Nonnested model comparison of GLM and GAM

count regression models for life insurance data

Claudia Czado, Julia Pfettner, Susanne Gschlofl, Frank Schiller

December 8, 2009

Abstract

Pricing and product development of life insurance contracts require the deter-
mination of company specific risk factors and their resulting risk rates. The paper
shows how to use generalized linear models (GLM) and generalized additive models
(GAM) to quantify the effect of risk factors by allowing for non linear and interaction
effects. Nonnested model comparison between GLM and GAM based specifications
are facilitated using non-randomized probability integral transforms (see Czado,
Gneiting, and Held (2009)) and proper scores (see Gneiting and Raftery (2007))
developed for count responses. These allow for the assessment of model fit and pre-
dictive capability of a model. For a life insurance portfolio it is shown that the
computationally less demanding GLM specification performs similarly to a GAM
specification.

Keywords: Count regression, GLM, GAM, prediction, probability integral

transform, proper scores

1 Introduction

Pricing and product development in life insurance is based on best estimate rates
for risks like mortality, disability incidence and termination or lapse. Official tables
provided by actuarial associations may be used as a basis. However, it is well known,
that rates might differ significantly between companies. The expected claims heavily
depend on the portfolio structure of a company, i.e. on different target groups, prod-
ucts offered etc. Hence, best estimate rates should ideally be derived by analyzing
company specific portfolio data. In order to determine risk adequate premiums and
avoid antiselection it is important to identify and quantify significant risk factors.
Statistical models like generalized linear models (GLM’s) (see Nelder and McCul-
lagh (1989)) or generalized additive models (GAM’s) (see Wood (2006)) provide a
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method to do so.

The main risk driver for mortality or disability incidence rates is the age of the
insured. The rates typically depend on age in a non linear way. For an adequate
pricing it is essential to get the shape of the dependence on age right. In this paper,
a non parametric approach is taken to model the functional form of age. We consider
both a GLM where age is estimated non parametrically in advance and then entered
as covariate in the model and a GAM where age is modeled non parametrically to-
gether with the remaining covariates.

A focus of this paper is model comparison. Since GLM’s and GAM’s are not nested,
classical criteria for comparing models like the AIC or the likelihood ratio test are
not efficient. Instead we consider criteria based on the predictive distribution of
models, in particular the probability integral transform and proper scoring rules.
The probability integral transform for count variables (see Czado, Gneiting, and
Held (2009)) assesses calibration and sharpness of count models, while proper scor-
ing can be used to compare non nested models (see Gneiting and Raftery (2007)).

An application to a data set from life insurance is given.

2 Statistical regression models for death rates

Generalized linear models (GLM’s) provide a well known class of statistical models
for analyzing dependencies between a possibly non normal response variable and a
number of covariates, see for example Nelder and McCullagh (1989) for details. An
extension of GLM’s which allows for the incorporation of non parametric covariate
effects is given by generalized additive models (GAM). See for example Hastie and
Tibshirani (1990) for an early account of GAM models and Wood (2006) for a later
one.

Assume a data set with n observations and let Y = (Y7, ..., Y,)" denote the vector
of response variables. Further, x; = (z;1,...,%ip)’,i = 1,...n denotes the vector of

covariates and 8 = (01, ..., Bp)" the corresponding vector of unknown parameters.

2.1 Generalized linear models

In a GLM, the response variables Y; are assumed to be independent given the
covariates x; for i = 1, ..., n, and to follow a distribution from the exponential family
(see Nelder and McCullagh (1989)). The exponential family includes for example
the Normal, Binomial, Poisson and Gamma distribution. Covariate information is
incorporated by modeling a transformation of the mean in terms of covariates. For
life insurance data, the response variable is typically the number of events like
death, disability or lapse, i.e. a count variable. We assume a Poisson distribution for

the response which is a common choice for count data. The logarithm is taken as
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link function g(-), leading to a multiplicative model which is easy to interpret and

reasonable for actuarial applications. The model reads as follows:

Yvi ~ POZ(EI)\z) 1= 1, )

with g()\;) = In(\;) = n; := x! 3. The quantity 7; is called the linear predictor for
observation i.
Since the number of events in life insurance is proportional to the exposure to risk

E;, the logarithm of the known exposure is included as an offset, i.e.
pi = E(Y;) = E;\; = Ejexp(x] B) = exp(log E; + x] 3).

For an account of GLM’s from an actuarial science view point see also de Jong and
Heller (2008).

2.2 Generalized additive models

An extension to GLM’s is given by generalized additive models (GAM’s), see Wood
(2006) for an overview. The basic setting for a GAM is the same as for a GLM. In
contrast to GLM’s however, GAM’s allow for the incorporation of non-parametric
functions of continuous covariates in the linear predictor. The linear predictor n; in

a GAM can be written as

J K
fl(xlz)"‘ ‘|‘fJ ZJi +ZZf]k ngaxzk +Z Y

=1 k=1

where fj(x),7 = 1,2, ..., J denote smooth functions depending on covariate « which
are not further specified and are estimated from the data using smoothing splines. In-
teractions with continuous variables can be modeled using functional terms fjk(a?ij, Tik).-
If an interaction between a categorical and a continuous variable is included, this
implies the estimation of a separate smooth function of the continuous variable for
each level of the categorical variable. An interaction between age and gender for ex-
ample, induces the estimation of a separate functional dependency on age for males
and females. For interactions between two continuous covariates two dimensional
surface functions are allowed.

Finally we allow the inclusion of parametric effects. For this let z; denote the vector
of covariates for any strictly parametric model components with unknown regression

coefficients «. For a Poisson GAM with logarithmic link, the mean is given by

J K
pi = Ejexp fl(xlz)"’_ +f] :I;Jz +ZZf]k ngvl’zk +Z Y
Jj=1k=1
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3 Model comparison

In this paper we consider both GLM and GAM specifications for modeling the num-
ber of deaths in a life insurance portfolio and compare the results. Model comparison
using standard criteria like Akaike’s information criterium (AIC) (see Burnham and
Anderson (1989)) or the likelihood ratio test (see Rao (1999)) however are not ad-
visable, since we are dealing with non nested models here. The AIC is most effective
for model comparison of nested models. Brian Ripley notes "Differences in AIC are
much more precisely estimated for a pair of nested models than for some non-nested
pairs.” See also his notes in Ripley (2004). Instead, we follow Czado, Gneiting, and
Held (2009) and consider tools designed to assess model fit and predictive capabili-
ties of a model. In particular, a non-randomized version of the probability integral

transform for a discrete variable and scoring rules for count models are used.

3.1 Probability integral transforms for discrete random

variables

After a model is fitted one is interested in adressing how sensitive the model fit is
to individual observations or to groups of observations. Such an assessment can be
facilitated by using a cross validation setup, where the model is refitted after deleting
a single or several observations and the left out observations are then predicted
using the refitted model parameters. Similarly one might be interested in assessing
the prediction capabilities of a model on a set of left out observations. In both
situations an observation y is predicted using a predictive cumulative distribution
function (cdf) F. The value of this predictive cdf evaluated at observation y given
by F(y) is called the probability integral transform (PIT) (see Dawid (1984)). It is
well known that if an observation y arises from a continuous distribution with cdf
G(+), then under perfect prediction, i.e. F' = G, the PIT u := F(y) is an observation
from a uniform distribution. For a set of observations w1, ...,yx to be predicted
using predictive cdf’s Fi(-),..., Fx(-) the histogram of uy := Fi(yx), k = 1,..., K is
called a PIT histogram. Under perfect prediction the PIT histogram should be flat.
U-shaped and bump shaped histograms indicate underdispersed and overdispersed
predictions. This approach is valid if one considers continuous observations, however
not for discrete observations. In the case of a discrete observation y, Smith (1985)

considered a randomized PIT value given by

vi=F(y—1)—ulF(y) - Fly—1)],

where v is an independent observation of a uniform (0,1) distribution and F(—1) :=
0. Under perfect prediction this is an observation from the uniform distribution. The

inclusion of the random quantity u is not satisfactory. One contribution of Czado,
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Gneiting, and Held (2009) is that they are able to construct non-randomized PIT

histograms by considering the corresponding random variable

Vi=FY —1)—ul[F(Y) - F(Y —1)],

and deriving the conditional cdf of V' given Y =y as

0 v< F(y—1)
Hy(w) = (w—-Fy—1)/(Fly)—Fy—1)) Fly—1)<v<F(y)-
1 v > F(y)

They show for W ~ H, and under perfect prediction that W has a uniform distri-
bution. For observations y := (y1, ..., yx)" to be predicted they use the aggregated

conditional cdf given by

1 K
Hy(v) = > Hy, (v)
k=1

where H,, is based on the predictive cdf F}, for observation yj. Finally they call the
histogram of J equal width bins with j-th bin height

s (5) - (5

the non-randomized PIT histogram for discrete observations. Deviations from a flat
histogram indicate prediction deficiencies. For an illustration of a non-randomized
PIT histogram see Figure 1 of Czado, Gneiting, and Held (2009).

3.2 Scores

For comparing non nested models proper scoring rules can also be used. Gneiting and
Raftery (2007) consider scoring rules in order to assess the quality of a probabilistic
forecast. A scoring rule S(F,y) assigns a numerical value based on the predictive
distribution F' and on the observed value y. We only consider strictly proper scoring
rules, i.e. scoring rules for which the highest score is uniquely obtained for the true
model. In the following we consider the interval and the quantile score. They are

both positively oriented, i.e. the model with the highest score is to be preferred.

3.3 Interval scores

The interval score IS, is based on a (1 —a)100% prediction interval I = [I, u] using

prediction cdf F. In particular, the interval score for observation y to be predicted
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is defined by

—20(u—10)—4(—-y) if y<lI
ISo(lu,y) == —2a(u —1) if I<y<u. (3.1)
—2a(u—10)—4(y—u) if y>u

The above definition shows that the interval score rewards narrow prediction inter-

vals and penalizes observations which are not within the prediction interval.

3.4 Quantile scores

For data with many zero observations, the quantile score might be more appropriate
than the interval score. The quantile score proposed by Gneiting and Raftery is based
on the a-quantile 7, of the predictive distribution F' for observation y. The quantile

score ()S,, is defined by

QSQ(TQ, y) = (y - Ta) [1y§ra - Oé] . (32)

For observation vy, k = 1, ..., K to be predicted we use the mean score given by

K
1
Sk = 74 ;S (Fk, k) (3.3)

where Fy, is the predictive cdf for y; and S(-,-) is either an interval or quantile score

function. The model with highest mean score has the highest predictive capability.

4 Application

For the application a portfolio of endowment life insurances with the number of
deaths as response variable is examined. The data contains a number of categor-
ical covariates including gender (sex, (male/female)), time since policy inception
(dur, (0,1,...,9,104) in years), an indicator whether medical underwriting has been
conducted or not (uw, (yes/no)) and amount insured given in bands (am, (0-1,1-
5,5-10,10-20,>20) in 10000 Euro). The only continuous variable given in the data is
the age (18-84) of the insured.

Only a random sample of 75% of the data is used to fit the regression models, the
remaining 25% is later used to assess the predictive quality of the models.

The number of deaths is modeled using both a GLM and a GAM approach. For
the GLM specification, the functional form of age is investigated in advance using
local smoothing methods. This non parametric function of age is then included as a
covariate in a GLM. In contrast the second approach models age non parametrically

in a GAM, i.e. simultaneously with the categorical variables. Model comparison and
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calibration is then assessed using non-randomized PIT histograms and scoring rules

as discussed in the previous section.

4.1 Generalized linear model

We first consider a Poisson GLM with a logarithmic link to model the number of
deaths. Here GLM specifications with and without interaction effects are studied.
Mortality rates typically depend on age in a nonlinear way. In particular for ages
below 35 a hump, the so-called accident hump, in the rates is observed. Since age is
one of the main risk drivers for mortality, it is essential for life insurance companies
to model the dependency of mortality on age adequately. Within a GLM, age of
the insured might be modeled by a polynomial. However, typically a polynomial of
degree 6 or higher is needed to reflect the dependency on age precisely. Polynomials
of higher order tend to fluctuate highly in the tail regions, an effect insurance com-
panies would like to avoid. We therefore follow a non parametric approach to model
age. While all other covariates are neglected, we first fit a Poisson GLM with age
as the only covariate using local smoothing methods suggested by Loader (1999).

In particular, we consider the following model

Yi ~ Poi (E; exp(fL(age))) -

Here Y; and F; denote the number of deaths and the exposure for age ¢, respectively.
The smooth function fr(age;) is not further specified and is to be estimated using
the local smoothing algorithm implemented in the R package "locfit” by Loader
(1999). The estimated functional form f1,(age;) is given in Figure 1 together with

the logarithmic crude deaths rates which are defined as

crude Yi
log (™) := log (E) :

Here y; denotes the observed number of deaths for insureds with age 1.

In a second step, a Poisson GLM including the estimated function of age f7, (age;)
as covariate as well as all remaining covariates is fitted. All remaining covariates
are categorical and thus are included as indicator variables. Only covariates which
are significant on a 10% level are kept in the model. This might include grouping
of covariate levels. In particular, the variable dur is grouped from initially 11 levels

into only two levels. The model without interactions thus contains the covariates

fr(age), dur (0 — 9,10+4), sex, uw (4.1)

In a second step, interactions are included to the model, for details see Pfettner

(2009). Several interactions are found to significantly influence mortality. The re-
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Figure 1: Estimated function fL(agei) (solid line) and crude logarithmic rates
log(u57) (points).

sulting GLM with interactions includes

main effects: fL(age), dur(0—1,2 —7,8 — 9,10+), sex, uw,am(< 10000, > 10000)
interactions:  fr(age) x dur, f1(age) x sex, fi(age) x am,sex x am, sex X uw

(4.2)

The GLM specificiations with and without interactions are non nested since the
variable dur is used with different levels. For the GLM specifications utilized we
aggregated the data according to the specified covariate combination levels. The
aggregation is necessary to assess model fit appropriately. Table 1 displays the de-
viance and the degrees of freedom for the two GLM specifications before and after
aggregation of the data. Without aggregation, the deviance is very small compared
to the degrees of freedom which suggests the existence of underdispersion. However,
after aggregating the data set, the difference between deviance and degrees of free-
dom is much lower. This is due to the fact, that aggregation leads to higher claim

counts y; and thus more information on individual risk groups in the data.

Model Data Deviance df
GLM without interactions not aggregated 1533.9 4124
aggregated 448.4 359
GLM with interactions not aggregated 1485.3 4114
aggregated 860.5 1029

Table 1: Deviance and degrees of freedom for the GLM specifications (4.1) and (4.2)

before and after data aggregation.
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4.2 Generalized additive model

In the above approach, the data is used twice. First, when estimating the baseline
mortality only depending on age, second when fitting the GLM including the esti-
mated function of age and categorical covariates. Uncertainty in the estimation of
the baseline mortality is not taken into account in the GLM specifications (4.1) and
(4.2).

Generalized additive models avoid this problem by estimating non parametric func-
tions of continuous covariates simultaneously together with the parametric compo-
nents. This also allows more flexibility for modeling interactions between continuous
and categorical covariates. For each level of a categorical covariate, a different func-
tional form for the interaction with a continuous covariate may be modeled. The

mean specification of the resulting GAM includes several interactions:

main effects :  f(age),dur(0 — 1,2 — 7,8 — 9,10+), sex, uw
interactions :  fgur(age) x dur, feer(age) X sex, fom(age) X am, sex x uw

(4.3)

Both the GLM with interactions and the GAM include 32 different risk profiles, i.e.
32 possible covariate combinations except age. Figure 2 displays the logarithm of
the estimated mortality rates for two selected risk profiles resulting for the three
considered models.

Additionally, the logarithmic mortality rates of the official table DAV2008T pro-
vided by the German actuarial association is plotted as a solid line and denoted
as DAV. Note that the DAV mortality rates are the same for both risk profiles,
since both risk profiles are for women and the DAV table only distinguishes be-
tween males and females but no other risk factors. The mortality rates resulting
from the GLM specifications and the GAM in contrast differ significantly for the
two risk profiles. For example, mortality rates in the right panel corresponding to
women without medical underwriting, low sums insured and more than 10 years
since policy selection are considerably higher than the rates in the left panel, cor-
responding to women with medical underwriting, high sums insured and less than
2 years since policy inception. Further note, that the estimated rates based on the
GAM specification (4.3) and the GLM specification (4.2) including interactions are
fairly close. The mortality rates estimated using a GLM without interactions in con-
trast differ significantly from the models with interactions for the risk profile given
in the left panel. Since this model does not include interactions, only parallel shifts
of the logarithmic mortality rates are possible. The models with interactions are
much more flexible here. The estimated rates for all remaining risk profiles can be
found in Pfettner (2009).

In order to assess which of the models performs best when considering their pre-
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Figure 2: Fitted logartihmic mortality rates per unit exposure ln(%) as age varies for
two risk profiles (left: women with duration 0-1, underwriting and amount insured >

10000, right: women with duration 10+, no underwriting and amount insured < 10000).

dictive power, the non-randomized probability integral transform and scoring rules

introduced in Section 3 are now considered.

4.3 Model assessment and comparison using PIT and

scores

Probability integral transform and scores are tools to assess calibration and to com-
pare non nested models. Generally, there are two approaches, an external and an
internal one, for model assessment. We present both possibilities in this paper. The
external approach corresponds to studying the predictive capabilities for ”external
data”, i. e. new data which has not been used so far. In contrast, internal refers to
the assessment of calibration where data is predicted in a cross validation setup.
For the non-randomized PIT we follow both approaches. The internal approach uses
cross validation to study the goodness of fit over all data used for fitting. The exter-
nal PIT in contrast uses test data and examines the predictive distribution for the
test data. If the non-randomized PIT histogram is flat, then there is no evidence
against the prediction ability of the model.

For scores we follow the external approach using test data only. We compare models
based on the overall mean score and choose the model with the smallest mean score

as best model. Model calibration can be assessed by examining the proportion of
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outliers, i.e. observations lying outside the calculated prediction interval or above
the prediction quantile, respectively. For a 95% prediction interval or a 95% predic-
tion quantile, the percentage of outliers is supposed to be around 5% if the model

is calibrated well.

4.3.1 Non-randomized PIT histograms

As mentioned above we take two approaches - an internal and an external one -
to assess model fit of each of the three models. Calculation of the external non-
randomized PIT is straightforward. For the calculation of the PIT, the predictive
cdf for each observation in the test data is needed. For each observation ¢ in the
test data the predicted mean [i; = E;exp {BTXZ'} is calculated, where B denotes
the estimated parameter vector of the corresponding model based on the selected
75 % of data. For each observation y; of the test data we use the cdf of the Poisson
distribution with mean [i; evaluated at y; as predictive cdf for the construction of
the non-radomized PIT histogram.

In order to compute the internal PIT histogram for each of the three model speci-
fications, cross validation is used. Let B[_i] denote the estimated parameter vector
based on a model which has been estimated without observation i. The predictive
mean for observation i is then given by ﬂg_i] = E;exp {(B[ii])Txi}. For the pre-
dictive cdf for the left out observation i, we use then the Poisson cdf with mean
[—i]

/lgfﬂ. For the GAM specification, the estimated values fi; ~ are obtained using the

“predict.gam” function of the R package "mgcv” from Simon Wood. A direct calcu-
(1]

lation of fi; ~ as described above is not possible, since the estimated non parametric
functions cannot be assessed directly.

For the two GLM specifications the "leave one out” approach is computationally
feasible, the computational costs for the GAM specification however are more than
20 times as high as for the GLM. Therefore, we decided to leave out 20 observations
at a time instead of just one. Pfettner (2009) justifies this simplification by showing
in Figure 25 on page 94 that the PIT does not change significantly when leaving
out 20 instead of just one observation. The observations to be left out are chosen
randomly and this procedure is repeated until each observation has been included
exactly once in a set of left out observations.

To be precise, the estimation of the functional form of age in the GLM should have
also been performed using cross-validation. Since no significant change in the esti-
mation of the function of age is to be expected when only 20 observations are left
out and to avoid the computational effort implied by a reestimation, we use the
same functional form for age for each "leave-20-out” calculation for simplification.
Only the GLM is reestimated in every step. The non-randomized PIT histograms

for the three model specifications are displayed in Figure 3 for the external and

11
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internal setup.

The internal PIT histograms for the models with interactions look rather uniformly
distributed and therefore do not indicate any model deficiencies. The internal PIT
histogram for the GLM without interactions in contrast, is slightly U-shaped and
therefore suggests an underdispersed model for this data. According to these plots,
both the GLM with interactions and the GAM seem to be superior to the GLM
without interactions. A significant difference between the two models including in-
teractions is not apparent.

The external PIT histograms show similar results. Here, the external PIT for the
GLM with interactions (top right panel) shows the most uniform pattern, followed
closely by the GAM. Again, both the GLM with interactions and the GAM seem to
have a higher predictive quality than the GLM without interactions, for which the

PIT is more skewed.

4.3.2 Scores

To complement the PIT results regarding model comparison and calibration, scores
are calculated for the test data. We only consider interval and quantile scores. In
order to compute the empirical quantiles of the predictive distribution needed for
these scores, the predictive distribution is approximated using simulation. Predic-
tion is done for the 25% of the data which has been neglected for model fitting.
For each observation i of the test data, the predicted number of claims is calculated
by fi; = E; exp(x] B) where E; and x; are taken from the test data and B denotes the
estimated coefficient vector of the GLM or GAM using the learning data, respec-
tively. According to the delta method, the standard deviation of ji; can be estimated
by 6; = [iiy/ X;i(B)XZ where $(3) denotes the estimated covariance matrix of 3.
The simulation proceeds as follows. For each observation i to be predicted R = 15000
mean values p;",r = 1, .., R are simulated from a Normal distribution, in particular
Wi ~ N(fi;,5%). For each simulation r and observation i a number of claims y;”
is then simulated from a Poisson distribution with mean ", i.e. yi" ~ Poi(u]").
Prediction quantiles for observation 4 can then be calculated as the empirical quan-
tiles of y",r = 1, .., R. Following this simulation approach, both uncertainty of the
estimated regression parameters as well as variability of the Poisson data are taken
into account. The empirical quantiles are now used to construct the corresponding
mean quantile and interval scores according to (3.1) and (3.2), respectively. The
overall mean score, denoted by "Mean IS” and "Mean QS” in Table 2, are calculated
according to (3.3) for the test data.

For the GAM specification, again the values of ji; and &; are obtained using the
"predict.gam” function. The resulting scores are given in Table 2.

According to the mean value of both the quantile and the interval scores, the predici-
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Mean QS Outliers in %
GLM GAM GLM | GLM | GAM GLM
with without | with without

-0.280 | -0.259 | -0.834 | 4.3% | 4.3% 8.0%

Mean IS Outliers in %
GLM GAM GLM | GLM | GAM GLM
with without with without

-0.864 | -0.481 | -5.916 | 3.1% | 3.7% | 10.0%

Table 2: Mean values of the 95% quantile and 95% interval scores for the GLMs with
and without interactions and the GAM. Additionally the percentages of outliers is given.

tive quality of the GLM with interactions and the GAM is rather close. The percent-
age of outliers is also similar for both models and reasonable close to the expected
5% of outliers. For the GLM without interactions in contrast the scores are much
higher and more outliers than expected are observed. This indicates that the pre-
dictive power of this model is inferior to the models with interactions and that the
model is not very well calibrated yet. The scores for the GAM specification are
slightly higher than for the GLM specification with interactions and therefore sug-
gest that the GAM fit is slightly better. However, taking into account that the effort
of model fitting and the computational costs are much higher for a GAM compared

to a GLM, the slightly worse predictive quality might be acceptable.

5 Summary and conclusion

We have considered both GLMs and GAMs for modelling the number of deaths
for life insurance data in this paper. In order to appropriately model the functional
dependency of mortality on age of the insureds, a non parametric modelling ap-
proach was followed. In a GLM setting this involves using the data twice. In a GAM
in contrast, non parametric effects are estimated simultaneously with parametric
components. This also allows the modelling of different functional dependencies for
interactions of age with categorical variables and thus gives more flexiblity for mo-
deling. In this paper we examined whether the double use of data and the simplier
structure in a GLM also effects the predictive ability of the model. In particular,
the predictive quality of a GLM and a GAM was compared using non-randomized
PIT histograms and proper scoring rules. While these tools clearly detected a GLM
model without interactions as inferior to a GLM or GAM including interaction ef-
fects, model fit and calibration of the GLM and GAM with interactions turned out
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to be rather close. Although prediction based on the GAM specification was slightly
better than for the GLM with interactions according to the scoring rules, the higher
computational costs required for fitting a GAM have also to be taken into account.
Further modelling of a GAM is not as straightforward as in a GLM setting. Based
on these results, the use of GLMs including a non parametric function of age which

has been estimated in advance seems to be feasible.
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Figure 3: Comparison of the internal and external PIT histograms for the generalized

linear and the generalized additive model. For the internal PIT cross validation was

performed by leaving out 20 observations a time. For the external PIT no cross

validation is needed since the calculations are based on the test data.



