(1)vec
(
Φ(1)Φ(1)T

)

π(2)vec
(
Φ(2)Φ(2)T

)

...

π(l)vec
(
Φ(l)Φ(l)T

)




. (5.34)

Proof: We only prove the claims regarding A, since the results on Φ are obtained along
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the same lines. (5.31) and the definition of IA immediately give (5.33):

IAQk
A




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)




=
l∑

i=1

I(d(p+q))2E
(
vec

(
AtAt−1 · · ·At−kA

T
t−k · · ·AT

t−1A
T
t

)
I{∆(i)}(∆t)

)

= E

(
vec

(
AtAt−1 · · ·At−kA

T
t−k · · ·AT

t−1A
T
t

) l∑
i=1

I{∆(i)}(∆t)

)

= E
(
vec

(
AtAt−1 · · ·At−kA

T
t−k · · ·AT

t−1A
T
t

))
.

Obviously (5.31) holds for k = 0 and else is equivalent to

Qk
A




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)




=




l∑
i1,i2,...,ik=1

π(ik)pikik−1
pik−1ik−2

· · · pi11vec
(
A(1)A(i1) · · ·A(ik)A(ik)T · · ·A(i1)TA(1)T

)

l∑
i1,i2,...,ik=1

π(ik)pikik−1
pik−1ik−2

· · · pi12vec
(
A(2)A(i1) · · ·A(ik)A(ik)T · · ·A(i1)TA(2)T

)

...
l∑

i1,i2,...,ik=1

π(ik)pikik−1
pik−1ik−2

· · · pi1lvec
(
A(l)A(i1) · · ·A(ik)A(ik)T · · ·A(i1)TA(l)T

)




,

which we establish by an induction argument. For k equal to one we have




p11A
(1) ⊗A(1) · · · pl1A

(1) ⊗A(1)

...
. . .

...
p1lA

(l) ⊗A(l) · · · pllA
(l) ⊗A(l)







π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)



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=




l∑
i1=1

π(i1)pi11A
(1) ⊗A(1)vec

(
A(i1)A(i1)T

)

l∑
i1=1

π(i1)pi12A
(2) ⊗A(2)vec

(
A(i1)A(i1)T

)

...
l∑

i1=1

π(i1)pi1lA
(l) ⊗A(l)vec

(
A(i1)A(i1)T

)




.

The general identity vec(ABC) = (CT ⊗ A)vec(B) (cf. Nicholls and Quinn (1982, Th.

A.1.1)) gives A(j) ⊗ A(j)vec
(
A(i1)A(i1)T

)
= vec

(
A(j)A(i1)A(i1)TA(j)T

)
and thus the

above claimed identity is established for k = 1.
Assume now that the identity holds for some k ∈ N. Then

Qk+1
A




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)




= QAQk
A




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)




=




p11A
(1) ⊗A(1) · · · pl1A

(1) ⊗A(1)

...
. . .

...
p1lA

(l) ⊗A(l) · · · pllA
(l) ⊗A(l)




×




l∑
i2,i3,...,ik+1=1

π(ik+1)pik+1ikpikik−1
· · · pi21vec

(
A(1)A(i2) · · ·A(ik+1)A(ik+1)

T · · ·A(i2)TA(1)T
)

l∑
i2,i3,...,ik+1=1

π(ik+1)pik+1ikpikik−1
· · · pi22vec

(
A(2)A(i2) · · ·A(ik+1)A(ik+1)

T · · ·A(i2)TA(2)T
)

...
l∑

i2,i3,...,ik+1=1

π(ik+1)pik+1ikpikik−1
· · · pi2lvec

(
A(l)A(i2) · · ·A(ik+1)A(ik+1)

T · · ·A(i2)TA(l)T
)




=




l∑
i1,i2,...,ik+1=1

π(ik+1)pik+1ik · · · pi2i1pi11A
(1) ⊗A(1)vec

(
A(i1) · · ·A(ik+1)A(ik+1)

T · · ·A(i1)T
)

l∑
i1,i2,...,ik+1=1

π(ik+1)pik+1ik · · · pi2i1pi12A
(2) ⊗A(2)vec

(
A(i1) · · ·A(ik+1)A(ik+1)

T · · ·A(i1)T
)

...
l∑

i1,i2,...,ik+1=1

π(ik+1)pik+1ik · · · pi2i1pi1lA
(l) ⊗A(l)vec

(
A(i1) · · ·A(ik+1)A(ik+1)

T · · ·A(i1)T
)




and using again vec(ABC) = (CT ⊗ A)vec(B) to obtain A(j) ⊗A(j)vec
(
A(i1) · · ·A(ik+1)

A(ik+1)
T · · ·A(i1)T

)
= vec

(
A(j)A(i1) · · ·A(ik+1)A(ik+1)

T · · ·A(i1)TA(j)T
)

finally concludes

the proof. 2
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Theorem 5.23 Assume that ρ(QA) < 1 or ρ(QΦ) < 1. Then it holds that γ = γ̃ < 0 and
lim supk→∞ E(‖Φ0 · · ·Φ−k+1‖2)1/k < 1, lim supk→∞ E(‖A0 · · ·A−k+1‖2)1/k < 1.

The converse implication does not hold, as will be exemplified in Section 5.4.1.
Proof: By Corollary 5.6 we have γ = γ̃ and as a consequence of Corollary 5.15 we have
lim supk→∞ E(‖Φ0 · · ·Φ−k+1‖2)1/k < 1, iff lim supk→∞ E(‖A0 · · ·A−k+1‖2)1/k < 1. Thus
in view of Lemma 4.5 it suffices to show that ρ(QA) < 1 implies

lim sup
k→∞

E(‖A0 · · ·A−k+1‖2)1/k < 1

and ρ(QΦ) < 1 gives
lim sup

k→∞
E(‖Φ0 · · ·Φ−k+1‖2)1/k < 1

for some algebra norm. We only show the first implication, since for the other one one
proceeds totally analogously.

From the last lemma and the fact that tr and vec are linear mappings we obtain

E(‖A0 · · ·A−k+1‖2
t ) = E

(
tr(A0 · · ·A−k+1A

T
−k+1 · · ·AT

0 )
)

= tr
(
E(A0 · · ·A−k+1A

T
−k+1 · · ·AT

0 )
)

= tr
(
vec−1

(
E

(
vec(A0 · · ·A−k+1A

T
−k+1 · · ·AT

0 )
)))

= tr




vec−1



IAQk−1

A




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)










≤ ‖tr ◦ vec−1 ◦ IA‖‖Qk−1
A ‖

∥∥∥∥∥∥∥∥∥∥∥∥




π(1)vec
(
A(1)A(1)T

)

π(2)vec
(
A(2)A(2)T

)

...

π(l)vec
(
A(l)A(l)T

)




∥∥∥∥∥∥∥∥∥∥∥∥

for k ∈ N. So there is a C ∈ R+ such that E(‖A0 · · ·A−k+1‖2
t )

1/k ≤ C1/k‖Qk−1
A ‖1/k. Since

limk→∞ ‖Qk−1
A ‖1/k = ρ(QA), this gives lim supk→∞ E(‖A0 · · ·A−k+1‖2)1/k < 1. 2

Actually it is irrelevant whether one studies QA or QΦ as the following result from
Francq and Zaköıan (2001) shows.

Lemma 5.24 The spectral radii of QA and QΦ are the same.

Proof: see Francq and Zaköıan (2001, Appendix A) 2

We now turn to establishing that ρ(QA) < 1 also implies that the MS-ARMA process
is square integrable, if the noise sequence (εt) is so. We follow the discussion in Francq and
Zaköıan (2001) who showed that this condition implies wide side sense stationarity (called
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second order stationarity by them). However, they did not observe that this condition also
gives strict stationarity, although our above calculations are very similar to theirs. For MS-
AR(p) processes Yao (2001) obtained strict stationarity and the existence of the second
moment under the condition that the matrix

(
PT ⊗ I(dp)2

)



Φ(1) ⊗Φ(1) 0 · · · 0

0 Φ(2) ⊗Φ(2) . . .
...

...
. . . . . . 0

0 · · · 0 Φ(l) ⊗Φ(l)




has spectral radius less than one. But since σ(AB)\{0} = σ(BA)\{0} for any two matrices
A,B ∈ Mn(R) this is equivalent to ρ(QΦ) < 1.

Lemma 5.25 (cf. Francq and Zaköıan (2001, pp. 344ff)) Assume that εt ∈ L2 and
E(εt) = 0. Set IA =

(
I(d(p+q))2 , I(d(p+q))2 , . . . , I(d(p+q))2

) ∈ M(d(p+q))2,l(d(p+q))2. Then the
following identities hold for all t ∈ Z and k ∈ N0:




E
(
vec

(
AtAt−1 · · ·At−k+1Ct−kC

T
t−kA

T
t−k+1 · · ·AT

t−1A
T
t

)
I{∆(1)}(∆t)

)
E

(
vec

(
AtAt−1 · · ·At−k+1Ct−kC

T
t−kA

T
t−k+1 · · ·AT

t−1A
T
t

)
I{∆(2)}(∆t)

)
...

E
(
vec

(
AtAt−1 · · ·At−k+1Ct−kC

T
t−kA

T
t−k+1 · · ·AT

t−1A
T
t

)
I{∆(l)}(∆t)

)




= Qk
A







π(1)Σ(1) ⊗Σ(1)

π(2)Σ(2) ⊗Σ(2)

...
π(l)Σ(l) ⊗Σ(l)


 vec(E(ε0ε

T
0 )) +




π(1)m(1) ⊗m(1)

π(2)m(2) ⊗m(2)

...
π(l)m(l) ⊗m(l)





 ,

and

E
(
vec

(
AtAt−1 · · ·At−k+1Ct−kC

T
t−kA

T
t−k+1 · · ·AT

t−1A
T
t

))

= IAQk
A







π(1)Σ(1) ⊗Σ(1)

π(2)Σ(2) ⊗Σ(2)

...
π(l)Σ(l) ⊗Σ(l)


 vec(E(ε0ε

T
0 )) +




π(1)m(1) ⊗m(1)

π(2)m(2) ⊗m(2)

...
π(l)m(l) ⊗m(l)





 .

Proof (cf. Francq and Zaköıan (2001, pp. 344ff)): Again the second identity follows
immediately from the first. For the first we employ an induction argument. For k = 0 and
all t ∈ Z:




E
(
vec

(
CtC

T
t

)
I{∆(1)}(∆t)

)
E

(
vec

(
CtC

T
t

)
I{∆(2)}(∆t)

)
...

E
(
vec

(
CtC

T
t

)
I{∆(l)}(∆t)

)






88 CHAPTER 5. MARKOV-SWITCHING ARMA MODELS

=




E
(
vec

((
m(1) + Σ(1)εt

) (
m(1) + Σ(1)εt

)T
)

I{∆(1)}(∆t)
)

E
(
vec

((
m(2) + Σ(2)εt

) (
m(2) + Σ(2)εt

)T
)

I{∆(2)}(∆t)
)

...

E
(
vec

((
m(l) + Σ(l)εt

) (
m(l) + Σ(l)εt

)T
)

I{∆(l)}(∆t)
)




=




π(1)vec
(
m(1)m(1)T + m(1)

(
Σ(1)E(εt)

)T
+ Σ(1)E(εt)m

(1)T + Σ(1)E(εtε
T
t )Σ(1)T

)

π(2)vec
(
m(2)m(2)T + m(2)

(
Σ(2)E(εt)

)T
+ Σ(2)E(εt)m

(2)T + Σ(2)E(εtε
T
t )Σ(2)T

)

...

π(l)vec
(
m(l)m(l)T + m(l)

(
Σ(l)E(εt)

)T
+ Σ(l)E(εt)m

(l)T + Σ(l)E(εtε
T
t )Σ(l)T

)




=




π(1)vec
(
m(1)m(1)T + Σ(1)E(εtε

T
t )Σ(1)T

)

π(2)vec
(
m(2)m(2)T + Σ(2)E(εtε

T
t )Σ(2)T

)

...

π(l)vec
(
m(l)m(l)T + Σ(l)E(εtε

T
t )Σ(l)T

)




=




π(1)Σ(1) ⊗Σ(1)

π(2)Σ(2) ⊗Σ(2)

...
π(l)Σ(l) ⊗Σ(l)


 vec(E(ε0ε

T
0 )) +




π(1)m(1) ⊗m(1)

π(2)m(2) ⊗m(2)

...
π(l)m(l) ⊗m(l)


 ,

where we again used vec(ABC) = (CT ⊗ A)vec(B) (cf. Nicholls and Quinn (1982, Th.

A.1.1)) and, moreover, the obvious vec
(
m(j)m(j)T

)
= m(j) ⊗ m(j). So, the identity is

established for k = 0. Assume now that it holds for some k ∈ N0. Then

Qk+1
A







π(1)Σ(1) ⊗Σ(1)

π(2)Σ(2) ⊗Σ(2)

...
π(l)Σ(l) ⊗Σ(l)


 vec(E(ε0ε

T
0 )) +




π(1)m(1) ⊗m(1)

π(2)m(2) ⊗m(2)

...
π(l)m(l) ⊗m(l)







=




p11A
(1) ⊗A(1) · · · pl1A

(1) ⊗A(1)

...
. . .

...
p1lA

(l) ⊗A(l) · · · pllA
(l) ⊗A(l)




×




E
(
vec

(
At−1At−2 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−2A
T
t−1

)
I{∆(1)}(∆t−1)

)
E

(
vec

(
At−1At−2 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−2A
T
t−1

)
I{∆(2)}(∆t−1)

)
...

E
(
vec

(
At−1At−2 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−2A
T
t−1

)
I{∆(l)}(∆t−1)

)



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=




l∑
i=1

pi1A
(1) ⊗A(1)E

(
vec

(
At−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1

)
I{∆(i)}(∆t−1)

)

l∑
i=1

pi2A
(2) ⊗A(2)E

(
vec

(
At−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1

)
I{∆(i)}(∆t−1)

)

...
l∑

i=1

pilA
(l) ⊗A(l)E

(
vec

(
At−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1

)
I{∆(i)}(∆t−1)

)




=




E
(
vec

(
AtAt−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1A
T
t

)
I{∆(1)}(∆t)

)
E

(
vec

(
AtAt−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1A
T
t

)
I{∆(2)}(∆t)

)
...

E
(
vec

(
AtAt−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1A
T
t

)
I{∆(l)}(∆t)

)


 .

In the last step one uses (exemplified for the first coordinate):

l∑
i=1

pi1A
(1) ⊗A(1)E

(
vec

(
At−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1

)
I{∆(i)}(∆t−1)

)

=
l∑

i=1

pi1E
(
vec

(
A(1)At−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1A
(1)T

)
I{∆(i)}(∆t−1)

)

=
l∑

i,j=1

pj1 E
(
vec

(
A(1)At−1 · · · · · ·AT

t−1A
(1)T

)
I{∆(i)}(∆t−1)|∆t−1 = ∆(j)

)

︸ ︷︷ ︸
=0 for i6=j

π(j)

(∗)
=

l∑
i,j=1

E
(
vec

(
A(1)At−1 · · · · · ·AT

t−1A
(1)T

)
I{∆(i)}(∆t−1)I{∆(1)}(∆t)|∆t−1 = ∆(j)

)
π(j)

=
l∑

i=1

E
(
vec

(
A(1)At−1 · · ·Ct−k−1C

T
t−k−1 · · ·AT

t−1A
(1)T

)
I{∆(i)}(∆t−1)I{∆(1)}(∆t)

)

= E
(
vec

(
A(1)At−1 · · ·At−kCt−k−1C

T
t−k−1A

T
t−k · · ·AT

t−1A
(1)T

)
I{∆(1)}(∆t)

)

In (∗) we used pj1 = E(I{∆(1)}(∆t)|∆t−1 = ∆(j)) and the independence of ∆t from
∆t−k−1, . . . , ∆t−1 given ∆t−1.

Thus the claimed identity is proved for all k ∈ N0 by induction. 2

Theorem 5.26 Assume that ∆ has a finite state space, ε0 ∈ L2, E(ε0) = 0 and ρ(QA) <
1. Then all conditions of Theorem 5.2 or 5.7 are satisfied and thus there is a unique
stationary and ergodic solution X = (Xt) to the MS-ARMA(p, q, ∆, ε) equation (5.3).
Furthermore, the solution Xt of the MS-ARMA equation (5.3) and its higher dimensional
representation Xt are in L2 and the series defining Xt (as given in Theorem 5.2 or 5.7)
converges in L2.

Proof (cf. Francq and Zaköıan (2001) for the L2 part): The finite state space and
ε0 ∈ L2 imply E(log+ ‖A0‖) < ∞ and E(log+ ‖C0‖) < ∞ as already noted in Section
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5.2.2. γ < 0 and γ̃ < 0 follows by Theorem 5.23. So, it only remains to show (5.23) with
p = 2. It is clear that A0 · · ·A−k+1C−k ∈ L2 for all natural k. To be able to apply Theorem
5.8 it thus suffices to show lim supk→∞ E(‖A0 · · ·A−k+1C−k‖2)1/k < 1 (cf. Lemma 4.8)
and the later is obviously independent of the particular norm employed. Noting that
‖x‖2

2 = tr(xxT) for any x ∈ Rn we obtain:

E(‖A0 · · ·A−k+1C−k‖2
2) = E

(
tr

(
A0A−1 · · ·A−k+1C−kC

T
−kA

T
−k+1 · · ·AT

−1A
T
0

))

= tr ◦ vec−1
(
E

(
vec

(
A0A−1 · · ·A−k+1C−kC

T
−kA

T
−k+1 · · ·AT

−1A
T
0

)))

= tr ◦ vec−1


IAQk

A







π(1)Σ(1) ⊗Σ(1)

π(2)Σ(2) ⊗Σ(2)

...
π(l)Σ(l) ⊗Σ(l)


 vec(E(ε0ε

T
0 )) +




π(1)m(1) ⊗m(1)

π(2)m(2) ⊗m(2)

...
π(l)m(l) ⊗m(l)










≤ ‖tr ◦ vec−1 ◦ IA‖‖Qk
A‖

∥∥∥∥∥∥∥∥∥




π(1)Σ(1) ⊗Σ(1)

π(2)Σ(2) ⊗Σ(2)

...
π(l)Σ(l) ⊗Σ(l)


 vec(E(ε0ε

T
0 )) +




π(1)m(1) ⊗m(1)

π(2)m(2) ⊗m(2)

...
π(l)m(l) ⊗m(l)




∥∥∥∥∥∥∥∥∥
.

So there is a C ∈ R+ such that E(‖A0 · · ·A−k+1C−k‖2
2)

1/k ≤ C1/k‖Qk
A‖1/k for all natural

k. Since limk→∞ ‖Qk
A‖1/k = ρ(QA), this gives lim supk→∞ E(‖A0 · · ·A−k+1C−k‖2)1/k < 1.

2

A thorough discussion of this spectral radius condition for second order stationarity
is to be found in Francq and Zaköıan (2001), which also contains several examples. In
particular, it is shown there that ρ(QA) < 1 is also a necessary condition for the existence
of a second order stationary solution to an MS-ARMA(1,1) equation under some tech-
nical assumptions. Some explicit moment calculations can also be found in Timmermann
(2000). A thorough discussion on this topic is, however, beyond the scope of the present
thesis focusing on theoretical properties of MS-ARMA models. Yet, in Section 5.4.1 we
will give an example showing that ρ(QA) can be greater one, although the Lyapunov
coefficient is strictly negative.

5.3.3 Simulation

Another way to check, whether the stationarity or moment existence conditions are sat-
isfied for a particular model, is to use simulations. Below we only briefly state the main
ideas as a more thorough analysis is again beyond the scope of this thesis.

For the top Lyapunov coefficient it seems to be advisable to use that

lim
n→∞

1

n + 1
log ‖An · · ·A0‖ = γ a.s. (5.35)

as shown in Furstenberg and Kesten (1960, Th. 2), since for this it is sufficient to simu-
late only one realization of the chain (An)n∈N0 . The simulation of 1

n+1
log ‖An · · ·A0‖

should be stopped when the sequence appears to have converged or alternatively one
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can use the results of Goldsheid (1991), who studies the asymptotics and gives a central
limit theorem, to decide when to stop the simulation and even to construct confidence
intervals. Unfortunately, it is less straightforward, how to verify the moment conditions
like lim supk→∞ E(‖A0 · · ·A−k+1C−k‖p̃)1/k < 1, lim supk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1 or

lim supk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 via simulations. In general no simple simulation scheme

seems to be possible and to the best of our knowledge this question has not been addressed
in the literature until now. Hence, any further analysis should be very welcome. However,
if A is an i.i.d. sequence Lemma 4.6 (ii) is applicable and as the “lim sup” now actually
is a real limit that is even equal to the infimum over the whole sequence, it seems to
be advisable to simulate E(‖A0 · · ·A−n+1‖s)1/n for fixed (large enough) n ∈ N and check
whether this gives a value strictly less than one. All the usual Monte Carlo simulation tools
(see e.g. Asmussen (1999) for an overview) are available in order to improve the quality of
the simulations, to draw inferences and, especially, to give (asymptotic) confidence bands.
As the L∞ case involves studying an (essential) supremum, a similar approach using

Lemma 4.6 (i) seems not to be possible to analyse lim supk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1.

5.4 Global and Local Stationarity

The aim of this section is to analyse the relation between local stationarity and the global
stationarity of an MS-ARMA(p,q) process. By local stationarity we mean that each regime
corresponds to a causal ARMA process and by global stationarity that the overall MS-
ARMA process is stationary and expressible as a measurable function of past and present
values of (∆t) and (εt), i.e. Xt = f(∆t, ∆t−1, . . . , εt, εt−1, . . .). Extending standard ARMA
terminology we also call such an MS-ARMA process causal. It will turn out that local
stationarity is neither sufficient nor necessary for global stationarity in the sense that the
MS-ARMA process is defined by the causal series representation given in Theorem 5.2.
For the sake of notational ease we will restrict ourselves to d = 1, i.e. one-dimensional
processes. It is, however, obvious how the results carry over to d > 1.

5.4.1 MS-ARMA(1,q): Local Stationarity Sufficient but not Ne-
cessary

Let us first consider the MS-ARMA(1,0) case and assume local stationarity, i.e. each
regime is of the form Yt = Φ1tYt−1+µt+Σtεt with |Φ1t| < 1. Then E(log |Φ0|) < 0 and thus
the top Lyapunov coefficient is strictly negative and we obtain global stationarity (given
E(log+ |µ0 + Σ0ε0|) is finite). To illustrate that local stationarity is not necessary let (∆t)
have only two possible states and stationary distribution (π(1), π(2)). Then E(log |Φ0|) < 0

translates into π(1) log |Φ(1)| + π(2) log |Φ(2)| < 0 and this is equivalent to |Φ(1)|π(1)
<

|Φ(2)|−π(2)
. From the last equation it is immediate to see that |Φ(1)| can be arbitrarily

large provided |Φ(2)| is close enough to zero (and vice versa). So local stationarity is not
at all necessary for global stationarity. But things are slightly different, if second moments
are considered. In Francq and Zaköıan (2001, p. 351) it is shown that the spectral radius
condition of the previous section is necessary for an MS-ARMA(1,0) process (with finite
state space of ∆) to be second order stationary. For a special transition matrix structure
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the domain of (Φ(1),Φ(2)) giving second order stationarity (provided (Ct) is independent
of (At) and has finite second moment) is studied in Yao (2001) and depicted in Figure 1 of
this article. It is clear that the second-order stationarity condition is more restrictive than
the above one ensuring only the top Lyapunov exponent to be strictly negative. Especially,
the results of Yao (2001) give that for a fixed transition matrix of ∆ the possible set of
(Φ(1),Φ(2)) ensuring finite second moments is bounded, whereas above we obtained that
one of the Φ(i) can be arbitrarily large.

Let us illustrate the relations between the individual stationarity conditions by some
examples. For the sake of simplicity we presume Σt = 1, µt = 0, that there are two possible
states Φ(1) and Φ(2) and that the transition matrix is given by

P =

(
p11 p12

p21 p22

)
=

(
p̄ 1− p̄

1− p̄ p̄

)

for some p̄ ∈ [0, 1). Then the stationary distribution is given by (π(1), π(2)) = (1/2, 1/2).
Recall that for the real-valued MS-AR(1) γ = E(log |Φ1t|), so we can actually calculate
the Lyapunov coefficient rather easily.
Example 1: Take p̄ = 3/4, Φ(1) = 1/2 and Φ(2) = 11/10. We obtain E(log |Φ1t|) =
(1/2) log((1/2) · (11/10)) = (1/2) log(11/20) < 0. For the condition from Theorem 5.23
one calculates ρ(QA) = (219 +

√
23761)/400 ≈ 0.9328650868 (using Maple) and for the

one from the upcoming Lemma 5.28 ρ(Q|A|) = 3/5 +
√

34/20 ≈ 0.8915475948. So, all
three conditions show strict negativity of the Lyapunov coefficient.
Example 2: Let us examine the effect of increasing the probability of remaining in the
current regime. Take p̄ = 49/50, Φ(1) = 1/2 and Φ(2) = 11/10. We obtain E(log |Φ1t|) =
(1/2) log((1/2) · (11/10)) = (1/2) log(11/20) < 0 again. However, for the condition from
Theorem 5.23 one calculates ρ(QA) = (3577 +

√
5534929)/5000 ≈ 1.185928596 and for

the one from the upcoming Lemma 5.28 ρ(Q|A|) = (98 +
√

1354)/125 ≈ 1.078373912.
So, all two spectral radius conditions fail to show the strict negativity of the Lyapunov
coefficient, although E(log |Φ1t|) < 0 holds.
Example 3: Let us now examine the effect of increasing the explosiveness of the second re-
gime. Take p̄ = 3/4, Φ(1) = 1/2 and Φ(2) = 3/2. We obtain E(log |Φ1t|) = (1/2) log((1/2) ·
(3/2)) = (1/2) log(3/4) < 0. However, for the condition from Theorem 5.23 one calculates
ρ(QA) = (15 + 3

√
17)/16 ≈ 1.710582305 and for the one from the upcoming Lemma 5.28

ρ(Q|A|) = (3 +
√

3)/4 ≈ 1.183012702. So, all two spectral radius conditions fail to show
the strict negativity of the Lyapunov coefficient again, although E(log |Φ1t|) < 0 holds.

Observe that, actually, one has E(log |Φ1t|) < 0 for any value of Φ(2) strictly less
than two in modulus, if Φ(1) = 1/2. The above calculations show that both spectral
radius conditions considered may well fail to show the strict negativity of the Lyapunov
coefficient. As ρ(QA) < 1 under some technical conditions is shown to be necessary for
the existence of a second moment of an MS-ARMA(1,1) process in Francq and Zaköıan
(2001, Example 3), the above Examples 2 and 3 lead, apart from degenerate cases, to
stationary, but not second-order stationary MS-ARMA processes when the noise εt is in
L2. Some simulations of the above considered processes are to be found in Sections 5.6.1
and 5.6.2.

To sum up the above discussion, we note that for an MS-ARMA(1,q) process local
stationarity is sufficient but not necessary to ensure a strictly negative γ and thus global
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stationarity.

5.4.2 General MS-ARMA(p,q): Local Stationarity neither Suf-
ficient nor Necessary

Let us now turn to the case p > 1. From Theorem 5.21 one obtains that under rather
heavy additional conditions local stationarity gives the global one. Later we will give an
example showing that local stationarity is generally not sufficient. However, let us first
briefly discuss that local stationarity is not necessary for the global one either.

Non-necessity

For the sake of simplicity let us again assume that ∆ has only two possible states and
give a concrete example. Let

Φ(1) =

(
1
4

1
8

1 0

)
.

Since 1/4 + 1/8 < 1/2 < 1 it is clear that it is a causal ARMA(2,q) regime. Using the
proof of Theorem 5.17 we construct a norm such that Φ(1) is within the unit circle. To
this end choose c = 1/2, c1 = 1, c2 = 3/4 in the construction there. The obtained norm
is thus given by ‖(x1, x2)

T‖ = max(|x1|, (3/4)|x2|) and ‖Φ(1)‖ ≤ 3/4. Let now Φ(2) be of
the following form

Φ(2)
a =

(
a 0
1 0

)

where a is greater than or equal to one. So the second regime corresponds to a non-causal
ARMA(1,q) process (note ρ(Φ

(2)
a ) = a). Elementary calculations immediately give that

‖Φ(2)
a ‖ = a and the sufficient condition E(log ‖Φ0‖) < 0 ensuring γ < 0 is equivalent

to aπ(2)
< (4/3)π(1)

. The latter gives that there indeed are possible values for a strictly
greater than one which result in global stationarity of the MS-ARMA process and the
applicability of Theorem 5.2 in particular. It may be unsatisfactory that the second regime
was restricted to an ARMA(1,q) one. Yet, from continuity arguments it is immediate that
one can also combine the first regime with regimes of the form

Φ
(2)
a,b =

(
a b
1 0

)
,

where a is greater than one and b sufficiently close to zero. For small |b| this gives a
non-causal ARMA(2,q) as second regime, but still a strictly negative Lyapunov exponent
for the MS-ARMA(2,q) process.

Non-sufficiency

We now turn to an example showing that despite local stationarity, i.e. all regimes corres-
pond to causal ARMA processes, the Lyapunov coefficient can be non-negative and the
series representation in Theorem 5.2 may not give a stationary solution to the MS-ARMA
equation. Under square-integrability conditions on the noise any causal ARMA process
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is also second order stationary. This may lead to the idea that, provided all regimes are
causal ARMA processes, the overall MS-ARMA process should also be causal and, espe-
cially, be square-integrable for an L2 noise. That local stationarity does not necessarily
result in L2 stationarity for MS-ARMA is demonstrated in Francq and Zaköıan (2001).
Let us briefly repeat their counterexample. Assume that we have a stationary and ergodic
Markov chain ∆ with only two possible states and transition matrix

P =

(
p11 p12

p21 p22

)

and a zero-mean L2 noise sequence ε. Note that for all stochastic matrices with pii 6=
1, i = 1, 2, there exists a two state ergodic and stationary Markov chain having it as
transition matrix (recall that aperiodicity is not required for ergodicity in our sense). Let
further the regimes ∆(1) and ∆(2) be given by the following two regimes

Xt = Φ
(1)
1 Xt−1 + Φ

(1)
2 Xt−2 + εt

and
Xt = Φ

(2)
1 Xt−1 + εt,

each of which shall correspond to a causal ARMA process. Assume now that there exists an
MS-ARMA(2,0) process (Xt) that is stationary, in L2 and solves the MS-ARMA equation
(5.3) with the above given ∆ and ε. Moreover, assume that X is a causal solution, i.e.
Xt can be represented as a measurable function of ∆t, ∆t−1, . . . and εt, εt−1, . . .. Then the
conditional expectation E

(
X2

t |∆t = ∆(1), ∆t−1 = ∆(2)
)

exists and is the same at all times
t. One calculates:

E
(
X2

t |∆t = ∆(1), ∆t−1 = ∆(2)
)

= E

(((
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)
Xt−2 + εt + Φ

(1)
1 εt−1

)2

|∆t = ∆(1), ∆t−1 = ∆(2)

)

= E

(((
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)
Xt−2

)2

+
(
εt + Φ

(1)
1 εt−1

)2

+
(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)
Xt−2

(
εt + Φ

(1)
1 εt−1

)
|∆t = ∆(1), ∆t−1 = ∆(2)

)
.

Using that Xt−2 and {εt, εt−1}, as well as ∆ and ε are independent and that εt has zero
mean, we obtain:

E
(
X2

t |∆t = ∆(1), ∆t−1 = ∆(2)
)

= E

(((
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)
Xt−2

)2

+
(
εt + Φ

(1)
1 εt−1

)2

|∆t = ∆(1), ∆t−1 = ∆(2)

)

≥
(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)2

E
(
X2

t−2|∆t = ∆(1), ∆t−1 = ∆(2)
)

=
(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)2
2∑

i,j=1

P
(
∆t−2 = ∆(i), ∆t−3 = ∆(j)|∆t = ∆(1), ∆t−1 = ∆(2)

)

×E
(
X2

t−2|∆t = ∆(1), ∆t−1 = ∆(2), ∆t−2 = ∆(i), ∆t−3 = ∆(j)
) ·
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≥
(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)2

E
(
X2

t−2|∆t = ∆(1), ∆t−1 = ∆(2), ∆t−2 = ∆(1), ∆t−3 = ∆(2)
)

×P
(
∆t−2 = ∆(1), ∆t−3 = ∆(2)|∆t = ∆(1), ∆t−1 = ∆(2)

)

∆ Markov
=

(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)2

E
(
X2

t−2|∆t−2 = ∆(1), ∆t−3 = ∆(2)
)
p12p21

=
(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)2

p12p21E
(
X2

t |∆t = ∆(1), ∆t−1 = ∆(2)
)
.

Thus it must hold that
(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)2

p12p21 ≤ 1. Yet, take e.g. Φ
(1)
1 = 9/5, Φ

(1)
2 =

−9/10 and Φ
(2)
1 = −1/5. This gives

(
Φ

(1)
1 Φ

(2)
1 + Φ

(1)
2

)2

= (63/50)2, which implies that

p12p21 ≤ (63/50)−2 ≈ 0.630 needs to hold. For p12, p21 ∈ [0.8, 1] the latter is, however,
obviously violated. Thus there cannot be any stationary, causal MS-ARMA process with
finite second moments for the above chosen parameter values. But note that one obtains
ρ(Φ(1)) = |(9/10)± (3/10)i| = 3/

√
10 < 1 and ρ(Φ(2)) = 1/5 and thus both regimes cor-

respond to causal ARMA ones. In Francq and Zaköıan (2001) a simulation is undertaken
to examine this explosive behaviour. From the simulated path they conclude that the
critical changes leading to the explosion occur, when the regime switches, which is rather
often the case for the above parameters. The precise reason will become obvious when
we now study this counterexample further. For a very concrete and thus highly tractable
example we show below that the series representation for a solution to an MS-ARMA
equation as given in Theorem 5.2 does not converge a.s. and thus the Lyapunov exponent
is non-negative, although the individual regimes are causal.

For the above studied parameters we have

Φ(1) =

(
9/5 −9/10
1 0

)

and

Φ(2) =

( −1/5 0
1 0

)
.

The crucial observation now is that

R := Φ(1)Φ(2) =

( −63/50 0
−1/5 0

)

and

S := Φ(2)Φ(1) =

( −9/25 9/50
9/5 −9/10

)

both have spectral radius 63/50 > 1. Since Φ(1) and Φ(2) have spectral radius less than

one, Φ(i)k is a contraction (i.e. has operator norm less than 1) for all large enough k ∈ N
and all norms on R2. That is why, there is a causal solution to the respective ARMA
equations representable by an absolutely converging series as in Theorem 5.2. But if we
switch between the two regimes regularly no contraction but an explosion may be obtained
in the long run, since R and S have −63/50 as an eigenvalue. This seems to be the precise
reason, why there was no “causal” second-order stationary solution possible above.
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Fixing p12 and p21 to the value one, we obtain an ergodic and periodic Markov chain
∆, which has stationary distribution (π(1), π(2)) = (0.5, 0.5). Let us further assume that
the noise ε is not random at all, but εt = 1 for all times. For this model we now study the
series

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k, (5.36)

that is the stationary and ergodic solution of an MS-ARMA process as obtained in The-
orem 5.2, in some more detail. Note that

A(i) = Φ(i) and Ct = (1, 0)T.

W.l.o.g. we can restrict attention to X0. One readily calculates for n ∈ N

RnC0 =

( (−63
50

)n

−1
5

(−63
50

)n−1

)

and

A(2)RnC0 =

( −1
5

(−63
50

)n

(−63
50

)n

)
.

So, both RnC0 and A(2)RnC0 diverge and even escape to infinity in norm for n →∞.
Since our Markov chain ∆ switches necessarily all the time between its two states, there

are only two possible, mutual exclusive, cases having probability one half each. In the first
case we have A−2k = A(1) and A−2k+1 = A(2) for all k ∈ N0. Hence, A0 · · ·A−2k+1C−2k =
RkC0 for k ∈ N. In the other case A−2k = A(2) and A−2k+1 = A(1) for all k ∈ N0. Thus,
A0A−1 · · ·A−2kC−2k−1 = A(2)RkC0 for k ∈ N. This shows that in any case the summands
of the series in equation (5.36) do not converge to zero. Hence, the series (5.36) is almost
sure divergent.

This result shows that the series (5.36) does not provide a stationary solution to the
MS-ARMA equation. So it is possible to combine causal ARMA regimes in such a way
to an MS-ARMA equation that there is no stationary and causal solution in the sense of
Theorem 5.2.

Above we used a trivial deterministic noise, since this allowed for relatively simple
explicit calculations. However, in the above example one also concludes immediately from
Theorem 5.2 that the Lyapunov coefficient cannot be strictly negative (otherwise Theorem
5.2 would imply absolute convergence of (5.36)). Thus, for the above used Markov chain
∆ and any i.i.d. noise sequence ε Theorem 5.2 cannot be applied to obtain a solution to
the MS-ARMA(2, 0, ∆, ε) equation.

5.5 Geometric Ergodicity and Strong Mixing

Since strong mixing has important consequences for extreme value analysis as recalled in
the preliminary Section 2.6, we now turn to analysing, when an MS-ARMA process is
strongly mixing. To this end, we study the geometric ergodicity of an appropriate Markov
chain. Our results extend the ones for random coefficient autoregressions dating back to
Feigin and Tweedie (1985), which will be briefly discussed later on, and partly those of Yao
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and Attali (2000) to driving Markov chains with a state space that is not necessarily fi-
nite. However, while Yao and Attali (2000) studied possibly non-linear Markov-switching
autoregressions, we restrict ourselves to the linear case and only employ geometric er-
godicity, since being mainly interested in extremal behaviour V -uniform ergodicity, as
considered by Yao and Attali (2000), seems to add only rather limited extra value in our
eyes.

It is obvious that Xt = AtXt−1 +Ct = AtXt−1 +mt +Σtεt is in general not a Markov
chain, since the transitions do depend upon the state the driving chain ∆ is in. One may,
however, note that for an i.i.d. driving chain ∆ the sequence X = (Xt) is indeed a Markov
chain. To obtain general results it is necessary to study the process (Xt, ∆t) as in Yao
and Attali (2000). It is immediate to see that (Xt, ∆t) is a (homogeneous) Markov chain.
Actually, the same is true for general stochastic difference equations with Markovian
input, but we shall restrict ourselves to MS-ARMA processes. The results we give in the
following can, however, also be extended to this more general case with the necessary
changes being rather straightforward. For the sake of simplicity we shall denote the state
space of ∆ by E (recall that this is a subset of Rd×Md(R)1+p+q) and the Borel-σ-algebra
restricted to E by E . Thus, the state space of (Xt, ∆t) is Rd(p+q) × E and equipped with
the σ-algebra B(Rd(p+q))× E .

Moreover, we formulate the results of this section in such a way that they can be
employed to the case where the chain (Xt, ∆t) is started at time zero with initial (possibly
random) values (X0, ∆0). However, this applies solely to this section.

Below we summarize first the results of Yao and Attali (2000) for the case of a fi-
nite state space E, as the results we obtain for the general case later need considerably
more technical conditions. In particular, we will in the general set-up first study the weak
Feller property and irreducibility in some detail before turning our attention to geomet-
ric ergodicity and strong mixing. Finally, we repeat the results for random coefficient
autoregressions for our particular set-up.

5.5.1 Geometric Ergodicity and Strong Mixing for a Finite State
Space Chain ∆

In this paragraph we again employ the notation introduced in 5.3.2 for ∆ having a finite
state space and throughout presume ∆ to be a positive recurrent and stationary Markov
chain. Furthermore, we omit any proofs and refer the interested reader to Yao and Attali
(2000), since all theorems given are just adaptations of their results to the linear case.

Theorem 5.27 (Yao and Attali (2000, Th. 1)) Assume that the state space E of ∆
is finite, that Σt = Id and that ε1 has a strictly positive density w.r.t. the Lebesgue meas-
ure on Rd and is in Lη for some η > 0. If there is a norm ‖ · ‖ on Rd(p+q) such that
E(log ‖A1‖) < 0, then (Xt, ∆t) is geometrically ergodic.

In particular, if (∆t)t∈Z is stationary and ergodic, then all conditions of Theorem 5.2
are fulfilled and the chain (Xt, ∆t)t∈Z, the higher dimensional representation X of the
MS-ARMA process as well as the MS-ARMA process X itself are strongly mixing.

Proof: E(log ‖A1‖) < 0 gives γ < 0. That the other conditions of Theorem 5.2 are sat-
isfied, is obvious from the finiteness of E and ε1 ∈ Lη. For the remainder of the proof see
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Yao and Attali (2000). 2

The following result is in some respect very similar to ours from Section 5.3.2 and can
be used as another feasible way to check the strict negativity of the Lyapunov exponent
when considering only finitely many states for the driving chain ∆. Define

Q‖A‖ :=




‖A(1)‖ 0 · · · 0

0 ‖A(2)‖ . . .
...

...
. . . . . . 0

0 · · · 0 ‖A(l)‖


 PT

=




p11‖A(1)‖ p21‖A(1)‖ · · · pl1‖A(1)‖
p12‖A(2)‖ . . . . . .

...
...

. . . . . . pl(l−1)‖A(l−1)‖
p1l‖A(l)‖ · · · p(l−1)l‖A(l)‖ pll‖A(l)‖


 .

Lemma 5.28 (cf. Yao and Attali (2000, Lemma 2)) It holds that

E(log ‖A1‖) ≤ log ρ(Q‖A‖).

Thus ρ(Q‖A‖) ensures E(log ‖A1‖) < 0 and, moreover, γ < 0.

As noted already in Section 5.4.1, the converse implication does not hold, i.e. E(log ‖A1‖)
can be strictly negative and ρ(Q‖A‖) positive.

5.5.2 The General State Space Case

In this section we return back to the general case for the state space E. The first step is
to study, when the chain (Xt, ∆t) is weakly Fellerian. The following two propositions give
a necessary as well as a sufficient criterion, but unfortunately we have not been able to
provide a necessary and sufficient condition.

Proposition 5.29 (Necessary condition) Assume that (∆1|∆0,X0)
D
= (∆1|∆0) (i.e.

given ∆0 the random variables ∆1 and X0 are independent). If (Xt, ∆t)t∈Z is weakly
Fellerian, then ∆ = (∆t)t∈Z is a weak Feller chain.

The conditional independence assumption is, in particular, satisfied, if either the chain
(Xt, ∆t) has been started with independent ∆0 and X0 or X0 can be represented as a
measurable function of the presence and infinite past of the driving chain ∆ and the noise
ε, i.e. X0 = f(∆0, ∆−1, ∆−2, . . . , ε0, ε−1, ε−2, . . .). In all considerations of the previous
sections in this chapter we have only looked at MS-ARMA processes with the latter
property.
Proof: Let g : E → R be bounded and continuous. Define g̃ : Rd(p+q) × E → R via
g̃(x, δ) = g(δ). Then g̃ is bounded and continuous and

E(g(∆1)|∆0 = δ) = E(g̃(X1, ∆1)|X0 = x, ∆0 = δ)

is continuous, since (Xt, ∆t) is weakly Fellerian. Thus ∆ is a weak Feller chain. 2
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Proposition 5.30 (Sufficient Condition) Assume that there is some measurable func-
tion F such that ∆t = F (∆t−1, ut) holds, where (ut)t∈Z is an i.i.d. sequence assuming
values in a measurable space (G,G) and F (·, u) is continuous for any fixed u ∈ G. Then
(Xt, ∆t) is a weak Feller chain.

To demand the existence of a function F such that ∆t = F (∆t−1, ut) may seem to be
rather restrictive. Yet, one should note that the condition is still very flexible and many
Markov chains are of this type (cf. Meyn and Tweedie (1993, Sec. 2.2 and Ch. 7) and
Duflo (1997, p. 183)). Compared to the non-linear state space models studied in Meyn
and Tweedie (1993, Sec. 2.2 and Ch. 7) our assumptions are even weaker, since we do
not request any continuous differentiability. If ∆t = F (∆t−1, ut) holds, then ∆ is weakly
Fellerian as pointed out in Meyn and Tweedie (1993, Prop. 6.1.2). This should also become
obvious when inspecting the proof of the above proposition below. Furthermore, if ∆ has
a countable state space consisting only of isolated points, then the above condition is
satisfied. Recall also that ∆ and ε are always assumed to be independent.
Proof: Since projections are continuous, there are functions FA, Fm, FΣ such that At =
FA(∆t−1, ut), mt = Fm(∆t−1, ut), Σt = FΣ(∆t−1, ut) and FA, Fm, FΣ, are continuous in
∆t−1. Thus, we obtain that

(Xt, ∆t) = (FA(∆t−1, ut)Xt−1 + Fm(∆t−1, ut) + FΣ(∆t−1, ut)εt, F (∆t−1, ut))

is a continuous function of (Xt−1, ∆t−1).
Let g : Rd(p+q)×E → R be bounded and continuous and denote Pε0,u0 the distribution

of (ε0, u0), then

E (g(X1, ∆1)|X0 = x, ∆0 = δ) =

∫

Rd×G

g (FA(δ, u)x + Fm(δ, u) + FΣ(δ, u)η) dPε0,u0(η, u)

is a continuous function of (x, δ), as the continuity lemma from standard integration
theory (see, for instance, Bauer (1992, Lemma 16.1)) shows. 2

Now we turn to giving a sufficient condition for the existence of a measure µ such that
(Xt, ∆t) is µ-irreducible. In the following λr denotes the Lebesgue measure on Rr.

Proposition 5.31 Let P n
∆ denote the transition kernel of the Markov chain ∆ and be µ∆

a nondegenerate measure on (E, E) such that for any A ∈ E with µ∆(A) > 0 and x ∈ E

∞∑
n=p+q

P n
∆(x,A) > 0 (5.37)

holds. Assume that ε0 has a strictly positive density w.r.t. λd and, moreover, that Σt is
invertible for all possible states of ∆t. Then (Xt, ∆t) is λd(p+q) ⊗ µ∆-irreducible.

Proof: Condition (5.37) immediately implies that ∆ is µ∆-irreducible. Inspecting the
iteration Xt = AtXt−1 + Ct, it is obvious that under the above assumptions Xp+q+k can
reach any set of positive Lebesgue measure for all k ∈ N0 with strictly positive probability
regardless of the value (X0, ∆0) and the evolution of the chain (∆t). Combining this with
the fact that for every set A with positive measure µ∆ there is an n ≥ p + q such that
P n

∆(x,A) > 0, yields the result. 2

The crucial condition is (5.37), but, actually, in many cases of interest it should suffice to
demand that ∆ be (µ)-irreducible, for instance:
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Lemma 5.32 Assume that ∆ has a countable state space E and is irreducible. Then
(5.37) is satisfied.

Proof: The case card(E) = 1 is trivial. Let thus ∆(1) and ∆(2) be two different possible
states of ∆. Then there are m,n ∈ N such that Pm(∆(1), ∆(2)) > 0 and P n(∆(2), ∆(1)) > 0
and thus P km+(k−1)n(∆(1), ∆(2)) > 0 and P k(m+n)(∆(1), ∆(1)) > 0 for all k ∈ N. 2

Now we give a theorem on the geometric ergodicity of (Xt, ∆t) under rather tech-
nical conditions that appear to be the weakest necessary for our proof to work. Ways of
actually checking the Feller chain and irreducibility conditions are given in the previous
propositions.

Theorem 5.33 Assume that (Xt, ∆t) is a weak Feller chain, (∆1|X0, ∆0)
D
= (∆1|∆0) (∗),

the state space E of ∆ is compact and there exists a nondegenerate measure µ∆ on (E, E)
such that (Xt, ∆t) is λd(p+q)⊗µ∆-irreducible. If, moreover, there is an η ∈ (0, 1] and c < 1
such that

E(‖A1‖η|∆0 = δ) ≤ c ∀ δ ∈ E (5.38)

for some norm ‖ · ‖ on Rd(p+q) and ε1 ∈ Lη, then (Xt, ∆t) is geometrically ergodic.
In particular, if (∆t)t∈Z is stationary and ergodic, then (∗) is automatically satisfied

provided all other conditions are. Moreover, all conditions of Theorem 5.2 are fulfilled and
(Xt, ∆t)t∈Z, the higher dimensional representation X of the MS-ARMA process as well as
the MS-ARMA process X itself are strongly mixing (with geometric rate).

The condition for the very last assertion is due to the fact that we temporarily allowed
for starting the process at time zero with initial value (X0, ∆0) in this very section. (5.38)
appears to be very restrictive. Yet, note that the conditions of Yao and Attali (2000, Th.
1) are (in our linear set-up) equivalent to assume the existence of an 0 < η ≤ 1 such that
E(‖A1‖η) < 1, as can be immediately seen from the results given in Basrak (2000, p. 78).
The reason, why we have to resort to using a condition involving conditional expectations,
is that arguments involving suprema over the state space, which were employed to prove
the finite state space results of Yao and Attali (2000), do, as far as we can see, not
necessarily work in the non-finite state space case. Unfortunately, we have not been able
to find any nicer general conditions.
Proof: Consider the continuous function g : Rd(p+q) → R+, x 7→ ‖x‖η + 1 and note that
we have ‖a + b‖η ≤ ‖a‖η + ‖b‖η for all a, b ∈ Rd(p+q) as 0 < η ≤ 1 (cf. Loève (1977, p.
157)). Thus, for any x ∈ Rd(p+q) and δ ∈ E

E(‖X1‖η + 1|X0 = x, ∆0 = δ) = E(‖A1x + C1‖η + 1|X0 = x, ∆0 = δ)

≤ E(‖A1‖η|∆0 = δ)‖x‖η + E(‖C1‖η|∆0 = δ) + 1.

As E is compact and ε1 ∈ Lη, there is a M > 0 such that E(‖C1‖η|∆0 = δ) < M − 1 for
all δ ∈ E. Hence,

E(‖X1‖η + 1|X0 = x, ∆0 = δ) ≤ c‖x‖η + M.

Choose now τ > 0 with 1− τ > c and then set R =
(

M
1−τ−c

)1/η
and C = BR(0) (the ball

with radius R in Rd(p+q)). For all x ∈ (BR(0))c we have that (1 − τ − c)‖x‖η ≥ M and
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therefore

E(‖X1‖η + 1|X0 = x, ∆0 = δ) ≤ c‖x‖η + (1− τ − c)‖x‖η = (1− τ)‖x‖η ≤ (1− τ)g(x).

Setting K := C ×E we obtain a compact set that together with g and τ satisfies (ii)
of Theorem 2.35. Thus, Theorem 2.35 shows the claimed geometric ergodicity of (Xt, ∆t).

Assume now that (∆t)t∈Z is stationary and ergodic. The compactness of E and the
fact that ε1 ∈ Lη ensure the finiteness of E(‖C0‖η) and thus E(log+ ‖C0‖). Likewise,
(5.38) gives E(‖A1‖η) < c, which implies E(log+ ‖A0‖) < ∞ and γ < 0. So, all condi-
tions of Theorem 5.2 are satisfied and (∗) is now a consequence of X0 having the series
representation given there.

The strong mixing properties stated are now established applying Propositions 2.37
and 2.38. 2

Using Meyn and Tweedie (1993, Th. 16.1.2) one should be able to show V -uniform ergodi-
city of (Xt, ∆t) under similar conditions with V being the above considered g. Since this
would necessitate the introduction of even more technical notions from general Markov
chain theory, we refrain from carrying this out in the present thesis.

Naturally, the last theorem raises the question, whether there are some rather easy to
check conditions for (5.38) to hold. A straightforward one is the existence of a norm ‖ · ‖
and a c < 1 such that ‖A1‖ ≤ c for all possible states of ∆1. Again Theorem 5.18 turns
out to be helpful, since the following is an immediate consequence:

Proposition 5.34 Assume that E is compact and that there is a norm ‖ ·‖d on Rd and a
c̄ < 1 such that

∑p
i=1 ‖Φi1‖ ≤ c̄ for all possible states of ∆1, then there is a norm ‖ · ‖ on

Rd(p+q) and a c < 1 (both explicitly constructed in the proof of Th. 5.18) with ‖A1‖d ≤ c
for all possible states of ∆1. In particular, (5.38) is satisfied.

Recall that the same conditions are used in Theorem 5.21 to ensure finiteness of some
moments of the MS-ARMA process.

5.5.3 Random Coefficient ARMA Processes

Regarding geometric ergodicity and strong mixing, everything becomes easier when leav-
ing the truly Markovian MS-ARMA and turning to random coefficient ARMA processes,
as considered in Nicholls and Quinn (1982) or Klüppelberg and Pergamenchtchikov (2004),
for instance.

The crucial simplification is that for an i.i.d. sequence ∆ the sequence (Xt) itself
becomes a Markov chain, as already mentioned in the introduction to this section on geo-
metric ergodicity. Originally, geometric ergodicity for random coefficient autoregressions
has been studied in Feigin and Tweedie (1985). The following theorem is an adaptation
of Basrak (2000, Prop. 3.2.9) to our set-up.

Theorem 5.35 Assume that (∆t) is an i.i.d. sequence, εt has a strictly positive density
w.r.t. λd (the Lebesgue measure on Rd) and Σt is invertible for all possible states of ∆.
If, moreover, there is an η ∈ (0, 1] such that C1 = m1 + Σ1ε1 ∈ Lη and

E(‖A1‖η) < 1 (5.39)
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for some norm ‖ · ‖ on Rd(p+q), then (Xt) is geometrically ergodic.
Furthermore, when considering doubly infinite ∆ and ε, i.e. ∆ = (∆t)t∈Z and ε =

(εt)t∈Z, all conditions of Theorem 5.2 are fulfilled. Moreover, the higher dimensional rep-
resentation X of the MS-ARMA process as well as the MS-ARMA process X itself are
strongly mixing (with geometric rate).

Proof: Let g : Rd(p+q) → R be bounded and continuous, then

E (g(X1)|X0 = x) = E (g (A1x + m1 + Σ1ε1))

is a continuous function of x ∈ Rd(p+q), as the continuity lemma from standard integration
theory (see, for instance, Bauer (1992, Lemma 16.1)) shows. So, (Xt) is weakly Fellerian.
Using the same arguments as in the proof of Proposition 5.31, we see immediately that
(Xt) is λd(p+q)-irreducible.

Now we consider the continuous function g : Rd(p+q) → R+, x 7→ ‖x‖η + 1 and note
that we have ‖a + b‖η ≤ ‖a‖η + ‖b‖η for all a, b ∈ Rd(p+q) as 0 < η ≤ 1 (cf. Loève (1977,
p. 157)). Thus, for any x ∈ Rd(p+q)

E(‖X1‖η + 1|X0 = x) = E(‖A1x + C1‖η + 1)

≤ E(‖A1‖η)‖x‖η + E(‖C1‖η) + 1.

As C1 ∈ Lη, there is a finite M > 0 such that E(‖C1‖η) < M − 1. Hence,

E(‖X1‖η + 1|X0 = x) ≤ c‖x‖η + M.

Choose now δ > 0 with 1 − δ > c and then set R =
(

M
1−δ−c

)1/η
and C = BR(0) (the ball

with radius R in Rd(p+q)). For all x ∈ (BR(0))c we have that (1 − δ − c)‖x‖η ≥ M and
therefore

E(‖X1‖η + 1|X0 = x) ≤ c‖x‖η + (1− δ − c)‖x‖η = (1− δ)‖x‖η ≤ (1− δ)g(x).

So, C is a compact set that together with g and δ satisfies (ii) of Theorem 2.35. Thus
Theorem 2.35 shows the claimed geometric ergodicity of (Xt).

Assume now that we consider doubly infinite sequences. The fact that C1 ∈ Lη ensures
E(log+ ‖C0‖). Likewise, (5.39) gives E(log+ ‖A0‖) < ∞ and γ < 0. So, all conditions of
Theorem 5.2 are satisfied.

The strong mixing properties stated are now established applying Propositions 2.37
and 2.38. 2

5.6 Regularly Varying MS-ARMA Processes

In this section we study several cases when the stationary distribution of an MS-ARMA
process is regularly varying. As when studying regular variation of the general stochastic
recurrence equation Yn = AnYn−1 + Cn in Section 4.3, there are basically two different
situations in which regular variation appears.
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5.6.1 Regularly Varying Noise

Assume first that (Ct)t∈Z is an i.i.d. sequence independent of (At)t∈Z. This holds, in
particular, if the components µt and Σt evolve independently of the rest of the Markov
chain (∆t) as a joint i.i.d. sequence (µt, Σt). If, moreover, Ct is regularly varying, one can
apply Theorems 4.12, 4.13 and Corollary 4.14. For the details of this case see thus Section
4.3.

In our eyes it is more interesting to study a regularly varying generic noise sequence
ε = (εt) and a general Markov chain ∆t, where Σt is not independent of the other com-
ponents as assumed above. For the sake of simplicity, we shall, however, assume µt = 0
in the following. The results regarding regular variation obtained in the following can be
extended to the case with general µt under an appropriate condition ensuring relative
light-tailedness of

∑∞
k=0 A0A−1 · · ·A−k+1m−k using Basrak (2000, Remark 2.1.20).

Noting that

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Σt−kεt−k

Theorems 5.2 and 3.19 imply the following result.

Theorem 5.36 Let µt = 0 for all t ∈ Z and (εt)t∈Z be a sequence of i.i.d. regularly
varying Rd-valued random variables with index α, measure ν and normalizing sequence
(an) such that (iv) in Theorem 3.9 holds. Assume further that the Lyapunov exponent
satisfies

γ = inf
t∈N0

(
1

t + 1
E (log ‖A0A−1 · · ·A−t‖)

)
< 0.

If α < 1, assume that there is an η with 0 < η < α and α + η < 1 such that
A0 · · ·A−k+1Σ−k ∈ Lα+η for all k ∈ N0 and that

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α+η

)
< ∞ as well as

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α−η

)
< ∞.

(5.40)
If α ≥ 1, assume that there is an η with 0 < η < α such that A0 · · ·A−k+1Σ−k ∈ Lα+η

for all k ∈ N0 and that

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α+η

)1/(α+η)
< ∞ as well as

∞∑

k=0

E
(‖A0 · · ·A−k+1Σ−k‖α−η

)1/(α+η)
< ∞. (5.41)

Then the MS-ARMA(p, q, ∆, ε) equation (5.3) has a unique stationary and ergodic
solution. The unique stationary solution X = (Xt) is formed by the first d coordinates of

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Σt−kεt−k,
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which is the unique stationary and ergodic solution of (5.12). The series defining X con-
verges absolutely a.s.

Moreover, the tail behaviour of X0 (and thus of the “one”-dimensional marginal dis-
tribution of X = (Xt), i.e. the higher dimensional representation of the solution to the
MS-ARMA(p, q, ∆, ε) equation) is given by

nP (X0 ∈ an·) v→ ν̃(·) =
∞∑

k=0

E
(
ν ◦ (A0 · · ·A−k+1Σ−k)

−1 (·)) . (5.42)

For X0 (and thus for the “one”-dimensional marginal distribution of X = (Xt), i.e. the
solution to the MS-ARMA(p, q, ∆, ε) equation) it holds that

nP (X0 ∈ an·) v→ ν̄(·) =
∞∑

k=0

E
(
ν ◦ (IA0 · · ·A−k+1Σ−k)

−1 (·)) , (5.43)

where I := (Id, 0, . . . , 0) ∈ Md,(p+q)d(R).

Provided there is a relatively compact K ∈ Rd(p+q) with E
(
ν ◦Σ−1

0 (K)
)

> 0, X0 and
X0 are regularly varying with common index α, normalizing sequence (an) and measure
ν̃, respectively ν̄.

Furthermore, if ε0 ∈ Lα, then X0 and X0 are in Lα.

Proof: All assertions regarding X follow by combining Theorems 5.2, 3.19 and the argu-
ments given for Theorem 4.12. (5.43) follows by another application of Theorem 3.16 or
by considering

Xt =
∞∑

k=0

IAtAt−1 · · ·At−k+1Σt−kεt−k.

The nondegeneracy of ν̄ under the assumption E
(
ν ◦Σ−1

0 (K)
)

> 0 for some relat-
ively compact K is immediate, noting that E

(
ν ◦Σ−1

0 (A1 × A2 × · · · × Ap+q)
)

= E(ν ◦
Σ−1

0 (A1 ∩ Ap+1))ε0Rd(p+q−2)
(A2 × · · · × Ap−1 × Ap+2 × · · ·Ap+q) for Ai ∈ B(Rd). 2

Along the lines of reasoning that lead to Theorem 4.13 we obtain:

Theorem 5.37 If all conditions of Theorem 5.36 are satisfied, then X = (Xt)t∈Z as well
as X = (Xt)t∈Z are even regularly varying as a sequence with index α.

Obviously we can again apply Lemmata 3.21 and 4.5 to obtain a version of the above
theorem that will suffice in most cases encountered.

Corollary 5.38 Let µt = 0 for all t ∈ Z and (εt)t∈Z be a sequence of i.i.d. regularly
varying Rd-valued random variables with index α, measure ν and normalizing sequence
(an) such that (iv) in Theorem 3.9 holds.

Assume that there is a β > α such that A0 · · ·A−k+1Σ−k ∈ Lβ and A0 · · ·A−k+1 ∈ Lβ

for all k ∈ N0 and that

lim sup
n→∞

E
(‖A0 · · ·A−n+1Σ−n‖β

)1/(n+1)
< 1 (5.44)
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as well as
lim sup

n→∞
E

(‖A0 · · ·A−n+1‖β
)1/n

< 1. (5.45)

Then the MS-ARMA(p, q, ∆, ε) equation (5.3) has a unique stationary and ergodic solu-
tion. The unique stationary solution X = (Xt) is formed by the first d coordinates of

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Σt−kεt−k,

which is the unique stationary and ergodic solution of (5.12). The series defining X con-
verges absolutely a.s.

Moreover, the tail behaviour of X0 (and thus of the “one”-dimensional marginal dis-
tribution of X = (Xt), i.e. the higher dimensional representation of the solution to the
MS-ARMA(p, q, ∆, ε) equation) is given by

ν̃(·) = nP (X0 ∈ an·) v→
∞∑

k=0

E
(
ν ◦ (A0 · · ·A−k+1Σ−k)

−1 (·)) . (5.46)

For X0 (and thus for the “one”-dimensional marginal distribution of X = (Xt), i.e. the
solution to the MS-ARMA(p, q, ∆, ε) equation) it holds that

ν̄(·) = nP (X0 ∈ an·) v→
∞∑

k=0

E
(
ν ◦ (IA0 · · ·A−k+1Σ−k)

−1 (·)) , (5.47)

where I := (Id, 0, . . . , 0) ∈ Md,(p+q)d(R).

Provided there is a relatively compact K ∈ Rd(p+q) with E
(
ν ◦Σ−1

0 (K)
)

> 0, X0 and
X0 are regularly varying with common index α, normalizing sequence (an) and measure
ν̃, respectively ν̄. (Xt) and (Xt) are also regularly varying as a sequence with index α.

Furthermore, if ε0 ∈ Lα, then X0 and X0 are in Lα.

A considerable simplification occurs, if Σ−k is independent of A0 · · ·A−k+1 for all natural
k. In this case Σ0 ∈ Lβ and A0 · · ·A−k+1 ∈ Lβ for all natural k give A0 · · ·A−k+1Σ−k ∈ Lβ

∀k ∈ N0 and then (5.45) implies (5.44).
Note that for one-dimensional positive valued random coefficient autoregressive models

similar results were already obtained in Resnick and Willekens (1991).
The above results show, in particular, that a Markov switching ARMA process is tail

equivalent to its driving noise sequence under appropriate conditions. So, provided the
upper tails are nondegenerate, for d = 1 the distribution of ε0 and X0 both belong to the
maximum domain of attraction of the Fréchet distribution Φα. Moreover, note that almost
all results of Sections 5.2.3 and 5.3 can be used or straightforwardly adapted to verify
(5.44) or (5.45). In particular, we immediately obtain the following using the arguments
that led to Theorem 5.21.

Lemma 5.39 Assume that there are c < 1, C, M ∈ R+ and a norm ‖ · ‖ on Rd such
that

∑p
i=1 ‖Φi0‖ ≤ c,

∑q
i=1 ‖Θi0‖ ≤ M and ‖Σ0‖ ≤ C a.s. Then (5.44) and (5.45) are

satisfied.
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Figure 5.1: Simulation of an i.i.d. symmetric 1.5-stable noise sequence

Note, moreover, that the nondegeneracy condition, viz. that there exists a relative com-
pact K with E

(
ν ◦Σ−1

0 (K)
)

> 0, is only a minor technical condition, since it suffices for
the latter that Σ0 has a strictly positive probability of being invertible (If Σ0 is invertible,
we have that Σ−1

0 (B0(1)) ⊆ ‖Σ−1
0 ‖B0(1), hence Σ−1

0

(
(1,∞]Sd−1

)
=

(
Σ−1

0 (B0(1))
)c ⊇

(‖Σ−1
0 ‖,∞]Sd−1 and thus ν ◦ Σ−1

0

(
(1,∞]Sd−1 × 0Rd(p−1) × (1,∞]Sd−1 × 0Rd(q−1)

)
= ν ◦

Σ−1
0

(
(1,∞]Sd−1

)
> 0 due to the nondegeneracy of ν.).

It is very interesting to compare our above obtained results with those from Brachner
(2004) for TAR models in R with regularly varying noise. For the general TAR(q) O-
regular variation is obtained employing considerably stricter conditions than we give in the
above lemma to ensure regular variation of MS-ARMA(p,q) processes. Results comparable
to ours are, however, obtained for TAR(1) models with only two possible regimes. In this
case the sufficient conditions for regular variation and tail equivalence given in Brachner
(2004) are comparable to the assumptions of Lemma 5.39. The crucial difference seems
to be that due to the regime selection procedure powerful regular variation results like
Theorem 3.19 cannot be used for TAR-models.

To conclude this section let us give some simulation examples done with the S-Plus
software. We shall consider real-valued MS-AR(1) processes with µt = 0 and Σt = 1, i.e.
our model is given by Yt = Φ1tYt−1 + εt. As noise we shall consider an i.i.d. sequence
εt that has a symmetric 1.5-stable distribution, cf. Figure 5.1 for an example of such a
sequence. In particular, this noise is nondegenerately regularly varying in both tails and
the index of regular variation is 1.5. As in Section 5.4.1 we presume that there are two
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Figure 5.2: Simulation of the MS-AR(1) process in Example 1

possible states Φ(1) and Φ(2) and that the transition matrix is given by

P =

(
p11 p12

p21 p22

)
=

(
p̄ 1− p̄

1− p̄ p̄

)

for some p̄ ∈ [0, 1). Then the stationary distribution is (π(1), π(2)) = (1/2, 1/2). The strict
stationarity of the following examples has already been established in Section 5.4.1 or is
immediate, because Φ(1) and Φ(2) are both less than one in modulus.
Example 1: Take p̄ = 3/4, Φ(1) = 1/2 and Φ(2) = 4/5. Then all conditions of Theorem
5.36 or Corollary 5.38 are obviously satisfied. The simulation in Figure 5.2 illustrates the
fact that the MS-AR process is regularly varying (with index 1.5) and the stationary
distribution is tail equivalent to the noise, as a comparison with Figure 5.1 shows.
Example 2: Take p̄ = 3/4, Φ(1) = 1/2 and Φ(2) = 11/10. As one calculates ρ(QA) =
(219 +

√
23761)/400 ≈ 0.9328650868 for the condition from Theorem 5.23, one obtains

from this theorem that (5.45) holds with β = 2. Thus, all conditions of Theorem 5.36
or Corollary 5.38 are obviously satisfied. Again, the simulation in Figure 5.3 illustrates
the fact that the MS-AR process is regularly varying (with index 1.5) and the stationary
distribution is tail equivalent to the noise, as a comparison with Figure 5.1 shows.

The importance of this example lies in the fact that Φ(2) is greater than one. Thus, it
shows that Theorem 5.36 or Corollary 5.38 are not only applicable in the case of Lemma
5.39 in practice, but even in the presence of an explosive regime.

Finally, observe that in both above examples one deducts immediately from (5.46)
that both tails of the stationary distribution of the MS-AR(1) process are nondegenerately
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Figure 5.3: Simulation of the MS-AR(1) process in Example 2

regularly varying, since this holds for the noise εt.

5.6.2 Light-Tailed Noise

As in the general case of Section 4.3.2, light-tailed noise may lead to regularly varying
MS-ARMA processes provided the sequence (At) satisfies appropriate technical conditions
ensuring the appearance of consecutive “large” values. Observe that again the noise can
be arbitrarily light-tailed in all cases below. In the following we summarize the results
of Klüppelberg and Pergamenchtchikov (2004) for random coefficient AR(p) models (R-
valued MS-ARMA(p,0) processes with Σt = 1, µt = 0 and (At) = (Φt) being an i.i.d.
sequence) and of Saporta (2004b) for one-dimensional Markov-switching AR(1) processes
(R-valued MS-ARMA(1,0) processes with Σt = 1, µt = 0 and a finite state space of
(At)). Observe that it is also possible to employ the results of Section 4.3.2 directly on
Xt = AtXt−1 + Ct.

All these results indicate that under appropriately adjusted technical conditions light-
tailed noise may well also lead to regularly varying MS-ARMA processes in the general
MS-ARMA(p,0) case with coefficients that follow a general Markov chain. However, prov-
ing this appears to be very involved. In particular, neither the approach by Klüppel-
berg and Pergamenchtchikov (2004) seems to be rather straightforwardly adaptable to a
Markovian dependence structure nor the one by Saporta (2004b) to orders p > 1 or a
non-finite state space of (At), as in all cases powerful new renewal theorems appear to be
necessary.
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Random Coefficient AR(p) Processes

Klüppelberg and Pergamenchtchikov (2004) considered the one-dimensional, i.e. R-valued,
special case of our general MS-ARMA(p,0) model, where, moreover, the autoregressive
coefficients (Φit)i=1,...,p, resp. (At) = (Φt), are an i.i.d. sequence, Σt = 1 and µt = 0. The
coefficients Φ1t, Φ2t, . . . , Φpt are in the following assumed to be given by

Φit = Φ̄it + σiηit for i = 1, . . . , p,

where (Φ̄1t, . . . , Φ̄pt)
T ∈ Rp, (σ1, . . . , σp)

T ∈ (R+)
p

are constants and ηt = (η1t, . . . , ηpt)
T

is an Rp-valued i.i.d. sequence. Moreover, we presume that the sequences η = (ηt)t∈Z
and ε = (εt)t∈Z are independent. Furthermore they are centred and of unital variance,
i.e. E(ε0) = E(ηi0) = 0 and E(ε2

0) = E(η2
i0) = 1. The following is a reformulation of

the results given in Klüppelberg and Pergamenchtchikov (2004) applying to stationary
random coefficient AR(p) processes.

Theorem 5.40 (Klüppelberg and Pergamenchtchikov (2004, Th. 2.4)) Let a ran-
dom coefficient AR(p) model with the above described properties be given and assume that
moreover the following conditions are satisfied:

(i) ρ (E(A0 ⊗A0)) < 1.

(ii) The random variables {ηit, i = 1, 2, . . . , p ; t ∈ Z} are i.i.d., have a symmetric
(around 0), continuous and positive density φ(·), which is non-increasing on R+,
and moments of all orders exist, i.e. ηit ∈ Lm ∀m ∈ N.

(iii) There is an m ∈ N such that E
(
(Φ1,0 − Φ̄1)

2m
)

= σ2m
1 E

(
η2m

1,0

) ∈ (1,∞).

(iv) ε0 ∈ Lm for all m ∈ N.

(v) For any non-zero real sequence (ck)k∈N ∈ `1, i.e. 0 <
∑∞

k=1 |ck| < ∞, the random
variable τ =

∑∞
k=1 ckεk has a symmetric density that is non-increasing on R+.

(vi) Φ̄2
p + σ2

p > 0.

Then there exists a unique stationary solution to the random coefficient AR(p) equation
(5.3), which is given by (5.13) employing the usual higher dimensional representation Xt.
Furthermore, there exists a unique positive solution λ0 to the equation

κ(λ) := lim
n→∞

(
E

(‖A1 · · ·An‖λ
t

))1/n
= 1

and some probability measure ν on Sp−1 (w.r.t. to the Euclidean norm ‖ · ‖2) such that

κ(λ) =

∫

Sp−1

E(‖xTA1‖λ
2)ν(dx).

It holds that λ0 > 2 and with some strictly positive and continuous function w : Sp−1 → R
the random variable X0 has the regular variation property

lim
t→∞

tλ0P (〈x,X0〉 > t) = w(x) ∀ x ∈ Sp−1,
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i.e. X0 is regularly varying in the sense of Kesten. In particular, the univariate marginal
distribution of the stationary random coefficient AR(p) process X is regularly varying with
index λ0.

All densities above are understood to be with respect to the Lebesgue measure and recall
from Section 5.3.2 that ‖·‖ is the Froebenius norm given by ‖A‖t =

√
tr(AAT). Condition

(i) ensures strict negativity of the Lyapunov exponent γ, (iii) implies, in particular, that
σ1 > 0 needs to hold and the very last one gives that At is a.s. invertible. As condition
(v) appears to be rather complicated to verify, the following Lemma is very useful.

Lemma 5.41 If ε1 has a bounded, symmetric and continuously differentiable density f
and f ′ is bounded and non-positive on [0,∞), then condition (v) of the last theorem is
satisfied.

Provided the conditions of Theorem 3.11 (ii), (iii) or (iv) are satisfied, the above
theorem implies the regular variation of X0 and one may deduct again using Basrak,
Davis and Mikosch (2002b, Cor. 2.7) that the process (Xt)t∈Z is regularly varying as a
sequence. The results of Klüppelberg and Pergamenchtchikov (2004) were also briefly
discussed in Saporta (2004a).

MS-AR(1) Processes

Naturally the above result raises the question whether something similar is obtainable
under a Markovian dependence structure of the AR coefficients. The only paper on this
subject is, as far as we know, Saporta (2004b) where the R-valued AR(1) case is studied.
The renewal theory necessary to prove the results has been developed in Saporta (2003).

In this section we now consider the MS-AR(1) model given by:

Xt = AtXt−1 + εt (5.48)

where (At)t∈Z is an R-valued finite state space Markov chain and ε = (εt)t∈Z an i.i.d.
sequence of real random variables independent of A = (At). The number of states,
which At can assume, is denoted by m and A(1), A(2), . . . , A(m) are as previously the in-
dividual possible states, which are all assumed to be different from zero. The state space
is E := {A(1), A(2), . . . , A(m)} and P the transition probability matrix. As the necessary
assumptions for a stationary solution with regularly varying tails are different dependent
on whether E ⊂ R+ or not, we now state the results as two separate theorems. One of
the main conditions is formulated in terms of the matrix

Pλ := diag
(∣∣A(i)

∣∣λ
)

PT =




|A(1)|λp11 |A(1)|λp21 · · · |A(1)|λpm1

|A(2)|λp12 |A(2)|λp22 · · · |A(2)|λpm2
...

. . . . . .
...

|A(m)|λp1m |A(m)|λp2m · · · |A(m)|λpmm




with λ ∈ R+.

Theorem 5.42 (Saporta (2004b, Th. 1)) Consider the above given set-up and let the
Markov chain (At) be irreducible, aperiodic and stationary with state space E ⊂ R+\{0}.
Assume that the following conditions are satisfied:
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(i) E(log A0) < 0 and E(log+ |ε0|) < ∞.

(ii) There is a λ0 > 0 such that ρ(Pλ0) = 1.

(iii) The numbers log(A(i)), i = 1, 2, . . . , m, are not integral numbers of the same number,
i.e. there is no r ∈ R such that {log(A(i))}i=1,2,...,m ⊂ rZ.

(iv) There is a δ > 0 such that ε0 ∈ Lλ0+δ.

Then the unique stationary solution of (5.48) is formed by

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1εt−k

and the following regular variation property holds for all s ∈ S0 = {−1, 1}:

lim
t→∞

tλ0P (sX0 > t) = L(s)

where L(1), L(−1) ≥ 0 and L(1) + L(−1) > 0. In particular, at least one tail of the
stationary distribution of the MS-AR(1) process is regularly varying with index λ0.

If ε0 ≥ 0 a.s., then L(−1) = 0, L(1) > 0 and, vice versa, if ε0 ≤ 0 a.s., then L(1) = 0,
L(−1) > 0.

Observe that

‖Pλ‖1 = max
j=1,2,...,m

(
m∑

i=1

(
A(i)

)λ
pji

)
≤

m∑
i=1

pji max
i=1,2,...,m

((
A(i)

)λ
)

= max
i=1,2,...,m

((
A(i)

)λ
)

and, since ρ(Pλ) ≤ ‖Pλ‖1, (ii) and E(log A0) < 0 thus imply that there is at least one
state A(i0) > 1, i.e. one state that is explosive.

In order to study the general case a concept called `-irreduciblibility is introduced.

Definition 5.43 (Saporta (2004b, Def. 3)) Let A = (aij) ∈ Md(R) be a matrix with
non-negative entries aij and 0 ≤ ` ≤ d−1 be an integer number. A is said to be `-reducible,
if there is a (possibly trivial) partition (I, J) of the set {1, 2, . . . , d} such that:

• For all 1 ≤ i ≤ `:
i ∈ I ⇒ aij = 0 ∀ j ∈ J
i ∈ J ⇒ aij = 0 ∀ j ∈ I

• For all ` + 1 ≤ i ≤ d:
i ∈ I ⇒ aij = 0 ∀ j ∈ I
i ∈ J ⇒ aij = 0 ∀ j ∈ J

.

If A is not `-reducible, then it is called `-irreducible.

For a result linking the above concept to the standard one of irreducibility of matrices see
Saporta (2004b, Proposition 6).
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Theorem 5.44 (Saporta (2004b, Th. 1)) Consider the above MS-AR(1) set-up and
let the Markov chain (At) be irreducible, aperiodic and stationary with state space E =
{A(1), A(2), . . . , A(m)} ⊂ R. Let the elements of E be sorted such that there is an ` ∈
{0, 1, . . . , m − 1} with A(1), A(2), . . . , A(`) > 0 and A(`+1), A(`+2), . . . , A(m) < 0 (` = 0
means that all possible states of At are negative). Assume that the following conditions
are satisfied:

(i) E(log |A0|) < 0 and E(log+ |ε0|) < ∞.

(ii) There is a λ0 > 0 such that ρ(Pλ0) = 1.

(iii) The numbers log
(∣∣A(i)

∣∣), i = 1, 2, . . . ,m, are not integral numbers of the same

number, i.e. there is no r ∈ R such that {log
(∣∣A(i)

∣∣)}i=1,2,...,m ⊂ rZ.

(iv) There is a δ > 0 such that ε0 ∈ Lλ0+δ.

Then the unique stationary solution of (5.48) is formed by

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1εt−k

and the following regular variation property holds for all s ∈ S0 = {−1, 1}:
lim
t→∞

tλ0P (sX0 > t) = L(s)

where L(1), L(−1) ≥ 0 and L(1) + L(−1) > 0. In particular, at least one tail of the
stationary distribution of the MS-AR(1) process is regularly varying with index λ0.

If PT is `-irreducible, then L(1) = L(−1) > 0 and thus both tails are regularly varying
with index λ0.

Observe that again condition (ii) implies that there has to be at least one explosive state
|A(i0)| > 1. Moreover, it is noteworthy that the `-irreducibility is only needed to ensure
non-degenerate regular variation in both tails.

Unfortunately, we have not been able to extend the above results to regular variation
of (Xt) as a sequence. An approach motivated by Basrak, Davis and Mikosch (2002b,
Cor. 2.7) fails, since we lack the necessary independence, and one can neither use similar
arguments as in the proof of Theorem 4.13, as this would mean that one has to leave
the one-dimensional setting. The crucial point, why it appears to be hard to extend the
results of Saporta (2004b) to higher orders, resp. the multivariate case, seems to be that
S0 is a finite set, whereas Sd−1 is uncountable for all d ≥ 2.

Let us conclude this section on regular variation in the presence of (relatively) light-
tailed noise with some simulations. As previously, we presume that there are only two
possible states A(1) and A(2) and that the transition matrix is given by

P =

(
p11 p12

p21 p22

)
=

(
p̄ 1− p̄

1− p̄ p̄

)

for some p̄ ∈ (0, 1). Then the stationary distribution is (π(1), π(2)) = (1/2, 1/2) and the
Markov chain is irreducible and aperiodic. E(log |A0|) < 0 and thus the strict stationarity
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Figure 5.4: Simulation of an i.i.d. standard normal noise sequence

of the following examples has already been established in Section 5.4.1 or is immediate,
because A(1) and A(2) are both less than one in modulus. First we shall consider a standard
normal noise sequence ε, as then all conditions of Theorems 5.42 and 5.44 on ε are always
satisfied. Figure 5.4 depicts a simulation of such a noise sequence.
Example 1: Take p̄ = 3/4, A(1) = 1/2 and A(2) = 4/5. Then the conditions of Theorem
5.42 cannot be satisfied, as there is no explosive regime. The simulation in Figure 5.5 also
shows no signs of regularly varying tails.
Example 2: Take p̄ = 3/4, Φ(1) = 1/2 and Φ(2) = 11/10. For condition (ii) in Theorem
5.42 numerical calculations show that it holds with λ0 = 2.88775. So, Theorem 5.42
gives that the MS-AR(1) process is regularly varying with index λ0 provided (iii) is
also satisfied. Unfortunately, we have not been able to find a feasible way of actually
checking (iii). Yet, the simulation in Figure 5.6 seems to indicate that the MS-AR(1)
process is indeed heavy-tailed and probably regularly varying. Recall from Section 5.4.1
that the sufficient second-order stationarity condition from Francq and Zaköıan (2001)
was satisfied and so the regular variation (if present) has to be of index two or larger.
Example 3: Let us look at what happens, when increasing the probability of remaining
in the current regime. Take p̄ = 49/50, Φ(1) = 1/2 and Φ(2) = 11/10. For condition (ii) in
Theorem 5.42 numerical calculations show that it holds with λ0 = 0.1846475. So, Theorem
5.42 gives that the MS-AR(1) process is regularly varying with index λ0 provided (iii)
is also satisfied. Yet, the simulation in Figure 5.7 seems to indicate that the MS-AR(1)
process is indeed heavy-tailed and probably regularly varying. Recall from Section 5.4.1
that the sufficient and in this case necessary second-order stationarity condition from



114 CHAPTER 5. MARKOV-SWITCHING ARMA MODELS

Time

M
S

-A
R

(1
) 

pr
oc

es
s 

X

0 500 1000 1500 2000

-6
-4

-2
0

2
4

Figure 5.5: Simulation of the MS-AR(1) process in Example 1
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Figure 5.6: Simulation of the MS-AR(1) process in Example 2
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Figure 5.7: Simulation of the MS-AR(1) process in Example 3

Francq and Zaköıan (2001) failed, which fits in with regular variation of order less than
two.
Example 4: Let us look at what happens, when increasing the explosiveness of the second
regime. Take p̄ = 3/4, Φ(1) = 1/2 and Φ(2) = 3/2. For condition (ii) in Theorem 5.42
numerical calculations show that it holds with λ0 = 0.34028. So, Theorem 5.42 gives that
the MS-AR(1) process is regularly varying with index λ0 provided (iii) is also satisfied.
Yet, the simulation in Figure 5.8 seems to indicate that the MS-AR(1) process is indeed
heavy-tailed and probably regularly varying. Recall from Section 5.4.1 that the sufficient
and in this case necessary second-order stationarity condition from Francq and Zaköıan
(2001) failed, which fits in with regular variation of order less than two.
Example 5: Let us reconsider Example 4 in the presence of an i.i.d. symmetric 1.5-
stable sequence. As this noise has finite moments of orders smaller than 1.5 and 1.5 >
λ0 = 0.34028, Theorem 5.42 gives that the MS-AR(1) process is regularly varying with
index λ0 provided (iii) is also satisfied. Yet, the simulation in Figure 5.9 also seems to
indicate that the MS-AR(1) process is indeed heavy-tailed and probably regularly varying.
Moreover, it appears to be qualitatively rather similar to Figure 5.8.

Actually, we conjecture that (iii) of Theorem 5.42 was satisfied in the above examples
and thus the MS-AR(1) processes of Examples 2-5 are indeed regularly varying. A com-
parison of Examples 2 and 3 then shows that the finiteness of moments does not only
depend on the possible states and stationary distribution of the AR parameter, but also
on the transition probabilities.
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Figure 5.8: Simulation of the MS-AR(1) process in Example 4
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Figure 5.9: Simulation of the MS-AR(1) process in Example 5



Chapter 6

Markov-Switching GARCH Models

Let us now turn to the analysis of Markov-switching GARCH models in this chapter. We
will briefly state two possible transformations into a stochastic recurrence equation of the
type Yn = AnYn−1 + Cn and stationarity and moment existence conditions based upon
the results of Chapter 4.

6.1 Definition

The autoregressive conditional heteroskedasticity (ARCH) model has been introduced in
the seminal work of Engle (1982) and extended to generalized autoregressive conditional
heteroskedasticity by Bollerslev (1986). Strict stationarity issues have been studied in
Bougerol and Picard (1992a) and for results regarding the tail behaviour and sample
autocorrelations see Basrak, Davis and Mikosch (2002b). The tail behaviour of an autore-
gressive process with ARCH(1) errors is analysed in Borkovec and Klüppelberg (2001)
and for some existence of moments results see Chen and An (1998) or Carrasco and Chen
(2002), who also consider some mixing properties.

Recall that the GARCH(p,q) model with p, q ∈ N0, p + q > 0, is defined by a set of
positive parameters α0, α1, . . . , αp, β1, β2, . . . , βq and an i.i.d. sequence (Zt)t∈Z of R-valued
random variables. The solution Xt to the system of equations

Xt =
√

σ2
t Zt (6.1)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j (6.2)

is then called a GARCH(p,q) process. In the case q = 0 the term ARCH(p) is used. As
σ2

t determines the conditional variance of X2
t given σ2

t , provided Zt ∈ L2, we refer to (σ2
t )

as the variance process. In most papers one presumes E(Zt) = 0 and E(Z2
t ) = 1. In this

set-up it was shown in the original paper by Bollerslev that the GARCH equations have
a second-order stationary solution, iff

p∑
i=1

αi +

q∑
j=1

βj < 1.

117
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Using a stochastic recurrence equation representation, which we shall consider in detail
later when studying the Markov-switching GARCH, Bougerol and Picard (1992a) showed
that the GARCH equations (6.1), (6.2) have a strictly stationary solution, if and, provided
α0 > 0, only if the associated top Lyapunov exponent is strictly negative, and that this is
satisfied in the case analysed in Bollerslev (1986). Observe that for α0 = 0 one has that
Xt = 0, σ2

t ∀ t ∈ Z is a trivial solution.
By letting the parameters change over time as a Markov chain we now define Markov-

switching GARCH processes. Again we allow the parameter chain to have arbitrary state
space, whereas previous papers restricted the state space to be finite.

Definition 6.1 (MS-GARCH(p, q) process) Let p, q ∈ N0, p + q ≥ 1 and

∆ = (α0t, α1t, . . . , αpt, β1t, β2t, . . . , βqt, τt)t∈Z (6.3)

be a stationary and ergodic Markov chain with some (measurable) subset E of the cone
(R+)

p+q+2
as state space. Moreover, let ε = (εt)t∈Z be an i.i.d. sequence of Rd-valued

random variables independent of ∆. A stationary process (Xt)t∈Z in Rd is called a Markov-
switching GARCH, MS-GARCH(p, q, ∆, ε), process, if

Xt =
√

σ2
t τtεt (6.4)

σ2
t = α0t +

p∑
i=1

αitX
2
t−i +

q∑
j=1

βjtσ
2
t−j (6.5)

holds for all t ∈ Z.
Furthermore, a stationary process (Xt)t∈Z is said to be an MS-GARCH(p, q) process, if

it is an MS-GARCH(p, q, ∆, ε) process for some ∆ and ε satisfying the above conditions.

The above definition is basically the same as for the MS-GARCH models driven by a
finite state-space chain analysed in Francq, Roussignol and Zaköıan (2001) and Francq
and Zaköıan (2004). In our opinion this appears to be the most natural formulation of
MS-GARCH processes. We included also τt into the driving Markov chain and (6.4) to
allow specifications somewhat similar to the MS-ARCH process of Hamilton and Susmel
(1994). Some other extensions of GARCH to Markov-switching models like the one of
Haas, Mittnik and Paolella (2004) do, however, not fit into our above framework.

6.2 Stationarity of Markov-Switching GARCH pro-

cesses

Having defined MS-GARCH processes above, we now turn to higher dimensional repres-
entations leading to easy-to-handle first order stochastic difference equations in order to
analyse stationarity properties of MS-GARCH processes.

Results regarding (strict) stationarity of MS-GARCH processes are to the best of
our knowledge only contained in Francq, Roussignol and Zaköıan (2001) and Francq and
Zaköıan (2004) as far as the existing literature is regarded. However, both papers only
consider finitely many states of the Markov chain and focus on the L2 structure. The
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notion of the top Lyapunov coefficient is only used in Francq, Roussignol and Zaköıan
(2001) and restricted to establishing that (σ2

t , σ
2
t−1, . . . , σ

2
t−max(p,q)+1)

T
t∈Z is a stationary

random sequence.

The following multidimensional representation is the analogue of the one employed e.g.
in Bougerol and Picard (1992b) or Basrak, Davis and Mikosch (2002b) for the standard
GARCH.

Define

Xt =
(
σ2

t+1, σ
2
t , . . . , σ

2
t−q+2, X

2
t , X2

t−1, . . . , X
2
t−p+2

)T ∈ (R+)p+q−1

Ct = (α0,t+1, 0, 0, . . . , 0)T ∈ (R+)p+q−1

At =




α1,t+1τ
2
t ε2

t + β1,t+1 β2,t+1 · · · βq−1,t+1 βq,t+1 α2,t+1 α3,t+1 · · · αp,t+1

1 0 · · · 0 0 0 0 · · · 0

0 1
. . . 0 0 0 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...
0 · · · 0 1 0 0 · · · · · · 0

τ 2
t ε2

t 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 1 0 · · · 0
...

...
. . .

...
...

...
. . . . . .

...
0 0 · · · 0 0 0 · · · 1 0




,

At ∈ Mp+q−1(R+).

To avoid any degeneracies we presume w.l.o.g. that p, q ≥ 2. This presumption shall
always be valid, whenever we use the above representation later, and can be ensured by
simply including higher order terms with GARCH coefficients equal to zero.

Using the same arguments as for MS-ARMA equations, one then immediately obtains
that

Xt = AtXt−1 + Ct (6.6)

has a stationary and ergodic solution, iff the squared system of the MS-GARCH equations
(6.4), (6.5), viz.

X2
t = σ2

t τ
2
t ε2

t (6.7)

σ2
t = α0t +

p∑
i=1

αitX
2
t−i +

q∑
j=1

βjtσ
2
t−j, (6.8)

has one. Moreover, the solutions can be transformed into one another by the above for-
mulae.

In the following we shall use the above representation. Another possibility is to define

X̃t =
(
X2

t , X2
t−1, . . . , X

2
t−p+1, σ

2
t , σ

2
t−1, . . . , σ

2
t−q+1

)T ∈ (R+)p+q

C̃t = (α0tτ
2
t ε2

t , 0, . . . , 0︸ ︷︷ ︸
p−1

, α0t, 0, . . . , 0︸ ︷︷ ︸
q−1

)T ∈ (R+)p+q
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Ãt =




α1tτ
2
t ε2

t · · · αp−1,tτ
2
t ε2

t αptτ
2
t ε2

t β1tτ
2
t ε2

t · · · βq−1,tτ
2
t ε2

t βqtτ
2
t ε2

t

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 1 0 0 · · · 0 0

α1t · · · αp−1,t αpt β1t · · · βq−1,t βqt

0 · · · 0 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 1 0




Ãt ∈ ∈ Mp+q(R+)

as in Basrak (2000) or Francq and Zaköıan (2004) and to consider the stochastic difference
equation

X̃t = ÃtX̃t−1 + C̃t, (6.9)

which again is equivalent to (6.7), (6.8). The upcoming theorems can also straightfor-
wardly be formulated using this set-up. Note that the first representation is only p+q−1-
dimensional, whereas the second is in Rp+q. Moreover, the “noise” Ct does not depend on
ε in the first one. On the other hand the second representation has the advantage that no
time t + 1 variables are involved.

As in the MS-ARMA case Proposition 2.23 and Theorem 2.24 imply that the joint
random sequence (∆, ε) = (∆t, εt)t∈Z is stationary and ergodic and thus an obvious ap-
plication of Lemma 2.25 shows that the transformed sequence (A,C) = (At,Ct)t∈Z is
stationary and ergodic. Hence, we obtain the following result from Theorem 4.1 stating
sufficient conditions for (6.7) and (6.8) to have a solution.

Theorem 6.2 The (squared) MS-GARCH(p, q, ∆, ε) equations (6.7) and (6.8) have a
unique stationary and ergodic solution, if E(log+ ‖A0‖), E(log+ ‖C0‖) are finite and the
Lyapunov exponent satisfies

γ = inf
t∈N0

1

t + 1
(E (log ‖A0A−1 · · ·A−t‖)) < 0.

The unique stationary solution (X2, σ2) = (X2
t , σ2

t )t∈Z is formed by the (q+1)th and the
second coordinate of

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k, (6.10)

which is the unique stationary and ergodic solution of (6.6). The series defining X con-
verges absolutely a.s.

Let V0 be an arbitrary (R+)
p+q−1

-valued random variable defined on the same probab-
ility space as (∆t, εt)t∈Z and define (Vt)t∈N recursively via (6.6). Then

‖Xt −Vt‖ a.s.→ 0 as t →∞ (6.11)

and, in particular,

Vt
D→ X0 as t →∞, (6.12)

i.e. the distribution of Vt converges to the stationary distribution of Xt.
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The above theorem constructs a unique stationary and ergodic solution (X2
t , σ2

t ) to equa-
tions (6.7) and (6.8), whereas we are actually interested in a stationary and ergodic
solution (Xt, σ

2
t ) to the system of equations (6.4) and (6.5). It is obvious that a solution

of (6.4) leads to a solution of (6.7) by simply taking squares. Thus instead of searching
for a solution for (6.4) and (6.5), we can equivalently consider a solution of the three
equations

Xt =
√

σ2
t τtεt (6.13)

X2
t = σ2

t τ
2
t ε2

t (6.14)

σ2
t = α0t +

p∑
i=1

αitX
2
t−i +

q∑
j=1

βjtσ
2
t−j. (6.15)

Assume the assumptions of the above theorem are satisfied. From the representation of the

unique stationary and ergodic solution Xt =
(
σ2

t+1, σ
2
t , . . . , σ

2
t−q+2, X

2
t , X2

t−1, . . . , X
2
t−p+2

)T

to the equations (6.14) and (6.15) given in (6.10) and Lemma 2.25 we can conclude

that (Xt, τt, εt) =
((

σ2
t+1, σ

2
t , . . . , σ

2
t−q+2, X

2
t , X2

t−1, . . . , X
2
t−p+2

)T
, τt, εt

)
is a stationary and

ergodic sequence, as (∆t, εt) is stationary and ergodic. But setting Xt =
√

σ2
t τtεt also solves

(6.13) and another application of Lemma 2.25 then gives that (Xt, σ
2
t ) is a stationary and

ergodic sequence. That this is a unique solution to the original MS-GARCH equations
(6.4) and (6.5) is clear in view of the uniqueness of (X2

t , σ2
t ) ensured by the last theorem.

Let us summarize these conclusions in the following theorem:

Theorem 6.3 The MS-GARCH(p, q, ∆, ε) equations (6.4) and (6.5) have a unique sta-
tionary and ergodic solution, if E(log+ ‖A0‖), E(log+ ‖C0‖) are finite and the Lyapunov
exponent satisfies

γ = inf
t∈N0

(
1

t + 1
E (log ‖A0A−1 · · ·A−t‖)

)
< 0.

The unique stationary and ergodic solution (X, σ2) = (Xt, σ
2
t )t∈Z is formed by Xt =√

σ2
t τtεt and the second coordinate σ2

t of

Xt =
∞∑

k=0

AtAt−1 · · ·At−k+1Ct−k, (6.16)

which is the unique stationary and ergodic solution of (6.6). The series defining X con-
verges absolutely a.s.

It is even possible to show that the strict negativity of the top Lyapunov coefficient
γ is necessary for the existence of a stationary solution to (6.6) under some technical
conditions. The crucial difference to the MS-ARMA case is that all involved matrices and
vectors are non-negative. The proof of the following result is a straightforward adaptation
of the proof given in Bougerol and Picard (1992a) to the Markov-switching case. A similar
result on a stochastic difference equation for (σ2

t , σ
2
t−1, . . . , σ

2
t−max{p,q}+1)

T can be found in

Francq, Roussignol and Zaköıan (2001).
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Theorem 6.4 Assume that E(log+ ‖A0‖) < ∞ and that there are constants a0, a2, a3, . . . ,
ap, b1, b2, . . . , bq > 0 such that α0t ≥ a0, α2t ≤ a2, α3t ≤ a3, . . . , αpt ≤ ap, β1t ≤ b1, β2t ≤
b2, . . . , βq ≤ bq a.s. for t ∈ Z. Then a necessary condition for equation (6.6) to have a
stationary solution is strict negativity of the Lyapunov coefficient

γ = inf
t∈N0

(
1

t + 1
E (log ‖A0A−1 · · ·A−t‖)

)
.

Observe that no restriction is imposed upon α1t and that as usual ‖ · ‖ may be any norm
on Rp+q−1.
Proof: Assume that (Yt)t∈Z is a stationary solution of (6.6) and recall that all coefficients
of At,Ct,Yt are non-negative. We have for any n ∈ N

Y0 = A0Y−1 + C0

= A0A−1Y−2 + C0 + A0C−1

= A0A−1 · · ·A−nY−n−1 + C0 +
n−1∑

k=0

A0A−1 · · ·A−kC−k−1

and so the non-negativity gives

Y0 ≥
n−1∑

k=0

A0A−1 · · ·A−kC−k−1

for all n ∈ N, where ≥ is to be understood componentwise (as in the remainder of this
proof). Hence, the series

n−1∑

k=0

A0A−1 · · ·A−kC−k−1

converges a.s. and thus

lim
n→∞

A0A−1 · · ·A−nC−n−1 = 0 a.s. (6.17)

Let now {ei}i=1,...,p+q−1 by the canonical basis vectors of Rp+q−1, i.e. e1 = (1, 0, . . . , 0)T,

e2 = (0, 1, 0, . . . , 0)T, etc. We shall now subsequently show that

lim
n→∞

A0A−1 · · ·A−nei = 0 (6.18)

for all i ∈ {1, 2, . . . , p + q − 1}. This implies that

‖A0A−1 · · ·A−n‖ → 0 as n →∞ (6.19)

and therefore an application of Lemma 4.4 concludes the proof.
So let us turn to establishing (6.18). As C−k−1 = α0,−ke1 ≥ a0e1, (6.17) gives

lim
n→∞

A0A−1 · · ·A−ne1 = 0 a.s. (6.20)
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Moreover, A−neq = βq,−n+1e1 ≤ bqe1 and thus

lim
n→∞

A0A−1 · · ·A−neq = 0 a.s.,

as A−neq = βq,−n+1e1 ≤ bqe1 implies A0A−1 · · ·A−neq ≤ A0A−1 · · ·A−n+1bqe1 → 0 and
A0A−1 · · ·A−neq ≥ 0 due to the non-negativity of all involved vectors and matrices. Using
A−nej−1 = βj−1,−n+1e1 + ej ≤ bj−1e1 + ej for all 2 < j ≤ q, backwards induction starting
with j = q and arguments analogous to the above give

lim
n→∞

A0A−1 · · ·A−nei = 0 a.s.

for all 2 ≤ i < q.
The very same line of argumentation based on the relations

A−nep+q−1 = αp,−n+1e1 ≤ ape1

and
A−neq+j−1 = αj,−n+1e1 + eq+j ≤ aje1 + eq+j

for all 2 ≤ j < p shows
lim

n→∞
A0A−1 · · ·A−nei = 0 a.s.

for all q + 1 ≤ i ≤ p + q − 1. Thus, (6.18) is established.
To conclude the proof let us give precise arguments for (6.19). Obviously it suffices to

show this for any particular norm on Rp+q−1. We take w.l.o.g. ‖ · ‖∞. Now we have

lim
n→∞

‖A0A−1 · · ·A−n‖∞ = lim
n→∞

sup
‖x‖∞ = 1,
x ∈ Rp+q−1

(‖A0A−1 · · ·A−nx‖∞)

≤ lim
n→∞

p+q−1∑
i=1

‖A0A−1 · · ·A−nei‖∞ = 0 a.s.

2

In order to check the strict negativity of the Lyapunov coefficient for a given model
the simplest approach appears to be to try to get E (log ‖A0‖) < 0 for some algebra norm
‖ · ‖. Using the alternative stochastic recurrence equation representation (6.9) Francq and
Zaköıan (2004) have again given a spectral radius condition ensuring strict stationarity
and finite second moments in the finite state space case.

6.3 Existence of Moments

To study the existence of moments of MS-GARCH models the results of Section 4.2 can
be applied to the stochastic recurrence equations of the previous section. For the reader’s
convenience we summarize the results below, but do not give any detailed proofs as they
can either be found in Section 4.2 or are analogous to the ones in Section 5.2.3. Again we
use p̃ to denote orders of moments, as p is already employed to denote the ARCH order.

It is immediate that Lemmata 4.5 and 4.6 can be applied to the sequence (At).
The general Theorem 4.7 becomes for MS-GARCH processes:
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Theorem 6.5 Assume the conditions of Theorem 6.2 are fulfilled. If, moreover, for some
p̃ ∈ (1,∞]

∞∑

k=0

‖A0 · · ·A−k+1C−k‖Lp̃ (6.21)

or for some p̃ ∈ (0, 1)
∞∑

k=0

E
(‖A0 · · ·A−k+1C−k‖p̃

)
(6.22)

converges, then the solution (X2
t , σ2

t ) of the (squared) MS-GARCH equations (6.7), (6.8)
and its higher dimensional representation Xt are in Lp̃. Moreover, the series defining Xt

(as given in Theorem 6.2) converges in Lp̃.

Observe that X2
t ∈ Lp̃, of course, implies Xt ∈ L2p̃ for the solution of the MS-GARCH

equations (6.4), (6.5).
It is clear that, if (6.21) holds for some p̃ ≥ 1, it holds for all r ∈ [1, p̃] as well.

However, if (6.22) holds for some p̃ ∈ (0, 1) this does not imply that it holds for all
smaller values of p̃ as well. Yet, of course, if X ∈ Lp̃ for some p̃ > 0 then X ∈ Lr for all
r ∈ (0, p̃]. Note, however, that the asymptotic conditions given in the next lemmata are
much better behaved. If there is one p̃ ∈ (0,∞] that fulfils the asymptotic condition, then
the asymptotic conditions for all s ∈ (0, p̃] are satisfied as well (use Jensen’s inequality as
in the proof of Lemma 3.20).
Proof: Combine Theorems 6.2 and 4.7 to obtain the results on Xt. (X2

t , σ2
t ) ∈ Lp̃ is now

a consequence of Xt ∈ Lp̃ and Corollary 2.15. 2

We restate also Lemma 4.8 and Propositions 4.9, 4.10 for the special case of MS-GARCH
processes. For all the following results one should keep in mind that At is formed by
components of both ∆ and ε, whereas Ct is solely determined by ∆. One important effect
of this is that At can, apart from degenerate cases, only be in L∞, if ε0 ∈ L∞.

Lemma 6.6 Let 1 ≤ p̃ ≤ ∞, resp. 0 < p̃ < 1, and assume that

lim sup
k→∞

‖A0 · · ·A−k+1C−k‖1/k

Lp̃ < 1,

resp.

lim sup
k→∞

(
E(‖A0 · · ·A−k+1C−k‖p̃)

)1/k
< 1,

holds. Then (6.21), resp. (6.22), is fulfilled.

Proposition 6.7 Let p̃ ∈ (0,∞). If there exist r, s ≥ 1 with 1/r + 1/s = 1, such that
A0 · · ·A−k+1 ∈ Lp̃r ∀k ∈ N, lim supk→∞ E(‖A0 · · ·A−k+1‖p̃r)1/k < 1 for 0 < p̃r < ∞,

resp. limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 for p̃r = ∞, and C0 ∈ Lp̃s, then γ < 0 and (6.21)

for p̃ ≥ 1, resp. (6.22) for 0 < p̃ < 1, hold.

Again one especially obtains that, provided A0 ∈ L∞ (and thus A0 · · ·A−k+1 ∈ L∞)

and limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1, the squared MS-GARCH process (X2

t , σ2
t ) and its

higher dimensional representation Xt are in Lp̃, if C0 ∈ Lp̃. The latter is equivalent to
α0t ∈ Lp̃.
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Proposition 6.8 If A0 ∈ L∞ ∀k ∈ N, limk→∞ ‖A0 · · ·A−k+1‖1/k
L∞ < 1 and C0 ∈ L∞, then

γ < 0 and (6.21) with p = ∞ hold.

If we have that A = (At) is a sequence of independent random variables (which is the
case, if (τt) and (α1t, . . . , αpt, β1t, . . . , βqt) are i.i.d. sequences independent of one another),
E(‖A0‖p̃) < 1 ensures limk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1, since ‖ · ‖ is submultiplicative.

The most straightforward moment conditions are obtainable under the assumption
that A = (At) and C = (Ct) are independent. This happens, if α0t is a constant or at
least independent from the other components of the Markov chain ∆. In this case one
obtains the following simplification of Proposition 6.7.

Proposition 6.9 Let A0A−1 · · ·A−k+1 be independent of C−k for all k ∈ N and p̃ ∈
(0,∞). If A0 · · ·A−k+1 ∈ Lp̃ ∀ k, C0 ∈ Lp̃ and lim supk→∞ E(‖A0 · · ·A−k+1‖p̃)1/k < 1,
then (6.21) for p̃ ≥ 1, resp. (6.22) for 0 < p̃ < 1, holds.

The prerequisite independence is in particular satisfied, if A and C are independent or
(Ak,Ck)k∈Z is an i.i.d. sequence.
Proof: Proceed along the lines of the proof of Proposition 4.9, but instead of the Hölder in-
equality use the independence, which gives E(‖A0 · · ·A−k+1C−k‖p̃) ≤ E(‖A0 · · ·A−k+1‖p̃)
E(‖C0‖p̃). 2

6.4 A Note on the Tail Behaviour

Regarding the tail behaviour there is one fact that causes considerable problems, namely
that At as well as Ãt are built form both the driving chain ∆ and the noise sequence
ε. Moreover, Ct is formed solely by the driving Markov chain and ∆ is also a main
ingredient in C̃t. So there is no “regularly varying” noise case to be considered, at least
none that appears natural. (To assume α0t is regularly varying and independent of the
other components of ∆t would be possible, but this seems to be a rather artificial case.)
If ∆ actually is an i.i.d. sequence one can use Theorem 4.15, to study the tails. Such an
analysis should be rather similar to the one of the standard GARCH in Basrak, Davis
and Mikosch (2002b), which is also based on the results of Kesten. As we focus on “truly”
Markovian parameters, we refrain from discussing this in its details.



126 CHAPTER 6. MARKOV-SWITCHING GARCH MODELS



Bibliography

An, H. Z. and Huang, F. C.: 1996, The geometrical ergodicity of nonlinear autoregressive
models, Statistica Sinica 6, 943–956.

Ash, R. B. and Gardner, M. F.: 1975, Topics in Stochastic Processes, Vol. 27 of Probability
and Mathematical Statistics, Academic Press, New York.

Asmussen, S.: 1999, Stochastic simulation with a view towards stochastic processes,
MaPhySto Lecture Notes 2, MaPhySto, University of Århus, Denmark.
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Mikosch, T. and Stărică, C.: 2000, Limit theory for the sample autocorrelations and
extremes of a GARCH(1,1) process, Annals of Statistics 28, 1427–1451.

Nicholls, D. F. and Quinn, B. G.: 1982, Random Coefficient Autoregressive Models: An
Introduction, Vol. 11 of Lecture Notes in Statistics, Springer, New York.

Poskitt, D. S. and Chung, S.-H.: 1996, Markov chain models, time series analysis and
extreme value theory, Advances in Applied Probability 28, 405–425.

Resnick, S. I.: 1987, Extreme Values, Regular Variation and Point Processes, Vol. 4 of
Applied Probability, Springer, New York.

Resnick, S. I.: 1992, Adventures in Stochastic Processes, Birkhäuser, Boston.
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