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Abstract— We present an approach for kinesthetic teaching of
motion primitives for a humanoid robot. The proposed teaching
method allows for iterative execution and motion refinement
using a forgetting factor. During the iterative motion refinement,
a confidence value specifies an area of allowed refinement
around the nominal trajectory. A novel method for continuous
generation of motions from a hidden Markov model (HMM)
representation of motion primitives is proposed, which incorpo-
rates relative time information for each state. On the realtime
control level, the kinesthetic teaching is handled by a customized
impedance controller, which combines tracking performance
with soft physical interaction and allows to implement soft
boundaries for the motion refinement. The proposed methods
were implemented and tested using DLR’s humanoid upper-
body robot Justin.

I. INTRODUCTION

Programming of motions for a humanoid robot is challeng-

ing due to contact state dependent dynamic constraints and

the large number of degrees of freedom (DOF) involved [1]–

[3]. Several frameworks use the concept of motion primitives

[4]–[7], since this allows a compact description of general

motion patterns. Such motion primitives for humanoid robots

can be acquired by mapping motions from a human demon-

strator, or by an offline optimization process. In the case

of human demonstration, kinematic differences between the

demonstrator and the robot must be handled, and several

frameworks for this motion retargetting problem have been

proposed [4], [8]–[11]. Generation of motion primitives by

mathematical optimization, on the other hand, can result in

motions, which are efficient but may look unnatural from a

human supervisor’s subjective point of view depending on

the choice of optimization criteria. Regardless of the method

for creation of motion primitives, it thus may be desired

that a human supervisor can modify the shape and timing of

learned motion primitives in an intuitive way.

Physical human robot interaction in imitation learning

can be roughly classified into interaction during execution

and interaction during learning. Online adaptation of motion

primitives during execution was treated in several works

[4], [12]. In particular the adaption to a desired endpoint

[4], [13] or an intermediate point [12] of the motion was

treated in detail. In [12], physical interaction during motion

generation was considered, while motion and interaction

primitives were trained by an observational learning strategy.
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Physical interaction during learning, often called kinesthetic

teaching, was treated in [14]–[16]. In [15], the physical

coaching was realized by deactivating the controlled motion

of individual selected joints. In [14], [16], very low servo

gains were used for guiding the robot manually during

teaching. However, these approaches of kinesthetic teaching

often lead to unsynchronized motions because the teacher

moves motors one by one rather than demonstrating natural

coordinated movements.
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Fig. 1. System overview: Acquired motion primitives are iteratively refined
by physical interaction with a human teacher.

In most previous works on imitation learning, (off-line)

one-shot learning, where all training data is prepared before

training, has been often considered. Recently, approaches for

incremental learning have been proposed in [17], [18]. In

these works, the knowledge of motion primitives is updated

as more demonstrations are provided, without keeping all the

training data in a database. In [18], they achieved incremental

motion learning with a performance similar as batch learn-

ing. However, they still require additional information (e.g.,

posterior probabilities or the number of all previous training

data) in memory, besides current model parameters and new

incoming data. Moreover, a limitation with these methods

is that they can become insensitive to new data when the

training data set is large.

In order to achieve an intuitive teaching of natural motions,

we propose the following concepts.

1) Combination of observational learning and kines-

thetic eaching: In order to ensure synchronization (coordina-

tion) of complex whole body motions on a humanoid robot,

our imitation learning procedure starts with observation

learning (i.e. whole body motion retargetting from a human

demonstrator to a robot) prior to kinesthetic demonstrations.

2) Incremental learning with a forgetting factor: Since

retargetted movements might not fit exactly to the desired
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movements due to kinematic differences and mapping er-

rors, a refining process is required. In such a case, slowly

forgetting old data is more efficient than having the same

weighting factors for all training data in history, which was

done in [17], [18].

3) A motion refinement tube concept as a guideline

for kinesthetic correction: The tube represents an area

of allowed deviation from the nominal trajectory of the

motion primitive. The refinement tube helps the human

teacher to correct only the desired part of the motion without

accidentially disturbing other joints.

4) A customized impedance control, which allows

to realize the refinement tube: The proposed impedance

controller allows, in contrast to [15], [16], to combine

tracking of motion primitives in free-space with a kinesthetic

modification by a human supervisor. As a consequence,

multiple motion elements (e.g., hands, torso motions) can

be corrected simultaneously during the physical coaching.

5) Improving generation of HMM-based motion primi-

tives: Existing HMM-based motion primitives cannot capture

continuity of trajectories due to the discrete nature of states.

In order to overcome this limitation, we extend the HMM-

based motion primitive representation by learning the cor-

relation between temporal and spatial data within a discrete

state. By using this continuous HMM output, the feedforward

terms for the impedance controller can be computed by a

simple fast prefilter and there is no need for a slow filter for

smoothening the trajectory.

A schematic overview of the proposed kinesthetic teaching

approach is shown in Fig. 1. A motion retargetting algorithm

converts motion capture data into joint angle trajectories for

the robot. Herein, the marker control algorithm from [11]

is adopted which allows to get synchronized natural whole

body motion. These trajectories are implemented via a joint

level impedance controller (Section III). In parallel, an HMM

based motion primitive learning algorithm is active. During

incremental physical teaching, the joint angle trajectory and

the parameters for the refinement tube δ are generated from

the HMM (Section II). An implementation and evaluation of

the proposed concepts on the humanoid upper body robot

Justin [19] is presented in Section IV.

II. INCREMENTAL MOTION LEARNING

A. Motion Primitive

HMM-based representation of motion primitives has been

often used for generalization of movements demonstrated to

a robot, because HMMs allow to represent spatiotemporal

variabilities in a stochastic way [5], [20]. HMMs have their

advantages in motion recognition due to their sequence-based

nature. The temporal relation between states is encoded in

terms of initial state probability and state transition proba-

bility. Time series of different speed can be handled without

modification which allows to perform recognition of known

motion primitives in an incoming data stream during runtime.

A limitation of this approach is discontinuity of the generated

trajectory due to the discrete states in the HMM. Therefore, a

filtering technique or a Monte Carlo sampling and averaging

technique are usually needed to smoothen the trajectory [5],

[7], [12].

As an alternative method to achieve a continuous tra-

jectory, a GMM (Gaussian mixture models) and GMR

(Gaussian mixture regression) based approach was proposed

in [6]. While conventional GMM cannot capture temporal

information, because learning is performed based on data

points rather than sequences, in [6] correlation between

temporal and spatial data is encoded in Gaussian probability

by adding timestamps explicitly in the training data points.

Once GMM is trained, a smooth trajectory can be retrieved

by GMR, therein timestamps should be given as an explicit

input variable. A drawback of this approach is that data has

to be segmented and scaled in time a priori. Thereafter, to

the best of our knowledge, online recognition of an incoming

data stream with a different speed than the training data is

not possible.

Motion primitive representation in this work follows basic

HMM properties, which allows good online recognition

performance. In order to overcome the discrete nature of

states in the HMM (which results in generation of stepwise

sequences), correlation between temporal and spatial data

is learned explicitly. Herein, a normalized time variable is

introduced in each state. This variable is 0 when entering

a state, 1 when leaving the state, and linearly interpolated

during the stay at the state. This relative temporal representa-

tion allows to handle data sequences of different speed, even

whose speed is time-varying within a motion primitive. In

contrast to [6], a preprocessing of observation (e.g., scaling

in time) for learning and recognition is not needed.

The training algorithm is as follows. First, from a motion

sequence sO = {so(t)} (At this stage, training data consists

of a time series of spatial data)1, HMM parameters are

trained via an EM algorithm [21]. Then, the corresponding

state sequence for the spatial data sequence sO is calculated

via the Viterbi algorithm [21]. From this state sequence, the

relative temporal sequence tO = {to(t)} within each state

is calculated. Therefore, the mean of temporal data of each

state is always the same, which is 0.5. Then, from tO and
sO, the covariance ts

Σ for each state is calculated.

B. Motion Generation - Trajectory and Tube

The generation procedure of the new proposed motion

primitive (Sec. II-A) is as follows. Motion patterns are de-

coded using the expectation operator in the stochastic model.

The motion generation is a stochastic process, consisting of

state transition generation and motion output generation from

the state transition.

Step 1) A general state sequence Q = {q(t)} is generated

deterministically. An initial state q(1) is chosen according to

the initial state probability distribution πi, i.e.

q(1) = argmax
i

πi .

1The spatial data s
o(t) can be in joint coordinates and/or Cartesian

coordinates. The system overview in the case of joint space is shown in
Fig. 1. Figure 4 illustrates the case of task space.
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Let aij denote the probability to transit from state i to state

j. The expected duration to stay at the state i is calculated

as 1/(1−aii). After the duration, the next state is calculated

according to the state transition probability distribution, i.e.

q(t+ 1) = argmax
j

aq(t)j .

Step 2) From the state sequence Q, the relative temporal

sequence tO within each state is calculated. As mentioned

in Sec. II-A, the value of the relative temporal data to(t) is

ranging from 0 to 1.

Step 3) Given the state sequence Q and relative temporal

sequence tO, a sequence of spatial data is generated using

Gaussian regression [22]. For each time step t, a mixture of

Gaussians in the corresponding state q(t) is considered. For

simplicity, we use i instead of q(t) in the following equations

(1)-(2). Given to(t), the conditional expectation so(t) is

so(t) =

K
∑

k=1

{

sµik +
ts
Σik

ttΣik

(to(t)− tµik)

}

(1)

where sµik is the mean vector of spatial data part in the k-th

mixture component at state i. The symbol tµik is the mean

vector of temporal data part in the k-th mixture component

at state i. The k-th Gaussian at state i is given by

Σik =

[

ttΣik
ts
Σik

ts
Σik

ss
Σik

]

,

where ttΣik and ts
Σik are the variance of temporal data

and the covariance between temporal and spatial data, re-

spectively. The conditional variance of so(t) is estimated as

s|t
Σ =

K
∑

k=1

{

diag(ssΣik)−
ts
Σik

ttΣik

}

(2)

where ss
Σik is the covariance matrix of spatial data of the

k-th Gaussian at state i.
During kinesthetic teaching, the conditional variance s|t

Σ

is used for designing the motion refinement tube. The tube

is centered around so(t) and has a radius of δ = 3s|tΣ+ ǫ,
where ǫ is the minimum allowance. This radius δ is used as

an input parameter of the impedance controller presented in

Sec. III.

C. Incremental Learning with a forgetting factor

The incremental learning method herein is a variation

of the EM algorithm for multiple observations [23]. It is

also similar to the generative incremental learning method

in [18] in the sense that the training data consists of new

incoming observations and generated motion patterns from

a motion primitive. Compared to the existing methods, our

incremental learning method uses a forgetting factor which

leads to exponential forgetting of previous data. This allows

to correct the models efficiently and to avoid insensitivity

to new incoming data for a large training set. No additional

information (e.g., posterior probabilities or the number of

all previous training data) rather than the current model

parameters and new incoming data is required.

In our incremental learning algorithm, two motion se-

quences2 (sOe, e = 1 · · ·E, E = 2) are given as training

data. One motion sequence is the new incoming training

data. The other one is a generated motion sequence from

the current motion primitive (Section II-B). The weighting

factor for each sequence (sOe) is given as we. For the

new incoming motion sequence, we becomes the forgetting

factor we = η. For the generated motion sequence, the

weighting factor becomes 1 − η, so that
∑E

e=1w
e = 1.

In the M-step, new parameters λ̄ = {π̄, ā, c̄, µ̄, Σ̄} for the

HMM are estimated by using the old HMM parameters λ =
{π,a, c,µ,Σ} and the two training data. The initial state

probability πi is updated as the expected relative frequency

spent in state i at time 1, i.e.

π̄i =

E
∑

e=1

weγe
i (1) ,

where the variable γe
i (t) denotes the probability of being at

state i at time t for the observation sequence sOe. The state

transition probability aij is updated to the expected number

of transitions from state i to state j relative to the expected

total number of transitions from state i, i.e.

āij =

∑E

e=1w
e
∑Te−1

t=1 ξeij(t)
∑E

e=1w
e
∑Te−1

t=1 γe
i (t)

,

where Te is the time duration of sOe and the variable ξeij(t)
is the probability of being in state i at time t and being in

state j at time t+1 for the sequence sOe. The update rules for

the mixture of Gaussian distributions, which consist of the

weight cik , mean vector sµik, and covariance matrix ss
Σik

for the k-th mixture component at state i, are as follows.

c̄ik =

∑E

e=1w
e
∑Te

t=1γ
e
ik(t)

∑E

e=1w
e
∑Te

t=1γ
e
i (t)

s̄µik =

∑E

e=1w
e
∑Te

t=1γ
e
ik(t)

soe(t)
∑E

e=1w
e
∑Te

t=1γ
e
ik(t)

¯ssΣik =

E
∑

e=1
we

Te
∑

t=1
γe
ik(t)(

soe(t)− sµik)(
soe(t)− sµik)

T

∑E

e=1w
e
∑Te

t=1γ
e
ik(t)

where the variable γe
ik(t) denotes the probability of being at

state i at time t with the k-th mixture component accounting

for the observation soe(t).

III. INTERACTION CONTROL FOR PHYSICAL

MOTION REFINEMENT

Considering the physical motion refinement strategy dis-

cussed in the previous sections, we can identify the following

demands on the real-time controller.

1) Trajectory tracking when there is no physical interac-

tion.

2) Allow a compliant behavior with low stiffness if the

robot is distracted from the nominal trajectory by a human

teacher.

2Note that herein sOe is the e-th sequence of spatial data.

4135



3) Allow to limit the range of allowed deviation from the

nominal trajectory.

Two alternative strategies follow immediately from the

above requirements: One possible solution would be to use

two different controllers, a trajectory tracking controller

and an interaction controller, and switch between these two

controllers depending on the observed contact force. Alterna-

tively, we can integrate the above requirements in an appro-

priate impedance behavior and use a customized impedance

controller. This has the advantage that no switching between

two controllers and no explicit detection/observation of the

interaction force is required. The second alternative is thus

followed in this paper.

As an output of the motion retargetting algorithm we

assume a joint angle trajectory qd(t) ∈ R
n, for the n

joints of a robot (see Fig. 1). Moreover, we assume that

this trajectory is twice differentiable, and that the first and

second time derivative are available. This is true for instance

for the marker control algorithm described in [11]. If an

inverse kinematics based retargetting algorithm like, e.g.,

the one from [10], is used instead, the availability of the

desired acceleration can always be ensured by the use of an

appropriate pre-filter.

We assume a rigid-body model of a robot with n degrees-

of-freedom [24]

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext (3)

with M(q) ∈ R
n×n as the symmetric and positive definite

inertia matrix, g(q) as the gravity torques, and C(q, q̇) as the

matrix corresponding to the centrifugal and Coriolis forces,

which fulfills the passivity property Ṁ = C + CT [24].

The control input is given by the vector of joint torques

τ ∈ R
n, and τ ext ∈ R

n is a vector of external torques, which

represents the interaction of the robot with its environment

including the human teacher.

In impedance control the control goal is given by a

dynamic relation between the robot motion and the external

forces τ ext [25]. As usually done in robotics, we choose

this dynamic relation in form of a dynamical system of

second order in which we can identify generalized inertia,

damping, and stiffness terms. It is well known that feedback

of the external torques can be avoided in impedance control

if the desired inertia is chosen equal to the natural inertia

of the robot [26]. Bearing requirement 1) to 3) in mind,

we therefore focus on the design of nonlinear stiffness and

damping terms and choose a desired impedance behavior

similar to the closed loop behavior of a PD+ like tracking

controller [27]

M (q)¨̃q + (C(q, q̇) +D(q)) ˙̃q + s(q̃) = τ ext , (4)

where q̃ = q − qd denotes the deviation of q from

the virtual3 equilibrium trajectory qd, and D(q) and s(q̃)
are a nonlinear positive semi-definite damping matrix and

a nonlinear stiffness term, respectively. The inclusion of

3In impedance control, the desired trajectory in free motion usually is
called a virtual equilibrium trajectory.

C(q, q̇) in (4) makes allowance for the position-dependence

of the inertia term. If s(q̃) is chosen by a conservative force

field, the dynamics (4) represents a passive mapping from

the velocity error ˙̃q to the external torques τ ext ensuring

the stability of the system in free motion and in feedback

interconnection with a passive environment.

By comparing the desired impedance (4) with the original

robot dynamics (3), we obtain the impedance control law

τ = g(q) +M(q)q̈d +C(q, q̇)q̇d −D(q) ˙̃q − s(q̃) , (5)

for which we still have to select appropriate stiffness and

damping terms which account for requirement 1)-3).

The stiffness term is chosen for each joint such that it

represents a high local stiffness4 k0,i close to the virtual

equilibrium (requirement 1, for accurate tracking), but has a

low local stiffness for a larger deviation within the refinement

tube |q̃| < δi, where δi ≥ 0 denotes one half of the diameter

of the refinement tube for the ith joint (requirement 2). This

can be achieved by limiting the stiffness force to a rather

small value τmax,i, by which the robot is pushed back to

the equilibrium trajectory during physical teaching. For even

larger deviations, the user should feel a soft constraint, which

we implement by an increase in the local stiffness from

0 (within the refinement tube) to kt,i (requirement 3). An

appropriate stiffness term for each joint i is given by

si(q̃i) = τmax,i tanh

(

k0,i
τmax,i

q̃i

)

+ st,i(q̃i) , (6)

st,i(q̃i) =

{

0 |q̃i| < δi
sign(q̃i) ln(cosh(kt,i(δi − |q̃i|))) |q̃i| ≥ δi

.

The shape of this stiffness function is shown in Fig. 2. The

first term implements the high local stiffness which is satu-

rated in the area of physical teaching, while the second term

represents the soft constraint for implementing the refinement

tube. The value δi is commanded based on the covariance

information of the motion primitive representation, as shown

in Sec. II-B. It can easily be verified that this stiffness term

represents a conservative force field, for which the local

stiffness matrix K := ∂s(q̃)/∂q̃ is a non-negative diagonal

matrix. For the design of the damping matrix D(q), we

utilize the double diagonalization method reported in [26]

based on the symmetric matrices M(q) and K.

IV. EXPERIMENTS

A. Experimental Setup

The evaluation of the proposed incremental learning

method is done using the humanoid upper-body robot Justin

[19]. In the experiments, we used the 19 joints of the arms

(2 times 7 DOF), torso (3 DOF), and head (2DOF), but did

not use the mobile base and the fingers.

As a motion capture system, we use the wearable motion

capture suit from the company XSens [28]. This system

provides the user with position and orientation data for

23 segments on the human body. The data is sent online

4With the term local stiffness, we denote the differential ∂si(q̃)/∂q̃
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Fig. 2. Joint level stiffness term, exemplified for the case τmax,i =
10[Nm], k0,i = 500[Nm/rad], and kt,i = 0.25k0,i. The blue area shows
the domain of high stiffness. The yellow area shows the coaching area in
which a human user feels zero local stiffness, but a small constant force
pushing towards the virtual equilibrium trajectory. The white area shows the
border of the refinement tube implemented via a soft constraint.

to the realtime controller of Justin using a UDP packet

streaming protocol. Out of the position and orientation data

of all the segments we selected the following representative

components of the upper body: pelvis pose (position and ori-

entation), chest pose, head orientation, elbow position (right

and left), and hand pose (right and left). The orientation data

is represented by a unit quaternion description. The whole

data set thus consists of 38 elements. Since the upper body

of the demonstrator and the robot generally have similar

anthropomorphic shape, but different kinematics and size,

the motion retargetting problem arises (see Fig. 1). For the

position data, we used a simple physiological re-scaling,

which takes account of the different body size of the human

and the robot. For the human motion retargetting, we use

the marker control algorithm from [11]. Taking account of

the segment data from the used motion capture suit, we

implemented the algorithm using 6D virtual springs rather

than only 3D translational springs as in [11]. Notice that the

material presented in this paper does not substantially depend

on the motion retargetting algorithm, and one could likewise

use an inverse kinematics algorithm like the one presented

in [10]. Figure 3 shows a human user wearing the motion

capture suit, the corresponding set of segment positions, and

the configuration of Justin computed from the marker control

algorithm.

Fig. 3. Human user wearing the XSens motion capture suit [28], the set of
segment positions, and the corresponding configuration of Justin. The green
segment poses are used in the marker control algorithm.

B. Iterative Kinesthetic Refinement

For the kinesthetic teaching, the robot uses the impedance

behavior from section III. The robot Justin is equipped with

TABLE I

IMPEDANCE PARAMETERS FOR THE KINESTHETIC TEACHING

joint k0,i[Nm/rad] kt,i[Nm/rad] τmax,i[Nm]
torso R1 800 1600 20
torso P1 500 1000 20
torso P2 500 1000 20

shoulder 1 500 500 15
shoulder 2 500 500 12
upper arm 400 400 10

elbow 400 400 8
fore arm 200 200 3
wrist 1 200 200 2.5
wrist 2 200 200 2

joint torque sensors in all the joints except for the neck and

the mobile base. This allows to implement the impedance

control law (5) in an outer control loop in combination

with an inner torque control loop. This procedure can be

justified from a control theoretical point of view by singular

perturbation analysis [29] of a robot model in which the joint

elasticity is considered [30], [31]. Since the neck joints are

not equipped with joint torque sensors, we implement the

impedance controller for the torso and the arms, while we

use a standard position controller for the neck.

Table I shows the used parameters of the stiffness term

from the impedance control law (5). We utilize higher

stiffness values for joints which have a higher load in order

to ensure good tracking behavior. The maximum force values

were tuned manually.

In the first experiment, we are evaluating the physical

refinement of learned motion primitives without using the

motion refinement tube, i.e. setting δi to very high values for

all the joints. The motion primitives are represented directly

by the 38 selected elements from the motion capture segment

data (position and orientation data), as mentioned in Sec. IV-

A. The used system structure is shown in Fig. 4.
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Fig. 4. System overview for the Cartesian control.

Figure 5 shows a qualitative presentation of the incre-

mental learning including kinesthetic refinement process. In

this experiment, five manually segmented demonstrations

(one observational and four kinesthetic demonstrations) of

a dancing motion were provided by a human. In the first

demonstration, the human’s movement was measured by the

motion capture suit (Fig. 3) and retargetted to the robot by

the marker control algorithm [11]. The retargetted motion
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is shown in the first row in Fig. 5. Originally the human

performed the dance, moving his right hand horizontally in

front of his face. However, in the retargetted robot’s dance,

the robot’s hand is above its head, as one can see in the first

row of Fig. 5. In this sequence, the human teacher judged

that the right hand motion is too high and pulls it down

kinesthetically during the robot’s execution (second row in

Fig. 5). The human refined the robot’s motion four times

in total, by pulling the right hand down, rotating the torso,

and positioning the left hand away from its mobile base. The

third row shows the generalized motion primitive after four

refinement steps with a forgetting factor of η = 0.5. Here, the

robot’s hand is moving approximately in the correct height.

For comparison, the fourth row shows the corresponding

result from batch learning, where all five training data are

prepared in advance for the training process. Since the two

proposed incremental methods in [18] have similar training

results as batch learning according to [18], we compared

only with the batch learning. One can see that the hand is

still higher than during the kinesthetic refinement.

2 s5 s

5 s 2 s

2 s5 s

2 s5 s

Fig. 5. Kinesthetic motion refinement: The upper row (from right to left)
shows the snapshots from the original motion primitive. In the second and
third row, the snapshots during and after the proposed learning are shown.
The fourth row shows the corresponding result from batch learning.

Figure 6 shows the trained motion primitive at each step

of the incremental learning. The trajectories of the right

hand height are depicted because the hand height was the

main focus of refinement. The incoming training data (black

dashed lines) is encoded into HMM parameters. Herein, in

an HMM, ten states and one Gaussian model for each state

are used. The number of states is chosen from experimental

experiences [7], [12]: HMMs with 10 ∼ 20 states work well

with whole body motion patterns (19 ∼ 30 DOF). The gen-

eralized motion primitive (red solid line) is generated from

the HMM parameters by the algorithm in Sec. II-B. The new

HMM parameters are updated using the old HMM parame-

ters and the new incoming observation. For comparison, the
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Fig. 6. Results of the proposed incremental learning and generation. Five
sequences of training data were used to teach a dance motion. The right hand
height trajectories are shown. The first row is the training result from the
first training data. The fifth row shows the last result after five training steps.
The black dashed curves are the training data provided so far. Incrementally
incoming data is encoded into an HMM with 10 states. The red solid curve
is the generalized trajectory of the current motion primitive by the proposed
generation algorithm in Sec. II-B.

corresponding result of conventional methods (conventional

HMM representation, batch learning [21], and deterministic

generation [32]) is shown in Fig. 7. While the batch learning

contains uncertainty of all the training data, our proposed

incremental learning method refines the motion by forgetting

old data exponentially. This results in smaller uncertainties

after learning than batch learning. In Fig. 7, the Gaussians

are aligned with the horizontal axis because the conventional

HMM representation cannot encapture correlation between
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Fig. 7. Results of batch learning and deterministic generation. Five training
data (black dashed) were embodied into an HMM with 10 states by one-
shot offline learning. The right hand height trajectories are shown. From
the HMM, the generalized trajectory (red solid line) is reproduced by the
deterministic generation technique from [32].
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Fig. 8. Trajectories during kinesthetic teaching without the motion
refinement tube. The dashed line shows the nominal trajectory and the solid
line shows the measured joint angle trajectory. The green area around the
nominal trajectory represents the tube, which was not used in the controller.

temporal and spatial data within a state. On the other hand,

the proposed HMM representation can encode correlation

between temporal and spatial data within a state and between

states. This allows smooth trajectory generation (Sec. II-B),

in contrast to the discontinuity of the generated trajectory at

state transitions in conventional methods.

C. Kinesthetic Teaching using the Motion Refinement Tube

In the second experiment we focus on the refinement tube.

For this, the robot initially learned a motion primitive corre-

sponding to a “window wiping motion” performed mainly

with the right hand. During the kinesthetic refinement, a

human teacher tried to make the wiping motion larger.

In contrast to the previous experiment, we used a motion

primitive representation in joint space. Consequently, the

motion retargetting was only necessary for the observational

learning, and all subsequent refinement steps were performed

using joint level data (see Fig. 1). In this way, we could

directly use the covariance information from the probabilis-

tic motion primitive description for the implementation of

the motion refinement tube with the joint level impedance

controller. In order to compute the feedforward terms in the

impedance controller, the desired velocity and acceleration

are generated by a second order prefilter with a cutoff

frequency of 2 Hz.

We show a comparison between physical refinement with

and without the refinement tube. In Fig. 8, a typical refine-

ment result without the refinement tube is shown. In order
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Fig. 9. Trajectories during kinesthetic teaching with the motion refinement
tube. The dashed line shows the nominal trajectory and the solid line shows
the measured joint angle trajectory. The green area around the nominal
trajectory represents the motion refinement tube.

to focus on the relevant parts of the motion, we show only

the motion of the torso and the first four joints of the right

arm (elbow, upper arm, and two for the shoulder) among

19 joints. The nominal trajectory during a second refine-

ment step (after two observational demonstrations and one

kinesthetic demonstration) is shown in the dashed line. The

black line shows the measured motion during the physical

interaction. In the case of Fig. 8, the tube was not imple-

mented in the controller, such that when the human tried to

refine the motion of the arm, he accidentally also modified

the torso motion. Notice that the whole robot is controlled

by the joint level impedance controller, which implements a

soft behavior with respect to external disturbances when it

is distracted from the nominal trajectory. As a consequence,

the physical refinement becomes difficult for the human. In

contrast to that, the implementation of the refinement tube

allows to limit the motion of the joints during teaching

in a controlled way. Figure 9 shows a similar result as in

Fig. 8, but with the difference that now the refinement tube

was activated. One can see that all the deviations from the

nominal trajectory keep close to the borders of the refinement

tube. In this way, the human can correct the desired part

of the trajectory without accidentally disturbing the robot

motion in an undesired way.

It should be mentioned that the practical use of the

refinement tube requires also a meaningful design of the

maximum torque parameters from Table I. In particular, one

should choose higher values for joints located closer to the
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base. This enables to refine motions of the extremities while

not affecting the motion of the torso too much. Clearly,

the refinement tube concept works better if the human acts

“cooperatively” by trying to refine the motion only within the

borders of the tube and does not try to “overcome” them. If a

large modification is desired, the user can iteratively enlarge

the size of the tube by moving the relevant joints.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we treated the problem of incremental

kinesthetic learning of motion primitives using an HMM

based representation. We initiated the teaching process with

observational learning prior to kinesthetic teaching in order

to ensure natural coordinated whole body motions. We

introduced a forgetting factor, which allows a more efficent

learning and avoids the insensitivity problem related to batch

learning with large training data sets. The concept of a

motion refinement tube was introduced and its realtime

implementation in a customized impedance controller was

presented. The HMM representation of motion primitives

was extended by incorporating relative time information in

each state, allowing for a continuous generation despite of

the discrete nature of the states in an HMM.

In the implementation so far, the refinement tube concept

was realized by a joint level impedance controller. The ex-

tension of this concept to an appropriate Cartesian controller

is the topic of our current research. Moreover, we plan to

extend our current setup to all the degrees of freedom of

Justin, i.e. including the fingers and the mobile base, in order

to handle more complicated two-handed manipulation tasks.
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