Evolutionary Metamodeling

Markus Herrmannsdorfer

TUTI

Technische Universitat Minchen

TECHNISCHE UNIVERSITAT MUNCHEN

Institut fiir Informatik

Evolutionary Metamodeling

Markus Herrmannsdorfer

Vollstandiger Abdruck der von der Fakultdt fiir Informatik der Technischen

Universitdt Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl
Priifer der Dissertation:
1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Dr. Oscar Nierstrasz,
Universitiat Bern, Schweiz

Die Dissertation wurde am 07.07.2011 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultat fiir Informatik am 12.09.2011 angenommen.

Abstract

Model-based software development promises to increase productivity and quality
through domain-specific modeling languages. In response, modeling languages are
receiving increased adoption in industry. With the integration of modeling languages
into industrial development practice, their maintenance is gaining importance. Like
software, modeling languages and thus their metamodels are subject to evolution
due to changing requirements. When a metamodel is adapted to the new require-
ments, existing models may no longer conform to it. To be able to use the existing
models with the evolved modeling language, they need to be migrated.

Support for model migration in response to metamodel adaptation faces two chal-
lenges. First, to reduce migration effort, the model migration needs to be automated
as far as possible. However, there is no empirical knowledge about the extent to
which model migration can be automated in practice. Second, the model migration
needs to ensure that the meaning of a possibly unknown set of models is preserved.
However, existing approaches require to specify the migration after the complete
metamodel adaptation, thereby losing the intention behind the changes.

This thesis contributes to both challenges. First, to determine the potential for au-
tomating model migration in practice, we performed an empirical study on the his-
tories of two industrial metamodels. The study showed that models can be migrated
automatically in practice. Moreover, we found out that effort can be significantly re-
duced by reuse of recurring migrations, while expressiveness is required to define
custom migrations.

Second, we present our novel method COPE that provides the desired level of reuse
and expressiveness. To not lose the intention behind the metamodel changes, COPE
records the model migration together with the metamodel adaptation—we call this
the coupled evolution of metamodels and models. COPE records the coupled evolu-
tion as a sequence of coupled operations in an explicit history model. Each coupled
operation encapsulates both metamodel adaptation as well as reconciling model mi-
gration. Recurring coupled operations can be reused through a library to signifi-
cantly reduce migration effort. Expressiveness is provided by custom coupled oper-
ations which need to be specified manually. Using the history model, existing models
can be automatically migrated to the adapted version of the metamodel.

To demonstrate the applicability of COPE in practice, we used it in six real-life case
studies to automate model migration in response to metamodel adaptation. We ap-
plied COPE to reverse engineer the coupled evolution, used it to directly evolve a
modeling language, and compared it to other model migration and transformation
tools. All the case studies show that more than 95% of the coupled evolution can
be covered by reusable coupled operations and that only very few custom migra-
tions are required. Moreover, the comparison case studies indicate that recording the
changes in a history model is more likely to lead to a semantics-preserving model
migration than specifying the migration after the changes occurred.

Finally, the case studies revealed that COPE supports an evolutionary process for
developing a modeling language. To show that, we propose methods to recommend
operations for metamodel improvement by analyzing the built models and to extend
the operations to also adapt the semantics definition of the modeling language.

Acknowledgements

I would like to thank all the people who helped me to make this dissertation a suc-
cess. First, I want to express my gratitude to my supervisor Manfred Broy who has
always been very supportive, although my topics are not very close to his main re-
search interests. Only the close connections to industry and the multitude of op-
portunities that he offered me made this dissertation possible. I would also like to
thank my co-supervisor Oscar Nierstrasz who cordially invited me to get to know
his research group and who gave me valuable feedback.

In addition, my thanks also goes to all the people with which I had the pleasure to
work over the last three and a half years. Special thanks go to Sebastian Benz and
Elmar Jiirgens for introducing me to scientific working and publishing; to Sabine
Rittmann for helping me to get to know the chair of Prof. Broy and for providing me
the template for this dissertation; to Stefano Merenda for our discussions on meta-
modeling; to Daniel Ratiu for giving my dissertation new directions; and to Maxim-
ilian Kogel for the joint work on model and metamodel evolution.

This dissertation is based on a number of already published papers. I am grate-
ful to the co-authors which supported me to publish these papers: Sebastian Benz,
Kelly Garces, Elmar Jiirgens, Maximilian Kogel, Dimitrios Kolovos, Richard Paige,
Daniel Ratiu, Louis Rose, Sander Vermolen, Guido Wachsmuth, and James Williams.
I would also like to thank the reviewers that tremendously helped me to improve
the dissertation with their comments: Sebastian Benz, Peter Braun, Benedikt Haupt-
mann, Benjamin Hummel, Lars Heinemann, Florian Holzl, Elmar Jiirgens, Maximil-
ian Junker, Thomas Kofler, Daniel Mendez-Fernandez, Daniel Ratiu, Andreas Vogel-
sang, and Doris Wild.

At the chair of Prof. Broy, I have worked together with many people in different re-
search projects. Thank you for supporting this dissertation in these projects and mak-
ing work so much fun: Sabine Rittmann (InServe); Wolfgang Haberl, Stefan Kugele,
Stefano Merenda, Michael Tautschnig, Zhonglei Wang, and Doris Wild (Base.XT);
Florian Deiflenbdck, Martin Feilkas, and Elmar Jiirgens (SoQuo); Lars Heinemann,
Klaus Lochmann, and Stefan Wagner (Quamoco); Alexander Harhurin, Florian
Holzl, Thomas Kofler, Christian Leuxner, Daniel Ratiu, and Judith Thyssen (SPES).

I also want to express my gratitude to the people who allowed me to perform inter-
esting case studies: Steffen Becker and Klaus Krogmann for providing the Palladio
Component Model (PCM); Maximilian Kogel and Jonas Helming for giving access
to Unicase; Pieter van Gorp, Steffen Mazanek, and Arend Rensink for organizing the
Transformation Tool Contest (TTC); Louis Rose, David Williams, Kelly Garces, and
Dimitrios Kolovos for asking me to participate in the comparison of migration tools.
Further thanks go to Antonio Cicchetti, Thomas Goldschmidt, Steven Kelly, Anneke
Kleppe, Ralf Limmel, Ed Merks, Alfonso Pierantonio, Davide di Ruscio, Juha-Pekka
Tolvanen, Markus Voelter, and Eelco Visser for valuable discussions.

Last but no least, I am grateful to my parents Luitgard and Uwe and my sister Mar-
tina for supporting me through all these years of education. I would also like to thank
my girlfriend Michaela for the free time spent together that effectively distracted me
from this work. Without their support, this work would never have been possible.

"It is not the strongest of the species that survives, nor the most intelli-
gent that survives. It is the one that is the most adaptable to change.”

Charles Darwin

Contents

1__Introductioni 15
[L.1 Context: Modeling Languages|. 15
[[.27 Problem: Modeling Language Evolution]. 17
[1.3 " Thesis: Recording Metamodel Adaptations| 19
[1.4 Approach: Evolutionary Metamodeling| 20
[L5 Contributionsof thisThesisl 21
1. lineof thisThesis| 23

|2__Background: Engineering of Modeling Languages| 25
2.1 Model-based Development, 25

211 Models and Modeling Languages] 26

i isks| 27

2.1.3 The Quest for Abstraction| 28
[2.1.4 Major Initiatives| oo oL 28

2.2 Metamodeling — Modeling the Abstract Syntax of Modeling Languages| 29
221 MetaObject Facility] 30
2.2 Abstract Syntax of a Modeling Language] 31
223 Simplified E-MOF Metametamodel 35
224 Complete EMOF Metametamodel 38

2.5 UML Object and Class Diagrams| 41

2.6 Eclipse Modeling Framework] 43

I3 Concrete Syntax of Modeling LaNguages|. . - - « « « « « v v o oo oo .. 45
3.1 Concrete Syntax of a Modeling Language] 45
232 TImplementing the Concrete Syntax|. 46

.4 Semantics of Modeling Languages| 48
EAT Semantics of a Modeling Language 19
.42 Tmplementing the Semantics| 51

2.5 Evolution of Modeling Languages| 53
251 Reasons for Language Evolution] 54

S. : 55

2.5.3 Breaking Metamodel Changes| 57
254 ModelMigration| 59
255 Model Transformation for Model Migration| 61

26 Summary|. 64

]

State of the Practice: Automatability of Model Migration|

B.1 OStateoftheArtl. L L
3.2 Classification of Metamodel Changes|
B21 RunningExample.
B2.2 Model-Specific Coupled Change|
B.2.3 Model-Independent, Metamodel-Specific Coupled Changg] . . .
B.2.4 Metamodel-Independent Coupled Change|

B3 StudyDesign|
3.1 StudyGoall. oo

32 Stu e

B.3.3 Study EXECULON] .« . o o o eee e e e e
B.4 Study Implementation]

...........................
|3.4_.3 Threats to Valiait}_/l

3.5 Requirements for Automating Model Migration|
3.6 Summary|.

State of the Art: A Cross-Space Survey on Coupled Evolution|

.1 Cross-Space Terminology|
@2 Review Systematics|o oo

4.2.1 earch Strategy| oo
14 SelectionCriterial

ES Classification of AERroaches|

4.3.1 TecEﬁica! SEace|

B32 Evolution] o v v
4.3.3 Mlgratlom

Ié,li Qrgmmgrwarel

4.8 Cross-Space Comparison|.o
4.9 Motivation of our Approach|o o 0oL
49.1 Requirements|o o 0oL
49.2 Classification]
.10 Summary|.

5]

COPE - Coupled Evolution of Metamodels and Models|

1 PE in helll
.11 Running Example|.
b.1.2 Incremental Coupled Evolution].
b.1.3 Coupled Operations|

E.l.él Custom CouEIed GEerations|
...................

1.6 assification of Coupled Operations|

65
66
67
68
69
70
71
72
73
73
74
75
75
75
77
78
78

.2 Library of Reusable Coupled Operations|.
.21 Origins of Reusable Coupled Operations|
.22 Overview of theLibrary|
5.2.3 Structural Primitives

.2.5 Specialization / Generalization Operations|
b.2.6 Inheritance Operations|.

b.2.7 Delegation Operations|
2.8 Replacement Operations|.

b.29 Merge / Split Operations|
5.210 Discussion]

p.3 Language to Specify the Coupled Evolution|.
b.31 Decoupling Metamodeland Model
b.3.2 Breaking Metamodel Changes Revisited].
[.3.3 Primitives for Metamodel Adaptation and Model Migration] . .
b.3.4 Tmplementing Coupled Operations|

.4 Limitations of Automating Model Migration|
b.41 Considering Semantics of Modeling Languages
b.42 Characterizing Model-Specific Migration|
b.4.3 Coping with Model-Specific Migration|

PO Summary|.

6 Tool Suppori

[.1 Recording the Coupled Evolution|.

(p-2 Maintaining the Coupled Evolution|
6.2.1 Inspecting the Coupled Evolution]
0.2.2 Refactoring the Coupled Evolution|.
0.2.3 Recovering the Coupled Evolution|.
[0-3 Operation-based Metamodel Versioning|
0.3.1 History Metamodell.,
0.3.2 Recording and Interpreting the History|
6.3.3 PreservingtheHistory|
4 Summary].

[7__Case Studies|

[7.1 ~ GMF Generator Model and Palladio Component Model|.
711 StudyGoal.
[712 StudyObject].
[713 StudyExecution]

/14 StudyResult].

[715 StudyDiscussion] L.
[71.6 Threatsto Validity]

[7.2 Graphical Modeling Framework]
721 StudyGoall.
[722 StudyObject].
[723 Study Execution]
[724 StudyResulf].

|7.2.5 Studz Discussiog| 187

72.6 Threatsto Validity| 188
7.3 Quamoco Quality Metamodel| 189
7.3.1 tud oall. 189
P32 Study OBJech. - . o oo oo 189
7.3.3 tu xecution| 190
7.3.4 tudyResult{. 191
7.3.5 tudy Discussion| 195
736 Threats 0 VARdIty] - . . o 196
7.4 ni nified Modell 197

|7.4.1 Studz Goal| 197
: 197

7.4.3 tudy Execution| o . 199

7.4.4 tudy Result|. 200

7.4.5 tudy Discussion| o 202

74.6 Threatsto Validity| 203
[Z5_Transformation ToolContestl. 204
751 StudyGoall. 204

P52 SHAYOBCH. . - . o o oo oo e 205

7.5.3 tu xecution| 205

7.5.4 tudyResult{. 208

7.5.5 tudy Discussion| 213
[756 Threatsto Validity] 214

[7.6 Comparison of Model Migration Tools| 215
7.6.1 tudy Goall. 215

dy Object]. 215

763 Study EXECUBON] o oo oee e e 218

7.6.4 tudy Result|. 219

7.6.5 StudyDiscussion| 225

766 Threats o VARAIY] . - « o o« o oo e e 227

[/.7 Summary|. 228
8__Beyond Model Migration: Evolutionary Metamodeling| 231
8.1 The Process of Evolutionary Metamodeling| 232
8.1.1 Elicit Metamode ANEES| . v v e e e e e e e e e e 233

8.1.2 Implement Metamodel Changes| 233

|8.1.3 Migrate deEendent Artifacts| 234

|8.1.4 Yerify Model Migration| 235

[B.1.5 Release Modeling Language] 235
(8.2 Metamodel Usage Analysis for Identitying Metamodel Improvements| 236
8.2.1 Templates for defining Usage Analyses| 236
3.2.2 Towards a Catalog of Usage Analyses| 238
[8.2.3 Prototypical Implementation| 242
............................... 242
B25 Study EXecufion] 242
82.6 Stu ject. . 243
827 StudyResulti. o o oo 245

828 StudyDiscussion| 252

[8.2.9 Threatsto Validity] 252

B210 Stateofthe Arfl 253

[8.3 Towards Semantics-Preserving Model Migrationf 254
[.3.1 Adaptation of the Semantics Definition| 254

[8.3.2 Ensuring Semantics Preservation| 256

B33 CaseStudy]. 257

B34 Revisiting theLibrary] 260

he Artl 262

84 Summary|. 263

9 Summary 265
0.1 Contributions| oo 265
9.2 Outlook. 268
|/A_Papers Excluded from the Survey]| 273
A.1 Excluded Papers Within the Relevant Domain| 273
A.2 Excluded Papers Outside the Relevant Domainf. 278
[A21 ProcessEvolufionl. 278

[A2.2 Software Evolutionl 280

A.2.3 Ontology Evolution| 281

A.2.4 Difference Calculation & Representation| 281

A.2.5 Schema Matching & Integration] 281

=1]e 0 D 283
Index 299

13

Chapter

Introduction

The topic of this thesis is an approach for the evolutionary development of the syntax
of modeling languages based on metamodels.

Contents
[1.1 Context: Modeling Languages| 15
(1.2 Problem: Modeling Language Evolution| 17
(1.3 Thesis: Recording Metamodel Adaptations| 19
(1.4 Approach: Evolutionary Metamodeling| 20
[1.5__Contributions of this Thesis| 21
1.6 Outline of this Thesis| 23

In Section [1.1| (Context: Modeling Languages), we first establish the context of our ap-
proach. We state the problem motivating the approach in Section [1.2] (Problem: Mod-
leling Language Evolution). In Section (Thesis: Recording Metamodel Adaptations)),
we formulate the central thesis of this dissertation. We present the approach for
evolutionary metamodeling in Section [1.4| (Approach: Evolutionary Metamodeling). In
Section [1.5] (Contributions of this Thesis), we list the major contributions of this disser-

tation. We finally provide an outline of this dissertation in Section [1.6|(Outline of this}
[Thesis).

1.1 Context: Modeling Languages

Model-based development promises to raise the abstraction level of today’s software
development with the help of the pervasive use of models [France and Rumpe, 2007,
Pretschner et al., 2007]. Ideally, models are built by using adequate modeling lan-
guages [Bézivin and Heckel, 2006] that allow their users to directly express the ab-
stractions from their problem domain [Guizzardi, 2005]. Implementation code can be
automatically generated from these models, using generators based on the modeling
language [Czarnecki and Eisenecker, 2000]. Due to a higher level of abstraction com-
pared to traditional code-based software development, model-based development
promises to improve both the productivity and quality [Kelly and Tolvanen, 2007].

15

1.1. Context: Modeling Languages 1. Introduction

The development productivity can be improved, as the higher abstraction level of
modeling languages allows their users to express the same piece of software with
fewer constructs. The software quality can be improved, as the higher abstraction
level of modeling languages allows their users and tools to better analyze the mod-
els for quality issues. It is a challenge to determine the adequate abstractions and
hence the appropriate level of abstraction, when developing a modeling language
[France and Rumpe, 2007]].

Recent approaches such as Model-Driven Architecture [Kleppe et al., 2003,
Software Factories [Greenfield etal., 2004] and Domain-Specific Modeling
[Kelly and Tolvanen, 2007] advocate to also define modeling languages in a
model-based manner. Figure [1.1illustrates the typical process of development and
use of a modeling language [Kleppe, 2008]. Language engineers build a model of the
syntax of the modeling language—a so-called metamodel—which is in the center of
the definition of a modeling language. The metamodel defines the constructs that the
modeling language provides as well as how to compose them to models. Based on
the metamodel, the language engineers build editors and code generators to support
the use of the modeling language. Using these tools, the language users can build
models that conform to the metamodel, i.e. obey the syntactical rules defined by the
metamodel. Language workbenches [Fowler, 2005] such as the Eclipse Modeling
Framework (EMF) [Steinberg et al., 2009], Microsoft DSL Tools [Cook et al., 2007]
and MetaCase MetaEdit+ [Kelly and Tolvanen, 2007] significantly reduce the effort
to build tool support for modeling languages around the metamodels.

= Code '
= : Generator Editor |
3 2

P, oE
= i D

w H

s =k

S Language i ©

2 Engineer i 8

© = Metamodel

- 1

)

8 ey B E
o User | (1
& Models

>

<)

C

5 & | ||@
| | | A=yl |

Figure 1.1: Development of modeling languages

In response, modeling languages are receiving increased attention in indus-
try. The UML standard [Object Management Group, 2009|], for instance, defines
a general-purpose modeling language to specify object-oriented designs which is
widely applied in industry. Since general-purpose modeling languages can be
applied to design a wide range of software, they often do not effectively in-
crease the abstraction level [Kelly and Tolvanen, 2007]. To increase the abstrac-
tion level, UML provides mechanisms like UML Profiles to extend the modeling
language with domain-specific constructs [Selic, 2007]. Whereas UML profiles al-
low their users to reuse existing tool support for UML, a more clean way is to
define domain-specific modeling languages from scratch. The AUTOSAR stan-

16

1. Introduction 1.2. Problem: Modeling Language Evolution

dard [AUTOSAR Development Partnership, 2008], for instance, defines a domain-
specific modeling language to specify automotive software architectures. Since
domain-specific modeling languages can only be applied to design software of a cer-
tain domain, they have the potential to significantly increase the abstraction level
[van Deursen et al., 2000]. With the integration of modeling languages into indus-
trial development practice, their evolution is gaining importance. Although signifi-
cant work in both academia and industry has been invested into tool support for the
initial development of modeling languages, issues related to their evolution are still
largely disregarded [Mens and Demeyer, 2008].

1.2 Problem: Modeling Language Evolution

During the initial development of a modeling language, it is often a challenge to
determine the appropriate level of abstraction [France and Rumpe, 2007]. If the ab-
straction level is too low, the modeling language may not lead to a significant gain
in productivity and quality. If the abstraction level is too high, the modeling lan-
guage may not be expressive enough to specify all required aspects of the software.
Therefore, even though often neglected, a modeling language is subject to change like
any other software artifact [Favre, 2005]. This holds for both general-purpose and
domain-specific modeling languages. For instance, the general-purpose modeling
language UML [Object Management Group, 2009] already has a rich evolution his-
tory, although being relatively young. Domain-specific modeling languages like AU-
TOSAR [AUTOSAR Development Partnership, 2008] are even more prone to change,
as they have to be adapted, whenever their domain changes due to technological
progress or evolving requirements [Sprinkle, 2003]].

Figure illustrates the typical process of evolving a modeling language
[Kleppe, 2008]. Suppose that the language engineers have built a first version of the
modeling language by defining a metamodel and creating editors and code genera-
tors around the metamodel. When the language users employ the editors to build
models conforming to the metamodel, they often identify new requirements for the
modeling language. The language engineers evolve the modeling language to a sec-
ond version by first adapting its metamodel to the additional requirements. Meta-
model adaptation may invalidate existing artifacts like editors and code generators
that depend on the metamodel [Sprinkle, 2003]. Most importantly, existing models
built by the language users may no longer conform to the adapted metamodels. The
existing artifacts need to be migrated to conform to the metamodel again, so that
they can be used with the evolved modeling language. In this thesis, we focus on
the migration of models which is probably the most challenging, since models typ-
ically outnumber the other artifacts by far and are usually not under control of the
language engineers.

In current practice, the migration of models is often performed manually which is
tedious and error-prone. Consequently, missing tool support for modeling language
evolution heavily hampers cost-efficient model-based development in practice. Pro-
viding appropriate tool support for model migration has been identified as one of
the central challenges of software evolution [Mens et al., 2005]. There are two ma-
jor challenges for building tools to support the migration of models in response to

17

1.2. Problem: Modeling Language Evolution 1. Introduction

metamodel adaptation.

] F e e Y
o : Code : H Code '
= H Generator Editor } . H Generator Editor } .
3 HIEN i Migrate 1 g i Migrate
o :m...:.. m_>
— [t [H=} 1
=3) ' A <) H A
< : % H 1 H % ' 1
L /@ i : | P : |
] ! HE = Rl ' 1 o N ' 1
g : iS¢ : ' iS¢ : '
S ‘orouase 1§ BYagt | v
ngineer i © ! al 10 : al
§ 9 = g Metamodel ! pl : = g Metamodel ! pl
————— e L L L L L T T T T
1 1
g L _ \ — \
4 language) = " o — = " — s e
o User) —_— (' Migrate | — ‘ Migrate
2 Models Models
: 0 _ju & % 2 Eleh
c p— p—
© fr— p—
| | =7 ! |

Figure 1.2: Evolution of modeling languages

Automation Challenge. The first challenge for creating tool support is to automate
the migration of existing models as far as possible [Klint et al., 2005]. Due to the
enormous effort for model migration, modeling language evolution is often per-
formed in a backwards-compatible fashion. In other words, the language engineers
adapt the metamodel in a way that the existing models can still be used with the
evolved modeling language without migration. However, backwards compatibility
heavily constrains the way in which a metamodel can be adapted. Furthermore, the
preservation of old constructs can unnecessarily clutter and complicate a metamodel
[Meyer, 2000]. This approach can be further refined by using deprecation to signal
metamodel changes which is known from API evolution [Dig and Johnson, 2006
More precisely, language engineers mark constructs as deprecated, before they actu-
ally remove them from the metamodel. Language users are then informed about the
deprecated constructs which should no longer be used. However, deprecation shifts
the responsibility for model migration from the language engineer to the language
users. In addition, deprecation also clutters and complicates the metamodel, as it
leads to non-orthogonal constructs being available at the same time. A prominent
example is the introduction of generics to Java, where backwards compatibility is
achieved by erasing all information about generic types during compilation. How-
ever, this technique leads to several limitations and exceptions in applying generic
types, as different types are treated uniformly at runtime by the generics-unaware
Java virtual machine [Allen and Cartwright, 2002]. In a nutshell, both backwards
compatibility and deprecation heavily threaten the simplicity and quality of the
metamodel. As alot of artifacts like editors and code generators depend on the meta-
model, these approaches also affect their simplicity and quality. To avoid decay of
modeling languages due to non-backwards-compatible evolution, the migration
of existing models should be automated as far as possible.

Semantics Preservation Challenge. The second challenge for creating tool support
is to ensure that the migration preserves the meaning of the models as far as pos-
sible [Sprinkle and Karsai, 2004]. In practice, it is often difficult to prove semantics

18

1. Introduction 1.3. Thesis: Recording Metamodel Adaptations

preservation, since the semantics of a modeling language is often not defined explic-
itly, but only implicitly by e.g. code generators. A popular approach to automate
the migration of existing models is to first perform all metamodel adaptations for
the new version of the modeling language and later manually implement a migrator.
The purpose of the migrator is to preserve the information of an existing model by
transforming it into a new version that conforms to the adapted metamodel. This
approach has the advantage that the metamodel can be adapted in a clean manner,
because legacy constructs can be removed. However, implementation of a migrator
after a number of metamodel adaptations is tedious, as the intention behind these
metamodel adaptations is already lost. This missing intention makes it difficult for
the language engineers to ensure that the migrator preserves the meaning of a pos-
sibly unknown number of models. The cable length problem [Steinke, 2006] which
emerged during the development of the Airbus A380 illustrates that the loss of in-
formation during model migration can lead to high costs. For designing the Airbus
A380, different groups of language users were employing different versions of the
3D modeling tool Catia [Dassault Systemes, 2010]. To ensure model exchange be-
tween the two versions of the Catia modeling language, the language engineers im-
plemented an automatic migrator. However, the migrator did not correctly migrate
the information concerning the cables which resulted in cables being too short. All
in all, the cable problem led to 2.8 billion Euros additional costs which is quite high
compared to the overall design cost for the Airbus A380 of 12 billion Euros. Seman-
tics preservation is an important property to ensure that meaningful information
is not lost during model migration.

Problem Statement:

Modeling language evolution is often avoided in practice, since there is
no adequate tool support to automate the migration of existing models
and to ensure the preservation of their semantics during migration.

1.3 Thesis: Recording Metamodel Adaptations

In practice, a modeling language is evolved by incremental adaptations to the meta-
model. There are a number of primitive metamodel changes like create element, re-
name element, delete element, and so on. One or more such primitive changes com-
pose a well-defined metamodel adaptation, which preserves the overall consistency
of the metamodel. Usually, these well-defined adaptations imply a certain intention
about how to migrate existing models. In current practice, however, the occurrence
of well-defined metamodel adaptations is lost when adapting a metamodel.

Thesis:

By recording the metamodel adaptations throughout the evolution of the
modeling language, we can automate the migration of existing models
and ensure the preservation of their semantics during migration.

19

1.4. Approach: Evolutionary Metamodeling 1. Introduction

1.4 Approach: Evolutionary Metamodeling

Figure illustrates the integrated approach COPE for the evolutionary develop-
ment of modeling languages which we developed to address the challenges. We
explicitly model these metamodel adaptations as operations performed on the meta-
model and record them in a history model of the metamodel. An operation can be
characterized in terms of how to migrate existing models in response to the encap-
sulated metamodel adaptation. In this thesis, such an operation is called a coupled
operation, as it couples the metamodel adaptation with the model migration. Con-
sequently, a coupled operation also preserves the information of the models, as it
provides an appropriate migration. Coupled operations can be easily composed by
simply sequencing them. They are modular in the sense that the corresponding mi-
gration can be specified independently of any neighboring coupled operation. Due
to their modularity, a comprehensive evolution can be decomposed into manageable
coupled operations, thus ensuring scalability. The resulting history model further
serves as a documentation of the evolution of the modeling language and can be
used to later understand it.

2 Code Code
= Generator Editor . . . Generator Editor
® g Migrate Migrate Migrate g
- g p ~— — g (5] (5
= S S
(o)) =) (=]
c c c
w i : S
o | o — History Model N
g £ c € ¢
3 Language | © = - - > 23

Engineer i S & Adapt | Adapt | Adapt | o
§ 9 = g Metamodel | P P P P P | = g Metamodel

S ! P b I e

@ | I | I B I | —
B ey | |Q e Moe Mame @ = Q
o User) (| Migrate Migrate Migrate | = (]
2 Models Models
§, | Coupled —
G ‘ Operations —
— | VY ! — \

Figure 1.3: Evolutionary metamodeling

Providing Automation. The first challenge of automating the migration of existing
models is addressed by different kinds of coupled operations. Coupled operations
allow the language engineers to attach a model migration to the metamodel adap-
tation during modeling language evolution. The attached information can later be
used to automatically migrate existing models so that they conform to the metamodel
again. The migration can be further automated by reusing coupled operations that
encapsulate recurring migrations. More specifically, our approach thus distinguishes
between two basic kinds of coupled operations: reusable and custom coupled oper-
ations. Reusable coupled operations allow the language engineers to reuse migra-
tions across metamodels, thereby further automating modeling language evolution.
Reusable coupled operations are organized in a library through which they are made
available to the language engineers. Custom coupled operations allow the language
engineers to express complex migrations which cannot be reused across metamodels.
A custom coupled operation can thus be used, in case no reusable coupled operation

20

1. Introduction 1.5. Contributions of this Thesis

captures the required model migration.

Ensuring Semantics Preservation. The second challenge of building a semantics-
preserving migration is addressed by recording the evolution in the history model.
Building an automated migrator after all the metamodel adaptations have been per-
formed is a non-trivial task, as it has to ensure the preservation of the meaning of a
possibly unknown set of models. This task is further complicated by the issue that, in
current practice, the intention behind the metamodel changes is lost in the evolution
process. To not lose the intention behind the adaptation, our approach immediately
records the coupled operations in the history model, when they are performed to
adapt the metamodel. Thereby, the approach tries to constructively ensure that the
recorded history model provides a semantics-preserving migration. However, the
approach requires the language engineers to choose the appropriate coupled opera-
tions, i.e. those preserving the semantics. We believe that the language engineer is the
right stakeholder for this job, as he or she is also the one defining the semantics of the
modeling language—either explicitly by basing the language on a semantic theory,
or implicitly by building a code generator. In addition, proving semantics preser-
vation is eased by decomposing the evolution into modular coupled operations and
proving it for each coupled operation.

1.5 Contributions of this Thesis

This thesis develops an evolutionary method to automate and secure modeling lan-
guage evolution. This method records the adaptations to the metamodel as coupled
operations in a history model which can later be used to automatically migrate mod-
els conforming to the metamodel. This thesis presents the following contributions to
the current state of the art. Where applicable, we cite previously published material.

Automatability of Model Migration in Practice. Unfortunately, little is known about
the potential for automating the model migration in practice. To be able to charac-
terize coupled operations according to their automatability, we developed a classi-
fication of coupled operations. To quantify the potential for automation, we have
performed an empirical study that applies the classification to the evolution of two
industrial metamodels [Herrmannsdoerfer et al., 2008a]. From this empirical study,
we derive requirements for an effective approach to automate modeling language
evolution.

Cross-Space Survey on Coupled Evolution. The literature already provides a num-
ber of approaches to ease migration in response to modeling language evolution. Ad-
ditionally, there are related syntax specification formalisms—Ilike database schemas
or grammars—which are subject to the same problem. We performed a systematic
literature review to identify approaches that are related to model migration in the
different technical spaces. We analyze these existing approaches with respect to the
requirements derived from the case study. From the issues of existing approaches,
we motivate our approach to automate model migration.

21

1.5. Contributions of this Thesis 1. Introduction

Method for Evolutionary Metamodeling. Based on the requirements, we devel-
oped the method COPE to support the evolution of modeling languages based on
metamodels [Herrmannsdoerfer et al., 2009al]]. This method models the evolution as
a sequence of coupled operations which have been performed on the metamodel. To
provide automation, the method provides different kinds of coupled operations for
different levels of automation. To ensure semantics preservation, the method advo-
cates to record the coupled operations already when they are performed.

Language to Encode Coupled Operations. @~ We have developed a meta-
programming language to ease the implementation of coupled operations
[Herrmannsdoerfer et al., 2008b]. The language softens the conformance of models
to the metamodel during migration to ease the specification of model migrations. To
ensure conformance after performing an operation, the language includes a trans-
action mechanism. In addition, the language provides an abstraction mechanism to
reuse recurring coupled operations across metamodels.

Library of Reusable Coupled Operations. Most automation is provided by reusable
coupled operations which encapsulate the adaptation and migration in a metamodel-
independent way. To benefit from this automation, we need an extensive set of
reusable coupled operations which covers a wide variety of evolution scenarios. Us-
ing the language, we have therefore built a library of reusable coupled operations
[Herrmannsdoerfer et al., 2010b]. We classify these operations according to a num-
ber of properties known from the literature.

Limitations of Automating Model Migration. However, the evolution of model-
ing languages occasionally leads to metamodel changes for which the migration
of models inherently cannot be fully automated. In these cases, the model migra-
tion requires information which is not available in the model. We formally char-
acterize metamodel adaptations that prevent the automatic migration of models
and outline different possibilities to cope with these kinds of metamodel changes
[Herrmannsdoerfer and Ratiu, 2009, [Herrmannsdoerfer and Ratiu, 2010].

Metamodel to Record Coupled Operations. To express the history model for a meta-
model, we have developed a versioning metamodel [Herrmannsdoerfer, 2009]]. This
metamodel is expressive enough to record both the reusable and custom coupled op-
erations to the history model, when they occur. A migrator for the batch migration
of models that is specified in the migration language can be automatically generated
from the history model.

Evaluation through Case Studies. To be able to apply the method in practice,
we have implemented a tool for COPE based on the widely used Eclipse Model-
ing Framework (EMF) [Herrmannsdoerfer, 2011]. Using this tool, we have eval-
uated the method by means of six case studies. The case studies can be clas-
sified into the following categories: First, we have applied COPE to reverse en-
gineer the history model for the metamodels of the Graphical Modeling Frame-
work (GMF) [Herrmannsdoerfer et al., 2009c] and the Palladio Component Model
(PCM) [Herrmannsdoerter et al., 2009a]. Second, we have applied COPE to for-

22

1. Introduction 1.6. Outline of this Thesis

ward engineer the history model for the metamodels of the Quamoco Quality
Model and Unicase. Third, we have compared COPE to other model transforma-
tion and migration tools by participating in the Transformation Tool Contest (TTC)
[Herrmannsdoerfer, 2010] and by performing a case study with the authors of other
tools [Rose et al., 2010al].

Metamodel Usage Analysis for Identifying Metamodel Improvements. While
model migration propagates metamodel changes to models, metamodel usage analy-
sis identifies metamodel changes by analyzing models built with the metamodel. For
instance, if certain metamodel elements are not used in models, we might be able to
remove these elements from the metamodel. We have developed a method that de-
rives usage expectations from the metamodel and compares them to the actual usage
in models [Herrmannsdoerfer et al., 2010a]]. Coupled operations can be proposed to
remove deviations between actual and expected usage. To analyze whether we are
really able to identify metamodel improvements, we have performed an empirical
study on a large corpus of metamodels and models.

Semantics-Preserving Model Migration. When the metamodel of a modeling lan-
guage is adapted, we may also need to migrate the semantics definition of the lan-
guage, as it depends on the metamodel. If both the models and the semantics defi-
nition are migrated consistently, we can ensure semantics preservation in a construc-
tive manner. To demonstrate the viability of the approach, we performed a simple
case study [Herrmannsdoerfer and Koegel, 2010b]. Moreover, we discuss how the
reusable coupled operations in the library can be extended with an adaptation of the
semantics definition.

1.6 Outline of this Thesis

Figure [1.4] displays the contributions and chapters of this thesis, indicating which
contributions are explained in which chapter.

Chapter [2| (Background: Engineering of Modeling Languages) introduces the terms and
concepts needed to understand the following chapters. It gives an overview of the
metamodel-based definition, implementation and evolution of modeling languages.

Chapter [3|(State of the Practice: Automatability of Model Migration]) examines the state of
the practice through an empirical study. The goal of the empirical study is to analyze
the automatability of model migration in practice and to derive requirements for an
approach.

Chapter [(State of the Art: A Cross-Space Survey on Coupled Evolution) presents the fea-
tures of existing approaches from different technical spaces. It motivates the need for
our approach by analyzing the existing approaches with respect to the requirements.

Chapter 5| (COPE — Coupled Evolution of Metamodels and Models) introduces our
method COPE to automate the coupled evolution of metamodels and models. The
method is based on a language to encode coupled operations and on a library of
reusable coupled operations. The chapter also discusses the limitations of automat-
ing model migration.

23

1.6. Outline of this Thesis 1. Introduction

Contributions Chapters

Automatability of Model I 1. Introduction |
Migration in Practice

2. Background:

Cross-Space Survey on Engineering of Modeling

Coupled Evolution

Languages
Method for Evolutionary
Metamodeling 3. State of the Practice:
Automatability of Model
Language to Encode Coupled Migration

Operations

4. State of the Art:
A Cross-Space Survey on
Coupled Evolution

Library of Reusable Coupled
Operations

Limitations of Automating

Model Migration 5. COPE -
Coupled Evolution of
Metamodel to Record Metamodels and Models

Coupled Operations

Evaluation through Case 6. Tool Support |

Studies

7. Case Studies |

Metamodel Usage Analysis
for Identifying Metamodel
Improvements

8. Beyond Model Migration:
Evolutionary Metamodeling

Semantics-Preserving Model
Migration Io. summary |

Figure 1.4: Structure of this thesis

Chapter [6| (Tool Support) presents the tool support to record the coupled evolution in
a history model. The history model is based on a metamodel to record the operations

performed on metamodels.

Chapter [7] (Case Studies) summarizes the results of the six case studies that evalu-
ate the method and tool. It presents each case study using the typical structure of
empirical studies: goal, object, execution, result, discussion and threats to validity.

Chapter 8| (Beyond Model Migration: Evolutionary Metamodeling) extends COPE to an
evolutionary method for developing modeling languages. It presents a method to
identify metamodel improvements by analyzing models as well as a method to au-
tomatically adapt the semantics definition when adapting the metamodel.

Chapter [9] summarizes this thesis by presenting its contributions, their

limitations and directions for future work.

Chapter

Background: Engineering of
Modeling Languages

This chapter provides a summary of the terms and concepts from existing literature
that are needed to understand the following chapters: the definition, implementation
and evolution of modeling languages based on metamodels. We use the running
example of a dialect of state machines to illustrate the terms and concepts.

Contents

2.1 Model-based Development|. 25
[2.2 Metamodeling — Modeling the Abstract Syntax ot Modeling Lan- |

BUAGES| . . v v vt et e e e e e s 29
[2.3 Concrete Syntax of Modeling Languages|. 45
[2.4 Semantics of Modeling Languages| 48
[2.5 Evolution of Modeling Languages|. 53
2.6 SUMMATY[. . .« v v v v v v vt ittt e e et e e e 64

Section (Model-based Development) discusses model-based development of soft-
ware systems. Section [2.2| (Metamodeling — Modeling the Abstract Syntax of Modeling|
introduces metamodels as means to define the abstract syntax of model-
ing languages. Section [2.3| (Concrete Syntax of Modeling Languages) explains how the
concrete syntax can be defined based on the abstract syntax. Section
lof Modeling Languages) introduces the semantics of modeling languages and how it is
defined in practice. Section [2.5((Evolution of Modeling Languages) analyzes the causes
and implications of the evolution of modeling languages. We summarize this chapter

in Section [2.6| (Summary).

2.1 Model-based Development

Due to advances in technology, software systems are becoming more and more com-
plex. Traditional code-based development fails to keep up with the increasing com-
plexity, leading to more and more errors. To master the increasing complexity, model-

25

2.1. Model-based Development 2. Background

based development raises the abstraction level by creating models as abstractions of
the software system.

2.1.1 Models and Modeling Languages

Models reduce the complexity of software development by abstracting away re-
curring implementation details. Implementation code—including these details—
can then be automatically generated from these models. According to
[Stachowiak, 1973], a model is an abstract description of an original—e.g. a software
system—for a certain purpose.

We can think of different purposes for which models of a software system are cre-
ated. First, models can be used only for documenting a software system so that it
is easier to understand its architecture. Second, models can be used for testing by
generating test cases from the models that provide an abstract description of the sys-
tem derived from the requirements. Third, models can be used for simulation and
verification to identify errors or validate the models against the system requirements.
Fourth, models can be used for the generation of code implementing the system. This
enumeration is not complete, i.e. we can think of various other purposes for which
models are created.

Example 2.1 (Model). Throughout this chapter, we use simple state machine models that
describe the behavior of a software system as a running example. As an example model,
we specify the simplified behavior of a controller for a pedestrian traffic light. Figure
depicts this model as a state transition diagram. When the traffic light is red and a pedestrian
requests a green phase, the controller transitions to wait and activates a timer (startTimer).
When the timeQut of the timer occurs, the controller transitions to green and activates the
timer again. When this timeQOut occurs, the controller returns to state red.

request

| startTimer

timeOut

green

/ startTimer

Figure 2.1: Example state machine model of the behavior of a pedestrian traffic light

timeOut

A language is required to be able to specify state machine models of a software sys-
tem like the pedestrian traffic light. Such a language is called a modeling language
[Kleppe et al., 2003]. A modeling language is a well-defined language to specify cer-
tain kinds of models. A well-defined language is a language with well-defined form
(syntax) and meaning (semantics) which is suitable for automated interpretation by
a computer. Consequently, a modeling language defines how to write down a model,
and how to assign the model a meaning. In Section [2.2| (Metamodeling — Modeling the
(Abstract Syntax of Modeling Languages), Section [2.3| (Concrete Syntax of Modeling Lan-
quages) and Section 2.4] (Semantics of Modeling Languages), we define in more detail the
constituents of which a modeling language consists.

26

2. Background 2.1. Model-based Development

Example 2.2 (Modeling Language). To describe the behavior of the pedestrian traffic light,
we use a simple modeling language to specify state machines. The syntax of this modeling
language allows language users to define states of the software system and transitions between
the states. The semantics of this modeling language is that of Moore machines [Moore, 1956/,
i.e. a transition is activated by a trigger, and a state produces an effect.

2.1.2 Benefits and Risks

Compared to code-based development of software systems, model-based develop-
ment has certain benefits. The benefits of model-based development mainly stem
from increasing the abstraction level at which software systems are developed. How-
ever, the higher abstraction level also leads to a number of risks.

Benefits. First, the higher abstraction level increases the productivity with which
software systems are developed [Weiss and Lai, 1999]. The productivity increases,
because the same functionality can be expressed with fewer constructs using abstrac-
tions. One goal is to automatically generate the code implementing the software sys-
tem from the models. Moreover, abstractions of a software system are much easier to
understand and hence to maintain than its code.

Second, the higher abstraction level increases the quality of the software systems
which are developed as well as their specifications [Kieburtz et al., 1996|]. The qual-
ity increases, because smaller, more abstract models are easier to analyze by both
language users and tools. Certain validation rules can even be directly integrated
into the modeling language, thereby identifying errors early on. Moreover, auto-
matic generation of code from the models ensures that the implementation of the
software system conforms to its models.

Risks. First, the higher abstraction level restricts the number of software systems
to which model-based development can be applied [Kelly and Tolvanen, 2007]]. The
applicability is restricted, because a modeling language usually provides abstractions
that fit a certain kind of software system. Consequently, these modeling languages
can only be applied to specify models for this kind of system. The more restricted
the number of software systems, the higher the abstractions that can be provided by
the modeling language.

Second, effort is required to build tools that support the application of the modeling
language [Spinellis, 2001]. To be able to develop models in the modeling language, an
editor needs to be built including the validation rules. Effort is also required to build
a code generator that is verified to preserve the meaning of the models. But not only
editing and code generation are important, but also other aspects like distributed
modeling which calls for tool support specialized to the modeling language. The
effort required for building tool support for a modeling language should not exceed
the productivity and quality gain provided by the modeling language.

27

2.1. Model-based Development 2. Background

2.1.3 The Quest for Abstraction

The level of abstraction that a modeling language provides is crucial for the advan-
tages of model-based development [France and Rumpe, 2007]. Consequently, it is
important to find the abstractions that are appropriate for the kinds of software sys-
tem that are targeted by the modeling language as well as for the purpose of the
modeling language.

If the Abstraction Level is Too Low, the modeling language may not lead to a sig-
nificant gain in productivity and quality. Consequently, it may not be worth to build
tool support for such a modeling language. The abstraction level of general-purpose
modeling languages which are applicable to a wide variety of software systems is
usually too low. However, their applicability to a wide variety of software systems
allows their language engineers to amortize the effort for building tool support. In a
nutshell, a modeling language should leave out the details that are not required for
the purpose of the modeling language.

If the Abstraction Level is Too High, the modeling language may not be expres-
sive enough to specify all required aspects of the software system. Consequently, the
modeling language might only be applicable to build a very restricted kind of soft-
ware system. The abstraction level of domain-specific modeling languages which are
applicable to a restricted set of software systems is usually too high. In a nutshell,
a modeling language should not leave out too many details that make it incomplete
for developing different kinds of software systems.

2.1.4 Major Initiatives

There are various initiatives that refine the general idea of model-based development.
The most prominent initiatives are Domain-Specific Modeling (DSM), Model-Driven
Architecture (MDA) and Software Factories.

Domain-Specific Modeling (DSM) [Kelly and Tolvanen, 2007] advocates to build a
modeling language tailored to the needs of an organization. Furthermore, a code
generator needs to be built to fully generate the implementation code from the mod-
els built with the modeling language. DSM promises to significantly increase pro-
ductivity due to the higher level of abstraction at which models are built compared
to the code. Domain-specific modeling languages are easier to learn than general-
purpose modeling languages like UML [Object Management Group, 2009, since the
language engineers can choose the abstractions with which the language users are
familiar. As only the requirements of one organization need to be taken into ac-
count, domain-specific modeling languages are easier to develop and maintain than
general-purpose modeling languages. However, appropriate tool support is required
to ease the development and maintenance of domain-specific modeling languages.

Model-Driven Architecture (MDA) [Kleppe et al., 2003] is a standard from the Ob-
ject Management Group (OMG) [Object Management Group, 2003] which proposes
to build models for software systems along different levels of abstraction. A

28

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

Platform-Independent Model (PIM) defines the system independently of a specific
software or hardware platform. The PIM can be transformed into a Platform-Specific
Model (PSM) which takes the software or hardware platform into account. The sep-
aration between PIM and PSM allows a PIM to be transformed to PSMs for different
platforms. Finally, a PSM is transformed to implementation code for the correspond-
ing platform. The OMG provides related standards like Query View Transforma-
tions (QVT) [Object Management Group, 2008b] to define model transformations or
Meta Object Facility (MOF) [Object Management Group, 2006a] to define the model-
ing languages for PIM and PSM.

Software Factories [Greenfield et al., 2004] are product lines that allow the devel-
opers to quickly assemble software systems from a certain domain. The product
line defines the commonalities and differences between these software systems as a
modeling language. A software factory consists of three constituents: The software
factory schema defines the components for building a product as well as how they
can be composed. The software factory template provides the implementation of the
components, which may be patterns, templates, frameworks, and so on. The exten-
sible development environment can be configured with the software factory schema
and template to provide tool support for building products. A product is thus a
model that is defined with the software factory schema as modeling language and
from which the implementation can be derived using the software factory template.

2.2 Metamodeling — Modeling the Abstract Syntax of
Modeling Languages

According to [Harel and Rumpe, 2004] and [Chen et al., 2005], a modeling langua-
ge—like any formal language—is completely defined through its abstract syntax,
concrete syntax and semantics. The abstract syntax defines the set of valid models,
the concrete syntax the textual, diagrammatic or tabular representation of a model,
and the semantics the meaning of a model defined with the modeling language.

We put the abstract syntax in the center of the definition of a modeling lan-
guage [Kleppe, 2008]. This is different from the traditional design of program-
ming languages, where the concrete syntax is in the center of language definition
[Aho et al., 1986]. Consequently, both concrete syntax and semantics are defined
based on the abstract syntax. This enables the language engineer to define several
concrete syntaxes as well as several semantics for a single abstract syntax. Further-
more, different related modeling languages are best integrated in terms of their ab-
stract syntax [Braun, 2003} Braun, 2004].

In the following, we first illustrate the abstract syntax of a modeling language, be-
fore illustrating the concrete syntax and semantics in Section [2.3| (Concrete Syntax of|
[Modeling Languages) and Section [2.4] (Semantics of Modeling Languages).

29

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages 2. Background

2.2.1 Meta Object Facility

There are a number of existing languages for defining abstract syntax like the
Meta Object Facility (MOF) [Object Management Group, 2006a] from OMG, Ker-
nel Metametamodel (KM3) [Jouault and Bézivin, 2006] from INRIA, Graph Object
Property Relationship Role (GOPRR) [Kelly and Tolvanen, 2007] from Meta Case,
MetaGME [Ledeczi et al., 2001] from the Generic Modeling Environment (GME), or
the one provided by Microsoft DSL tools [Cook et al., 2007].

In this thesis, we use the Essential Meta Object Facility (E-MOF)—which is standard-
ized by the OMG [Object Management Group, 2006a]—as a language to define the
abstract syntax of a modeling language. We have chosen MOF for several reasons.
First, MOF is standardized and thus not proprietary to a certain metamodeling tool
like GOPPR, MetaGME and DSL Tools. Second, all the metamodeling languages
are quite similar, representing models as graphs, only with differences in the meta-
modeling constructs they provide. Third, MOF is probably the most widely applied
metamodeling language. Besides E-MOF which provides basic metamodeling con-
structs, Complete MOF (C-MOF) provides more advanced metamodeling constructs.
However, C-MOF is hardly applied in practice due to its complexity.

E-MOF is based on the object-oriented paradigm and defines a hierarchy of
models which are grouped into layers. This hierarchy is called meta hierarchy
[Bézivin, 2005]. Figure illustrates the layers of the meta hierarchy for a sim-
plified version of the abstract syntax of the state machine modeling language.
The figure shows both the abstract and concrete syntax of the different mod-
els. The abstract syntax on all layers is represented by UML object diagrams
[Object Management Group, 2009] in which nodes are called objects and edges are
called links. The concrete syntax are state transition diagrams on the model layer
and UML class diagrams [Object Management Group, 2009] on the other layers in
which nodes are called classes and edges are called references.

Model Layer. The lowest layer contains the models that are specified using a mod-
eling language. A model in this layer conforms to a metamodel in the next upper
layer. There is an instance-type relationship between the objects in the model and
the classes in the metamodel as well as between the links in the model and the refer-
ences in the metamodel. In Figure the objects and links refer to the classes and
references they instantiate by name. For example, the pedestrian traffic light model
instantiates the classes State and Transition as well as the references source and target
from the metamodel.

Metamodel Layer. The middle layer contains the metamodels that define the abstract
syntax of modeling languages. A metamodel in this layer conforms to the metameta-
model in the next upper layer. There is an instance-type relationship between the
objects in the metamodel and the classes in the metametamodel as well as between
the links in the model and the references in the metamodel. For example, the state
machine metamodel instantiates the classes Class and Reference as well as the ref-
erences features and type from the metametamodel.

Metametamodel Layer. The upmost layer contains the metametamodel that defines

30

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

Concrete Syntax Abstract Syntax

conforms
superTypes : Reference to
features features features : Reference
superTypes
l features type \ / type

Class Reference
maps Class : Class Reference : Class

T —
type type : Reference

type

to
features

Metametamodel
Layer 2
=
o|0o
= (s
c
[=}
o
source : Reference features
type
source - - » -
State Transition maps State : Class Transition : Class
i —
to
target
type target : Reference
features
Metamodel
Layer

conforms
to

red : State source 1 : Transition

target

target

maps 3 : Transition wait : State

— source
green : State 2 : Transition

source target

to

Model
Layer

Figure 2.2: Meta hierarchy

the abstract syntax of the metamodeling language. The metametamodel in this layer
conforms to itself, thus finishing the meta hierarchy. As a consequence, there is an
instance-type relationship between the objects and links in the metametamodel and
the classes and references in the metametamodel. For example, the metametamodel
instantiates the classes Class and Reference as well as the references features, type
and superTypes from the metametamodel.

2.2.2 Abstract Syntax of a Modeling Language

The abstract syntax defines the abstract, internal representation of a model. In that
sense, the abstract syntax abstracts away all information which is not required to
interpret a model with respect to the semantics, e.g. the concrete layouting of mod-
els, the fonts used to display text, etc. In the following, we present a formalization
of the abstract syntax using graphs which is based on [Jouault and Bézivin, 2006]
and [Kleppe and Rensink, 2008]. More specifically, we use directed multigraphs like
[Jouault and Bézivin, 2006] and [Kleppe and Rensink, 2008]:

31

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages 2. Background

Definition 2.1 (Directed Multigraph). A directed multigraph is a tuple G =
(N, E, src,tgt) where

e N is a finite set of nodes,
e FE is a finite set of edges,

e src: E — N is a total function that maps an edge e € E to its source node src(e) €
N, and

o tgt : E — N isatotal function that maps an edge e € E to its target node tgt(e) € N.

Due to our definition, there may be multiple edges between two nodes. Note that we
only consider models that are of finite size, since both the sets of nodes and edges are
finite. To be able to label nodes and edges, we need identifiers: Let ID be an infinite
set of identifiers. Like [Kleppe and Rensink, 2008|], we define a model as a graph
whose nodes are identifiers and whose nodes and edges are labeled by identifiers:

Definition 2.2 (Model). A model is a tuple m = (N, E, src, tgt,lab) where
o (N, E, src,tgt) is a directed multigraph with N C ID and
e lab: N UFE — I is a function that labels nodes and edges with identifiers.
Let M be the set of all such models.
Example 2.3 (Model). Figure depicts a model as a UML object diagram
[Object Management Group, 2009)]. Nodes are represented by boxes and edges by arrows

between boxes. The labels are shown on both nodes and edges—on nodes behind the node
identifier followed by a colon.

red : State source tl : Transition

target

target
. P states B - —
t3 : Transition tl : StateMachine states wait : State
states

green : State t2 : Transition

source

source target

Figure 2.3: Example model represented as UML object diagram

To impose structural constraints on a model, the literature provides the notion of type
graphs [Ehrig et al., 2008, Kleppe and Rensink, 2008]. A type graph defines types for
nodes and edges in a graph as well as an inheritance relation between node types:

Definition 2.3 (Type Graph). A type graph is a tuple TG = (N, E, src, tgt,inh) where:

o N C ID is a set of node types,
o E C I is a set of edge types,
o (N, E,src,tgt) is a directed multigraph, and

e inh : N x N is an acyclic relation expressing that some node types inherit from others.

32

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

Example 2.4 (Type Graph). Figure|2.4|depicts a type graph as UML class diagram. Node
types are represented as boxes and edge types as arrows between boxes. The identifiers are
shown for both node and edge types. Inheritance between node types is depicted as arrows
with a triangle as arrow head.

StateMachine

states

source —
State Transition

target

Figure 2.4: Example type graph represented as UML class diagram

By binding the labels of a model to the node type identifiers of a type graph, we
can define an instance-type relationship between the model and the type graph.
This binding can be expressed by the following helper predicates on a model m =
(Nm, Em, s7Cm, tgtm, lab) and a type graph TG = (Nrg, Erc, srera, tgtra, inh):

o isInstanceOf(z,y). Anode z € Ny, or edge x € E,, is instance of node type
y € Nrg or edge type y € Er¢ if the label of the node or edge is the node or
edge type, respectively:

isInstanceOf(x,y) < lab(x) =y

e isKindOf(n,t). Anoden € N,, is called kind of node type t € Nr¢ if it is
instance of a node type that inherits from node type t:

isKindOf(n,t) :< s € Npg = isInstanceO f(n, s) A (s,t) € inh*
where inh* denotes the transitive closure of inh.

A model is correctly typed by a type graph if its labels are chosen from the types
defined by the type graph, and its structure is consistent to the structure defined by
the type graph modulo inheritance [Kleppe and Rensink, 2008]:

Definition 2.4 (Typing). A model m = (N, Epy, s7C, tgtm, lab) is typed by type graph
TG = (Nrg, Era, srera, tgtra, inh) if the following two functions exist:

e q total function nm : Ny, — Nrq respecting the instance-type relationship:

Vn € Ny, : isInstanceO f(n,nm(n))

e a total function em : E,, — Erq respecting the instance-type relationship modulo
inheritance:

Ve € E,, : isInstanceOf(e,em(e)) N isKindO f(srcep(e), srera(em(e)))
N isKindO f(srep(e), srera(em(e)))

Let M be the models that are typed by type graph TG.

33

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages 2. Background

By the typing, the type graph imposes constraints on how the edges in a model can
connect nodes. However, additional constraints may need to be necessary to further
restrict the models. To capture these constraints, we may extend our definition of a
type graph. To keep the definition as simple as possible, we allow instead to define
additional graph constraints like proposed by [Kleppe and Rensink, 2008]:

Definition 2.5 (Graph Constraint). Let T'G be a type graph. A graph constraint over TG
is a total function ¢ : Mpg — B that decides whether the constraint is satisfied by a model
m € Myg typed by TG.

Kleppe and Rensink formalize a number of constraint templates that are often re-
quired [Kleppe and Rensink, 2008|]. To show how constraints can be formalized, we
mention three constraint templates as example. The multiplicity constraint on an
edge type requires that certain cardinality restrictions have to hold for outgoing
edges of that type:

Example 2.5 (Multiplicity Constraint). Let TG = (Nrq, Era, srcera, tgtra, inh) be a
type graph. A multiplicity constraint over T'G is a function mult(r,l,u) : Mrpg — B where
o r € Erq is an edge type defined by TG,

e |,u € NU {oo} are natural numbers representing lower and upper bound with | < u,
and

e satisfaction is defined for all m = (Ny,, Epy, STCm, tgtm, lab) € Mpg by

mult(r,l,u) &= Vs € Ny, isKindOf(s,srepg(r)) :
[<|{e€E|srem(e) =sNisInstanceOf(e,r)}|| < u

The opposite constraint on two edge types requires that for edges of a first type, there
are opposite edges of a second type:

Example 2.6 (Opposite Constraint). Let TG = (N7, Erg, srera, tgtra, inh) be a type
graph. An opposite constraint over T'G is a function opposite(r,0) : Mypg — B where

o 7,0 € Epq are edge types defined by T'G with srerg(r) = tgtra(o) and tgtra(r) =
srerg(o), and

e satisfaction is defined for all m = (Ny,, Epy, s7C, tgtm, lab) € Mrg by
opposite(r,0) &= Vs, t € Ny, isKindO f(s,srcrg(r)),isKindOf(t, tgtra(r)) :

I{e € E | srem(e) = s Atgtm(e) =t ANisInstanceO f(e,r)}|
I{e € E | srem(e) =t Atgtm(e) = s AisInstanceO f(e, o)}

The acyclicity constraint on an edge type requires that there are no cycles involving
edges of that type. To be able to define the acyclicity constraint, we first need to
define when a set of edges is cycle free:

e A path through a graph G = (N, E, src, tgt) is a sequence (eq,...,e,) € ET,
such that consecutive edges in the path are connected in the graph:

VieN,1<i<n:tgt(e;) = src(ei+1)

34

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

e A set of edges E' C E is cycle free if there is no path (e1,...,e,) € ETin G,
such that:
tgt(en) = src(en) AVie N,1<i<n:e € F

Based on these helper definitions, we can define the acyclicity constraint:

Example 2.7 (Acyclicity Constraint). Let TG = (Nrq, Era, srera, tgtra, inh) be a type
graph. A acyclicity constraint over T'G is a function acyclic(r) : Mrq — B where

o r € Erq is an edge type defined by TG,
e satisfaction is defined for all m = (Ny,, Epy, T, tgtm, lab) € Mrg by

acyclic(r) <= {e € Ey, | isInstanceO f(e,r)} is cycle free

Note that the two edges types have to be opposite of each other in the type graph
so that this constraint is defined. These constraint templates can be used to extend a
type graph [Kleppe and Rensink, 2008]:

Definition 2.6 (Type Graph with Constraints). A type graph with constraints is a tuple
TGC = (TG, C) where

e TG = (N, E, src,tgt,inh) is a type graph, and
e C € P(Mrg — B) is a set of graph constraints over TG.

Example 2.8 (Type Graph with Constraints). For the type graph shown in Figure[2.4, we
need to impose additional constraints on statemachine models. We can use the multiplicity
constraint template to ensure that a transition has exactly one source and target state:

mult(source, 1,1), mult(target, 1, 1)

We can use the acyclicity constraint template to ensure that the state hierarchy contains no
cycle:
acyclic(states)

For a type graph with constraints, we can determine when a model is syntactically
correct with respect to it [Kleppe and Rensink, 2008]:

Definition 2.7 (Syntactic Correctness). A model m € M is syntactically correct with
respect to a type graph with constraints TGC = (TG, C) if

o m € Mrg is typed by TG, and
e m satisfies all constraints C: Ve € C : ¢(m).

Type graphs provide an elegant way to formalize metamodels. However, type
graphs are not models and thus cannot be directly used as metamodels.

2.2.3 Simplified E-MOF Metametamodel

In this section, we formalize a simplified version of E-MOF based on type graphs.
However, this formalization can be easily extended to completely cover E-MOF by
adding additional constraints. We define the following helper predicate for a model
m = (N, E, src, tgt,lab):

35

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages 2. Background

e Edge(x,y,z). This predicate states that there is an edge from node z € N to
node y € N in the model that is an instance of the type =z € ID:

Edge(x,y,z) = Je € E: src(e) = x Atgt(e) = y AisInstanceO f (e, z)

Similar to a type graph, a metamodel defines whether a model is syntactically correct
with respect to it. However, according to our definition, a type graph is not a model.
For instance, our definition of model does not directly provide an inheritance relation
between nodes. However, a type graph can be represented as a model which we call
a metamodel:

Definition 2.8 (E-MOF Metamodel). An E-MOF metamodel is a model mm =
(Nmms Emm, STCmm s tgtmm, lab) that is syntactically correct with respect to the fol-
lowing type graph with constraints TGCpm = (TGmm,Cmm) with TGy =
(NTG, s BTG s STCTG s CIET G s i1 mim)

e Nrg, . := {Class, Reference}
e Erg, .. = {superTypes, features, type, class, opposite}

o srerg,,. ‘= {superTypes — Class, features — Class, type — Reference,
class — Reference, opposite — Reference}

e tgtrg,,. ‘= {superTypes — Class, features — Reference, type — Class,
class — Class, opposite — Reference}

o inhym =0
o Conm = {opposite(class, features), opposite(opposite, opposite),
mult(type, 1,1), mult(class, 1, 1), mult(opposite, 0, 1), acyclic(superTypes)}

Let MM be the set of all models that are syntactically correct with respect to TGCly.
A metamodel mm € MM defines a type graph with constraints TGC' = (T'G,C) with
TG = (Nrg, Era, srera, tgtra, inh) in the following way:

e Npg :={n € Ny, | isInstanceO f(n, Class)}
o Erg :={n € Num | isInstanceO f(n, Reference)}

srerg(e) =n € Epg < Edge(n, e, features)

tgtrg(e) = n € Epg < Edge(e,n, type)
e inh := {(n1,n2) € Nrg X Nr¢ | Edge(n1, ne, superTypes)}
e C := {opposite(r,o) | r,o € Eprg N Edge(r, 0, opposite) }

Due to the constraints defined by T'GC,,,,, the type graph defined by the metamodel
always exists and is well-defined.

Example 2.9 (E-MOF Metamodel). Figure 2.5 depicts a metamodel as UML object dia-
gram. The metamodel defines the type graph shown in Figure[2.4] Node types are represented
by nodes of type Class, and edge types by nodes of type Reference that are connected to
their source and target node type by edges of type features, class and type. For the sake of
simplicity, edges that are opposite of each other are shown as a single line with the name of
the edge types on the different line ends.

36

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

class |StateMachine : Class

features
states : Reference type source : Reference features
superTypes class
State : Class Transition : Class
type
target : Reference class

type features

Figure 2.5: Example metamodel represented as UML object diagram

Using the type graph with constraints associated to a metamodel, we can de-
fine when a model is syntactically correct with respect to the metamodel. If
the model is syntactically correct, we say that it conforms to the metamodel
[Kleppe and Rensink, 2008]:

Definition 2.9 (Conformance). Let mm € MM be a metamodel and T GC the type graph
with constraints that is defined by mm. A model m € M conforms to mm if m is syntacti-
cally correct with respect to TGC'. Then we write m = mm.

All models that conform to a metamodel make up the modeling language that is
defined by the metamodel [Kleppe, 2008]:

Definition 2.10 (Modeling Language). Let mm € MM be a metamodel. A modeling
language L,y,, defined by the metamodel mm is the set of models that conform to that meta-
model:

Lym :={m € M | mE mm}

In our understanding, a modeling language thus only covers the abstract syntax.
However, based on a modeling language, we may also define a concrete syntax and
semantics which are explained in Section 2.3| (Concrete Syntax of Modeling Languages)
and Section [2.4] (Semantics of Modeling Languages), respectively.

Definition 2.11 (E-MOF Metametamodel). The E-MOF metametamodel mmm € MM
is the metamodel that defines the type graph with constraints T'GCy,, by which metamodels
are typed.

Figure [2.6(a)] shows the simplified metametamodel as a UML object diagram, and
Figure [2.6(b)| shows the underlying type graph as a UML class diagram. Similar to a
modeling language, we can define a metamodeling language:

Definition 2.12 (E-MOF Metamodeling Language). Let mmm be the E-MOF metameta-
model. The E-MOF metamodeling language L,y defined by the metametamodel mmm is
the set of metamodels that conform to that metametamodel:

MM := Lpymm = {mm € M | mm E mmm}

Since a metamodel is also a model and the metametamodel is a metamodel, the con-
formance relation can also be used to check whether a metamodel conforms to a

37

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages 2. Background

lass:
class: Reference features

opposite

type opposite class
: : ite:
superTypes: Reference features features features: Reference features opposite: Reference
type
class class class
type Class: Class Reference: Class type

class

type type: Reference

features

(a) Model representation as UML object diagram

superTypes opposite

features
class

Class Reference

type

(b) Type graph represented as UML class diagram

Figure 2.6: Simplified E-MOF metametamodel

metametamodel. The semantics of a metamodeling language maps a metamodel
to the modeling language defined by the metamodel. Since the metametamodel
is a metamodel and all metamodels have to conform to the metametamodel, the
metametamodel needs to conform to itself.

2.2.4 Complete E-MOF Metametamodel

In the last section, we presented a formalization of a simplified version of the E-
MOF metametamodel. However, the E-MOF metametamodel provides additional
constructs for defining metamodels that impose additional constraints on models.
Figure 2.7 displays the complete E-MOF metametamodel as a UML class diagram.
Most of these additional constructs are formalized by the graph constraint templates
published in [Kleppe and Rensink, 2008].

Abstract Classes. A Class can be made abstract. If a class is abstract, there must be
no nodes in the model that represent instances of the class. Therefore, abstract classes
provide a means to extract common features into a super class that is not required to
have instances.

Primitive Types. In the graph, instances of a PrimitiveType are also represented as
nodes, similar to instances of Classes. However, compared to Classes, Primitive Types
do not define references. As a consequence, nodes representing instances of a Primi-
tiveType do not have outgoing edges. They are thus the terminal nodes in graphs.

Data Types. DataTypes represent predefined primitive types like Boolean, Integer

38

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

NamedElement

name: String
Package package N Type 1
L ———
1 types type
t * | subPackages *
0.1 superTypes
superPackage
Feature
PrimitiveType Class . -
‘class lowerBound: int = 0
- ?betlraCt boolean "1 features | ypperBound: int = 1
Literal = lalse derived: boolean = false
0.1
4 opposite
*| literals [|
) Enumeration DataType Attribute Reference
enumeration
1‘ id: boolean = false composite: boolean
defaultValue: String = false

Figure 2.7: E-MOF metametamodel represented as UML class diagram

and String. For each literal of these data types, there is at most one node in the model.
Edges in the model targeting the same literal refer to the same node. Data types may
define an infinite number of possible literals, e.g. String. However, a model can only
use a finite number of literals of a data type, since the set of nodes is finite.

Enumerations and Literals. An Enumeration can define a finite set of literals. Each
literal that is used in the model is represented by exactly one node in the model. A
Literal has a name to be able to distinguish it from the other literals.

Types. Type is a common abstract super class of Class and PrimitiveType. In the
complete E-MOF metametamodel, all nodes have to be instances of Types. To be able
to distinguish types, a Type has a name. The name of a type has to be unique among
all types that are associated to the same package.

Attributes. In the graph, instances of an Attribute are also represented as edges, sim-
ilar to instances of Reference. However, compared to References, Attributes have a
PrimitiveType as type. As a consequence, edges representing instances of Attributes
target nodes representing instances of primitive types.

Features. Feature is a common abstract super class of Reference and Attribute. In
the complete E-MOF metametamodel, all edges have to be instances of features. To
be able to distinguish features from each other, a Feature has a name. The name of
the feature needs to be unique within all features of the class—including the ones
inherited from the super types.

Multiplicity. There may be several edges outgoing from the same node that are
instances of the same feature. To be able to restrict the number of outgoing edges
of the same type, a Feature has a multiplicity—denoted through lower bound and
upper bound. To conform to the metamodel, the number of edges—that are outgoing

39

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages 2. Background

from the same nodes and that are instances of the same feature—has to be at least the
feature’s lower bound and at most the feature’s upper bound. The lower bound of a
feature should be smaller or equal to the upper bound of the feature, but greater or
equal to 0. The upper bound of a feature may be infinite, i.e. not restricted. However,
there may be no infinite number of outgoing edges, since the overall number of edges
in a model is finite.

Identifying Attributes. An attribute can serve as an identifier for nodes that are
instances of the class in which the attribute is defined. The values of the identifier
attribute have to be unique among all instances of the attribute’s parent class or all
its subclasses. A class should define at most one identifying attribute—including the
inherited ones.

Attribute Default Values. An attribute may have a default value to reduce the effort
for setting values that are often used. When an instance of a class is created, the
value of each attribute defining a default value is automatically set to the default
value. The default value is specified by a String which refers to the identifier of the
node representing the value.

Composite References. Composite references restrict the edges that are instances
of these references to a forest structure. An edge that is an instance of a composite
reference is called a composite edge. Each node in the model may be the target of
at most one composite edge. Moreover, all composite edges need to form an acyclic
graph, i.e. there must not be a path of composite edges from a node to itself. The
opposite reference of a composite needs to have an upper bound of 1.

Ordered Features. A feature is multi-valued if its upper bound is more than 1.
In this case, there may be multiple edges outgoing of a node that are instances of
the same reference. Currently, there is no order between the edges in a model.
However, by default, all multi-valued features in E-MOF are ordered. To support
this in our formalization, we need to introduce indices for edges, like proposed in
[Kleppe and Rensink, 2008].

Derived Features. Values of features may be derived from the values of other fea-
tures. Since the values of these features can be derived, they are not represented in
the model graph. The metamodel needs to specify the function to determine the val-
ues of the derived features. E-MOF envisions to use the Object Constraint Language
(OCL) [Object Management Group, 2006b] to specify these functions.

Packages. To group related types, they can be organized into packages. A Package
consists of a number of types and can have sub packages. To be able to distinguish
packages from each other, a Package has a name. The name of a sub package needs
to be unique among the packages which belong to the same super package. The
name of a root package needs to be unique among the packages which do not have a
super package.

Labels of Nodes and Edges. To distinguish types from different packages, nodes

40

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

refer to them by means of their fully qualified name in E-MOF. Thus the identifier
of a type node in the metamodel must be the fully qualified name of the type. The
fully qualified name of a type is its name prefixed by the fully qualified name of the
package. Similarly, the fully qualified name of the package is its name prefixed by
the fully qualified name of the super package. For feature nodes, the identifier is
just the name of the feature which is enough to distinguish the different features of a
certain class. Since there might be features with the same name in different classes in
E-MOF, we have to soften our restriction that node identifiers have to be unique.

Additional Constraints. There might be constraints which cannot be expressed using
the constructs provided by Figure More advanced constraints can be expressed
using the Object Constraint Language (OCL) [Object Management Group, 2006b] as
invariants on instances of a certain class. All nodes that are instances of this class
need to fulfill the constraints defined for its class or any of its super classes.

2.2.5 UML Object and Class Diagrams

E-MOF models can be represented by UML object diagrams, and E-MOF metamodels
can be represented by UML class diagrams [Object Management Group, 2009].

UML Object Diagrams. E-MOF models can be generically represented as UML ob-
ject diagrams [Object Management Group, 2009]. A rectangle represents an object—a
node which is instance of a class—and is divided into two sections. The first displays
and underlines the identifier and the label of the node which are separated by a
colon. The second lists the edges that have the node as source and that are instances
of Attributes. Each edge is represented as a text line showing the label of the attribute
and the value of the attribute—the identifier of the target node which are separated
by an equality sign. A line from one rectangle to another represents a link—an edge
from an object to another that is an instance of a Reference. The line has an arrow
head to indicate the direction of the edge from the source to the target node and is la-
beled by the name of the reference. Edges that are instances of references opposite of
each other are shown as one single line without an arrow head. Composite edges—
that are instances of composite references—are represented by a filled diamond at
the side, indicating the node from which the edges start, and thus do not require an
arrow head to indicate the direction of the edge.

Example 2.10 (Metamodel represented as UML Object Diagram). Figure[2.8|shows the
metamodel of the state machine modeling language as a UML object diagram. This metamodel
refines the metamodel shown in Figure 2.2\ with additional classes and references. StateMa-
chine, State and Transition are classes, states, outgoing, source and target are references,
and name, trigger and effect are attributes. Figure[2.8|also illustrates the predefined primi-
tive type String as a separate node which is used by all the attributes.

Example 2.11 (Model represented as UML Object Diagram). Figure|2.9|depicts the ex-
ample state machine model using UML object diagrams. In the figure, for example, nodes
denote either states or transitions, and reference edges denote either the source and target
state of a transition. Figure [2.9|depicts attribute edges for the name of a state as well as for
the trigger and effect of a transition.

41

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

StateMachine : Class

name=,StateMachine*
abstract = false

features

states : Reference

name = ,states”
lowerBound = 0
upperBound = «
composite = true

type

features

opposite

type

=

State : Class

outgoing : Reference

name = ,outgoing“
lowerBound = 0
upperBound = «
composite = true

opposite

source : Reference

name = ,source”
lowerBound =1
upperBound = 1
composite = false

features

type

2. Background

Transition : Class

target

name = ,State"
abstract = false

name = ,Transition*

target : Reference

abstract = false

features

featu

name = ,target®
lowerBound = 1
upperBound =1

P
type
res

composite = false

)

features

name : Attribute

effect : Attribute

name = ,name*
lowerBound = 0
upperBound =1
id = false

name = effect"
lowerBound = 0
upperBound =1
id = false

N

String : PrimitiveType

type

type

features

trigger : Attribute

name = trigger”
lowerBound =1
upperBound = 1
id = false

type

name = ,String*

sm : StateMachine

—

Figure 2.8: Metamodel represented as UML object diagram

states

sl : State

name = red"

source

outgoing

tl : Transition

states

target

s2 : State

target

source

name = ,wait"
effect = ,startTimer"

states

s3 : State

outgoing

t2 : Transition

trigger = ,request”

trigger = ,timeOut"

name = ,green”
effect = ,startTimer"

source

outgoing

t3 : Transition

trigger = ,timeOut"

Figure 2.9: Model represented as UML object diagram

42

2. Background 2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

UML Class Diagrams. E-MOF metamodels can be represented as UML class dia-
grams [Object Management Group, 2009]. UML class diagrams are a more compact
representation than UML object diagrams, and thus we use this notation throughout
the thesis. Classes are represented by rectangles which are divided into sections: the
tirst displaying the name of the class, and the second listing the attributes defined by
the class. If a class is abstract, its name is formatted in italic style. Attributes are rep-
resented by text lines in the rectangles of the classes in which they are defined. A text
line defines the name of an attribute followed by a colon, the name of the attribute’s
type, and optionally the default value prefixed by an equality sign. References are
represented by lines that connect the class in which the reference is defined to the
class which is the type of the reference. If the reference is unidirectional—i.e. has no
opposite reference—an arrow head indicates the direction of the reference. Other-
wise, if the reference is bidirectional—i.e. has an opposite reference—both references
are shown only as one line without an arrow head. The name of the reference as well
as its multiplicity are shown at the side indicating the type of the reference. Compos-
ite references are represented by a filled diamond at the side, indicating the class in
which the reference is defined, and thus do not require an arrow head to indicate the
direction of the reference.

Example 2.12 (Metamodel represented as UML Class Diagram). Figure shows
the metamodel of the state machine modeling language in concrete syntax. The example
metamodel defines classes to specify StateMachines, States and Transitions. It defines the
composite references states and outgoing, the bidirectional reference outgoing/source and
the unidirectional references states and target. The example metamodel defines attributes to
specify the name and effect of a state as well as the trigger of a transition. All the attributes
in the example metamodel are of type String.

N 1 outgoing
i source * iti
StateMachine states State P Transition
name: String trigger: String
effect: String target

1

Figure 2.10: Metamodel represented as UML class diagram

2.2.6 Eclipse Modeling Framework

To be able to build models with a modeling language, tool support is required to
persist, edit and interpret models. Language workbenches [Fowler, 2005 such as
the Eclipse Modeling Framework (EMF)!, MetaCase MetaEdit+2, the Generic Mod-
eling Environment (GME)? or Microsoft DSL Tools* significantly reduce the effort to
build tool support for modeling languages around the metamodels. Language work-
benches provide languages to build the abstract and concrete syntax as well as the se-
mantics of modeling languages. A generic modeling framework interprets the defini-

see EMF web site: http://www.eclipse.org/modeling/emf/

see MetaCase MetaEdit+ web site: http://www.metacase.com/

see GME web site: http://www.isis.vanderbilt.edu/Projects/gme/

see Microsoft DSL Tools web site: |http://msdn.microsoft.com/de-de/library/
bPb126235(VS.90) .aspx

1
2
3
4

43

http://www.eclipse.org/modeling/emf/
http://www.metacase.com/
http://www.isis.vanderbilt.edu/Projects/gme/
http://msdn.microsoft.com/de-de/library/bb126235(VS.90).aspx
http://msdn.microsoft.com/de-de/library/bb126235(VS.90).aspx

2.2. Metamodeling — Modeling the Abstract Syntax of Modeling Languages

2. Background

tions written in these languages and provides the appropriate tool support to persist,
edit and interpret models conforming to the modeling language [Broy et al., 2010].

In this thesis, we use EMF for the implementation of modeling languages, as it is
probably the most widely used modeling framework implementing E-MOF. EMF
provides an implementation of E-MOF and various other OMG standards like e.g.
the XML Metadata Interchange (XMI) [Object Management Group, 2007], the Object
Constraint Language (OCL) [Object Management Group, 2006b], Query View Trans-
formation (QVT) [Object Management Group, 2008b]], and the MOF Model To Text
Transformation Language (MOF2Text) [Object Management Group, 2008a]]. In this
section, we showcase the implementation of the abstract syntax of the state machine
modeling language using EMF.

A metamodel is specified in Ecore—the metametamodel provided by EMF—which is
similar to the metametamodel presented in Section 2.2.4|(Complete E-MOF Metameta-|
. Ecore is an implementation of E-MOF in Java for the Eclipse® platform. From
an Ecore metamodel, a Java API for model access as well as a structural editor can be
generated. The structural editor represents a model as a tree which corresponds to
the abstract syntax.

#| statemachine.ecore &3 =4 L) statemachine.ecorediag % =0
a |7 platform:/resource/staternachine_diss_preliminz g 5= Palette T
4 8 statemachine NECYT=E B stateMachine
a4 [StateMachine
53 states: State 1= Objects &
a | [State ## EPackage
= name: EString | EClass

o effect: EString

ey .
=+ outgoing : Transition £ EDataType 1 OUthIngETi.t.
4 [Transition (= Connections < = name : EString | SOUrce 0.* o ran?'E';jt”_
7 trigger: EString =+ EReference o effect : EString 1 T frigger: ring
$* source: State X target
= target : State " Inheritance)
== EAnnotation link | | '
4 m b
& Properties & =‘é:‘=:5> ¥ =0 E Properties &2 = ¥ =0
Property Jelue H EClass
Abstract ik false
Default Value = Model Marme: State
ESuper Types Annetation

Instance Type Name

Interface
MName

4 1

U false
'= State

(a) Definition (abstract syntax)

Instance Class Mame:
Extended Metadata

GenModel Doc
Advanced

[[11s Abstract

[[]1s Interface

(b) Definition (concrete syntax)

& trafficLight _tree.statemachine 7 =8| = Properties [3 =§‘}:0 -~ ~0d
a 2 platform:/resource/statemachine_diss_preliminaries Property Value
4 & State Machine Target State wait / startTimer
4 State red Trigger 'S request

4

4

|~ Transition request => wait

State wait / startTimer

/7 Transition timeQut => green

State green / startTimer

I Transition timeQut => red

m

¥

(c) Structural editor generated by EMF

Figure 2.11: Abstract syntax in EMF

Ssee Eclipse web site: http://www.eclipse.org/

44

http://www.eclipse.org/

2. Background 2.3. Concrete Syntax of Modeling Languages

Example 2.13 (Implementation of Abstract Syntax). Figure provides screenshots of
the tools to build an Ecore metamodel that are provided by EMF.

Figure shows the structural editor to build the Ecore metamodel using the abstract
syntax. The structural editor displays the state machine metamodel as a hierarchy of pack-
ages, types and features. The properties of a metamodel element can be accessed through the
properties view in the structural editor.

Figure shows the graphical editor to build the Ecore metamodel using the concrete
syntax. The graphical editor displays the state machine metamodel as a UML class diagram
and is thus particularly suited for language engineers already familiar with UML class di-
agrams. Besides accessing properties through the properties view, new metamodel elements
can be created using the palette of the graphical editor.

Figure[2.11(c)|displays a screenshot of the structural editor generated from the state machine
Ecore metamodel. The code generation can be customized by a generator model which dec-
orates the Ecore metamodel or by overwriting the generated code. For the structural editor
shown in the figure, the icons and labels of the model elements have been customized.

2.3 Concrete Syntax of Modeling Languages

We first define the purpose of the concrete syntax of a modeling language, before we
explain how it can be implemented in practice.

2.3.1 Concrete Syntax of a Modeling Language

The concrete syntax defines the concrete, external representation of a model. The con-
crete representation of a model is supposed to be read and understood by humans,
but can also be used to persist models. We define the concrete syntax of a modeling
language similar to [Chen et al., 2005] based on the abstract syntax:

Definition 2.13 (Concrete Syntax). The concrete syntax C'S of a modeling language L is
defined by

e a concrete domain CD that specifies the set of possible concrete representations (graph-
ical, textual or tabular) for models, and

e a concrete mapping C'S : CD — L that maps a concrete representation ¢ € CD in the
concrete domain to a model C'S(c) € L.

There are different syntactic domains for the definition of a concrete syntax: textual,
diagrammatic and tabular. The textual syntax visualizes the model as linear texts,
the diagrammatic syntax shows the model in diagrams with layout information, and
the tabular syntax visualizes the model in two-dimensional tables. The mapping
can be employed to implement tool support for authoring models in concrete syntax
[Goldschmidt et al., 2008]. Note that due to the definition of the mapping different
concrete representations can be mapped to the same abstract representation.

Example 2.14 (Concrete Syntax). Figure represents the example state machine model
using several kinds of concrete syntax. Figure represents the example model in a

45

2.3. Concrete Syntax of Modeling Languages 2. Background

diagrammatic concrete syntax. A state is represented as a rounded rectangle that is divided
into two sections: the first section shows the name of the state, and the second a slash followed
by the effect of the state. A transition is represented as an arrow that is labeled with the
transition’s trigger. Figure[2.12(D)|represents the example model in a textual concrete syntax.
A state is represented as a text block which is prefixed by the state’s name and optionally a
slash together with the transition’s effect, and which contains all the transitions that have
the state as source. A transition is represented as a line consisting of its trigger, an arrow,
and its target state. Figure[2.12(c)|represents the example model in a tabular concrete syntax
[Herrmannsdoerfer et al., 2008c]. A transition is represented as a row, and there are columns
to specify source state of the transition and its effect as well as the trigger of the transition
and its target state.

state red {
request => wait

}

request

state wait / startTimer { State Transition
timeOut i = X
} timeOut => green Name | Effect Trigger | Target
red request |wait

green statt:emgergi? i jt;réTlmer{ wait | startTimer | timeOut | green
timeOut } green | startTimer | timeOut |red
(a) Diagrammatic (b) Textual (c) Tabular

Figure 2.12: Model in concrete syntax

2.3.2 Implementing the Concrete Syntax

A language for defining concrete syntax needs to provide constructs that define both
the concrete domain CD and the mapping C'S : CD — L from the concrete do-
main to models. In MOF, the abstract syntax definition is independent of the con-
crete syntax definition. There are other OMG standards like XML Metadata Inter-
change (XMI) [Object Management Group, 2007] or Human-Usable Textual Notation
(HUTN) [Object Management Group, 2004] that define a concrete syntax based on
the abstract syntax. In contrast, GOPPR, GME and Microsoft DSL tools advocate the
integrated definition of abstract and concrete syntax of a modeling language.

Implementations of the concrete syntax do not only allow the language users to
browse the models, but also to edit them. Moreover, concrete syntax can also be
used to persist models. For example, the OMG standard XML Metadata Interchange
(XMI) [Object Management Group, 2007] provides a bidirectional mapping of mod-
els to XML that is canonically derived from the metamodel. In the terminology intro-
duced in Section 2.3.1| (Concrete Syntax of a Modeling Language), XML is the concrete
domain and the canonical mapping is the function defining the concrete syntax. Cur-
rently, EMF provides metamodeling languages to specify textual and diagrammatic
concrete syntax.

Textual Concrete Syntax. In EMF, the textual concrete syntax is specified by a gram-
mar using Xtext®. The metamodel can either be derived from the grammar, or the

bsee Xtext web site: |http://www.eclipse.org/Xtext/

46

http://www.eclipse.org/Xtext/

2. Background 2.3. Concrete Syntax of Modeling Languages

grammar can be based on an existing metamodel. The grammar is used to specify
the concrete syntax which has text as concrete domain. Xtext already comes with a
number of standard terminals that can be used by the grammar. The grammar itself
is specified using a sequence of productions. From the concrete syntax definition, a
parser and a textual editor can be generated. The textual editor already provides a
number of functions, e.g. on-the-fly parsing, syntax highlighting and auto comple-
tion. Xtext provides a number of extension points to customize the generated textual
editor.

StateMachinextext 2 =0 = trafficLight_test.statemachine te &2 =0 EE Outlin 22 =0
lgrammar statemachine.StateMachine » lstate red / startTimer { * <“=:=‘=7 laz aos

2 StateMachine
red
I request

Z2with org.eclipse.xtext.common.Terminals 2 request => wait

4¢import 'platform:/rescurce/statemachine d

Sstate wait {
wait

65tateMachine : 6 timeQut => green .
(states+=State) *; 71 I timeQut

8 8 green

gsState : 9state green / startTimer { [timeQut
'state' name=ID ('/' effect=ID)? '{' 10 timeOut => red

ontgoing+=Transition¥
green

red

14Transition: wait

trigger=ID '=>' target=[State];

] T 3 4)

(a) Definition (b) Implementation

Figure 2.13: Textual concrete syntax in EMF

Example 2.15 (Implementation of Textual Concrete Syntax). Figure shows an
Xtext grammar that defines the textual concrete syntax of the state machine modeling lan-
gquage. We base the grammar on the existing metamodel by importing the Ecore metamodel.
For the state machine modeling language, we define a production for each class defined in the
metamodel.

Figure displays the textual editor that was generated from the state machine gram-
mar. No customization was necessary to generate the textual editor shown in Figure
Note that the inner box illustrates auto completion that lists the possible target states of the
transition.

Diagrammatic Concrete Syntax. In EMF, the diagrammatic concrete syntax is spec-
ified by a set of models using the Graphical Modeling Framework (GMF)’. Fig-
ure shows the GMF dashboard which supports the process of creating the
GMF models. The GMF models are based on a domain model expressed in Ecore
from which an appropriate generator model can be derived. Note that domain model
is the GMF term for a metamodel. GMF provides wizards to derive the following
models to define the concrete domain from the domain model: the graphical defini-
tion model defines the graphical elements like nodes and edges in the diagram, and
the tooling definition model defines the tools available to author a diagram. The con-
crete mapping is defined by the mapping model which combines the domain model,
the graphical definition model and the tooling definition model: Graphical elements
from the graphical definition model and the tools from the tooling definition model are

’see GMF web site: http://www.eclipse.org/modeling/gmp/

47

http://www.eclipse.org/modeling/gmp/

2.4. Semantics of Modeling Languages 2. Background

mapped onto the constructs from the domain model. The mapping model is trans-
formed into a diagram generator model from which a diagram editor can be gener-
ated. The diagram generator model can be altered to customize the code generation.
The process follows an MDA approach as explained in Section [2.1.4] (Major Initia-
[tives): The generator models are platform-specific (PSM), whereas all other models
are platform-independent (PIM).

@ Mapping Model

< achine [T RCP
Transform
Select/Edit / Create

Tooling Def Model & Diagram Editor Gen Model

Select / Edit/ Create
B Domain Gen Model

;
Select /Edit / Reload

Select 'Edit/ Create Select ' Edit / Create
Generate diagram editor

4 m 13

(a) Definition

= O || E Properties &2 ﬁ}:D_rrv:E

fpalette b || Transition

—— i 4|
3 red | 17 request m aan Core Property Value
—

/ | - State . B Target - State wait / startTimer
—— " Transition Trigger = request

»

- wait

/ startTimer

7 timeOut

' green
f startTimer

7 timeOut

4 I

(b) Implementation

Figure 2.14: Diagrammatic concrete syntax in EMF

Example 2.16 (Implementation of Diagrammatic Concrete Syntax). Figure[2.14|shows
the diagram editor generated from GMF models defined for the state machine modeling lan-
guage. The diagram editor shows the graphical elements in the diagram and the tools in the
palette. GMF also provides more advanced features like e.g. annotating, zooming, printing
and layouting for the generated editor. The properties of a graphical element can be accessed
through the properties view. The generated editor needed to be only customized to correctly
show the labels of the transitions.

2.4 Semantics of Modeling Languages

We first formally define the semantics of a modeling language, before we explain
how it can be implemented in practice.

48

2. Background 2.4. Semantics of Modeling Languages

2.4.1 Semantics of a Modeling Language

The semantics of a modeling language associates a meaning to each model that is
syntactically correct. As a consequence, syntactic correctness ideally should be cho-
sen in a way that at least all syntactically correct models have a semantics. We de-
fine the semantics of a modeling language similar to [Harel and Rumpe, 2004] and
[Chen et al., 2005] based on the abstract syntax:

Definition 2.14 (Semantics). The semantics S of a modeling language L is defined by

e a semantic domain SD that defines the set of meanings and contains a relation =:
8D x 8D to check equivalence between meanings, and

e g semantic mapping S : L — SD that maps a model m € L to its meaning S(m) €
SD in the semantic domain.

Note that the meaning of a model is independent of its concrete representation, as we
base the semantics solely on the abstract syntax. Generally, there are three ways to
define semantics [Winskel, 1993]]. The first one is to define the translation to another
formalism (denotational semantics), the second one is to specify how a model is in-
terpreted as sequence of computational steps (operational semantics), and the third
one is to describe the semantics of the modeling language by an algebra (algebraic
semantics).

Example 2.17 (Semantics). In this example, we define a denotational semantics for the state
machine modeling language. We first define helper functions required to navigate a state
machine model, before we define the semantics.

Model navigation. We use the metamodel shown in Figure as basis for the semantics
definition. To define the semantics, we need a few helper functions to navigate the model
m = (Np, Em, s7Cm, tgtm, lab). For each class defined in the metamodel, we can define a
set of its instances in the model. For example, the set State denotes the set of instances of the
class State and its subclasses:

State := {x € Ny, | isKindO f(z, State) }

For each feature defined in the metamodel, we can define a function to access its values in the
model. Functions for multi-valued features return a set of nodes. For example, outgoing :
State — P(T'ransition) returns the set of outgoing transitions of a state s € State:

s.outgoing := {t € Transition | Edge(s,t, outgoing)}

Functions for single-valued features return a single node. For example, target
Transition — State returns the target state of a transition t € Transition:

t.target = s € State :< Edge(t, s, target)

Triggers and effects are only defined as Strings in the metamodel. To be able to use them for
defining the semantics, we need to define the sets of events and actions used as triggers and
effects in a model:

Event = {e € Ny, |3t € Transition : t.trigger = e}
Action = {a € N,, | 3s € State : s.effect = a}

49

2.4. Semantics of Modeling Languages 2. Background

The semantics is defined based on the instance of the class StateMachine in the model. There-
fore, we also need the function statemachine : Ly, — StateMachine to obtain the single
instance of StateMachine in the model:

statemachine(m) = sm &= sm € StateMachine (2.1)

Semantics. As semantic domain, we choose the input/output (I/O) behavior of the state ma-
chine [Rumpe, 1998|]. One possibility to define the 1/O behavior of state machines is through
a stream-based function [Broy and Stolen, 2001|] that maps a stream of events onto a stream
of actions. The semantic domain is thus the set of these stream-based functions:

SD := {Event* — P(Action™)}
Two stream-based functions s1, sy € SD are semantically equivalent if they produce the same
stream of actions for the same stream of events:
s1 = sg 1= Ves € Event” : s1(es) = sa(es)

We define the semantics of the state machine modeling language by the helper function T :
State — SD which maps a state s € State to a function T(s) : Event® — P(Action™) €
SD. The function T is defined by induction over the stream of input events. In the base case,
there are no more events left to be processed for a state s € State:

T(s)(0) =10}
The inductive step for a state s € State consumes the next event e € Event. Based on the
transitions activated in the state, we can decide whether the event leads to a state change. The
set of transitions activated by an event e € Event in a state s € State is the set of outgoing
transitions having the event as trigger:

activated(s, e) := {t € s.outgoing | t.trigger = e} (2.2)

In case there is at least one transition activated by event e € Event, i.e. activated(s,e) # (),
the semantics of the state s € State is defined as the union of the semantics of the states to
which control can transition:

T(s)({e) oes) := U (t.target.effect) o T(t.target)(es) (2.3)
t€activated(s,e)

The operator o concatenates streams and is lifted to sets of streams if required. The operator
(.) puts a single event or action into a stream or produces the empty stream () in case of L.
Otherwise, in case there are no activated transitions, the state machine remains in the same
state:

T(s)((e) oes):=T(s)(es)

Since currently the metamodel does not define initial states, we define the semantics of the
state machine sm € StateM achine to be the union of the semantics of all its states:

T(sm)(es) := U T(s)(es) (2.4)

sesm.state

We define the semantics S(m) : Event* — P(Action*) € 8D of a model m € Ly, based
on the single instance of StateMachine in the model:

S(m)(es) := T(statemachine(m))(es)

However, as we have seen above, the semantics is defined based on the structure defined by
the metamodel.

50

2. Background 2.4. Semantics of Modeling Languages

2.4.2 Implementing the Semantics

A language for defining semantics needs to provide constructs that define both the
semantic domain SD and the mapping S : £ — SD from models to the seman-
tic domain. For the metamodeling languages MOF, GOPPR, MetaGME and DSL
Tools mentioned above, there is no standard means to explicitly define the semantics
of a modeling language. However, they provide languages for model-to-model or
model-to-text transformation to implicitly define the semantics of a modeling lan-
guage. For example, there are the OMG standards MOF Query View Transformation
(QVT) [Object Management Group, 2008b] or MOF Model To Text Transformation
Language (MOF2Text) [Object Management Group, 2008a] that allow language en-
gineers to build transformations for MOF-based modeling languages.

In practice, the semantics of a modeling language is usually not defined explicitly,
but rather implicitly by building a code generator or simulator for the modeling lan-
guage. A code generator generates executable code for the models created with the
modeling language. A simulator allows the language users to step through the ex-
ecution of the model built with the modeling language. EMF provides means to
implement both a code generator and simulator for a modeling language.

Code Generator. In EMF, a code generator is specified using a model-to-text trans-
formation language that maps a model specified with a modeling language to code.
In the terminology introduced in Section [2.4.1| (Semantics of a Modeling Language),
the code is the semantic domain and the model-to-text transformation is the seman-
tic mapping. There are several languages for model-to-text transformation in EMF.
Among these, the most widely known model-to-text transformation languages prob-
ably are Xpand® and Acceleo’. Whereas these languages provide different advanced
features, they are both based on the same idea: a code generator is specified by means
of templates which define how to assemble the code. In contrast to Xpand, Acceleo
is an implementation of the OMG standard MOF Model to Text Transformation Lan-
guage (MOF2Text) [Object Management Group, 2008al.

Example 2.18 (Implementation of Code Generator). Figure[2.15(a)|shows an implemen-
tation of a Java code generator for the state machine modeling language with Acceleo. A
template enriches fragments of the target code with meta tags that express how to assemble
the code. For example, there are meta tags to create files, to iterate over parts of the model,
and to paste text from the model to the target code. For the state machine modeling language,
we create a Java file for an enumeration of the state machine’s states and a Java file to exe-
cute the state machine. In the second Java file, the template generates a constructor to set
the initial state, and a method to process an event to change the current state of the state
machine that delegates the processing to a method for the current state. The meta tags use
expressions to navigate the model which are expressed in the Object Constraint Language
(OCL) [Object Management Group, 2006b].

Figure shows the result of applying the code generator to the model of the pedestrian
traffic light. As specified by the template, two files are generated: one containing the enumer-
ation of the states, and the other providing a class that implements the behavior of the state

8see Xpand web site: http://wiki.eclipse.org/Xpand
9see Acceleo web site: http://www.eclipse.org/acceleo/

51

http://wiki.eclipse.org/Xpand
http://www.eclipse.org/acceleo/

2.4. Semantics of Modeling Languages 2. Background

) generatemtl 52 =0 [J] Statejava 52 =0
1 [moduole generate ('http statemachine/diss/f = public enum State [{ -
2 red, walt, green
3= [template public generate(sm : StateMachine) ¥ i
4 [file ('State.java', false)] 4 [
5 public enum State {
& [for (s : State sm.states) separator(’, m SiateMachine)a ®
T} public class StateMachine { -
g [/file]
9 [file ('StateMachine.java', false)] private State state;

10 public class StateMachine {
public StateMachine (State initial) {

12 private State state; this.scate = initial;

14 public StateMachine (State initial) {

15 this.state = initial:; public String process(String event) {
1& switch (state) {

case red:

18 public String process(String event) { return processRed (event);

19 switch (=state) { case wait:

20 [for (s : State sm.states)] return processWait (event):

21 case [s.name/]: case gresn: E
22 return process[s.name.tolUpperFirst() /] return processGreen (event) ;

23 [/for] 3

24 H return noll;

25 return null:

26

27 private String processRed (String event) {
28 [for (s : State sm.states }] if (event.equals("request")) {

29 private String process[s.name.tolUpperFirst state = State.wait;

30 [for (t : Transition s.outgeing)] return "startTimer";

31 if (event.eguals("[t.trigger/]1™)) 4 3

32 state = State.[t.target.nams/]; return nuoll:

return [if (t.Earget.effect.oclIsUndel

private String processWait (String event) {
if (event.equals("timeCut")) {
state = State.green;
return "startTimer";

[/5or]

return null;

[/for] 3
10 3 return null;
41 [/file]
42 [/template] -

4| m 3 4 1 3

(a) Definition (b) Result

Figure 2.15: Semantics by code generation in EMF

machine. To execute the state machine, the class needs to be instantiated providing the initial
state and the process method needs to be invoked with the occurring events.

Simulator. In EMF, a simulator is specified using a model-to-model transformation
language that implements the execution steps as transformations applied to the run-
time state of the model [Herrmannsdoerfer et al., 2009b]. The traces of state changes
are thus the semantic domain, and the semantic mapping is defined by the model-
to-model transformation. The metamodel needs to be extended to also provide con-
structs to maintain the runtime state of a model. There are several frameworks for
implementing a simulator based on a language for model-to-model-transformation,
e.g. Kermeta!® [Muller et al., 2005], EProvide!! [Sadilek and Wachsmuth, 2008]], and
the Model Execution Framework (MXF)!? [Eichler et al., 2006]. Even though MXF is
about to be contributed to EMF, there is not yet a standardized solution for building a
simulator in EMF. In the following, we thus model the transformations as operations

Osee Kermeta web site: http://www.kermeta.org/

see EProvide web site: http://eprovide.sourceforge.net/
1250e MXF web site: http://wiki.eclipse.org/Model_ Execution_Framework_ (MXF)

52

http://www.kermeta.org/
http://eprovide.sourceforge.net/
http://wiki.eclipse.org/Model_Execution_Framework_(MXF)

2. Background 2.5. Evolution of Modeling Languages

modifying the runtime state of the model, similar to Kermeta.

statemachine_runtime.ecore 23 m StateMachineRuntimelmpl.java &% =0
| platform:/resource/statemachine_diss_p 62 public String process(String event) [{ -
statemachine_runtime for (Transition transition : getCurrent().getOutgoing()) {
E StateMachineRuntime if (event.equals(transition.getTrigger())) {
@ process(EString) : EString setCurrent (transition.getTarget()):
4‘3 event : EString return transition.getTarget().getEffect();
G* current : State
T stateMachine : StateMachine !
7| platform:/resource/statemachine_diss_p - return null;
q i D < I b
(a) Runtime metamodel (b) Operation implementation

Figure 2.16: Semantics by simulation in EMF

Example 2.19 (Implementation of Simulator). Figure displays the extension of
the state machine metamodel to maintain the runtime state. A new class StateMachineRun-
time is introduced that maintains the current state of a stateMachine. As the lower bound
of current is 1, an initial state needs to be set, before the stateMachine can be executed.
Additionally, an operation is introduced to process an event, change the current state and
output an action based on the provided state machine model.

Figure[2.16(b)| shows the implementation of the operation in Java. Besides the shown imple-
mentation of the simulator, frameworks like Kermeta, EProvide and MXF also provide more
advanced features to control the simulation by pausing and setting breakpoints or to visualize
the runtime state in the concrete syntax of the model during simulation.

2.5 Evolution of Modeling Languages

Even though often neglected, software languages are subject to evolution due to
changing requirements or technologies [Favre, 2005]. This holds for both general-
purpose and domain-specific languages.

General-purpose languages evolve less frequently, since they are usually widely ap-
plied, and thus evolution has to be triggered by heavy-weighted committees. Nearly
every well-known general-purpose programming language—e.g. Java, C#—evolves
during its lifetime. UML [Object Management Group, 2009] is a well-known exam-
ple for an evolving general-purpose modeling language.

Domain-specific languages can evolve more often, since they are usually only ap-
plied within an organization, and thus evolution can be performed in a more ag-
ile manner. Examples for evolving domain-specific modeling languages that have
been built in our group are AutoFOCUS [Huber et al., 1996] for the domain of em-
bedded systems, COLA (COmponent LAnguage) [Kugele et al., 2007] for the do-
main of automotive software, Service-ADL (Service Architecture Description Lan-
guage) [Kriiger et al., 2006] for the domain of service-oriented architectures, and
QMM (Quality MetaModel) [Deissenboeck et al., 2007] for the domain of software
quality.

Modeling languages are even more prone to change than programming languages,
since it is often difficult to determine the right level of abstraction, as explained in

53

2.5. Evolution of Modeling Languages 2. Background

Section [2.1.3|(The Quest for Abstraction)). This thesis focuses more on the evolution of
domain-specific modeling languages, since they evolve more often and thus can be
developed in a more evolutionary manner.

2.5.1 Reasons for Language Evolution

A modeling language may evolve due to a multitude of reasons. Like conven-
tional software evolution, the reasons can be grouped according to the mainte-
nance categories into perfective, corrective, preventive and adaptive maintenance
[Lientz and Swanson, 1980].

Perfective Maintenance adds new features to enhance a software system. Looking
at a modeling language, this means that new constructs are added to the modeling
language. We expect that most of the changes fall into this category due to the typical
way of developing a modeling language [Meyer, 1996]. At the beginning, a modeling
language usually starts with a set of core constructs, expressive enough to specify
certain software systems. Later, new constructs are added to the modeling language
so that it can be used to specify more software systems or that certain properties of
software systems can be specified more easily.

Corrective Maintenance corrects faults discovered in a software system. Like soft-
ware, a modeling language may also be prone to errors and thus subject to corrective
maintenance. The fault can be found in any of the constituents of a modeling lan-
guage: the abstract syntax may not be restrictive enough to identify certain models
as syntactically incorrect [Sadilek and Weifsleder, 2008], the concrete syntax may not
be able to recognize certain concrete representations, and the semantics may inter-
pret certain models in an unexpected manner. These errors might be only found
after building models for which the constituents are error-prone.

Preventive Maintenance refactors a software system to prevent faults in the future.
Looking at a modeling language, this means that its constructs are simplified to make
the modeling language easier to use and maintain. If more and more constructs are
added to a modeling language due to perfective maintenance, it may turn out that
the constructs are non-orthogonal and that combining them may lead to faults. In
this case, preventive maintenance is necessary to integrate the constructs in a way
that they are more orthogonal to each other, thus preventing such errors.

Adaptive Maintenance adapts a software system to a changing environment. The
environment of a modeling language are the languages by means of which the mod-
eling language is specified. These languages may also be subject to evolution due to
the similar reasons. However, we expect that languages evolve less frequently than
modeling languages, since their domain is much more stable [Favre, 2003]]. Adaptive
maintenance is also necessary, in case language engineers change one of the lan-
guages used for specifying the modeling language.

54

2. Background 2.5. Evolution of Modeling Languages

2.5.2 Metamodel and Semantics Evolution

To change a modeling language, its metamodel must be evolved. The metamodel
is evolved by removing and adding nodes and edges in the metamodel. As a con-
sequence, a metamodel change is witnessed by a source and a target metamodel.
However, both metamodels share some commonality, since otherwise the metamodel
change would not be an evolution, but rather a revolution. The degree of common-
ality can be expressed by the greatest common metamodel for both metamodels. We
need the following definitions, before we can define a metamodel change:

Definition 2.15 (Submodel). Let m; = (Ni, Ey,srcy,tgty,laby) € M and mg =
(N2, Ea, srca, tgta, laba) € M be two models. A model my is a submodel of another model
my if the following two functions exist:

e a total, injective function nm : Ny — Ny which preserves identifiers and labels of
nodes:

Vni € N1 :nyp =nm(ny) Alabi(ny) = laba(nm(ny))

e q total, injective function em : Ey — Es which preserves labels as well as source and
target nodes of edges:

Vey € Ey :labi(e1) = laba(em(er)) A srea(em(er)) = nm(srer(er)) A
tgta(em(er)) = nm(tgti(er))

Then we write m1 C mao.

Note that this definition does not require that the submodel of a model is part of the
model. We can derive a submodel from a model by deleting nodes and edges. If we
delete all nodes and edges, we obtain the empty model which is a submodel of all
models:

Definition 2.16 (Empty Model). The empty model is the model my = (N, E, src, tgt,lab)
that has neither nodes nor edges:
N=0ANE=10

Since a metamodel is also a model, these definitions can be also applied to meta-
models. We can thus determine whether a metamodel is a submetamodel of another
metamodel as well as whether a metamodel is not-empty. Based on the submodel
relation, we can define the greatest common metamodels for two metamodels:

Definition 2.17 (Greatest Common Metamodel). Let mmy, mmeo € MM be two meta-
models. The greatest common metamodel mm € MM for metamodels mmy and mms is the
metamodel that is the greatest submodel of both metamodels:

mm C mmi; Amm C mmag A

vmm' € MM, mm' C mmq Amm’ C mmso : mm’ C mm

Let gemm(mmy, mms) € MM be the greatest common metamodel for two metamodels
mmy and mme.

55

2.5. Evolution of Modeling Languages 2. Background

We require the greatest common metamodel to conform to the metametamodel, since
otherwise isolated nodes may be in the greatest common metamodel and thus it may
only be empty in rare cases. The commonality between the source and target meta-
model of a metamodel change can then be expressed by the greatest common meta-
model:

Definition 2.18 (Metamodel Change). A metamodel change is a mapping mm;y — mms
from one metamodel mm; € MM to another metamodel mmy € MM in which both
metamodels share a non-empty greatest common submetamodel mm:

gemm(mmy, mma) # my

The metamodel change can also be expressed by removing nodes and edges from the
source metamodel to the greatest common metamodel and by inverting the removals
of nodes and edges from the greatest common metamodel to the target metamodel.

Example 2.20 (Metamodel Change). Figure illustrates a metamodel change that
changes state machines from Moore to Mealy machines. In Moore machines, the effect of
the state machine only depends on the current state [Moore, 1956]|. In contrast, the effect of
the state machine depends also on the trigger in Mealy machines [Mealy, 1976]. In the meta-
model, we thus move the attribute effect from State to Transition. The figure also shows the
greatest common metamodel between both metamodels, indicating that most of the metamodel
stays the same in response to this metamodel change.

StateMachine greatest common
metamodel
states 1 outgoing
State source * Transition
name: String trigger: String
delete target delete
State.effect 1 Transition.effect
StateMachine source StateMachine target
metamodel metamodel
states 1 outgoing Change states 1 outgoing
State source * Transition State source * Transition
_name: String ! trigger: String name: String trigger: String _
leffect: String __ [~ target target | effect: String _ _
1 1

Figure 2.17: Moore to Mealy machines

The greatest common metamodel provides an indicator for the commonality between
the source and target metamodel after a metamodel change. In case of an evolution,
the greatest common metamodel is rather big compared to source and target meta-
model; in case of a revolution, it is rather small.

When the metamodel is changed, also the semantics of the modeling language may
need to be changed. Similar to a metamodel change, both versions of the semantics

56

2. Background 2.5. Evolution of Modeling Languages

have to share some commonality. This commonality can be expressed by a relation
on elements of the two versions of the semantic domain:

Definition 2.19 (Semantics Change). Let mm; — mmsy be a metamodel change. A se-
mantics change is a mapping Sy — S from semantics S1 : Lym, — SD; to semantics
Sa ¢ Lynmg — SDo for which there is a left total relation = C SDy x SDy which preserves
the equivalence relation for both semantic domains:

Vs1, 89 € 8Dq, 53,54 € SDg : 51 = 59 A 81 = 53N S3 =84 = 59 = 54

In the most simple case, the semantic domain remains the same due to the semantics
change, i.e. SD; = SD,. In this case, the relation between the semantic domains is
the equivalence relation on the semantic domain. In a more general case, a semantic
domain can be embedded into a different semantic domain.

Example 2.21 (Semantics Change). In response to the metamodel change from Moore to
Mealy machines shown in Figure we need to change the semantics. In the following,
we use indices to distinguish the functions for metamodel version 2 from those of metamodel
version 1. Since effects can no longer be accessed on states, we need to change formula [2.3):

Ta(s)({e) oes) = U (t.effects) o Th(t.targets)(es)

teactivateds (s,e)

The other formulas do not need to be changed. Moreover, we can use the same semantic
domain for both language versions and thus we can use the equivalence relation to relate both
semantics.

2.5.3 Breaking Metamodel Changes

We can characterize changes to the metamodel according to their impact on existing
models. In the literature, metamodel changes which destroy the conformance of a
model to its metamodel are called breaking changes [Gruschko et al., 2007]:

Definition 2.20 (Breaking Metamodel Change). A metamodel change mmy — mms
from mmy € MM to mmo € MM is called breaking if there is a model conforming to the
original metamodel that no longer conforms to the adapted metamodel:

dm e M :mEmmi AmE mmsg

Otherwise, the metamodel change is called non-breaking.

Changes between two metamodels can be expressed in a difference model which
consists of a set of primitive changes [Cicchetti et al., 2008]. Similar to Sprinkle
[Sprinkle, 2003|] and Becker et al. [Becker et al., 2007], we characterize the primitive
changes that can be derived from the metametamodel introduced in Section [2.2.4]
(Complete E-MOF Metametamodel)).

Table 2.1| classifies primitive metamodel changes into non-breaking (NB) and break-
ing (B) changes. We group the changes first according to the classes and second
according to the features defined by the metametamodel. The kinds of changes that

57

2.5. Evolution of Modeling Languages 2. Background

can be effected on a feature depend on its multiplicity: Single-valued features sup-
port to modify a value, whereas multi-valued features support to add or remove a
value. For the table, we assume that the changes really change the metamodel, e.g.
the new value of a single-valued feature must be different from the old value. Some-
times the classification depends on the old or new value of the feature. In these cases,
the condition for the classification is stated in the last column.

Table 2.1: Breaking and non-breaking metamodel changes

l Class \ Feature \ Change H NB \ B \ Condition
Metamodel packages add .
remove . package is empty
. package is not empty
Package name modify .
subPackages | add
remove ° package is empty
° package is not empty
types add
remove ° type is a primitive type
° type is a class
| Type | name | modify || [o |
Enumeration | literals add
remove ° enumeration is not used
° enumeration is used
Literal name modify . enumeration is not used
° enumeration is used
Class abstract modify . new value is false
. new value is true
features add ° new feature is optional
new feature is mandatory
remove
superTypes add . new superclass has no mandatory feature
. new superclass has mandatory features
remove ° superclass defines no features
° superclass defines features
Feature name modify °
lowerBound | modify . lower bound is decreased
° lower bound is increased
upperBound | modify ° upper bound is increased
. upper bound is decreased
Attribute id modify ° new value is false
new value is true
type modify
Reference composite modify .
type modify . new value is superclass of old value
° new value is not superclass of old value
opposite modify . new value is null
. new value is not null

The classification is independent of the models that are actually built with the meta-
model. Moreover, it is rather too strong than too weak: for example, changes to a
class can only break models, in case the class or any of its subclasses can be instan-
tiated. For composite references defined by the metametamodel, there would also
be a change to move a metamodel element to another parent. However, a move can
be modeled as a remove and add in the classification, where the remove is usually

58

2. Background 2.5. Evolution of Modeling Languages

breaking. Changes of names are usually breaking, since the models refer by name
to the instantiated metamodel elements. The change of a package name also affects
objects of the classes contained in the package, since the objects refer to the class by
its fully qualified name. Note that a feature is optional if its lower bound is 0, and
mandatory if the lower bound is at least 1.

2.5.4 Model Migration

If both the syntax and semantics of existing models are preserved after a metamodel
change, we call the change a backwards-compatible change:

Definition 2.21 (Backwards-Compatible Metamodel Change). Let mm; — mms be a
metamodel change from metamodel mm, € MM to mma € MM, and S; — Sy be the
appropriate semantics change from semantics Sy : Ly, — SD1 to semantics Sy @ Ly, —
SDsy. The change is called backwards-compatible if

e all models conforming to metamodel mmy also conform to metamodel mmy:

mel c »Cmmz

e the meaning of all models is preserved:

VYm € Lym, : S1(m) = Sa(m)

As a consequence, in response to a backwards-compatible metamodel change, the
existing models can still be used with the evolved modeling language.

Example 2.22 (Backwards-Compatible Metamodel Change). Figure illustrates a
backwards-compatible metamodel change of the state machine modeling language that intro-
duces hierarchical states to be able to structure complex state machines.

StateMachine

[

]
*

-y
states | | |

1 outgoing
State = | g SOUCe * Transition
name: String trigger: String
target effect: String

1

Figure 2.18: Introduction of hierarchical states

Metamodel Change. In the metamodel, we thus make State a super type of StateMa-
chine. Now, a State can also be a StateMachine which can again be decomposed into a
number of states, and so on. The changes are highlighted by colored and dashed boxes in
Figure The existing flat state machine models still conform to the evolved metamodel,
since the metamodel change only adds the possibility to build hierarchical state machines, but
does not affect the existing models. To be able to extend the semantics, we need the helper
function parenty : Statea — StateMachineg U { L} which returns the parent of a state
s € States:

s.parenty = sm € StateMachiney < Edge(sm, s, states)

59

2.5. Evolution of Modeling Languages 2. Background

Since states is a composite reference, there might be at most one parent state machine for each
state.

Semantics Change. In response to the metamodel change, we also need to update the seman-
tics. Since there might be several instances of StateMachine now, we have to update formula
(2.1) to return the instance of StateMachine which does not have a parent state machine:

statemachines(m) = sm € StateMachiney < sm.parents = L

Due to hierarchical states, we have to update formula (2.2) to also take the transitions of
parent states into account for transitions activated in a state s € States:

activateds(s,e) = U {t € p.outgoing, | t.triggers = e}

pEs.parents

where * is the transitive closure. The other formulas do not need to be adapted and thus
stay the same. Note that the formulas are polymorphic, i.e. T5(s,es) in formula is
automatically redirected to formula (2.4), in case s € StateMachines. We can show that
the change preserves the meaning of existing flat state machines:

activateds(s,e) = U {t € p.outgoings | t.triggers = e}

pEs.parents

= U activated; (p, e)

pEs.parents

= U activated; (p,) = activated; (s, €)
pe{s}

Since all other formulas remain the same, they return the same stream of actions for the same
stream of events.

In case a metamodel change is not downwards-compatible, existing models need
to be migrated so that they can be used with the evolved modeling language. A
model migration needs to fulfill a number of properties so that the migrated models
can be used with the evolved modeling language. Sprinkle distinguishes syntax-and
semantics-preserving model migration [Sprinkle, 2003], according to the two con-
stituents of a model that might be invalidated due to language evolution:

Definition 2.22 (Syntax-Preserving Model Migration). Let mmy ~— mms be a meta-
model change from metamodel mm, € MM to mmg € MM. Let Ly, and Ly, be
the modeling languages that are defined by these metamodels. A syntax-preserving model
migration is a function that transforms models that conform to metamodel mm; to models
that conform to metamodel mmy:

mig : Loymy — Lomo

A syntax-preserving model migration thus guarantees that the migrated models are
syntactically correct in the new language version, if the original models were syn-
tactically correct in the old language version. Note that syntax preservation does not
mean that the syntax of a model stays the same, but that the model stays syntactically
correct through the migration.

60

2. Background 2.5. Evolution of Modeling Languages

Example 2.23 (Syntax-Preserving Model Migration). To be syntax-preserving, a model
migration for the change from Moore to Mealy machines (see Figure just needs to re-
move the effects from the states. Since effects are not required for states, models migrated in
that way are syntactically correct. However, in general, their meaning is not preserved, as the
interpretation of these models does no longer produce outputs:

Ti(s)({e) oes) = U (t.target;.effecty) o Ty (t.targety)(es)
tEactivated (s,e)

= U OoTittargets)(es) = {()}

tcactivated; (s,e)

The last equality can be shown by induction over the stream of input events.

To be able to guarantee that the meaning of a model is not altered during migration,
a model migration needs to be semantics-preserving;:

Definition 2.23 (Semantics-Preserving Model Migration). Let mm, — mms be a meta-
model change from metamodel mm, € MM to mmy € MM, and Sy — Sy be the appro-
priate semantics change from semantics Sy : Lypm, — SD1 to semantics So : Lym, — SDa.
A syntax-preserving model migration mig : Lyym, — Lymm, is called semantics-preserving
if

VYm € Lym, : S1(m) = So(mig(m))

A semantics-preserving model migration thus guarantees that the migrated models
have the same semantics in the new language version as the original models in the
old language version.

Example 2.24 (Semantics-Preserving Model Migration). A semantics-preserving model
migration for the transition from Moore to Mealy machines (see Figure[2.17) needs to preserve
the effects. To be semantics-preserving, a model migration for the evolution from Moore to
Mealy machines needs to move the effects appropriately from states to transitions. However,
there is a well-known algorithm to convert Moore to Mealy machines that can be used to
implement a semantics-preserving model migration.

The commonality between the source and target metamodel is relevant for model
migration. Usually, the part of the model that conforms to the greatest common
metamodel does not need to be modified during migration. The part of the model
that is deleted to derive the greatest common metamodel from the source metamodel
no longer conforms to the target metamodel and thus needs to be removed. However,
the removed information is usually migrated to the part that is created to obtain the
target metamodel from the greatest common metamodel. In summary, the effort for
model migration should depend on the size of the differences between the source and
target metamodel, and not on the size of the metamodel versions [Sprinkle, 2003].

2.5.5 Model Transformation for Model Migration

The model migration can be manually specified as a model transformation which
transforms the model conforming to the old metamodel to a model conforming to the
evolved metamodel [Cicchetti et al., 2008]]. Figure shows the typical architecture

61

2.5. Evolution of Modeling Languages 2. Background

Source Transformation Target
conforms
to
Meta- mmm
Metamodel
S %] @
% £ %,
RO S|e S5
o
o
Metamodel mmq mmy mms
g 2 £
Sle %56 S|e & Sle
] o 15 o 5
o o o
Model m mr ma

defines
S

execution

Figure 2.19: Model transformation

to define and execute model transformations. We define a model transformation
similar to [Mens and Van Gorp, 2006]:

Definition 2.24 (Model Transformation). A model transformation is a function t : M —
M that maps a source model my € M to a target model mo € M.

A model transformation is usually defined using a transformation language:

Definition 2.25 (Model Transformation Language). A model transformation language
is a modeling language L1 = Lym, with metamodel mmy € MM and semantics St :
Lr — {M — M} that maps transformation models mp € L to model transformations
ST(’ITLT) M — M.

The transformation definition defines a model transformation in a transformation
language based on the source and target metamodel of the transformation:

Definition 2.26 (Transformation Definition). A transformation definition mp € Lr is
a model that is defined using a transformation language Lr. The transformation definition
defines a model transformation t : M, — Mpm, based on the source metamodel mm, €
MM and the target metamodel mmgy € MM.

We can also specify a model transformation that consumes or produces a transfor-
mation definition [Tisi et al., 2009]:

Definition 2.27 (Higher-Order Model Transformation). A higher-order model transfor-
mation is a model transformation whose source and/or target models are themselves transfor-
mation definitions.

Braun and Marschall formalize in more detail the syntax and semantics of the model
transformation language BOTL (Bidirectional Object-oriented Transformation Lan-
guage) [Braun and Marschall, 2003, Marschall, 2005]. Based on this formalization,

62

2. Background 2.5. Evolution of Modeling Languages

they can ensure that BOTL transformation definitions are syntax-preserving and
bidirectional, i.e. can be executed in both directions. Bidirectional transformation
languages are particularly suited to define transformations that exchange models be-
tween model-based development tools [Braun, 2003| Braun, 2004].

Besides BOTL, there are already quite a number of languages for specifying model
transformations. The most prominent transformation languages are Query View
Transformation (QVT) [Object Management Group, 2008b] for MOF, or the ATLAS
transformation language (ATL) [Jouault and Kurtev, 2006 for EMF. Besides bidirec-
tionality, model transformation languages can be classified according to a number
of other categories [Mens and Van Gorp, 2006| (Czarnecki and Helsen, 2006]. In the
following, we are interested in the categories that are important for model migration.

Metamodel Layer. A model transformation is defined on the metamodel layer
between the source and target metamodel. @~ We distinguish exogenous and
endogenous model transformation, depending on whether source and target
metamodel of the transformation are different or not [Mens and Van Gorp, 2006,
Czarnecki and Helsen, 2006]. Exogenous model transformation requires to specify the
mapping of all elements from the source to the target metamodel. As typically only a
subset of metamodel elements are modified by the metamodel evolution, a model mi-
gration specified as an exogenous transformation contains a high fraction of identity
rules. The fraction of the identity rules is proportional to the size of the intersection
between the two metamodel versions.

Example 2.25 (Migrating Transformation Definition). To illustrate this, Figure
shows an ATL implementation of the migration for the metamodel change from Moore to
Mealy machines as shown in Figure An ATL transformation definition consists of a
set of rules each of which maps elements from the source metamodel to elements from the tar-
get metamodel. With the exception of the highlighted line, the definition specifies an identity
transformation which covers exactly the greatest common metamodel of the two metamodel
versions as presented in Example[2.20]

€ | Moore_to_Mealy.atl i =8

module Moore to Mealy:
oreate OUT : Mealy from IN : Moore;

rule StateMachine {
from sm2 : Moore!StateMachine
to sml : Mealy!StateMachine (stcates <- sm2.stcates

ruole State {
from =2 : Moore!State
to s1 : Mealy!State (name <- s2.name, outgoing <- s2.outgoing

rule Transicion {

from t2 : Moore!Transition

to £l : Mealy!Transition (trigger <- t2.trigger, target <- t2.target,
effect <- t2.target.effect

)

Figure 2.20: Model migration defined in ATL

Concerning this aspect, endogenous transformation is better suited to the nature of

63

2.6. Summary

2. Background

model migration, as it only has to address those metamodel elements for which
the model needs to be modified. However, endogenous transformation requires the
source and the target metamodel to be the same which is not the case for metamodel
evolution. Hence, conventional languages for model transformation are not well
suited to specify a model migration [Sprinkle, 2003].

Model Layer. A model transformation is executed on the model layer, consum-
ing a source model and producing a target model. We distinguish out-of-place
and in-place model transformation, depending on whether the source and tar-
get model of the transformation are different or not [Mens and Van Gorp, 2006,
Czarnecki and Helsen, 2006]. Out-of-place model transformation creates the target
model from scratch by executing the transformation definition. Since a model mi-
gration usually only needs to transform a rather small part of the model, out-of-
place transformation may be rather slow for transforming large models. Concerning
this aspect, in-place model transformation is better suited for model migration, as it
directly updates the source model so that it becomes the target model. However,
in-place transformation is usually only possible for endogenous transformation, in
order to assure that the target model conforms to the target metamodel. Hence, con-
ventional languages for model transformation are not well suited to execute a model
migration.

2.6 Summary

In this chapter, we gave an overview of the definition, implementation and evolution
of modeling languages. A modeling language consists of abstract syntax, concrete
syntax and semantics. The abstract syntax can be defined by a metamodel that is
specified using an appropriate metamodeling language. The metamodel can be in-
terpreted by a modeling framework to provide an implementation for the modeling
language. Modeling languages are subject to evolution, requiring the migration of
models already defined with the modeling language. Model migration is a special
case of model transformation, in which only a small part of the metamodel changes.

64

Chapter

State of the Practice: Automatability
of Model Migration

Automating model migration in response to metamodel adaptation promises to sub-
stantially reduce effort. Unfortunately, little is known about the types of changes
occurring during metamodel adaptation in practice and, consequently, to which
degree reconciling model migration can be automated. In an empirical study, we
analyzed the changes that occurred during the evolution history of two industrial
modeling languages and classified them according to their level of potential au-
tomation. Based on the results, we present a list of requirements for tools effec-
tively supporting model migration in practice. This chapter is partly based on
[Herrmannsdoerfer et al., 2008al].

Contents
31 StateoftheArtl 66
[3.2 Classification of Metamodel Changes|. 67
[3.3 StudyDesign| i 72
[3.4 Study Implementation|. 75
[3.5 Requirements for Automating Model Migration| 78
3.6 Summary|. e e e e e e e e 78

In Section (State of the Art), we motivate the study by analyzing existing ap-
proaches and case studies. The proposed classification for the automatability of the
model migration is presented in Section [3.2| (Classification of Metamodel Changes). In
Section 3.3| (Study Desigr), we outline the setup, and in Section [3.4] (Study Implemen
[tatior), the results of the study we performed on the histories of two industrial meta-
models. In Section [3.5 (Requirements for Automating Model Migration)), we discuss the
results and derive requirements for efficient tool support. The study is concluded in

Section [3.6] (Summary) with the implications for our approach.

65

3.1. State of the Art 3. State of the Practice

3.1 State of the Art

Work related to this empirical study are either approaches trying to automate model
migration or case studies conducted to evaluate the approaches.

Approaches. Different kinds of approaches [Rose et al., 2009] have been proposed to
automate the migration of models in reponse to metamodel evolution.

Manual specification approaches extend model transformation languages with a
means to automatically copy model elements that are not affected by the metamodel
evolution. Examples are Sprinkle’s language [Sprinkle and Karsai, 2004] and its suc-
cessor, the Model Change Language (MCL) [Narayanan et al., 2009], as well as Flock
[Rose et al., 2010d]. Manual specification approaches require most effort to specify
model migrations, but allow their users to express complex migrations.

Operation-based approaches provide reusable coupled operations which are used to
adapt the metamodel and which also encapsulate a model migration. An example
is Wachsmuth’s approach [Wachsmuth, 2007] which presents a set of reusable oper-
ations and classifies them according to instance preservation properties. Operation-
based approaches reduce the effort by reusing recurring migrations, but require effort
to choose the coupled operations.

Matching approaches try to automatically derive a model migration from the dif-
ference between two metamodel versions. Examples are Gruschko’s proposal
[Gruschko et al., 2007]], Cicchetti’s approach [Cicchetti et al.,, 2008] and the Atlas
Matching Language (AML) [Garcés et al., 2009]. Matching approaches provide most
automation, but are usually not able to derive complex migrations.

Existing approaches to support model migration mainly differ in the provided level
of automation, expressiveness, reuse of migration knowledge and preservation prop-
erties. Little is known on the combination of capabilities that best supports the re-
quirements faced during development and maintenance of metamodels and models
in practice.

Case Studies. Besides modelware where metamodels evolve [Favre, 2003], lan-
guage evolution affects other technical spaces [Kurtev etal., 2002]: database
schemas evolve in dataware [Meyer, 1996], grammars evolve in grammarware
[Klint et al., 2005], and APIs evolve [Dig and Johnson, 2006|], too. Compared to the
large number of approaches in these technical spaces [Rahm and Bernstein, 2006],
there are only few case studies that evaluate the effectiveness of the presented ap-
proaches.

In dataware, Sjoberg measures the primitive changes and their impact on exist-
ing applications in the evolution of a health management system [Sjeberg, 1993].
Curino et al. reverse engineered the evolution of the Wikipedia schema as a se-
quence of coupled operations and propose it as a benchmark for other approaches
[Curino et al., 2008a]]. Lerner applies her matching approach TESS to real-life and ar-
tificial schema evolution examples to show that it is able to detect compound changes
[Lerner, 2000].

In grammarware, Staudt et al. evaluated their matching approach TransformGen with

66

3. State of the Practice 3.2. Classification of Metamodel Changes

67 changes of ARL, a language for writing semantic routines [Garlan et al., 1994]: 18
changes could be detected automatically, 30 needed to be customized and 19 could
not be detected. Limmel applied operations to repair a COBOL grammar automati-
cally recovered from an informal language specification [Lammel and Verhoef, 2001]].
He used the same operations to define correspondences between the different ver-
sions of the Java grammar [Lammel and Zaytsev, 2009b]. Overbey and Johnson show
that the whole evolution of Fortran and Java can be supported by refactorings for mi-
grating programs [Overbey and Johnson, 2009].

In APIware, Dig and Johnson showed by studying the evolution of 5 APIs that
over 80% of the evolution can be covered by reusable refactoring operations
[Dig and Johnson, 2006].

In modelware, Geest et al. apply their matching approach to detect primitive changes
to the WSSF metamodel [Geest et al., 2008]. Garcés et al. evaluate their customizable
matching approach by detecting compound changes to the well-known Petri net ex-
ample as well as an evolution of the Java metamodel [Garcés et al., 2009].

The mentioned case studies either do not measure automatibility of the model migra-
tion or are not independent of the approach that is applied. In contrast, our goal is to
measure automatability in a way to be able to derive requirements for an approach
to best support model migration in practice.

3.2 Classification of Metamodel Changes

In this section, we introduce a classification that allows us to determine how far
model migration can be automated. Usually the metamodel is adapted manually,
and models are migrated at different levels of automation. The first level of automa-
tion is to define a transformation that is able to automatically migrate a single model.
A higher level of automation is achieved, if a single transformation definition can be
used to migrate all existing models of a metamodel. When manually specifying such
transformations, one discovers that they contain recurring patterns. Thus, the third
level of automation corresponds to the application of higher-order transformations
embodying such recurring patterns that automate both metamodel adaptation and
model migration. In order to define the levels of automation, we introduce the notion
of a coupled change:

Definition 3.1 (Coupled Change). A coupled change is a combination of a metamodel
change and the semantics-preserving migration of the models conforming to that metamodel.

Coupled changes do not comprise metamodel changes that do not require a migra-
tion of models:

Definition 3.2 (Metamodel-Only Change). A metamodel change is called metamodel-only
if the metamodel change is backwards-compatible, i.e. preserves both abstract syntax and se-
mantics of all models.

In the following, we introduce the individual classes in combination with representa-
tive examples, working our way up from lower to higher levels of potential automa-
tion. Figure 3.1| depicts an overview of the classification. For each class of coupled

67

3.2. Classification of Metamodel Changes 3. State of the Practice

changes, the figure indicates to which level they are specific: The higher the level on
which a coupled change depends, the more can be reused and therefore automated.
A model-specific coupled change can only be used for a subset of the models of a
metamodel. A metamodel-specific coupled change provides automation for all mod-
els of a metamodel. A metamodel-independent coupled change can be even applied
to all metamodels and their models.

Metamodel-
only change

Metamodel Metamodel-
) -omeemmmmeeeope--———————-> | Metametamodel
change independent

con%, to co:f\ovxs to

Coupled Metamp_del— ——————————————— L= | Metamodel, Metamodel,
change specific

confofms to confofms to
,,,,,,,,,,,, confokms to confokms to
Model- |
”””””””” Model, § Model, || Models | | Model,

Figure 3.1: Automatibility of metamodel changes

Automatability

3.2.1 Running Example

We use a simple modeling language for hierarchical state machines to illustrate our
classification. Figure 3.2/ depicts the metamodel and a corresponding model in both
concrete and abstract syntax.

Metamodel. A State may be decomposed into sub states through its subclass Com-
positeState. A Transition has a target state and relates to its source state through the
outgoing composition. A transition is activated by a trigger. When a state is entered,
a sequence of actions is performed as effect. Strings are used for state names and
to denote triggers and effects. The root element of a state machine model is of type
CompositeState.

Model. The model describes the simplified behavior of a controller for a pedestrian
traffic light and uses all the constructs defined by the metamodel. The authorities
can turn on the traffic light, which gets initialized as a result. The transition to turn
it off is omitted so that the model remains simple. When the traffic light is red and
a pedestrian requests a green phase, the controller transitions to wait and activates
a timer (setTimer). When its timeQOut occurs, the controller transitions to green and
activates the timer again. When its timeOut occurs, the controller returns to state red
and notifies pedestrians with a beep.

68

3. State of the Practice

3.2. Classification of Metamodel Changes

State * Transition
1.* - outgoing - -
state | hame: String 1 trigger: String
effect[*]: String target

CompositeState

—@
(a) Metamodel
cl: CompositeState|
name="trafficLight"
/ ratfioLight \ / X
sl: State c2: CompositeState|
on \ name="off* name="on"
/ 1arget > effect="init*
/init
(red
turnOn request outgoing state state state
t1: Transition s2: State s3: State s4: State
off . trigger="turnOn* name=‘red" name="wait* name=“green”
timeOut - effect="beep" effect="setTimer" effect="setTimer"
N
target target
arget
;
outgoing outgoing outgoing
t2: Transition 13: Transition t4: Transition
k k // trigger="request" trigger="timeOut" trigger="timeOut"

(b) Model (concrete syntax) (c) Model (abstract syntax)

Figure 3.2: State machine example

3.2.2 Model-Specific Coupled Change

A coupled change is called model-specific if the migrating transformation is specific
to a restricted set of models and thus cannot be reused to migrate different models of
the same metamodel:

Definition 3.3 (Model-Specific Coupled Change). A coupled change is called model-
specific if its migration cannot be specified as a single transformation definition on the meta-
model level that can be applied to migrate all models of a metamodel.

This happens when the specification of a migration requires information which
varies from model to model.

Example 3.1 (Model-Specific Coupled Change). Pigure depicts both metamodel and
model after an example of a model-specific coupled change. In the metamodel, the reference
initial is introduced to denote the initial state within a composite state. As this reference
is mandatory, the model needs to be migrated to add the missing information. However,
the initial states cannot be inferred from the information already available in the model, and
default values cannot be provided either. Therefore, model-specific information is required to
be able to completely specify the migration.

'For better overview, modified elements are highlighted by dashed boxes.

69

3.2. Classification of Metamodel Changes 3. State of the Practice

State P * Transition
1.* - outgoing - -
state | hame: String 1 trigger: String
effect[*]: String target

|
|
initial | |
|
|

T Eo_rhpositeState

| -
(a) Metamodel adaptation
/ trafficLight \ cl: CompositeState
name="trafficLight*
/ on \ 1
Jinit '@ ! B
/ ‘rmma\ ~ 2 state state
_ _ turnOn "~ siistate c2: CompositeState
} } name="off" target name="on"
L 7] effect="init"
ﬂl- -wait %
timeOut =
— .
outgoing ‘r‘”'“a‘ 5 “state state state
t1: Transition "~ 52 state s3: State s4: State
trigger="turnOn* name="red" name="wait" name="green”
effect="beep” effect="setTimer* effect="setTimer*
L N) ¥ e b um §
(b) Model migration (concrete syntax) (c) Model migration (abstract syntax)

Figure 3.3: Introduction of initial states

3.2.3 Model-Independent, Metamodel-Specific Coupled Change

When a coupled change is not model-specific and all models of a metamodel can be
automatically migrated, it is called model-independent:

Definition 3.4 (Model-Independent Coupled Change). A coupled change is called
model-independent if its migration can be specified as a single transformation definition on
the metamodel level that can be applied to migrate all models of a metamodel.

Model-independent coupled changes can be further subclassified. If the change is
specific to a certain metamodel, it is called metamodel-specific and cannot be gener-
ated using a higher-order model transformation:

Definition 3.5 (Metamodel-Specific Coupled Change). A coupled change is called meta-
model-specific if its migration cannot be specified as a transformation definition that can
be produced from the metamodel using a higher-order model transformation defined on the
metametamodel level.

In that case, the reuse of the coupled change across different metamodels makes no
sense.

Example 3.2 (Metamodel-Specific Coupled Change). Figure [3.4] depicts the impact of
a metamodel-specific coupled change, which changes the state machine from a Moore to a
Mealy machine. In the metamodel, the attribute effectis moved from State to Transition. As

70

3. State of the Practice 3.2. Classification of Metamodel Changes

states are no longer allowed to specify an effect, the model no longer conforms to the modified
metamodel. To reconcile the model with the metamodel, the effect has to be moved from all
states to their incoming transitions. In the presence of hierarchical states, the migration is
however more involved, as we also have to take the effect of the initial states into account for
composite states. As the migration is rather specific and therefore not likely to recur very
often, it makes no sense to reuse this coupled change across metamodels.

State & * Transition
1.*) outgoing [— -
state | hame: String _ 1 _trigger: String
X _____ ! target | effect[*]: String |

1
initial

CompositeState

-
(a) Metamodel adaptation
e trafficLight N\
initial state state
\ sl: State c2: CompositeState
name="off" name="on"
target _jilap— — —
> P L N
turnOn ;/ = g
|[init, beep 4 — ==
-7 outgoing =~ initial state state state
t1: Transition 1 s2: State s3: State s4: State
timeOut - - - . . . -
7/ beep 1 trigger="umOn" ¥ | | name="red"_ name='wait’ _ _ | | name="green’ _
= 2R effect=Tnit eep je—(X) - S I . S
target ~< target
7 Aarget S~
outgoing ‘ outgoing =~ ~ _ | outgoing
12: Transition ; 13: Transition ; t4: Transition -
\ / vigger="request¥ | | rigger="tmeQut¥ | | trigger="imeOuty
/ [efieci=seTmer"| | [efect="selTimer'| | |effeci=beep _ |
(b) Model migration (concrete syntax) (c) Model migration (abstract syntax)

Figure 3.4: Moore to Mealy machine

3.2.4 Metamodel-Independent Coupled Change

If both metamodel adaptation and model migration do not depend on the meta-
model’s domain, the coupled change is called metamodel-independent and can be
expressed in a generic manner.

Definition 3.6 (Metamodel-Independent Coupled Change). A coupled change is called
metamodel-independent if its migration can be specified as a transformation definition that
can be produced from the metamodel using a higher-order model transformation defined on
the metametamodel level.

If a metamodel-independent coupled change is likely to recur in the evolution of
different metamodels, it makes sense to generalize it to a high-order model transfor-
mation that can be reused to evolve other metamodels.

71

3.3. Study Design

3. State of the Practice

Example 3.3 (Metamodel-Independent Coupled Change). Figure[3.5]depicts the impact
of a metamodel-independent coupled change, which is a first step to introduce the concept of
concurrent regions to the modeling language. In the metamodel, the class Region is in-
troduced as a container of the directly contained sub states within a CompositeState. To
compensate the change in a model, the migration creates a Region as child of each Compos-
iteState and moves all directly contained sub states to the newly created Region. A possible
generalization of this coupled change—which is known as Extract Class in object-oriented
refactoring [Fowler, 1999]—extracts a collection of features of one class into a new class which
is accessible from the old class via a single-valued composition to the new class. For the in-
troduction of concurrent regions, the single-valued composition needs to be generalized as a

next step to allow for multiple regions.

1.*

State

state
1 name:

initial

String

1

outgoing

*

Transition

trigger: String

target

Region

—_———

¢ompositeState

1.*
region
|

_________ - J

effect[*]: String

(a) Metamodel adaptation

f trafficLight \
P e I o
’ AN
(4 on Ry

_________________ |
| // \\ |
I h |
I I ")
o/ | |
| /init, beep | setTimer i
\ \ | |
I I

: I
Lot) imeou |

/ beep 1|l
I
| 1
I | !
I) !
! | / setTimer |
‘ - I
| \ /
\\ K ————————————————— //’
S e e e e -

(b) Model migration (concrete syntax)

initial / X

sl: State

name="off"

outgoing

tL: Transition

trigger="turnOn*“
effect="init","beep”

(c) Model migration (abstract syntax)

cl: CompositeState

name="trafficLight*

reg\cn?

|
|
|
| rl: Region
|
|
|

|
|
|
|
|
|
|
|
gl

c2: CompositeState

| S
reg\on?

|
|
|
| 12: Region
|
|
|

target

Figure 3.5: Introduction of concurrent regions

3.3 Study Design

In order to asses the potential for automation in practice, we applied the classification
to the histories of two industrial metamodels. In this section, we present the design

of this study: the goals, the input and the method of the study.

72

3. State of the Practice 3.3. Study Design

3.3.1 Study Goal

The study was performed to answer which fraction of metamodel changes

e RQ1. is metamodel-only and thus requires no model migration? Since metamodel-
only changes do not require a model migration, they have to be regarded sepa-
rately.

e RQ?2. is model-specific and thus defies automation of migration? If there are model-
specific coupled changes, the model migration cannot be fully automated.

e RQ3. is metamodel-independent and thus generalizable across metamodels? The
higher the fraction of metamodel-independent coupled changes, the higher the
degree of potential automation for the model migration.

3.3.2 Study Object

Two industrial metamodels from BMW Car IT? were chosen as input. Both meta-
models were developed and maintained by several persons.

FLUID (FLexible User Interface Development) is a framework for rapid prototyp-
ing of human machine interfaces in the automotive domain [Hildisch et al., 2007]. A
metamodel defines a modeling language that enables the abstract specification of a
human machine interface. An executable prototype of the human machine interface
can be generated from a model written in that language.

To get a better impression of the evolution, Figure illustrates the number of
metamodel elements for each considered version of the FLUID metamodel. The area
is further partitioned into the different kinds of metamodel elements. The figure
clearly shows the transition from an initial development phase to a maintenance
phase around version 6, where the grow in number of metamodel elements slows
down.

1 3 5 7 9 11131517 19 21 23 25

Version

(a) FLUID

1 3 5 7 9 11131517 19 21 23 25 27

Version

(b) TAF-Gen

Figure 3.6: Metamodel evolution in numbers

2see BMW Car IT web site: http://www.bmw-carit .de/

450 450
Package

@ 400 - » 400 1 Package
c c
[(7]

350 350 +
iEJ Class E Class
9 300 9 300 A
[7) [7)
=} kel
2 250 1 g 250 Attribute
© il [l
g 200 Attribute “’g 200
§ 150 § 150 Reference
[[
2 100 4 £ 100 Data type
E Reference E f Enumeration
z z

50 50 1 .

Enumeration Literal
0 = Literal (oI B

73

http://www.bmw-carit.de/

3.3. Study Design 3. State of the Practice

TAF-Gen (Test Automation Framework - Generator) is a framework to automati-
cally generate test cases for human machine interfaces in the automotive domain
[Benz, 2007]]. The metamodel defines a statechart variant, a structural screen model
and a test case language.

Figure depicts the number of metamodel elements for each considered version
of the TAF-Gen metamodel. In this case, the transition from the initial development
phase to the maintenance phase is more distinctive and happens around version 13.

3.3.3 Study Execution

The histories of the metamodels were only available in the form of snapshots. A
snapshot depicts the state of a metamodel at a particular point in time. As a conse-
quence, further information had to be inferred to obtain the coupled changes leading
from one metamodel version to the next. In order to achieve this, we performed the
following steps®:

1. Extraction of metamodel versions (1 person week): Each available version of the
metamodel was obtained from the revision control system used in the develop-
ment of the metamodel*.

2. Comparison of subsequent metamodel versions (2.5 person weeks): Since both re-
vision control systems used are snapshot-based, they provide no information
about the sequence of changes which led from one version to the following.
Therefore, successive metamodel versions had to be compared in order to ob-
tain the changes in a difference model. The difference model consists of a col-
lection of primitive changes from one metamodel version to the next and has
been determined with the help of tool support®.

3. Detection of coupled changes (3 person weeks): Some primitive changes only
make sense when regarded in combination with others. When an attribute is
for example removed from a class and an attribute with the same name and
type is added to its super class, then the two changes have to be interpreted as
a compound change in order to conserve the values of the attribute in a model.
Therefore, primitive changes were combined based on the information how
corresponding model elements were migrated. The coupled changes between
metamodel versions were documented in a table.

4. Classification of coupled changes (1 person week): The classification was applied
to each detected coupled change.

*In order to get an impression of the extent of the study, the approximate effort is mentioned in paren-
thesis for each step.

*The metamodels were specified by the Ecore metamodeling language from the Eclipse Modeling
Framework (EMF http://www.eclipse.org/modeling/emf/).

>Two prototypes now contributed to the EMF Compare tool (http://www.eclipse.org/
modeling/emft/?project=compare) were applied.

74

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emft/?project=compare
http://www.eclipse.org/modeling/emft/?project=compare

3. State of the Practice 3.4. Study Implementation

3.4 Study Implementation

This section presents the results of the study, discusses them and mentions threats to
the results’ validity.

3.4.1 Study Result

In this section, we present the results of the study in a compiled form. The full re-
sults are shown in Table[3.1] together with an informal description of the metamodel
adaptation and model migration. Due to a non-disclosure agreement with BMW Car
IT, we cannot provide more detailed information.

FLUID. Figure shows which fraction of all metamodel changes falls into each
class. 54% of the metamodel changes can be classified as metamodel-only. No cou-
pled change can be classified as model-specific, 15% as metamodel-specific and 31%
as metamodel-independent. Note that each metamodel change was counted as one,
even though some changes were more complex than others.

Metamodel- Model- Metamodel- Model-
specific specific specific
34 (15%) 7 (5%)

Metamodel-
only
63 (47%)

Metamodel-
only
119 (54%)

(a) FLUID (b) TAF-Gen

Figure 3.7: Classification of metamodel changes

TAF-Gen. Figure illustrates the fragmentation of all encountered metamodel
changes into the four classes. 47% of the metamodel changes have not required a
migration at all. As in the history of FLUID, no coupled change is model-specific.
The fraction of metamodel-independent coupled changes is even higher than in case
of FLUID, amounting to 48% compared to 5% classified as metamodel-specific.

3.4.2 Study Discussion

RQ1. Which fraction of metamodel changes is metamodel-only and thus requires no model
migration? The study showed that in practice the history of a metamodel can be
split into mostly small metamodel changes. We found out that most metamodel
changes required a migration of existing models. Furthermore, snapshots from dif-
ferent metamodel versions are not sufficient to derive the model migration.

75

3.4. Study Implementation

3. State of the Practice

Table 3.1: Number of occurred metamodel changes and their classification

= g —
: 2| S || 3
£ 5| % g
= Metamodel adaptation Model migration Class =) = o
¥ create package no migration required MMO 0 10 10
& move package compensate move MMI 0 8 8
~ delete empty package no migration required MMO 0 4 4
g create enumeration no migration required MMO 0 4 4
2 reorder enumeration literal no migration required MMO 0 1 1
= rename enumeration literal compensate rename MMI 0 4 4
create class no migration required MMO 0 3 3

create subclass no migration required MMO 45 2 47
change superclass remove data of Tost features MMI 0 1 1

@ move class compensate move MMI 5 18 23
= delete class remove objects MMI 1 0 1
Y delete subclass remove objects MMI 1 0 1
rename class compensate rename MMI 5 5 10

make class abstract migrate objects to sub classes MMS 1 0 1
specialize superclass (optional features) no migration required MMO 3 1 4
create optional attribute no migration required MMO 15 5 20

create required attribute set default value MMI 5 1 6
change attribute type convert values MMI 2 1 3

o decrease upper bound of reference remove superfluous values MMS 1 0 1
E drop attribute identifier no migration required MMO 6 0 6
= generalize attribute multiplicity no migration required MMO 5 1 6
i make attribute identifier guarantee uniqueness MMS 3 0 3
pull up optional attribute no migration required MMO 1 0 1

pull up required attribute set default value MMI 1 0 1
delete attribute delete attribute values MMI 11 1 12
rename attribute compensate rename MMI 3 1 4

create optional reference no migration required MMO 5 4 9
create optional composite reference no migration required MMO 3 3 6
create required composite reference create objects MMI 3 0 3
change reference type delete links MMI 5 0 5
change composite reference type migrate objects MMS 1 0 1
decrease upper bound of reference delete superfluous finks MMS 1 1 2

make reference transient delete Tinks MMI 0 1 1

drop reference transient no migration required MMO 0 1 1

g generalize reference multiplicity no migration required MMO 14 2 16
ks generalize reference type no migration required MMO 6 4 10
g increase lower bound of reference no migration required MMO 2 0 2
2 create opposite reference no migration required MMO 0 3 3
< move reference along reference move links accordingly MMI 0 1 1
push down reference no migration required MMO 0 2 2

pull up optional reference no migration required MMO 1 1 2
delete composite reference delete objects MMI 3 0 3
delete cross reference delete links MMI 1 4 5
delete opposite reference no migration required MMO 0 2 2
rename reference compensate rename MMI 7 3 10

make reference composite no migration required MMO 1 2 3

drop reference composite assign otherwise MMS 22 3 25
reference to class replace link by reference object MMI 0 1 1
extract class extract object for extracted class MMI 6 2 8
extract superclass no migration required MMO 3 1 4

inline class remove object of inlined class MMI 0 1 1

° merge references move data accordingly MMI 4 0 4
= inline subclass migrate objects to super class MMI 0 2 2
g inline superclass no migration required MMI 0 1 1
g merge classes migrate objects to common class MMI 1 0 1
S class to reference replace reference object by Tink MMI 1 0 1
reference to identifier set identifier based on links and remove Tinks MMI 2 0 2
identifier to reference create links based on identifier MMI 2 0 2
inheritance to delegation create delegation object MMI 0 1 1

fold class extract object for folded class MMI 1 1 2

fold superclass no migration required MMO 1 0 1

3, create optional composite structure no migration required MMO 8 7 15
g delete composite structure remove data MMI 0 6 6
S complex restructuring complex migration MMS 5 3 8
Overall 223 134 357

Metamodel-only MMO 119 63 182

Metamodel-independent MMI 70 64 134

Metamodel-specific MMS 34 7 41

Model-specific MS 0 0 0

76

3. State of the Practice 3.4. Study Implementation

RQ2. Which fraction of metamodel changes is model-specific and thus defies automation
of migration? As we have not found any model-specific coupled changes, we would
have been able to specify transformations to automate migration of all models. How-
ever, model-specific coupled changes cannot be entirely excluded and we further in-
vestigate them in Section [5.4{ (Limitations of Automating Model Migration)).

RQ3. Which fraction of metamodel changes is metamodel-independent and thus generalizable
across metamodels? More than two thirds of all coupled changes were classified as
metamodel-independent which provides a large potential for further automation.
We also found a small number of metamodel-specific coupled changes and thus the
model migration was a combination of both metamodel-specific and -independent
coupled changes.

3.4.3 Threats to Validity

The result of the study suggests a high degree of potential automation for model
migration. However, threats need to be mentioned which can affect the validity of
the result. They are presented according to the steps of the method to which they
apply together with the measures taken to mitigate them:

1. Extraction of metamodel versions: It was assumed that committing the metamodel
to the revision control system indicates a new version of the metamodel. There-
fore, only the primitive changes from one commit to the next were considered
to be combined. However, metamodels were sometimes committed in a pre-
mature version, and hence complex changes which span several commits of
the metamodel threaten the validity. Even though enacted development guide-
lines at BMW Car IT forbid to commit artifacts in a premature version, primi-
tive changes of other metamodel versions were also taken into account, when
a migration could not be determined otherwise.

2. Comparison of subsequent metamodel versions: A prerequisite to determine the
differences is the calculation of a matching between the elements of one meta-
model version and those of the next. However, in the absence of unique and
unchangeable element identifiers, the comparison cannot always be performed
unambiguously [Robbes and Lanza, 2007]. Furthermore, the difference model
leaves out changes which have been overwritten by others in the course of the
evolution from one version to the next. In order to mitigate this threat, the cor-
rectness of the primitive changes was validated in close cooperation with the
language engineers.

3. Detection of coupled changes: Unfortunately, models were not available for all
versions of the corresponding metamodels. This poses a threat to the correct
formation of coupled changes, since primitive changes were combined based
on the associated migration. In order to mitigate this risk, the language engi-
neers were exhaustively questioned about the correctness of the derived migra-
tion.

4. Classification of coupled changes: The differentiation between metamodel-specific
or -independent coupled changes is not 100% sharp. Even though a generaliza-
tion may be constructed for the most sophisticated changes, it is unlikely that it

77

3.5. Requirements for Automating Model Migration 3. State of the Practice

can be reused on any other metamodel. In order to mitigate this risk, we chose a
conservative strategy: When we were not sure whether reuse makes sense, we
classified such a coupled change rather metamodel-specific than metamodel-
independent.

3.5 Requirements for Automating Model Migration

Based on the results of the analysis, we discuss several requirements that an approach
must fulfill in order to profit from the automation potential in practice.

Reuse of migration knowledge. To profit from the high number of metamodel-indepen-
dent coupled changes found in the study, a practical approach needs to provide
a mechanism to specify metamodel adaptation and corresponding model mi-
gration independent of a specific metamodel.

Expressive, custom migrations. As there was a non-negligible number of metamodel-
specific coupled changes, the approach must be flexible enough to allow for
the definition of custom metamodel adaptation and model migration. Since
metamodel-specific changes can be arbitrarily complex, the formalism must be
expressive enough to cover all evolution scenarios.

Modularity. In order to be able to specify the different kinds of coupled changes in-
dependently of each other, a practical approach must be modular. Modularity
implies that the specification of a coupled change is not affected by the presence
of any other coupled change.

History. Since snapshots of the metamodel versions are not sufficient to derive the
model migration, a metamodel history is required in which the performed
metamodel changes are recorded.

Existing approaches to automate model migration only satisfy the stated re-
quirements to a certain degree: The manual specification approaches of
Sprinkle [Sprinkle and Karsai, 2004], MCL [Narayanan et al., 2009] and Flock
[Rose et al., 2010d] do not provide a construct for the reuse of migration
knowledge across metamodels. The operation-based approach by Wachsmuth
[Wachsmuth, 2007] is not expressive enough to capture all kinds of migration
scenarios—due to the restricted set of high-level primitives. The matching ap-
proaches by Gruschko [Gruschko et al., 2007], by Cicchetti [Cicchetti et al., 2008] and
AML [Garcés et al., 2009] leave open how they achieve modularity and how they
deal with complex custom migrations. In order to fully profit from the automatablity
of model migration in practice, an approach is needed that fulfills all the presented
requirements.

3.6 Summary

We presented a study of the evolution of two real world metamodels. Our study con-
tirmed that metamodels evolve in practice and that most metamodel changes require
a migration of existing models. The study’s main goal was to determine the poten-

78

3. State of the Practice

3.6. Summary

tial for reduction of language evolution efforts through appropriate tool support. To
this end, we categorized metamodel changes according to their degree of metamodel
specificity. When a change is metamodel-specific, the corresponding model migra-
tion is as well. Otherwise, the model migration can be reused to migrate models that
obey to different metamodels.

Our results show that there is a large potential for the reuse of coupled evolution op-
erations, because more than two thirds of all coupled changes were not metamodel-
specific. If metamodel adaptation and model migration are encapsulated into a cou-
pled operation, it is possible to reuse the operation for the evolution of different meta-
models and their models. Such reuse of already tested coupled evolution operations
can reduce maintenance effort and error likelihood.

Nevertheless, a third of the coupled changes were specific to the metamodel’s do-
main and therefore required a custom model migration. A metamodel hence evolves
in a sequence of metamodel-specific and -independent changes. Therefore, an ap-
proach for automated model migration must support the reuse of coupled changes
as well as the definition of new metamodel-specific changes.

79

Chapter

State of the Art: A Cross-Space
Survey on Coupled Evolution

Like any software artifact, software languages are subject to evolution [Favre, 2005]].
When a software language evolves, existing language utterances may no longer con-
form to the evolved language. To prevent loss of information, existing utterances
need to be migrated. Coupled evolution automates the migration of existing utter-
ances by attaching a migration to the evolution of a language definition. Software
language evolution affects different technical spaces like dataware, grammarware,
XMLware, and modelware [Kurtev et al., 2002]. In each technical space, different
coupled evolution approaches have been proposed. However, it is largely unknown
how approaches from different technical spaces relate to each other. To alleviate this,
we performed a systematic literature review on coupled evolution approaches. We
derived a feature model focused on determining commonalities and differences be-
tween approaches from different technical spaces. We motivate our approach from
issues of the existing approaches in modelware and from the lessons learned from
approaches in the other technical spaces.

Contents
1 Cross-Space Terminology] 82
[.2 Review Systematics| 84
[4.3 Classification of Approaches| 86
BA Dafawarel. oo i e 89
45 Grammarwarel. e 95
A6 XMIWarelovuivineinntnenneeneennas 96
4.7 Modelwarel e 97
[4.8 Cross-Space Comparison|, 99
[4.9 Motivation of our Approach| 101
410 Summary|. o oo e e e e e e 103

We start with the terminology that we define for our review in Section (Cross-
[Space Terminology), and the systematics of our review in Section [4.2] (Review System-

81l

4.1. Cross—Spaceiz Terminology 4. State of the Artl

atics). Next, we propose the classification scheme in Section [4.3| (Classification of Ap]
proaches). In Section to Section .7 (Modelware), we present the vari-
ous approaches for coupled evolution together with their classification. Each section
deals with a particular technical space. Finally, we summarize the approaches across
all technical spaces in Section[4.8](Cross-Space Comparison)) and motivate our approach

in Section [4.9] (Motivation of our Approach, before we conclude in Section
iar).

4.1 Cross-Space Terminology

Figuref4.1|illustrates the terminology on which the survey is based. The terms are in-
dependent of the technical space to be able to compare the different technical spaces
with each other. To be independent of the technical space, the terms are adopted
from linguistics [van Sterkenburg, 2003].

intensional
definition

/9\ evolution
/ \

/ : \
' / \
defines S \ 4
| \
/ I \ coupled

/ \ i
,/ conforms evolution
/ to \

O O (Ib O migration

utterance

extension

Figure 4.1: Terminology across technical spaces

Language Definition. In the survey, we do not only consider modeling languages,
but all sorts of languages used to develop software:

Definition 4.1 (Software Language). Software language is a general term for artificial
languages that are used to develop software.

Software languages exist in different technical spaces [Kurtev et al., 2002], e.g. pro-
gramming languages, modeling languages, XML formats, and data models. All these
technical spaces [Kurtev et al., 2002] deal with intensional definitions of possibly infi-
nite sets of utterances:

Definition 4.2 (Utterance). An utterance of a software language is an element that can be
built in the syntactic domain of the software language.

Definition 4.3 (Intensional Definition). An intensional definition of a software language
defines whether an utterance is syntactically correct with respect to the software language.

In that sense, the term utterance generalizes the term model, and the term intensional
definition generalizes the term metamodel, which are both defined in Section [2.2.2]

82

4. State of the Art 4.1. Cross-Space Terminology

(Abstract Syntax of a Modeling Language). Like a metamodel, an intensional definition
determines the set of syntactically correct utterances which is called extension:

Definition 4.4 (Extension). An extension of a software language is the set of utterances
that are syntactically correct with respect to the software language.

Depending on the technical space, different terms have been established for such
an intensional definition, its extension, and the utterances in the extension. Gram-
marware and modelware specify languages by grammars respectively metamodels. In
grammarware, the utterances of a language are either called word or sentence. In mod-
elware, these utterances are called model. XMLware and dataware rely on schemas to
define sets of documents respectively databases. While dataware provides no term for
a set of databases, a set of documents is either called format or language in XMLware.
Table 4.1|summarizes the various terms used in the different technical spaces.

Table 4.1: Terminology in different technical spaces

| technical space | dataware | grammarware | XMLware | modelware |
intensional definition schema grammar schema metamodel
extension — language format/language | language
utterance database | word/sentence document model

Coupled Evolution. Despite their different terminology, all these technical spaces
face a common problem: intensional definitions are subject to evolution [Favre, 2005]:

Definition 4.5 (Evolution). An evolution is a transformation that transforms the inten-
sional definition of a software language from an old to a new version.

As a consequence, utterances which conform to an original definition might no
longer conform to an evolved definition and migration is needed:

Definition 4.6 (Migration). A migration is a transformation that transforms an utterance
that conforms to the old version of an intensional definition to an utterance that conforms to
its new version.

This migration is often called co-evolution, since it depends on the evolution of
the definition. Manual migration of utterances is tedious and error-prone, hence
migration needs to be automated. Coupled evolution addresses the automation of
the migration based on its dependency on the evolution of intensional definitions
[Lammel, 2004]:

Definition 4.7 (Coupled Evolution). Coupled evolution is a combination of the evolution
of an intensional definition and the corresponding migration of the utterances of the inten-
sional definition.

Terminological Conventions. Throughout the survey, we use the terms according to
the technical space addressed by a certain approach. When talking about approaches
from different technical spaces, we stick to the general terms intensional definition,
extension, and utterance. For an utterance of the extension of a definition, we say the
utterance conforms to the definition.

83

4.2. Review Systematics 4. State of the Art

4.2 Review Systematics

A systematic review requires a thorough publication search strategy to cover all re-
search conducted within the scope of the survey. Clearly defined selection criteria
are needed to refine the set of found publications on relevance. In this section, we
discuss both the search strategy and selection criteria.

4.2.1 Search Strategy

The rigor of the search process is a distinguishing factor for systematic reviews versus
ad-hoc reviews [Kitchenham and Charters, 2007]. Following an iterative process, we
have set a search strategy and followed it throughout the survey. The search strategy
comprises two stages: A selection of relevant papers from a large set of conferences
and journals (the initial sources), and recursively and exhaustively following relevant
references of all papers included in the survey.

Initial Sources. As a starting point of the survey, we chose a set of relevant con-
ferences and journals shown in Table By studying all editions of each of these
conferences and journals, we selected potentially relevant publications using a lib-
eral application of the selection criteria outlined below. We applied a more refined
selection process later, when reviewing selected publications. The set of conferences
and journals is not intended to be a complete set containing all relevant literature. It
merely provides a set of initial sources.

Reference Inclusion. To complement the initial sources, for each publication, we
included all referenced work relevant to the survey. By applying reference inclu-
sion recursively, we expanded the survey outside the scope of the initial sources.
By applying the recursive reference inclusion exhaustively, we completed the set of
publications.

4.2.2 Selection Criteria

The survey covers published literature, with the exclusion of workshop papers. We
have set out the scope of the survey by means of a set of inclusion and exclusion cri-
teria, presented below. Papers falling within the relevant technical space, yet rejected
based on the selection criteria, were recorded along with the reason for rejection. The
list of excluded papers together with the reason for rejection can be found in Chap-
ter[A| (Papers Excluded from the Survey) in the appendix.

Inclusion Criteria. This survey focuses on coupled evolution of an intensional defini-
tion and its utterances. We speak of evolution, when external factors cause the inten-
sional definition to vary over time, yielding different versions of the same definition.
Subsequent versions should show clear resemblance. External factors are influences
not enforced by the surrounding system itself, examples are a changing domain, an
increased knowledge or understanding of the system, or a changing user base. We
speak of coupled evolution, when the evolution of the intensional definition primarily

84

4. State of the Art 4.2. Review Systematics

Table 4.2: Initial article sources

| Acronym | Full Name | Years |

Conferences

BNCOD British National Conference on Databases 1981 - 2009
CAIiSE Int. Conference on Advanced Information Systems Engineering 1989 - 2009
CIKM Int. Conference on Information and Knowledge Management 1992 - 2009
CSMR European Conference on Software Maintenance and Reengineering 1997 — 2009
ECMFA European Conference on Modeling Foundations and Applications 2005 - 2009
ECOOP European Conference on Object-Oriented Programming 1987 — 2009
EDOC Int. “Enterprise Computing Conference” 2000 - 2009
ER Int. Conference on Conceptual Modeling 1979 - 2009
GTTSE Generative and Transformational Techniques in Software Engineering 2005 - 2007
ICDE Int. Conference on Data Engineering 1988 - 2010
ICMT Int. Conference on Model Transformation 2008 — 2009
ICSE Int. Conference on Software Engineering 1976 — 2009
ICSM Int. Conference on Software Maintenance 1993 - 2009
MODELS | Int. Conference on Model Driven Engineering Languages and Systems 1997 - 2009
OOPSLA | Object-Oriented Programming, Systems, Languages & Applications 1986 — 2009
SLE Int. Conference on Software Language Engineering 2008 — 2009
VLDB Int. Conference on Very Large Databases 1975 - 2009
WCRE Working Conference on Reverse Engineering 1993 - 2009
Journals

JSME Journal of Software Maintenance and Evolution 1989 - 2010
JVLC Journal of Visual Languages and Computing 1993 - 2010
KAIS Knowledge and Information Systems 1999 - 2010
SIGMOD | ACM'’s Special Interest Group on Management of Data 1977 - 2009
SIGPLAN | ACM'’s Special Interest Group on Programming Languages 1987 - 2010
SoSyM Software and Systems Modeling 2002 - 2010
TKDE IEEE Transactions on Knowledge and Data Engineering 1989 - 2010
TOPLAS ACM Transactions on Programming Languages and Systems 1979 - 2010
TOSEM ACM Transactions on Software Engineering and Methodology 1992 - 2010
TSE IEEE Transactions on Software Engineering 1975 - 2010
VLDB]J Journal on Very Large Databases 1992 - 2010

determines utterance migration. Manual migration of individual utterances falls out-
side the scope of the survey due to the lack of coupling to the evolution. Supported
manual construction of an automatic migration falls within the scope of the survey.

Exclusion Criteria. We excluded work focused on comparison of intensional defi-
nitions, since these do not discuss a coupling. Such comparison includes work on
change detection, model comparison, difference calculation and difference represen-
tation. We also excluded work on schema matching, schema integration, database
integration and migration of legacy database systems, since in these works, subse-
quent versions of the intensional definition (if even existent) do not have to show
clear resemblance. As such, there is no clear focus on evolution. Finally, we also
excluded work on database views on utterances, when these are not explicitly called
in to prevent or aid coupled evolution. The technical space of ontology evolution
[Flouris et al., 2008] is considered out of scope of the survey, since it generally does
not consider utterance migration. API evolution is considered out of scope, since the
extension is not completely defined by the intensional definition.

85

4.3. Classification of Approaches 4. State of the Art

4.3 Classification of Approaches

We were able to derive a classification scheme which is independent of technical
spaces, that is we can classify approaches from the different technical spaces along
the same criteria. Using the classification, we can thus compare approaches from
different technical spaces. Figure 4.2 presents the topmost level of the classification
scheme as a feature model [Kang et al., 1990]. An approach can be classified accord-
ing to the technical space it addresses, the way it handles evolution and migration,
and the evaluation it has undergone.

legend

é optional

TS ‘ ‘ evolution ‘ ‘ migration ‘ ‘ evaluation ‘

Figure 4.2: Classification of coupled evolution approaches

4.3.1 Technical Space

Figure presents the classification of the approaches according to the technical
space (TS) they address. We cover the technical spaces of dataware, grammarware,
XMLware, and modelware. In dataware, we distinguish approaches which address
relational and object-oriented database management systems.

TS

‘ dataware ‘ ‘ grammarware ‘ XMLware ‘ ‘ modelware ‘
legend
‘ relational ‘ ‘object-oriented ‘ A alternative

Figure 4.3: Classification of approaches according to technical spaces

4.3.2 Evolution

Figure 4.4 presents the classification of the approaches according to how they specify
and obtain the evolution of the intensional definition.

Specification. The evolution of an intensional definition is implicitly specified by the
original and the evolved version of the definition. However, many approaches are
based on explicit evolution specifications. We distinguish two styles of such specifi-
cations: Imperative specifications describe the evolution by a sequence of applications

86

4. State of the Art 4.3. Classification of Approaches

legend

$ mandatory

A alternative

evolution

specification source

imperative ‘ ‘ declarative ‘ user—defined‘ ‘ recorded ‘ ‘ detected ‘

‘ simple ‘ ‘ complex ‘

Figure 4.4: Classification of approaches according to evolution

of change operations. In contrast, declarative specifications model the evolution by a
set of differences between the original and evolved version of a definition.

Source. Explicit evolution specifications can have different sources. One prominent
source is the automated detection of the evolution based on the original and evolved
version of a definition. We distinguish two kinds of detections: First, detections
which are only able to detect simple changes like additions and deletions. For some
approaches, this includes the detection of moves as well. Second, detections which
can also detect more complex changes, for example extracting and inlining of con-
structs. As an alternative to detection, the evolution can be recorded while the user
edits a definition, or user-defined where the user specifies the evolution manually.

4.3.3 Migration

Figure 4.5 presents the classification of the approaches according to how they specify
and perform the migration.

Coupling. In contrast to evolution, migration is always specified explicitly. In cou-
pled evolution, the dependency of migration on evolution is reflected by coupling
evolution specifications with migration specifications. We distinguish three kinds of
couplings: With a fixed coupling, the migration is completely defined by the evolu-
tion. Only the developer of a coupled evolution tool can add new couplings. With an
overwritable coupling, the user can overwrite single applications of a coupling with
custom migrations. With an extendable coupling, the user can add completely new
couplings between elements of evolution and migration specifications.

Language. Migration specifications must be executable and therefore be expressed
in executable languages. Such a language might be customly defined as a domain-
specific migration language. Alternatively, an existing transformation language (TL)
can be reused. Typically, this language comes from the technical space addressed by
a coupled evolution approach. Another way is to add migration support to a general-

87

4.3. Classification of Approaches 4. State of the Art

fixed ‘ overwritable ‘ extendable ‘ ‘ in-place ‘ out-of-place
coupling
legend
. K mandato
o rn
A alternative
language execution
custom ‘ ‘ TL ‘ ‘ GPL ‘ ‘ online ‘ ‘ offline

Figure 4.5: Classification of approaches according to migration

purpose programming language (GPL) in form of an API or an embedded domain-
specific language.

Target. Migration might be performed either in-place or out-of-place. In the first case,
the target of the migration is the original utterance itself which is modified during
migration. In the second case, the target is a new migrated utterance which is created
during migration. The original utterance is preserved.

Execution. Furthermore, the migration might be executed offline where applications
can not use any of the utterances during the migration, or online where applications
can still use the utterances and where the usage of an utterance by an application
triggers lazy migration.

4.3.4 Evaluation

Figure {4.6| presents the classification of the approaches according to the degree of
their evaluation. Evaluation is crucial for the validation of coupled evolution ap-
proaches. Approaches might provide no evaluation at all. They might provide only
evaluation of preliminary nature, e.g. by toy examples. Often, evaluation is required
explicitly in corresponding papers. Other approaches perform a case study on in-
dustrial or open-source systems of medium to large scale. Some authors provide a
comparison of their approach with existing approaches.

88

4. State of the Art

4.4. Dataware

legend |

A alternative

‘ evaluation ‘

comparison

preliminary ‘ ‘ case study ‘

Figure 4.6: Classification of approaches according to evaluation

4.4 Dataware

In dataware, a database is the utterance that conforms to the schema which is the
intensional definition. There is no term for the extension that is defined by the inten-
sional definition. Schema evolution has been a field of study for several decades,
yielding a substantial body of research [Rahm and Bernstein, 2006]. Due to the
large number of approaches, dataware is further subdivided—according to the data
modeling paradigm—into relational [Codd, 1970] and object-oriented [Kim, 1990]
dataware.

On the technical space of database schema evolution, Roddick presents an annotated
bibliography [Roddick, 1992]. The bibliography categorizes papers along the evolv-
ing formalism into evolution of relational data models and object-oriented data mod-
els as well as miscellaneous works. Relevant papers from the bibliography are in-
cluded in this survey.

4.4.1 Relational Dataware

In relational dataware, schemas define tables and relations between tables. Tables
consist of records, which are products of primitive values. Relations are modeled
explicitly within records, yet their consistency is generally ensured by the database
system. Table [4.3|lists the approaches from relational dataware together with their
classification according to the feature model presented in Section [4.3]
[Approaches). We distinguish manual specification and operation-based approaches.
The typical features of these approaches are emphasized in the table.

Table 4.3: Classification of the relational dataware approaches

Evolution Migration Evaluation

Approach Specific. ‘ Source Coupling ‘ Language ‘ Target ‘ Exec.
Manual specification
Ronstrom H imperative ‘ user-defined H overwritable ‘ GPL ‘ out ‘ online H —
Operation-based
Shneiderman . TL out .

X . . fixed offline —
Ambler SQL || imperative | user-defined GPL in
PRISM SQL overwritable | TL ‘ SQL online || case study

Manual Specification approaches require the user to manually specify the database
migration. Ronstrom presents an approach for online schema evolution and migra-
tion of a telecom database [Ronstrom, 2000]. Schema evolution is performed by first

89

4.4. Dataware

4. State of the Art

creating the new schema elements, copying old data and keeping the data in sync
by appropriate triggers. Next, the new schema elements are tested and if successful,
new transactions may be executed, and old data and schema elements are removed.

Operation-based approaches specify coupled evolution as a sequence of coupled
operations, encapsulating both schema evolution and database migration.

Shneiderman et al. propose an architecture for the coupled evolution of
relational schemas and databases as well as applications and programs
[Shneiderman and Thomas, 1982]. They present 15 coupled operations for schema
transformation and discuss their effect on databases in terms of a relational algebra.
Though based on previous practical experiences with their own schema definition
language, the approach is completely theoretical.

Ambler and Sadalage propose an agile and evolutionary design of a relational
database [Ambler and Sadalage, 2006]. Their book discusses database refactoring,
evolutionary data modeling, database regression testing, configuration management
for database artifacts and sandboxes for developers.

PRISM is a schema evolution workbench providing schema modification opera-
tions, tools to evaluate schema change effects, translation of old queries, automatic
data migration, and documentation of intervened changes [Curino et al., 2008b),
Curino et al., 2009]. Migration predictability is achieved by characterizing the extent
of information preservation in response to schema changes, and by automating data
conversion. PRISM has been evaluated by reverse engineering the schema evolution
of Wikipedia [Curino et al., 2008a].

Other Papers. Sockut and Goldberg introduce basic concepts of database reorganiza-
tion [Sockut and Goldberg, 1979]. They classify database reorganizations into levels
along the affected construct. The end-user level represents data views, the infologi-
cal level defines attributes and relationships, the string level defines access paths, the
encoding level defines physical representation, and the physical device level maps
representation onto storage.

Ventrone et al. argue that, similar to database integration, domain evolution
can create problems of semantic heterogeneity—i.e. clashes of implicit semantics
[Ventrone and Heiler, 1991]]. These are similar to those encountered in database in-
tegration and similar solutions apply.

Roddick discusses schema versioning issues [Roddick, 1995]]. He concludes for any
versioning solution: A database administrator should guide schema modifications;
Schema modifications should be symmetric—i.e. existing data is viewable through
the new schema and later recorded data is viewable through the previous schema;
And schema modifications should be expressed in algebraic operations for formal
verification.

Sjeberg measures evolution and its impact in a health management system, com-
prising 150k lines of code [Sjeberg, 1993]. Various types of names (such as class and
relation names) and their usage are tracked, detecting additions and deletions over
time. Renaming and more complex changes are left undetected. Over 18 months,
while transitioning from development to production, relations increased by 139%

90

4. State of the Art

4.4. Dataware

and fields by 274%. In one month, comprising 140 schema changes, one third of the
names were deleted and one tenth were added, affecting nearly 6,000 code locations.

4.4.2 Object-Oriented Dataware

In object-oriented dataware, schemas are defined using classes which can inherit
from other classes, define attributes or associations to other classes. A database
consists of objects which are instances of these classes. Casais [Casais, 1995], Be-
natallah [Benatallah, 1999], as well as Rashid and Sawyer [Rashid and Sawyer, 2005]
present categories of approaches for object-oriented dataware which we have com-
bined. Operation-based and schema matching approaches modify the schema and
database in-place and specify the schema evolution either imperatively or declar-
atively. Versioning and view-based approaches allow their users to have different
schema versions present at the same time and transform the database between these
versions out-of-place. Hybrid approaches combine complementary approaches. Ta-
ble .4 enumerates the approaches from object-oriented dataware together with their
classification.

Table 4.4: Classification of the object-oriented dataware approaches

Evolution Migration Evaluation
Approach Specific. ‘ Source Coupling ‘ Language ‘ Target ‘ Exec.
Operation-based
Banerjee ORION online
Penney Gem}S\tone fixed o off}.ine —
Nguyen Sherpa imperative | user-defined in O
Al-Jadir F2 offline || case study
Ferrandina 09 overwritable GPL C++ online o
SERF PSE extendable OQL offline
Schema matching
OTGen declarative recorded overwritable TL in offline —
TESS det. | complex case study
Class versioning
Skarra ENCORE fixed GPL .
Monk CLOSQL || declarative | user-defined || overwritable TL out | online
SADES Jasmine extendable comparison
Schema versioning
Kim ORION || imperative fixed .
Andany Farandole 2 || imperative
Clamen declarative | user-defined out | online —
Lautemann COAST || imperative overwritable TL
Bouneffa GORM || imperative
View-based
Tresch COCOON COOL

-defined —

EVER declarative userrdelme overwritable | TL EVER out | online
Breche O VDL
TSE GemStone recorded MV preliminary
Hybrid
Benatallah H imperative ‘ user-defined H overwritable ‘ TL ‘ OQL ‘ ifo ‘ online H —

Operation-based approaches specify schema evolution imperatively as a sequence

91

4.4. Dataware

4. State of the Art

of schema modification operations. An operation application not only adapts the
schema, but also triggers in-place migration of the database to restore a consistent
state.

Banerjee et al. present the semantics of a fixed set of primitive operations for
ORION |[Banerjee et al., 1987]. The operations are sound—i.e. preserve the schema
invariants—and complete—i.e. are expressive enough to transform between any
two schemas. They are implemented by hiding values from the database
which can be performed online. Similar approaches are proposed for GemStone
by Penney and Stone [Penney and Stein, 1987|], for Sherpa by Nguyen and Rieu
[Nguyen and Rieu, 1989], and for F2 by Al-Jadir [Al-Jadir and Léonard, 1998|]. While
GemStone supports only offline migration, Sherpa uses techniques known from arti-
ficial intelligence to automatically propagate changes of a class to its instances. To im-
prove implementation and performance, F2 splits objects into multiple objects (mul-
tiobjects), distributing inherited attributes to objects specific to the class they were
inherited from.

In addition to high-level operations [Breche, 1996] that are composed of primitive
operations [Zicari, 1991, Ferrandina et al. present operations to redefine the structure
of a class as a whole in O, [Ferrandina et al., 1995]. To guarantee consistency between
schema and data, a default migration function is associated to each class that has
been modified. O offers the possibility to overwrite the default migration functions
by attaching custom migration functions encoded in a general-purpose language.

Besides a language to implement custom migrations, SERF (Schema evolution
through an Extensible, Re-usable and Flexible framework) also provides a tem-
plate mechanism to extend the predefined couplings with a new operation
[Claypool et al., 1998|]. However, the flexibility comes at the price that the migration
can no longer be performed online. SERF has been applied to define reusable cou-
plings for the evolution of uni- and bidirectional associations [Claypool et al., 2000]

Schema Matching approaches derive the in-place migration based on a matching be-
tween schema versions that is either recorded or detected. The matching is a declar-
ative specification of the changes between the two schema versions.

OTGen (Object Transformer Generator) records changes performed on a schema by
updating a transformation specification from which a migrator can be generated
[Lerner and Habermann, 1990]. For each simple change applied to the schema, OT-
Gen adds default rules to the transformation that preserve consistency between
database and schema, and affect the database as little as possible. To support more
complex migrations, the transformation can be manually modified using statements
to initialize variables, perform context-dependent changes, move information, create
objects and share information among objects.

TESS (Type Evolution Software System) derives migration rules by detecting changes
between two schema versions [Lerner, 1997, [Lerner, 2000]. The detection is based on
a comparison algorithm with three stages that compare classes by their name, by
their use sites or structurally. TESS allows its users to customize the comparison by
selecting which stages are used, which classes are compared and which rules have to
be acknowledged. TESS verifies whether the resulting migration rules are complete,
i.e. cover the whole schema. TESS was evaluated by means of a case study and two

92

4. State of the Art

4.4. Dataware

experiments.

Class Versioning approaches allow several versions of the same class to be present
at the same time. They provide mechanisms to perform an out-of-place migration of
instances from one class version to another.

Skarra and Zdonik propose to manage all versions of a class interface in a common
version set interface [Skarra and Zdonik, 1986]. Additional error handling is added
to existing classes, to prevent invalid (outside domain) and undefined properties. To
support database migration, an object of a class can be transformed into an object of
another as part of the interface.

Monk and Sommerville propose to use update and backdate functions on classes to
allow for more flexible migration [Monk and Sommerville, 1993]. The update and
backdate functions are user-defined with the query language CLOSQL, but applied
automatically when needed. Combination of update and backdate functions allows
objects of any class version to be transformed to any other version.

SADES (Semi-Autonomous Database Evolution System) employs aspect-
orientation to make migration code independent of the evolved classes
[Rashid and Sawyer, 2000]. Thereby, SADES can be easily adapted to different
definitions of compliance of the objects to the class definitions. SADES was exten-
sively evaluated by a qualitative and quantitative comparison to related approaches
[Rashid and Sawyer, 2005

Schema Versioning approaches version the schema as a whole in contrast to class
versioning approaches.

Kim and Chou extend Bannerjee’s approach for ORION to derive new schema ver-
sions instead of changing the schema [Kim and Chou, 1988|]. Schema evolution is
specified imperatively using the same operations, but new invariants and operations
are necessary to manage schema versions. Andany et al. propose a similar approach
for Farandole 2 which is also able to version sub schemas [Andany et al., 1991].

Clamen proposes to specify evolution declaratively by relating different schema ver-
sions [Clamen, 1994], which can also be used for schema integration. For each
schema version, an interface is provided to objects and the interfaces compose the
object’s state into facets. Attributes can be shared between interfaces, independent
of other interfaces, derived from other interfaces and dependent on other interfaces.
Whenever an attribute value of a facet is modified, dependent attributes in other
facets need to be updated.

Lautemann proposes an approach which specifies the evolution imperatively
[Lautemann, 1996, Lautemann, 1997]]. Migration between objects of different schema
versions is specified by forward and backward migration functions. For certain
schema changes, default migration functions are derived automatically, and can
be overwritten by custom migration functions. Bouneffa presents a comparable ap-
proach, in which each object-schema version combination is represented by a facet
[Bouneffa and Boudjlida, 1995]. User-defined mapping functions map objects from
one facet into another.

93

4.4. Dataware

4. State of the Art

View-based approaches use the view mechanism of database systems to simulate
schema evolution. View definition languages provide a declarative way to specify
schema evolution. The database is not modified, but is transformed out-of-place
when calculating the view.

Tresch and Scholl are the first to propose database views as a means to manage
schema evolution [Iresch and Scholl, 1993|], as database migrations are expensive
and break compatibility of existing applications. Views can be applied for capacity-
preserving and capacity-reducing changes, but are not applicable for capacity-
increasing transformations. They envision an implementation in COCOON us-
ing the view definition language COOL. Breche et al. envision a similar approach
for simulating schema changes in Oy using VDL (View Definition Language)
[Breche et al., 1995].

EVER (EVolutionary ER diagrams) enhances the graphical constructs used in Entity
Relational diagrams to be able to specify derivation relationships between schema
versions [Liu et al., 1993} [Liu et al., 1994]. EVER diagrams can be translated into re-
lational or object-oriented database schemas. For each schema version, a consistent,
updatable view is maintained. Therefor, the user has to specify derivation relation-
ships between schema versions. For capacity-increasing changes, new attributes are
added to the underlying database schema.

TSE (Transparent Schema Evolution) also supports capacity-increasing changes
[Ra and Rundensteiner, 1995b, Ra and Rundensteiner, 1997]. Schema changes are
recorded and mapped to views expressed in the view definition language MultiView.
Thereby, each object instance can be accessed directly using different schema ver-
sions. Only for capacity-increasing changes, the actual database schema is changed.
Besides the set of primitive changes known from other approaches, TSE was ex-
tended to handle more complex changes [Ra and Rundensteiner, 1995a]. To optimize
the generated views after a lot of schema changes, obsolete views can be consistently
removed [Crestana-Jensen et al., 2000].

Hybrid approaches combine several other approaches to unite their advantages.

Benatallah proposes a hybrid approach that combines schema versioning and schema
modification [Benatallah, 1999]. When a schema change operation is applied, the
user can decide whether the current schema version is modified or a new version
is created. A language based on the standardized Object Query Language (OQL) is
provided to define arbitrary migration semantics. Depending on whether the schema
is modified or not, the migration specification is used to migrate the database in-place
or out-of-place.

Other Papers. Casais [Casais, 1995] presents a survey of techniques to manage class
evolution in object-oriented systems. On the class level, tailoring creates subclasses,
surgery uses change primitives, versioning supports different versions of the same
class, and reorganization performs more complex changes. On the object level,
change avoidance prevents impact on objects, conversion modifies objects and fil-
tering wraps objects.

Pons and Keller propose to organize operations in a multi-level catalog in which
operations from higher levels are implemented using operations from lower lev-

94

4. State of the Art 4.5. Grammarware

els [Pons, 1997]. The catalog shows which modifications can be performed to the
schema, starting from the primitives that a database system provides.

Li identifies the main issues in research on object-oriented schema evolution
[Li, 1999]. The issues are semantic integrity consisting of referential integrity and
consistency of constraints, schema evolvability encompassing structural and behav-
ioral evolution, as well as application compatibility consisting of downward and up-
ward compatibility.

Vermolen and Visser present a cross-space generalization of coupled evolution and
propose a general solution based on a generated domain-specific transformation lan-
guage for the meta level [Vermolen and Visser, 2008|]. As application of the general
solution, a coupled evolution tool set for object-oriented data models and relational
databases is presented.

4.5 Grammarware

In the grammarware space, a grammar is an intensional definition of a language. An
utterance of a language is called either word or sentence. Main programming lan-
guages, like e.g. Java, try to avoid the need for migration. New versions of such
languages typically include older versions of the same language. However, there
are a few approaches which address migration explicitly by coupled evolution. As
is shown in Table we group them into the two categories of grammar match-
ing and operation-based approaches. Though originally proposed for modelware
approaches [Rose et al., 2009, these categories fit here as well.

Table 4.5: Classification of the grammarware approaches

Evolution Migration Evaluation
Approach Specific. ‘ Source Coupling ‘ Language ‘ Target ‘ Exec.
Grammar matching
TransformGen H declarative ‘ recorded H overwritable ‘ TL ‘ out ‘ offline H case study
Operation-based
Lever H imperative ‘ user-defined H extendable ‘ GPL ‘ Jython ‘ out ‘ offline H preliminary

Grammar Matching approaches infer the migration from the matching between two
grammar versions.

TransformGen infers the migration between two grammar versions from the recorded
editing operations applied to a grammar [Staudt et al., 1987, Garlan et al., 1994]. The
migration is specified as a transformation on the abstract syntax tree. Starting from
an identity transformation, the transformation is altered, when editing operations are
applied to the grammar. Additionally, the transformation can be customized by the
user. Thereby, a static analysis helps to prevent errors. TransformGen was applied to
evolve the tree-oriented programming language ARL.

Operation-based approaches approaches provide coupled operations that encapsu-
late grammar evolution and word migration.

95

4.6. XMLware

4. State of the Art

Lever is an operation-based approach that provides a suite of operations
coupling grammar evolution with word migration [Juergens and Pizka, 2006,
Pizka and Juergens, 2007b| Pizka and Juergens, 2007a]. Furthermore, it supports the
migration of compilers. Lever comes with three DSLs embedded in a scripting lan-
guage: One for grammar evolution, one for word migration, and another one offering
abstractions on top of the other two for defining coupled operations. The user speci-
fies grammar evolution imperatively by a sequence of operation applications. It has
been evaluated using a fictitious evolution of a catalog description language.

Other Papers. Lammel presents an operation suite just for grammar evolu-
tion [Lammel, 2001]. A similar operation suite is used in a lightweight ver-
ification method to maintain the correspondence between grammar versions
[Lammel and Zaytsev, 2009a]]. The method is used to recover grammar relationships
in different releases of the Java Language Standard [Lammel and Zaytsev, 2009b].
Though these suites come without a coupling for migration, this coupling can be
added by defining the effects of operations on the word level.

Overbey and Johnson discuss a side effect, when programming languages evolve
but migration is avoided [Overbey and Johnson, 2009]. In this case, old programs
use outdated constructs instead of new and better constructs which were introduced
later. They study the effect for the evolution of Fortran and Java and envision a
refactoring-based solution to the problem. When the language evolves, language
engineers provide refactorings which replace the old constructs with the new and
better ones. In a next step, these refactorings can be coupled with operations at the
grammar level.

4.6 XMLware

In XMLware, a schema is an intensional definition of a language or format. An ut-
terance of a language is called a document. Schemas are expressed in schema lan-
guages like DTD [W3C, 2008] or XML Schema [Walmsley, 2001], both recommended
by the World Wide Web Consortium. Table lists the XMLware approaches as
well as their classification. We distinguish manual specification and operation-based
approaches. Again, these categories where originally proposed for modelware ap-
proaches [Rose et al., 2009], but fit for XMLware approaches as well.

Table 4.6: Classification of the XMLware approaches

Evolution Migration Evaluation

Approach Specific. ‘ Source Coupling ‘ Language ‘ Target ‘ Exec.
Manual specification
Tan XSD H declarative ‘ user-defined H overwritable ‘ custom ‘ out ‘ offline H —
Operation-based
XEM DTD . GPL in

. . . fixed)
Limmel DTD || imperative | user-defined TL XSLT out | offline —
X-Evolution XSD overwritable | GPL | XQuery | in

Manual Specification approaches require the user to manually specify the migration

96

4. State of the Art

4.7. Modelware

of documents from one schema version to another

Tan and Goh propose an extension for XML Schema to specify declaratively the dif-
ferences to previous versions directly in the schema [Tan and Goh, 2005]]. Additions,
removals, moves, and renames of elements and attributes are supported. The infor-
mation is then used for migrating documents between different schema versions.

Operation-based approaches provide a set of reusable coupled operations. The user
specifies schema evolution imperatively by a sequence of operation applications.
Since the operations work at the schema level as well as at the document level, such
a sequence specifies both schema evolution and document migration.

XEM (XML Evolution Manager) addresses the evolution of DTD schemas
[Su et al., 2001]. It provides a complete, minimal and sound suite of primitive op-
erations. At the schema level, these operations work on DTD schemas represented
as labeled graphs. At the document level, they operate on labeled ordered trees.

Limmel and Lohmann suggest transformation operations for DTD schemas from
which migrations for documents are induced [Lammel and Lohmann, 2001]]. The ef-
fect of the operations at the schema level are described as informal text, whereas
the migrations are specified by XSLT. The operations preserve the well-formedness
of both DTD schemas and XML documents. Moreover, the operations are classified
whether they preserve, extend, or reduce the structure of XML documents.

X-Evolution is a tool addressing the evolution of schemas defined in XML Schema
[Mesiti et al., 2006} Guerrini et al., 2007]. Like XEM, it provides a complete, minimal
and sound suite of primitive operations. At the schema level, the operations work on
schemas represented as labeled trees. At the document level, an incremental valida-
tion algorithm performs a minimal number of insertions, modifications and deletions
to make a document valid again. To overwrite this default migration, a domain-
specific language (DSL) provides means for the specification of custom migrations
[Guerrini and Mesiti, 2008]]. This DSL extends the standardised XQuery Update.

4.7 Modelware

In the modelware space, a metamodel is an intensional definition of a modeling lan-
guage. An utterance of a modeling language is called a model. Metamodels are ex-
pressed in a metamodeling formalism like MOF as standardized by the Object Man-
agement Group [Object Management Group, 2006a]], Ecore of the Eclipse Modeling
Framework [Steinberg et al., 2009], or MetaGME of the Generic Modeling Environ-
ment [Ledeczi et al., 2001]]. All these formalisms provide object-oriented means sim-
ilar to UML class diagrams [Object Management Group, 2009].

In [Rose et al., 2009], Rose et al. compare different approaches to automate model
migration in response to metamodel evolution. They identify three categories of
approaches: manual specification, metamodel matching, and operation-based ap-
proaches. We take this comparison which is restricted to Ecore as a metamodeling
formalism as a starting point, but consider the other metamodeling formalisms as
well. Table 4.7|lists all the modelware approaches and groups them according to the
three categories.

97

4.7. Modelware

4. State of the Art

Table 4.7: Classification of the modelware approaches

Evolution Migration Evaluation
Approach Specific. ‘ Source Coupling ‘ Language ‘Target‘ Exec.
Manual specification
Sprinkle GME declarative | user-defined . . preliminary
MCL GME overwritable custom out | offline —
Flock Ecore — comparison
Metamodel matching
Gruschko Ecore . . TL | ETL —

simple || overwritable AR 3

Gfees}’: - MS DSL declarative | det. A out | offline ||-Sa5¢ Study
Cicchetti Ecore complex ixed TL | ATL —
AML Ecore extendable case study
Operation-based
HoBler MOF imperative | user-defined fixed —— out | offline —
Wachsmuth MOF TL [QVT

Manual Specification approaches provide custom model transformation languages
to manually specify the model migration. Thereby, specific model migration con-
structs reduce the effort for building a migration specification. For instance, mi-
grations automatically copy model elements whose metamodel definition has not
changed. The user then overwrites this default behavior with the intended migra-
tion.

Sprinkle introduces a visual language to declaratively specify the differences between
two versions of a GME-based metamodel [Sprinkle, 2003, Sprinkle and Karsai, 2004].
MCL (Model Change Language) is another visual migration language targeting GME
[Narayanan et al., 2009]. With both languages, the user does not only specify the
metamodel differences, but defines a model migration based on these differences.
This overwrites the default copying behaviour. The migration is performed out-of-
place and offline. MCL permits a number of idioms that—according to the authors’
experience—cover most common migration cases. Migration algorithms not covered
by MCL can be specified imperatively using a C++ API. Sprinkle’s approach is eval-
uated by an experience report about its application in an industrial context.

Flock is a textual migration language for EMF-based models [Rose et al., 2010d]].
Here, only the model migration is specified. Differences between metamodel ver-
sions are not made explicit. Instead, Flock automatically copies only those model ele-
ments which conform to the evolved metamodel. The user then iteratively redefines
the migration specification to migrate non-conforming elements. Using the well-
known Petri net example [Wachsmuth, 2007], Flock has been compared to migration
specifications in model transformation languages ATL and Ecore2Ecore as well as to

the language underlying our approach that is presented in Chapter |5 (COPE — Cou-
ipled Evolution of Metamodels and Models)).

Metamodel Matching approaches automatically detect the differences between two
metamodel versions. These are stored in a declarative difference model from which
a migration specification is generated.

Gruschko et al. support the automatic detection of simple changes in Ecore metamod-
els [Gruschko, 2006, (Gruschko et al., 2007, Becker et al., 2007]. They propose auto-

98

4. State of the Art 4.8. Cross-Space Comparison

matic migration steps for resolvable changes and envision to support the user in
overwriting the migration for unresolvable changes. The approach is only prototyp-
ically implemented and thus not yet evaluated.

Geest applies a similar approach in the context of Microsoft DSL Tools
[Geest et al., 2008]. The difference model is obtained by a, possibly human-aided,
comparison of the metamodel versions. Only simple changes can be detected and
the generated migration specification can be overwritten. The approach has been
evaluated on evolving metamodels from the Web Service Software Factory (WSSF).

Cicchetti et al. also detect complex changes [Cicchetti et al., 2008]. Here, the difference
model consists of simple changes which are interpreted in terms of complex changes.
The migration specification consists of a set of model transformations to be executed
consecutively. Since this is prevented by interdependent changes, Cicchetti et al.
characterize dependencies between complex changes [Cicchetti et al., 2009].

AML (Atlas Matching Language) allows the user to parameterize the detection of
complex changes [Garcés et al., 2009]. Therefore, the user combines existing or user-
defined heuristics to a matching algorithm. From a difference model obtained by
such an algorithm, an ATL transformation specifying the migration is automati-
cally generated. The approach was evaluated on the well-known Petri net example
[Wachsmuth, 2007]], and on the Java metamodel from NetBeans.

Operation-based approaches provide—similar to corresponding grammarware and
XMLware approaches—a set of reusable coupled operations that work at the meta-
model level as well as at the model level.

Hofsler et al. formalize a fixed suite of reusable coupled operations
[Hofsler et al., 2005]. Operations are grouped into metamodel extensions, pro-
jections and factorings based on their effect on the extension. The completely
theoretical approach is based on a generic instance model supporting versioning
and is neither implemented nor evaluated.

Wachsmuth presents an operation suite for the MOF metamodeling formalism
[Wachsmuth, 2007]. Based on ideas from grammar evolution [Lammel, 2001]], op-
erations are classified according to language and model preservation properties. For
migration, the evolution specification is translated into a QVT Relations model trans-
formation.

Other Papers. Street and Pettit analyzed the evolution of UML from version 1.4
to 2.0 [Street and Pettit, 2005]. They classified changes to the UML metamodel into
additions, modifications, and deletions. Most of the changes were additions which
allow UML users to improve existing models. Required migrations for modifications
and deletions could be mostly automated.

4.8 Cross-Space Comparison

Increasing Interest. Coupled evolution is a topic of increasing interest. It first drew
attention in the dataware space where it reached a publication peak in the 1990s. In

99

4.8. Cross-Space Comparison 4. State of the Art

the same decade, coupled evolution spread into the grammarware space, before it
found its way to XMLware and modelware in the last decade. Though being a new
topic in the modelware space, coupled evolution now draws most attention in this
technical space. Figure illustrates the increasing interest in coupled evolution
over the last decades as well as its spreading over the various technical spaces.

60
€
=]
o
O
c
£ 30
S
RS
e}
=]
a
0
data gramm. XML model 1970- 1980- 1990- 2000-
ware ware ware ware 1979 1989 1999 2009

Figure 4.7: Interest in coupled evolution

Categories of Approaches. With the classification scheme from Section
Isification of Approaches), we are able to classify approaches from the different tech-
nical spaces along the same criteria. Furthermore, we found approaches from all
technical spaces to fit into categories which were originally proposed by Rose et
al. for the modelware space [Rose et al., 2009]. These categories are manual specifi-
cation, matching approaches, and operation-based approaches. The unique feature of
manual specification approaches is a custom migration language for overwriting a de-
fault migration manually. For matching approaches, the unique feature is a declar-
ative evolution specification which is either recorded or detected. The unique feature
of operation-based approaches is an imperative evolution specification as a sequence
of operation applications. Additionally, we found the categories of class versioning
approaches, schema versioning approaches, and view-based approaches to be restricted
to approaches dealing with object-oriented databases in the dataware space.

Specifics in Technical Spaces. In relational dataware we noticed a stronger and
more explicit focus on the impact of schema evolution on other artifacts than the
database—mostly queries.

To not affect the operation of the database system, most approaches from the
dataware spaces focus on online migration of the database. Approximately half of
the dataware approaches reorganizes the database, the other half avoids reorganiza-
tion by versioning or views. In contrast, all approaches from the modelware space
perform offline migration. Models are mainly used at development time, and meta-
models for runtime models typically do not evolve during an application run. Thus,
there is no need to migrate models online.

Most modelware approaches perform out-of-place migration. Model transformation
languages generally do not support in-place transformations with different source
and target metamodels. However, in the dataware space, in-place migrations are a

100

4. State of the Art 4.9. Motivation of our Approach

more commonly chosen alternative, when the size of the data set makes out-of-place
migration hard or impossible.

Object-oriented dataware is the technical space where most of the approaches come
from, followed by the modelware space. Both spaces rely on object-oriented concepts
which complicates evolution and migration compared to other technical spaces. Fi-
nally, 75% of the approaches lack proper evaluation.

4.9 Motivation of our Approach

The analysis of the existing approaches helps us to motivate our approach targeting
the modelware space. We can identify issues of existing modelware approaches and
learn from approaches in the other technical spaces. The categories of approaches
that are interesting for modelware are manual specification, operation-based as well
as matching approaches. Versioning and view-based approaches known from object-
oriented dataware are not interesting for modelware, as they avoid to physically
migrate elements and employ specific technologies only available in this technical
space. In the following, we motivate our approach by revisiting the requirements

defined in Chapter (1| ([ntroduction) as well as by identifying issues in existing ap-

proaches by means of the classification.

4.9.1 Requirements

We analyze the candidate approaches with respect to the requirements of automation
and semantics preservation.

Automation. Our first goal is to automate model migration in response to meta-
model evolution as far as possible. In Chapter [3| (State of the Practice: Automatability of
IModel Migration), we have shown that an approach is appropriate if it is able to reuse
recurring migrations and at the same time expressive enough to cater for complex
migrations. Manual specification approaches only provide reuse by copying model
elements that are not affected by metamodel evolution. However, they provide an
expressive language in which the user can manually specify the model migration for
model elements that are affected by metamodel evolution. Matching approaches sup-
port reuse by the detection patterns for which they are able to automatically infer a
model migration. However, it is impossible for them to detect complex model mi-
grations without additional information. Operation-based approaches reuse recurring
combinations of metamodel evolution and model migration by encapsulating them
in operations. The provided operations are usually not expressive enough to cover
all possible semantics of model migration. As the object-oriented dataware space
demonstrates, operation-based approaches can be combined with manual specifica-
tion approaches to accommodate reusable operations with custom operations. How-
ever, in the modelware space, there is not yet an operation-based approach that provides sup-
port for manually specifying custom operations.

Semantics Preservation. Our second goal is to ensure semantics preservation dur-
ing model migration as far as possible. Manual specification approaches foster cor-

101

4.9. Motivation of our Approach 4. State of the Art

rectness of the model migration, as they give the user full control over the migra-
tion semantics. Matching approaches completely automate the derivation of a model
migration from a metamodel evolution, and thus may not lead to a correct model
migration. However, both categories of approaches suppose that the metamodel
evolution has already been carried out, and only the metamodel versions are avail-
able. If a lot of metamodel changes have been performed, the intention behind the
metamodel evolution is already lost in the evolution process. To not lose the inten-
tion behind the metamodel evolution, operation-based approaches allow the user to
assemble the model migration by incrementally applying coupled operations. By
recording the model migration together with the metamodel evolution, operation-
based approaches are best suited for ensuring semantics preservation. However, in
the modelware space, there is not yet an operation-based approach that provides support for
recording the model migration.

4.9.2 Classification
We identify issues in the existing approaches of the modelware space by analyzing

their classification. From these issues, we derive the classification of the approach
that we target which is shown in Table

Table 4.8: Classification of our approach

Evolution Migration Evaluation
Approach Specific. ‘ Source || Coupling ‘ Language ‘ Target ‘ Exec.
Operation-based
Our approach Ecore H imperative ‘ recorded H extendable ‘ new TL H in-place ‘ offline H case study

Evolution. Since we decided in favor of an operation-based approach due to the re-
quirements, our approach needs to specify the evolution imperatively. To preserve the
model migration together with the metamodel evolution, we need to use a recorded
evolution as source. However, recording approaches are relatively rare in all tech-
nical spaces, and especially in the modelware space, there is not yet a recording ap-
proach.

Migration. While matching approaches in the modelware space allow their users
to overwrite and extend couplings, the existing operation-based approaches do not
yet provide comparable mechanisms. However, the history of the operation-based
approaches in the object-oriented dataware space shows that operation-based ap-
proaches can be overwritable and extendable. As a consequence, we need to trans-
fer these ideas—which are necessary to fulfill the requirements—to the modelware
space. Since they are based on existing exogenous model transformation languages,
all the approaches in the modelware section only perform the migration out-of-place.
However, the operation-based approaches in the dataware space usually perform the
migration in-place, due to the better performance. To support in-place migration, we
cannot use an existing transformation language, but need to build a new one. All the
approaches in the modelware space execute the migration only offline, and not online
like most of the approaches of the dataware space. However, online migration is not
needed, since models do not need to be as highly available as databases.

102

4. State of the Art

4.10. Summary

Evaluation. The survey showed that most coupled evolution approaches are not reg-
ularly evaluated by applying them to real-life evolutions. This is common to all tech-
nical spaces, but especially dataware which is the most researched technical space
does not provide much empirical evidence. Manual specification and matching ap-
proaches are evaluated more often than operation-based approaches, as they can be
easier applied to already existing evolutions of intensional definitions. Therefore,
even if operation-based approaches are the most promising category for fulfilling the
goals, we cannot be sure that they really work in practice. In a nutshell, empirical ev-
idence is necessary to demonstrate the applicability of operation-based approaches
in practice.

4.10 Summary

In each technical space, various approaches to coupled evolution have been pro-
posed. But it is largely unknown how these approaches relate to each other. To
alleviate this, we performed a systematic literature review on coupled evolution ap-
proaches. We were able to derive a classification scheme which is independent of
technical spaces, that is we can classify approaches from the different technical spaces
along the same criteria. We showed how the various approaches can be classified
according to this model. We then relied on this classification to determine common-
alities and differences between the approaches. Finally, we motivated our approach
from the issues of the existing modelware approaches as well as from the lessons
learned from other technical spaces.

We decided in favor of an operation-based approach which records the coupled evo-
lution as a sequence of operations. Each coupled operation encapsulates a combi-
nation of metamodel evolution and reconciling model migration. From the iden-
tified approaches, operation-based approaches are best suited to address both the
challenges of automation and semantics preservation. Concerning automation, cou-
pled operations can be either specified manually—to cater for complex migrations,
or reused—to automate recurring migrations. Concerning semantics preservation,
the intention behind the metamodel evolution is preserved by recording the model
migration together with the metamodel evolution. The operation-based approaches
currently existing in the modelware space do not support manual specification of
coupled operations, recording the coupled evolution, in-place migration and are not
yet implemented nor evaluated.

103

Chapter

COPE - Coupled Evolution of
Metamodels and Models

Currently, to our best knowledge, there is no approach that combines both the
desired level of reuse and expressiveness for defining model migrations. To alleviate
this, we present COPE, an integrated approach to model the coupled evolution of
metamodels and models. COPE is based on a language that provides means to
combine metamodel adaptation and model migration into so-called coupled oper-
ations. The stated requirements are fulfilled by two kinds of coupled operations:
reusable and custom coupled operations. A reusable coupled operation allows the
reuse of recurring coupled operations across metamodels. COPE already comes
with an extensive library of reusable coupled operations that cover many migration
semantics. A custom coupled operation can be manually defined by the language
engineer for complex migrations that are specific to a metamodel. A language his-
tory keeps track of the consecutively performed coupled operations. This chapter is
partly based on [Herrmannsdoerfer et al., 2008b], [Herrmannsdoerfer et al., 2009a]],
[Herrmannsdoerfer and Ratiu, 2009], [Herrmannsdoerfer and Ratiu, 2010] and
[Herrmannsdoerfer et al., 2010b].

Contents
51 _COPEinaNutshelll 106
[5.2 Library of Reusable Coupled Operations|. 116
[5.3 Language to Specify the Coupled Evolution| 131
[5.4 Limitations of Automating Model Migration| 140
55 Summaryl. e e e e e 148

In Section 5.1| (COPE in a Nutshell), we present the principles behind COPE. We in-
troduce the extensive library of reusable coupled operations in Section [5.2] (Librarij
of Reusable Coupled Operations). In Section [5.3| (Language to Specify the Coupled Evolu-
tion)), we explain in more detail the language to implement the reusable and custom
coupled operations. We identify limitations of automating model migration in Sec-
tion [5.4] (Limitations of Automating Model Migration)), before we conclude in Section

Summary).

105

5.1. COPE in a Nutshell 5. COPE - Coupled Evolution

5.1 COPE in a Nutshell

In this section, we give an overview over COPE’s language to specify the coupled
evolution of metamodels and models. This language provides concepts to fulfill
both requirements presented in Chapter 3| (State of the Practice: Automatability of Model]
[Migration): reuse of recurring migration knowledge and expressiveness to cater for
metamodel-specific migrations. Reuse is provided by an abstraction mechanism that
allows language engineers to encapsulate both metamodel adaptation and model mi-
gration in a metamodel-independent way. Expressiveness is provided by embedding
primitives for metamodel adaptation and model migration into a Turing-complete
language.

From our experience, language engineers prefer to use the metamodel editor over
specifying the coupled evolution in this language. Consequently, COPE provides
further abstraction from this language by a non-invasive integration into a meta-
model editor. For simplicity of presentation, in this chapter, we restrict ourselves to

the language, and present the tool support in Chapter [6| (Tool Support).

5.1.1 Running Example

Throughout this section, we use a state machine metamodel as a running example.
Figure[5.1|shows the metamodel before and after adaptation as a UML class diagram
[Object Management Group, 2009]. In release 0 of the metamodel, a State has a name
and may be decomposed into sub states through its subclass CompositeState. A
Transition belongs to its source state and refers to a target state, and is activated by a
triggering event. When a state is entered, a sequence of actions is performed as effect,
and in case of a composite state, an initial state is entered. The trigger thus defines
the input that the state machine consumes, and the effect the output that the state
machine produces.

State P * Transition * State * Transition
- outgoing [- state - outgoing [-
name: String 1 trigger: String 1 | hame: String _ _ 1 | trigger: String

*
state ;
effect[*]: String target initial }L 1. T target Leffect[*] String 1.}

1
initial

CompositeState CompositeState

(a) Release 0 (b) Release 1

Figure 5.1: Running example adaptation

For release 1 of the metamodel, the following adaptations are performed:

1. The state machine is changed from a Moore to a Mealy machine. In Moore
machines, the effect of the state machine only depends on the current state
[Moore, 1956]. In contrast, the effect of the state machine depends also on the

Tn Figure the differences are indicated by numbered, dashed boxes.

106

5. COPE - Coupled Evolution 5.1. COPE in a Nutshell

trigger in Mealy machines [Mealy, 1976]. Therefore, we move the attribute ef-
fect from State to Transition.

2. Regions are introduced to support concurrency within states. Therefore, we in-
sert the class Region. We further introduce the new composite reference region
so that a composite state can define a number of concurrent regions. Finally,
we move the composite reference state and the reference initial to the new class
Region, as regions are now composed of sub states.

In the following, we subsequently specify the coupled evolution in COPE’s language
in order to be able to migrate existing models in response to these adaptations.

5.1.2 Incremental Coupled Evolution

In practice, a modeling language is evolved by incremental adaptations to the meta-
model. There are a number of primitive metamodel changes like create element,
rename element, delete element, and so on. One or more such primitive changes
compose a specific metamodel adaptation, like in our example the introduction of re-
gions. COPE allows language engineers to attach information about how to migrate
corresponding models in response to a metamodel adaptation. Consequently, the
intended model migration can already be captured while adapting the metamodel,
thus preventing the loss of intention. In COPE, such a combination of metamodel
adaptation and model migration is called coupled operation:

Definition 5.1 (Coupled Operation). A coupled operation co is a tuple (adm, mig) with
e a metamodel adaptation adm : MM U {L} - MM U{L}, and
e a model migration mig : M — M.

It is applicable to a metamodel mm € MM if and only if it produces a defined metamodel,
i.e. adm(mm) # L. CO denotes the set of all possible coupled operations, i.e. co € CO.

In particular, adm (L) = L always holds. Coupled operations can be easily composed
by simply sequencing them:

Definition 5.2 (Sequential Composition). The sequential composition coa o coy of two
coupled operations coy = (admy, migy) and coy = (adma, migs) yields a coupled operation
co = (adm, mig) with

o metamodel adaptation adm = adms o adm;, and

e model migration mig = migs o mig;.

A coupled operation is modular in the sense that the corresponding model migration
can be specified independently of any coupled operation that was executed before or
after the coupled operation. Due to their modularity, a comprehensive evolution
can be decomposed into manageable coupled operations, thus ensuring scalability.
The notion of coupled operation qualifies to fulfill the requirements of reuse and ex-
pressiveness. Certain coupled operations can be reused resulting in reusable coupled
operations, while others have to be specified manually resulting in custom coupled op-
erations.

107

5.1. COPE in a Nutshell 5. COPE - Coupled Evolution

Example 5.1 (Sequential Composition). Figure[5.2]illustrates how coupled operations can
be used to compose the coupled evolution of our running example. The first coupled oper-
ation changes the state machine metamodel from a Moore to a Mealy machine. Since the
corresponding model migration is specific to the metamodel as explained in Section [3.2.3]
(Model-Independent, Metamodel-Specific Coupled Change), it has to be performed by a cus-
tom coupled operation. The last two coupled operations introduce concurrent regions to the
metamodel and are invocations of reusable coupled operations. The invocation of Extract
Class extracts the sub states including the initial state of a composite state into the new class
Region. The invocation of Generalize Reference generalizes the multiplicity of the new
reference from CompositeState to Region to enable concurrent regions.

Reusable Coupled Extract Class Generalize Reference

Operations

Language History
Instantiation
Release 0 Release 1
Moore to Mealy Extract Class Generalize R.

Metamo.del. s . 5 o . b 5 G .o G
Adaptation | |
Model ‘ ‘

Migration | " .° ;i o e ' 2

Custom Coupled
Operation
1. 2.

Figure 5.2: Language history for the running example

Keeping track of the coupled operations that lead from one metamodel release to the
next results in a language history. The language history contains enough information
to migrate a model from the metamodel version to which it conforms to any subse-
quent metamodel release. Hence, it is particularly suited to migrate models which
are not accessible while performing the metamodel adaptation. This is the case when
the modeling language and the models are developed by different distributed par-
ties.

Example 5.2 (Language History). Figure[5.2)illustrates the language history for our run-
ning example which consists of the sequence of coupled operations together with markers for
the different releases.

5.1.3 Coupled Operations

Usually, the metamodel adaptation is manually performed in the metamodeling tool
used for authoring the metamodel. The model migration can be manually encoded

108

5. COPE - Coupled Evolution 5.1. COPE in a Nutshell

as a model transformation which transforms the old model to a new model conform-
ing to the adapted metamodel. As explained in Section [2.5.5 (Model Transformatior|
[for Model Migration)), we distinguish between exogenous and endogenous model trans-
formation, depending on whether source and target metamodel of the transforma-
tion are different or not [Mens and Van Gorp, 2006]. Exogenous model transforma-
tion requires to specify the mapping of all elements from the source to the target
metamodel. As typically only a subset of metamodel elements are modified by the
metamodel adaptation, a model migration specified as an exogenous transformation
contains a high fraction of identity rules. Concerning this aspect, endogenous trans-
formation is better suited to the nature of model migration, as it only has to address
those metamodel elements for which the model needs to be modified. However,
endogenous transformation requires the source and the target metamodel to be the
same which is not the case for metamodel evolution. Hence, conventional languages
for model transformation are not well suited to specify a model migration.

Instead, model migration is best served by a language that directly combines the
properties of both exogenous and endogenous model transformation: one needs to
be able to specify the transformation from a source metamodel to a different target
metamodel, but only for the metamodel elements for which a migration is required.
To achieve this, we propose to soften the conformance between metamodel and its
model during coupled evolution: the metamodel can first be adapted regardless of
its models, and the model can then be migrated to the adapted metamodel. As a con-
sequence, only the differences need to be specified for both metamodel adaptation
and model migration. However, softening the conformance during model migration
comes at the price that a model may not always conform to its metamodel. To ensure
conformance after a certain change to metamodel and model, we require a coupled
operation to enforce the following properties:

Definition 5.3 (Preservation of Metamodel Conformance). A coupled operation co =
(adm,mig) preserves the conformance of a metamodel mm € MM to the metametamodel
if the adapted metamodel adm(mm) conforms to the metametamodel, in case the original
metamodel mm conforms to the metametamodel:

mm € MM = adm(mm) € MM

Definition 5.4 (Preservation of Model Conformance). A coupled operation co =
(adm,mig) preserves the conformance of a model m € M to the metamodel mm € MM
if the migrated model mig(m) conforms to the adapted metamodel adm(mm), in case the
original model m conforms to the original metamodel mm:

m E mm = mig(m) E adm(mm)

Both metamodel and model conformance thus have to hold only at operation bound-
aries, i.e. the metamodel may not conform to the metametamodel or the model may
not conform to the metamodel during an operation.

We have implemented COPE on top of the Eclipse Modeling Framework (EMF)
[Steinberg et al., 2009] which is one of the most widely used metamodeling tools (see
Section [2.2.6| (Eclipse Modeling Framework)). In this implementation, the model con-
formance is softened by a generic instance model which can express every model

109

5.1. COPE in a Nutshell 5. COPE - Coupled Evolution

and is only used during migration. The implementation dynamically ensures meta-
model and model conformance at operation boundaries, i.e. when the operation is
executed on a metamodel and model. To specify both metamodel adaptation and
model migration, COPE provides a number of expressive primitives which operate
on the generic instance model. These primitives can be invoked from within the
general-purpose scripting language Groovy [Koenig et al., 2007] in order to take ad-
vantage of its expressiveness. For more information about the generic instance model

and a complete list of the primitives, we refer the reader to Section
[Specify the Coupled Evolution]).

5.1.4 Custom Coupled Operations

Expressiveness is provided by custom coupled operations, which have to be specified
manually by the language engineer. Since custom coupled operations are specified
manually for a certain metamodel change, they are not universally applicable:

Definition 5.5 (Custom Coupled Operation). A custom coupled operation is a coupled
operation co = (adm,mig) that is not universally applicable:

e there is a metamodel to which the coupled operation is not applicable:

Imm’ € MM : adm(mm') = L

e it provides a specific model migration for each metamodel to which it is applicable:

Vmm € MM : adm(mm) € MM = mig € {Lm — Ladgmmm)}

In doing so, the language engineer can apply a number of primitives for both meta-
model adaptation and model migration. The primitives are complete in the sense that
every possible metamodel adaptation as well as model migration can be specified
with them. Completeness can be shown by first destroying the source metamodel
or model, and then rebuilding the target metamodel or model from scratch as done
in [Banerjee et al., 1987] for database schema evolution. As these primitives are em-
bedded into the Turing-complete scripting language Groovy, the resulting language
is expressive enough to even cater for very specific model migrations.

Example 5.3 (Custom Coupled Operation). Listing |5.1| shows the custom coupled op-
eration that was performed to change the state machine from a Moore to a Mealy machine.
More specifically, the depicted custom coupled operation consists of a metamodel adaptation
and a reconciling model migration. This example also shows that we only have to specify the
differences for both metamodel and model in this language.

Metamodel adaptation. The metamodel adaptation only moves the attribute effect from
class State to class Transition (line 3). Note that—even though the method is called add—
the attribute is also removed from the old parent class, since eStructuralFeatures is a com-
position, allowing a feature to be contained only once. The attribute is assigned to the variable
effectAttribute in order to be able to access its values for states (line 2), even though the at-
tribute is no longer known to the class State. Note how metamodel elements can be accessed
by means of fully qualified names (e.g. State.effect).

110

© ® N G R W N =

NCORON N R e e e e ;
BN R S ®» 9o @ & ® N = o

5. COPE - Coupled Evolution 5.1. COPE in a Nutshell

Listing 5.1: Custom coupled operation Moore to Mealy

// metamodel adaptation
def effectAttribute = State.effect
Transition.eStructuralFeatures.add(effectAttribute)

// model migration

getEffect = { transition ->
def effect = []
def state = transition.target
effect.addAll (state.get (effectAttribute))

while (state.instanceOf (CompositeState)) {
effect.addAll (state.initial.get (effectAttribute))
state = state.initial

}

return effect

}

for (transition in Transition.allInstances) {
def effect = getEffect (transition)
transition.effect = effect

}

for (state in State.allInstances) {
state.unset (effectAttribute)
}

Model migration. A Moore machine is migrated to a Mealy machine by moving the effect
of each state to its incoming transitions. However, in the advent of composite states as well
as initial states, the model migration is more involved. When a state machine transitions to a
composite state, it not only enters the composite state but also its initial state. Consequently,
we also have to take the effect of the initial state into account when calculating the effect of
the transition. Note that this may have to be applied recursively, as the initial state may
again be a composite state, and so on. The model migration encoded in COPE’s language is
thus divided into two passes: First, we set the effect for each transition based on the states
(lines 17-20), and then we remove the effect from each state (lines 22-24). The language
provides the primitive alllnstances to be able to iterate over all instances of a certain type
(lines 17 and 22). The effect of a transition is set by using transition.effect = effect which is
a short form for transition.set(Iransition.effect, effect) (line 19). The effect of a transition
is calculated by means of the helper method getEffect (lines 6-15). As explained before,
the effect consists of the effect of the transition’s target state as well as the effects of the
initial states. transition.targetis the short form for transition.get(Transition.target) (line 8).
However, the short forms can only be used, in case a feature of that name is currently defined
by the instance’s type. As the attribute effectis no longer defined for class State, we thus have
to use state.get(effectAttribute) to be able to access the effect of a state (line 9). Furthermore,
the primitive instanceOf can be used to check whether a state is of type CompositeState
(Iine 10). The effect of a state is removed by using a primitive to unset the effectAttribute
(line 23).

111

5.1. COPE in a Nutshell 5. COPE - Coupled Evolution

5.1.5 Reusable Coupled Operations

Reuse is provided by an abstraction mechanism to generalize coupled operations
into so-called reusable coupled operations:

Definition 5.6 (Reusable Coupled Operation). A reusable coupled operation rco is a pa-
rameterized function that is defined by

e a set of possible parameter assignments P, and

e a function rco : P — CO that maps a parameter assignment p € P to a coupled
operation rco(p) = (adm,mig).

It is thus applicable to multiple metamodels and in different contexts within a metamodel.

Reusable coupled operations are specified independently of the metamodel and en-
capsulate both metamodel adaptation and reconciling model migration. They can be
reused across metamodels, thus promising to significantly reduce effort associated
with metamodel adaptation and model migration. COPE allows language engineers
to declare new reusable coupled operations and make them available through a Ii-
brary. The language employs the abstraction mechanism of procedures in Groovy in
order to declare reusable coupled operations. A reusable coupled operation is de-
clared independently of the specific metamodel by means of parameters. The types
of the parameters are thus elements from the metametamodel which is Ecore in our
EMF-based implementation. Reusable coupled operations can be instantiated by in-
voking the procedure with parameters assigned to specific metamodel elements. The
applicability of a reusable coupled operation can be restricted by preconditions in the
form of assertions.

Example 5.4 (Reusable Coupled Operation). The introduction of concurrent regions can
be implemented completely with reusable coupled operations.

Instantiation. Listing |5.2| shows the invocation of the reusable coupled operations Extract
Class and Generalize Reference, which correspond to the second adaptation in our exam-
ple history. Extract Class is invoked to extract the references state and initial from Com-
positeState to the new class Region (line 1). Then, the extracted region is accessible from
a composite state through the new single-valued containment reference named region. Gen-
eralize Reference is invoked to increase the multiplicity of this new reference in order to
enable multiple concurrent regions (line 2). Note that by invoking reusable coupled opera-
tions, the language engineer does not have to specify neither metamodel adaptation nor model
migration.

Listing 5.2: Instantiation of reusable coupled operations
1 extractClass ([CompositeState.state, CompositeState.initial],
"Region", "region")
2 generalizeReference (CompositeState.region, Region, 1, INF)

Declaration. Listing shows the declaration of the reusable coupled operation Extract
Class which we just invoked to introduce regions into our example metamodel. This reusable
coupled operation—which recurred several times in our case studies—extracts a number of
features from a context class to a new class. The extracted class is accessible from the context

112

Ul e LN

10
11
12
13

14
15
16
17
18
19

21

22

23
24

5. COPE - Coupled Evolution 5.1. COPE in a Nutshell

class through a new single-valued containment reference. The reusable coupled operation
declares parameters for the attributes and references to be extracted (features), the name
of the new class (className) and the name of the new reference (referenceName) (line 1).
Several preconditions in the form of assertions restrict the applicability of the reusable coupled
operation, e.g. every feature has to belong to the same context class (lines 6-9).

Listing 5.3: Declaration of reusable coupled operation Extract Class

extractClass = {List<EStructuralFeature> features, String
className, String referenceName ->

def EClass contextClass = features|[0].eContainingClass

// preconditions
assert features.every{feature -> feature.eContainingClass ==
contextClass}
"The features have to belong to the same class"
assert contextClass.getEStructuralFeature (referenceName) == null
| | features.contains (contextClass.getEStructuralFeature (
referenceName))
"A feature with the same name already exists"

// metamodel adaptation

def extractedClass = newEClass (className)

def reference = contextClass.newEReference (referenceName,
extractedClass, 1, 1, CONTAINMENT)

extractedClass.eStructuralFeatures.addAll (features)

// model migration
for (contextInstance in contextClass.allInstances) {
def extractedInstance = extractedClass.newInstance ()
contextInstance.set (reference, extractedInstance)
for (feature in features) {
extractedInstance.set (feature, contextInstance.unset (
feature))

Metamodel adaptation. The metamodel adaptation creates the extracted class (line 12)
and the new single-valued containment reference from the context class to the extracted
class (line 13). Then, the extracted features are moved from the context class to the extracted
class (line 14). For the metamodel adaptation, we use the primitives of the metametamodel
implementation together with some high-level primitives to create new metamodel elements
(e.g. newECIass). The reusable coupled operation is simplified in the sense that it leaves out
the package in which the extracted class is created.

Model migration. The model migration pretty much modifies the model accordingly. For
each instance of the context class (contextinstance), a new instance of the extracted class
is created (line 18) and associated to the context instance through the new reference (line 19).
Then, all the values of the extracted features are moved from the context instance to the new
instance (lines 20-22). Note that due to the generic instance model the context instance’s
value of a feature can still be accessed by the unset method, even though the feature has

113

5.1. COPE in a Nutshell 5. COPE - Coupled Evolution

already been moved to the extracted class (line 21).

5.1.6 Classification of Coupled Operations

Coupled operations can be classified according to several properties. We are inter-
ested in language preservation, model preservation, and bidirectionality. Therefore,
we stick to a simplified version of the terminology from [Wachsmuth, 2007].

Language Preservation. A metamodel is an intensional definition of a modeling
language. Its extension is a set of conforming models. When a coupled operation is
applied to a metamodel, the metamodel adaptation has an impact on the language
defined by the metamodel—the set of conforming models. We distinguish different
classes of operations according to this impact [Wachsmuth, 2007

Definition 5.7 (Refactoring / Constructor / Destructor). A coupled operation co =
(adm,mig) is called a refactoring / constructor / destructor if there exists a bijective / in-
jective / surjective mapping between the languages defined by the original and evolved meta-
model:

Ymm € MM : adm(mm) # L —
Imap € {Linm — Ladm(mm)} : map bijective / injective / surjective

A reusable coupled operation rco : P — CO is called a refactoring / constructor / destructor
if rco(p) is a refactoring / constructor / destructor for all p € P.

Language preservation properties can be used to reason about the impact on lan-
guage expressiveness. In the technical space of grammarware [Klint et al., 2005], op-
erations have been successfully used in [Limmel and Zaytsev, 2009b]] to reason about
relationships between different versions of the Java grammar.

Model Preservation. Model preservation properties indicate whether migration is
needed:

Definition 5.8 (Model-Preserving). A coupled operation co = (adm, mig) is called model-
preserving if all models conforming to the original metamodel also conform to the evolved
metamodel without migration:

mig = id AYmm € MM, adm(mm) # L : Lim C Lagm(mm)

A reusable coupled operation rco : P — CO is called model-preserving if rco(p) is model-
preserving for all p € P.

Thus, model-preserving operations do not require migration. An operation is model-
migrating if models conforming to an original metamodel might need to be migrated
in order to conform to the evolved metamodel.

Definition 5.9 (Safely Model-Migrating). A coupled operation co = (adm, mig) is called
safely model-migrating if the migration preserves distinguishability, i.e. different models

114

5. COPE - Coupled Evolution 5.1. COPE in a Nutshell

(conforming to the original metamodel) are migrated to different models (conforming to the
evolved metamodel):

Vmm € MM, adm(mm) # L : mig injective for Lom — Ladm(mm)

A reusable coupled operation rco : P — CO is called safely model-migrating if rco(p) is
safely model-migrating for all p € P.

In contrast, an unsafely model-migrating operation might yield the same model when
migrating two different models. Model preservation properties thus indicate to what
extent the model migration preserves information in models. If loss of information
should be avoided, the language engineer should only apply model-preserving or
safely model-migrating operations.

Classification of operations with respect to model preservation is related to the clas-
sification with respect to language preservation: Refactorings and constructors are
either model-preserving or safely model-migrating operations, as the migration can
be injective. Destructors are unsafely model-migrating operations, as the migration
cannot be injective.

Bidirectionality. Another property we are interested in is the reversibility of adap-
tation and migration. Bidirectionality properties indicate that an operation can be
safely undone on the metamodel and model level [Marschall, 2005]. On the meta-
model level, the adaptation needs to be undone:

Definition 5.10 (Inverse). A coupled operation coy = (admsa, migs) is called the inverse of
another operation coy = (admy, migy) iff their sequential composition does not change the
metamodel:

adms o admq = id
A reusable coupled operation rcop : Py — CO is called the inverse of another operation
rcoy : P1 — CO iff rcoy is the inverse of rcoy for all parameter settings:

Vp1 € Py, 3pa € Py = recoa(ps) is inverse of rcoq (p1)

A reusable coupled operation may also be undone by itself:

Definition 5.11 (Self Inverse). A reusable coupled operation rco : P — CQO is called a
self inverse iff a second application of the operation—possibly with other parameters—always
yields the original metamodel:

Vp € P, rco(p) = (adm,mig) : ' € P, reo(p’) = (adm’,mig’) : adm’ o adm = id

On the model level, the migration also needs to be undone:

Definition 5.12 (Safe Inverse). A coupled operation cop = (adma, migs) is called the safe
inverse of another coupled operation coy = (admq, mig1) iff cos is the inverse of coy and
their sequential composition coy o coy is model-preserving. A reusable coupled operation
rcog 1 Po — CO is called the safe inverse of another operation rcoy : P1 — CO iff rcoy is
the safe inverse of rcoy for all parameter settings:

Vp1 € Pi, dp2 € Pa = rcoa(pe) safe inverse of rcoq (p1)
Bidirectionality can be used to invert an evolution that has been specified erroneously

earlier. Performed operation applications can be undone with different levels of
safety by applying the inverse operations.

115

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

5.2 Library of Reusable Coupled Operations

The success of an operation-based approach highly depends on the library of
reusable coupled operations it provides [Rose etal., 2009]. The library of an
operation-based approach needs to fulfill a number of requirements. A library
should seek completeness so as to be able to cover a large set of coupled evolution
scenarios. However, the higher the number of reusable coupled operations, the more
difficult it is to find an operation in the library. Consequently, a library should also
be organized in a way that it is easy to select the right reusable coupled operation for
the change at hand.

5.2.1 Origins of Reusable Coupled Operations

The reusable coupled operations are either motivated from the literature or from the
case studies that we performed.

Literature. First, reusable coupled operations originate from the literature on cou-
pled evolution in modelware, object-oriented dataware and APIware.

Modelware. Wachsmuth first proposes an operation-based approach for metamodel
evolution and classifies a set of operations according to the preservation of meta-
model expressiveness and existing models [Wachsmuth, 2007]. Gruschko et al. en-
vision a matching approach and therefore classify all primitive changes according
to their impact on existing models [Becker et al., 2007, |Burger and Gruschko, 2010].
Cicchetti et al. list a set of composite changes which they are able to detect using
their metamodel matching approach [Cicchetti et al., 2008].

Object-oriented dataware. Banerjee et al. present a complete and sound set of primitives
for schema evolution in the object-oriented database system ORION and characterize
the primitives according to their impact on existing databases [Banerjee et al., 1987.
Bréche introduces a set of high-level operations for schema evolution in the object-
oriented system Oz and shows how to implement them in terms of primitive opera-
tions [Breche, 1996]. Pons and Keller propose a three-level catalog of operations for
object-oriented schema evolution which groups operations according to their com-
plexity [Pons, 1997]. Claypool et al. list a number of primitives for the adaptation of
relationships in object-oriented systems [Claypool et al., 2000].

APIware. Fowler presents a catalog of operations for the refactoring of object-oriented
code [Fowler, 1999]. Dig and Johnson show—by performing a case study—that most
changes on object-oriented code can be captured by a rather small set of refactoring
operations [Dig and Johnson, 2006].

Case Studies. Second, reusable coupled operations originate from the case studies
that we performed as part of this thesis.

BMW. In Chapter | (State of the Practice: Automatability of Model Migratior)), we present
an empirical study on the evolution of two industrial metamodels from BMW Car IT
that shows that most of the changes can be captured by reusable coupled operations:
Flexible User Interface Development (FLUID) for the specification of automotive user

116

5. COPE - Coupled Evolution 5.2. Library of Reusable Coupled Operations

interfaces, and Test Automation Framework - Generator (TAF-Gen) for the generation
of test cases for these user interfaces.

Evaluation. In Chapter [7] (Case Studies), we present a number of case studies that
evaluate our approach COPE. COPE has been used to reverse engineer the operation
history of a number of metamodels: Palladio Component Model (PCM) for the spec-
ification of software architectures (see Section |7.1| (GMF Generator Model and Palladio]
[Component Model)), and Graphical Modeling Framework (GMF) for the model-based
development of diagram editors (see Section (Graphical Modeling Framework)).
Currently, COPE is applied to forward engineer the operation history of a number
of metamodels: Unicase for UML modeling and project management (see Section
(Unicase Unified Model)), and Quamoco for modeling the quality of software products
(see Section[7.3|(Quamoco Quality Metamodel)). We also participated with COPE in the
migration case of the Transformation Tool Contest (TTC) (see Section[7.5]
[tzon Tool Contest)).

5.2.2 Overview of the Library

In the following, we present a library of 61 reusable coupled operations that we con-
sider complete for practical application. First, we included all coupled operations
found in nine related papers as well as all coupled operations identified by perform-
ing seven real-life case studies. Second, we added coupled operations that transfer
the semantics of existing coupled operations to other metamodeling constructs, if
possible. Third, we ensured that an inverse operation is included in the catalog for
each coupled operation.

Organization. In the following, we explain the coupled operations in groups which
help users to navigate the catalog. Figure[5.3]illustrates the organization of the library.
We start with primitive operations which perform an atomic metamodel evolution
step that can not be further subdivided. Here, we distinguish structural primitives
which create and delete metamodel elements and non-structural primitives which
modify existing metamodel elements. Afterwards, we continue with composite op-
erations. These can be decomposed into a sequence of primitive operations which
has the same effect at the metamodel level but not necessarily at the model level. We
group complex operations according to the metamodeling techniques they address—
distinguishing specialization and generalization, inheritance, and delegation operations—
as well as their semantics—distinguishing replacement, and merge and split operations.

Conventions. Each group is discussed separately in the subsequent subsections. For
each group, a table provides an overview over all operations in the group. Using
the classifications from Section [5.1.6| (Classification of Coupled Operations), the table
classifies each reusable coupled operation according to language preservation into
refactoring (r), constructor (c) and destructor (d) as well as according to model preser-
vation into model-preserving (p), safely (s) and unsafely (u) model-migrating. The
table further indicates the safe (s) and unsafe (u) inverse of each operation by refer-
ring to its number. Finally, each paper and case study has a column in each table.
A bullet point (e) in such a column denotes the occurrence of the operation in the
corresponding paper or case study. Papers are referred to by citation, while case

117

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

Reusable Coupled
Operation

[Primitive I I Composite]
Structural Non-Structural Speuallz_atl(_)n / Replacement
Generalization
Inheritance Merge / Split]
Delegation —

o

Figure 5.3: Organization of the library

studies are referred to by the abbreviations given in Section |5.2.1| (Origins of Reusable|
|Coupled Operations). For each coupled operation, we discuss its semantics in terms of
metamodel evolution and model migration.

5.2.3 Structural Primitives

Structural primitive operations modify the structure of a metamodel, i.e. create or
delete metamodel elements. Creation operations are parameterized by the specifica-
tion of a new metamodel element, and deletion operations by an existing metamodel
element.

Creation of non-mandatory metamodel elements (packages, classes, optional fea-
tures, enumerations, literals and data types) is model-preserving. Creation of manda-
tory features is safely model-migrating. It requires initialization of the features’ val-
ues using default values or default value computations.

Deletion of metamodel elements requires deleting instantiating model elements,
such as objects and links, by the migration. However, deletion of model elements
poses the risk of migration to inconsistent models: For example, deletion of objects
may cause links to non-existent objects, and deletion of references may break object
containment. Therefore, deletion operations are bound to metamodel level restric-
tions: Packages may only be deleted, when they are empty. Classes may only be
deleted, when they are outside inheritance hierarchies and are targeted neither by
non-composite references nor by mandatory composite references. Several complex
operations discussed in subsequent subsections can deal with classes not meeting
these requirements. References may only be deleted, when they are neither compos-
ite, nor have an opposite. Enumerations and data types may only be deleted, when
they are not used in the metamodel and thus obsolete.

Deletion operations of elements which may have been instantiated in the model (with

118

5. COPE - Coupled Evolution 5.2. Library of Reusable Coupled Operations

Table 5.1: Structural primitives

Classific. Modelw. || OO dataware || APIw. || BMW Evaluation
= O
g z|5 gl IR
I == 0
2|2 S U
2| SR =y 2
215 2 HEEENR s 1E
a3 ST SHERENE
@ <5} =20 PR L =l | = ==
% 5 Al EAE e = .| 8
Sl 2 |1 IIIE Ll lellE]lel 9 2| g
80 | 3 o} EllcIE! NEHEHS TR SIE |28l es|u
: g1 2 |IE&|)|ElE| &gz 21985 & |5
| Operation Name 4 |=| & ||eEY e ERI|IEE|E = |EC O =
1 | Create Package r|p| 2s . o |l
2 | Delete Package rip| 1s . .
3 | Create Class clp| 4s ||[e| e | @]l @ o o AEIK
4 | Delete Class d|{u| 3u o oo |eo e o |le ° °
5 | Create Attribute c|s | 7s . ol e e| o |e/efe|e
6 | Create Reference c|s| 7s AR o e |[o|o|e]|e
7 | Delete Feature d|{u|5/6ul|e|e|e|l e o| o (oo |0 0|0
8 | Create Opposite Reference d|{u| 9u . o || e oo
9 | Delete Opposite Reference c|lp| 8 . o || e .
10 | Create Data Type r|p| 1ls .
11 | Delete Data Type r|p| 10s . .
12 | Create Enumeration r|p| 13s ° o |[e|o|e]|e
13 | Delete Enumeration r|p| 1ls . .
14 | Create Literal c|p| 15 . .
15 | Merge Literal u | 14u . .

the exception of Delete Opposite Reference) are unsafely model-migrating due to loss
of information. Deletion provides a safe inverse to its associated creation operation.
Since deletion of metamodel elements which may have been instantiated in a model
is unsafely model-migrating, creation of such elements provides an unsafe inverse to
deletion—lost information cannot be restored.

Opposite References. Creating and deleting references which have an opposite are
different from other creation and deletion operations. Create Opposite Reference re-
stricts the set of valid links and is thus an unsafely model-migrating destructor,
whereas Delete Opposite Reference removes a constraint from the model and is thus
a model-preserving constructor.

Data Types, Enumerations and Literals. Create / Delete Data Type and Create / Delete
Enumeration are refactorings, as restrictions on these operations prevent usage of
created or deleted elements. Deleting enumerations and data types is thus model-
preserving. Merge Literal deletes a literal and replaces its occurrences in a model by
another literal. Merging a literal provides a safe inverse to Create Literal.

5.2.4 Non-Structural Primitives

Non-structural primitive operations modify a single, existing metamodel element,
i.e. change properties of a metamodel element. All non-structural operations take
the affected metamodel element—their subject—as parameter.

119

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

Table 5.2: Non-structural primitives

Classific. Modelw. || OO dataware || APIw. || BMW Evaluation
§ _ S
= o] || =]
< | & — [[1D || led = N
z |2 SHENEHE < o
@S SIS | N
tel 1EREIE R E
a3 ST SHERENE
o | @ 2=l RIS o)
elad o [EIalBE <l Bl 5 E g gl 8
S| 2 |I]8ls SRS IS L&Al O < | &
AR EetE S EESURER EEEETE
| Operation Name S|S| E [Eelleldal|eglz2 & |L5|58|E
1 | Rename r|s|1s oo |0 e o (oo |[e|o 0|0 e
2 | Change Package r|s|2s . o| o ||e .
3 | Make Class Abstract d|ul|4u . ° . o |e
4 | Drop Class Abstract c|lp| 3s . . .
5 | Add Supertype c|p| 6s . . o |[o|e]|e]|e
6 | Remove Supertype d|u]|5u . . o |[o|o|0e
7 | Make Attribute Identifier d|u| 8u . .
8 | Drop Attribute Identifier clp| 7s ° . °
9 | Make Reference Composite d | u|10u ° ° o | o ° .
10 | Switch Reference Composite c|s |9 . . . ol o .
11 | Make Reference Opposite d|u|12u ° ° .
12 | Drop Reference Opposite c|p|1ls

Change Package can be applied to both package and type. Additionally, the value-
changing operations Rename, Change Package and Change Attribute Type are parame-
terized by a new value. Make Class Abstract requires a subclass parameter indicating
to which class objects need to be migrated. Switch Reference Composite requires an
existing composite reference as target.

Naming and Packaging. Packages, types, features and literals can be renamed. Re-
name is safely model-migrating and finds a self-inverse in giving a subject its original
name back. Change Package changes the parent package of a package or type. Like
renaming, it is safely model-migrating and a safe self-inverse.

Classes can be made abstract, requiring migration of objects to a subclass, be-
cause otherwise, links targeting the objects may have to be removed. Consequently,
mandatory features that are not available in the superclass have to be initialized to
default values. Make Class Abstract is unsafely model-migrating, due to loss of type
information, and has an unsafe inverse in Drop Class Abstract.

Super type declarations may become obsolete and may need to be removed. Remove
Supertype S from a class C implies removing values of features inherited from S.
Additionally, references targeting type S, referring to objects of type C, need to be
removed. To prevent breaking multiplicity restrictions, Remove Supertype is restricted
to types S which are not targeted by mandatory references—neither directly, nor
through inheritance. The operation is unsafely model-migrating and can be unsafely
inverted by Add Super Type.

Attributes defined as identifier need to have unique values. Make Attribute Identifier
requires a migration which ensures uniqueness of the attribute’s values and is thus

120

5. COPE - Coupled Evolution 5.2. Library of Reusable Coupled Operations

unsafely model-migrating. In contrast, Drop Attribute Identifier removes the unique-
ness restriction and is thus model-preserving.

References can have an opposite and can be composite. An opposite reference dec-
laration defines the inverse of the declaring reference. References combined with a
multiplicity restriction on the opposite reference restrict the set of valid links. Make
Reference Opposite needs a migration to make the reference set satisfy the added mul-
tiplicity restriction. The operation is thereby unsafely model-migrating. Drop Refer-
ence Opposite removes cardinality constraints from the link set and does not require
migration, thus being model-preserving.

Make Reference Composite ensures containment of referred objects. Since all referred
objects were already contained by another composite reference, all objects must be
copied. To ensure the containment restriction, copying has to be recursive across
composite references (deep copy). Furthermore, to prevent cardinality failures on
opposite references, there may be no opposite references to any of the types of which
objects are subject to deep copying. Switch Reference Composite changes the contain-
ment of objects to an existing composite reference. If objects of a class A were origi-
nally contained in class B through composite reference b, Switch Reference Composite
changes containment of A objects to class C, when it is parameterized by reference b
and a composite reference ¢ in class C. After applying the operation, reference b is
no longer composite. Switch Reference Composite provides an unsafe inverse to Make
Reference Composite.

5.2.5 Specialization / Generalization Operations

Specializing a metamodel element reduces the set of possible models, whereas gener-
alizing expands the set of possible models. Generalization and specialization can be
applied to features and super type declarations. All specialization and generalization
operations take two parameters: a subject and a generalization or specialization tar-
get. The first is a metamodel element and the latter is a class or a multiplicity (lower
and upper bound).

Generalization of features does not only generalize the feature itself, but also gener-
alizes the metamodel as a whole. Feature generalizations are thus model-preserving
constructors. Generalizing a super type declaration may require removal of feature
values and is only unsafely model-migrating. Feature specialization is a safe inverse
of feature generalization. Due to the unsafe nature of the migration resulting from
feature specialization, generalization provides an unsafe inverse to specialization.
Super type generalization is an unsafe inverse of super type specialization which is
a safe inverse vice versa.

Attributes. Specialize Attribute either reduces the attribute’s multiplicity or special-
izes the attribute’s type. When reducing multiplicity, either the lower bound is in-
creased or the upper bound is decreased. When specializing the type, a type con-
version maps the original set of values onto a new set of values conforming to the
new attribute type. Specializing type conversions are surjective. Generalize Attribute
extends the attribute’s multiplicity or generalizes the attribute’s type. Generalizing

121

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

Table 5.3: Generalization / Specialization operations

Classific. || Modelw. || OO dataware || APIw. || BMW Evaluation
§ = (8
= o ||y S 5
< | & — = |1 ||led S N
2|2 SHEIGUE S g
Q < ol 12 N N s o]
N NN | = h - — . 0
g BRIl E
a3 ==/ |8 SR]| @ NI
| & skl e =&l =7 | = 9
1A o IEl B | B e 5= g 2|
Szl 2 llsllElsllglslq &]F|=8] 9 2 g
AR EetEtE =SSR R E A
. S a 2012 =
| Operation Name SIS E|eel|elad bl & |25|5|8|8
1| Generalize Attribute clpl2s)|e|e]|e o o ([o]e .
2 | Specialize Attribute diu|luf/e|e|e . o|e .
3 | Generalize Reference c|lpl4s|e|e|e o o . .
4 | Specialize Reference d|lu|3ufje|e|e o |[o]e oo
5 | Specialize Composite Reference || d | u | 3u . . .
6 | Generalize Supertype d|u|7u . .
7 | Specialize Supertype c| s |6s . . oo (o] .

an attribute’s type involves an injective type conversion. Type conversions are gener-
ally either implemented by transformations for each type to an intermediate format
(e.g. by serialization) or by transformations for each combination of types. The latter
is more elaborate to implement, yet less fragile. Most generalizing type conversions
from type X to y have a specializing type conversion from type y to X as safe inverse.
Applying the composition vice versa yields an unsafe inverse.

References. Similar to attributes, reference multiplicity can be specialized and gen-
eralized. Specialize / Generalize Reference can additionally specialize or generalize the
type of a reference by choosing a sub type or super type of the original type, re-
spectively. Model migration of reference specialization requires deletion of links not
conforming the new reference type. Specialize Composite Reference is a special case of
reference specialization at the metamodel level, which requires contained objects to
be migrated to the targeted subclass at the model level, to ensure composition restric-
tions. Specialize Composite Reference is unsafely model-migrating.

Supertypes. Super type declarations are commonly adapted, while refining a meta-
model.

Example 5.5 (Specialize / Generalize Supertype). Consider the example shown in Fig-
ure in which classes A, B and C are part of a linear inheritance structure and remain

unadapted.
A Specialize A
A Supertype . Z%
| ‘ < Generalize
B c Supertype B c
f[1]: Integer f[1]: Integer

Figure 5.4: Operations Specialize / Generalize Supertype

From left to right, Specialize Supertype changes a declaration of super type A on class C to

122

5. COPE - Coupled Evolution 5.2. Library of Reusable Coupled Operations

B, a sub type of A. Consequently, a mandatory feature fis inherited, which needs the setting
of values by the migration. In general, super type specialization requires addition of feature
values which are declared mandatory by the new super type. From right to left, Generalize
Supertype changes a declaration of super type B on class C to A, a super type of B. In the
new metamodel, feature fis no longer inherited in C. Values of features which are no longer
inherited need to be removed by the migration. Furthermore, links to objects of A that target
class B, are no longer valid, since A is no longer a sub type of B. Therefore, these links need
to be removed, if multiplicity restrictions allow, or adapted otherwise.

5.2.6 Inheritance Operations

Inheritance operations move features along the inheritance hierarchy. Most of them
are well-known from refactoring object-oriented code. There is always a pair of a
constructor and destructor, where the destructor is the safe inverse of the constructor,
and the constructor is the unsafe inverse of the destructor.

Table 5.4: Inheritance operations

Classific. || Modelw. || OO dataware || APIw. || BMW Evaluation
§ — s
= o] || = S
< | & ~iii=NE =1 3\
£ |2 NS 5 e
U < ol 12 N N N o}
173} > NN = | ey = — E
|8 SRS <& E
a3 S AT SHERENE
B EE R = R = g
g & g {2l of | 2312 = g ol 2
Sl RS ENEI TS @l
SERRAEERE =R RS S| g
2121 2\l gl S B EIR 4 (1BI5 |2 & |2
| Operation Name SIS E|eel|eedbleil|zg & |25|5|8|8
1 | Pull up Feature clpl2s| e ° R . .
2 | Push down Feature d|lu|lul|l e . o | o . °
3 | Extract Superclass clpl4s| e ° oo R . .
4 | Inline Superclass d|{u|3ul|le . . o | o ° o|lofeo e
5 | Fold Superclass c| s |6s . .
6 | Unfold Superclass d|u|5u . .
7 | Extract Subclass c| s |8s K ° ° .
8 | Inline Subclass d|u|7u ° ° . .

Pull up / Push down Feature. Pull up Feature is a constructor which moves a feature
that occurs in all subclasses of a class to the class itself. For migration, values for
the pulled up feature are added to objects of the class and filled with default values.
The corresponding destructor Push down Feature moves a feature from a class to all
its subclasses. While objects of the subclasses stay unaltered, values for the original
feature must be removed from objects of the class itself.

Extract/ Inline Superclass. Extract Superclass is a constructor which introduces a new
class, makes it the superclass of a set of classes, and pulls up one or more features
from these classes. The corresponding destructor Inline Superclass pushes all features
of a class into its subclasses and deletes the class afterwards. References to the class
are not allowed but can be generalized to a superclass in a previous step. Objects
of the class need to be migrated to objects of the subclasses. This might require the
addition of values for features of the subclasses.

123

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

Fold / Unfold Superclass. The constructor Fold Superclass is related to Extract Super-
class. Here, the new superclass is not created but exists already. This existing class
has a set of (possibly inherited) features. In another class, these features are defined
as well. The operation then removes these features and adds instead an inheritance
relation to the intended superclass. In the same way, the destructor Unfold Superclass
is related to Inline Superclass. This operation copies all features of a superclass into a
subclass and removes the inheritance relation between both classes.

Example 5.6 (Fold / Unfold Superclass). Figure [5.5| depicts an example for both opera-

tions.
A A
f1: Integer f1: Integer
Fold Superclass
L
Z% ¢ < Z%
Unfold Superclass
B f1: Integer B C
f2: Integer
f2: Integer f3: Integer f2: Integer f3: Integer

Figure 5.5: Operations Fold / Unfold Superclass

From left to right, the superclass B is folded from class C which includes all the features of
B. These features are removed from C, and B becomes a superclass of C. From right to left,
the superclass Bis unfolded into class C by copying features f1 and f2to C. Bis not longer a
superclass of C.

Extract / Inline Subclass. The constructor Extract Subclass introduces a new class,
makes it the subclass of another, and pushes down one or more features from this
class. Objects of the original class must be converted to objects of the new class. The
corresponding destructor Inline Subclass pulls up all features from a subclass into its
non-abstract superclass and deletes the subclass afterwards. References to the class
are not allowed but can be generalized to a superclass in a previous step. Objects of
the subclass need to be migrated to objects of the superclass.

5.2.7 Delegation Operations

Delegation operations move metamodel elements along compositions or ordinary
references. Most of the time, they come as pairs of corresponding refactorings being
safely inverse to each other.

Extract / Inline Class. Extract Class moves features to a new delegate class and adds
a composite reference to the new class together with an opposite reference. During
migration, an object of the delegate class is created for each object of the original class,
values for the moved features are moved to the new delegate object, and a link to the
delegate object is created. The corresponding Inline Class removes a delegate class
and adds its features to the referring class. There must be no other references to the
delegate class. On the model level, values of objects of the delegate class are moved
to objects of the referring class. Objects of the delegate class and links to them are
deleted. The operations become a pair of constructor and destructor, if the composite
reference has no opposite.

124

5. COPE - Coupled Evolution 5.2. Library of Reusable Coupled Operations

Table 5.5: Delegation operations

Classific. || Modelw. || OO dataware || APIw. || BMW Evaluation
: Il |E
2 Bl 2|l IR
AR NS S 2
= | B N —
(7] < oIS J N N @]
glel 1QEIEE =l _IEl=|E
a3 == sz =11B|R B
) 8 =} k= olll= N v(—3< — o
XA £ S sl =2 =l = 5 vl g
< | o o} a1 58l1el||le]l e allll3l]|s o) a| ©
SRR SRR SR | S|
2121 2E|2]E 5| gl E B2 4 IS S| E 2 |
| Operation Name =R =R =) = Ol =R I =N ON | = ST g e - A Tl Fe T Te =
1 | Extract Class r|s|2s|le ° K o (o e . .
2 | Inline Class r|{s|ls|| e ° ° ° .
3| Fold Class r| s |4s o o (o
4 | Unfold Class r|s|3s .
5 | Move Feature over Reference c|ls|6s]|l e ° . o | e . °
6 | Collect Feature over Reference d|u|bu ° .

Fold / Unfold Class. Fold and Unfold Class are quite similar to Extract and Inline Class.
The only difference is, that the delegate class exists already and thus is not created or
deleted.

Example 5.7 (Extract / Inline / Fold / Unfold Class). The example in Figure|5.6|illus-
trates the difference between the operations. From left to right, the features a1 and r1 of class
A are folded to a composite reference ¢ to class C which has exactly these two features. In
contrast, the features a2 and r2 of class A are extracted into a new delegate class D. From
right to left, the composite reference ¢ is unfolded which keeps C intact while d is inlined
which removes D.

A c Fold Class > c
A P 1
al: Integer i P A c .
a2: Boolean at: Integer Unfold Class T al: Integer
1|d
1irn 1
11 Extract Class 5
B = * B
2
- a2: Boolean r
"2 - Inline Class

Figure 5.6: Operations Extract / Inline Class and Fold / Unfold Class

Move / Collect Feature over Reference. Move Feature over Reference is a constructor
which moves a feature over a single-valued reference to a target class. Slots of the
original feature must be moved over links to objects of the target class. For objects of
the target class which are not linked to an object of the source class, default values
must be added. The destructor Collect Feature over Reference is a safe inverse of the
last operation. It moves a feature backwards over a reference. The multiplicity of
the feature might be altered during the move depending on the multiplicity of the
reference. For optional and/or multi-valued references, the feature becomes optional
respectively multi-valued, too. Slots of the feature must be moved over links from
objects of the source class. If an object of the source class is not linked from objects of
the target class, values of the original feature are removed.

Example 5.8 (Move / Collect Feature over Reference). Figure[5.7|depicts an example for

125

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

both operations. From left to right, the feature f1 is moved along the reference r1 to class B.
Furthermore, the feature f21is collected over the reference r2 and ends up in class A. Since r2is
optional and multi-valued, f2 becomes optional and multi-valued, too. From right to left, the
feature 1 is collected over the reference r1. Its multiplicity stays unaltered. Note that there is
no single operation for moving f2 to class C which makes Collect Feature over Reference
in general uninvertible. For the special case of a single-valued reference, Move Feature over
Reference is an unsafe inverse.

1 B Move Feature 1 B
1 over Reference \ L] 1: Integer
A A
f1: Integer f2[*]: Integer
‘ * c Collect Feature * c
2 | f2. Integer over Reference r2

Figure 5.7: Operations Move / Collect Feature over Reference

5.2.8 Replacement Operations

Replacement operations replace one metamodeling construct by another, equivalent
construct. Thus replacement operations typically are refactorings and safely model-
migrating. With the exception of the last two operations, an operation to replace the
tirst construct by a second always comes with a safe inverse to replace the second by
the first, and vice versa.

Table 5.6: Replacement operations

Classific. || Modelw. || OO dataware || APIw. || BMW Evaluation
: . = |2
£ =Y S &
S5 NSNS S :
=12 |EIEIRIE ol
gl& S EENE] S| R L
Q@ == o5 RI]]° NI
v | 9 S|~ — ||| = — | o
%D ol g g 2 % 8_ 0 N 8) "E 6 ol 8
sl 2SS eSS S8 9 gl E
TR AR E =R UTEE SRR ST RS
g2 21280 EE €| alz]| £ 19185|&|E
| Operation Name = =R === CI <R =N W SR LS SR | Fa R - fOR F) [R i =
1 | Subclasses to Enumeration r|s|2s .
2 | Enumeration to Subclasses r|s|ls ° . .
3 | Reference to Class r|s|4s|| e ° °
4 | Class to Reference r|s|(3s|le
5 | Inheritance to Delegation r|s|6s . . o | o °
6 | Delegation to Inheritance r|s|bs . °
7 | Reference to Identifier c|s|8s)
8 | Identifier to Reference d|u|7u . . .

Subclasses vs. Enumerations. To be more flexible, empty subclasses of a class can
be replaced by an attribute which has an enumeration as type, and vice versa. Sub-
classes to Enumeration deletes all subclasses of the class and creates the attribute in
the class as well as the enumeration with a literal for each subclass. In a model,
objects of a certain subclass are migrated to the superclass, setting the attribute to

126

5. COPE - Coupled Evolution 5.2. Library of Reusable Coupled Operations

the corresponding literal. Thus, the class is required to be non-abstract and to have
only empty subclasses without further subclasses. Enumeration to Subclasses does the
inverse and replaces an enumeration attribute of a class by subclasses for each literal.

Example 5.9 (Subclasses to Enumeration / Enumeration to Subclasses). The example
in Figure[5.8|demonstrates both directions. From left to right, Subclasses to Enumeration
replaces the subclasses S1and S2of class C by the new attribute e which has the enumeration
E with literals S1and S2 as type. In a model, objects of a subclass S1 are migrated to class
C, setting the attribute e to the appropriate literal S1. From right to left, Enumeration to
Subclasses introduces a subclass to C for each literal of E. Next, it deletes the attribute e as
well as the enumeration E. In a model, objects of class C are migrated to a subclass according
to the value of attribute e.

c Subclasses to
Enumeration . «enum» E
D > €
s1
< - e E
' Enumeration to S2
S1 S2 Subclasses

Figure 5.8: Operations Subclasses to Enumeration / Enumeration to Subclasses

References vs. Classes. To be able to extend a reference with features, it can be
replaced by a class, and vice versa. Reference to Class makes the reference composite
and creates the reference class as its new type. Single-valued references are created in
the reference class to target the source and target class of the original reference. In a
model, links conforming to the reference are replaced by objects of the reference class,
setting source and target reference appropriately. Class to Reference does the inverse
and replaces the class by a reference. To not lose expressiveness, the reference class
is required to define no features other than the source and target references.

Example 5.10 (Reference to Class / Class to Reference). The example in Figure
demonstrates both directions. From left to right, Reference to Class retargets the reference
rto a new reference class R. Source and target of the original reference can be accessed via
references S and t. In a model, links conforming to the reference r are replaced by objects of the
reference class R. From right to left, Class to Reference removes the reference class R and
retargets the reference r directly to the target class T.

r R

Reference to Class
s1 r s2 g
< s t

" Class to Reference s T

Figure 5.9: Operations Reference to Class / Class to Reference

Inheritance vs. Delegation. Inheriting features from a superclass can be replaced by
delegating them to the superclass, and vice versa. Inheritance to Delegation removes
the inheritance relationship to the superclass and creates a composite, mandatory

127

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

single-valued reference to the superclass. In a model, the values of the features in-
herited from the superclass are extracted to a separate object of the superclass. By
removing the super type relationship, links of references to the superclass are no
longer allowed to target the original object, and thus have to be retargeted to the ex-
tracted object. Delegation to Inheritance does the inverse and replaces the delegation
to a class by an inheritance link to that class.

Example 5.11 (Inheritance to Delegation / Delegation to Inheritance). The example
in Figure demonstrates both directions. From left to right, Inheritance to Delegation
replaces the inheritance link of class C to its superclass S by a composite, single-valued ref-
erence from Cto S. In a model, the values of the features inherited from the superclass S are
extracted to a separate object of the superclass. From right to left, Delegation to Inheritance
removes the reference s and makes S a superclass of C.

S Inheritance to S
Delegation > Ts
<« -
Delegation to
c Inheritance ¢

Figure 5.10: Operations Inheritance to Delegation / Delegation to Inheritance

References vs. Identifiers. To decouple a reference, it can be replaced by an indirect
reference via identifier, and vice versa. Reference to Identifier deletes the reference and
creates an attribute in the source class whose value refers to an identifier attribute in
the target class. In a model, links of the reference are replaced by setting the attribute
in the source object to the identifier of the target object. Identifier to Reference does
the inverse and replaces an indirect reference via identifier by a direct reference. Our
metamodeling formalism does not provide a means to ensure that there is a target
object for each identifier used by a source object. Consequently, Reference to Identifier
is a constructor and Identifier to Reference a destructor, thus being an exception in the
group of replacement operations.

5.2.9 Merge / Split Operations

Merge operations merge several metamodel elements of the same type into a single
element, whereas split operations split a metamodel element into several elements
of the same type. Consequently, merge operations typically are destructors and split
operations constructors. In general, each merge operation has an inverse split oper-
ation. Split operations are more difficult to define, as they may require metamodel-
specific information about how to split values. There are different merge and split
operations for the different metamodeling constructs.

Features. Merge Features merges a number of features defined in the same class into
a single feature. In the metamodel, the source features are deleted and the target
feature is required to be general enough—through its type and multiplicity—so that
the values of the other features can be fully moved to it in a model. Depending
on the type of feature that is merged, a repeated application of Create Attribute or

128

5. COPE - Coupled Evolution 5.2. Library of Reusable Coupled Operations

Table 5.7: Merge / Split operations

Classific. || Modelw. || OO dataware || APIw. || BMW Evaluation

: | IE

g Bl gl IR

S5 NISHSHIE S >

g |2 =11 134 =

Q < ol 12 N N s o]

glel 1QEIEE =l _IEl=|E

a3 == sz =11B|R B

O 9_‘) =20 PR L — | | = — o

0| a, gl eENISIHT I =g Jls g 9

< | =0 e lal gl e L EIE S v g1 e

S| e |lellelsIES e &= & el o c| g

SR AR = E BRI SRR PEIEIELERS)

; AR =S S R R EE

| Operation Name 4= 8 ||EERRRERERE =& OO
1 | Merge Features d|u . ° .
2 | Split Reference by Type r|s|ls o e
3 | Merge Classes d|u|4u oo . oo .
4 | Split Class c|p|3s .
5 | Merge Enumerations d|u °

Create Reference provides an unsafe inverse. Split Reference by Type splits a reference
into references for each subclass of the type of the original reference. In a model,
each link of the reference is moved to the corresponding target reference according
to its type. If we require that the type of the reference is abstract, this operation is a
refactoring and has Merge Features as a safe inverse.

Classes. Merge Classes merges a number of sibling classes—i.e. classes sharing a com-
mon superclass—into a single class. In the metamodel, the sibling classes are deleted
and their features are merged to the features of the target class according to name
equality. Each of the sibling classes is required to define the same features so that this
operation is a destructor. In a model, objects of the sibling classes are migrated to the
new class. Split Class is a safe inverse and splits a class into a number of classes. A
function that maps each object of the source class to one of the target classes needs to
be provided to the migration.

Enumerations. Merge Enumerations merges a number of enumerations into a single
enumeration. In the metamodel, the source enumerations are deleted, and their lit-
erals are merged to the literals of the target enumeration according to name equality.
Each of the source enumerations is required to define the same literals so that this op-
eration is a destructor. Additionally, attributes that have the source enumerations as
type have to be retargeted to the target enumeration. In a model, the values of these
attributes have to be migrated according to how literals are merged. A repeated ap-
plication of Create Enumeration provides a safe inverse.

5.2.10 Discussion

We discuss the completeness of the reusable coupled operations provided by the
library as well as the dependency of the operations on the used metamodeling for-
malism.

Completeness. The reusable coupled operations in the library may need to be com-
plete on both the metamodel and model level.

129

5.2. Library of Reusable Coupled Operations 5. COPE - Coupled Evolution

Metamodel adaptation. On the metamodel level, a library of operations is complete, if
any source metamodel can be evolved to any target metamodel. This kind of com-
pleteness is achieved by the library presented in this section. An extreme strategy
would be the following [Banerjee et al., 1987]: In a first step, the original metamodel
needs to be discarded. Therefore, we delete opposite references and features. Next,
we delete data types and enumerations and collapse inheritance hierarchies by in-
lining subclasses. We can now delete the remaining classes. Finally, we delete pack-
ages. In a second step, the target metamodel is constructed from scratch by creating
packages, enumerations, literals, data types, classes, attributes, and references. In-
heritance hierarchies are constructed by extracting empty subclasses.

Model migration. Completeness is much harder to achieve, when we take the model
level into account. Here, a library of operations is complete, if any model migration
corresponding to an evolution from a source metamodel to a target model can be
expressed. In this sense, a complete library needs to provide a full-fledged model
transformation language based on operations. A first useful requirement is Turing
completeness. But reaching for this kind of completeness comes at the price of us-
ability. Given an existing operation, one can always think of a different operation
having the same effect on the metamodel level but a slightly different migration. But
the higher the number of coupled operations, the more difficult it is to find an ap-
propriate operation in the library. And with many similar operations, it is hard to
decide which one to apply. We therefore do not target theoretical completeness—to
capture all possible migrations—but rather practical completeness—to capture mi-
grations that likely happen in practice. Theoretical completeness can still be achieved
by providing a means for defining custom coupled operations. This way, the user can
manually specify a custom model migration for a metamodel adaptation specified as
a sequence of primitive operations.

Metamodeling Formalism. In this section, we focus only on core metamodeling
constructs that are interesting for coupled evolution of metamodels and models.

E-MOF. A metamodel defines not only the abstract syntax of a modeling language,
but also an API to access models expressed in this language. For this purpose, con-
crete metamodeling formalisms like Ecore or MOF provide additional metamodel-
ing constructs like interfaces, operations, derived features, volatile features, or an-
notations. A library will need additional operations addressing these metamodeling
constructs in order to reach full compatibility with Ecore or MOF. These additional
operations are relevant for practical completeness. In the GMF case study explained
in Section [7.2| (Graphical Modeling Framework), we found 25% of the applied opera-
tions to address changes in the API. We have not included these operations into the
library, since most of them do not require migration. The only exceptions were anno-
tations containing constraints. An operation catalog accounting for constraints needs
to deal with two kinds of migrations: First, the constraints need migration when the
metamodel evolves. Operations need to provide this migration in addition to model
migration. Second, evolving constraints might invalidate existing models and thus
require model migration. Here, new coupled operations for the evolution of con-
straints are needed.

C-MOF. Things become more complicated when it comes to Complete MOF (C-MOF)
[Object Management Group, 2006a]. Concepts like package merge, feature subset-

130

5. COPE - Coupled Evolution 5.3. Language to Specify the Coupled Evolution

ting, and visibility affect the semantics of existing operations in the library. To deal
with these concepts, additional operations are needed, and existing operations need
to be refined. For example, we would need four different kinds of Rename due to
the package merge: 1) Renaming an element which is involved in a merge neither
before nor after the renaming (Rename Element). 2) Renaming an element which is
not involved in a merge in order to include it into a merge (Include by Name). 3) Re-
naming an element which is involved in a merge in order to exclude it from the
merge (Exclude by Name). 4) Renaming all elements which are merged to the same
element (Rename Merged Element).

5.3 Language to Specify the Coupled Evolution

In this section, we present in more detail COPE’s language to specify the coupled evo-
lution of metamodels and models. COPE implements the concept of coupled opera-
tions and is based on the Eclipse Modeling Framework (EMF) [Steinberg et al., 2009].
In order to achieve in-place transformation, COPE softens the conformance of a
model to its corresponding metamodel during coupled evolution. Based on this de-
coupling of metamodel and model, COPE provides expressive primitives for both
metamodel adaptation and model migration. These primitives can be combined to
encode custom and reusable coupled operations. To simplify encoding, metamodel
and model conformance are only required at operation boundaries.

5.3.1 Decoupling Metamodel and Model

Figure depicts the relationship between a model and its metamodel during cou-
pled evolution. Inside operation boundaries, model and metamodel can be modified
independently of each other, whereas conformance is required at operation bound-
aries. As a consequence, we are able to perform in-place transformation, i.e. direct
updates of the models. In-place transformation is more efficient than out-of-place
transformation, which requires to rebuild the migrated model from scratch.

Metamodel. Since COPE is implemented based on the Eclipse Modeling Framework
(EMF) [Steinberg et al., 2009], we use Ecore as a metametamodel. Ecore is a Java-
based implementation of the metamodeling language presented in Section
[modeling — Modeling the Abstract Syntax of Modeling Languages). To distinguish them
from Java classes, all classes defined by Ecore start with a prefix E. Other than that,
there are only small naming differences to our simplified metametamodel: an EClas-
sifier is a Type, an EStructuralFeature is a Feature, and containment references are
composite references. However, in principle, our approach is not restricted to Ecore,
but can be transferred to any object-oriented metamodeling language.

Model. Models are expressed in a generic instance structure that is independent of
the specific metamodel. As a consequence, this generic instance structure can be used
to migrate all possible models, independently of the metamodel. This is consistent
with the formalization of coupled operations in Definition [5.1) which uses the set of
all models as domain and codomain of the model migration. For COPE, we had to

131

5.3. Language to Specify the Coupled Evolution 5. COPE - Coupled Evolution

ENamedElement

name: EString

eSubPackages A

1 \ :
L‘ EPackage o EClassifier 1 ETypedElement
eClassifiers eType lowerBound: Eint
upperBound: Eint

* | rootPackages | A L eSuperTypes Z}

*
EDataType EClass % | EStructuralFeature

abstract: EBoolean eStructuralFeatures

1| eClass eOpposite A
0..1\V

Metamodel Representation

Metamodel EEnum EReference EAttribute
containment: EBoolean iD: EBoolean
______l/metamodel __ _ __ _ __ ___ ___ | _____________?|cReference 1 _eAttribute
&
% Model " Type
c types
Q
(D]
(O]
a +| inst
instances
O]
o - Instance " Slot
o rootinstances slots
°
@]
= *| values é
« | ReferenceSlot AttributeSlot

references

values[*]: Object

Figure 5.11: Generic instance model

implement our own model representation, since EMF does not allow applications to
change the metamodel, after the model is loaded.

A Model consists of a number of types each of which is a container for instances of a
certain type. A Type thus provides efficient access to the instances of a certain class. A
model has a number of rootlnstances, i.e. instances which are not referenced from a
parent via a containment reference. Each Instance has a number of slots (Slot) which
are the valuations of either attributes (AttributeSlot) or references (ReferenceSlot).
Valuations of attributes are maintained as Java Objects, whereas valuations of refer-
ences are maintained as links to the corresponding instances. The reference values
from ReferenceSlot to Instance is bidirectional to efficiently access the references to
an instance of a certain reference. Instances and slots are associated to their corre-
sponding metamodel elements (eClass, eReference and eAttribute).

However, these associations do not constrain an instance to always conform to its
type in the metamodel. This loose association allows us to first modify the meta-
model without affecting the model, and then migrate the model to the evolved meta-
model. Since this decoupling can lead to states where the model does not conform to
its metamodel, conformance is checked at operation boundaries. If the model does
not conform to the metamodel at operation boundaries, COPE throws an exception,

132

5. COPE - Coupled Evolution 5.3. Language to Specify the Coupled Evolution

notifying the language engineer about a problem.

Metamodel Conformance. The metamodel conforms to the Ecore metametamodel if
it fulfills the constraints defined by the metametamodel. These constraints are similar
to the ones mentioned in Section [2.2.4] (Complete E-MOF Metametamodel). Examples
for constraints are that no two classes may have identical names, or that a class may
neither directly nor transitively be a supertype of itself. Due to space constraints, we
refer the reader to the Java documentation of the EMF source code for a complete list
of the constraints?. EMF provides a facility to easily check for the violation of these
constraints which we employ in the implementation of COPE.

Model Conformance. The loose association between metamodel and model may
lead to states where the model does not conform to its metamodel. However, we
can define what it means for a model to conform to its metamodel based on the
association between metamodel and model elements.

e A Model conforms to its metamodel if each instance conforms to its type which
has to be a non-abstract class defined by the model’s metamodel.

¢ An Instance conforms to its type if

— each slot conforms to its feature which is defined by the instance’s type or
its super types,

- for each mandatory feature defined by the instance’s type there is a corre-
sponding slot,

— either it is a root element of the model or it is referenced exactly once by a
containment reference slot of another instance, and

— it fulfills all further constraints which are defined in the context of the
instance’s type or its super types.

e An AttributeSlot conforms to its attribute if the value of the slot is consistent
with the attribute’s type and multiplicity.

o A ReferenceSlot conforms to its reference if

— the value of the slot is consistent with the attribute’s type and multiplicity,
and

- the instance belongs to the opposite reference slot of each value.

While on purpose not enforced by the loose association between metamodel and
model, these constraints can be checked at operation boundaries.

5.3.2 Breaking Metamodel Changes Revisited

In Section [2.5.3| (Breaking Metamodel Changes)), we listed the metamodel changes that
are breaking existing models for the metamodeling language presented in Section[2.2]
(Metamodeling — Modeling the Abstract Syntax of Modeling Languages). In this sec-

2The source distribution of EMF can be downloaded fromhttp://www.eclipse.org/modeling/
emf /.

133

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

5.3. Language to Specify the Coupled Evolution 5. COPE - Coupled Evolution

tion, we revisit the breaking metamodel changes with respect to the generic instance
model presented in the last subsection. There are changes which have been break-
ing previously that are no longer breaking due to certain techniques used in the
generic instance model. Table 5.8 gives an overview over the breaking (B) and non-
breaking (NB) metamodel changes for the generic instance model.

Table 5.8: Breaking and non-breaking metamodel changes revisited

l Class \ Feature \ Change H NB \ B \ Condition
Metamodel packages add .
move
remove . package is empty
e | package is not empty
Package subPackages | add
move
remove . package is empty
o package is not empty
types add
move
remove . type is a primitive type
e | typeisa class
Type name modify . type is a class
. type is a primitive type
Enumeration | literals add
remove . enumeration is not used
° enumeration is used
Class abstract modify . new value is false
. new value is true
features add ° new feature is optional
new feature is mandatory
remove
superTypes | add . new superclass has no mandatory feature
. new super class has mandatory features
remove . superclass defines no features
e | superclass defines features
Feature lowerBound | modify ° lower bound is decreased
e | lower bound is increased
upperBound | modify ° upper bound is increased
e | upper bound is decreased
Attribute id modify . new value is false
new value is true
type modify
Reference composite modify .
type modify . new value is super class of old value
. new value is not super class of old value
opposite modify . new value is null
. new value is not null

In the metamodeling language presented in Section [2.2| (Metamodeling — Modeling the|
[Abstract Syntax of Modeling Languages), objects and slots refer to their metamodel
elements by name. As a consequence, renaming classes and features are breaking
changes. However, in the generic instance model, objects and slots directly refer to
their metamodel elements. As a consequence, renaming classes and features are non-
breaking changes due the generic instance model. Since objects refer to their class
by fully qualified name—taking the package hierarchy into account, the generic in-

134

5. COPE - Coupled Evolution 5.3. Language to Specify the Coupled Evolution

stance model is also non-breaking for renaming packages as well as moving classes
and packages.

5.3.3 Primitives for Metamodel Adaptation and Model Migration

To preserve conformance of a model to its metamodel, a model migration needs to
be specified for breaking metamodel changes. COPE provides both expressive prim-
itives to specify metamodel adaptation and to specify model migration. The primi-
tives are complete in the sense that every possible metamodel adaptation and every
possible model migration can be encoded.

Metamodel Adaptation. For metamodel adaptation, COPE provides the following
primitives to query the metamodel:

e «qualifiedName» to access a metamodel element by means of its qualified
name, i.e. a package, class or feature.

e «element».«featureName» to access the value of a feature of a metamodel
element as defined by the metametamodel.

e «element».getInverse («referencex») to access the metamodel elements
which refer to a metamodel element through a reference as defined by the
metametamodel.

COPE provides the following primitives to modify the metamodel that perform an
in-place transformation:

® «package».newEClass(...), «class».newEAttribute(...) Or «class».
newEReference (...) to create a new class, attribute or reference. There are
primitives to create instances of each class defined by the metametamodel.

o «element».delete () to delete a metamodel element.

e «element».«featureName» = «value» to modify the value of a feature of a
metamodel element.

® «element».«featureName».add («valuey) and «element».«featureName»
.remove («value») to modify the value of a multi-valued feature of a meta-
model element. When the feature is a containment reference, an addition im-
plies a removal from the previous parent metamodel elements.

These primitives are complete to describe every possible evolution from a source
metamodel to a target metamodel. This can be easily shown by first completely delet-
ing the source metamodel and then creating the target metamodel from scratch, as
proved in [Banerjee et al., 1987].

Model Migration. For model migration, COPE provides the following primitives to
query a model:

e «class».instances to access all instances of a class.

® «class».allInstances to access all instances of a class or any of its sub-
classes.

135

5.3. Language to Specify the Coupled Evolution 5. COPE - Coupled Evolution

° «instance».instanceof(«class»)tOCheckVVheﬂK&thetype(ﬁtheinﬂance
is the class or any of its subclasses.

e «instance».get («featurex») Or «instance».«featureName» to access the
value of a feature of an instance. The short form can be used if the feature with
that name is available in the instance’s type.

e «instance».getInverse («reference») to access the instances which refer
to an instance by a reference as defined by the metamodel.

COPE provides the following primitives to modify the model that perform an in-
place transformation:

e «class».newInstance () to create a new instance of a class.
e «instancex».delete () to delete an instance from the model.

e «instance».migrate («class») to change the type of an instance to a differ-
ent class.

® «instance».set («feature», «value») Or «instance».«featureName» =
«value» to modify the value of a feature of an instance. The short form can
be used if the feature with that name is available in the instance’s type.

® «instance».add («feature», «value») Or «instance».«featureName».
remove («value») to modify the value of a multi-valued feature of an instance.

e «instancex».unset («feature») to unset and return the value of a feature of
an instance.

These primitives are constructed in a way that they also provide access to model in-
formation which currently does not conform to the metamodel. They are expressive
enough to describe every possible evolution from a source model to a target model,
using the same explanation as on the metamodel-level. However, rather than de-
scribing a single model evolution, a model migration language needs to describe the
migration of all models conforming to a source metamodel. As a consequence, the
primitives alone are not expressive enough to describe any possible model migration.

5.3.4 Implementing Coupled Operations

To describe any possible model migration, the primitives can be invoked from within
the general-purpose scripting language Groovy [Koenig et al., 2007]. We have de-
cided in favor of Groovy due to the following reasons:

e Groovy is Turing-complete and thus expressive enough to specify even com-
plex model migrations.

e Groovy is a dynamically typed language and thus allows language engineers
to encode shorter migration code by not requiring type declarations. A stati-
cally typed language does not bring an advantage anyway, since the in-place
transformation cannot be easily expressed in a type-safe manner.

e Groovy is similar to Java and thus easy to learn for language engineers using
EME, which is implemented in Java.

e Groovy allows language engineers to compactly specify expressions, similar to

136

5. COPE - Coupled Evolution 5.3. Language to Specify the Coupled Evolution

OCL, that are required to navigate the metamodel and model.

The metamodel adaptation and model migration of a coupled operation are speci-
tied by the application of the metamodel and model change primitives from within
Groovy code. The interpreter of COPE ensures that a coupled operation can only be
successfully completed, in case it preserves metamodel and model conformance. For
the metamodel adaptation, preservation of metamodel conformance can already be
checked independently of a specific model. For the model migration, preservation of
model conformance can only be checked, when the coupled operation is applied to a
specific model.

Custom Coupled Operation. A custom coupled operation is a coupled operation
that is specific to a certain metamodel. As a consequence, the custom coupled oper-
ation directly refers to the metamodel that it adapts and, as such, is only applicable
to that metamodel. A custom coupled operation is required if the model migration
cannot be specified by a reusable coupled operation or a sequence of reusable cou-
pled operations. A custom coupled operation is specified manually by the language
engineer as a script that uses the primitives to specify both metamodel adaptation
and model migration.

Since a custom coupled operation cannot be expressed by reusable coupled opera-
tions, it tends to encapsulate more complex migrations. To master custom coupled
operations, the following guidelines need to be considered when implementing a
custom coupled operation:

e If a custom coupled operation is rather complex, a language engineer should
try to decompose it into smaller coupled operations. Smaller coupled opera-
tions are easier to implement and maintain. Maybe some of the coupled oper-
ations that are composed to a complex custom coupled operation can be even
covered by reusable coupled operations.

e If a complex custom coupled operation cannot be decomposed into smaller cou-
pled operations, the model migration can be modularized by defining helper
functions in Groovy:

helperFunction = { «parameter» —>

return «expression»

W N e

}

e If a class is deleted by the metamodel adaptation, the model migration needs
to remove all the instances of the class. Usually, these instances are migrated to
another class which may be created by the metamodel adaptation:

1 for (instance in «class».instances) {
2 instance.migrate («anotherClass»)
3 }

If the information defined by these instances is no longer required, they can
also be deleted.

o If a feature is deleted from a class by the metamodel adaptation, the model
migration needs to unset its values from the instances of the class:

137

5.3. Language to Specify the Coupled Evolution

5. COPE - Coupled Evolution

W N =

for (instance in «class».allInstances) {
def value = instance.unset («feature»)

If the information defined by these values should be preserved, they need to be
transferred to other features. Usually these other features have been created by
the metamodel adaptation.

If a feature is moved from one class to another, the model migration needs to
unset its values from the instances of the source class. To preserve information,
the values are usually transferred to instances of the target class.

Changing the containment structure of a model usually requires complex mi-
grations. More specifically, changing the containment of a reference by the
metamodel adaptation requires careful migration of the instances of the ref-
erence’s type. The language engineer needs to ensure that each instance is con-
tained only once—either by another instance or directly by the model—after the
migration. If a reference is made containment, its values have to be removed
from other containers. Likewise, if the containment of a reference is dropped,
the values have to be added to other containers.

Reusable Coupled Operation. We use the reuse mechanism of functions of the host
language in order to declare reusable coupled operations. Reusable coupled opera-
tions can be instantiated by simply invoking the corresponding function. To register
them through the library mechanism of COPE, reusable coupled operations need to
follow a certain structure. Figure illustrates the abstract syntax of this structure
as a UML class diagram, and Listing [5.4]illustrates its concrete syntax.

Library

implementation: String

*Toperations

ReusableCoupledOperation

@ "ame: String
label: String

description: String

*Tvariables *

Variable Precondition

*| parameters preconditions

Parameter

description: String
choiceExpression: String
required: Boolean

label: String
booleanExpression: String

v

Placeholder

name: String
initExpression: String
type: Type

many: Boolean

Figure 5.12: Signature of reusable coupled operations (abstract syntax)

138

© ® N G R W N =

e N e < T
© ©® N o a ok W N = O

5. COPE - Coupled Evolution 5.3. Language to Specify the Coupled Evolution

Listing 5.4: Signature of reusable coupled operations (concrete syntax)

// reusable coupled operation
Qlabel ("«label»")
@description ("«description»")
«name» = {
// parameters
@description ("«description»") «type» «name» = «initExpression»,
->

// variables
«type» «name» = «initExpression»

// preconditions
assert «booleanExpression» : «label»

// implementation

In the following, we describe the different constituents of the signature of a reusable
coupled operation:

e Library: A set of reusable coupled operations are organized into a Library. A
library provides the implementation of its operations as a single Groovy script.
There may be multiple libraries; e.g. we can create a library for each group of
reusable coupled operations mentioned in Section [5.2| (Library of Reusable Cou-|

pled Operations).

e Reusable coupled operation: Like a Groovy function, a ReusableCoupledOpera-
tion is identified by a unique name. Moreover, a reusable coupled operation
has a label and a description so that the language engineer can understand the
effect of the operation on metamodels and models. In the concrete syntax, label
and description are declared by special annotations.

e Parameter: Parameters make the reusable coupled operation independent of
the specific metamodel. Like a Groovy parameter, a parameter is identified by
a name and has a type. COPE only supports types defined by the metameta-
model as well as sequences of these types (many). In the concrete syntax, the
type is identified by its name and, in case of sequences, by List<«name»>. The
values of a parameter can not only be restricted by its type, but also by a choice
expression which is derived from the preconditions as explained below. A pa-
rameter can have an init expression to initialize its value based on the value of
previously defined parameters of the same operation. If the init expression is
null, then the parameter is not required to be set.

e Variable: A Variable is similar to a Parameter in terms of name and type. In con-
trast to a parameter, it cannot be set by a language engineer that invokes the
reusable coupled operation, but is derived from the values of parameters and
previously defined variables. Thereby, it does not require neither description

139

5.4. Limitations of Automating Model Migration 5. COPE - Coupled Evolution

nor choice expression, and the init expression is mandatory. A variable factors
out recurring expressions from the preconditions. In the concrete syntax, vari-
ables are defined as Groovy variables right after the parameters, but before the
preconditions.

e Precondition: A Precondition restricts the applicability of the reusable coupled
operation. A precondition is defined by a boolean expression and a label that
helps the language engineer to resolve a violation of the precondition. In the
concrete syntax, preconditions are defined as Groovy assertions that have the
label as message. A precondition defines a choice expression for a parameter
if it is of the following form:

— «choiceExpression».contains («parameter») for single-valued pa-
rameters, and

— «choiceExpression».containsAll («parameter») for multi-valued
parameters.

5.4 Limitations of Automating Model Migration

The evolution of modeling languages occasionally leads to metamodel changes for
which the migration of models inherently cannot be fully automated. In these cases,
the migration of models requires information which is not available in the model.
However, manually migrating a potentially unknown number of models imposes
a heavy burden on the language users. Consequently, the language engineers are
tempted to avoid these model-specific coupled changes by adapting the metamodel
in a way that the model migration does not require information from the users. How-
ever, not being able to implement such changes limits modeling language evolution,
and threatens the simplicity and quality of the metamodel. In this section, we for-
mally characterize metamodel adaptations in terms of the effort needed for model
migration. We focus on the problem of metamodel changes that prevent the auto-
matic migration of models when their semantics needs to be preserved. Therefore,
in order to be able to characterize these changes, we need to take the semantics of
the evolving modeling language into account. We outline different possibilities to
systematically cope with these kinds of metamodel changes.

5.4.1 Considering Semantics of Modeling Languages

In Section [2.5.4] (Model Migration), we defined preservation properties that a model
migration needs to fulfill for the evolution of a modeling language. Of course, these
preservation properties can be transferred to coupled operations if a coupled opera-
tion is used to implement a certain metamodel change:

Definition 5.13 (Syntax-Preserving Coupled Operation). A coupled operation co =
(adm,mig) is called syntax-preserving for a metamodel mm € MM if the migration trans-
forms all models that conform to the original metamodel mm to models that conform to the
evolved metamodel adm(mm) € MM:

Vm € M :mE mm = mig(m) E adm(mm)

140

5. COPE - Coupled Evolution 5.4. Limitations of Automating Model Migration

A model conforms to the metamodel if it is built from the constructs and fulfills
the constraints defined by the metamodel. For the description of the relationship
between model and metamodel, we refer the reader to Section2.2.2|(Abstract Syntax of|
la Modeling Language)). Note that, in practice, usually only a small subset Lyyi1t C L
of the possible models of a metamodel mm € MM are actually built.

Definition 5.14 (Semantics-Preserving Coupled Operation). A syntax-preserving cou-
pled operation co = (adm,mig) is called semantics-preserving for a metamodel mm &
MM and a semantics change S +— So from semantics version S : Lym — SD; to
82t Lagm(mm) — SDa2 if the migration preserves the meaning of all models:

Vm € Lym : S1(m) = Sa(mig(m))

Since the semantics .S; and S5 are total functions, each syntactically correct model has
an associated meaning. Before we can examine whether we can define a semantics-
preserving model migration for a metamodel adaptation, we have to explicitly define
the semantics of a modeling language.

Example 5.12 (Semantics Preservation). We specify the semantics S : Ly, — SD for
the example modeling language presented in Section [3.2.1| (Running Example) that defines
a dialect of I/O state machines. Figure gives an overview over the different versions of
the metamodel that defines the abstract syntax of the modeling language. We use the same
convention as in Section [2.4.1| (Semantics of a Modeling Language) to map a metamodel to
functions for navigating models. The instances of a class in the metamodel can be accessed
through a set with its name: e.g. CompositeState to access all instances of the class Com-
positeState and its subclasses. The associations in the metamodel can be followed by func-
tions applied to instances: e.g. state : CompositeState — P(State) to access the states
of a composite state. Notationally, cs.state is the same as state(cs). In addition to these
functions, we also need the function parent : State — CompositeState U {_L} to access
the parent state of a state s € State:

s.parent = cs € CompositeState = Edge(cs, s, state)

Based on this function, we also define the function root : Ly, — CompositeState U { L}
to access the root state of a state machine model m € L,

root(m) = cs € CompositeState < cs.parent = L

We adopted the definition of the state machine semantics from [Rumpe, 1998|]. The semantic
domain is the behavior of I/O state machines which is defined through a function that maps a
stream of input events onto sets of streams of output actions:

SD := {Event* — P(Action™)}

Note that we can specify non-deterministic behavior using this semantic domain, as an event
stream can lead to a set of action streams. The semantics S : Ly, — SD maps a state
machine model m € L, to its behavior S(m) € SD. Two state machine models my, msy €
L ynm are semantically equivalent if they produce the same set of actions for all possible event
streams:

my = mgy & Ves € Fvent™ : S(my)(es) = S(ma)(es)

141

5.4. Limitations of Automating Model Migration 5. COPE - Coupled Evolution

State * Transition State * Transition

1. N outgoing [- 1.* - outgoing [-
state | name: String 1 trigger: String state | hame: String 1 trigger: String
effect[*]: String effect[*]: String

target target

|

111
initial | |
|

|

|
|
|
|
|
|
[

CompositeState [Eo_r_npositestate
(a) Original metamodel (version 1) (b) Introduction of initial states (version 2)
State * Transition 1.* State * Transition
1.* outgoing [- state outgoing |
state |_name: String _ 1 _trigger: String _ 1 name: String 1 trigger: String
X target | effect["]: String | initial target effect[]: String

1
initial

CompositeState

B
|
|
|
|
|
1%
¢omposite$tate

(c) Moore to Mealy machines (version 3) (d) Introduction of regions (version 4)

Figure 5.13: Metamodel adaptation of the running example

In the following, we define the function T' : State — SD in a way that it can be applied to all
composite and non-composite states. The semantics of a model is defined by its root composite
state root(m) € CompositeState:

S(m) := T (root(m))

To distinguish the sets and functions from different language versions, we use the version
number as index, e.g. CompositeState; to denote the composite states conforming to meta-
model version 1. We use the same semantic domain for all language versions, and thus
semantics preservation is given by the equivalence relation, i.e. = = =.

Original metamodel. The semantics is defined by induction over the stream of input events.
In the base case, there are no more events left to be processed for a state s € State;:

Ti(s)(() = {0} (5.1)

The inductive step for a state s € Statey consumes the next event e € Event. Based on the
transitions activated in the state, we can decide whether the event leads to a state change. The
set of transitions activated by an event e € Event in a state s € State, is the set of outgoing
transitions having the event as trigger:

activated;(s,e) = U {t € p.outgoing; | t.triggers = e} (5.2)
pEs.parent]

where * is the transitive closure. Due to hierarchical states, also the outgoing transitions of
all parent states have to be taken into account.

In case there is at least one transition activated by event e € Event—i.e. activated, (s, e) #
()—the behavior of a state s € State; is defined as the union of the behavior of the states to
which the control can transition:

Ti(s)({e) oes) := U t.targety.effect; o Ty (t.targety)(es) (5.3)
t€activated; (s,e)

142

5. COPE - Coupled Evolution 5.4. Limitations of Automating Model Migration

The operator o concatenates streams and is lifted to sets of streams if required. Otherwise—in
case there is no transition activated—the state machine remains in the same state:

Ti(s)({e) oes) := Ti(s)(es) (5.4)

Finally, the behavior of a composite state cs € CompositeStatey for an event stream es =
(e1,e2,...) € Event* is defined as the union of the behavior of its substates:

Ti(cs)(es) = U s.effect; o Ty (s)(es) (5.5)

sEcs.statey

Note that the formulas are polymorphic, i.e. T (t.target,)(es) in formula (5.3) is automati-
cally redirected to formula (5.5), in case t.target; € CompositeState;.

Since we assume that models are finite in size, the state hierarchy is finite in height. Thus
there is always an application of formulas or after a finite sequence of applications
of formula (5.5). Consequently, an event is consumed after a finite number of formula appli-
cations. If we also assume that the stream of input events is finite, the execution of any state
machine terminates after a finite number of applications.

Introduction of initial states. To introduce initial states, we only have to adapt formula
(5.5) to take the initial state of a composite state into account:

To(cs)(es) = cs.initialy.effecty o To(cs.initials)(es) (5.6)

To ensure semantics preservation, the migration needs to preserve the set of action streams
for each event stream. However, in this case, we refine the behavior of a state machine by re-
moving possible executions. To be semantics-preserving, the migration needs to significantly
extend the model to keep the same executions. However, in this case, semantics preservation
is too strict, since we want to remove non-determinism generated by the choice between more
initial states. The developer of the model has to decide which executions to remove by choosing
an initial state for each composite state. We analyze this problem in more detail in the next
section and propose an extension to be able to perform such changes.

Moore to Mealy machines. To transition from Moore to Mealy machines, we only have to
adapt formulas (5.3) and (5.6)) to consider the effect of the transition instead of the effect of its
target state:

Ts(s)({e) oes) := U t.effects o Ts(t.targets)(es) (5.7)
t€activateds(s,e)
Ts(cs)(es) = Ts(cs.initials)(es) (5.8)

The transition requires a migration function that maps all models with effects in states to
models with effects in transitions. To preserve the meaning of all models, the migration func-
tion has to determine the effect of a transition based on the state it enters. For a transition
t € Transitiony which is mapped to t' € Transitions by the function migss to migrate
models from language version 2 to 3, t' .effects = effecta(t.targets) is fulfilled with:

effecty o effecta(s.initialy), if s € CompositeStates

. (5.9)
effecto, if s € Statey

effecta(s) = {

When a transition enters a composite state, we do not only have to take its effect into account
but also the effect of its initial state. Note that this may have to be applied recursively, as the

143

5.4. Limitations of Automating Model Migration 5. COPE - Coupled Evolution

initial state may again be a composite state, and so on. Using the definition of the semantics,
we can easily prove that this migration function—uwhich maps state s € Statey to state
s’ € States—preserves the meaning of all models:

Ta(s)({e) oes) := U t.targety.effecty o To(t.targets)(es) (5.10)
teactivateda(s,e)

= U t'.effects o Ts(t' .targets)(es) (5.11)
t'cactivateds (s’ ,e)

=: T3(s")((e) o es) (5.12)

The implemented algorithm is depicted in Listing 5.1}

Introduction of regions. To introduce concurrent regions, we have to adopt formula (5.8)
for instances r € Regiony of the new class:

Ty(r)(es) := Ty(r.initialy)(es) (5.13)
Additionally, we have to replace formula by:
Tu(cs)(es) = Z{Tu(r)(es)|r € cs.regions} (5.14)

where T : P(P(Action™*)) — P(Action*) produces all possible interleavings of different sets
of traces.

The introduction requires a migration function migss that creates a region for each composite
state. To preserve the meaning of all models, migss has to correctly extract the substates and
the initial state of the composite state to the newly created region. A model that has been
migrated from language version 3 to 4 thus can only have one region v’ € Regiony for each
composite state cs' € CompositeStatey:

Ty(cs')(es) = T{Ty(r")(es)} = Tu(r")(es) = Ty(r'.initialy)(es) (5.15)

Since there is only one region, there is no interleaving. Because r'.initialy returns the same
state as cs.initials from the composite state cs € CompositeStates before migration (cs' =
migsa(cs)), the migration function is semantics-preserving:

Ty(r")(es) := Ty(r'initialy)(es) = Ts(cs.initials)(es) =: T3(cs)(es) (5.16)

The algorithm is implemented by applying reusable coupled operations which is shown in

Listing

5.4.2 Characterizing Model-Specific Migration

As we have seen before, models may have to be migrated to preserve their mean-
ing in response to metamodel evolution. A model migration is defined by a mi-
gration function mig which maps the models from the old language L., with
S1 = Lymm, — SD; to models of the new language L, with S2 : Lym, — SDo.
As mentioned before, we require that the migration function respects the relation
~ C 8Dy x 8D, between the two versions of the semantic domain. Otherwise, infor-
mation is lost during migration which needs to be avoided. If the relation = preserves
the equivalence relation on the semantic domains, we call the semantics change a se-
mantics refactoring:

144

5. COPE - Coupled Evolution 5.4. Limitations of Automating Model Migration

Definition 5.15 (Semantics Refactoring). Let Sy — S2 be a semantics change from S :
Lym, — 8Dy to Sy : Linm, — SDa. The semantics change is called semantics refactoring
if it preserves the equivalence relation for both semantic domains:

Vs1,t1 € SD1,89,t0 € SDy: 51 =t1 ANs1 = sog ANt Etg = 89 =t

However, there are cases in which the semantics of the language is changed in a way
that does not preserve the equivalence relation on the semantic domains. We call
such a case a semantics refinement:

Definition 5.16 (Semantics Refinement). Let S — Sa be a semantics change from S :
Liym, = SD1 to Sy : Lyym, — SDa. The semantics change is called semantics refinement
if it cannot always preserve the equivalence relation for both semantic domains:

ds1,t1 € 8Dy, 89,19 € SDy: 51 =t1 A ST = 59 Aty Etg A so §ét2

That means that an element of the source semantic domain is associated to different
elements in the target semantic domain which are not semantically equivalent. When
the semantics is refined, often the migration cannot be performed without informa-
tion which is not available in the original model as shown below:

Definition 5.17 (Model-Specific Migration). Let S — S2 be a semantics refinement from
S1: Lowmy, — SD1to Syt Loymy — SDa. Let R 2 Loy, — P(Lmm,) be the models from
Lms, that refine a model from Ly, due to semantics refinement:

R(ml) = {mz S ﬁme ‘ Sl(ml) = SQ(mQ)}

A model migration mig : Lym, — Lmm, i called model-specific if and only if there is a
model that is refined by multiple models:

I € Lo, : | R(ma)]| > 1

A migration is thus model-independent if Vimy € Lym, : || R(m1)| = 1.

A migration has to be model-specific, if several models in £,,,,, exist which seman-
tically refine a model in £,,,,. In this case, additional information is necessary dur-
ing migration to choose one of these models which are not semantically equivalent.
The set for which the migration has to be model-specific is L,,s = {m1 € Lym, |
|R(m1)|| > 1}. Again, only those models are problematic which are built and require
model-specific migration, i.e. Lyt N L.

Example 5.13 (Model-Specific Migration). We analyze whether the migrations involved
in the running example are model-specific or semantics-preserving.

Introduction of initial states. The introduction of mandatory initial states is a semantics
refinement. In this particular case, the semantics refinement is defined by the subset relation-
ship on sets of streams: a model my € Ly, refines another model my € Ly, if it exhibits
less non-determinism:

my < mgy & Ves € Fvent™ : S(my)(es) C S(ma)(es)

145

5.4. Limitations of Automating Model Migration 5. COPE - Coupled Evolution

A model migration mig2 from language version 1 to 2 cannot always preserve the semantics,
but has to refine it, as can be seen for a composite state cs which is mapped to cs' by the
migration:

Ty (cs")(es) := Ty(cs' initialy)(es) C U Ti(s)(es) =: Ti(cs)(es) (5.17)

sEcs.stater

As a consequence, a number of models with different choices for initial states are possible
refinements for each model without initial states. Model-specific information is required to
choose the one that is intended by the developer of the model.

Moore to Mealy machines. The transition from Moore to Mealy machines is a semantics
refactoring, since the relation = between the semantic domains preserves the equivalence re-
lation =, as shown in Example[5.12} No additional information is required during migration,
and we can thus specify an algorithm that automatically performs the migration.

Introduction of concurrent regions. The introduction of concurrent regions is also a se-
mantics refactoring, since again == preserves =.

5.4.3 Coping with Model-Specific Migration

We outline a number of possible solutions to cope with model-specific coupled evo-
lution. The solutions take advantage of particular situations which are however en-
countered very often in practice.

Effort Analysis. In practice, only a small subset Lyyiix C Ly, of all possible models
of a metamodel mm are actually built. Only the existing models need to be migrated.
In many practical situations (e.g. for languages developed only for use inside an
organization), the language engineers and users are quite close to each other. In these
situations, it is often the case that the entire set of the existing models is known to the
language engineers. For instance, whenever the language is used only in-house, all
models are contained in a central repository.

In case all models are known, language engineers can make informed language im-
provements also with respect to the effort needed for model migration. Based on
the existing models, they can assess the manual migration effort required after meta-
model adaptation. For instance, the effort needed to introduce initial states is pro-
portional to the number of composite states in the existing models, as an initial state
has to be chosen for each composite state. They can decide whether a language im-
provement is worth making given the amount of manual work necessary to migrate
the existent models. However, in a lot of cases, language engineers and users are
decoupled which makes this approach infeasible.

Interactive Migration. One possibility to support model-specific coupled evolution
is to provide user interaction during migration. The migration algorithm automat-
ically migrates the model as far as possible, and whenever it needs supplementary
information, it asks the language user to provide the missing information. It can also
suggest a number of alternatives from which the language user has to choose. We
have extended COPE’s language to implement a model migration with a primitive
to trigger such an interaction during migration.

146

N U R W N e

5. COPE - Coupled Evolution 5.4. Limitations of Automating Model Migration

x

Choice

Choose initial state

Bl Model true 4 State RED
B4 Model Resource platform: fresource/statemachine_ | 4+ State WAIT
4 State GREEM

Lo s Transition requesk
-4 State WAIT
Lo dp Transition timetut
-4+ State GREEN
L Tramsition timeQut
El- 4 State OFF

L4 Transition bUFMOR
- <4 Metamodel

4 | 2

Properk | Yalue
Initial
Mame

o~
@

ON

Figure 5.14: User interface for interactive coupled operations

Example 5.14 (Interactive Migration). Listing [5.5] shows the use of this primitive in an
interactive coupled operation that introduces initial states in the language.

Listing 5.5: Interactive coupled operation Introduce Initial States

// metamodel adaptation
newReference (CompositeState, "initial", State, 1, 1, !CONTAINMENT)

// model migration
for (a in CompositeState.allInstances) {
a.initial = choose(a, a.state, "Choose initial state")

}

The metamodel adaptation creates the new reference initial which is mandatory (lower
bound 1), single-valued (upper bound 1) and not a composition (not containment). During
model migration, the developer of the model has to choose an initial state for each composite
state. The primitive choose takes three parameters as input—namely the context element,
the values to choose from and a message, and returns the chosen value.

Figure[5.14]shows the dialog that is opened during model migration to let the language user
make a choice. The dialog shows the current state of the model (selecting the context element),
the list of values to choose from, as well as the message. The language user is required to
choose a value from the list to determine the initial state for a composite state.

Currently, the dialog to answer the questions shows the model in abstract syntax.
However, the language user would probably prefer to see the model in concrete syn-
tax, when answering the questions. To support that, the concrete syntax needs to be
available for the version of the modeling language before the coupled operation. If
this is not possible, the interactive coupled operations may also be moved to the be-
ginning or end of the coupled evolution, if dependencies permit. If they are moved

147

5.5. Summary

5. COPE - Coupled Evolution

to the end of the coupled evolution, we can also add the questions as todos to the
model, so that the language user can answer them after migration.

Implicit Information. Often, the language users employ different conventions (e.g.
naming conventions) to capture more information than is made explicit through the
metamodel. In these cases, the language user can incorporate implicit information
to help automate the migration. For example, language users might have already
named all initial states with a prefix "I", before the initial states were explicitly in-
troduced in the metamodel. They can then refine the migration in a way that for
each composite state, it automatically chooses the marked substate. We thus plan
to introduce a means to allow the language user to upfront establish certain choices
introduced by the language engineer.

5.5 Summary

Just as other software artifacts, modeling languages and thus their metamodels have
to be adapted. In order to reduce the effort for the resulting migration of models,
adequate tool support is required. In Chapter 3| (State of the Practice: Automatability of|
IModel Migration)), we have performed a study on the histories of two industrial meta-
models to determine requirements for adequate tool support. Adequate tool support
needs to support the reuse of migration knowledge, while at the same time being
expressive enough for complex migrations. To the best of our knowledge, existing
approaches for model migration do not cater for both reuse and expressiveness.

This chapter presented COPE, an integrated approach fulfilling these requirements.
Using COPE, the coupled evolution can be incrementally composed of coupled oper-
ations that only require specification of the differences of metamodel and models in
consecutive versions. The resulting modularity of coupled operations ensures scala-
bility, and is particularly suited to combine reuse with expressiveness. Reuse is pro-
vided by reusable coupled operations that encapsulate recurring migration knowl-
edge. Expressiveness is provided by a complete set of primitives embedded into a
Turing-complete language, which can be used to specify custom coupled operations.
Tracking the performed coupled operations in an explicit language history allows
language users to migrate models at a later instant, and provides better traceability
of metamodel adaptations.

We implemented these language concepts based on the Eclipse Modeling Framework
(EMF). To ease its application, COPE was seamlessly integrated into the metamodel
editor, shielding the language engineer from technical details as far as possible.

148

Chapter

Tool Support

In the last chapter, we presented a language for the coupled evolution of metamod-
els and models fulfilling the requirements of reuse and expressiveness. From our
experience, language engineers do not want to encode the coupled evolution, but
rather prefer to adapt the metamodel directly in an editor. Consequently, COPE is
implemented as a non-invasive integration into the existing EMF metamodel edi-
tor. Even though COPE is based on the language presented in Chapter
|Coupled Evolution of Metamodels and Models), it shields the language engineers from
this language as far as possible. COPE is open source and can be obtained from
our websitel. The web site also provides a screencast, documentation and sev-
eral examples (including the running example from this dissertation). This chapter
is partly based on [Herrmannsdoerfer, 2009], [Herrmannsdoerfer and Koegel, 2010a]
and [Herrmannsdoerfer, 2011].

Contents
[6.1 Recording the Coupled Evolution| 149
[6.2 Maintaining the Coupled Evolution|. 152
[6.3 Operation-based Metamodel Versioning| 158
.................................. 166

While Section [6.1] (Recording the Coupled Evolution) describes the basic functions of
COPE to record the coupled evolution, Section (Maintaining the Coupled Evolu-|
describes more advanced functions to inspect, refactor and recover the coupled
evolution. Section [6.3| (Operation-based Metamodel Versioning) presents the versioning
model by means of which the coupled evolution is recorded and stored, before Sec-

tion [6.4] (Summary)) concludes this chapter.

6.1 Recording the Coupled Evolution

We first describe the workflow that is supported by COPE, before detailing on its
integration into the user interface of the EMF metamodel editor.

!see COPE web site: http://cope.in.tum.de

149

http://cope.in.tum.de

6.1. Recording the Coupled Evolution 6. Tool Support

6.1.1 Tool Workflow

Figure |6.1]illustrates the tool workflow using the running example from Chapter
(COPE — Coupled Evolution of Metamodels and Models)). The workflow contributes to all
layers of the meta hierarchy.

Library of Reusable Coupled Operations

Delete Feature Rename Extract Class Generalize Reference|

o
-- | --nstantiation- -} -~ - - -] 350
M

Metametamodel
Layer

History Model Release 0 & l Release 1
Moore to Mealy Extract Class Generalize R.
% Metamodel | S e e | -
T Adaptation | |
S o
ISEN
g5
[}
= Model ' !
Migration' . O 0> 0> O P O O P Ot - |+ - -
Custom Coupled !
old Operation New
Meta- Meta-
model model
—————————————————————————— b mmmmmm—m—m - —-Generation - == === === === mmm e
conforms To conforms To

Model

5 AN
% old Input Vicrator Output New
| Model ¢ Model

Figure 6.1: Tool workflow

Metametamodel Layer. COPE provides a library of reusable coupled operations that
can be invoked on a specific metamodel. Therefore, the library is aware of the sig-
nature and the preconditions of the reusable coupled operations. Besides the oper-
ations required for the running example, the current library contains a number of
other reusable coupled operations like e.g. Rename or Delete Feature. The library
is extensible in the sense that new reusable coupled operations can be declared and
registered. Reusable coupled operations are declared independently of the specific
metamodel, i.e. on the level of the metametamodel.

Metamodel Layer. All operations applied to the metamodel are maintained in an
explicit history model. The history model keeps track of the coupled operations which
encapsulate both metamodel adaptation and model migration. It is structured ac-
cording to the language releases, i.e. the language versions which were deployed.
All previous versions of the metamodel can be easily reconstructed from the infor-
mation available in the history model. In Figure the evolution from release 0 to
release 1 is the sequence of coupled operations we performed in Chapter
[Coupled Evolution of Metamodels and Models)).

150

6. Tool Support

6.1. Recording the Coupled Evolution

Model Layer. A migrator can be generated from the history model that allows for the
batch migration of models. The migrator packages the sequence of coupled opera-
tions which can be executed to automatically migrate existing models.

6.1.2 User Interface

Figure|6.2[shows an annotated screen shot of COPE’s user interface. COPE has been
integrated into the existing structural metamodel editor provided by EMEF. This meta-
model editor has been extended so that it also provides access to the history model.
Reusable coupled operations are made available to the language engineer through a
special view called operation browser. A migration editor with syntax highlighting is
provided for the specification of custom coupled operations.

] statemachine.ecore 2 -a

\metamodel editor]

7| platform:/resource/statemachine_ecoop/model/statemachine.ecore

f# statemachine

H State

E Transition

E CompositeState - » State
5 region : Region

H Region
S initial : State
5 state: State

@& Op&operation browserj - o

Create History Run Script Import Migrator

Release Converge

Applicable Operations:

8% Create Attribute -
% Create GMF Constraint
6% Create Reference

83 Delete Class

m

Al J%;t;o.r;n:;resource.astatemal history model pchine history
istory

[A] Release 0 (23.10.2009 11:05:44)
H] Release rl (23.10.2009 11:09:14)
Z]& Custom Migration has been attached B] custom
E‘ {effect} has been moved from {State} tol Transition}
£ Operation "Extract Class" has been executed (contextCla
£ Operation "Generalize Reference” has been executed (r; reusable
== nsURI of {staternachine} has been changed from "http://

8% Document Metamodel Element
| {6} Extract Class
63 [Exctract Class

83 In the metamodel, a number of features are
@ extracted to a new class. This new class is
accessible from the context class through a
& new containment reference, In the model,
lthe values of the features are extracted to a
L é8[new instance accordingly.

transitionClass.eStructuralFeatures.add (effed

T T TS O R

'/ model migration

defaultPackage = statemachine
2 getEffect = { transition -> mOdel
10 def effect = [] migration
11 def state = transition.target
12 effect.addnll (state.get (effecthttribute)) -

P eters:
] Release (not yet released) COUple.d arameters
y — Operatlons MName Value
TS .
@ Migration Change %2 \ migration editor / (-{-;]contmclass B CompositeStat...
50 . . [--] features
/ metamodel adaptation - 4, Pack # statemachine
transitionClass = statemachine.Transition metamodel [U]e ackage =
effectAttribute = statemachine.S5tate.effect adaptation [-{-;]className
E [-- referenceMName

Violated constraints:

@ Parameter 'className’ must be set

@3 Parameter 'referenceMame’ must be set

Execute

Figure 6.2: Integration of COPE into the EMF metamodel editor

Enabling Reuse. The language engineer can adapt

the metamodel by invoking

reusable coupled operations through the operation browser. The browser is context-
sensitive, i.e. offers only those reusable coupled operations that are applicable to the
elements currently selected in the metamodel editor. The operation browser allows to
set the parameters of reusable coupled operations based on their type, and gives feed-
back on its applicability based on the preconditions. When a reusable coupled oper-
ation is executed, its invocation is automatically tracked in the history model. Fig-
ure |6.2| shows the Extract Class operation being available in the operation browser,

151

6.2. Maintaining the Coupled Evolution 6. Tool Support

and the reusable coupled operations stored in the history model. Note that the lan-
guage engineer does not have to know about the coupled evolution language if he or
she is only invoking reusable coupled operations.

Supporting Expressiveness. In case no reusable coupled operation is available for
the coupled evolution at hand, the language engineer can perform a custom cou-
pled operation. First, the metamodel is directly adapted in the metamodel editor,
in response to which the metamodel change operations are automatically tracked in
the history. A migration can later be attached to the sequence of metamodel change
operations by encoding it in the language presented in Chapter [5| (COPE — Coupled|
|[Evolution of Metamodels and Models). Note that the metamodel adaptation is automat-
ically generated from the change operations tracked in the history model. In order
to allow for different metamodeling habits, adapting the metamodel and attaching
a model migration is temporally decoupled such that a model migration can be at-
tached at any later instant. Figure shows the model migration attached to the
manual metamodel change operations recorded in the history model in a separate
editor with syntax highlighting.

Migrator Generation. The operation browser provides a release button to create a
released version of the metamodel. After release, the language engineer can initiate
the automatic generation of a migrator.

6.2 Maintaining the Coupled Evolution

After testing the model migration, the language engineer might find out that the
recorded history does not perfectly specify the intended model migration, and thus
needs to modify it. When the metamodel is derived from another artifact, the history
cannot be recorded and hence needs to be recovered from the metamodel versions
before and after the adaptation. To address these issues, COPE provides advanced
tool support to inspect, refactor and recover the coupled evolution.

6.2.1 Inspecting the Coupled Evolution

The recorded history model allows the language engineer to understand the inten-
tion behind the metamodel adaptation. Based on the history model, COPE provides
the following functions to ease understanding the coupled evolution.

Identifying Breaking Operations. Breaking metamodel change operations perform
changes which can possibly invalidate existing models. To prevent errors during
coupled evolution, these operations need to have a model migration attached. Based
on Section [5.3.2| (Breaking Metamodel Changes Revisited), COPE provides an analysis
to identify breaking operations which do not yet have a model migration attached.
Breaking operations are identified on the metamodel-level, i.e. independently of the
existing models. Figure [6.3|shows how the user interface displays breaking opera-
tions. When the custom migration is not yet attached to the movement of the at-
tribute effect from class State to Transition, we can identify the metamodel adaptation

152

6. Tool Support 6.2. Maintaining the Coupled Evolution

as a breaking operation.

#] *statemachine.ecore i3 (3
- = Validation Problems &J -
platform:/resource/statemachine_g

8 statemachine 3 Problems encountered during validation

B State ' 4
E Transition "~ Reason:
H CompositeState -» State Diagnosis of History
55 region : Region
E Region [identify breaking operations

S* initial : State
5 state: Sta
il platform:/resoyecé/statemachine
il History
[Release) (23.10.2009 11:05:
[Release rl (23.10.2009 11:09:T=y
E‘ {effect} has been moved from {State} to {Transition}
£] Operation "Extract Class" has been executed (contextClass = {CompositeState], features = [{initial}, {state}], ePackage = {statemachine},

ok | [<<Details |

| @ The 'Breaking' constraint is violated on '{effect} has been moved from {State} to {Transition}' |

] Operation "Generalize Reference” has been executed (reference = {region}, type = {Region}, lowerBound = 1, upperBound = -1)
:= nsURI of {staterachine} has been changed from "http://statemachine/r0" to "http://statemachine/rl"
[Release (not yet released)
4 T 3

Figure 6.3: Identifying breaking operations

Metamodel Reconstruction. To understand the evolution, COPE allows the lan-
guage engineer to reconstruct metamodel versions from the history model. Earlier
metamodel versions can be simply reconstructed by interpreting the primitive oper-
ations recorded in the history model. Thus it is not necessary to store all the inter-
mediate metamodel versions which would require a large memory footprint. This
reconstruction is interactive, allowing the language engineer to browse through the
history model. When the language engineer selects an operation in the user inter-
tace, COPE reconstructs the snapshot of the metamodel right after the operation. The
metamodel snapshot is shown in a separate view through which it can be inspected.
Figure[6.4/shows a screen shot of the so-called reconstruction view in action. It displays
the reconstructed version of the metamodel after the transition from Moore to Mealy
machine, but before the introduction of concurrent regions.

History Differencing. Comparing two metamodel snapshots in EMF does not al-
ways yield an accurate difference model. This is due to the fact that—in the absence
of universally unique identifiers—the matching between the metamodel elements
from the two snapshots has to be inferred. To produce a more accurate difference
model, the matching can be generated from the history model. In the user inter-
face, COPE allows the language engineer to select the source and target version
for the comparison directly in the history model. COPE produces a view showing
the difference model between the two metamodel versions. The so-called compari-
son view displayed in Figure [6.5| shows the differences between the version before the
tirst operation and the version after the last operation. For instance, the highlighted
operation—moving the reference state from class CompositeState into the new class
Region—can currently not be inferred correctly by EMF Compare? (see Figure 6.7|for
the differences as inferred by EMF Compare).

Checking Integrity. COPE stores both the current version of the metamodel as well

2see EMF Compare web site: http://wiki.eclipse.org/EMF_Compare

153

http://wiki.eclipse.org/EMF_Compare

6.2. Maintaining the Coupled Evolution 6. Tool Support

#| statemachine.ecore &3 = B || T Reconstruction View 2 =0
a |7 platform:/resource/statemachine_ecoop/model/statemachine.ecore £l recons/statemachine.ecore
4 f# statemachine / f# statemachine
a [State B CompositeState -» State
T name: EString S* initial : State
£ incoming : Transition [state: State
= outgeing : Transition H State
a4 [Transition = incoming : Transition
5 source : State T name: EString
S target: State £ outgoing : Transition C
= trigger : EString reconstruct E Transition g
& effect: EString i3 effect: EString g
a4 [CompositeState -» State 5* source: State 24
55 region : Region 5* target: State c
a4 [Region o trigger : EString 2"
5* initial : State g
3 state: State Property Value <.
4 ﬂ J%;lt{_{gr:ﬂ:;’resourcea'statemach|ne_ec00p_a'model_a'staterrachlne.hlstor}r Changeable & true g
4 istory =
. [Release 0 (23.10.2000 11:05:44) Defoukt Value 1= ey
4 [Release rl (23.10.2009 11:09:14) Default Vahue Lite... K
a 5[5 Custom Migration has been attached Derived % false
E‘ {effect} has been moved from {State} to { Transition} EAttribute Type B EString [java.lan...
s Q] Operation "Extract Class" has been executed (contextClass = {CompositeState}, fe EContaining Class B Transition
» & Operation "Generalize Reference” has been executed (reference = {region}, type = EType & EString [java.lan..
:= nsURI of {statemachine} has been changed from "http://statemachine/f)" to "htt| D % false
] Release (not yet released) Lower Bound =0
] m b Many S5 true =

Figure 6.4: Metamodel reconstruction

as its history model. This is redundant, as the current metamodel version could be
reconstructed from the history model. However, other artifacts—like e.g. models to
define the concrete syntax—depend on the current version of the metamodel. Due to
the redundancy, the history model must be consistent with respect to the metamodel:
it must reconstruct the current version of the metamodel. COPE thus provides a func-
tion to check the integrity of the history model. This function reconstructs the current
metamodel version from the history and compares it with the stored metamodel ver-
sion.

6.2.2 Refactoring the Coupled Evolution

As the recorded history does not always perfectly specify the intended model migra-
tion, COPE provides functions to refactor the history model. The refactorings have
to preserve the meaning of the history model: the history model has to reconstruct
the current metamodel version.

Flattening Operations. When the language engineer records the coupled evolution,
he or she might define an incorrect migration by applying the wrong reusable cou-
pled operation or by incorrectly encoding a custom coupled operation. To remove
the incorrect migration, a custom or reusable coupled operation can be flattened in
COPE. In order to do so, the coupled operation is replaced by the equivalent sequence
of primitive operations. Thereby, the metamodel adaptation is preserved, and only
the model migration is altered. The resulting primitive operations can be enriched by
a different custom migration or replaced by a different reusable coupled operation as
explained in the following paragraph.

154

6. Tool Support 6.2. Maintaining the Coupled Evolution

#] statemachine.ecore &2 - o

|7 platform:/resource/statemachine_ecoop/model/statemachine.ecore
f## statermachine
H Sstate
E Transition
E CompositeState -» State
E Region
il platform:/resource/statemachine_ecoop/model/statemachine.histary
Eﬂ History
[Release D (23.10.2009 11:05:44)
H] Releaserl (23.10.2009 11:09:14)

Z& Custom Migration has been attached

3]
E £ Operation "Extract Class" has been executed (contextClass = {CompositeState], features = [{initial}, {state}], ePackage = {statemachine},
g' £ Operation "Generalize Reference” has been executed (reference = {region}, type = {Region}, lowerBound = 1, upperBound = -1)
O |——— = nsURI of {statemachine} has been changed from "http://statemachine/r)" to "http://statemachine/rl"
© H] Release (not yet released)
7_|‘ " | o
T Comparison View 3 \comparison view/ - O
| 7| before/staterachine.ecore F] E 6 change(s) in model |7 after/statemachine.ecore
f## statemachine 4 23 6 change(s) in statemachine f## staternachine
E CompositeState -» State 4 ‘& 1 change(s) in State E CompositeState -» State
S initial : State 4 33 1 change(s) in effect: EString 5 region : Region
5 state: State - — — sy, effect: EString has been moved from State to E Region
H Sstate 4 ‘& 3 change(s) in CompositeState -» State * initial : State
. effect: EString \ 4 7 1 change(s) in initial : State i state: State
£ incoming : Transition \ * initial : State has been moved from Composit] / H State
T name: EString \ 4 72 1 change(s) in state : State / £ incoming : Transition
5 outgoing : Transition — —|s state: State has been moved from Compositef— / T name: EString
E Transition g5 region : Region has been added £ outgoing : Transition
5+ source: State e Attribute nsURIL: EString in statemachine has change| E Transition
G+ target: State £ Region has been added &, effect: EString
= trigger: EString $* source: State
5 target: State
< m » = trigger : EString
Property Walue * | Property Value * || Property Value it
Changeable 4 true B Conflicting s false E Changeable v true m
Container g false Is Hidden By g Container v false
Containment & true Kind 1= Move Containment % true
Default 7 \ Left Elernent o Nate Default Vay \
Default before S | eft Taroet dlfferences teState -» State S Nefault V. after S

Figure 6.5: History differencing

Replacing Operations. For certain breaking operations, we might later identify a
reusable coupled operation that provides the intended model migration. Rather than
manually reimplementing the model migration, it is better to apply the reusable
coupled operation instead. The primitive operations, however, have already been
recorded to the history model. COPE thus provides support to replace a sequence
of primitive operations with the application of a reusable coupled operation. COPE
reconstructs the metamodel version before the operations and presents it to the lan-
guage engineer in a dialog where he or she can select and apply the appropriate
reusable coupled operation. Figure 6.6/ depicts the replacement dialog to replace prim-
itive operations by an application of the Extract Class operation. The dialog shows
the metamodel version before the operations, the primitive operations that need to be
replaced, and the operation browser to select the operation. To keep the history model
consistent, the primitive operations can only be replaced, in case the application of
the reusable coupled operation yields the same result.

Reordering Operations. Only consecutive primitive operations can be replaced by a
reusable coupled operation or can be enriched by a custom model migration. When

155

6.2. Maintaining the Coupled Evolution 6. Tool Support

@ *statemachine.ecore &3 =0
|7 platform:/resource/statemachine_ecoop/model/statemachine.ecore
statemachine
H State
E Transition
H CompositeState -> State
H Region
] platform:/resource/statemachine_ecoep/model/statemachine. history
] History
[Release r0 (23.10,2009 11:05:44)
H] Releaserl (23.10.2009 11:09:14)
&& Custom Migration has been attached
EClass {Region} has been created in {statemachine} rep|ace Operations
EReference {region} has been created in {CompositeState}
E| {state} has been moved from {CompositeState} to {Region}
E| {initial} has been moved from {CompositeState} to {Region}
& Operation "Generalize Reference” has been executed (reference = {redion}, type = {Region}, lowerBound = 1, upperBound = -1)
= nsURI of {statermachine} has been changed from "http://statemaching/r)" to "http://statemachine/rl"
[] Release (not yet released) A
= Replace primitive changes with operation \replacement dlalog/ @
Replace primitive changes with operation
A sequence of primitive changes can be replaced by the instantiation of an operation. On the left-hand side, the state of the
metamodel before the primitive changes is shown. In the middle, the sequence of primitive changes is shown. An element can be
| 7| recons/statemachine.ecore EClass {Region} has been created in {state Applicable Operations:
e statemachln.e = name of{Re.glon} has been chang.edf %3 Delete Class 0
EH CompositeState - State EReference {region} has been created in {
S, — . 83 Document Metamodel Element ‘*‘
T initial : State := name of {region} has been changed fif |. | 4
G state: State eType of {region} has been changed f Wi Class

8% Extract Subclass

H State := lowerBound of {region} has been chai
&2 incoming : Transition containment of {region} has been chg &3 Extract Super Class il
T name: EString B {state} has been moved from {Composite ‘:m‘:nld (”"mﬂ"ﬂ, b
&3 outgoing : Transition B {initial} has been moved from {Composit
H Transition Parameters:
& effect: EString Name Value
5 source : State - .
% target : State (-{-}-) contextClass =] CompositeState...
o trigger: EString q| = - (-(-}-) features 5 state: State init...
(-1 ePackage # statemachine
Property Value | Property Value A | € classMame L& Region
Abstract v false Breaking I false (-?-J referenceMame L& region
Default Value = E Description = =N)
ESuper Types State Element i3 state: State B
Instance Class M., M Reference £ eStructuralFeat..
i Reference Name = eStructuralFeat.. _

Instance Type N...

@:‘ [QK] [Cancel
[before | / primitive operations \ / operation browser

Figure 6.6: Replacing operations

the operations which we want to replace or enrich are not performed together, they
may not be consecutive. Certain operations, however, are independent of each other
and thus can be reordered to make them consecutive. COPE therefore provides sup-
port to move operations to another position in the history model. To ensure the over-
all consistency of the history model, the following constraints need to be fulfilled:
The operations can only be moved to an earlier position, if they do not depend on
the operations that are jumped over, and the operations can only be moved to a later
position, if the operations that are jumped over do not depend on them.

Undoing Operations. When performing further operations, earlier operations might
prove to be wrong. Manually performing the reverse operations is a possible solu-
tion, but might lead to a different intention when regarding the model migration. For

156

6. Tool Support 6.2. Maintaining the Coupled Evolution

example, deleting an attribute and creating it again would lead to the loss of the at-
tribute’s values in the model. Therefore, COPE provides support to undo operations
after they have already been recorded. To ease undoing operations, the operations
are stored in the history model both in forward and reverse direction. Then the oper-
ations to be undone need to be simply applied in the reverse direction. To preserve
the consistency of the history model, operations can only be undone if no later oper-
ations depend on them.

6.2.3 Recovering the Coupled Evolution

There are certain cases where COPE cannot be used during the adaptation of the
metamodel. For example, the metamodel might be generated from another artifact,
and therefore a different tool is used to edit the artifact. In these cases, the history
model needs to be recovered from the metamodel versions before and after the adap-
tation.

#] *releasel.ecore i = B | O Convergence View i3 \Convergence VieW/ =8
\7| platformi/resource/statemachine_ecof| 4 Yo 5 change(s) in model # statemachine
statemachine 4 7@ 5 change(s) in statemachine E CompositeState -» State
[State 4 '@ 1 change(s) in State 5 region : Region
' name: EString 4 53 1 change(s) in effect: EString E Region
% effect: EString — — — H — — — — —| &, effect: EString has been moved frof— Z* initial : State
& incoming : Transition 4 & 2change(s) in CompositeState -» State \ 5 state: State
3 outgoing : Transition 4 72 2 change(s) in state: State \ B State
H Transition w3 Attribute name: EString in region : \ = incoming : Transition
5* source: State # Reference eType: EClassifier in regi \ T name: EString
F* target: State s Attribute nsURI : EString in statemachine h \ &3 outgoeing : Transition
= trigger : EString g3 Region has been added \ E Transition
H CompositeState -» State v =, effect: EString
3 state: State 5 source : State
fll platform:/resource/statemachine_eco 5 target: State
il History = trigger : EString
[Release (06.09.2010 13:50:25) 4 UL} r
[Release (not yet released) Property Value | Property Value -
Conflicting Iv false Changeable v true E
Is Hidden By = Default Value = o
Kind IE Move Default Value ... =
Left Element i effect: EString |4 Derived I false
Left Target H_State EAttri = ing [iava,|...
T {source metamodel\ : Remote/ difference model \ -| E target metamodel \ ~

Figure 6.7: Metamodel convergence

Metamodel Convergence. COPE provides advanced tool support to reverse engi-
neer the history model. Figure [6.7] depicts the user interface to let a source meta-
model version converge to a target metamodel version. The source metamodel version
is loaded directly in the metamodel editor, whereas the target metamodel is displayed
in a separate view. This so-called convergence view also displays the current differ-
ence model which results from the comparison between the source and target meta-
model. The differences are linked to the metamodel elements from both source and
target version to which they apply. Breaking changes in the difference model—which
necessitate a model migration—are highlighted in red. By means of the operation
browser, the language engineer can apply reusable coupled operations to bring the
source metamodel nearer to the target metamodel. After an operation is executed on

157

6.3. Operation-based Metamodel Versioning 6. Tool Support

the source metamodel, the difference is automatically updated to reflect the opera-
tions. Changes in the difference model which are not breaking can be easily applied
to the source metamodel by double-clicking on them.

6.3 Operation-based Metamodel Versioning

Figure shows the architecture of the tool. In the center, the history model stores
the operations applied to a metamodel. The history model conforms to the history
metamodel which provides the constructs to version metamodels. Based on the meta-
model, a number of components are necessary to implement the functions presented
in the previous two sections. A recording component records the operations when
they are applied to the metamodel in the editor. To reconstruct metamodel versions,
the reconstruction component interprets the recorded history model. The refactoring
component allows the language engineer to safely modify the history model.

conforms to

recon-

recording record—> history interpret struction

model

modify

refactoring

N

Figure 6.8: Tool architecture

Section |6.3.1| (History Metamodel)) presents the history metamodel. The recording and
reconstruction components are introduced in Section [6.3.2|(Recording and Interpreting]
[the History). Finally, Section|[6.3.3|(Preserving the History) explains how the consistency
of the history model can be preserved when refactoring it.

6.3.1 History Metamodel

The history of a metamodel is maintained in a separate model which conforms to
a special metamodel called the history metamodel. The history model decorates the
metamodel, i.e. directly refers to the elements of the current metamodel version. In
contrast, the metamodel is not aware of the history, i.e. there are no links from meta-
model to history elements. In the following, we introduce the different concepts
provided by the history metamodel.

158

6. Tool Support 6.3. Operation-based Metamodel Versioning

Metamodel History. COPE provides linear versioning of a metamodel, i.e. the his-
tory is a sequence of metamodel versions. As is depicted in Figure the History
of a metamodel consists of a sequence of releases. A Release is a metamodel ver-
sion which has been deployed and for which models can thus exist. When a meta-
model version is released, the date is stored and an identifying label can be provided.
Moreover, the namespace URI of the metamodel has to be changed, as it is used to
version models. A Release consists of the sequence of operations which have been
performed since the previous release. Operation is an abstract class having a number
of concrete subclasses which are introduced in the following. The rationale behind
an Operation can be documented by a comment.

Release

’T{n’y“—* 0—* Operation

' date: Date operations | comment: String
label: String

Figure 6.9: Metamodel history

Metamodel change operations are bidirectional, i.e. maintain information to be ap-
plied in both forward and reverse direction. The reversibility of operations is re-
quired for the function Undoing Operations explained in Section [6.2.2| (Refactoring the|
[Coupled Evolution)). To be able to reconstruct earlier metamodel versions from the be-
ginning, the history has thus to start with an empty metamodel. That means that the
first release consists of the operations which have led to the initial metamodel ver-
sion. Nevertheless, COPE does not have to be used from the beginning, as a default
history can be easily generated for an existing metamodel. The last Release within a
History is always a container for the current operations and is not yet released. When
the language engineer requests a release, its date and label are initialized and a new
Release is appended to the History.

Primitive Operations. A PrimitiveOperation is an operation which can not be de-
composed. The primitive operations provided by COPE are complete in the sense
that every metamodel adaptation can be described by composing them. As was
already mentioned before, the primitive operations directly refer to the elements
(called EModelElement in EMF) from the current metamodel version to which they
apply. Asis depicted in Figure there are two basic kinds of primitive operations:
ValuePrimitive and ContentPrimitive.

Operation

comment: String

PrimitiveOperation
L 1]

‘ValuePrimitive‘ ‘ ContentPrimitive ‘
[| J

Figure 6.10: Metamodel for primitive operations

ValuePrimitive. A ValuePrimitive modifies the property of an existing metamodel el-
ement. Figure illustrates the supported ValuePrimitives. A feature denotes a
property of an element which may either be an attribute or a reference. This leads to

159

6.3. Operation-based Metamodel Versioning 6. Tool Support

two kinds of values: attributeValue and referenceValue. Set sets the value of a single-
valued feature of an element. To be reversible, Set needs to maintain the old value
which is either oldAttributeValue or oldReferenceValue depending on the type of the
feature. Add adds a value to a multi-valued feature of an element, while Remove
removes a value from it. For multi-valued features, we abstract away the indices to
which values are added or from which they are removed, since the order of elements
does not change the semantics of a metamodel.

metamodel | history

1 element ValuePrimitive

EModelElement feature: String

attributeValue

1 referenceValue

o

oldReferenceValue

oldAttributevalue | [| []

Figure 6.11: Metamodel for value primitives

ContentPrimitive. A ContentPrimitive modifies the structure of the metamodel. Fig-
ure illustrates the supported ContentPrimitives. Create creates an element as a
child of a target element. Move moves an element to a different parent—the target
element. To be reversible, Move also needs to maintain the source element. Delete
deletes an element together with its children and the links targeting them. To be
reversible, Delete also needs to maintain the target which denotes the parent of the
deleted element. As element is a composition, the deleted element is saved in the
history and can still be referred to by other earlier operations. Through their super-
class InitializerPrimitive, Create and Delete can contain a number of ValuePrimitives:
in case of Create, the operations initialize the properties of the newly created ele-
ment, while in case of Delete, the operations remove links to deleted elements. The
latter are only required to support reversibility.

metamodel = history
]

/\
\ \

! ContentPrimitive ‘ ‘ValuePrimitive ‘

* | operations

1| target
EModelElement 1 NonDelete InitializerPrimitive
element reference: String]
1 1
element source
‘ Create ‘ ‘ Move ‘ ‘ Delete ‘
[| [: | [’ |

Figure 6.12: Metamodel for content primitives

160

6. Tool Support 6.3. Operation-based Metamodel Versioning

Composite Operations. A CompositeOperation is composed of a sequence of oper-
ations. Figure depicts the metamodel extract to express CompositeOperations.
The operations are of type PrimitiveOperation, i.e. we only support one level of com-
position. CompositeOperation has a subclass for each kind of coupled operation:
CustomCoupledOperation and ReusedCoupledOperation.

Operation

comment: String

f

operations

PrimitiveOperation
]

CompositeOperation
]

CustomCoupledOperation

ReusedCoupledOperation

migration

name: String

Figure 6.13: Metamodel for composite operations

Custom coupled operations allow language engineers to attach a custom migration to
a metamodel adaptation. Thereby, a CustomCoupledOperation provides instructions
for model migration. The migration is encoded in the coupled evolution language
presented in Chapter 5| (COPE — Coupled Evolution of Metamodels and Models). Given a
model conforming to the metamodel version before the operations, the migration has
to transform it to a model conforming to the metamodel version after the operations.

Reusable coupled operations allow language engineers to reuse recurring combinations
of metamodel adaptation and model migration. Figure depicts the metamodel
extract to express reusable coupled operations in the history model. A Reusable-
CoupledOperation—that is introduced in Section |5.3.4| (Implementing Coupled Opera-|
[tions)—has a name and abstracts from a specific metamodel by means of parameters.
For each Parameter, a name as well as a type have to be declared. Both metamodel
adaptation and model migration of a reusable coupled operation are implemented
in the language presented in Chapter 5| (COPE — Coupled Evolution of Metamodels and
[Models). A number of reusable coupled operations are made available to the language
engineer through a Library.

instantiation

CompositeOperation
I

declaration

1

*| operations

ReusableCoupledOperation ReusedCoupledOperation

name: String operation | name: String
*Yparameters *Yassignments
Parameter Assignment
1
name: String [~ parameter | | name: String
type value

Figure 6.14: Metamodel for reusable coupled operations

When a reusable coupled operation is executed, its instantiation is recorded in the

161

6.3. Operation-based Metamodel Versioning 6. Tool Support

history as a ReusedCoupledOperation. The ReusedCoupledOperation encapsulates
the assignments of the parameters of the reusable coupled operation. For each pa-
rameter of the operation, its value is maintained by an Assignment. Both Reused-
CoupledOperation and Assignment refer to the declaration of the reusable coupled
operation only by name. However, the direct links can be established lazily through
the library. Therefore, the corresponding references are dashed in Figure To
be able to reconstruct a metamodel in the absence of the library, we also record the
sequence of primitive operations which is equivalent to the execution of the reusable
coupled operation.

6.3.2 Recording and Interpreting the History

To realize the functions presented in Section[6.1] (Recording the Coupled Evolution]) and
Section [6.2) (Maintaining the Coupled Evolution)), COPE needs to be able to record the
history of a metamodel and to reconstruct earlier metamodel versions from the his-
tory.

History Recording. COPE allows language engineers to change the metamodel di-
rectly in the editor, and automatically records the operations in the history model.
Figure depicts the flow of information while recording the history model. The
metamodel is modified by executing commands through the editor. Before each exe-
cuted command, the recorder is started, and is stopped right after the execution. The
recorder uses the observer mechanism provided by EMF to listen to operations ap-
plied to the metamodel. EMF provides information about each primitive operation
applied to the metamodel through a notification.

editor command—> meta- history
model model
I ____________________________ I
| I
! I
: observer record :
| I
| I
! I
2 AN !
- I
e - trans- o |
: B notifica- formation primitive | |
) tions operations | |
R |
| S

Figure 6.15: History recording

The kinds of EMF notifications are similar to the ValuePrimitives of the history meta-
model. Consequently, the recording mechanism for those operations can be imple-
mented in a straightforward manner. Only ContentPrimitives cannot be read directly
from the notifications and thus have to be inferred. If an element is added to a com-
posite reference and has not been removed from another composite reference before,
then we infer a Create of this element. If an element has been removed from a com-
posite reference and is not added to another composite reference afterwards, then we

162

6. Tool Support 6.3. Operation-based Metamodel Versioning

infer a Delete of this element. In the remaining case, we infer a Move of the element.

Finally, the obtained primitive operations are recorded in the history model. In case a
command denotes the execution of a reusable coupled operation, the recorded oper-
ations have to be enclosed in a ReusedCoupledOperation encapsulating the instanti-
ation of the operation.

Metamodel Reconstruction. Earlier versions of the metamodel can be easily recon-
structed by interpreting the history, as required by the function Metamodel Recon-
struction explained in Section|6.2.1|(Inspecting the Coupled Evolution) and the functions
Replacing Operations and Checking Integrity explained in Section [6.2.2] (Refactoring the|
[Coupled Evolution)). To rebuild a certain metamodel version, we have to execute all
primitive operations starting from the beginning up to this version. Figure de-
picts the flow of information while reconstructing a metamodel version from the
history. The reconstructor traverses the history model and reconstructs the metamodel
from scratch. When a new metamodel element is created in the course of the his-
tory, a correspondence can be established between the reconstructed element and the
original element. During reconstruction, the reconstructor maintains all such corre-
spondences in a bidirectional mapping.

recon-

! l

! I

| + a .

| structor traverse : history
: | model
. :

: maintain I

- reconstruct :

) |

| = |

IO i

= AN !

I = |

;) |

I recon- |

: 8 structed mapping I

D metamodel !

o= !

Figure 6.16: Metamodel reconstruction

Mapping. The concept of mapping is particularly useful for the comparison of two
metamodel versions. A mapping to the current metamodel is maintained for each
version during reconstruction. The two mappings can be composed to a single map-
ping stating the correspondences between the two metamodel versions. This map-
ping can be used as a starting point to calculate and present the differences between
them, as used by the function History Differencing in Section [6.2.1| (Inspecting the Cou-|
[pled Evolution)). This technique overcomes the limitation of EMF that the differences
cannot be unambiguously determined due to the lack of unique identifiers for meta-
model elements.

Reconstructor. The reconstructor can be parametrized in order to perform arbitrary
tasks during reconstruction. One such parametrization—that is necessary for the
function Identifying Breaking Operations explained in Section |6.2.1| (Inspecting the Cou-|

pled Evolution)—checks whether operations are breaking, while reconstructing the
different metamodel versions. Another parametrization generates the migrator

163

6.3. Operation-based Metamodel Versioning 6. Tool Support

which consists of earlier metamodel releases and migration scripts in between. The
migration scripts simply invoke the sequence of coupled operations from one meta-
model release to the next to automatically migrate an existing model.

6.3.3 Preserving the History

Since the purpose of the recorded history model is to specify the coupled evolu-
tion, it may need to be modified to change the migration. This is different from
the operation-based versioning of models [Koegel et al., 2009b], where the history
model is not changed, after it has been recorded. When the evolution of a model
is recorded, the history model usually fulfills certain constraints and has a certain
meaning. Transformations on the history model need to ensure that they preserve
the constraints as well as the meaning of the history model.

Preserving the History’s Constraints. A history model is meaningful if it conforms to
the history metamodel, i.e. fulfills the constraints defined by the history metamodel.
To ensure conformance of a history model, a transformation needs to preserve the
constraints. Besides the constraints defined by the class diagrams in Section [6.3.1]
(History Metamodel), the following constraints are required:

1. The sequence of primitive operations that specifies the evolution of the meta-
model and that can be obtained by flattening the composite operations needs
to be consistent:

a) An element can only be used after it is created and before it is deleted. An
element is used in a primitive operation if

i. in case of a ValuePrimitive, it is either the element, the referenceValue
or the oldReferenceValue (Set) of the operation, or

ii. in case of a ContentPrimitive, it is either the element, the target or the
source (Move) of the operation.

b) A value can only be removed from the feature of an element if it has been
added to the same element and feature before.

¢) The information to reverse the primitive operations needs to be consistent
with the information to reconstruct the metamodel, i.e.

i. the old value of a Set needs to be the new value of the last Set on the
same element and feature, and

ii. the source of a Move or the target of a Delete needs to be the previous
parent of the element, i.e. where it was created or moved to last.

2. The composite operations need to be consistent within their context in the his-
tory model:

a) A CustomCoupledOperation needs to be attached consistently in the his-
tory model, i.e. the invocation of the migration must have the same effect
as the enclosed primitive operations.

b) A ReusedCoupledOperation needs to be applied consistently in the his-
tory model, i.e.

164

6. Tool Support 6.3. Operation-based Metamodel Versioning

i. the applied reusable coupled operation defined by the Reused-
CoupledOperation must be applicable, meaning that all its precondi-
tions need to be fulfilled, and

ii. the application of the reusable coupled operation defined by the
ReusedCoupledOperation must have the same effect as the enclosed
primitive operations.

Recording functions. The functions to form coupled operations explained in Section6.]]
(Recording the Coupled Evolution)) need to preserve constraint[2} The function to attach
a custom migration to a sequence of primitive operations preserves constraint
by initializing the migration with the primitive operations encoded in the coupled
evolution language. The function to apply a reusable coupled operation preserves
constraint 2b| by checking the preconditions and recording the primitive operations
that are equivalent to the application of the operation.

Refactoring functions. The functions to refactor the history model explained in Sec-
tion [6.2.2] (Refactoring the Coupled Evolution) need to preserve different constraints.
The function Flattening Operations automatically preserves all the constraints, as it
only removes composite operations that need to be kept consistent with the primi-
tive operations. The function Replacing Operations only needs to preserve constraint
as it only introduces a ReusedCoupledOperation. The function Undoing Opera-
tions needs to preserve all the constraints for the primitive and composite operations
that occur after the operations to be undone. We only allow language engineers to
undo top-level operations directly contained by a Release, since undoing operations
contained by composite operations violates constraint[2, The function Reordering Op-
erations needs to preserve all the constraints for the primitive and composite oper-
ations that occur between the source and target of the movement of an operation.
With the same explanation as above, only top-level positions can serve as source and
target of the movement.

Preserving the History’s Semantics. A history model is interpreted by reconstruct-
ing metamodel versions. In particular, the current version of the metamodel can be
reconstructed by traversing the complete history model. We define the semantics of
a history model to be the reconstructed current version of the metamodel. However,
since the metamodel is subject to evolution, the current version of the metamodel
may also change. This is consistent with the fact that COPE maintains the current
metamodel version separately from the history model.

Recording functions. The functions to record the history model explained in Section6.]]
(Recording the Coupled Evolution) change both the current metamodel version as well
as the history model. The changed history model needs to reconstruct the changed
current version of the metamodel. This needs to be ensured by the recorder that is
explained in Section [6.3.2] (Recording and Interpreting the History).

Refactoring functions. Moreover, the functions to refactor the history model explained
in Section [6.2.2] (Refactoring the Coupled Evolution)) need to preserve the meaning of
the history model with respect to the current version of the metamodel. The func-
tions Flattening Operations and Replacing Operations are safe, since they neither change
the meaning of the history model nor the current metamodel version. However,
the function Undoing Operations changes both, while the function Reordering Opera-

165

6.4. Summary

6. Tool Support

tions changes only the history model. Of course, Undoing Operations needs to apply
the reversed operations to the current metamodel version to preserve semantics. In
addition, both functions have to ensure that the removed or moved operations do
not alter the reconstruction. They alter the reconstruction, in case the effect of op-
erations depends on their order. These operations are called conflicting operations
[Koegel et al., 2010b]]. Two primitive operations are conflicting if

e both are Sets and change the same feature of the same element to a different
value, or

e both are Moves and move the same element to a different target.

For Undoing Operations, the undone primitive operations should not conflict with
the operations after them. For Reordering Operations, the moved primitive operations
should not conflict with the operations between the source and target position of
the movement. Due to the reversibility of the primitive operations, the conflicting
operations are already identified by the constraints mentioned above.

6.4 Summary

To ease modeling language evolution, adequate tool support is required to automate
the migration of models. To obtain a correct model migration, COPE records the
coupled evolution of metamodels and models in an explicit history model. As a
result, the history model stores the sequence of coupled operations that have been
performed during evolution. To make the operation-based approach usable in prac-
tice, more advanced tool support is necessary to maintain the history model. COPE
provides functions to inspect, refactor and recover the history model to better under-
stand, correct and reverse engineer the coupled evolution. These functions are re-
quired to be able to perform real-life case studies in order to evaluate the approach.

166

Chapter

Case Studies

To demonstrate the applicability of COPE, we have performed six case studies. In
each case study, we have applied COPE to automate the coupled evolution of meta-
models and models. The case studies cover modeling languages from different do-
mains and have been performed with different goals in mind. The domains are soft-
ware architecture, graphical syntax, software quality, project planning and software

in general. We performed the following kinds of case studies:

o Reverse engineering: To demonstrate the viability of the approach, we performed

two case studies that reverse engineer the model migration, after the meta-
model adaptation has already been carried out: Palladio Component Model
and Graphical Modeling Framework.

Forward engineering: Since reverse engineering is not the primary scope of
COPE, we performed two more case studies that forward engineer the model
migration by adapting the metamodel directly with COPE: Quamoco Quality
Metamodel and Unicase Unified Model.

Comparison: To gain insight into the advantages and disadvantages over other
approaches, we compared COPE with other model migration tools in two more
case studies: Transformation Tool Contest and a Comparison of Model Migra-
tion Tools.

Some of the case studies have been published in [Herrmannsdoerfer et al., 2009a],
[Herrmannsdoerfer et al., 2009¢||, [Herrmannsdoerfer, 2010] and [Rose et al., 2010al.

Contents
[71 GMF Generator Model and Palladio Component Model|. 168
[72 Graphical Modeling Framework] 175
[7.3 Quamoco Quality Metamodel| 189
7.4 Uni nified Modell, 197
7.5 Transformation ToolContestl 204
[7.6 Comparison of Model Migration Tools| 215
77 SUMMALY[. . . v v v v ittt et e e e e e e e e 228

167

7.1. GMF Generator Model and Palladio Component Model 7. Case Studies

In Section[7.1| (GMF Generator Model and Palladio Component Model), we investigate the
automatability of model migration by reverse engineering the coupled evolution of
the Palladio Component Model and the GMF Generator Model. In Section[7.2]
fical Modeling Framework)), we examine GMF in more detail by considering its other
three metamodels and by analyzing the causes and impacts of metamodel adapta-
tion. In Section [7.3| (Quamoco Quality Metamodel), we investigate the automatability
of model migration by forward engineering the coupled evolution of the Quamoco
metamodel for specifying software quality. In Section [7.4] (Unicase Unified Model), we
forward engineer not only the model migration, but also the migration of changes
maintained by Unicase to version models for project planning and software mod-
eling. In Section [7.5| (Transformation Tool Contest), we report the results of the par-
ticipation of COPE in the migration case study of the Transformation Tool Contest
(TTC). In Section[7.6|(Comparison of Model Migration Tools), we compare COPE to other
EMEF-based model migration tools by evaluating them in a common case study along
different criteria. We sum up the central results of all case studies in Section[7.7]

)

All the case studies follow the typical structure of empirical studies:

1. Study goal: The research questions that should be answered by the case study.

2. Study object: The objects that are used as input to the case study (and eventually
the subjects that participate in the case study).

3. Study execution: The steps that are applied to the objects to answer the research
questions.

4. Study result: The results that are obtained from applying the steps to the objects.

5. Study discussion: The interpretation of the results with respect to the research
questions.

6. Threats to validity: The threats that may affect the validity of the result together
with the measures taken to mitigate them.

7.1 GMF Generator Model and Palladio Component Model

COPE has been designed based on the requirements resulting from the empirical
study presented in Chapter 3| (State of the Practice: Automatability of Model Migration)).
To revalidate these results on the evolutions of different modeling languages, we
used COPE to reverse engineer the coupled evolution of two existing metamodels: a
metamodel developed as part of an open source project, and another one developed
as part of a research project.

7.1.1 Study Goal

The study was performed to evaluate the applicability of COPE to real-world cou-
pled evolution and to better understand the potential for reuse of recurring migra-
tion knowledge. More specifically, the study was performed to answer the following

168

7. Case Studies 7.1. GMF Generator Model and Palladio Component Model

research questions:

e RQ1. Which fraction of the changes are metamodel extensions that do trivially not
require a migration of models? Since simple metamodel extensions do not require
a model migration, they have to be regarded separately.

e RQ?2. Which fraction of the changes can be reused by means of reusable coupled oper-
ations? The higher the fraction of reusable coupled operations, the higher the
degree of potential automation for the model migration.

e RQ3. Which fraction of the changes have to be implemented by means of custom cou-
pled operations? Custom coupled operations have to be implemented manually
and thus increase the effort for model migration.

e RQ4. Can COPE be applied to specify the complete coupled evolution of real-world
metamodels, i.e. including all intermediate versions? If COPE cannot be used to
specify the complete coupled evolution, it could not have been used for for-
ward engineering the coupled evolution.

7.1.2 Study Object

We chose two EMF-based metamodels that already have an extensive evolution his-
tory as study objects. We deliberately chose metamodels from completely different
backgrounds in order to achieve more representative results.

GMF Generator Model. The first metamodel is developed as part of the open source
project Graphical Modeling Framework (GMF)!. It is used to define generator models
from which code for a graphical editor is generated. For our case study, we modeled
the coupled evolution from release 1.0 over 2.0 to release 2.1, covering a period of 2
years.

Figure gives an impression of the size of the studied metamodel and its evolu-
tion over all the metamodel versions. In addition, the figure indicates the different
releases of the metamodel. The metamodel is quite extensive, growing to more than
a hundred classes in the course of its history.

There exist a significant number of models conforming to this metamodel, most of
which are not under control of the language engineers. In order to be able to migrate
these models, the language engineers have handcrafted a migrator with test cases
that we used for validation.

Palladio Component Model. The second metamodel is developed as part of the
research project Palladio Component Model (PCM)? and is used for the specifica-
tion and analysis of component-based software architectures. For our case study, we
modeled the coupled evolution from release 2.0 over 3.0 to release 4.0, covering a
period of 1.5 years.

Figure[7.1(b)| gives an impression of the size of the metamodel and its evolution over
the studied releases. Similar to GMF, the PCM metamodel is quite extensive, being

'see GMF web site: http://www.eclipse.org/modeling/gmp/
2see PCM web site: http://www.palladio-approach.net

169

http://www.eclipse.org/modeling/gmp/
http://www.palladio-approach.net

7.1. GMF Generator Model and Palladio Component Model 7. Case Studies

o

Release 20 21

~
=}
S

o
=3
S

w
a
o

@
o
=]

w
=3
]

B EEnumLiteral
OEEnum
OEReference
B EAttribute
OEClass

*E B EEnumLiteral

OEEnum
DO EReference
B EAttribute

I ————| |LlECIass

O EPackage

IS
o
o
N
a
=]

w
1=}
S

N

o

[S]
L

o
=]
L

Number of metamodel elements
N
o
o

o
[S]

o
S
o
=]
L

Number of metamodel elements

o

0

T
139 149 159 169 179 189 199 209 219 229 239 2.0 3.0 4.0

Version Release
(a) GMF Generator Model (b) Palladio Component Model

Figure 7.1: Metamodel evolution of GMF and PCM in numbers

split up in a number of packages and defining more than a hundred classes through-
out the history.

As the language engineers control all existing models—which are relatively few—
they were not forced to handcraft a migrator until now, but manually migrated the
models instead. Since no migrator could be used for validation, the modeled coupled
evolution was validated by the language engineers of PCM.

7.1.3 Study Execution

The evolution of the metamodels was only available in the form of snapshots that
depict the state of the metamodel at a particular point in time. Therefore, we had to
infer both the metamodel adaptation as well as the corresponding model migration.
We used the following procedure to reverse engineer the coupled evolution:

1. Extraction of metamodel versions: We extracted versions of the metamodel from
the version control system.

2. Comparison of consecutive metamodel versions: Since the version control systems
of both projects are snapshot-based, they do not contain a history of change op-
erations between consecutive metamodel versions. To infer them, consecutive
metamodel versions had to be compared to obtain a difference model. The dif-
ference model consists of a number of primitive changes between consecutive
metamodel versions and was obtained using the tool EMF Compare®.

3. Generation of metamodel adaptation: A first version of the history was obtained by
generating a metamodel adaptation from the difference model between con-
secutive metamodel versions. For this purpose, a transformation was imple-
mented that translates each of the primitive changes from the difference model
to metamodel adaptation primitives specified in COPE.

4. Detection of coupled operations: The generated metamodel adaptation was re-
fined by combining adaptation primitives to coupled operations based on the

3see EMF Compare web site: http://wiki.eclipse.org/EMF_Compare

170

http://wiki.eclipse.org/EMF_Compare

7. Case Studies 7.1. GMF Generator Model and Palladio Component Model

information on how corresponding models are migrated. In doing so, we tried
to map the compound changes to reusable coupled operations already available
in the library. If not possible, we tried to identify and develop new reusable
coupled operations. In case a certain model migration was too specific to be
reused, it was realized as a custom coupled operation.

5. Validation of the history: The validity of the obtained coupled evolution was
tested on both levels. The metamodel adaptation is easy to validate, because
the history can be executed and the result can be compared to the metamodel
snapshots. Test models before and after model migration were used to validate
whether the model migration performs as intended.

Steps 1 to 3 and 5 are fully automated, whereas step 4 had to be performed manually.
In addition, there is an iteration over steps 4 and 5, as a failed validation leads to cor-
rections of the history. It took roughly one person week for each studied metamodel
to reach the fix point during the iteration.

7.1.4 Study Result

GMF Generator Model. Figure depicts the number of the different classes of
metamodel adaptations that were used to model the coupled evolution with COPE.
The metamodel extensions make up 64% of the adaptations, whereas reusable cou-
pled operations account for 34%. Table [7.1] refines this classification by listing the
names and the number of occurrences of the different kinds of metamodel adapta-
tions. The dashed line separates the reusable coupled operations already available
in the library from those which have been implemented while conducting the case
study. For the GMF metamodel, these new reusable coupled operations cover 5 of 79
occurrences (6% of the applications of reusable coupled operations). The remaining
2% of the metamodel adaptations consist of only 4 custom coupled operations for
which the model migration had to be implemented manually. The model migration
code handcrafted for these custom coupled operations amounts to 103 lines of code.

The GMF engineers employ a systematic change management process, as they do
not have all the models under control: the language engineers discuss metamodel
adaptations and their impact on models thoroughly before actually carrying them
out. Consequently, we found no destructive change at any instant in the history,
which was reversed at a later instant. Thus, the obtained language history comprises
all the intermediate versions.

As the GMF engineers do not have all the models under their control, they have
manually implemented a migrator. This migrator constitutes a very technical solu-
tion and is based on different mechanisms for the two stages. For the migration from
release 1.0 to 2.0, the migrator patches the model while deserializing its XML repre-
sentation. For the migration from release 2.0 to 2.1, a generic copy mechanism is used
that first filters out non-conforming parts of the model and later rebuilds them. Even
though this migrator is very optimized, it is difficult to understand and maintain due
the low abstraction level of its implementation.

Palladio Component Model. Figure[7.2(b)|depicts the number of the different classes

171

7.1. GMF Generator Model and Palladio Component Model 7. Case Studies

Custom Coupled Custom Coupled
Operation Operation
4 (2%) 1 (1%)

Metamodel
Extension
25 (25%)

Metamodel
Extension
148 (64%)

(a) GMF Generator Model (b) Palladio Component Model

Figure 7.2: Classification of the language changes

of metamodel adaptations that were used to model the coupled evolution. Here, the
metamodel extensions account for only 25% of the metamodel adaptations, whereas
reusable coupled operations make up 74%. Again, Table 7.1 provides more detailed
results. The reusable coupled operations that were implemented while conducting
the case study cover 1 out of 76 occurrences (1% of the applications of reusable
coupled operations). The remaining 1% of the metamodel adaptations consist of 1
custom coupled operation for which the model migration had to be implemented
manually. The model migration code handcrafted for this custom coupled operation
amounts to only 10 lines of code.

It seems as if the PCM engineers have not taken the impact on the models into ac-
count, as they have all the models under their control. Consequently, there were a
lot of destructive changes between the intermediate versions that were reversed at
a later instant. Therefore, the obtained language history comprises only the release
versions.

As the language engineers have not yet provided tool support for model migration,
our approach helped by providing an automatic migrator. However, they provided
us with test models and helped to validate the obtained model migration.

7.1.5 Study Discussion

RQ1. Which fraction of the changes are metamodel extensions that do trivially not require
a migration of models? The fraction of metamodel extensions is very large (64%) for
the GMF metamodel, whereas it is rather small (25%) for the PCM metamodel. A
possible interpretation is that the GMF engineers as far as possible avoided meta-
model adaptations that required to enhance the migrator. The reason for the meta-
model extensions could as well be the nature of the evolution: they were adding new
generator features to the language which are orthogonal to existing ones, i.e. cannot
expressed with existing features.

172

7. Case Studies 7.1. GMF Generator Model and Palladio Component Model

Table 7.1: Detailed results

GMF PCM Overall
Operation Name 1.0-2.0 l 2.0-21 l Overall || 2.0-3.0 | 3.0-4.0 | Overall
Metamodel Extension 136 12 148 9 16 25 173
Add Supertype 1 2 3 3
Create Attribute 63 6 69 1 1 70
Create Class 36 1 37 3 4 7 44
Create Enumeration 12 1 13 4 4 17
Create Package 4 4 4
Create Reference 25 4 29 5 1 6 35
Reusable Coupled Operation 76 3 79 44 32 76 155
Change Attribute Type 1 3 3
Change Package 1 4 5 5
Collect Feature over References 4 4 4
Delete Class 1 1 1
Delete Feature 14 14 4 2 6 20
Extract Class 1 1 1
Extract Superclass 5 5 5
Fold Class 2 2 2
Generalize Reference 5 5 2 2 4 9
Generalize Supertype 1 2 3 3
Inheritance to Delegation 1 1 2 4 4 6
Inline Superclass 2 2 2
Merge Classes 2 2 7 7 9
Merge Enumerations 2 2 2
Merge Literal 1 1 1
Move Feature over Reference 2 1 3 3
Pull up Feature 3 3 3
Push down Feature 1 1 1
Remove Supertype 1 1 1 1 2
Rename 27 1 28 16 18 34 62
Specialize Supertype 3 1 4
Specialize Composite Reference 1 1 1

| Copy Feature] R T O | N R
Extract and Group Attribute 1 1 1
Flatten Composition Hierarchy 1 1 1
Remove Superfluous Super Type 1 1 1
Pull Feature over References 1 1 1
Push Feature over References 1 1 1
l Custom Coupled Operation H 2 [2 [4 H 1 [[1 H 5 ‘

RQ?2. Which fraction of the changes can be reused by means of reusable coupled operations?
For both metamodels, a large (34% and 74%) fraction of changes can be dealt with
by reusable coupled operations—aside from the metamodel extensions. This result
strengthens the findings from the previous study presented in Chapter
[Practice: Automatability of Model Migration) that a lot of migration effort can be saved
by reuse in practice. Besides the reusable coupled operations presented in Section[5.2]
(Library of Reusable Coupled Operations)), we have also identified a small number of
new reusable coupled operations.

RQ3. Which fraction of the changes have to be implemented by means of custom coupled op-
erations? For both metamodels, a very small (1% and 2%) fraction of changes were so
specific that they had to be modeled as custom coupled operations. To manually im-
plement these custom coupled operations, the language was sufficiently expressive
and the effort was feasible (103 and 10 lines of code). This result also strengthens

173

7.1. GMF Generator Model and Palladio Component Model 7. Case Studies

the findings from the previous study that a non-negligible number of changes are
specific to the metamodel.

RQ4. Can COPE be applied to specify the complete coupled evolution of real-world meta-
models? The case studies showed that COPE can be applied to specify the coupled
evolution of real-world metamodels.

In case of the GMF metamodel, we would even have been able to directly use COPE
for its maintenance. As the GMF developers do not control the numerous existing
models, they took also the impact on the models into account while adapting the
metamodel. COPE can help here to perform more profound metamodel adaptations.

In case of the PCM metamodel, we would not have been able to directly use COPE
for its maintenance, as there were a lot of destructive changes that were reversed at a
later instant. For metamodel adaptation, the PCM engineers preferred flexibility over
preservation of existing models, as they have the few existing models under control.
COPE can help here to perform the metamodel adaptations in a more systematic way
by using reusable coupled operations.

Summing up, COPE provides a compromise between the two studied types of meta-
model histories: it provides more flexibility for carrying out metamodel adaptations
and offers at the same time a more systematic approach for metamodel adaptation.

Lessons Learned. The destructive changes in the PCM evolution that were reversed
at a later instant motivated the implementation of the function to undo changes as
presented in Section|[6.2.2|(Refactoring the Coupled Evolution)). This function allows lan-
guage engineers to undo these changes and thus the required destructive migration,
and thereby allows them to deal with the destructive changes in a clean manner.

The coupled evolution was reverse engineered on the level of the coupled evolu-
tion language as presented in Chapter 5| (COPE — Coupled Evolution of Metamodels and
[Models). Changing the coupled evolution on this level always bears the risk that the
metamodel adaptation does no longer comprise the intermediate metamodel ver-
sions. Consequently, we spent a lot of effort to ensure that the history comprised the
intermediate metamodel versions. We implemented the convergence view—as pre-
sented in Section [6.2.3| (Recovering the Coupled Evolution)—to avoid this effort for re-
covering the coupled evolution in future cases. The convergence view constructively
ensures that the recorded history comprises the intermediate metamodel versions.

7.1.6 Threats to Validity

We present the threats according to the steps of the method to which they apply
together with the measures that we took to mitigate them:

1. Extraction of metamodel versions: We assumed that a commit indicates a new
version of the metamodel. Therefore, we considered to group only primitive
changes from one commit to the next. However, metamodels were sometimes
committed in a premature version, and hence we might miss complex changes
that span several commits. Whereas we have not identified changes that span
several commits in case of GMF, the PCM engineers often committed the meta-

174

7. Case Studies 7.2. Graphical Modeling Framework

model in a premature version. To mitigate the risk of missing those changes,
we only considered the release versions of the PCM metamodel.

2. Comparison of consecutive metamodel versions: In the absence of unique and per-
sistent element identifiers, the comparison cannot always be performed unam-
biguously [Robbes and Lanza, 2007]. Moreover, the comparison cannot recover
changes that have been overwritten by others. Whereas this threat is mitigated
by the low number of changes in commits to the GMF metamodel, the number
is rather large in case of PCM due to choosing the release versions. To also re-
duce the risk of ambiguity errors for PCM, the reverse engineered history was
reviewed by the language engineers.

3. Generation of metamodel adaptation: The difference model—which is an un-
ordered set of changes—was transformed to the metamodel adaptation—
which is an ordered sequence of changes. From the possible orders of this set,
the transformation thus had to choose one. However, the chosen order might
not reflect how the changes have been carried out by the language engineers.
To mitigate this threat, the changes were reordered to be able to group related
changes to coupled operations, and the coupled operations were validated.

4. Detection of coupled operations: It may seem odd that new reusable coupled oper-
ations could be used for one metamodel. Consequently, we cannot be sure that
they are useful in other scenarios, threatening their classification as reusable
coupled operations. However, two case studies may not suffice to show their
usefulness in other scenarios. In addition, it may depend on the habits of
the language engineer which reusable coupled operations are often used and
which not. The extension mechanism of COPE allows the language engineer to
easily register new reusable coupled operations which fit their habits.

5. Validation of the history: For the PCM metamodel, we had no reference migrator
that we could use to validate the correctness of the migration defined by the
history. As a consequence, the reverse engineered migration might not be the
one intended by the PCM engineers. To mitigate this threat, the language en-
gineers provided us with some test models and manually reviewed the reverse
engineered history.

7.2 Graphical Modeling Framework

In the last section, we analyzed the evolution of the GMF Generator metamodel
which is one of the metamodels of GMFE. As the evolution is well-documented and
supported by a migrator, we decided to extend it to the other metmodels of GMF.
We not only examined the model migration, but also the impact on other language
artifacts and the reasons for language evolution.

7.2.1 Study Goal

In this section, we investigate the evolution of modeling languages by reverse en-
gineering the evolution of their metamodels and the migration of related language
artifacts, like e.g. the models or the code generator. Our motivation is to identify

175

7.2. Graphical Modeling Framework 7. Case Studies

requirements for tools that support the (semi-)automatic coupled evolution of mod-
eling languages and related artifacts in a way that avoids the language erosion and
minimizes the handwritten code for migration. We focus on the following research
questions:

e RQ1. What is the impact of language changes on related language artifacts? As the
metamodel is in the center of the language definition, we are interested to un-
derstand how other language artifacts change, when the metamodel changes.

e RQ2. What are the reasons for language changes? We investigate the distribution
of the maintenance activities performed to implement metamodel changes in
order to examine the similarities between the evolution of programs and the
evolution of languages.

e RQ3. What kinds of operations capture the language changes? We are interested to
describe the metamodel changes based on a set of canonical operations, and
thereby to investigate the measure in which these operations can be used to
migrate the models.

7.2.2 Study Object

The Graphical Modeling Framework (GMF)* is a widely used open source frame-
work for the model-based development of diagram editors. GMF is a prime exam-
ple for a Model-Driven Architecture (MDA) [Kleppe et al., 2003], as it strictly sepa-
rates platform-independent models (PIM), platform-specific models (PSM) and code.
GMF is implemented on top of the Eclipse Modeling Framework (EMF)® and the
Graphical Editing Framework (GEF)®.

Editor Models. In GMF, a diagram editor is defined by models from which editor
code can be generated automatically. For this purpose, GMF provides four modeling
languages, a transformer that maps PIMs to PSMs, a code generator that turns PSMs
into code, and a runtime platform on which the generated code relies.

The lower part of Figure[7.3]illustrates the different kinds of models of which a GMF
Application consists. On the platform-independent level, a diagram editor is modeled
from four different views. The domain model defines the abstract syntax of diagrams.
The graphical definition model defines the graphical elements like nodes and edges in
the diagram. The tool definition model defines the tools available to author a diagram.
In the mapping model, the first three views are combined to an overall view which
maps the graphical elements from the graphical definition model and the tools from
the tool definition model onto the elements from the domain model.

The platform-independent mapping model is transformed into a platform-specific
diagram generator model. This model can be altered to customize the code genera-
tion.

Modeling Languages. We can distinguish two kinds of languages involved in GMF.

“see GMF web site: http://www.eclipse.org/modeling/gmf
Ssee EMF web site: http://www.eclipse.org/modeling/emf
®see GEF web site: http://www.eclipse.org/gef

176

http://www.eclipse.org/modeling/gmf
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/gef

7. Case Studies 7.2. Graphical Modeling Framework

PIM PSM code
1
LL e
= ecore -~ | . <-----
E EI metamodel <t conforms to
,’d 44\ <<— — depends on
: | model
— L <4— transforms to
L N
§ gmfgraph S . i | N
n S O PN 1 — —
=S 2 ! mappings transformer mfaen generator f o
D) G pping (Java) gmig (JET/Xpand)
L 1/ Y Y 5
= / '
o tooldef v
[
graphical E
c PN !
o definition |~
% model ~
S AN AN
% domain [<— — — —:i — — — mapping transform diagram diagram
generator generate 4
< model model model editor
LL
=
o tool /

definition
model

Figure 7.3: Languages involved in the Graphical Modeling Framework

First, GMF provides domain-specific languages for the modeling of diagram edi-
tors. Each of these languages comes with a metamodel defining its abstract syntax
and a simple tree-based model editor integrated in Eclipse. The upper part of Fig-
ure[7.3]shows the metamodels involved in GMF. These are ecore for domain models,
gmfgraph for graphical definition models, tooldef for tool definition models, map-
pings for mapping models, and gmfgen for diagram generator models. The map-
pings metamodel refers to elements in the ecore, gmfgraph, and tooldef metamodels.
This kind of dependency is typical for multi-view modeling languages. For exam-
ple, there are similar dependencies between the metamodel packages defining the
various sublanguages of the UML.

Second, GMF itself is implemented in various languages. All metamodels are ex-
pressed in ecore, the metamodeling language provided by EMF. Additionally, the
metamodels contain context constraints which are attached as textual annotations
to the metamodel elements to which they apply. These constraints are expressed
in the Object Constraint Language (OCL) [Object Management Group, 2006b]. The
transformer from a mapping model to a generator model is implemented in Java.
For model access, it relies on the APIs generated from the metamodels of the GMF
modeling languages. The generator generates code from the diagram generator
model. It was formerly implemented in Java Emitter Templates (JET)”, which was

7see JET web site: http://www.eclipse.org/modeling/m2t

177

http://www.eclipse.org/modeling/m2t

7.2. Graphical Modeling Framework 7. Case Studies

later changed in favor of Xpand®. The generated code conforms to the Java pro-
gramming language, and is based on the GMF runtime platform.

Metamodel Evolution. With a code base of more than 600k lines of code, GMF is
a framework of large size. GMF is implemented by 13 language engineers from 3
different countries using an agile process with small development cycles. Since start-
ing the project, the GMF engineers had to often adapt the metamodels. As many
metamodel changes broke the existing models, the language engineers had to man-
ually implement a migrator. Figure |7.4]illustrates the metamodel evolution for the
two release cycles we studied, each taking one year. The figures show the number
of metamodel elements for each revision of each GMF metamodel. During the evo-
lution from release 1.0 to 2.1, the number of classes defined by all metamodels e.g.
increased from 201 to 252.

1.0 Release 2.0/2.1 1.0 Release 2.0 21
90 4 | 300 4 i i
80
. 250 -
70 B EAnnotation W EAnnotation
DOEEnumLiteral DOEEnumLiteral
60 BEEnum 200 BEEnum
& 50 B EParameter 5 OEParameter
2
£ MEOperation | £ 150 BEOperation
5 40 3
z DOEReference z OEl
30 OEAttribute 100 OEAttribute
BEClass BEClass
20 O EPackage 50 D EPackage
10
0 0
2 3 4 5 23 24 25 26 27 28 29 30 31 32 33
Revision Revision
(a) tooldef metamodel (b) gmfgraph metamodel
1.0 Release 20 21 1.0 Release
300 } | 1100
1000
250
EEAnnotation 200 W EAnnotation
DOEEnumLiteral 800 DO EEnumLiteral
200 BEEnum 700 BEEnum
5 OEParameter 5 O EParameter
E-] & 600
€ 150 B EOperation £ B EOperation
3 3 500
z =] z DOEReference
100 OEAttribute 400 OEAtiribute
WEClass 300 BEClass
50 BEPackage 200 O EPackage

0 0
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 139 149 159 169 179 189 199 209 219 229 239
Revision Revision

(c) mappings metamodel (d) gmfgen metamodel

Figure 7.4: Statistics of GMF metamodel evolution

We chose GMF as a case study, because the evolution is extensive, publicly available,
and well documented by means of commit comments and change requests. How-
ever, the evolution is only available in the form of revisions from the version control
system, and its documentation is only informal.

7.2.3 Study Execution

Due to the large size of the GMF metamodels, we developed a systematic approach
to investigate its evolution as presented in the following.

8see Xpand web site: |http://www.openarchitectureware.org

178

http://www.openarchitectureware.org

7. Case Studies 7.2. Graphical Modeling Framework

Commit :
Release |

1
|
- * T = | date: Date * -
History e rel date: Date e commits | Version: String (¥ "operations
label: String | comment: String

T

author: String
L ======== 4

Figure 7.5: Modeling language history

Modeling the History

To investigate the evolution of modeling languages, we model the history of their
metamodels using the versioning metamodel presented in Section
[Metamodel). Figure [7.5 shows how we extended this versioning metamodel for the
case study. A Release is now further subdivided into a number of commits. A Com-
mit denotes a version of the modeling language which has been committed to the
version control system. Modeling languages are committed at a date, by an author,
with a comment, and are tagged with a version number. A Commit comprises the
sequence of operations which have been performed since the last Commit.

Classification of Operations

We model the evolution of the metamodel by operations for stepwise metamodel
adaptation. Figure [7.6|shows the classification of metamodel adaptation operations
according to the following four different criteria:

Granularity. Similar to [Lammel, 2001] and Section (Library of Reusable Coupled)
[Operations), we distinguish primitive and composite operations. A PrimitiveOpera-
tion supports a metamodel adaptation that can not be decomposed into smaller op-
erations. In contrast, a CompositeOperation can be decomposed into a sequence of
PrimitiveOperations. The required kinds of PrimitiveOperations can be derived from
the metametamodel. There are two basic kinds of primitive changes: StructuralPrim-
itives and NonStructuralPrimitives. A StructuralPrimitive modifies the structure of a
metamodel, i.e. creates or deletes a metamodel element. A NonStructuralPrimitive
modifies an existing metamodel element, i.e. changes a feature of a metamodel ele-
ment. The set of primitive operations are already complete in the sense that every
metamodel adaptation can be described by composing them.

Metamodel Aspects. We classify an operation according to the metamodel aspect
which it addresses. The different classes can be derived from the constructs pro-
vided by the metametamodel. An operation concerns either the structure of models,
constraints on models, the API to access models, or the documentation of metamodel
elements. A SyntaxOperation like Extract Superclass affects the abstract syntax de-
fined by the metamodel. A ConstraintOperation adds, deletes, moves, or changes
constraints in the metamodel. An APIOperation concerns the additional access meth-
ods defined in the metamodel. This includes derived features and operations. A
DocumentationOperation adds, deletes, moves, or changes documentation annota-
tions to metamodel elements.

179

7.2. Graphical Modeling Framework 7. Case Studies

Granularity Oerat
peration

>I

*
‘ PrimitiveOperation H CompositeOperation
A primitives

StructuralPrimitive ‘ ‘ NonStructuralPrimitive ‘

Metamodel Aspect -
Operation

>I

‘SyntaxOperation ‘ ‘ ConstraintOperation ‘ ‘ APIOperation ‘ ‘ DocumentationOperation

Language Preservation -
Operation

»I

‘ Constructor ‘ ‘ Destructor ‘ ‘ Refactoring ‘
Model Migration -
‘ PreservingOperation ‘ ‘ BreakingOperation ‘
CustomMigration }1—ﬂ CustomCoupledOperation ‘ ‘ReusableCoupIedOperation
migration
. J

Figure 7.6: Classification of operations for metamodel adaptation

Language Preservation. According to [Wachsmuth, 2007]], we can distinguish three
kinds of operations with respect to preservation of the modeling language’s expres-
siveness. By expressiveness of a modeling language, we refer to the set of syntacti-
cally valid models we can express in the modeling language. Constructors increase
this set, i.e. in the new version of the language we can express new models. In con-
trast, Destructors decrease the set, i.e. in the old version we could express models
which we cannot express in the new version of the language. Finally, Refactorings
preserve the set of valid models, i.e. we can express all models in the old and the new
version of the language.

Model Migration. As demonstrated in Chapter 3| (State of the Practice: Automatability|
lof Model Migration)), we can determine for each operation to what extent model
migration can be automated. PreservingOperations do not require the migration of
models. BreakingOperations break the instance relationship between models and
the adapted metamodel. In this case, we need to provide a migration for existing

180

7. Case Studies 7.2. Graphical Modeling Framework

models. For a ReusableCoupledOperation, the migration does not depend on a
specific metamodel. Thus it can be specified as a generic couple of metamodel
adaptation and model migration. In contrast, a CustomCoupledOperation is so
specific to a certain metamodel that it cannot be composed of reusable coupled
operations. Consequently, it can only be covered by a sequence of adaptation steps
and a reconciling CustomMigration.

The presented criteria are orthogonal to each other to a large extent. Granularity is
orthogonal to all other criteria and vice versa, as we can think of example operations
from each granularity for all these criteria. Additionally, language expressiveness
and model migration are orthogonal to each other: the first concerns the difference
in cardinality between the sets of valid models before and after adaptation, whereas
the second concerns the correct migration of a model from one set to the other. How-
ever, language preservation and model migration both focus on the impact on mod-
els, and are thus only orthogonal to the metamodel aspects StructuralAdaptation and
ConstraintAdaptation. This is because operations concerning APIOperation and Doc-
umentationOperation do not affect models. Consequently, these operations are al-
ways Refactorings and PreservingOperations.

The set of operations necessary for our case study is depicted in Table We classify
each operation according to the categories presented before. For example, the oper-
ation Extract Superclass creates a new common superclass for a number of classes.
This operation is a CompositeOperation, since we can express the same metamodel
adaptation by the primitive operations Create Class, Add Superclass and Move Fea-
ture. The operation is a SyntaxOperation, since it affects the abstract syntax defined
by the metamodel. It is a Constructor, because we can instantiate the introduced su-
perclass in the new language version. Finally, it is a PreservingOperation, since no
migration of old models to the new language version is required.

Reverse Engineering the GMF History

We reverse engineered the GMF history following a defined procedure and using a
number of tools.

Procedure. We applied the following steps to reconstruct a history model for GMF
based on the available information:

1. Extracting the log: We extracted the log for the whole GMF repository. The log
lists the revisions of each file maintained in the repository.

2. Detecting the commits: Since the versioning system used to develop GMF does
not store which files were committed together, we grouped revisions to com-
mits using a sliding window approach [Zimmermann et al., 2005]. Two revi-
sions of different files were grouped, in case they were committed within the
same time interval and with the same commit comment.

3. Filtering the commits: We filtered out all commits which do not include a revision
of one of the metamodels.

4. Clustering the revisions: We clustered the files which were committed together

181

7.2. Graphical Modeling Framework 7. Case Studies

into more abstract language artifacts like metamodels, transformer, code gen-
erator, and migrator. This step was performed to reduce the information, as
the implementation of each of the language artifacts may be modularized into
several files. The commits to the language artifacts are used to answer RQ1.

5. Classifying the commits: We classified the commits according to the software
maintenance categories (i.e. perfective, adaptive, preventive, and corrective)
[Lientz and Swanson, 1980] based on the commit comments and change re-
quests. The classification of the commits is used to answer RQ2.

6. Extracting the metamodel revisions: We extracted the metamodel revisions of the
commits from the GMF repository.

7. Comparing the metamodel revisions: We compared consecutive metamodel revi-
sions with each other resulting in a difference model for each pair of consecu-
tive metamodel revisions. The difference model consists of a number of primi-
tive changes between consecutive metamodel revisions.

8. Detecting the operation sequence: We detected the operations necessary to bridge
the difference between the metamodel revisions. In contrast to the difference
model, the operations also compose related primitive changes and are ordered
as a sequence. To find the most plausible operations, we also analyzed commit
comments, change requests, and the adaptation of the other language artifacts.
The detected operation sequence is used to answer RQ3.

9. Validating the operation sequence: We validated the resulting operation sequence
by applying it to migrate the existing models for testing the handcrafted migra-
tor. We set up a number of test cases, each of which consists of a model before
migration and the expected model after migration.

Tool Support. We employed a number of tools to perform the study. We employed
statCVS’ to parse the log into a model which is processed further by a handcrafted
model transformation (steps 1-4). With the help of EMF Compare'?, we generated the
difference models between two consecutive metamodel revisions (step 7). To bridge
the difference between consecutive metamodel revisions, we employed the function
of COPE to recover the coupled evolution that is explained in Section
[ing the Coupled Evolution) (step 8). From the recorded history model, we generated a
migrator that was employed for validating the operation sequence (step 9). To gener-
ate the expected models for validation, we used the handcrafted migrator that comes
with GME

7.2.4 Study Result

In this subsection, we present the aggregated results of our case study. The complete
history can be obtained from our web site!!.

RQ1. What is the impact of language changes on related language artifacts? To answer

see statCV'S web site: http://statcvs.sourceforge.net
Osee EMF Compare web site: http://www.eclipse.org/emft/projects/compare
see COPE web site: http://cope.in.tum.de/pmwiki.php?n=Documentation.GMF

182

http://statcvs.sourceforge.net
http://www.eclipse.org/emft/projects/compare
http://cope.in.tum.de/pmwiki.php?n=Documentation.GMF

7. Case Studies 7.2. Graphical Modeling Framework

this question, we determined for each commit which other language artifacts were
committed together with the metamodels. Table|7.2)shows how many of the overall
124 commits had an impact on certain language artifacts.

Table 7.2: Correlation between commits of metamodels and related language artifacts

Metamodels Transfor- Genera- Migrator
|| gmfgraph [tooldef [mappings [gmfgen [commits mator tor
(1] 7 3 3
2 2 1
3 I 5 3 2
4 100 23 67 9
5 1 1
6 6 4 1
17| 3 1 1
[10 | 3] 15] 109 | 124 || 35| 73 || 13|

The first four columns denote the metamodels that were changed in a commit, and
the fifth column denotes the number of commits. For instance, row 6 means that
the metamodels mappings and gmfgen changed together in 6 commits. The last
three columns denote the number of commits in which other language artifacts, like
transformer, code generator and migrator, were changed. For instance, in row 6, the
transformer was changed 4 times, the generator 2 times, and the migrator had to be
changed once.

In a nutshell, metamodel changes are very likely to impact language artifacts which
are directly related to them, as can be seen in Table For instance, the changes
to mappings and gmfgen propagated to the transformer from mappings to gmfgen,
and to the generator from gmfgen to code. Additionally, metamodel changes are
not always carried out on a single metamodel, but are sometimes related to other
metamodels.

RQ2. What are the reasons for language changes? To answer this question, we classified
the commits into the categories of maintenance activities as explained in Section[2.5.1]
(Reasons for Language Evolution) and investigated their distribution over these cate-
gories. Figure|7.7|illustrates the number of commits for each category, and Table
shows a more detailed classification of the commits. Note that several commits could
not be uniquely associated to one category and thus had to be assigned to several
categories. However, all commits could be classified into at least one of the four
categories.

Table 7.3: Classification of metamodel commits according to maintenance categories

l Perfective [45 H Adaptive [33 H Preventive [36 H Corrective [16 ‘
Model navigator 13 || Transition to Xpand | 25 || Separation 16 || Bug report 7
Rich client platform 6 || Ecore constraints 5 || Simplification 10 || Rename 3
Diagram preferences | 4 || Namespace URI 2 || Unused elements 8 || Revert changes 3
Diagram partitioning | 2 || OCL parser 1 || Documentation 2 || Wrong constraint 3
Element properties 2
Individual features 18

We classified 45 of the commits as perfective maintenance, i.e. add new features to en-
hance GMF. Besides a number of individual commits, there are a few features whose

183

7.2. Graphical Modeling Framework 7. Case Studies

Perfective
45 (35%)

Preventive
36 (28%)

Figure 7.7: Share of maintenance categories

introduction spanned several commits. The generated diagram editor was extended
with a model navigator, to run as a rich client, to set preferences for diagrams, to
partition diagrams, and to set properties of diagram elements. We classified 33 of the
commits as adaptive maintenance, i.e. adapt GMF to a changing environment. These
commits were either due to the transition from JET to Xpand, adapted to changes
to the constraints of ecore, were due to releasing GMF, or adapted the constraints
to changes of the OCL parser. We classified 36 of the commits as preventive mainte-
nance, i.e. refactor GMF to prevent faults in the future. These commits either sepa-
rated concerns to better modularize the generated code, simplified the metamodels
to make the transformations more straightforward, removed metamodel elements
no longer used by transformations, or added documentation to make the metamodel
more understandable. We classified 16 of the commits as corrective maintenance,
i.e. correct faults discovered in GMF. These commits either fixed bugs reported by
GMF users, corrected incorrectly spelled element names, reverted changes carried
out earlier, or corrected invalid OCL constraints.

In a nutshell, the typical activities known from software maintenance also apply to
metamodel maintenance [Lientz and Swanson, 1980]]. Furthermore, similar to the de-
velopment of software, the number of perfective activities (35%) outranges the pre-
ventive (28%) and adaptive (25%) activities which are double the number of corrective
activities (12%).

RQ3. What kinds of operations capture the language changes? To answer this question,
we classified the operations which describe the metamodel evolution. Figure
illustrates the classification of the operations along the different criteria. Table
shows the number and classification of each operation occurred during the evolu-
tion of each metamodel. The operations are grouped by their granularity and the
metamodel aspects to which they apply.

Most of the changes could be covered by PrimitiveOperations: we found 379 (52%)
StructuralPrimitives, 279 (38%) NonStructuralPrimitives and 73 (10%) CompositeOper-
ations. Only half of the operations affected the structure defined by a metamodel: we
identified 361 (50%) SyntaxOperations, 303 (41%) APIOperations, 36 (5%) Documen-
tationOperations, and 31 (4%) ConstraintOperations. Most of the changes are refac-
torings which do not change the expressiveness of the modeling language: we found
435 (60%) Refactorings, 197 (27%) Constructors, and 99 (14%) Destructors. Only very

184

7. Case Studies 7.2. Graphical Modeling Framework

Table 7.4: Classification of operations occurred during metamodel adaptation

Classification Operation Classification Number of Applications
2 < g
E g %E R - R e
el £5 SE ok slgl e o)
£ S0 % 31 | o| E &0
g opy 28 g 2|3 | =
o S< e == | S| | & =
Structural- Syntax Create Class Constructor | Preserving || 4 2| 37 43
Primitive Create Enumeration Constructor | Preserving 3| 13 16
Create Opposite Reference Destructor | Preserving 14 14
Create Optional Attribute Constructor | Preserving 1|1 3| 63 68
Create Optional Reference Constructor | Preserving || 2 3| 14 19
Create Required Attribute Constructor | Custom 1 1
Create Required Reference Constructor | Custom 1 1
Delete Feature Destructor | Reusable 4 14 18
Merge Literal Destructor | Reusable 1 1
Constraint Create Constraint Annotation Destructor | Preserving 5 3 8
Delete Constraint Annotation Constructor | Preserving 2 1 3
API Create Deprecated Annotation Refactoring | Preserving 3 3
Create Setter Visibility Annotation Refactoring | Preserving 1 5| 30 36
Create Volatile Attribute Refactoring | Preserving 1 4 5
Create Operation Refactoring | Preserving 53 53
Create Volatile Reference Refactoring | Preserving 1 1
Delete Setter Visibility Annotation Refactoring | Preserving 1 5| 31 37
Delete Operation Refactoring | Preserving 1 34 35
Documentation || Create Documentation Annotation Refactoring | Preserving 3131 2 8 16
Delete Documentation Annotation Refactoring | Preserving 2 2
NonStructural- | Syntax Abstract Class to Interface Refactoring | Preserving 1 2 3
Primitive Add Supertype Constructor | Preserving || 10 10
Change Attribute Type Refactoring | Reusable 1 1
Drop Attribute Identifier Constructor | Preserving 1 1
Drop Class Abstract Constructor | Preserving 1 1
Drop Class Interface Constructor | Preserving 1 2 3
Drop Reference Opposite Constructor | Preserving 1 1
Make Class Abstract when Interface Refactoring | Preserving |[14 | 4| 9| 22 49
Make Class Interface when Abstract Refactoring | Preserving 2 2
Make Feature Required Destructor | Custom 2 2
Make Feature Volatile Destructor | Reusable 1 5 6
Make Reference Composite Constructor | Reusable 1
Remove Supertype Destructor | Reusable 10 1 11
Rename Class Refactoring | Reusable 1
Rename Feature Refactoring | Reusable 10 10
Rename Literal Refactoring | Reusable 7 7
Set Package Namespace URIT Refactoring | Reusable 1 3 3 7
Specialize Reference Type Refactoring | Preserving || 4 4
Constraint Modify Constraint Annotation Destructor | Preserving 8 9 17
APIL Rename Volatile Feature Refactoring | Preserving 2 2
Rename Operation Refactoring | Preserving 9 9
Set Feature Changeable Refactoring | Preserving || 2 11| 63 76
Set Reference Resolve Proxies Refactoring | Preserving 1 31 37
Documentation || Modify Documentation Annotation Refactoring | Preserving || 2 7 9 18
Composite- Syntax Collect Feature over References Destructor | Reusable 4 4
Operation Complex Restructuring Refactoring | Custom 1 1 2
Extract and Group Attribute Refactoring | Reusable 1 1
Extract Class Refactoring | Reusable 1 1
Extract Subclass Constructor | Reusable 1 1
Extract Superclass Constructor | Preserving || 3 1 5 9
Flatten Composite Hierarchy Destructor | Reusable 1 1
Generalize Attribute Constructor | Preserving 1 1
Generalize Reference Constructor | Preserving 1 5 6
Inheritance to Delegation Refactoring | Reusable 1 2 3
Inline Superclass Destructor | Reusable 1 2 3
Merge Classes Destructor | Reusable 2 2
Merge Enumerations Destructor | Reusable 2 2 4
Move Feature over Reference Constructor | Reusable 3 3
Pull Feature over References Refactoring | Reusable 1 1
Pull up Feature Constructor | Preserving 3 3
Push down Feature Destructor | Reusable 4 2 1 7
Push Feature over References Refactoring | Reusable 1 1
Specialize Supertype Constructor | Preserving 6 6
Unfold Superclass Destructor | Preserving 1 1
Constraint Move Constraint Annotation Refactoring | Preserving 1 2 3
API Move Operation Refactoring | Preserving 1 1
Operation to Volatile Feature Refactoring | Preserving 3 3
Pull up Operation Refactoring | Preserving 3 3
Push down Operation Refactoring | Preserving 1 1
Volatile to Opposite Reference Refactoring | Preserving 1 1

[84] 984554 731]

185

7.2. Graphical Modeling Framework 7. Case Studies

Compo;ite- DocumentationOperation
Operation 36 (5%)
73 (10%)

APIOperation

303 (41%)

ConstraintOperation
31 (4%)

(a) Granularity (b) Metamodel aspect

CustomCoupled-
Operation
6 (1%)

ReusableCoupled-
Operation
95 (13%)

Refactoring
435 (60%)

Destructor
99 (14%)

(c) Language preservation (d) Model migration

Figure 7.8: Classification of operations along the different criteria

few changes cannot be covered by reusable coupled operations which are able to au-
tomatically migrate models: we identified 630 (86%) PreservingOperations, 95 (13%)
ReusableCoupledOperations, and 6 (1%) CustomCoupledOperations. As can be seen
in Table a custom migration was necessary 4 times to initialize a new mandatory
feature or a feature that was made mandatory. In these cases, the migration is asso-
ciated to one PrimitiveOperation, and consists of 10 to 20 lines of handwritten code.
Additionally, 2 custom migrations were necessary to perform a complex restructur-
ing of the model. In these cases, the migration is associated to a sequence of 11 and 13
PrimitiveOperations, and consists of 60 and 70 lines of handwritten code, respectively.

In a nutshell, a large fraction of changes can be captured by primitive changes or
operations which are independent of the metamodel. A significant number of op-
erations are known from object-oriented refactoring. Only very few changes were
specific to the metamodel, denoting more complex evolution.

186

7. Case Studies 7.2. Graphical Modeling Framework

7.2.5 Study Discussion

Based on the results of our case study, we learned a number of lessons about the
evolution of modeling languages in practice.

Other Language Artifacts need to be Migrated (RQ1). The migration is not re-
stricted to models, but also concerns other language artifacts, e.g. transformers and
code generators. During the evolution of GME, these artifacts needed to be migrated
manually. In contrast to models, these artifacts are mostly under control of the lan-
guage engineers, and thereby their migration is not necessarily required to be au-
tomated. However, automating the migration of these artifacts would further re-
duce the effort involved in language evolution. The model-based development of
metamodels with EMF facilitated the identification of changes between two different
versions of the metamodel. In contrast, the specification of transformers and code
generators as Java code made it hard to trace the evolution in a model-based manner.
We thus need a more structured and appropriate means to describe the other lan-
guage artifacts depending on the metamodels. Language engineering could benefit
from the same advantages as model-based software development.

Metamodels Evolve due to both User Requests and Technological Change (RQ2).
On the one hand, a metamodel defines the abstract syntax of a language, and thereby
metamodels evolve when the requirements of the language change. In GME, user
requests for new features imposed many of such changes to the GMF modeling lan-
guages. On the other hand, an API for model access is intimately related to a meta-
model, and thereby metamodels evolve when requirements for model access change.
In GME, particularly the shift from JET to XPand as the generator implementation
language imposed many of such changes in the gmfgen metamodel. Since a meta-
model captures the abstract syntax as well as the API for model access, language and
API evolution interact. Changes in the abstract syntax clearly lead to changes in the
API But API changes can also require to change the abstract syntax of the underlying
language: in GMF, we found several cases where the abstract syntax was changed to
simplify model access.

Language Evolution is Similar to Software Evolution (RQ2, RQ3). This hypothe-
sis was postulated by Favre in [Favre, 2005]. The answers to RQ2 and RQ3 provide
evidence that the hypothesis holds. First, the distribution of activities performed
by the engineers of GMF to implement language changes mirrors the distribution
of classical software maintenance activities (i.e. perfective and adaptive maintenance
activities being the most frequent) [Lientz and Swanson, 1980]. Second, many op-
erations to adapt the metamodels (see Table are similar to operations known
from object-oriented refactoring [Fowler, 1999] (e.g. Extract Superclass). Like soft-
ware evolution, the time scale for language evolution can be quite small. In the first
year of the investigated evolution of GMF, the metamodels were changed 107 times,
i.e. on average every four days. However, in the second year the number of meta-
model changes decreased to 17, i.e. the stability of GMF increased over time. It thus
seems that the time scale in which the changes happen increases with the language’s
maturity. The same phenomenon applies to the relation between the metamodels
and the metametamodel, as the evolution of ecore required the migration of the GMF

187

7.2. Graphical Modeling Framework 7. Case Studies

metamodels. However, the more abstract the level, the less frequent the changes: we
identified two changes in the metametamodel of the investigated evolution of GMF.

Operation-based Coupled Evolution of Metamodels and Models is Feasible (RQ3).
The engineers of GMF provided a migrator to automatically migrate the already ex-
isting models. This migrator allows the GMF engineers to make changes that are not
backwards-compatible, and are essential as the kinds and number of built models are
not under control of the language engineers. We reverse engineered the evolution
of the GMF metamodels by sequencing operations. Most of the metamodel evolu-
tion can be covered by operations which are independent of the specific metamodel.
Only a few custom operations were required to capture the remaining changes. The
employed operations can be used to migrate the models as well. In addition, the
case study provides evidence for the suitability of operation-based metamodel evo-
lution in forward engineering as proposed in Chapter 5| (COPE — Coupled Evolution|
lof Metamodels and Models). Operation-based forward engineering of modeling lan-
guages documents changes on a high level of abstraction which allows for a better
understanding of language evolution.

7.2.6 Threats to Validity

We discuss our results with respect to their construct, internal and external validity.

Construct Validity. The results might be influenced by the measurement we used for
our case study. We assumed that a commit represents exactly one language change.
However, a commit might encapsulate several language changes, and one language
change might be distributed over several commits. This interpretation is a threat to
the results for both RQ1 and RQ2. Other case studies might be required to inves-
tigate these research questions in more detail, and to increase the confidence and
generality of our results. However, our results are consistent with the view that
languages evolve like software, which was postulated and tacitly accepted as a fact
[Favre, 2005].

Internal Validity. The results might be influenced by the method applied for in-
vestigating the evolution. The algorithm used to detect the commits (step 2) might
miss language artifacts which were also committed together. To mitigate this threat,
we have manually validated the commits by checking their temporal neighborhood.
By filtering out the commits which did not change the metamodel (step 3), we
might miss language changes not affecting the metamodel. Such changes might
be changes to the language semantics defined by code generators and transform-
ers. However, the model migration defined by the handcrafted migrator could
be fully assigned to metamodel adaptations. We might have misclassified some
commits, when classifying the commits according to the maintenance categories
(step 5). However, the results are in line with existing evidence on software evo-
lution [Lientz and Swanson, 1980]. When detecting the operation sequence (step 8),
the picked operations might have a different intention than the engineers had when
performing the changes. To mitigate this threat, we have automatically validated the
model migration by means of test cases. Furthermore, we have manually validated

188

7. Case Studies 7.3. Quamoco Quality Metamodel

the migration of all language artifacts by taking their co-evolution into account.

External Validity. The results might be influenced by the fact that we investigated
only a single system. The modeling languages provided by GMF are among the
many modeling languages that are developed using EMFE. The relevance of our re-
sults obtained by analyzing GMF can be affected when analyzing languages devel-
oped with other technologies. Our results are however in line with existing evidence
on grammar evolution [Lammel and Verhoef, 2001, [Lammel and Zaytsev, 2009b],
and this increases our confidence that the defined operations are valid for many other
languages. Furthermore, our previous studies on the evolution of metamodels—see
Chapter[3|(State of the Practice: Automatability of Model Migration) and Section[7.]]
|Generator Model and Palladio Component Model)—revealed similar results.

7.3 Quamoco Quality Metamodel

Quamoco!? is a research project whose goal is to develop a language for modeling the

product quality of software. Currently, we are applying COPE for the evolutionary
development of the metamodel on which the modeling language is based. In this
case study, we analyzed the differences between a forward and reverse engineering
use case of our approach.

7.3.1 Study Goal

We performed the study to test the applicability of COPE to real-world coupled evo-
lution. In contrast to the previous studies, we applied COPE to forward engineer the
coupled evolution. More specifically, we performed the study to answer the follow-
ing research questions:

e RQ1. What are the reasons for the metamodel changes? We classify the metamodel
changes according to the maintenance activities in order to determine the rea-
sons for carrying them out.

e RQ2. To what extent can the coupled evolution of metamodel and models be automated?
To measure automatability, we determine the fraction of simple metamodel ex-
tensions, reusable and custom coupled operations.

e RQ3. Is the forward engineered coupled evolution different from the reverse engineered
coupled evolution? We compare the results of this forward engineering case
study to the results of the reverse engineering case studies presented in Sec-
tion |7.1| (GMF Generator Model and Palladio Component Model) and Section

(Graphical Modeling Framework).

7.3.2 Study Object

This section describes the quality metamodel whose evolution we supported with
COPE. The quality metamodel was developed in the Quamoco project and defines

256 Quamoco web site: http://www.quamoco.de

189

http://www.quamoco.de

7.3. Quamoco Quality Metamodel 7. Case Studies

a structure to which a quality model needs to conform. We use quality models to
specify and evaluate the quality of software products [Klas et al., 2010]. Figure
shows a simplified version of the quality metamodel.

QualityModel
® name *
description
*Tentities
Entity
0.1 0.1
. characterizes | name characterizes
factors description +| measures
Factor * 0.1
. iSA partof Measure
name measures name
description description
type
] [Impact *$)
refines influences determinedBy
effect MeasurementMethod
justification

* | evaluatedBy

Evaluation Q
specification

Aggregation Instrument

specification name
description
tool

Figure 7.9: Quamoco metamodel (simplified version)

A QualityModel consists of entities, factors and measures. An Entity is used to model
a part of the software product or its environment. Entities can form a hierarchy which
is specified by iSA and partOf relationships. A Factor defines a property of a soft-
ware product and thus characterizes the corresponding entity. Factors can form a
hierarchy which is specified by refines relationships. Impacts define influences with
positive or negative effect between different factor hierarchies. A Measure measures
factors, i.e. provides a means to assess the factors, and thus also characterizes an en-
tity. Measures can be determined by different MeasurementMethods: An Aggregation
combines other measures, and an Instrument employs a tool or review technique. An
Evaluation evaluates a factor based on its measures as well as the factors that refine or
influence the factor. Most classes define attributes to specify a name and description.

7.3.3 Study Execution

We started with a metamodel that has already been developed in our group before
the Quamoco project [Deissenboeck et al., 2007]. However, in Quamoco, we also had
to consider the requirements of the other project partners: Capgemini, itestra, SAP
and Siemens. Therefore, we decided to use an evolutionary method to adapt the
quality metamodel developed in our group to these requirements. This method con-
sisted of the following steps:

1. Elicitation of changes: The Quamoco project is organized in a number of iter-
ations. In each iteration, a version of the quality metamodel is developed.
There have been a number of workshops with all partners in each iteration

190

7. Case Studies 7.3. Quamoco Quality Metamodel

in which changes to the metamodel were discussed and decided. After iter-
ation 2, we decided to perform sprints—known from the agile development
method Scrum [Schwaber and Beedle, 2002]—to build a generically applicable
quality model with the metamodel. These sprints also helped to elicit further
metamodel adaptations.

2. Implementation of changes: We implemented the changes on the quality meta-
model with COPE in order to be able to migrate existing models. We tried to
use as much reusable coupled operations from the library as possible to per-
form the changes. If a migration recurred or we had the same migration in an
earlier case study, we implemented a new reusable coupled operation. If reuse
of the migration made no sense, we implemented it as a custom coupled oper-
ation. We released the metamodel, whenever it was required to build models
with it.

3. Validation of changes: The project partners reviewed the changes to validate
them. Moreover, based on the metamodel, we implemented an editor using
EMF which has been used throughout the project by different project partners
to build models for their particular domain. Thereby, the users got a feeling
about whether the adaptations improved the metamodel. The reviews of the
metamodel and the usage of the editor often have lead to new metamodel
changes.

4. Validation of migration: Since we participated in the project, we knew the inten-
tion behind the changes and thus how to implement the changes by coupled
operations. However, the implicit semantics in the domain of software quality
often gave rise to a number of possible model migrations. To validate the spec-
ified migration, we discussed the migration with model developers and let the
result of the migration on a certain model be reviewed by the developers of the
model.

We performed a number of iterations using these steps. COPE has been used to
support the coupled evolution of the Quamoco metamodel for 1.5 years now, and is
still being used.

7.3.4 Study Result

We first illustrate the resulting metamodel evolution, before we discuss the reasons
for language changes as well as the degree of possible automation.

Evolution in Numbers. Figure illustrates the evolution of the Quamoco meta-
model in numbers of metamodel elements. The figure also indicates the different
phases: When importing the existing metamodel, we reduced the number by remov-
ing elements that were not important for iteration 1. In iteration 1 and 2, we gradu-
ally increased the size of the metamodel due to 4 releases in each iteration. During
each of the 3 sprints, we further adapted the metamodel. Compared to the earlier
case studies, the Quamoco metamodel is subject to constant growth. Therefore, we
consider the metamodel as being still in its initial development phase.

191

7.3. Quamoco Quality Metamodel 7. Case Studies

Import Iteration 1 Iteration 2 Sprints

140

120

W DataType
OLiteral

B Enumeration
OAttribute
OReference
E Class

@ Package

100 |
80 -
60 - Z_

40 4

\

20

Number of metamodel elements

25.05.2010
~ 16.06.2010
o 21.06.2010
© 24.06.2010
16.07.2010
28.07.2010
27.09.2010

© 30.03.2009
= 21.05.2009
N 22.05.2009
w 24.06.2009
& 27.07.2009
o1 12.01.2010

(=2}
i
o
[iN
[
N
N

Release

Figure 7.10: Evolution of the Quamoco metamodel in numbers

Reasons for Language Changes. To determine the reasons for language changes, we
have classified the overall 50 commits that changed the metamodel according to the
maintenance categories. Figure and Table [7.5/show the number of commits for
each category, similarly to the foregoing study:.

Corrective
6 (12%)

Preventive
9 (18%)

Perfective
25 (50%)

Figure 7.11: Share of maintenance categories

We classified half of the commits as perfective maintenance, i.e. add new features to
enhance the Quamoco metamodel. In Table we group these commits according
to the constructs that they add or refine. We classified 20% of the commits as adaptive
maintenance, i.e. adapt the Quamoco metamodel to a changing environment. These
commits were either due to changing the generated structural editor, releasing the
metamodel, the import of the XML schema to EMF, or to prepare it for a graphical
editor implemented in GMF. We classified 18% of the commits as preventive main-
tenance, i.e. refactor the Quamoco metamodel to prevent faults in the future. These
commits either introduced better names, simplified the metamodels to make the eval-
uation more straightforward, or added documentation to make the metamodel more
understandable. We classified 12% of the commits as corrective maintenance, i.e. cor-
rect faults discovered in the Quamoco metamodel. These commits either fixed the
metamodel to avoid dangling references in models, corrected multiplicities of fea-
tures or the abstractness of a class, or fixed the order of super type declarations for
code generation.

192

7. Case Studies 7.3. Quamoco Quality Metamodel

Table 7.5: Classification of metamodel commits according to the maintenance categories
l Perfective [25 H Adaptive [10 H Preventive [9 H Corrective [6 ‘

Type system 5 || Structural editor 5 || Better names 4 || Dangling references 2
Measure Release 2 || Simplification Multiplicities
Warning Constraints XML Schema -> Ecore | 2 || Documentation Abstract class
Annotation and Tag Graphical editor 1 Super type order
Evaluation
Instrument
Modularization
Entity

Factor

Quality Requirement
Source

Tool

3
2

— =N

=R R R R NDNDNDND W

Automatability of the Coupled Evolution. Figure[7.12depicts the number of the dif-
ferent classes of metamodel adaptations that were used to model the coupled evolu-
tion. Metamodel extensions account for 43% of the metamodel adaptations, whereas
reusable coupled operations account for 54%. Table [7.6| refines the classification by
listing the names and number of occurrences of the different metamodel adaptations.
As metamodel extensions, we see simple model-preserving adaptations as well as
primitive changes that do not affect the syntax of the modeling language. Both cat-
egories are separated by a dashed line. Indicated in the same way, we distinguish
reusable coupled operations known from the library as well as new reusable coupled
operations. The low number of new operations shows that most of the coupled evo-
lution can be covered by operations already in the library. Moreover, the 3 operations
Change Namespace Prefix, Change Namespace URI and Change Attribute Default
Value are trivially supported by COPE’s generic instance structure.

Custom Coupled
Operation
19 (3%)

Metamodel
Extension

250 (43%)

Figure 7.12: Classification of the Quamoco language changes

The remaining 3% of the metamodel adaptations consist of 19 custom coupled opera-
tions. Table[7.7lists the different custom coupled operations together with the release
in which they occurred and the lines of handwritten code. In average, each custom
coupled operation required to write 27 lines of code. Many of the custom coupled
operations are metamodel-specific variations of reusable coupled operations. In the
table, we indicate this by highlighting the name of the corresponding reusable cou-

193

7.3. Quamoco Quality Metamodel 7. Case Studies

Table 7.6: Coupled operations required for the Quamoco case study

Phase || Imp. Iteration 1 Iteration 2 Sprints
Release 1 2 3 4 5 6 7 8 9 10 11 12 all
Coupled Operation 199 32 21 97 26 101 11 8 4 5 50 24 578
Metamodel Extension 25 3 5 15 18 21 3 5 2 1 19 2 250
Add Super Type 5 2 2 4 13
Create Attribute 3 2 2 7
Create Class 6 3 1 3 3 1 17
Create Enumeration 1 1 2
Create Literal 3 3
Create Reference 10 2 1 3 2 10 3 1 32
Create Volatile Attribute 3 3
Create Volatile Reference 8 8
| Drop Class Abstract | _ _ |l _ 1L | _ | _ oo oo
Create Warning Constraint 1 7 1 9
Delete Warning Constraint 3 3
Document Metamodel Element 78 53 131
Drop Feature Changeable 5 5
Drop Feature Ordered 8 8
Drop Reference Resolve Proxies 1 1
Make Feature Changeable 4 4
Make Feature Unsettable 1 1
Make Reference Resolve Proxies 1 1 2
Reusable Coupled Operation 170 29 16 82 8 70 8 2 2 1 30 22 309
Association to Class 1 4 5
Create Opposite Reference 1 4 1 1 11 1 5 24
Delete Class 8 2 10
Delete Data Type 1 1
Delete Enumeration 1 1
Delete Feature 13 5 1 7 6 32
Delete Opposite Reference 10 10
Drop Reference Opposite 6 6
Extract Class 6 2 2 10
Extract Subclass 1 1
Extract Superclass 1 3 2 6
Fold Super Class 2 1 3
Generalize Attribute 2 2
Generalize Reference 1 3 2 12 18
Identifier to Reference 1 1
Inline Class 4 4
Inline Subclass 2 2 4
Inline Superclass 1 1 1 3
Make Class Abstract 2 1 1 4
Make Reference Composite 2 2
Merge Classes 3 3
Merge Features 6 6
Pull up Feature 4 4
Remove Superfluous Super Type 5 5
Rename 42 10 5 12 4 8 3 16 100
Specialize Attribute 1 1
Specialize Composite Reference 1 1 2
Specialize Reference 2 2 1 1 6
Specialize Supertype 1 1 1 3
Switch Composite 1 1 1 5 8
| Unfold Superclass _ _ _ _ _ U | A) U | | | AP S
Change Namespace Prefix 1 1
Change Namespace URI 1 1 1 1 1 1 1 1 1 1 1 1 12
Extract and Group Attribute 1 1
Merge Data Types 6 6
Set Attribute Default Value 2 2
Specialize Reference Type 1 1
Custom Coupled Operation “ 4 “ [[[“ 10 [[1 [“ 3 [1 [“ 19 l

194

7. Case Studies 7.3. Quamoco Quality Metamodel

pled operation.

Table 7.7: Custom coupled operations performed in Quamoco

’ Release ‘ Custom Coupled Operation ‘ LoC ‘

1 | Complex Identifier to Reference 17
Replace attribute by reference 14
Replace boolean by enumeration 12
Replace structure by attribute 18

6 | Remove root class and instance 10
Specialize Super Type and initialize an attribute’s value 6
Complex Merge Classes 77
Specialize Reference but preserve links 39
Complex Switch Composite 57
Complex Move Feature 86

Tag instances of a certain class 18
Complex Merge Classes 42
Replace reference by textual specification 18
Automatically fix attribute values 11

8 | Lift annotations to first class construct 32
10 | Create Attribute and initialize its value 12
Create Attribute and initialize its value 12
Automatically fix attribute values 11

11 | Automatically set tag descriptions 29

’ 19 ‘ altogether ‘ 521 ‘

7.3.5 Study Discussion

We discuss the results according to the research questions.

RQ1. What are the reasons for the metamodel changes? Similar to the GMF case study,
the typical activities known from software maintenance also apply to metamodel
maintenance [Lientz and Swanson, 1980]. Morever, similar to the development of
software, the number of perfective activities outranges the preventive, adaptive and
corrective activities. Compared to the GMF case study, more commits can be clas-
sified as perfective, since the Quamoco metamodel is still in its initial development
phase. However, these commits not just added new classes and features like in GMF,
but remodeled the existing classes and features to support the new features, leading
to more complex model migration.

RQ?2. To what extent can the coupled evolution of metamodel and models be automated? Sim-
ilar to the reverse engineering case studies, the coupled evolution of metamodel and
models can be automated to a large extent: Most of the coupled evolution could be
covered by reusable coupled operations, and only very few custom coupled opera-
tions had to be implemented. Due to the available tool support for model migration,
the share of metamodel extensions is much lower than in case of GMF—similar to
PCM, where the language engineers did not care about model migration at all. As a
consequence, COPE allows the language engineers to perform more involved meta-
model changes without losing the models built with the metamodel.

195

7.3. Quamoco Quality Metamodel 7. Case Studies

RQ3. Is the forward engineered coupled evolution different from the reverse engineered cou-
pled evolution? Concerning the number of coupled operations, the forward engi-
neered coupled evolution is much more extensive than the reverse engineered cou-
pled evolution: The number of coupled operations applied to the Quamoco meta-
model is nearly as high as for the much larger GMF metamodels. Concerning the
automatibility, the coupled evolution forward engineered by this case study is not
much different from the reverse engineered metamodel histories: Most of the cou-
pled evolution can still be covered by reusable coupled operations. Many of the
reusable coupled operations identified in the previous case studies proved to be use-
ful for the adaptation of the Quamoco metamodel. Moreover, forward engineering
requires less effort than reverse engineering, since for the latter, a lot of effort is nec-
essary for understanding the intended migration.

7.3.6 Threats to Validity

We are aware that our result can be influenced by threats to construct, internal and
external validity.

Construct Validity. The result might be influenced by the measurement we used for
our case study.

To determine the automatability of the coupled evolution, we counted the number
of operations. The result might be distorted if custom coupled operations are more
complex than reusable coupled operations. However, the custom coupled operations
in average required to write 27 lines of code which is not too different from the aver-
age size of the implementation of a reusable coupled operation.

To determine the reasons for language changes, we grouped the operations according
to the commits—a commit possibly consisting of multiple changes. However, the
result is similar to the result of the GMF case study, and we thus are confident that
it truthfully represents the distribution of the effort for the different maintenance
activities.

Internal Validity. The results might be influenced by the method that we chose for
forward engineering the coupled evolution. In step 2, we might have changed the
metamodel in a way that was not demanded by the project partners. To mitigate
this threat, we validated the changes by means of step 3. In step 3, certain issues in
the metamodel implementation might be hidden by how the editor represents the
metamodel. However, the implementation was also validated by the project partici-
pants in our group that implemented the evaluation based on it. The threat that the
chosen model migration is incorrect was mitigated by step 4. Finally, we might have
misclassified the commits with respect to the maintenance categories. However, we
are confident that the result is correct, since we performed the changes ourselves and
thereby did not falsify the results by having to understand the changes.

External Validity. The results might be influenced by the fact that we forward engi-
neered the coupled evolution for a single metamodel. However, the results obtained
by the Quamoco case study are similar to the results of the case studies in which we

196

7. Case Studies 7.4. Unicase Unified Model

reverse engineered the coupled evolution of PCM and GMF (see Section [7.1| (GMF
Generator Model and Palladio Component Model) and Section (Graphical Modeling]
Framework)). Therefore, we are confident that the result can be generalized to most
coupled evolutions—at least in the modelware space. Moreover, other case stud-
ies in other technical spaces—e.g. dataware [Curino et al., 2008a] and grammarware
[Lammel and Zaytsev, 2009b]—lead to similar results.

Moreover, the results might be influenced by the fact that we participated in the
Quamoco project. We could have changed the metamodel in a way that was best
supported by reusable coupled operations in the library. To mitigate this threat, the
changed metamodel and the model migration was validated by the other project
partners.

7.4 Unicase Unified Model

COPE has been applied to migrate models built with the CASE tool Unicase'? in re-
sponse to metamodel evolution. Besides models conforming to the metamodel, Uni-
case also records the histories of the models. To not lose these histories due to meta-
model evolution, they also need to be migrated. This case study evaluates whether
COPE’s language can also be used to specify the migration of the histories.

7.4.1 Study Goal

The goal was to build a solution based on COPE that is able to migrate the models
as well as their histories. More specifically, the study was performed to answer the
following research questions:

e RQ1. Can COPE’s language be used to specify the migration of artifacts other than
models? We apply COPE’s language to specify the migration of histories
recorded with Unicase, which also need to be migrated in response to meta-
model adaptation.

e RQ2. Can the migration of the other artifacts be reused in the same way the model
migration can be reused? We implement a mechanism to extend reusable coupled
operations with a specification for the migration of Unicase histories.

7.4.2 Study Object

Unicase is a CASE tool based on EMFStore!'* which is a version control system suit-
able for models.

Unicase is an EMF-based tool that implements a modeling language based on a uni-
tied metamodel [Bruegge et al., 2008|]. It consists of a set of editors to manipulate
models conforming to the unified metamodel, and a repository to persist and version
the models as well as to collaborate on the models. The unified metamodel covers

Bsee Unicase web site: [http: //www.unicase.org
4see EMFStore web site: http://www.emfstore.org

197

http://www.unicase.org
http://www.emfstore.org

7.4. Unicase Unified Model 7. Case Studies

the whole development process from requirements over design to deployment, in-
cluding project management artifacts. System model elements such as requirements
or UML elements, are part of the same model and stored in the same repository as
development process model elements such as tasks or users. To give an overview
over the unified metamodel, Table shows the current number of classes and enu-
merations that are contained in the different packages defined by the metamodel.

Table 7.8: Number of elements in the Unicase metamodel

g =
-— - =]
=1 =1 - =] 7]
» 13 c v 5 k] D) g
- e 2| 8|8 |E|E|2|83 |2
« = | <= o | o | g 2| 8 = e | = s | B
< 2 8| w| 5] 2 | 2|5 | E|E| 8|35 | ¢ «
SIS | S| Y| E| S| E|E || 8|e 2|2 5|52 %
~ S | || |<T|S |8 |8 |s|E|8|a| S |8 |®| E&|F
Classes 7 2 1 3 1 4 3 7 3 5 3 7 7 5 5 1
Enumerations 1 2 6 1

EMFStore provides Unicase with a repository to persist and version EMF mod-
els as well as to collaborate on the models. EMFStore employs operation-
based change tracking [Koegel et al., 2009b]—which records changes on mod-
els as a sequence of performed operations—and operation-based merging
[Koegel et al., 2009a]]. Operation-based change tracking is more accurate than state-
based change tracking—which derives changes from model states by differencing—
since it has exact information about the order of the changes as well as composite
changes [Koegel et al., 2009b| Koegel et al., 2010a]. Operation-based change tracking
is similar to how COPE records changes on metamodels.

The version model of EMFStore—which is shown in Figure is a sequence of
versions with revision links [Koegel, 2008]. Every Version contains a ChangePa-
ckage and may contain a full ModelState representation. A ChangePackage contains
all Operations that transformed the previous version into this version along with ad-
ministrative information such as the modifying user, a time stamp and a log message.
In the same way that COPE’s history model needs to be consistent with the current
version of the metamodel, the ChangePackages of EMFStore need to be consistent
with the ModelStates.

revises
1

Version 1 ChangePackage
1 createdBy
0..1| state * | operations
ModelState Operation

Figure 7.13: Version metamodel of EMFStore

Figure shows the simplified metamodel for operations stored by the EMFStore.
To be able to send the operations to the repository in a self-contained manner, an
Operation is independent of the metamodel and model: the Operation refers to the
ModelElement that it changes via the element’s unique identifier, and a Feature-

198

7. Case Studies 7.4. Unicase Unified Model

Operation refers to the changed feature by the featureName. An AttributeOperation
changes the value of an attribute of a model element. A ReferenceOperation creates
or removes one or several links between model elements. A CreateDeleteOpera-
tion creates or deletes a model element, preserving a copy of the created or deleted
model element. A CompositeOperation can group several related operations—e.g.
to represent a refactoring. As the operation metamodel of COPE and EMFStore are
very similar, we are currently developing a generic operation recorder that can be
instantiated in both tools [Herrmannsdoerfer and Koegel, 2010a].

ModelElement ModelElementld | ; Operation *
identifier: String id: String changes subOperations
1| createsDeletes A

FeatureOperation

featureName: String

[\ LJ

CreateDeleteOperation AttributeOperation ReferenceOperation CompositeOperation

Figure 7.14: Operation metamodel of EMFStore

7.4.3 Study Execution

We employed a forward engineering approach in which we recorded the coupled
operations whenever the metamodel needed to be adapted. The coupled operations
do not only need to capture model migration, but also the migration of the recorded
operations. To extend COPE with a means to also migrate the operations, we used
the following method:

1. Coupled evolution: When Unicase was maintained by its language engineers,
the need arose to adapt the metamodel. The changes were recorded by using
the coupled operations provided by COPE. At the beginning, we performed
the changes with COPE, and later, the Unicase language engineers used COPE
themselves to record the changes.

2. Specification of change migration: For each coupled operation, we analyzed
whether the encapsulated metamodel adaptation also impacts the recorded op-
erations. If yes, we specified an appropriate change migration in the language
provided by COPE. Since the operations refer to the model elements by iden-
tifier, the operations need to be loaded together with the corresponding model
state during migration so the change migration can resolve the identifiers to the
model elements. After this step, we can answer RQ], i.e. whether we are able
to specify the change migration with COPE’s language.

3. Validation of change migration: The consistency between the recorded operations
and the model states is crucial for the functions provided by EMFStore. Con-
sequently, we need to validate that the combination of model and change mi-
gration preserves the consistency. EMFStore has been extended with checks to
automatically verify the consistency during startup. We rely on these checks,

199

7.4. Unicase Unified Model 7. Case Studies

when testing the change migration.

4. Reuse of change migration: Like the model migration, we might want to reuse
the change migration. When a reusable coupled operation was used for the
first time, we specified the change migration by attaching a custom migration.
When a reusable coupled operation recurred, we tried to specify the change
migration in a metamodel-independent manner. In order to do so, we need
a means to extend reusable coupled operations with specifications of how to
migrate other artifacts. After this step, we are able to answer RQ?2, i.e. whether
we can also reuse the change migration similarly to the model migration.

We performed all the steps in close cooperation with the language engineers of Uni-
case. COPE has been used to migrate Unicase models for a period of more than a
year, and is still being used.

7.4.4 Study Result

We first explain how we attach a custom change migration to a coupled operation
using COPE’s language. Then, we introduce a mechanism to extend a reusable cou-
pled operation with a reusable change migration. Finally, we give an overview over
the coupled operations that have been performed during the Unicase evolution.

Custom Change Migration (RQ1). When performing a coupled operation, the
recorded changes might no longer be consistent with the model states. To pre-
serve the consistency between changes and states, we may also need to migrate the
changes. Consequently, for each coupled operation, we need to determine whether it
impacts the changes, and if it does, how they need to be migrated. At first, we were
defining the change migration as a custom migration, even in the case of reusable
coupled operations.

Listing shows the custom change migration for renaming the attribute Status
of the class BugReport. The model migration is already provided by the reusable
coupled operation Rename (line 4). Since the changes refer to the attribute by name,
we need to change the featureName accordingly. More specifically, we iterate over all
FeatureOperations, check whether they change the feature, and if they do, change the
featureName (lines 22-26). To check whether a FeatureOperation changes a feature,
it is not enough to compare the featureName, since there might be multiple features
with the same name in independent classes. Therefore, we have to check whether the
changed ModelElement is an instance of the class in which the feature can be used
(helper method isFeatureChange, lines 11-20). In order to do so, we need to resolve
the ModelElement based on the ModelElementld by which an Operation refers to the
ModelElement (helper method getElementByld, lines 7-9).

Reusable Change Migration (RQ2). When there was a second application of Re-
name, we tried to also reuse the change migration. However, we do not want to over-
write the reusable coupled operation in the library, but rather specify the Unicase-
specific change migration separately. In order to do so, we have employed a tech-
nique known from aspect-orientation to extend an operation without changing it:
We can specify operations that are automatically injected before or after an exist-

200

© ® N U WN =

OO N R RN R B s e e s
ST AR ON R, SO ®»®I TR DN = O

7. Case Studies 7.4. Unicase Unified Model

Listing 7.1: Custom change migration for renaming an exemplar attribute

statusAttribute = model.bug.BugReport.Status
// metamodel adaptation + model migration
rename (statusAttribute, "done")
// change migration
getElementById = { id ->
return model.UnicaseModelElement.allInstances.find{e —> id.equals(e.identifier)}
}
isFeatureChange = { operation, EStructuralFeature feature ->

if (feature.name.equals (operation.featureName)) {
def id = operation.modelElementId.id
def element = getElementById(id)
if (element == null || element.instanceOf (feature.eContainingClass)) {
return true
}
}

return false

}

for (operation in esmodel.versioning.operations.FeatureOperation.allInstances) {
if (isFeatureChange (operation, statusAttribute)) {
operation.featureName = name
}
}

ing reusable coupled operation during the migrator generation. We have introduced
annotations to specify that an operation extends another operation. Of course, the
extending operation needs to have the same signature as the extended operation.

Listing [7.2| shows the use of the before annotation to extend the operation Rename
with a change migration (line 19). Even though Rename can be applied to all meta-
model elements, we only need to extend it for features (lines 20-24), since the renam-
ing of other metamodel elements does not impact the changes. Since a feature can
also be a reference, the change migration needs to be more general as the custom
change migration shown in Listing Besides the featureName of FeatureOpera-
tions (lines 2-6), we also need to migrate the oppositeFeatureName of ReferenceOp-
erations (lines 7-16).

Performed Coupled Operations (RQ1, RQ2). Table|7.9|gives an overview over the
coupled operations that we have performed over a time interval of more than one
year. The table provides columns to show the name of the coupled operation, to
indicate the change migration and to depict the number of its applications. We dis-
tinguish metamodel extensions, reusable and custom coupled operations.

Metamodel extensions. Few of the coupled operations are metamodel extensions which
do not require a model migration and thus neither a change migration. This indi-
cates that the Unicase modeling language had already passed the initial development
phase, when we started to use COPE to migrate models. Note that the unicase anno-
tations are only used for customizing the representation of the metamodel elements
in the Unicase editor.

Reusable coupled operations. Most of the coupled operations are reusable coupled op-
erations. However, most of them only affect the serialization of models, thus are triv-

201

7.4. Unicase Unified Model 7. Case Studies

Listing 7.2: Reusable change migration for reusable coupled operation Rename

unicaseRenameFeature = { EStructuralFeature feature, String name ->
for (operation in esmodel.versioning.operations.FeatureOperation.allInstances) {
if (isFeatureChange (operation, feature)) {
operation.featureName = name

}
}
if (feature instanceof EReference) {
def opposite = feature.eOpposite
if (opposite != null) {
for (operation in esmodel.versioning.operations.ReferenceOperation.allInstances

) |
if (isFeatureChange (operation, opposite)) {
operation.oppositeFeatureName = name

@before ("rename")
unicaseRename = {ENamedElement element, String name ->
if (element instanceof EStructuralFeature) {
unicaseRenameFeature ((EStructuralFeature) element, name)

}
}

ially supported by COPE’s generic instance structure, and do not affect the changes.
Therefore, we have not mentioned these operations in the library and show them
below the dashed line in the table. From the other reusable coupled operations, we
only needed to extend two operations with a change migration.

Custom coupled operations. Only very few coupled operations are custom coupled
operations, most of which also require a custom model migration. The only exception
is Enumeration to Subclasses which provides a reusable model migration. A change
to the value of the enumeration attribute needs to be migrated to a change of the
type of the model element. However, type changes during model evolution are not
supported by EMFE. We could only perform the change due to the specific usage of
the attribute in Unicase: Unicase ensured that the value of the enumeration attribute
is never changed, after the model element has been created.

7.4.5 Study Discussion

We applied COPE to forward engineer the coupled evolution of the Unicase meta-
model and its models. To support model evolution, Unicase records the changes
performed on the models and stores them in an EMFStore repository. When the
metamodel is adapted, we thus do not only have to migrate the models, but also
the recorded changes. While COPE’s migration language showed to be expressive
enough to specify the required change migrations, we needed to extend COPE to
be able to refine existing reusable coupled operations with the appropriate change
migration. Change migrations that can be easily expressed only modify or delete
existing changes and do not require the state of the model before or after a change.

However, certain coupled operations cannot be easily performed, if the consistency
between models and changes needs to be preserved. First, change migrations which

202

7. Case Studies

7.4. Unicase Unified Model

Table 7.9: Coupled operations performed during the Unicase case study

Coupled Operation ‘ Change Migration ‘ Number
Metamodel Extension 39
Add Super Class No migration necessary 6
Create Annotation (unicase) No migration necessary 7
Create Attribute No migration necessary 9
Create Class No migration necessary 4
Create Enumeration No migration necessary 3
Create Reference No migration necessary 9
Create Volatile Reference No migration necessary 1
Reusable Coupled Operation 177
Delete Enumeration No migration necessary 1
Delete Feature Delete FeatureOperations 5
Generalize Reference No migration necessary 2
Inline Superclass No migration necessary 2
Remove Superfluous Super Class No migration necessary 2
Rename Rename FeatureOperations 8
| Add ReferenceKey | No migration necessary | 1
Change Namespace Prefix No migration necessary 1
Remove Reference Key No migration necessary 153
Set Attribute Default Value No migration necessary 2
Custom Coupled Operation 7
Convert Rich Text Strings Migrate AttributeOperations 2
Delete Class and Objects (moving its contents) Delete Operations on objects 1
Enumeration to Subclasses Delete AttributeOperations 1
Make Attribute Identifier No migration necessary 1
Replace Enumeration by Boolean as Attribute Type Migrate AttributeOperations 1
Replace Identifier Attribute by UUID No migration necessary 1

require to create changes in the history are difficult to implement. For instance, Ex-
tract Class requires to add changes to create the extracted instance as well as to attach
it to the context instance. We believe that such change migrations could in principal
be handled by COPE, but would require implementation of more complicated algo-
rithms. Second, change migrations which require the state of the model before or
after a change require additional techniques. For instance, Move Feature over Ref-
erence requires to know the value of the reference before a change that needs to be
migrated. Currently, EMFStore only stores the state after a number of changes in
order to save space. To be able to implement such change migrations in all general-
ity, we would need to reconstruct these intermediate model states during migration.
However, this would strongly reduce the performance of the coupled operations.

7.4.6 Threats to Validity

We discuss our results with respect to their internal and external validity.

Internal Validity. The results might be influenced by the method we chose for the
case study. We only implemented the change migration for coupled operations re-
quired in the case study, and thus we cannot be sure whether the technique works
for other coupled operations (step 2). However, we were interested in supporting

203

7.5. Transformation Tool Contest 7. Case Studies

only the changes that really were performed in practice. During validation (step 3),
the change migration might work fine on the chosen change histories and thereby
hide errors that might happen when migrating other changes. However, the model
states and change histories were quite large, having more than thousand model ele-
ments and several hundreds of versions. Moreover, when building reusable change
migrations (step 4), we might miss certain cases that need to be considered to make
them generally applicable. To mitigate this threat, we only built them when they re-
curred, and let the resulting change migration be reviewed by the language engineers
of Unicase.

External Validity. The results might be influenced by the fact that we restricted our-
selves to a certain kind of artifact. Consequently, we can only be sure that COPE’s
language can be applied to specify certain kinds of change migrations. However, the
migration of changes is probably not the most easiest task, as we have seen. There-
fore, we believe that the language can be used to migrate other artifacts in response to
metamodel adaptation. Future case studies are necessary to demonstrate the ability
to express the migration of other artifacts.

7.5 Transformation Tool Contest

We have participated in the Transformation Tool Contest (TTC)'® in order to com-
pare COPE to different model transformation tools. We concentrated on the model
migration case, as the primary scope of COPE is model migration and not model
transformation in general. The model migration case demands the implementation

of a model migration for activity diagrams from UML 1.4 to 2.2.

7.5.1 Study Goal

The aim of TTC is to compare the expressiveness, usability and performance of model
transformation tools along a number of selected case studies. The approach of the
contest is that different persons apply their favorite model transformation tool to one
of the proposed cases. We applied COPE to the model migration case to compare it to
the other model transformation tools. The contest specifically targets the following
research questions:

e RQ1. What are the pros and cons of different model transformation tools considering a
certain application? By comparing the solutions for a single case, we are able to
identify the pros and cons of the different tools concerning the case.

o RQ2. What are the merits of different tool features that help to improve model trans-
formation tools and to indicate open problems? Through the comparison of the
solutions, tool developers might learn how to improve their model transforma-
tion tool by detecting issues in their tool and by learning from the features of
other tools.

5see TTC web site: http://planet-research20.org/ttc2010

204

http://planet-research20.org/ttc2010

7. Case Studies 7.5. Transformation Tool Contest

7.5.2 Study Object

The contest provided 3 cases of which we selected the model migration case
[Rose et al., 2010c]. The other cases targeted other applications of model transfor-
mation tools which are not the primary scope of COPE.

Core Task. As the core task, the model migration case requires the specification of a
model migration for activity diagrams from UML 1.4 to 2.2. Figure depicts both
versions of the corresponding metamodel. The metamodels shown in the figure are
pruned to the minimally necessary classes. Both figures show classes that more or
less correspond to each other in about the same positions.

In UML 1.4 [Object Management Group, 2001], activity models are a sub type of state
machines, as shown in Figure[7.15(a)l A StateMachine defines a root (top) state and a
number of transitions. There are different kinds of states (StateVertex): simple States,
Pseudostates, FinalStates, ActionStates, ObjectFlowStates and CompositeStates. A
Transition has a source and target state as well as a Guard which is defined by a
BooleanExpression. ActivityGraph refines StateMachine by a number of Partitions to
group the contents of the activity model.

In UML 2.2 [Object Management Group, 2009], activity models are defined by sep-
arate classes, as shown in Figure An Activity model defines a number of
nodes, edges and groups (ActivityPartition). There are different kinds of nodes: Ac-
tivityNodes, InitiaINodes, JoinNodes, ForkNodes, DecisionNodes, ActivityFinalStates,
OpaqueActions and ObjectNodes. An ActivityEdge has a source and target node as
well as a BooleanExpression as guard. An ActivityPartition groups a number of nodes
and edges.

The case defines the criteria shown in Table with respect to which the solutions
and thus the tools should be evaluated and compared.

Extensions. Besides the core task to specify a model migration between the two
metamodel versions, the case defines three extensions.

Alternative object flow state migration semantics. ObjectFlowStates can be migrated in a
different way: Instead of migrating an ObjectFlowState to ObjectNode, it should be
migrated to ObjectFlow, thereby replacing an object by a link.

Concrete syntax. The concrete syntax of activity models built with ArgoUML!'® should
also be migrated.

XMI. Models that are stored using an older version of the XMI standard
[Object Management Group, 2007]] should also be migrated.

7.5.3 Study Execution

We participated with COPE in the contest. The organizers of the contest devised the
following steps to carry out the contest:

1. Submission of solution: Potential participants submitted solutions for the cases

165ee ArgoUML web site: http://argouml.tigris.org/

205

http://argouml.tigris.org/

7.5. Transformation Tool Contest

7. Case Studies

ModelElement |
name: String contents
StateMachine < }—— ActivityGraph
>
* | transitions partition | *
Guard 0.1 Transition sourcé StateVertex | « Partition
guard 1 subvertex
target Z}
1 | expression «enum» ‘ 1 [top
PseudoStateKind
BooleanExpression o Pseudostate State
initial = 0
language: String join=1 kind: PseudostateKind
body: String fork =2
junction =3 4
FinalState ActionState ObjectFlowState CompositeState

OpaqueExpression

language: String
body: String

isDynamic: Boolean

(a) UML 1.4

ModelElement

name: String

7

Activity

*| edges *| nodes groups | *
0.1 ActivityEdge sourcé ActivityNode * ActivityPartition
guard 1 nodes
target
*[edges ZF ‘
ControlFlow ObjectFlow InitialNode JoinNode ForkNode DecisionNode

ActivityFinalNode

OpaqueAction

ObjectNode

(b) UML 2.2

Figure 7.15: Metamodel for UML activity diagrams

206

7. Case Studies 7.5. Transformation Tool Contest

Table 7.10: Criteria for solutions to the migration case, taken from [Rose et al., 2010c]

Name Description ‘

Correctness | Does the transformation produce a model equivalent to the migrated UML
2.2 model included in the case resources?

Conciseness | How much code is required to specify the transformation?

Clarity How easy is it to read and understand the transformation?

to the contest. A valid submission consists of an installation in a remote virtual
machine to make the solution reproducible, an accompanying document which
describes the solution, and an appendix with the full listing of the solution.
The participants could also discuss the case in a forum that was set up by the
organizers.

2. Review of solution: The submitted solutions were reviewed by experts in the
domain of model transformation to evaluate them with respect to validity for
the contest. As a result, a number of submitted solutions were accepted for the
contest.

3. Presentation of solution: The participants presented their solution at the work-
shop in front of all other participants. The presentation was restricted to 10
minutes. The other participants of the contest could use the installation in the
remote virtual machine to play with the solution and tool.

4. Presentation of opponents: Each submission needed to have two opponents that
critically analyzed the solution before the workshop. Both opponents presented
the found issues and open questions together in a 5 minute slot.

5. Evaluation of solution: All the contest participants were requested to fill out an
evaluation sheet for each solution in parallel to the presentation. The evaluation
sheet considered the case criteria as well as the criteria shown in Table[Z.11land
required to fill in points for each criterion. Based on the obtained points, the
organizers awarded the best solutions for each case.

Table 7.11: Additional criteria for evaluation by participants

Name Description

Appropriateness | How suitable is the tool for the specific application defined by the
case?

Extensions To what extent have the extensions defined by the case been solved?

Tool Maturity How mature is the tool?

While steps 1 and 2 were conducted before the workshop took place, steps 3 to 5
were conducted at the workshop. We only explained the method for what the contest
organizers call offline cases. Additionally, there were online cases for which also the
implementation of the solution was performed at the workshop. Even though we
also participated with COPE in the online cases, the result is not interesting for the
evaluation, since the online cases did not target model migration.

207

7.5. Transformation Tool Contest 7. Case Studies

7.5.4 Study Result

Altogether nine solutions for the migration case were presented at the work-
shop, including the one built with COPE [Herrmannsdoerfer,2010]. The
other solutions employed the following model transformation tools: ATL (At-
las Transformation Language) and Java [Cicchettietal., 2010], Epsilon Flock
[Rose et al., 2010b], Fujaba [Koch et al., 2010], GReTL (Graph Repository Trans-
formation Language) [Horn,2010], GrGen.NET (Graph Rewrite Generator)
[Buchwald and Jakumeit, 2010, MOLA (MOdel transformation LAnguage)
[Kalnina et al., 2010], PETE (Prolog EMF Transformation Engine) [Schatz, 2010]
as well as UML-RSDS [Lano and Rahimi, 2010]. Since we focus on evaluating COPE,
we only present the solution of COPE as well as the feedback we got for COPE. We
tirst present the submitted solution, before we present the findings of the reviewers
and opponents as well as the result of the evaluation.

Solution for Core Task. For the core task, we used the Metamodel Convergence func-
tion (see Section [6.2.3| (Recovering the Coupled Evolution))) to reverse engineer the cou-
pled evolution between both metamodel versions. Listing shows the result as
a migrator script that is generated from the reverse engineered history model. Ta-
ble provides an overview over the coupled operations, their number of occur-
rences, effect and type. The coupled operations are classified according to their effect
on existing models (see Section [5.1.6| (Classification of Coupled Operations)), thereby
allowing to reason about the coupled evolution.

Table 7.12: Coupled operations required for the migration case

Coupled Operation ‘ # ‘ Effect Type

N
—_

Rename

Inline Superclass
Unfold Class
Enumeration to Subclasses

Refactoring

: Reusable Coupled Operation
Split Reference by Type

Delete Feature
Make Class Abstract
Specialize Reference
Split Class

Destructor

IR IN|O[== N|W

Constructor | Custom Coupled Operation

Refactorings preserve the set of models that can be built. Consequently, the informa-
tion contained in models is preserved in response to a refactoring. Rename is used
to map the state machine classes and features to activity model classes and features,
respectively. Inline Superclass is applied to remove classes for which there is no cor-
responding class in the new metamodel—e.g. State machine (line 3 in Listing
and Pseudostate (line 31). Unfold Class is e.g. used to replace the containment ref-
erence top in State machine with the features of the sub class CompositeState of its
target class (line 10). Enumeration to Subclasses is applied to split PseudoState into
a subclass for each literal of the enumeration PseusoStateKind (line 25). Partition
Reference is used to partition the reference contents of Partition into references for
each subclass of ModelElement (line 34).

208

O N Ul W N =

oY O Y Ul U1 Ul Ul U1 Q1 U1 U1 U1 U1 b i R i R B s e 00 L) W) W 0) 0 W W W RN NNNRN S s s s e e s s
R =m0 U RE DR ~R, SO X®INTEORORSDO®INAOTEDRNODR,DSO®IRNAEDODRNRS O ®®IO G EWONR O

7. Case Studies 7.5. Transformation Tool Contest

Listing 7.3: Migrator code generated from the reverse engineered history model

// reusable coupled operations

makeAbstract (minumll.StateMachine, minumll.ActivityGraph)
inlineSuperClass (minumll.StateMachine)

rename (minumll.ActivityGraph, "Activity")

rename (minumll.Activity.partition, "group")

rename (minumll.StateVertex, "ActivityNode")

makeAbstract (minumll.State, minumll.ActionState)
specializeReference (minumll.Activity.top, minumll.CompositeState, 1, 1)
inlineSuperClass (minumll.State)

unfoldClass (minumll.Activity.top)

deleteFeature (minumll.Activity.name_CompositeState)
rename (minumll.Activity.transitions, "edge")
deleteFeature (minumll.Activity.incoming)

deleteFeature (minumll.Activity.outgoing)

rename (minumll.Activity.subvertex, "node")

rename (minumll.Partition, "ActivityPartition")

rename (minumll.CompositeState, "StructuredActivityNode")
rename (minumll.StructuredActivityNode.subvertex, "node")
rename (minumll.Transition, "ActivityEdge")

unfoldClass (minumll.ActivityEdge.guard)

deleteFeature (minumll.ActivityEdge.name_Guard)

rename (minumll.BooleanExpression, "OpaqueExpression")
rename (minumll.ActionState, "OpaqueAction")

deleteFeature (minumll.OpaqueAction.isDynamic)
enumerationToSubClasses (minumll.Pseudostate.kind, minumll)
rename (minumll.initial, "InitialNode")

rename (minumll. join, "JoinNode")

rename (minumll.fork, "ForkNode")

rename (minumll. junction, "DecisionNode")

rename (minumll.ActivityEdge.expression, "guard")
inlineSuperClass (minumll.Pseudostate)

rename (minumll.ObjectFlowState, "ObjectNode")

rename (minumll.FinalState, "ActivityFinalNode")
partitionReference (minumll.ActivityPartition.contents)
rename (minumll.ActivityPartition.activityEdge, "edges")
rename (minumll.ActivityPartition.activityNode, "nodes")
deleteFeature (minumll.ActivityPartition.guard)
deleteFeature (minumll.ActivityPartition.activity)
deleteFeature (minumll.ActivityPartition.activityPartition)

// custom coupled operation: Split Class

// metamodel adaptation

activityEdgeClass = minumll.ActivityEdge
activityEdgeClass.’abstract’ = true

newClass (minumll, "ControlFlow", [minumll.ActivityEdge], false)
newClass (minumll, "ObjectFlow", [minumll.ActivityEdge], false)

// model migration
for (edge in activityEdgeClass.allInstances) {
if (edge.source.instanceOf (minumll.ObjectNode) ||
edge.target.instanceOf (minumll.ObjectNode)) {
edge.migrate (minumll.ObjectFlow)
} else {
edge.migrate (minumll.ControlFlow)

// reusable coupled operations
rename (minumllPackage, "minuml2")
minumllPackage = minumll
minumllPackage.nsPrefix = "minuml2"
minumllPackage.nsURI = "minuml2"

209

7.5. Transformation Tool Contest 7. Case Studies

Destructors decrease the set of models that can be built. Consequently, information
may be lost in models in response to a destructor. Delete Feature is used to delete
features that are no longer available in the target metamodel, e.g. isDynamic of Ac-
tionState. Delete Feature is also applied to delete features that are created by earlier
applications of other operations. For instance, the application of Unfold Class leads
to more features than are actually part of the new metamodel (lines 11, 13 and 14).
Make Class Abstract is used to make classes abstract to be able to apply Inline Super-
class. For instance, State is made abstract, and its instances are migrated to Action-
State which is renamed to OpaqueAction (line 7). Specialize Reference is applied to
specialize the type of top to CompositeState so that we are able to unfold its features
into StateMachine (line 8).

Constructors increase the set of models that can be built. Consequently, no informa-
tion is lost in models due to a constructor, but new information can be added to mod-
els. Split Class is used to split Transition—which is renamed to ActivityEdge—into
ControlFlow and ObjectFlow (lines 41 to 56). If the source or target of an ActivityEdge
is an ObjectNode, we migrate to ObjectFlow, otherwise to ControlFlow.

Solution for Extensions. While we could implement the first extension, we could not
implement the remaining two extensions, since COPE is not intended to bridge sev-
eral technical spaces, but to provide support for incrementally adapting metamodels
within the EMF technical space.

Alternative object flow state migration semantics. To implement this extension, we mod-
ified the history model for the core task using COPE’s refactoring functions (see Sec-
tion [6.2.2] (Refactoring the Coupled Evolution)). Listing[7.4shows the replacement for
the custom coupled operation in Listing [7.3| (lines 41 to 56). Using the function for
Flattening Operations, we replaced the custom migration to split the class ActivityEdge
by a custom migration to build instances for the subclass ObjectFlow (lines 2 to 19 in
Listing [7.4). In this custom migration, edges incoming to and outgoing from Ob-
jectNodes are replaced by direct ObjectFlows. After attaching the new custom mi-
gration, two primitive operations (make class ActivityEdge abstract, create subclass
ControlFlow) remain that have no longer a custom migration attached. Making the
class ActivityEdge abstract is breaking and thus requires a migration. Using the func-
tion for Reordering Operations, we moved the operations to make class ActivityEdge
abstract and to create its concrete subclass ControlFlow to after the new custom cou-
pled operation. Using the function for Replacing Operations, we replaced the primitive
operations to make class ActivityEdge abstract with the reusable coupled operation
Make Class Abstract. However, the semantics extension leads to more loss of infor-
mation than the core migration, as instances of ObjectNode are deleted by the custom
coupled operation.

Concrete syntax. We would need a concrete syntax built with GMF and not with Ar-
goUML which is implemented in a different technical space.

XMI. We would only need a bridge that generically migrates metamodels and models
from XMI 1.2 to EMF.

Own Evaluation. We evaluate the solution according to the criteria defined for the

case in Table

210

O ® N U R WN =

P T T N N S
B ONR, SO ®»IO @R ®N = O

7. Case Studies 7.5. Transformation Tool Contest

Listing 7.4: Update for the extension of the migration semantics

// custom coupled operation
// metamodel adaptation
newClass (minumll, "ObjectFlow", [minumll.ActivityEdge], false)

//model migration
for (on in minumll.ObjectNode.allInstances) {
for (i in on.incoming) {
for (o in on.outgoing) {
def of = minumll.ObjectFlow.newInstance ()
on.container.edge.add (of)
of.source = i.source
of.target = o.target
}
}
for (i in on.incoming) i.delete()
for (o in on.outgoing) o.delete()
on.delete ()

}

// reusable coupled operations
newClass (minumll, "ControlFlow", [minumll.ActivityEdge], false)
makeAbstract (minumll.ActivityEdge, minumll.ControlFlow)

Correctness. The reverse engineered coupled evolution is correct in the sense that
it produces the same model as the one provided with the case. Additionally, by
classifying coupled operations, one can reason about their effect on existing models.
To adapt the provided minimal original metamodel to the evolved metamodel, a
number of coupled operations were necessary that may lead to information loss in
existing models. This is however not the case for the provided original model, but
may be the case for other models conforming to the original metamodel.

Conciseness. We showed that most of the coupled evolution can be automated by
reusable coupled operations, while only a very small amount (9 lines) of migration
code needs to be handcoded. Therefore, the solution can be considered as very con-
cise.

Clarity. For users familiar with typical model transformation languages, the coupled
evolution may be difficult to understand. The reason is probably that the model
migration is modularized along the metamodel adaptation. However, the modu-
larization allows language engineers to understand and reason about each coupled
operation separately.

Evaluation by Reviewers. Two reviewers had to quantitatively evaluate the sub-
mitted solutions according to a number of criteria. Table shows the scores that
our solution obtained from both reviewers. Our solution obtained good grades for
being able to reproduce the solution and to understand the description as well as
for the core task. However, we received low marks for not providing a solution to
all extensions and for forgetting to discuss the disadvantages of our solution in the
description.

The reviewers also qualitatively evaluated the solution with respect to the case crite-
ria. We present the points of each reviewer separately.

211

7.5. Transformation Tool Contest 7. Case Studies

Table 7.13: Evaluation by reviewers

Criterion ‘ Scale H Reviewer 1 ‘ Reviewer 2 ‘
Overall rating -3.3 3 (strong accept)

Reviewer’s confidence 1.3 3 (high) ‘ 2 (medium)
Solution reproducibility 1.5 4 (installation + document + appendix)
Document understandability 1.5 4 (good)

Case specific score for core task 1.5 5 (excellent) 4 (good)

Case specific score for extensions 1.5 3 (fair) 1 (very poor)

Fair discussion of disadvantages of solution 1.5 2 (poor) 3 (fair)

Reviewer 1 approves correctness, as the generated model seems to be correct. In the
reviewer’s opinion, the approach can also be considered concise, since it describes
the coupled evolution of metamodels and models. However, reviewer 1 is surprised
by the large number of operation applications, which makes the solution rather com-
plex. In the reviewer’s opinion, the migration is basically rather clear, as it is based
on coupled operations, which, however, require sufficient familiarity with the library
of operations.

Reviewer 2 thinks that conciseness and clarity are quite good. In the reviewer’s opin-
ion, the only point where the solution is not concise is the one operation which re-
quires a custom migration. However, reviewer 2 is more concerned with the cor-
rectness of the migration. The reviewer defines two aspects of correctness: First, the
approach needs to guarantee that the composition of the operations yields a model
transformation from the source to the target metamodel. Second, we need to be able
to ensure that the composition of the operations defines the intended model trans-
formation.

Evaluation by Opponents. We mention the arguments of both opponents separately.

Opponent 1 thinks that COPE is well integrated into Eclipse, thus benefiting opti-
mally from Eclipse features such as browse trees, separate views, etc. Even though
almost every aspect of the language changes in the case, COPE scales very well to
such revolutions in the opponent’s opinion, requiring only one custom coupled op-
eration. Opponent 1 believes that this is because the approach is very modular, treat-
ing the model migration of different metamodel changes separately from each other.
However, the migration of reusable coupled operations is fixed, requiring the spec-
ification of a custom coupled operation, in case a different migration semantics is
required. Moreover, opponent 1 thinks that additional effort is necessary to learn a
new language to specify custom coupled operations.

Opponent 2 suspects that the performance for model migration is not very good, due
to having an interpreted language as well as the sequential execution of the oper-
ations. The opponent also is not sure about how to determine the effort to specify
the model migration for this kind of approach. While the migration only needs to be
specified manually for custom coupled operations, effort is also necessary to apply
reusable coupled operations.

Evaluation by Participants. From the 9 model transformation tools applied to the

212

7. Case Studies 7.5. Transformation Tool Contest

model migration case, COPE made the second place after Epsilon Flock and before
GrGen.NET. Besides the overall ranks, Table also shows the specific ranks for
the different criteria as calculated by the workshop organizers from the 12 received
evaluation sheets. COPE obtained high ranks in all case criteria, i.e. also correctness
which seems to be the weak point of Flock. Moreover, we received a high rank for
the criterion appropriateness, and a medium rank for the criteria extensions and tool
maturity.

Table 7.14: Evaluation by participants

=
S| s .
g5 ¢ |2 g |BE|z2| g8
Ranks = o 5} i = o E O 2
Correctness 7 2 2 2 6 1 5 8 9
Conciseness 1 2 2 4 5 7 6 8 9
Clarity 1 2 3 5 4 8 6 7 9
Appropriateness 1 2 3 5 4 7 8 6 9
Extensions 1 4 4 2 8 7 3 4 9
Tool Maturity 3 5 2 1 4 6 8 7 9
| Overall [1] 2] 3] a] 5] 6] 7] 8] 9]

7.5.5 Study Discussion

All in all, we got positive feedback for COPE in the tool transformation contest. The
expert reviewers highlighted the conciseness and clarity of the history model. The
opponents pointed out the modularity of the coupled evolution as well as the seam-
less integration into Eclipse. We also conclude that all the workshop participants
were convinced about COPE, as it made the second place due to their evaluations.
COPE received a high rank in all the case criteria correctness, conciseness and clarity.
Particularly, the high ranks in correctness and conciseness confirm that the require-
ments of semantics preservation and automation are fulfilled by COPE.

Correctness. One reviewer was concerned about the syntactic and semantic correct-
ness of the model migration. The syntactic correctness is ensured by COPE by si-
multaneously recording the coupled operation and applying it to the metamodel.
Even though COPE allows the user to refactor the history model, it provides checks
to ensure that the metamodel adaptation is preserved. The semantic correctness is
supported by recording the model migration at the same time, when the metamodel
is adapted. We believe that the language engineer is most aware about the intention
behind the metamodel adaptation, when changing the metamodel.

Clarity of the Library. According to one reviewer, the user needs to have knowl-
edge about the operations in the library to profit from reusable coupled operations.
However, the barrier of entrance for understanding the library can be lowered by
the following techniques: First, the operations in the library need to have consis-
tent names which are similar to refactorings known from object-oriented software

213

7.5. Transformation Tool Contest 7. Case Studies

evolution. Second, COPE supports the user to select an operation by only showing
those operations in the operation browser that are applicable based on the currently
selected element in the metamodel editor. Third, COPE provides a view that interac-
tively shows the documentation for each reusable coupled operation.

Performance. One opponent was concerned about the performance of the model mi-
gration. The performance is certainly not as good as in the case of the most advanced
model transformation tools. However, we believe that performance is not the most
important aspect of a tool for model migration. It is more important to reduce the
effort for specifying a correct model migration that can be used to automatically mi-
grate models.

7.5.6 Threats to Validity

We are aware that our results can be influenced by threats to construct, internal and
external validity.

Construct Validity. The results might be influenced by the comparison criteria that
are defined for the case study. The comparison criteria explicitly defined by the case
are rather restricted: correctness, conciseness and clarity. However, due to the high
number of submitted solutions, it is quite difficult to deeply evaluate more compari-
son criteria. Moreover, the correctness criterion is rather weak, since it only requires
to correctly migrate a single model. To derive the correct migration from the seman-
tics of both versions of UML is difficult, since UML in general lacks a clear semantics.
Consequently, the unclear UML semantics has lead to a number of discussions about
the correct model migration in the forum. However, it would have been possible to
define multiple test models for the migration.

Internal Validity. The results might be influenced by the method we chose for the
case study. If the submitters of the migration case also participate in this case, they
may have an advantage over the other participants, since they can tailor the migra-
tion case to their tool. To mitigate this threat, the cases were reviewed before being
accepted and they could be discussed by the participants. Additionally, there is no
way to ensure that the participants try out the solution before evaluating it. Conse-
quently, it might be possible that the participants do not evaluate the solution, but
rather how the solution is presented by its submitter. To mitigate this threat, review-
ers and opponents have to provide an explicit evaluation of the solution: the review-
ers by writing a review, and the opponents by giving a statement after the solution is
presented.

External Validity. The results might be influenced by the fact that we restricted our-
selves to a number of model transformation tools and only 1 migration case. Of
course, the contest can only take into account model transformation tools for which a
solution is submitted. Nevertheless, there have been quite a number of submissions,
resulting in 9 accepted solutions. From the 9 used model transformation tools, only
2 are really tailored for model migration: Flock and COPE. However, the chosen mi-
gration case also was not typical for model migration, as the pruned metamodel was

214

7. Case Studies 7.6. Comparison of Model Migration Tools

more or less completely changed. Consequently, the model migration tools could not
really profit from requiring to specify only the difference between both metamodel
versions. Nevertheless, they outperformed the model transformation tools in the
evaluation by the workshop participants.

7.6 Comparison of Model Migration Tools

Several tools have been proposed to build a migration strategy that automates the
migration of existing models. However, only few of them participated in the TTC
presented in the previous section. Hence, little is still known about the advantages
and disadvantages of the tools in different situations. In this section, we thus com-
pare a representative sample of migration tools—AML, COPE, Ecore2Ecore and Ep-
silon Flock—using common migration examples. The criteria used in the comparison
aim to support users in selecting the most appropriate tool for their situation.

7.6.1 Study Goal

The study was performed to compare existing model migration tools for the Eclipse
Modeling Framework. More specifically, the study was performed to answer the
following research questions:

e RQ1. What are the strengths and weaknesses of the different model migration tools?
We apply the tools to common migration examples in order to learn about their
strengths and weaknesses.

o RQ2. What is the most appropriate model migration tool for a certain situation?
From the tools’ strengths and weaknesses, we synthesize recommendations for
choosing a migration tool in a certain situation.

7.6.2 Study Object

The comparison is based on the practical application of selected tools to the coupled
evolution examples. We first present the examples and then list the selection of tools.

Coupled Evolution Examples

To compare migration tools, two examples of coupled evolution were used. The first
is a well-known toy example in the model migration literature and was used to test
the comparison process, as discussed in Section [7.6.3| (Study Execution)). The second
is a larger example taken from a real-world model-based development project, and
was identified as a potentially useful example for coupled evolution case studies in
[Herrmannsdoerfer et al., 2009¢]].

Petri Nets. The first example is an evolution of a Petri net metamodel,
previously used in [Cicchettietal., 2008, |Garcés etal., 2009, Rose et al., 2010d,
Wachsmuth, 2007] to discuss coupled evolution and model migration.

215

7.6. Comparison of Model Migration Tools 7. Case Studies

1‘ Net |g 1

net net
11 net
* | arcs

net o Net o net
1 1 Arc

weight: integer

* | places transitions | * * | places M transitions | *

Place 1 dst Transition Place 1 out| pTArc | 1% dst Transition
name: String | S'C * | name: String name: String | S'C * n 1| name: String
1.*| dst src | * 1 |dst] | . src‘l

in| TPArc | 1.
* out
(a) Original metamodel (b) Evolved metamodel

Figure 7.16: Petri nets metamodel evolution

In Figure a Petri Net comprises Places and Transitions. A Place has any
number of source (src) or destination (dst) Transitions. Similarly, a Transition has
at least one src and dst Place. In this example, the metamodel in Figure is
to be evolved to support weighted connections between Places and Transitions and
between Transitions and Places.

The evolved metamodel is shown in Figure Places are connected to Transi-
tions via instances of PTArc. Likewise, Transitions are connected to Places via TPArc.
Both PTArc and TPArc inherit from Arc, and therefore can be used to specify a weight.

GME. The second example is taken from the Graphical Modeling Framework (GMF)
[Gronback, 2009], an Eclipse project for generating graphical editors for models. The
development of GMF is model-based and utilizes four domain-specific metamodels.
Here, we consider one of those metamodels, gmfgraph, and its evolution between
GMF versions 1.0 and 2.0. This metamodel has already been used in the GMF case
study in Section (Graphical Modeling Framework) where we also present its role
within GMFE.

The gmfgraph metamodel (see Figure describes the appearance of the gen-
erated graphical model editor. The classes Canvas, Figure, Node, DiagramLabel,
Connection, and Compartment are used to represent components of the graphical
model editor to be generated. The evolution in the gmfgraph metamodel was driven
by analyzing the usage of the Figure.referencingElements reference, which relates
Figures to the DiagramElements that use them. As described in the gmfgraph docu-
mentation!’, the referencingElements reference increased the effort required to reuse
figures, a common activity for users of GMF. Furthermore, referencingElements was
used only by the GMF code generator to determine whether an accessor should be
generated for nested Figures.

In GMF 2.0 (see Figure , the gmfgraph metamodel was evolved to make
reusing figures more straightforward by introducing a proxy [Gamma et al., 1995]

7see gmfgraph documentation: http://wiki.eclipse.org/GMFGraph_Hints

216

http://wiki.eclipse.org/GMFGraph_Hints

7. Case Studies 7.6. Comparison of Model Migration Tools

*
[. *
FigureGallery figures Canvas
>
. * d * t‘
*| figures nodes compartments connections | |apels
Figure Node Compartment| | Connection | DiagramLabel
*
children | Name: String f1|gure
RoundedRectangle | | PolylineConnection * DiagramElement
referencing>
Elements
(a) GMF 1.0

*
FigureGallery figures D Canvas o
o
*| nodes * | connections
* | compartments * | labels
Figure 1 Node Compartment| | Connection | [DiagramLabel

actualFigure

* | children ‘
« | RealFigure DiagramElement
figures name: String

?

‘ ‘ 1 |figure accessor | 1

*

RoundedRectangle | | PolylineConnection FigureDescriptor « | ChildAccess

descriptors
® accessors

(b) GMF 2.0

Figure 7.17: Metamodel gmfgraph

217

7.6. Comparison of Model Migration Tools 7. Case Studies

for Figure, termed FigureDescriptor. The original referencingElements reference was
removed, and an extra class, ChildAccess, was added to make more explicit the orig-
inal purpose of referencingElements (accessing nested Figures).

GMF provides a migrating algorithm that produces a model conforming to the
evolved gmfgraph metamodel from a model conforming to the original gmfgraph
metamodel. In GMF, the migration is implemented using Java. The GMF source
code includes two example editors, for which the source code management system
contains versions conforming to GMF 1.0 and GMF 2.0. For the comparison of mi-
gration tools described in this section, the migrating algorithm and example editors
provided by GMF were used to determine the correctness of the migration strategies
produced by using each model migration tool.

Compared Tools

For the comparison in this section, we selected one tool from each of the three
categories—manual specification, operation-based and metamodel matching approaches—
described in Section [4.7] (Modelware). We included a further tool from the manual
specification category, Ecore2Ecore, as it is distributed with EMFE. With the exception
of COPE, each of these tools is discussed briefly below. Section [7.6.4] (Study Resulf)
describes the experiences with using each tool in more detail.

AtlanMod Matching Language (AML) [Garcés et al., 2009, (Garcés et al., 2009] is a
model matching tool, which can be used as a metamodel matching migration tool. AML
provides heuristics that the user combines to specify a metamodel matching strategy.
A migrating ATL transformation is automatically generated by matching original
and evolved metamodels.

Ecore2Ecore [Hussey and Paternostro, 2006] is a manual specification migration tool
that is part of EMF. The migration is specified with a mapping model and hand-
written Java code. Ecore2Ecore has been used in real-world projects, such as the
Eclipse MDT UML2 project'®, to manage coupled evolution.

Epsilon Flock [Rose et al., 2010d]] (subsequently referred to as Flock) is a manual spec-
ification migration tool. Flock is a domain-specific transformation language tailored
for model migration. In particular, Flock automatically copies from original to mi-
grated model all model elements that have not been affected by metamodel evolu-
tion. Flock is built atop Epsilon!? [Kolovos, 2009], an extensible platform providing
inter-operable programming languages for model-based development.

7.6.3 Study Execution

The comparison of migration tools was conducted by applying each of the four tools
(Ecore2Ecore, AML, COPE and Flock) to the two examples of coupled evolution
(Petri nets and GMF). The developers of each tool were invited to participate in the
comparison. The authors of COPE and Flock were able to participate fully, while the

8see MDT UML2 web site: http://www.eclipse.org/modeling/mdt/uml?2
Ysee Epsilon web site: http://www.eclipse.org/gmt/epsilon

218

http://www.eclipse.org/modeling/mdt/uml2
http://www.eclipse.org/gmt/epsilon

7. Case Studies

authors of Ecore2Ecore and AML were available for guidance, advice, and to com-
ment on preliminary results. The comparison was conducted in five steps:

1. Setup: We identified comparison criteria and assigned the tools to developers.
We allocated responsibility for using each tool on the examples to a different
person. Because the authors of Ecore2Ecore and AML were not able to fully
participate in the comparison, two colleagues experienced in model transfor-
mation and migration stood in. To improve the validity of the comparison, each
tool was used by someone other than its developer. Other than this restriction,
the tools were allocated arbitrarily.

2. Familiarization: We used the first example of coupled evolution (Petri nets)
to familiarize ourselves with the migration tools and to assess the suitabil-
ity of the comparison criteria. Table summarizes the used compari-
son criteria. They have been derived from comparisons of languages for
model transformation like [Iaentzer et al., 2005], [Mens and Van Gorp, 2006],
[Czarnecki and Helsen, 2006] and [Grenmo et al., 2009].

3. Analysis: The tools were applied to the larger example of coupled evolution
(GMEF), and experiences were recorded along the application.

4. Results: We compiled the experiences by criteria and noted similarities and dif-
ferences between the tools. The result of this step answers RQ1.

5. Synthesis: We synthesized, by consensus, guidance for selecting a tool for a
certain situation. The result of this step answers RQ?2.

Table 7.15: Summary of comparison criteria
Name Description
Construction Ways in which tool supports the development of migration strategies
Change Ways in which tool supports change to migration strategies
Extensibility Extent to which user-defined extensions are supported
Reuse Mechanisms for reusing migration patterns and logic
Conciseness Size of migration strategies produced with tool
Clarity Understandability of migration strategies produced with tool
Expressiveness | Extent to which migration problems can be codified with tool
Interoperability | Technical dependencies and procedural assumptions of tool
Performance Time taken to execute migration

7.6.4 Study Result

By applying the method described in Section [7.6.3| (Study Execution), four model mi-
gration tools were compared. This subsection reports similarities and differences of
each tool, using nine criteria. Each subsubsection considers one criterion and con-
tains the experiences as reported by the developer using the tool. The complete solu-
tions for the two examples are available online?.

Dgee GIT repository: http://github.com/louismrose/migration_comparison

219

7.6. Comparison of Model Migration Tools

http://github.com/louismrose/migration_comparison

7.6. Comparison of Model Migration Tools 7. Case Studies

Constructing the Migration Strategy

Facilitating the specification and execution of migration strategies is the primary
function of model migration tools. In the following, we report the process for and
challenges faced in constructing migration strategies with each tool.

AML. An AML user specifies a combination of match heuristics from which AML
infers a migrating transformation by comparing original and evolved metamod-
els. Matching strategies are written in a textual syntax, which AML compiles
to produce an executable workflow. The workflow is invoked to generate the
migrating transformation, codified in the Atlas Transformation Language (ATL)
[Jouault and Kurtev, 2006]. Devising correct matching strategies was difficult, as
AML lacks documentation that describes the input, output and effects of each
heuristic. Papers describing AML—such as [Garcés et al., 2009, Garcés et al., 2009]—
discuss each heuristic, but mostly in a high-level manner. A semantically invalid
combination of heuristics can cause a runtime error, while an incorrect combination
results in the generation of an incorrect migration transformation. However, once
a matching strategy is specified, it can be reused for similar cases of metamodel
evolution. To devise the matching strategies used for the examples, AML’s author
provided considerable guidance.

COPE. A COPE user applies coupled operations to the original metamodel to form
the evolved metamodel. Each coupled operation specifies a metamodel evolution
along with a corresponding fragment of the model migration. A history of applied
operations is later used to generate a complete migration strategy. As COPE is meant
for coupled evolution of models and metamodels, reverse engineering a large meta-
model can be difficult. Determining which sequence of operations will produce a
correct migration is not always straightforward. To aid the user, COPE allows oper-
ations to be undone. To help with the migration process, COPE offers the Metamodel
Convergence function which utilizes EMF Compare to display the differences between
two metamodels. While this was useful, it can, understandably, only provide a list
of explicit differences and not the semantics of a metamodel change. Consequently,
reverse engineering a large and unfamiliar metamodel is challenging, and migration
for the gmfgraph example could only be completed with considerable guidance from
the author of COPE.

Ecore2Ecore. In Ecore2Ecore, model migration is specified in two steps. In the first
step, a graphical mapping editor is used to construct a model that declares basic
migrations. In this step, only very simple migrations such as class and feature re-
naming can be declared. In the next step, the developer needs to use Java to specify
a customized parser (resource handler, in EMF terminology) that can parse models
that conform to the original metamodel and migrate them so that they conform to
the new metamodel. This customized parser exploits the basic migration informa-
tion specified in the first step and delegates any changes that it cannot recognize
to a particular Java method in the parser for the developer to handle. Handling
such changes is tedious, as the developer is only provided with the string contents
of the unrecognized features and then needs to use low-level techniques—such as
data-type checking and conversion, string splitting and concatenation—to address
them. Here, it is worth mentioning that Ecore2Ecore cannot handle all migration sce-
narios and is limited to cases where only a certain degree of structural change has

220

7. Case Studies 7.6. Comparison of Model Migration Tools

been introduced between the original and the evolved metamodel. For cases which
Ecore2Ecore cannot handle, developers need to specify a custom parser without any
support for automated element copying.

Flock. In Flock, model migration is specified manually. Flock automatically copies
only those model elements which still conform to the evolved metamodel. Hence,
the user specifies migration only for model elements which no longer conform to
the evolved metamodel. Due to the automatic copying algorithm, an empty Flock
migration strategy always yields a model conforming to the evolved metamodel.
Consequently, a user typically starts with an empty migration specification and iter-
atively refines it to migrate non-conforming elements. However, there is no support
to ensure that all non-conforming elements are migrated. In the gmfgraph example,
completeness could only be ensured by testing with numerous models. Using this
method, a model migration can be easily encoded for the Petri net example. For the
gmfgraph example whose metamodels are larger, it was more difficult, since there is
no tool support for analyzing the changes between original and evolved metamodel.

Changing the Migration Strategy

Migration strategies can change in at least two ways. Firstly, as a migration strategy is
developed, testing might reveal errors which need to be corrected. Secondly, further
metamodel changes might require changes to an existing migration strategy.

AML. Because AML automatically generates migrating transformations, changing
the transformation, for example after discovering an error in the matching strategy,
is trivial. To migrate models over several versions of a metamodel at once, the migrat-
ing transformations generated by AML can be composed by the user. AML provides
no tool support for composing transformations.

COPE. As mentioned previously, COPE provides an undo feature, meaning that any
incorrect migrations can be easily fixed. COPE stores a history of releases—a set of
operations that has been applied between versions of the metamodel. Because the
migration code generated from the release history can migrate models conforming to
any previous metamodel release, COPE provides a comprehensive means for chain-
ing migration strategies.

Ecore2Ecore. Migrations specified using Ecore2Ecore can be modified via the graph-
ical mapping editor and the Java code in the custom model parser. Therefore, devel-
opers can use the features of the Eclipse Java IDE to modify and debug migrations.
Ecore2Ecore provides no tool support for composing migrations, but composition
can be achieved by modifying the resource handler.

Flock. There is comprehensive support for fixing errors. A migration strategy can
easily be re-executed using a launch configuration, and migration errors are linked
to the line in the migration strategy that caused the error to occur. If the metamodel is
further evolved, the original migration strategy has to be extended, since there is no
explicit support to chain migration strategies. The full migration strategy may need
to be read to know where to extend it.

221

7.6. Comparison of Model Migration Tools 7. Case Studies

Extensibility

The fundamental constructs used for specifying migration in COPE and AML (oper-
ations and matching heuristics, respectively) are extensible. Flock and Ecore2Ecore
use a more imperative (rather than declarative) approach, and as such do not provide
extensible constructs.

AML. An AML user can specify additional matching heuristics. This requires under-
standing of AML’s domain-specific language for manipulating the data structures
from which migrating transformations are generated.

COPE provides the user with a large number of operations. If there is no applicable
operation, a COPE user can write their own operations using an in-place transforma-
tion language embedded into Groovy?!.

Reuse

Each migration tool captures patterns that commonly occur in model migration. In
the following, we consider the extent to which the patterns captured by each tool
facilitate reuse between migration strategies.

AML. Once a matching strategy is specified, it can potentially be reused for further
cases of metamodel evolution. Matching heuristics provide a reusable and extensible
mechanism for capturing metamodel change and model migration patterns.

COPE. An operation in COPE represents a commonly occurring pattern in coupled
evolution. Each operation captures the metamodel evolution and model migration
steps. Custom operations can be written and reused.

Ecore2Ecore. Mapping models cannot be reused or extended in Ecore2Ecore, but
as the custom model parser is specified in Java, developers can decompose it into
reusable parts, some of which can potentially be reused in other migrations.

Flock. A migration strategy encoded in Flock is modularized according to the classes
whose instances need migration. There is support to reuse code within a strategy
by means of operations with parameters and across strategies by means of imports.
Reuse in Flock captures only migration patterns, and not the higher level coupled
evolution patterns captured in COPE or AML.

Conciseness

A concise migration strategy is arguably more readable and requires less effort to
write than a verbose migration strategy. In the following, we comment on the con-
ciseness of migration strategies produced with each tool, and report the lines of code
(without comments and blank lines) used.

AML. 117 lines were automatically generated for the Petri nets example. 563 lines
were automatically generated for the gmfgraph example, and a further 63 lines of
code were added by hand to complete the transformation. Approximately 10 lines of

Zgee Groovy web site: http://groovy.codehaus.org/

222

http://groovy.codehaus.org/

7. Case Studies 7.6. Comparison of Model Migration Tools

the user-defined code could be removed by restructuring the generated transforma-
tion.

COPE requires the user to apply operations. Each operation application generates
one line of code. The user may also write additional migration code. For the Petri net
example, 11 operations were required to create the migrator and no additional code.
We migrated the gmfgraph example using 76 operations and 73 lines of additional
code.

Ecore2Ecore. As discussed above, handling changes that cannot be declared in the
mapping model is a tedious task and involves a significant amount of low level code.
For the Petri nets example, the Ecore2Ecore solution involved a mapping model
containing 57 lines of (automatically generated) XMI and a custom hand-written re-
source handler containing 78 lines of Java code.

Flock. 16 lines of code were necessary to encode the Petri nets example, and 140 lines
of code were necessary to encode the gmfgraph example. In the gmfgraph example,
approximately 60 lines of code implement missing built-in support for rule inheri-
tance, even after duplication was removed by extracting and reusing a subroutine.

Clarity

Because migration strategies can change and might serve as documentation for the
history of a metamodel, their clarity is important. In the following, we report on
aspects of each tool that might affect the clarity of migration strategies.

AML. The AML code generator takes a conservative approach to naming variables,
to minimize the chances of duplicate variable names. Hence, some of the generated
code can be difficult to read and hard to reuse if the generated transformation has to
be completed by hand. When a complete transformation can be generated by AML,
clarity is not as important.

COPE. Migration strategies in COPE are defined as a sequence of operations. The re-
lease history stores the set of operations that have been applied, so the user is clearly
able to see the changes they have made, and find where any issues may have been
introduced.

Ecore2Ecore. The graphical mapping editor provided by Ecore2Ecore allows devel-
opers to have a high-level visual overview of the simple mappings involved in the
migration. However, migrations expressed in the Java part of the solution can be
far more obscure and difficult to understand as they mix high-level intention with
low-level string management operations.

Flock clearly states the migration strategy from the source to the target metamodel.
However, the boilerplate code necessary to implement rule inheritance slightly ob-
fuscates the real migration code.

Expressiveness

Migration strategies are easier to infer for some categories of metamodel change than
others [Gruschko et al., 2007]]. In the following, we report on the ability of each tool

223

7.6. Comparison of Model Migration Tools 7. Case Studies

to migrate the examples considered in this comparison.

AML. A complete migrating transformation could be generated for the Petri nets
example, but not for the gmfgraph example. The latter contains examples of two
complex changes that AML does not currently support??. Successfully expressing the
gmfgraph example in AML would require changes to at least one of AML'’s heuristics.
However, AML provided an initial migration transformation that was completed by
hand. In general, AML cannot be used to generate complete migration strategies for
coupled evolution examples that contain metamodel-specific coupled changes, according
to the classification introduced in Section [3.2) (Classification of Metamodel Changes).

COPE. The expressiveness of COPE is defined by the set of operations available. The
Petri net example was migrated using only built-in operations. The gmfgraph exam-
ple was migrated using 76 built-in operations and 2 user-defined migration actions.
Custom migration actions allow users to specify any migration strategy.

Ecore2Ecore. A complete migration strategy could be specified for the Petri nets
example, but not for the gmfgraph example. The developers of Ecore2Ecore have ad-
vised that the latter involves significant structural changes between the two versions
and recommended implementing a custom model parser from scratch.

Flock. Since Flock extends EOL, it is expressive enough to encode both examples.
However, Flock does not provide an explicit construct to copy model elements and
thus it was necessary to call Java code from within Flock for the gmfgraph example.

Interoperability

Migration occurs in a variety of settings with differing requirements. In the follow-
ing, we consider the technical dependencies and procedural assumptions of each
tool, and seek to answer questions such as: “Which modeling technologies can be
used?” and “What assumptions does the tool make on the migration process?”

AML depends only on ATL, while its development tools also require Eclipse. AML
assumes that the original and target metamodels are available for comparison, and
does not require a record of metamodel changes. AML can be used with either Ecore
(EMF) or KM3 metamodels.

COPE depends on EMF and Groovy, while its development tools also require Eclipse
and EMF Compare. COPE does not require both the original and target metamodels
to be available. When COPE is used to create a migration strategy after metamodel
evolution has already occurred, the metamodel changes must be reverse engineered.
To facilitate this, the target metamodel can be used with the convergence function.
COPE targets EMF and does not support other modeling technologies.

Ecore2Ecore depends only on EME. Both the original and the evolved versions of the
metamodel are required to specify the mapping model with the Ecore2Ecore devel-
opment tools. Alternatively, the Ecore2Ecore mapping model can be constructed pro-
grammatically and without using the original metamodel®®. Unlike the other tools
considered, Ecore2Ecore does not require the original metamodel to be available in

Zgee public communication with the author of AML: http://www.eclipse.org/forums/index.
php?t=rview&goto=526894#msg_526894If
23priva’ce communication with Marcelo Paternostro, an Ecore2Ecore developer

224

http://www.eclipse.org/forums/index.php?t=rview&goto=526894#msg_526894If
http://www.eclipse.org/forums/index.php?t=rview&goto=526894#msg_526894If

7. Case Studies 7.6. Comparison of Model Migration Tools

the workspace of the metamodel user.

Flock depends on Epsilon and its development tools also require Eclipse. Flock as-
sumes that the original and target metamodels are available for encoding the migra-
tion strategy, and does not require a record of metamodel changes. Flock can be used
to migrate models represented in EMF, MDR, XML and Z (CZT), although we only
encoded a migration strategy for EMF metamodels in the presented examples.

Performance

The time taken to execute model migration is important, particularly once a mi-
gration strategy has been distributed to metamodel users. Ideally, migration tools
will produce migration strategies whose execution time is quick and scales well with
large models.

~ 1,000,000
)
E
© 100,000
s
2
E 10,000 AML
ot) COPE
% 1,000 1 =O=Ecore2Ecore
° == Flock
£ 100
©
= 10 -
o)
>
< 1 : : :
10 100 1,000 5,000 10,000

Number of model elements

Figure 7.18: Performance comparison of the migration tools

To measure performance, we produced Petri net models with a random generator,
varying their size. Figure shows the average time taken by each tool to execute
migration across 10 repetitions for models of different sizes. Note that the Y axis has
a logarithmic scale. The results indicate that, for the Petri nets coupled evolution
example, AML and Ecore2Ecore execute migration significantly more quickly than
COPE and Flock, particularly when the model to be migrated contains more than
thousand model elements. Figure indicates that, for the Petri nets coupled evo-
lution example, Flock executes migration between two and three times faster than
COPE, although we found out that turning off validation causes COPE to perform
similarly to Flock.

7.6.5 Study Discussion

RQ1. What are the strengths and weaknesses of the different model migration tools? The
comparison results highlight the similarities and differences between a representa-
tive sample of model migration approaches. In this subsection, the differences are

225

7.6. Comparison of Model Migration Tools 7. Case Studies

used to consider which tools are better suited to particular model migration situa-
tions.

COPE captures coupled evolution patterns (which apply to both model and meta-
model), while Ecore2Ecore, AML and Flock capture only model migration patterns
(which apply just to models). Because of this, COPE facilitates a greater degree of
reuse in model migration than other approaches. However, the order in which the
user applies patterns with COPE impacts on both metamodel evolution and model
migration, which can complicate pattern selection particularly when a large amount
of evolution occurs at once. The reusable coupled evolution patterns in COPE make
it well suited to migration problems, in which metamodel evolution is frequent and
in small steps.

Flock, AML and Ecore2Ecore are preferable to COPE when metamodel evolution has
occurred before the selection of a migration approach. Because of its use of coupled
evolution patterns, we conclude that COPE is better suited to forward rather than
reverse engineering.

Through its convergence function and integration with the EMF metamodel editor,
COPE facilitates metamodel analysis that is not possible with the other approaches
considered in this section. COPE is well-suited to situations in which measuring and
reasoning about coupled evolution is important.

In situations where migration involves modeling technologies other than EMF, AML
and Flock are preferable to COPE and Ecore2Ecore. AML can be used with models
represented in KM3, while Flock can be used with models represented in MDR, XML
and CZT. Via the connectivity layer of Epsilon, Flock can be extended to support
further modeling technologies.

There are situations in which Ecore2Ecore or AML might be preferable to Flock and
COPE. For large models, Ecore2Ecore and AML might execute migration signifi-
cantly more quickly than Flock and COPE. Ecore2Ecore is the only tool that has no
technical dependencies (other than a modeling framework). In situations where mi-
gration must be embedded in another tool, Ecore2Ecore offers a smaller footprint
than other migration approaches. Compared to the other considered approaches,
AML automatically generates migration strategies with the least guidance from the
user.

Despite these advantages, Ecore2Ecore and AML are unsuitable for some types of
migration problem, because they are less expressive than Flock and COPE. Specifi-
cally, changes to the containment of model elements typically cannot be expressed
with Ecore2Ecore and changes that are classified as metamodel-specific in Section
(Classification of Metamodel Changes) cannot be expressed with AML. Because of this,
it is important to investigate metamodel changes before selecting a migration tool.
Furthermore, it might be necessary to anticipate which types of metamodel change
are likely to arise before selecting a migration tool. Investing in one tool to discover
later that it is no longer suitable causes wasted effort.

RQ2. What is the most appropriate model migration tool for a certain situation? Some pre-
liminary recommendations and guidelines in choosing a migration tool were synthe-
sized from the presented results and are summarized in Table

226

7. Case Studies 7.6. Comparison of Model Migration Tools

Table 7.16: Summary of tool selection advice (tools are ordered alphabetically)

Requirement ‘ Recommended Tools ‘
Frequent, incremental coupled evolution COPE

Reverse engineering AML, Ecore2Ecore, Flock
Modeling technology diversity Flock

Quicker migration for larger models AML, Ecore2Ecore
Minimal dependencies Ecore2Ecore
Minimal hand-written code AML, COPE
Minimal guidance from user AML

Support for metamodel-specific migrations COPE, Flock

7.6.6 Threats to Validity

We discuss our results with respect to construct, internal and external validity.

Construct Validity. The results might be influenced by the comparison criteria we
chose for the case study. To compare the model migration tools, we considered a
number of criteria that we deem important for comparing these kinds of tools and
that can be evaluated with the presented method. We are aware that there are other
criteria—like productivity, usability or learnability—which might be important for
comparing model migration tools. However, drawing conclusions about productiv-
ity, usability and learnability is challenging with the employed method due to the
subjective nature of these characteristics. We envisage that a comprehensive user
study (with hundreds of users) would likely provide better results than could be
achieved using the presented method.

Internal Validity. The results might be influenced by the method we chose for the
case study. For each of the five steps explained in Section[7.6.3| (Study Executior), we
mention possible threats to internal validity. In step 1, we might have chosen criteria
that cannot be applied to reasonably compare model migration tools. To mitigate
this threat, we first applied the criteria to the Petri net example in step 2 to assess
their suitability. The Petri net example used in step 2 might not provide enough
variation to completely familiarize the users with the tools. However, we allowed
the tool users to ask the tool developers for assistance when applying the tools to the
gmfgraph example. In step 3, the users might have understood the criteria differently,
when assessing the model migration tools. To mitigate this threat, we compared and
consolidated the different assessments in step 4 and 5.

External Validity. The results might be influenced by the fact that we restricted our-
selves to one test user per tool and to only 2 migration scenarios. Thereby, the results
might not be transferable to other users or to other migration scenarios. The transfer-
ability to other users may be affected by the knowledge of the single user about the
model migration tool. To mitigate this threat, we chose for each tool a user that was
not familiar with the tool before. The transferability to other migration scenarios may
be affected by the special properties of the chosen scenarios. However, the scenarios

227

7.7. Summary

7. Case Studies

are a well-known research example (petri nets) and a scenario taken from a real-life
metamodel evolution (gmfgraph).

7.7 Summary

In this chapter, we have presented six case studies that applied COPE to automate the
real-world coupled evolution of metamodels and models. These case studies helped
to evaluate, refine and improve the approach that we have chosen for COPE. We sub-
sequently summarize the three categories reverse engineering, forward engineering
and comparison case studies. For each of these categories, we have performed two
case studies.

Reverse Engineering case studies recover the coupled evolution from existing meta-
model versions, after the metamodel has been adapted. First, we have reverse en-
gineered the coupled evolution of the GMF Generator and PCM metamodels (Sec-
tion (GMEF Generator Model and Palladio Component Model)). Through this case
study, we have confirmed that most of the coupled evolution can be covered by
reusable coupled operations and that the complete metamodel adaptation can be cap-
tured by a sequence of coupled operations. Second, we have recovered and analyzed
the coupled evolution of all four GMF metamodels (Section [7.2| (Graphical Modeling]
[Framework)). This case study also showed that metamodels evolve not only due to
user requests, but also due to technological changes, that other artifacts need to be
migrated in response to metamodel evolution, and that language evolution is similar
to software evolution. While COPE targets forward engineering the coupled evolu-
tion, the reverse engineering case studies have been performed to demonstrate the
applicability of COPE in practice. These case studies helped to build up and test the
library of reusable coupled operations, and gave rise to a set of functions that support
reverse engineering the coupled evolution from a sequence of metamodel versions.

Forward Engineering case studies use COPE to record the coupled evolution, while
the metamodel needs to be adapted. First, we have used COPE to forward engi-
neer the coupled evolution of the Quamoco metamodel (Section [7.3| (Quamoco Qual-
ity Metamodel)). This case study revealed that, while more changes occur with ap-
propriate tool support for model migration, coupled evolution is not much different
between forward and reverse engineering case studies—in terms of both automata-
bility of model migration and reasons for language changes. Second, we have ap-
plied COPE to migrate Unicase models and their changes in response to metamodel
evolution (Section [7.4| (Unicase Unified Model)). Through this case study, we showed
that COPE’s language to specify migration can also be used to encode the migration
of other artifacts like the changes recorded by the Unicase tool. Consequently, these
case studies showed that COPE effectively supports the development of a correct
model migration by incrementally applying coupled operations. Moreover, the ex-
isting library of reusable coupled operations proved to be complete enough to cover
most of the coupled evolution, thereby significantly reducing the development effort.

Comparison case studies compare COPE to other model transformation or migra-

228

7. Case Studies

7.7. Summary

tion tools. First, we have participated with COPE in the model migration case of
the Transformation Tool Contest (Section [7.5] (Transformation Tool Contest)). This case
study confirmed that COPE is better suited to specify model migration than model
transformation languages, and that it provides a perfect compromise for ensuring
conciseness and correctness of a model migration. Second, we have compared a num-
ber of model migration tools for EMEF, together with the developers of the other tools
(Section [7.6| (Comparison of Model Migration lools)). This case study shows that COPE
is well suited for frequent, incremental coupled evolution, when minimal handwrit-
ten migration code is desired, and when support for metamodel-specific migrations
is required. The comparisons also revealed the weaknesses of COPE: To profit from
the reduction of effort, the users need to have knowledge about the library of reusable
coupled operations, and the modularization of the migration into operations is not
as performant as the specification of a single transformation. Consequently, the com-
parisons helped to identify areas for further improvement of the approach.

229

Chapter

Beyond Model Migration:
Evolutionary Metamodeling

In two case studies, we were using our approach to support the evolutionary de-
velopment of modeling languages. Until now, our approach focused on reducing
the effort for model migration in response to metamodel adaptation. However, we
have already seen through a case study that the operation-based approach can be
extended to also migrate other artifacts like e.g. model changes. In this chapter, we
want to show that the operation-based approach can support a number of other tasks
that are important when evolving a modeling language. More specifically, we devel-
oped methods to support the following two tasks:

1. Before adapting the metamodel, we need to identify changes that improve the
modeling language. We can identify possible changes by analyzing the models
built with a metamodel, and recommend operations to perform these changes.

2. After adapting the metamodel, we may also need to adapt the simulator or code
generator of the modeling language that implements the language semantics.
To support semantics-preserving model migration, we can extend the opera-
tions to also adapt the interpreters of the modeling language.

The two methods have been published in [Herrmannsdoerfer et al., 2010a] and
[Herrmannsdoerfer and Koegel, 2010b].

Contents
[8.1 The Process of Evolutionary Metamodeling| 232
[8.2 Metamodel Usage Analysis for Identifying Metamodel Improve- |
ments| e e 236
[8.3 Towards Semantics-Preserving Model Migration| 254
8.4 Summary|. e e e e e e e e 263

Section (The Process of Evolutionary Metamodeling) gives an overview over the
tasks for the evolutionary development of modeling languages. In Section[8.2]
[model Usage Analysis for Identifying Metamodel Improvements), we propose an ap-
proach to mine metamodel improvements from the models built with the meta-

231

8.1. The Process of Evolutionary Metamodeling 8. Beyond Model Migration

model, and demonstrates the usefulness of the approach by means of an exten-
sive case study. Section [8.3| (Iowards Semantics-Preserving Model Migration) enables
semantics-preserving model migration by extending the operations to also adapt the
interpreter of the modeling language. Finally, we conclude this chapter with Sec-

tion 84 Sizmmmary)

8.1 The Process of Evolutionary Metamodeling

The results of the case studies indicate that COPE is especially suited for the evolu-
tionary development and maintenance of modeling languages. We claim that a good
modeling language is hard to obtain by an upfront design, but rather has to be de-
veloped by an evolutionary process. A version of a modeling language is defined
and deployed to obtain feedback from the language users, which again may lead to
a new version.

In this section, we define a systematic process in order to support the evolutionary
development of modeling languages. The process is based both on our experiences
from the case studies as well as on the process of database and software refactoring—
defined in [Ambler and Sadalage, 2006] and [Mens and Tourwé, 2004], respectively.
Figure[8.1]illustrates the activities of the process and their interplay as a UML activity
diagram. We focus on the iterations from one language version to the next and not
on the development of the initial language version. In the following, we explain the
different activities in more detail.

¢ N

Elicit Metamodel Changes

leplement Metamodel ChangesJ

T C
[R

[Migrate dependent Artifacts] [Validate Model Migration J

ﬂl—J

[Release Modeling Language}

\ /

Figure 8.1: Evolutionary metamodeling process

232

8. Beyond Model Migration 8.1. The Process of Evolutionary Metamodeling

8.1.1 Elicit Metamodel Changes

Before a new iteration of the process can start, the language engineer needs to identify
changes that need to be performed to the metamodel. These changes either introduce
new language features or improve the maintainability or usability of the modeling
language. To identify metamodel changes, the language engineer can use the follow-
ing techniques: he or she can improve the maintainability by analyzing the meta-
model, improve the usability by analyzing the models built with the metamodel, or
introduce new language features by getting feedback from the language users.

Metamodel Analysis. The idea behind many of the coupled operations is to im-
prove the maintainability of the metamodel. As a consequence, we could identify
metamodel elements to which these coupled operations can be applied. For instance,
we could search for redundant features in sibling classes, as they can be pulled up
into their common super class. However, when analyzing only the metamodel, we
can only identify refactorings, i.e. changes that preserve the expressiveness of the
modeling language.

Model Analysis. Often, modeling languages are not completely used by the lan-
guage users and thus could be restricted to improve its usability. To identify restric-
tions of the metamodel, we could analyze the models built with the metamodel. For
instance, we could search for features that are not used in the models and remove
them from the metamodel. In Section (Metamodel Usage Analysis for Identifying]
IMetamodel Improvements), we refine this technique by defining and evaluating a num-
ber of such usage patterns. However, when analyzing only the model, we can only
identify destructors, i.e. changes that reduce the expressiveness of the modeling lan-

guage.

Feedback from Language Users. To also identify extensions of the modeling lan-
guage, we need to get feedback from the language users about which new features
they need. Feedback from the language users can for instance be obtained by provid-
ing a forum, by performing a workshop or by conducting a survey. If the modeling
language has an extension mechanism, we could also get the feedback by analyz-
ing models using this extension mechanism. By getting feedback from the language
users, we can also identify constructors, i.e. changes that increase the expressiveness
of the modeling language.

8.1.2 Implement Metamodel Changes

After identifying the metamodel changes, the language engineer has to choose the
coupled operations to implement them. To choose the suitable coupled operations,
the language engineer has to consider the impact on the modeling language and
on existing models (see Section [5.1.6| (Classification of Coupled Operations)) as well as
the automatability of the reconciling model migration (see Section

Nufshel).

Language Preservation. The language engineer can choose the operations based on

233

8.1. The Process of Evolutionary Metamodeling 8. Beyond Model Migration

how the changes impact the modeling language. If the changes require to preserve
the modeling language, the language engineer should choose refactorings. If they
require to extend or restrict the modeling language, he or she should choose con-
structors or destructors, respectively.

Model Preservation. The language engineer can also choose the operations based on
how the changes should impact existing models. If the changes should not impact the
existing models, the language engineer can only use model-preserving operations.
However, this often restricts the way in which the languages can be changed, thus
maybe leading to overly complex metamodels. If the changes can impact the existing
models, but no information should be lost in these models, the language engineer
should only use safely model-migrating operations. If the language engineer intends
to delete information, he or she can also use unsafely model migrating operations.

Automatability. When choosing the operations to implement the language changes,
the language engineer should also consider the automatability of the model migra-
tion. The language engineer should first try to find appropriate reusable coupled
operations in the library (see Section [5.2| (Library of Reusable Coupled Operations)) in
order to reduce the effort for model migration. The criteria mentioned above can
be used to reduce the number of possible operations. If the changes cannot be im-
plemented by reusable coupled operations, the language engineer has to implement
custom coupled operations. If information is required from the language user during
migration, the custom coupled operation can be made interactive (see Section [5.4.3]
(Coping with Model-Specific Migration))).

8.1.3 Migrate dependent Artifacts

In response to adaptation of the metamodel, we do not only need to migrate models,
but we also may need to adapt the definitions of the other constituents of a mod-
eling language, as they depend on the metamodel. Besides the abstract syntax, the
language engineer may need to adapt the definition of the concrete syntax and se-
mantics.

Abstract Syntax. From the metamodel, an API is often generated for accessing mod-
els built with the metamodel. The language engineer can refine the API by imple-
menting additional constraints for validation as well as derived features that facil-
itate model access. When the metamodel is adapted, the API can be adapted by
simply regenerating it. However, the constraints and derived features may need to
be adapted to correctly use the adapted APL

Concrete Syntax. The textual, diagrammatic or tabular concrete syntax is defined
based on the metamodel defining the abstract syntax. From the concrete syntax defi-
nition, the language engineer can ideally generate an editor supporting the concrete
syntax. When the metamodel is adapted, the concrete syntax definition may also
need to be adapted. Finally, the language engineer needs to regenerate the editor,
maybe needing to adapt customizations of the generated code.

234

8. Beyond Model Migration 8.1. The Process of Evolutionary Metamodeling

Semantics. The semantics of a modeling language is usually defined as a code gen-
erator or simulator based on the abstract syntax. To implement a code generator or
simulator, languages for model transformation are often applied. Since these model
transformations are defined based on the metamodel, they may need to be adapted,
when the metamodel changes. The model migration and the adaptation of the se-
mantics definition need to be consistent to ensure semantics preservation.

8.1.4 Verify Model Migration

Before models are migrated, the language engineer needs to ensure that the defined
model migration is correct. There are different levels of correctness: syntax preserva-
tion, information preservation and semantics preservation.

Syntax Preservation. The syntax of a model is preserved if the model migration
transforms it to a model conforming to the adapted metamodel. Syntax preservation
is important to be able to completely load the model with the editor, after the meta-
model has been adapted. To ensure syntax preservation, the language engineer can
either extensively test the model migration or prove it for the defined model migra-
tion. Due to the modularization of the model migration, he or she can prove syntax
preservation separately for each coupled operation. For reusable coupled operations,
we can show syntax preservation independently of the metamodel.

Information Preservation. Syntax preservation can be easily ensured by deleting
model elements that no longer conform to the adapted metamodel. However, delet-
ing model elements leads to loss of information in the model. The information con-
tained in a model is preserved if the model migration has a safe inverse, which can
transform the migrated model back to the original model. While the language engi-
neer can use the inverse relationship defined by the library to show reversability for
reusable coupled operations, information preservation has to be proven manually for
custom coupled operations.

Semantics Preservation. Semantics preservation does not only require that the in-
formation contained in a model is preserved, but also that the meaning of the model
is preserved. It is difficult to ensure semantics preservation without an explicit defi-
nition of the semantics. To ensure semantics preservation, the model migration and
the adaptation of the semantics definition need to be consistent. Again, due to the
modularization of the model migration, we can show semantics preservation for each
coupled operation separately. In Section [8.3| (Towards Semantics-Preserving Model Mi-|
gratior]), we examine an approach to extend reusable coupled operations with an
appropriate adaptation of the semantics definition in order to constructively ensure
semantics preservation.

8.1.5 Release Modeling Language

After the changes have been performed, the language engineer can release the new
version of the modeling language. The language engineer has to make the new lan-

235

8.1. Metamodel Usage Analysis 8. Beyond Model Migration

guage version as well as the model migration available to the language user. Then,
the language users can update the modeling language and migrate their models to
the new version.

Update of Modeling Language. Ideally, there is an update mechanism to make the
new version of the modeling language available to the language user. The language
user can then update the modeling language to the new version using this update
mechanism. Then, the language user can use the new features that have been added
to the modeling language or benefit from the language improvements that have been
made.

Model Migration. Finally, the language users need to migrate the existing models
so that they can be used with the evolved modeling language. Ideally, the migration
is performed with the migrator that is generated from the history model and that is
deployed with the new version of the updated editor. In case of interactive custom
coupled operations, the language user is required answer the questions, before the
migration can complete.

8.2 Metamodel Usage Analysis for Identifying Metamodel
Improvements

Modeling languages raise the abstraction level at which software is built by pro-
viding a set of constructs tailored to the needs of their users [Karsai et al., 2009].
Metamodels define their constructs and thereby reflect the expectations of the lan-
guage engineers about the use of the language. In practice, language users often
do not use the constructs provided by a metamodel as expected by language engi-
neers [Kelly and Pohjonen, 2009, |Paige et al., 2000]. In this section, we advocate that
insights about how constructs are used can offer language engineers useful informa-
tion for improving the metamodel. We define a set of usage and improvement pat-
terns to characterize the use of the metamodel by the built models. We present our
experience with the analysis of the usage of seven metamodels (EMF, GMF, Unicase)
and a large corpus of models. Our empirical investigation shows that we identify
mismatches between the expected and actual use of a language which are useful for
metamodel improvements.

8.2.1 Templates for defining Usage Analyses

Our ultimate goal is to recommend metamodel changes to improve the usability of
the language. In case the language engineers have access to a relevant set of models
built with the language, they can take advantage of this information and learn about
how the language is used by investigating the built models. Once the information
about the actual use of the metamodel is available, the metamodel can be improved
along two main directions. First, metamodel constructs that are not used in models
can be safely removed without affecting existing models. By restricting the meta-
model, we can simplify the language for both language users and engineers. Second,
metamodel constructs that are used to encode constructs currently not available in

236

8. Beyond Model Migration 8.2. Metamodel Usage Analysis

the language can be lifted to first class constructs. By enriching the metamodel with
the needed constructs, we support the users to use the language in a more direct
manner.

Collecting Usage Data. Before we can identify metamodel improvements, we need
to collect usage data from the models built with the metamodel. This usage data
collection has to fulfill three requirements:

e Significance: We need to collect data from a significant number of models built
with the metamodel. In the best case, we should collect usage data from every
built model. When this is not possible, we should analyze a significant number
of models to be sure that the results of our analyses are relevant and can be
generalized for the actual use of the language. Generally, the higher the ratio
of the existing models that are analyzed, the more relevant our analyses.

e Privacy: We need to collect the appropriate amount of data necessary for identi-
fying metamodel improvements. If we collect too much data, we might violate
the intellectual property of the owners of the analyzed models. If we collect
too few data, we might not be able to extract meaningful information from the
usage data.

o Composability: The usage data from individual models needs to be collected in
a way that it can be composed without losing information.

To specify the collection of usage data, we employ the following template:

Context: the kind of metamodel element for which the usage data is collected. The
context can be used as pattern to apply the usage data collection to metamodel
elements of the kind.

Confidence: the number of model elements from which the usage data is collected.
The higher this number, the more confidence can we have in the collected data.
In the following, we say that we are not confident if this number is zero, i.e. we
do not have usage data that can be analyzed.

Specification: a function to specify how the usage data is collected. There may be
different result types for the data that is collected. In the following, we use
numbers and functions that map elements to numbers.

Analyzing Usage Data. To identify metamodel improvements, we need to analyze
the usage data collected from the models. The analysis is based on an expectation
that we have for the usage data. If the expectation about the usage of a metamodel
construct is not fulfilled, that construct is a candidate to be improved. To specify
expectations and the identification of metamodel improvements from these expecta-
tions in the following, we employ the following template:

Expectation: a boolean formula to specify the expectation that the usage data needs
to fulfill. If the formula evaluates to true, the expectation is fulfilled; otherwise
we can propose an improvement. Certain expectations can be automatically
derived from the metamodel, e.g. we expect that a non-abstract class is used
in models. Other expectations can only be defined manually by the language
engineer, e.g. that certain classes are more often used than other classes. In the

237

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

following, we focus mostly on expectations that can be automatically derived
from the metamodel, as they can be applied to any metamodel without addi-
tional information.

Improvement: the metamodel changes that can be recommended if the expectation is
not fulfilled. The improvement is specified as operations that can be applied
on the metamodel. As described above, the improvements can consist of the
restriction of the language, or the addition of new constructs. If we have col-
lected data from all models built with a metamodel, we can also be sure that
the restrictions can be safely applied, i.e. without breaking the existing models.

8.2.2 Towards a Catalog of Usage Analyses

In this section, we present a catalog of analyses of the usage of metamodels. Each
subsection presents a category of analyses, each analysis being essentially a question
about how the metamodel is actually used. We use the templates defined in Sec-
tion [8.2.1| (Iemplates for defining Usage Analyses) to define the analyses in a uniform
manner. This catalog of analyses is by no means complete, it rather represents a set
of basic analyses. We only define analyses that are used in Section[8.2.7] (Study Resulf)
as part of the study.

Conventions. To define our analyses, we use formula based on the E-MOF
metametamodel defined in Section 2.2.4] (Complete E-MOF Metametamodel).

Metamodel. Let mm = (Npm, Emms STCmm, tgtmm,, labmy,) be a metamodel that con-
forms to the metametamodel. To access the metamodel, the classes defined by the
metametamodel can be interpreted as sets—e.g. Class denotes the set of classes de-
fined by a metamodel:

Class := {x € Ny, | isKindO f(z,Class)}

Additionally, the features can be interpreted as navigation functions on the
metamodel—e.g. c.abstract returns whether a class ¢ € Class is abstract:

c.abstract = v € Ny, < Edge(c, v, abstract)
PV (t) denotes the possible values of a primitive type t € PrimitiveType.

Model. Let m = (Np,, En, STCm, tgtm, laby,) be a model that conforms to metamodel
mm. Objects are model nodes that are instances of classes:

Object := {0 € N, | 3c € Class : isInstanceOf(o,c)}

To access models, we require an object o € Object of a class ¢ € Class to provide
two methods. The method o.get(f) returns the value of a feature f € Feature for a
certain object o € Object:

Oget(f) = {U € Nm | Edge(o,v, f)}

The value is returned as a set even in the case of single-valued features to simplify the
formulas. The method o.isSet(f) returns true if the value of a feature f € Feature is
set for a certain object o € Object:

o.sSet(f) = o.get(f) # O A o.get(f) # {f.defaultValue}

238

8. Beyond Model Migration 8.2. Metamodel Usage Analysis

A feature is set if and only if the value of the feature is different from the empty list
and different from the default value, in case the feature is an attribute.

Class Usage Analysis

If metamodels are seen as basis for the definition of the syntax of languages, a non-
abstract class represents a construct of the language. Thereby, the measure in which
a language construct is used can be investigated by analyzing the number of objects
CU (c) of the non-abstract class ¢ defined by the metamodel:

Context: c € Class, —c.abstract
Confidence: ||Object||
Specification: CU (c) := ||[{o € Object | isInstanceO f(o,c)}||

Q1. Which classes are not used? We expect that the number of objects for a non-
abstract class is greater than zero. Classes with no object represent language con-
structs that are not needed in practice, or the fact that language users did not know
or understand how to use these constructs:

Expectation: CU(c) >0
Improvement: Delete Class, Make Class Abstract

Classes with no objects that have subclasses can be made abstract, otherwise, classes
without subclasses might be superfluous and thereby are candidates to be deleted
from the metamodel. Both metamodel changes reduce the number of constructs
available to the user, making the language easier to use and learn. Furthermore,
deleting a class results in a smaller metamodel implementation which is easier to
maintain by the language engineers. Non-abstract classes which the language engi-
neers forgot to make abstract can be seen as metamodel bugs.

Q2. What are the most widely used classes? We expect that the more central a class
of the metamodel is, the higher the number of its objects. If a class is more widely
used than we expect, this might hint at a misuse of the class by the language users or
the need for additional constructs:

Expectation: the more central the construct, the higher its use frequency

Improvement: the unexpectedly frequently used classes are source for language ex-
tensions

This analysis can only be performed manually, since the expectation cannot be auto-
matically derived from the metamodel.

Feature Usage Analysis

If metamodels are seen as basis for the definition of a language, features are typically
used to define how the constructs of a modeling language can be combined (refer-

239

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

ences) and parameterized (attributes). As derived features cannot be set by language
users, we investigate only the use of non-derived features:

Context: f € Feature,f.derived
Confidence: ||[FO(f)||, FO(f) :={o € Object | isKindOf (o, f.class)}
Specification: FU(f) := ||[{o € FO(f) | o.isSet(f)}||

We can only be confident for the cases when there exist objects F'O(f) of classes in
which the feature f could possibly be set, i.e. in all subclasses of the class in which
the feature is defined.

Q3. Which features are not used? We expect that the number of times a non-derived
feature is set is greater than zero. Otherwise, we can make it derived or even delete
it from the metamodel:

Expectation: FU(f) >0

Improvement: Delete Feature, make the feature derived

If we delete a feature from the metamodel or make it derived, it can no longer be set
by the language users, thus simplifying the usage of the modeling language. Fea-
tures that are not derived but need to be made derived can be seen as a bug in the
metamodel, since the value set by the language user is ignored by the language in-
terpreters.

Feature Multiplicity Analysis

Multiplicities are typically used to define how many constructs can be referred from
another construct. Again, we are only interested in non-derived features, and we can
only be confident for a feature, in case there are objects in which the feature could
possibly be set:

Context: f € Feature,f.derived
Confidence: |FU(f)||
Specification: FM(f) : N — N, FM(f,n) = |{o € FU(f) | ||o.get(f)| = n}|

Q4. Which features are not used to their full multiplicity? We would expect that the
distribution of used multiplicities covers the possible multiplicities of a feature. More
specifically, we are interested in the following two cases: First, if the lower bound of
the feature is 0, there should be objects with no value for the feature—otherwise, we
might be able to increase the lower bound:

Expectation: f.lower Bound =0 = FM(f,0) >0

Improvement: increase the lower bound (Specialize Attribute / Reference)

A lower bound greater than 0 explicitly states that the feature should be set, thus
avoiding possible errors when using the metamodel. Second, if the upper bound
of the feature is greater 1, there should be objects with more than one value for the
feature—otherwise, we might be able to decrease the upper bound:

240

8. Beyond Model Migration 8.2. Metamodel Usage Analysis

Expectation: f.upper Bound > 1 = max{n € N| FM(f,n) >0} > 1
Improvement: decrease the upper bound (Specialize Attribute / Reference)

Decreasing the upper bound reduces the number of possible combinations of con-
structs and thereby simplifies the usage of the language.

Attribute Value Analysis

The type of an attribute defines the values that an object can use. The measure in
which the possible values are covered can be investigated by determining how often
a certain value is used. Again, we are only interested in non-derived attributes, and
we can only be confident for an attribute, if there are objects in which the attribute
could possibly be set:

Context: a € Attribute, —a.derived
Confidence: FO(a)
Specification: AVU (a) : PV (a.type) - N, AVU(a,v) := ||[{o € FO(a) | v € o.get(a)}||

Q5. Which attributes are not used in terms of their values? We expect that all the
possible values of an attribute are used. In case of attributes that have a finite number
of possible values (e.g. Boolean, Enumeration), we require them to be all used. In case
of attributes with a (practically) infinite domain (e.g. Integer, String), we require that
more than 10 different values are used. Otherwise, we might be able to specialize the
type of the attribute.

Expectation: (||PV (a.type)| < oo = ||PV(a.type)|| = [[VU(a)|) A (||PV (a.type)| =
oo = |[VU(a)|| > 10), where VU (a) = {v € PV (a.type) | AVU(a,v) > 0}

Improvement: specialize the attribute type (Specialize Attribute)

More restricted attributes can give users better guidance about how to fill its val-
ues in models, thus increasing usability. Additionally, such attributes are easier to
implement for language engineers, since the implementation has to cover less cases.

Q6. Which attributes do not have the most used value as default value? In many
cases, the language engineers set as default value of attributes the values that they
think are most often used. In these cases, the value that is actually most widely used
should be set as default value of the attribute:

Expectation: a.upperBound = 1 = (a.defaultValue = mou € PV(a.type) <
max{AVU(a,v) | v € PV (a.type)} = AVU(a, mvu))

Improvement: change the default value

If this is not the case, and language users use other values, the new ones can be set as
default.

Q7. Which attributes have often used values? We expect that no attribute value is
used too often. Otherwise, we might be able to make the value a first-class construct

241

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

of the metamodel. A value is used too often if its usage share is at least 10%:

Expectation: || PV (a.type)|| = oo = Vv € PV (a.type) : AVU (a,v) < 10% - FU(a)

Improvement: lift the value to a first-class construct

Lifting the value to an explicit construct, makes the construct easier to use for lan-
guage users as well as easier to implement for language engineers.

8.2.3 Prototypical Implementation

We have implemented the approach based on the Eclipse Modeling Framework
(EMF) [Steinberg et al., 2009]]. The gathering of usage data is implemented as a batch
tool that traverses all the model elements. The results are stored in a model that
conforms to a simple metamodel for usage data. The batch tool could be easily inte-
grated into the modeling tool itself and automatically send the data to a server where
it can be accessed by the language engineers. Since the usage data is required to be
composeable, it can be easily aggregated.

The usage data can be loaded into the metamodel editor which proposes improve-
ments based on the usage data. The expectations are implemented as constraints that
can access the usage data. Figure 8.2|shows how violations of these expectations are
presented to the user in the metamodel editor. Overlay icons indicate the metamodel
elements to which the violations apply, and a view provides a list of all usage problems.
The constraints have been extended to be able to propose operations for metamodel
improvements. The proposed operations are shown in the context menu and can be
executed via COPE’s operation browser (see also Section [6.1.2| (User Interface)).

8.2.4 Study Goal

We have performed an empirical study to validate whether we can really identify
metamodel improvements using the usage analysis method. More specifically, we
were interested in the following two research questions:

e RQ1. Do we identify deviations between actual and expected usage? We are inter-
ested in whether models completely use their metamodels in practice.

e RQ2. Do the deviations really lead to metamodel improvements? We try to find
explanations for the deviations in order to determine whether they really lead
metamodel improvements.

8.2.5 Study Execution

To perform our analyses, we performed the following steps:

1. Mine models: We obtained as many models as possible that conform to a cer-
tain metamodel. In the case of an in-house metamodel, we asked the language
engineers to provide us with the models known to them. For the published
metamodels, we iterated through several open repositories (CVS and SVN) and

242

8. Beyond Model Migration

8.2. Metamodel Usage Analysis

% model.ecare &2 = EI 8% Operation Browser - model. ecore 52 = EI
Ell‘ﬂ platform: fresourceforg. unicase .model/model/model. ecore M) Create History Run Script Import Migrator
- B model Release Converge
= UnicaseModelElement -> ModelElement
~H annatation - UnicaseModelElement Applicable Operations:
B attachment - UnicaseModelElement 3 Association to Class ;I
- H Project -» Praject 8} Collect Feature over Reference o
5 -8 organization 8% Combine Features over References ()
% - task 8% Copy Feature g
[} @} Create GMF Constraint @)
6 {§} Create Opposite Reference 5
o 8} Delete Feature c
o requirement €63 Nelaka NRRAsite D.=F=r=‘= o
E it MonFunctionalRequirement - Criterion =
fE 4 FunctionalRequirement -= UnicaseModelElement I Paramaters: E
5] o] UseCase -» UnicaseMods|Element I:J;ame | vque 8_
E 45 scenario - > UnicaseModelElement [-IFeature = realizedUserTas) O
4 Actor - UnicaseModelElement
H actarInstance - UnicaseModelElement Violated constraints:
E Step - = UnicaseModelElement, MonDomainElsrment
4 SystemFunction - > UnicaseModelElement |
t|-{] UserTask -» UnicaseModelElernent
4 Workspace - UnicaseModelElement Exetute |
-8 rationale =
1 Properties E_ Problems &3 |Se| cted Ignored = EI
| Message | Element = I Constraink | Date | <
& The attribute only uses 1 of the infinite pos... = postcondition : EString Unused Attribute Yalues 04.07,1008:19
& The attribute does not have the most widel... = postcondition @ EString attribute Default Yalue 04.07.1008:19
& The value "hgh" of the attribute is usedin 1... = postcondition : EString Attribute Often Used Valge 04.07,1008:19
& The attribute only uses 1 of the infinite pos... = precondition : EString Unused Attribute Yalues 04.07.10 08:19
& The attribute doss not have the most widel,.. = precondition : EString Attribute Default Value 04.07,1008:19
&y The value "hh" of the attribute is usedin 1 ... = precondition : EString Attribute Often Used Valge 04.07.10 08:19
Y The feature is not used in models, realizedUserTask : UserTask Make Feature Derived
& The attribute only uses 2 of the infinite pos... = _rules : EString Delete Feature 04.07.10 08:19
& The Featurs is not used in models, Usage prOblemS Tgnare 04.07.1008:19 —

Figure 8.2: Proposing metamodel improvements in COPE

downloaded all models conforming to these metamodels. As far as possible,
we removed the duplicate models.

2. Perform usage analysis: We applied the usage analyses presented in Section[8.2.2]

(Towards a Catalog of Usage Analyses)) to the mined models. For each of the ana-

lyzed metamodels, this results in a set of usage problems. The obtained usage
problems can be used to answer RQ1.

3. Interpret usage problems: To determine whether the usage problems really help
us to identify possible metamodel improvements, we tried to find explanations
for the problems. In order to do so, we investigated the documentation of the
metamodels as well as the interpreters of the modeling languages and, if possi-
ble, we interviewed the language engineers. The obtained explanations can be

used to answer RQ2.

8.2.6 Study Object

Metamodels. To perform our experiments, we have chosen 7 metamodels whose us-
age we have analyzed. Table(8.1|shows the number of elements of these metamodels.

243

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

Two metamodels are part of the Eclipse Modeling Framework (EMF)! which is used
to develop the abstract syntax of a modeling language: The ecore metamodel defines
the abstract syntax from which an API for model access and a structural editor can be
generated; and the genmodel allows language engineers to customize the code gen-
eration. Four metamodels are part of the Graphical Modeling Framework (GMF)?
which can be used to develop the diagrammatic, concrete syntax of a modeling lan-
guage: The graphdef model defines the graphical elements like nodes and edges in
the diagram; the tooldef model defines the tools available to author a diagram; the
mappings model maps the nodes and edges from the graphdef model and the tools
from the tooldef model onto the metamodel elements from the ecore model; and the
mappings model is transformed into a gmfgen model which can be altered to cus-
tomize the generation of a diagram editor. Finally, the last metamodel (unicase) is
part of the tool Unicase® which can be used for UML modeling, project planning and
change management.

Table 8.1: A quantitative overview over the analyzed metamodels

H ecore ‘ genmodel ‘ graphdef tooldef ‘ mappings ‘ gmfgen ‘ unicase

Class 20 14 72 26 36 137 77
Attribute 33 110 78 16 22 302 88
Reference 48 34 57 12 68 160 161

Models. For each metamodel, we have mined models from different repositories.
Table shows the repositories as well as the number of models and model ele-
ments which have been obtained from them. Models that conform to the first 6 meta-
models have been obtained from the AUTOSAR development partnership?, from the
Eclipse® and GForge® open source repositories, by querying the Google Code Search’
and from the Atlantic Zoo®. For the unicase metamodel, its language engineers pro-
vided us with 3 models consisting of 8,213 model elements.

Table 8.2: A quantitative overview over the analyzed models

ecore genmodel graphdef tooldef mappings gmfgen

2] 2l 2 |2 <2 |22l 2| <2 | 28| <

S | %5 | 8| 88 | 8| 98 |2 |wE | 2| wE | B | 28

Q Q E Q Q E Q Q E Q Q E Q Q E Q Q E

_ e | €8 || g| 5§ | &| g5 | €| eE | €| &8 | €| 2§

rep051t0ry ** Ho = H U H* H o = H o ** H o +* Ho
AUTOSAR 18 [384,685 | 18] 16189 [11] 1835 11[436] 11| 538 13] 2,373
Eclipse 1,834 [250,107 || 818 | 69,361 [105 | 6,026 || 58| 1,769 || 72| 5040 [[52] 11,043
GForge 106 | 26736 || 94| 41,997 || 12| 806 || 10] 241] 11| 480 11| 1,680
Google 50| 9266 59| 3786 | 69| 7,627 [742421 76| 4028 78]18710
Atlantic Zoo 278 | 68,116 - - - - - - - - - -

altogether [2,286 | 738,910 || 989 | 131,333 || 197 [16,294 [[153 | 4,867 [| 170 | 10,086 || 154 [33,806 |

see EMF web site: http://www.eclipse.org/emf

see GMF web site: |http://www.eclipse.org/gmf

see Unicases web site: http://unicase.org

see AUTOSAR web site: http://www.autosar.org

see Eclipse repository web site: http://dev.eclipse.org/viewcvs/index.cgi/
see GForge web site: http://gforge.enseeiht.fr

see Google Code Search web site: http://www.google.com/codesearch

1
2
3
4
5
6
7
8see Atlantic Zoo web site: http://www.emn.fr/z—info/atlanmod/index.php/Ecore

244

http://www.eclipse.org/emf
http://www.eclipse.org/gmf
http://unicase.org
http://www.autosar.org
http://dev.eclipse.org/viewcvs/index.cgi/
http://gforge.enseeiht.fr
http://www.google.com/codesearch
http://www.emn.fr/z-info/atlanmod/index.php/Ecore

8. Beyond Model Migration 8.2. Metamodel Usage Analysis

8.2.7 Study Result

In this section, we present the study results separately for each question mentioned
in Section[8.2.2|(Towards a Catalog of Usage Analyses). To ease understanding the expla-
nations for usage problems, we clustered them according to high-level explanations.

Q1. Which classes are not used? Figure [8.3| quantitatively illustrates for each meta-
model the share of used and not used classes in the overall number of non-abstract
classes—both as diagram and table. In the diagram, we represent with white the ra-
tio of classes that are used, whereas with other colors we classify the unused classes
according to the explanations why they are not used. As presented in Section
(Study Execution)), we derived these explanations by manually analyzing the docu-
mentation and implementation of the metamodels or interviewing the language en-
gineers.

100% 15 11 55 19 25 97 64 #non-abstract classes
b =7 o7

90% -
80% H
70% -
60% - 13
50% H 11
40% -

Ois used

M should be used
Ois too new

Ml should be transient Explanation
@ should be abstract
W should be moved

ecore
genmodel
graphdef
tooldef
mappings
gmfgen
unicase

51

is used 13

—-
=
1l
=
-
=
N
s
ol
@
=
N

0, X . should be used 1] 6
30% 1 W is not implemented)
20% - Wis obsolete is too new 3 6| 5
should be transient 1 2l 1
10% - 6
0% | 6| should be abstract 1
0 @ t_ — — " c ® should be moved 1 2
<t [}) ©
5] ° ° ° 2 g 2 . .
o o < S = is not implemented 7 1
Q =% = L2
o £ 53 <] 2 £ = -
) = - IS > 5 is obsolete 4
&5 © £
laltogether H 15[11[55[19[25[97[641
(a) Diagrammatic representation (b) Tabular representation

Figure 8.3: Usage of classes (Q1)

Classes that are obsolete, not implemented, or that logically belong to another meta-
model can be removed. A class is obsolete if it is not intended to be used in the future.
For example, in unicase, the 4 classes to define UML stereotypes are no longer re-
quired. A class is not implemented if it is not used by the interpreters of the modeling
language. For example, the tooldef metamodel defines 7 classes to specify menus and
toolbars from which according to [Gronback, 2009] currently no code can be gener-
ated. A class should be moved to another metamodel if it logically belongs to the other
metamodel. For example, in tooldef, the class GenericStyleSelector should be moved
to mappings which contains also a composite reference targeting this class. Another
example is unicase where 2 classes should be moved to a different metamodel of
another organization that also uses the framework underlying Unicase.

Our manual investigations revealed that other classes that are not used should be
abstract or transient. A class should be abstract if it is not intended to be instanti-
ated, and is used only to define common features inherited by its subclasses. For
instance, in ecore, EObject—the implicit common superclass of all classes—should
be made abstract. A class should be transient if its objects are not expected to be made
persistent—such a class does not represent a language construct. However, the em-

245

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

ployed metamodeling formalism currently does not support to specify that a class
is transient. For instance, in ecore, EFactory—a helper class to create objects of the
specified metamodel—should be transient.

Finally, there are non-used classes which do not require any change, since they are
either too new or should be used—i.e. we could not find any plausible explanation why
they are not used. A class is foo new if it was recently added and thus is not yet in-
stantiated in models. For the GMF metamodels graphdef and gmfgen, we identified
9 new classes, while for the unicase metamodel, we found 5 classes that are too new
to be used.

Q2. What are the most widely used classes in ecore? Figure 8.4/ shows the classes
defined by the ecore metamodel and their corresponding number of objects. Inter-
estingly, the number of objects of the ecore classes has an exponential distribution, a
phenomenon observed also in case of the other metamodels. Hence, each metamodel
contains a few constructs which are very central to its users. In the case of ecore, we
expect that classes, references and attributes are the central constructs. However,
the most widely used ecore class is—with more than 44.5% of the analyzed objects—
EStringToStringMapEntry which defines key-value-pairs for EAnnotations making up
13.9% of the objects. The fact that the annotation mechanism—which is used to ex-
tend the ecore metamodel—is more widely used than the first-class constructs, sug-
gests the need for increasing ecore’s expressiveness. As we show in Q7, some often
encountered annotations could be lifted to first-class constructs. Another ecore class
that is used very often is EGenericType. This is surprising, since we would expect
that generic types are very rarely used in metamodels. The investigation of how this
class is exactly used, revealed the fact that only 1.8% (2,476) of EGenericType’s ob-
jects do not define default values for their features and thereby these objects really
represent generic types. In the other 98%, the EGenericType is only used an indirection
to the non-generic type, i.e. in a degenerated manner.

350,000
o
300,000 - S
o]
250,000 - m%
<
200,000 - $3
o
150,000 - ,\ng
100,000 0 B8 S
m ~ ©o 9 @ ¥ S oG o
ool o8B EEEER A
o o & o o < ™~ ™~
0 = —
o e = = - >
2% 53 EQ$E5F L Q8582
2 & 0 2 > 8 o & @ 3 8 ¢c 5 > ¢
S8 cEuwlig 385 £ 0 28 KU
ERsgwgggesgegzwee s
w < A% 8 g 3 ¢ c 2 =
o W a z w o4 s =
[} E w W 03 e g
Q w O o
2 e
w (%)
i}

Figure 8.4: Usage of ecore classes (Q2)

Q3. Which features are not used? Figure [8.5 shows for each metamodel the share
of used and unused features in the overall number of non-derived features. In the
tigure, we remark a correlation between the number of unused features and the over-
all number of features. In most cases, the more features a metamodel defines, the

246

8. Beyond Model Migration 8.2. Metamodel Usage Analysis

less features are actually used. The only exception to this conjecture is the usage
of the tooldef metamodel, most of whose features are however not implemented as

explained below. The figure also classifies the unused features according to explana-
tions why they are not used.

100% 52 135 132 28 87 441 241 #non-derived features
0

90% o J
is use
04
80% M is not confident 3y &
70% Ble|s|E|5|¢8
20 163|| |@should be used o|E|S |8 || H| 8
60% - S = a5 R S K & N R SlE|&|s|2|E| 2
00 U 51 125/ |118 a4 His too new Explanation S| %|H|S|E| &5
o HELH2 T 84 H L .
20% T I N || |®should be derived is used 51| 125 18] 20| 84(333] 163
0 M should be moved s not confident o 6l 1| 23] 35
30% 1 W is not implemented RO COCen
20% . P should be used 1 7] 2 55| 13
6
Lo Ois obsolete ' oo new p 6 e
o ° || should be derived 2
0% o 5 ‘ “ < . c o should be moved 11
§ B 2 % 8 E‘J 8 is not implemented 3 2| 2| 5
© £ © 8 g § £ I
c © = g o) S is obsolete 9| 11
s ° £
laltogether H 52[135[132[28[87[441[241]
(a) Diagrammatic representation (b) Tabular representation

Figure 8.5: Usage of features (Q3)

Features that are obsolete, not implemented, or logically belong to another meta-
model can be removed from the metamodel. A feature is obsolete if it is not intended
to be used in the future. If none of the analyzed models use that feature, it is a good
candidate to be removed. We identified the 9 obsolete features of gmfgen by inves-
tigating the available migrator. Surprisingly, the migrator removes their values, but
the language engineers forgot to remove the features from gmfgen. In the case of the
unicase metamodel, 11 unused features are actually obsolete. A feature is classified
as not implemented if it is not used by the interpreters of the modeling language. We
have identified 12 not implemented features of the EMF metamodel genmodel and
the GMF metamodels tooldef, mappings and gmfgen by checking whether they are
accessed by the code generators. A feature should be moved to another metamodel if
it logically belongs to the other metamodel. The features of the unicase metamodel
that have to be moved target the classes that should be moved to another metamodel
as found by question Q1.

Another set of non-used features can be changed into derived features, since their
values are calculated based on other features. As they are anyway overwritten in
the metamodel implementation, setting them explicitly is a mistake, making the lan-

guage easy to misuse. For example, for the unicase metamodel, we identified 2 fea-
tures that should be derived.

Finally, there are non-used features which do not require changes at all, since they
are either too new or our investigation could not identify why the feature is not
used. Again, a feature is too new to be instantiated, if it was recently added. Like
for classes, the 28 too new features were identified by investigating the metamodel
histories. The only feature of the ecore metamodel which is not set in any model but
should be used allows language engineers to define generic exceptions for operations.
Apparently, exceptions rarely need to have type parameters defined or assigned. For
both genmodel and gmfgen, more than 5% of the features should be used but are not

247

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

used. The manual investigation revealed that these are customizations of the code
generation that are not used at all. We are not confident about the usage of a feature
if there are no objects in which the feature could be set. This category thus indicates

how many features are not used, because the classes in which they are defined are
not instantiated.

Q4. Which features are not used to their full multiplicity? Figure [8.6 shows in
white the share of used features which fulfill these expectations. Again, the viola-
tions are classified according to different explanations that we derived after manual
investigation of the metamodel documentation and implementation.

100% 52 135 132 28 87 441 241 # non-derived features
b i

20% H | K Ll || | |Oisused
e o
80% 1 I [™ [[|mis notconfident HECIEARAE
70% A 17 HHEEEE
337 Oshould be used Explanation S ||| 2|E|@| 3
60% - 115 193
50% M 52 123 80 His too new is used 52|123|115| 17| 80|337|193
is not confident 6| 6| 1| 23| 35
40% -+ @Eshould have a should be used 5| 4 4] 12) 3
30% - derived default
20n H H K MWis not implemented is too new 5 2
i should have a +~ 5[1 48| 3
10% - W should increase derived defaul
0% 2 lower bound erived default
° 5 s “ " c o is not implemented 3| 1
;O-, 8 E % E’ é’ﬁ g should increase «— 2| 1| 2| 1| 21} 5
(=X =
@ g g 2 % % % the lower bound
(4] o
e E [altogether H 52[135[132[28[87[441[241]
(a) Diagrammatic representation (b) Tabular representation

Figure 8.6: Usage of feature multiplicity (Q4)

A not completely used feature which can be restricted either should increase lower
bound or is not implemented. Even though we found features whose usage did not
completely use the upper bound, we could not find an explanation for any of them.
However, we found that some features should increase lower bound from 0 to 1. For the
EMF and GMF metamodels, we found such features by analyzing whether the code
generator does not check whether the feature is set, thereby producing an error if the
feature is not set. For the unicase metamodel, the too low lower bounds date back
from the days when its language engineers used an object-to-relational mapping to
store data. When doing so, a lower bound of 1 was transformed into a database
constraint which required to set the feature already when creating a model element.
To avoid this restriction, the lower bounds were decreased to 0, when in effect, they
should have been 1. As they no longer store the models in a database, the lower
bounds could easily be increased. Again, a feature is not implemented if the interpreter
does not use the feature. In the tooldef metamodel, we found 3 such features which
are not interpreted by the code generator, making them also superfluous.

A not completely used feature which requires to extend the metamodeling formalism
should have a derived default. A feature should have a derived default if it has lower bound
0, but in case it is not set, a default value is derived. This technique is mostly used
by the code generation metamodels genmodel and gmfgen to be able to customize a
value which is otherwise derived from other features. It is implemented by overwrit-
ing the API to access the models which is generated from the metamodel. However,

248

8. Beyond Model Migration 8.2. Metamodel Usage Analysis

the metamodeling formalism used does not provide a means to specify that a feature
has a derived default.

A not completely used feature which does not require changes either is too new or
should be used.

Q5. Which attributes are not used in terms of their values? Figure [8.7]illustrates
for each metamodel the share of attributes whose values are completely used or not.

The figure also classifies the not completely used attributes according to different
explanations.

100% 26 109 77 16 21 290 83 #non-derived attributes

90% -
80% -
70%
60% 82

Ois used

W is not confident

50% 4|25 O should be used - o
T |2 Sle| o
40% - His too new o |8 % 3 HEYE
30% 1 . sle|lc|g|E|E|E
0% " B should be Explanation O ||| 2|8 || 3
b o
0 specialized is used 25| 82| 19| 8| 14/102| 39
04
10% 14 is not confident 12| 44| 7| 4|164| 37
0,
0% — — — should be used 1| 14| 14 3| 18| 4
¢ T s o & § %
8 B B ke) c > I is too new 1 3
) IS [=% [=} a E Q
c S e e 5 s should be specialized 1 3| 3
(4] o))
° E [altogether H 26[109[77[16[21[290[83]
(a) Diagrammatic representation (b) Tabular representation

Figure 8.7: Usage of complete values by attributes (Q5)

A not completely used attribute that can be changed should be specialized by restrict-
ing its type. In the unicase, three attributes which use String as domain for UML
association multiplicities and UML attribute types can be specialized. We found 4
more such attributes in the genmodel and gmfgen metamodels.

Finally, there are not completely used attributes which do not require changes at all,
since they are either too new, should be used or we do not have enough models to be
confident about the result. We are only confident if the attribute is set sufficiently often

to cover all its values (finite) or 10 values (infinite). In all metamodels, most of the
findings fall into one of these categories.

Q6. Which attributes do not have the most used value as default value? Figure
illustrates for each metamodel the share of attributes whose value is the same as
the default value (white) and those that have different values. Note that in many
cases the language users successfully anticipated the most often values of attributes

by setting the appropriate default value. The figure also classifies the deviations
according to different explanations.

In case the default value is intended to represent the most widely used value of an
attribute and we found that the language users use other default values, the default
value should be changed. In this way, the new value anticipates better the actual use
and thereby the effort of language users to change the attribute value is necessary
in less cases. We found 8 attributes whose default value needs to be updated in

249

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

100% 26 109 77 16 21 290 83 #non-derived attributes

90% -
80% -
70% +

Ois used

M is not confident

18| | 76 Ois too new T |)
60% | QJ 'é ﬁ E .g-t §Q §
50% - W should have no HEIEEIENIE
default Explanation 3| %|8|2|8|&| 3
40% Eshouldn't be -
30% changed is used 18| 76| 32 13|150| 35
b

W should be set

is not confident

W should be changed| |is toonew
should have no default|| 6

-
=3
=
e

=N N[>
IS
O
i
[$5)
3

-
o

7

w
o5}
3]
o

should not be changed || 2| 1] 1 1 2
o 3 5 5 %) c ©
= j=2] (] (2]
<} 3 - o 1= > o should be set 4] 13| 1 6
& €8 & 8§ & E £
c © 2 S 5 5 should be changed 2| 5 3
[} (=)
° E laltogether H 26[109[77[16[21[290[83]
(a) Diagrammatic representation (b) Tabular representation

Figure 8.8: Usage of default values of attributes (Q6)

the metamodels genmodel, graphdef and gmfgen. An attribute has a default value
that should be set if it does not currently have a default value, but the usage analysis
identifies a recurrent use of certain values. By setting a meaningful default value, the

language users are helped. In nearly each metamodel, we found attributes whose
default value needs to be set.

The unexpected default value of an attribute which does not require change either
should have no default, shouldn’t be changed, is too new or is not confident. An attribute
should have no default value if we cannot define a constant default value for the at-
tribute. In each metamodel, we are able to find attributes of this kind which are usu-
ally of type String or Integer. A default value shouldn’t be changed if we could not find
a plausible explanation for setting or changing the default value. Two attributes from
the unicase metamodel whose default value shouldn’t be changed denote whether a
job is done. Most of the attribute values are true—denoting a completed job—but in

the beginning the job shouldn’t be done. We are not confident about an attribute if it
is not set at least 10 times.

Q7. Which attributes have often used values? Figure [8.9 shows the share of at-
tributes which have often used values or not. The figure also classifies the attribute
with recurring values according to explanations.

A recurring value which requires metamodel changes either should be lifted or should
be reused. A value should be lifted if the value should be represented by a new class
in the metamodel. In ecore, we find often used values for the source of an annota-
tion as well as for the key of an annotation entry. Figure illustrates the 6 most
widely used values of the annotation source. The GenModel” annotations customize
the code generation, even though there is a separate generator model. Thereby, some
of these annotations can be lifted to first-class constructs of the genmodel metamodel.
The ExtendedMetaData'® extends ecore to accommodate additional constructs of
XML Schemas which can be imported. This shows the lack of expressiveness of ecore

http://www.eclipse.org/emf/2002/GenModel
Ohttp://org/eclipse/emf/ecore/util/ExtendedMetaData

250

8. Beyond Model Migration

8.2. Metamodel Usage Analysis

26 109 77 16 21 290

non-derived attributes

Ois used

Ois too new

Eshouldn't be
changed

M is not confident

W is not implemented

W should be reused

M should be lifted

Explanation

Tls| |%
Sl |w|E]s|w
FEA IR
‘-‘-’EmEmuﬁP,g
S|S|E|8|E|E|E
S |oo| | 2| E|&| =

is used

N
~
@
)
—
®
w
~

is not confident

-
j
=
o

w

~

is too new

is not implemented

ecore
genmodel
graphdef
mappings
gmfgen
unicase

(a) Diagrammatic representation

1

should not be changed

18| 22 41 3

should be reused

1 4

should be lifted

3| 1] 3 3| 2

[altogether

[T 26 109] 77] 16] 21]290] s3]

(b) Tabular

representation

Figure 8.9: Usage of values often used by attributes (Q7)

in comparison to XML Schema. The next three sources represent stereotypes and re-
sult from the import of metamodels from UML class diagrams. The high number
of these cases are evidence that many ecore models originate from UML class dia-
grams. The last source extends ecore which is an implementation of E-MOF with a
subset relation between features which is only available in C-MOF. This shows that
for many use cases the expressiveness of E-MOF is not enough. Furthermore, the
key of an annotation entry is used in 10% of the cases to specify the documentation
of a metamodel element. However, it would be better to make the documentation an
explicit attribute of EModelElement—the base class for each metamodel element in
ecore. A value should be reused if—instead of recurrently using the value—we refer to
a single definition of the value as object of a new class. In unicase, instead of defin-
ing types of UML attributes as Strings, it would be better to group them into separate

objects of reusable data types.

http://www.eclipse.org/emf/2002/GenModel

http:///org/eclipse/emflecore/util/ExtendedMetaData

TaggedValues |

MetaData
Stereotype
[I subsets

0% 5% 10% 15% 20%

25% 30% 35%

Figure 8.10: Most widely used annotations in ecore (Q7)

An attribute with recurring values which does not require change either shouldn’t be
changed, is not implemented, is too new or we are not confident. For a lot of attributes, we
have not found a plausible explanation, and thus conservatively assumed that they

shouldn’t be changed.

251

8.2. Metamodel Usage Analysis 8. Beyond Model Migration

8.2.8 Study Discussion

Based on the results of our analyses, we learned a number of lessons about the usage
of metamodels by existing models.

Metamodels can be more Restrictive. In all investigated cases, the set of models cov-
ers only a subset of the set of all possible models that can be built with a metamodel.
We discovered that not all classes are instantiated (Q1), not all features are used (Q3),
and that the range of the cardinality of many features does not reflect their definition
from the metamodel (Q4). In all these cases, the metamodels can be improved by
restricting the number of admissible models.

Metamodels can Contain Latent Defects. During our experiments, we discovered in
several cases defects of the metamodels—e.g. classes that should not be instantiated
and are not declared abstract (Q1), classes and features that are not implemented or
that are overwritten by the generator (Q1, Q3, Q4, Q6). Furthermore, in other cases
(Q2), we discovered misuses of metamodel constructs.

Metamodels can be Extended. Each of the analyzed metamodels offers their users
the possibility to add new information (e.g. as annotations, or sets of key-value pairs).
The analysis of the manners in which the metamodels are actually extended reveal
that the language users recurrently used several annotation patterns. These patterns
reveal the need to extend the metamodel with new explicit constructs that capture
their intended use (Q2, Q7). Furthermore, the specification of some attributes can be
extended with the definition of default values (Q6).

Metamodeling Formalism can be Improved. Our metamodeling formalism is very
similar to ecore. The results indicate that in certain cases the metamodeling formal-
ism is not expressive enough to capture certain constraints. For instance, we would
have required to mark a class as transient (Q1) and to state that a feature has a de-
fault value derived from other features (Q4). Consequently, we have also identified
improvements concerning the metamodeling formalism.

8.2.9 Threats to Validity

We are aware of the following threats to the validity of our results.

Validity of Explanations. We presented a set of explanations for the deviations be-
tween actual and expected usage. In the case of Unicase, we had direct access to the
language engineers and hence could ask them directly about their explanations for
the analysis results. In the case of the other metamodels, we interpreted the analysis
results based only on the documentation and implementation. Consequently, some
of our explanations can be mistaken.

Relevance and Number of Analyzed Models. We analyzed only a subset of the
entire number of existing models. This fact can make our analyses results rather

252

8. Beyond Model Migration 8.2. Metamodel Usage Analysis

questionable. In the case of Unicase, we asked the language engineers to provide us
with a representative sample of existing models. In the case of the other metamodels,
we mined as many models as possible from both public and private (AUTOSAR)
repositories to obtain a representative sample of existing models.

8.2.10 State of the Art

Investigating Language Utterances. In the case of general purpose languages, in-
vestigating their use is especially demanding, as a huge number of programs ex-
ist. There are some landmark works that investigate the use of general purpose
languages [Gil and Maman, 2005, Singer et al., 2009, [Limmel and Pek, 2010]. Gil et
al. present a catalog of Java micro patterns which capture common programming
practice on the class-level [Gil and Maman, 2005]. By automatically searching these
patterns in a number of projects, they show that 75% of the classes are modeled after
these patterns. Singer et al. present a catalog of Java nano patterns which capture
common programming practice on the method-level [Singer et al., 2009]. There is
also work on investigating the usage of domain-specific languages. Lammel et al.
analyze the usage of XML schema by applying a number of metrics to a large corpus
[Limmel et al., 2005]. Lammel and Pek present their experience with analyzing the
usage of the W3C’s P3P language [Lammel and Pek, 2010]. Our empirical results—
that many language constructs are more often used than others—are consistent with
all these results. We use a similar method for investigating the language utterances,
but our work is focused more on identifying improvements for languages. Tolvanen
proposes a similar approach for the metamodeling formalism provided by MetaCase
[Tolvanen, 1998]. However, even if the sets of analyses are overlapping, our set con-
tains analyses not addressed by Tolvanen’s approach (Q2, Q5 and Q7), and provides
a validation through a large-scale empirical study that usage analyses do help to
identify metamodel improvements.

Language Improvements. Once the information about the language use is avail-
able, it can serve for language improvements. Atkinson and Kuehne present tech-
niques for language improvements like restricting the language to the used sub-
set, or adding new constructs that reflect directly the needs of the language users
[Atkinson and Kiihne, 2007]]. Sen et al. present an algorithm that prunes a metamodel
[Sen et al., 2009]: it takes a metamodel as input as well as a subset of its classes and
features and outputs a restricted metamodel that contains only the desired classes
and features. By doing this, we obtain a restricted metamodel that contains only nec-
essary constructs. Our work on mining the metamodel usage can serve as input for
the pruning algorithm that would generate a language more appropriate to the ex-
pectations of its users. Once recurrent patterns are identified, they can serve as source
for new language constructs [Bosch, 1998]. The results of our study demonstrate that
the analysis of built programs is a feasible way to identify language improvements.
Lange et al. show—by performing an experiment—that modeling conventions have
a positive impact on the quality of UML models [Lange et al., 2006]. Henderson-
Sellers and Gonzalez-Perez report on different uses and misuses of the stereotype
mechanism provided by UML [Henderson-Sellers and Gonzalez-Perez, 2006|]. By an-
alyzing the models built, we might be able to identify certain types of conventions as

253

8.3. Towards Semantics-Preserving Model Migration 8. Beyond Model Migration

well as misuses of language extension mechanisms.

Tool Usage. There is work on analyzing the language use by recording and analyz-
ing the interactions with the language interpreter. Li et al. present a study on the
usage of the Alloy analyzer tool [Li et al., 2006]. From the way how the analyzer tool
was used, they identified a number of techniques to improve analysis performance.
Hage and Keeken present the framework Neon to analyze usage of a programming
environment [Hage and van Keeken, 2009]. Neon records data about every compile
performed by a programmer and provides a query to analyze the data. To evaluate
Neon, the authors executed analyses showing how student programmers improve
over time in using the language. The purpose of our approach is not to improve the
tools for using the language, but to improve the language itself.

8.3 Towards Semantics-Preserving Model Migration

Building an automated model migration is a difficult endeavor, as it needs to pre-
serve the meaning of a possibly unknown number of models. In this section, we
analyze whether our operation-based approach to automate model migration can be
extended by a means to constructively ensure semantics preservation. The idea is
that a coupled operation not only adapts the metamodel and provides the appro-
priate model migration, but also adapts the semantics definition. Semantics preser-
vation is thus ensured constructively by defining appropriate couples of semantics
adaptation and model migration. We showcase the approach using the well-known
Petri net example evolution [Wachsmuth, 2007].

8.3.1 Adaptation of the Semantics Definition

For our approach to work, we need an explicit definition of the semantics of a mod-
eling language. A specific modeling language Ls is required to define the semantics
of a modeling language:

Definition 8.1 (Modeling Language for Defining Semantics). Let S := {M — SD} be
the set of all possible semantics. A modeling language for defining semantics is a modeling
language Ls whose semantics Ss : Ls — S maps a semantics definition sd € Ls to a
semantics Ss(sd) € S.

There are different ways to define the semantics of a modeling language, e.g. opera-
tional, denotational, axiomatic. In this section, we define the semantics as operations
on metamodel classes, similar to Kermeta [Muller et al., 2005]. This operational se-
mantics can be used to execute a model in order to learn about its meaning. However,
we believe that the approach is also applicable to other languages for specifying se-
mantics.

Example 8.1 (Petri Net Modeling Language). We use the well-known Petri net evo-
lution [Wachsmuth, 2007 as a running example. Figure shows the metamodel, and
Figure the semantics definition of the first version of the Petri net modeling language.
To define the semantics, we use a notation that is similar to the Groovy scripting language

254

8. Beyond Model Migration 8.3. Towards Semantics-Preserving Model Migration

[Koenig et al., 2007|]. The first line of each block defines the signature of an operation which
is associated to a class defined by the metamodel. Within the block, all accesses are performed
on an object of the respective class.

ne1t m r119t

* *

places transitions
Place 1.7 dst | Transition
src *
initial: |n% 1> src effept:
current: int [dst *| Action

Figure 8.11: Metamodel of the Petri net modeling language version 1

Net.run (Interaction 1) : Transition.isActivated(): boolean
init () return src.every{p —-> p.isActivated()}
ts = getActivatedTransitions ()
while(!ts.isEmpty()) { Transition.fire():
if(ts.size() == 1) ts.get(0).fire() src.each{p -> p.decrement ()}
else i.choose(ts) .fire() effect.execute ()
ts = getActivatedTransitions () dst.each{p -> p.increment ()}

}

Place.init () :

Interaction.choose (List<Transition> ts): current = initial
Place.isActivated(): boolean
Net.init () : return current >= 1

places.each{p —> p.init ()}
Place.decrement () :

Net.getActivatedTransitions () : current = current - 1
List<Transition>
return transitions.collect{t -> Place.increment () :
t.isActivated() } current = current + 1

Figure 8.12: Semantics definition of the Petri net modeling language version 1

Petri Nets consist of places and transitions. A Place has a number of tokens (current)
which are initialized with the number of initial tokens when the net is started. A Transition
transfers tokens from source (Src) to destination (dst) places. A transition isActivated if
every Srcplace has at least one token. If multiple transitions are activated at the same time, the
user is required to choose from these transitions the transition that should be fired—uwhich
is implemented by means of the interface Interaction. When a transition fires, the tokens of
the src places are decremented, its effect is executed and the tokens of the dst places are
incremented. When there are no more activated transitions, the execution is finished. The
semantics definition thus maps Petri net models to traces of action executions.

Not only the models depend on the metamodel, but also the semantics definition.
Thereby, when the metamodel is adapted, the semantics definition often needs to be
adapted, too.

Definition 8.2 (Semantics Adaptation). A semantics adaptation is a function ads : Ls —
Ls that transforms a semantics definition sd € Ls to ads(sd) € Ls.

However, the dependency between model and metamodel is different from the de-
pendency between semantics definition and metamodel: A model conforms to the
metamodel, whereas a semantics definition is defined based on the metamodel. Con-
sequently, the migration of models and the adaptation of semantics definitions are

255

8.3. Towards Semantics-Preserving Model Migration 8. Beyond Model Migration

different from each other. However, they need to be consistent with each other in
order to ensure semantics preservation.

Example 8.2 (Evolved Modeling Language). Currently, when a transition is fired, the
tokens of the source places are decreased by 1, and the tokens of the destination places are
increased by 1. However, we want to be able to specify for each source and destination place
of a transition numbers that are different from 1. In order to do so, we need to extend the
Petri net modeling language with weighted arcs [Wachsmuth, 2007|]. Figure[8.13]|shows the
adapted metamodel, and Figure([8.14] the migrated semantics definition.

1 Net 1
net net

transitions

Place dslt Transition

in
in | TPArc \1.,* src Zﬂe.Ct:
* out 1] Action

initial: int 1
current: it [gst

Figure 8.13: Metamodel of the Petri net modeling language version 2

Net.run (Interaction 1) : Transition.isActivated(): boolean
init () return in.every{pt-> pt.isActivated()}
ts = getActivatedTransitions ()
while (!ts.isEmpty()) { Transition.fire():
if(ts.size() == 1) ts.get(0).fire() in.each{pt -> pt.decrement ()}
else i.choose(ts).fire() effect.execute ()
ts = getActivatedTransitions () out.each{tp -> tp.increment ()}

}

Place.init () :

Interaction.choose (List<Transition> ts): current = initial
PTArc.isActivated(): boolean
Net.init () : return src.current >= weight

places.each{p —-> p.init ()}
PTArc.decrement () :

Net.getActivatedTransitions () : src.current = src.current - weight
List<Transition>
return transitions.collect{t -> TPArc.increment () :
t.isActivated()} dst.current = dst.current + weight

Figure 8.14: Semantics definition of the Petri net modeling language version 2

Arcs are introduced to define the incoming and outgoing weights for transitions. PTArcs
define the number of tokens by which the src places of transitions are decremented. TPArcs
define the number of tokens by which the dst places of transitions are incremented.

8.3.2 Ensuring Semantics Preservation

Until now, coupled operations only encapsulate metamodel adaptation and model
migration and thus can only ensure syntax preservation. To also ensure semantics
preservation constructively, a coupled operation needs to be extended to also encap-
sulate the semantics adaptation.

256

8. Beyond Model Migration 8.3. Towards Semantics-Preserving Model Migration

Definition 8.3 (Semantics-Preserving Coupled Operation). A semantics-preserving
coupled operation is a syntax-preserving coupled operation that also provides a semantics
adaptation ads : Ls — Lgs. It is semantics-preserving for a metamodel mm € MM and
semantics definition sd € Ls if it preserves the meaning of all models conforming to that
metamodel:

Vm € Lym : Ss(sd)(m) = Ss(ads(sd))(mig(m))

where = C SD; x 8Dy is the relation between the two semantic domains for the semantics
change Ss(sd) — Ss(ads(sd)) from Ss(sd) = Si : Lym — SD1 to Ss(ads(sd)) = Sa :
[’adm(mm) — SDs.

Consequently, the model migration and semantics adaptation need to be defined con-
sistently in order to ensure semantics preservation. For reusable coupled operations,
the semantics adaptation can be defined in a metamodel-independent manner and
thus be reused across metamodels. For custom coupled operations which require
manual specification of the model migration, the semantics definition also has to be
adapted manually. Since custom coupled operations are rather rare in practice ac-
cording to our case studies (see Chapter[7] (Case Studies)), it is sufficient to manually

prove semantics preservation in these cases.

Example 8.3 (Semantics-Preserving Coupled Operation). The coupled operation Refer-
ence to Class that is required for the Petri net evolution replaces a reference r by an explicit
reference class R. The adaptation of the metamodel which is shown in Figure[8.15|makes the
reference r composite and creates the reference class R as its new type. Single-valued refer-
ences S and tare created in the reference class R to target the source and target class C1 and
C2 of the original reference r. The model migration replaces links conforming to the reference
by objects of the reference class, setting source and target reference appropriately. Now, the
coupled operation is already syntax-preserving.

c1 m2 ms c2 c1 Cc2
o r
— ' 17s 1t
multiplicities: m4, m, my R my
names: o, r,s,t r o

Figure 8.15: Metamodel adaptation of the coupled operation Reference to Class

To make it semantics-preserving, we also need to define an appropriate adaptation of the se-
mantics definition. All accesses to ron instances of C1 need to be replaced by r.collect{b ->
b.t}. Similarly, all accesses to the opposite reference 0 on objects of C2 need to be replaced by
o.collect{b -> b.s}.

8.3.3 Case Study

In this section, we use a selection of semantics-preserving coupled operations to
evolve the Petri net modeling language from version 1 (see Figure and Fig-

ure|8.12) to version 2 (see Figure and Figure(8.14).

Reference to Class. To introduce the reference classes PTArc and TPArc, the coupled
operation Reference to Class is applied twice. Figure illustrates the adapta-
tion of the metamodel, and Figure the adaptation of the semantics definition.

257

8.3. Towards Semantics-Preserving Model Migration 8. Beyond Model Migration

Changes are highlighted in blue and by dashed boxes and solid lines. The model
migration introduces reference objects for all links of the references src and dst.

Transition.isActivated(): boolean
1 Net 1 return src.collect{pt —>
net ~ ————] net pt.src}.every{p —> p.isActivated()}

Transition.fire () :

i — tf?r—]:fi‘tions src.collect{pt -> pt.src}.each{p —>
Place il gl dst| PTArc |1 dst] Transition p.decrement () }
initial: int : irc Tsm L 1 effect: effect.execute ()

current: int iﬁ TPArc ﬁimion dst.collect{tp -> tp.dst}.each{p ->

p.increment () }

Figure 8.16: Metamodel after application of ~ Figure 8.17: Semantics definition after ap-
Reference to Class plication of Reference to Class

Refactoring of the Semantics Definition. To simplify the semantics definition, we
can refactor it by folding the collect into the each and every statement. The result of
this refactoring is shown in Figure

Transition.isActivated(): boolean
return src.every{pt —-> pt.src.isActivated()}

Transition.fire():
src.each{pt -> pt.src.decrement ()}
effect.execute ()
dst.each{tp —-> tp.dst.increment ()}

Figure 8.18: Semantics definition after refactoring

Rename. To facilitate understanding the metamodel, a number of references need to
be renamed. Figure illustrates the metamodel adaptation and highlights which
references are renamed to a new name. To be semantics-preserving, the links need
to be renamed accordingly in models, and the accesses to these references need to be
renamed accordingly in the semantics definition (see Figure 8.20).

1 Net 1
net =~ ———] net Transition.isActivated () : boolean
return in.every{pt —>
* * pt.src.isActivated() }
places transitions
Place ol fout|! PTArc '_I.T_i dst| Transition Transition.fire():
initial int sr_* —udn_ 1 effoct in.each{pt -> pt.src.decrement ()}
: 1 i i T :
current: int ﬁ@ﬁ% Action effect.execute () .
---k == out.each{tp -> tp.dst.increment ()}
Figure 8.19: Metamodel after application of ~ Figure 8.20: Semantics definition after ap-
Rename plication of Rename

Switch Reference Composite. PTArcs and TPArcs should not be contained by the
Places from which they originate, but by the Net. As is shown in Figure Switch
Reference Composite drops the composite constraint on the references and creates
composite references in Net to contain the PTArcs and TPArcs. The model migration
needs to ensure that the PTArcs and TPArcs are contained by the Net. No adapta-
tion of the semantics definition is necessary, as the existing accesses lead to the same
result.

258

8. Beyond Model Migration 8.3. Towards Semantics-Preserving Model Migration

places

1 out| PTArc
src * i

dst

Place Transition

effect:
Action

initial: int
current: int

[
5

out 1

Figure 8.21: Metamodel after application of Switch Reference Composite

Extract Superclass. A common superclass Arc for PTArc and TPArc needs to be cre-
ated. The adaptation of the metamodel is shown in Figure Neither model mi-
gration nor adaptation of the semantics definition is necessary, as Extract Superclass
does not affect existing objects or accesses.

1 1
net__ _net
| |
| 1 |
| i
! net | * 1
! arcs |
| i
1 ‘ Arc ‘ 1
i i
|
* i /\ : *
places i . i transitions
|
Place Transition
initial: int effect:
current: int Action

Figure 8.22: Metamodel after application of Extract Superclass

Refactoring of the Semantics Definition. To prepare the introduction of explicit
weights, we need to refactor the semantics definition as shown in Figure The
operations isActivated, decrement and increment are moved from Place to PTArc or
TPArc. The accesses to the operations and to current have to be adapted accordingly.

Transition.isActivated(): boolean
return in.every{pt ->

pt.isActivated() }

PTArc.isActivated(): boolean
return src.current >= 1

PTArc.decrement () :
Transition.fire () : src.current = src.current - 1
in.each{pt -> pt.decrement ()}
effect.execute ()

out.each{tp -> tp.increment ()}

TPArc.increment () :
dst.current = dst.current + 1

Figure 8.23: Semantics definition after refactoring

New Attribute. The last step is to introduce the attribute weight as shown in Fig-
ure and Figure To allow for weights different from 1, the semantics defini-
tion has to be manually adapted to use the value of weight. By choosing 1 as a default
value for weight, no model migration is needed and the semantics is preserved.

259

8.3. Towards Semantics-Preserving Model Migration 8. Beyond Model Migration

8.3.4 Revisiting the Library

In the last sub section, we exemplified the extension of a number of reusable coupled
operations with a semantics adaptation. In the following, we revisit all the reusable
coupled operations in the library (see Section |5.2| (Library of Reusable Coupled Opera-|
tions)) and discuss whether and how they can be extended with an adaptation of the
semantics definition.

Structural Primitives. Operations that create metamodel elements usually are con-
structors, i.e. extend the set of models that can be built with a metamodel. To cater
for the new models, the semantics definition needs to be extended, too. However, ex-
tending the semantics definition cannot be automated, since additional knowledge is
necessary to define the semantics for the new models. There are also creation oper-
ations that are refactorings, i.e. preserve the set of models, e.g. Create Enumeration.
However, these operations usually are performed before operations that connect the
new metamodel elements to the rest of the metamodel, thus making them available.

Operations that delete metamodel elements usually are destructors, i.e. restrict the
language syntax, thereby requiring to restrict the semantics definition. In principal,
restriction does not require additional information and could possibly be automated.
However, the use of a deleted metamodel element in the semantics definition can
be intertwined with the use of a preserved metamodel element, thereby making it
difficult to automatically remove the use of the deleted metamodel element. Conse-
quently, we would rather support the language engineer to identify parts that are no
longer valid with respect to the adapted metamodel. Again, there are deletion oper-
ations that are refactorings which do not require restricting the semantics definition.

Non-Structural Primitives. Rename and Change Package change the fully qualified
name of metamodel elements. To consistently adapt the semantics definition, the af-
fected uses of these names have to be changed, too. When we make a class abstract,
we can only restrict the semantics definition, in case the class has no subclass, which
is however a degenerated case. When we drop the abstractness of a class, we need
to extend the semantics definition in any case. Add Supertype requires to extend the
semantics definition by using the features that are now available, whereas Remove
Supertype requires to remove the uses of these features. After Make Attribute |denti-
fier, we can use an attribute as identifier in the semantics definition. However, after
Drop Attribute Identifier, we can no longer rely on the uniqueness of the attribute
value in the semantics definition. Make Reference Composite and Switch Reference
Composite only change the containment structure of the model, but do not affect the
uses of the metamodel by the semantics definition. The same holds for Make Refer-
ence Opposite and Drop Reference Opposite.

Specialization / Generalization Operations. Generalization operations usually ex-
tend the language syntax and thereby require to also extend the semantics definition.
Generalize Attribute and Generalize Reference require to cater for the extended mul-
tiplicities or additional possible values of attributes and references. Specialize Super-
type makes new features available that need to be used in the semantics definition by
the class whose supertype is specialized.

260

8. Beyond Model Migration 8.3. Towards Semantics-Preserving Model Migration

Specialization operations usually restrict the set of syntactically correct models,
thereby requiring to restrict the semantics definition. Specialize Attribute and Spe-
cialize Reference require to restrict the use of multiplicities and possible values. Gen-
eralize Supertype removes inherited features from a class which can thus no longer
be used in the semantics definition for that class. Specialize Composite Reference
specializes the type of the composite reference and thus may lead to new available
features.

Inheritance Operations. Pull up Feature makes a feature also available in a super-
class, whereas Push down Feature removes it from the superclass. If the superclass
is not abstract, we have to deal with the added or removed feature in the semantics
definition. Usually, Pull up Feature leads to pulling part of the semantics definition
to the superclass, whereas Push down Feature requires pushing part of the semantics
definition to the subclass. The same holds for Extract Superclass and Inline Super-
class which additionally create or delete the superclass. However, Fold Superclass
and Unfold Superclass are more involved. Fold Superclass is performed to remove
the redundancy between classes that define similar features, thereby requiring to re-
move the redundancy in the semantics definition. To be semantics-preserving, Unfold
Superclass requires to automatically add the redundancy to the semantics definition
for the subclass. Extract Subclass requires to move the part of the semantics defini-
tion that uses the extracted feature to the new subclass. Inline Subclass requires to
integrate the semantics definition for the inlined subclass into the semantics defini-
tion for the superclass.

Delegation Operations. Extract Class requires to extend accesses to the extracted
features with the reference between context class and extracted class. Afterwards,
the part of the semantics definition that only relates to the extracted features has
to be moved over to the extracted class. Inline Class requires to move these parts
back to the context class and to remove the indirection in accesses. For Fold Class
to be semantics-preserving, the semantics definition for the replaced class needs to
be equivalent to the one of the replacing class. In case of Unfold Class, we just need
to copy the semantics definition to the unfolded class. Move Feature over Reference
requires to add an indirection to accesses to the feature in the semantics definition.
Collect Feature over Reference is more involved, since it may also restrict the syntax
of the modeling language.

Replacement Operations. Subclasses to Enumeration requires to integrate the se-
mantics definition for the subclasses into the superclass, activating it by a switch over
the enumeration attribute. Enumeration to Subclasses requires to replace a query on
the enumeration attribute by an appropriate type check. After Enumeration to Sub-
classes, we might want to modularize the semantics definition for the superclass
according to the subclasses. Reference to Class requires to introduce indirections,
whereas Class to Reference requires to remove them. For Inheritance to Delegation
to be semantics-preserving, we need to introduce indirections for features previously
inherited from the superclass. In case of Delegation to Inheritance, we need to remove
these indirections. Reference to Identifier requires to replace accesses to the reference
by a helper method to resolve the identifier, whereas Identifier to Reference requires
to replace the resolutions of the identifier by direct accesses to the reference.

261

8.3. Towards Semantics-Preserving Model Migration 8. Beyond Model Migration

Merge / Split Operations. Merge operations merge metamodel elements and thus
require to merge their semantics definitions. For Merge Classes to be semantics-
preserving, the semantics definition for the merged classes have to be equivalent. Af-
ter Merge Features, accesses to the removed features are no longer valid and may be
replaced by helper methods that derive the previous values of these features. Merge
Enumerations only requires to rename the accesses to the literals of the removed enu-
meration.

Split operations split metamodel elements and thus require to split their semantics
definition. For Split Class to be semantics-preserving, the semantics definition needs
to be duplicated, and may need to be refined later on. Specialize Reference by Type
replaces the access to all instances of a certain class by accesses to instances of each
subclass of that class.

Summary. We have seen that for many reusable coupled operations it is possible to
extend them with an appropriate semantics adaptation. However, it is more involved
for those operations which require to remove redundancy in the semantics definition.
Moreover, the reusable coupled operations can be grouped according to their impact
on the language expressiveness.

Refactorings preserve the set of models, possibly modulo variation, and thus allow
language engineers to define a bidirectional mapping between models of different
versions. As a consequence, there is also a unique way to adapt the semantics def-
inition in order to preserve the meaning of the models. In a nutshell, the semantics
adaptation can be fully automated for refactorings.

Constructors increase the set of models, and thus require to extend the semantics def-
inition to cater for the new models. However, constructors can often be extended
in a semantics-preserving way, if the new models are not considered in a first step.
In a second step, the language engineer needs to extend the semantics adaptation
to take into account the new models. The language engineer can be supported by
highlighting the places in the semantics adaptation which require extension.

Destructors decrease the set of models, and thus require to restrict the semantics def-
inition to cater for the removed models. It is often difficult to automatically remove
the parts of the semantics definition that are no longer valid, since this might be
intertwined with parts that are still required. However, the language engineer can
be supported by highlighting the invalid parts of the semantics definition. Often,
destructors are used to remove metamodel elements that are no longer used in the
semantics definition anyway.

8.3.5 State of the Art

Rose et al. classify approaches to automate the migration of models into manual spec-
ification, operation-based and matching approaches [Rose et al., 2009]].

Manual specification approaches provide languages tailored for model migration to
manually specify the migration. Sprinkle and Karsai present a graph transforma-
tion language that requires to specify the migration only for the metamodel differ-
ence, automatically copying unaffected model elements [Sprinkle and Karsai, 2004].

262

8. Beyond Model Migration

8.4. Summary

Narayanan et al. present MCL (Model Change Language) to specify the metamodel
changes which can be used for both model migration [Narayanan et al., 2009] and
model transformation adaptation [Levendovszky et al., 2010]. When specifying the
semantics as a model transformation, MCL can be used to perform semantics-
preserving model migration. Flock also automatically unsets model elements which
are no longer syntactically correct [Rose et al., 2010d]. However, the manual specifi-
cation approaches do not provide explicit support to ensure that the specified migra-
tion is semantics-preserving.

Operation-based approaches specify the model migration as a sequence of cou-
pled operations which encapsulate metamodel adaptation and model migration.
Wachsmuth classifies a set of coupled operations according to semantics and instance
preservation properties [Wachsmuth, 2007]. However, Wachsmuth uses the term to
denote the preservation of the metamodel’s semantics, i.e. the set of syntactically
correct models, rather than the preservation of the modeling language’s semantics,
i.e. the function that maps each model to its meaning. Our approach COPE extends
Wachsmuth’s approach by a means to manually specify custom coupled operations
and to define new reusable coupled operations (see Section |5.3| (Language to Specify|
[the Coupled Evolution)). We have shown that model migration cannot be automated
in certain cases, when taking the semantics of a modeling language into account (see
Section |5.4| (Limitations of Automating Model Migration)).

Matching approaches try to detect a model migration based on the matching be-
tween two metamodel versions. Gruschko et al. classify primitive metamodel
changes into non-breaking, breaking resolvable and breaking non-resolvable, and
envision to automatically detect a model migration for breaking resolvable changes
[Becker et al., 2007]. Moreover, Cicchetti et al. are able to detect complex changes in
the difference between two metamodel versions [Cicchetti et al., 2008]]. Garcés et al.
present a matching language that allows the user to customize the matching pro-
cess and to add new matching patterns [Garcés et al., 2009]. However, the matching
approaches all work only on the metamodel and thus are not able detect a semantics-
preserving model migration.

8.4 Summary

In this chapter, we extended the operation-based approach of COPE to a method for
evolutionary metamodeling. This method supports not only model migration, but
also other tasks that are important when evolving a modeling language: identify-
ing metamodel changes, choosing the corresponding operations and migrating other
artifacts depending on the metamodel. In the center of the method are the opera-
tions that define the intention behind the changes. The identified changes have to
be implemented by operations, and the operations can be extended to also migrate
artifacts other than the models. Besides the method itself, we have highlighted two
sub tasks of the evolutionary method.

First, we developed an approach to identify metamodel changes by analyzing the
usage of a metamodel by its models. The approach defines patterns to find deviations
between the actual usage mined from the models and the expected usage derived
from the metamodel. If the actual usage deviates from the expected usage, operations

263

8.4. Summary

8. Beyond Model Migration

can be proposed to align the metamodel better with the actual usage. To demonstrate
the usefulness of the approach, we performed an empirical study that applied the
approach to 7 metamodels and their models. The study showed that the actual usage
does deviate from the expected usage in practice and that the deviations would often
require adapting the metamodel.

Second, we developed an approach to automate the adaptation of the semantics defi-
nition after adaptation of the metamodel. More specifically, the reusable coupled op-
erations are extended with an adaptation of the semantics definition. By consistently
defining the model migration and adaptation of the semantics definition for these
coupled operations, we can ensure semantics preservation by the model migration
in a constructive manner. By a small case study, we demonstrated the feasibility of
the approach. Moreover, we discussed how all reusable coupled operations in the
library can be extended by an appropriate adaptation of the semantics definition.
Future work is required to implement this approach and to apply it to a larger case
study.

264

Chapter

Summary

In this final chapter, we summarize the contributions of this thesis. We also describe
our current work and possible directions for further research.

Contents
0.1 Contributions] v ittt e 265
9 O 00K| . . . e e e e e e e e e e e e e e e 268

Section 9.1 (Contributions) presents the contributions, and Section 9.2] (Outlook) the

directions for future work.

9.1 Contributions

In this thesis, we presented our approach COPE to support the migration of models
in response to metamodel adaptation—we call this the coupled evolution of meta-
models and models. In particular, the approach addresses the following two chal-
lenges: First, model migration needs to be automated as far as possible in order to
reduce the effort for metamodel adaptation. Second, model migration needs to pre-
serve the semantics of a possibly unknown set of built models in order to not lose
meaningful information during migration. More specifically, this thesis made the
following contributions to the state of the art.

Automatability of Model Migration in Practice. To determine the potential for au-
tomation, we performed an empirical study on the history of two industrial meta-
models from BMW Car IT [Herrmannsdoerfer et al., 2008afl. In order to do so, we
classified metamodel changes according to the automatability of the corresponding
model migration. The model migration is either specific to a restricted set of models,
specific to the models of a single metamodel or independent of the metamodel. We
found no model-specific changes, indicating that we can always specify a transfor-
mation that is able to migrate all models of these two metamodels. One third of the
changes were metamodel-specific, requiring expressiveness to specify the transfor-
mation. Finally, two third of the changes were metamodel-independent, allowing to

265

9.1. Contributions 9. Summary

reuse the migrating transformation across metamodels. Consequently, a practical ap-
proach to specify model migration needs to cater for both expressiveness and reuse.
(see Chapter [3 (State of the Practice: Automatability of Model Migration))

Cross-Space Survey on Coupled Evolution. We analyzed existing approaches with
respect to the challenges and the requirements derived from the empirical study.
First, existing model migration approaches do not combine both the desired level
of reuse and expressiveness. Second, most of the approaches require to specify the
migration, after the metamodel changes have already been carried out, losing the in-
tention behind the changes. However, the migration problem does not only exist in
the context of metamodels and models, but also in the context of database schemas
and databases, grammars and programs as well as formats and documents. To iden-
tify related approaches from the other technical spaces, we performed a systematic
literature review. From the identified approaches, we extracted a feature model that
helped us to classify and compare the existing approaches. We learned from other
technical spaces that an operation-based approach allows us to combine expressive-
ness with reuse as well as to record the model migration together with the metamodel
adaptation. (see Chapter[d](State of the Art: A Cross-Space Survey on Coupled Evolution))

Method for Evolutionary Metamodeling. In our operation-based approach COPE
[Herrmannsdoerfer et al., 2009a], the model migration is specified as a sequence of
coupled operations. Each coupled operation encapsulates both metamodel adapta-
tion and model migration. The operation-based approach allows us to address both
challenges. First, expressiveness and reuse can be combined by different kinds of
coupled operations: Custom coupled operations allow language engineers to man-
ually express custom migrations, whereas reusable coupled operations allow them
to reuse recurring migrations. Second, the model migration can be recorded as a
sequence of coupled operations in order to not lose the intention behind the meta-
model changes. As the coupled operations can be used to incrementally adapt the
metamodel to one’s needs, an operation-based approach thus enables a method for
the evolutionary development of metamodels. (see Section |5.1| (COPE in a Nutshell)
and Section [8.1] (The Process of Evolutionary Metamodeling]))

Language to Encode Coupled Operations. To be able to specify coupled operations,
we developed a language embedded into the general-purpose scripting language
Groovy [Herrmannsdoerfer et al., 2008b]. Since a coupled operation usually imple-
ments a rather small change, the language only requires to specify the difference
for both metamodel and model. Therefore, the language provides a complete set of
primitives to express both metamodel adaptation and model migration. The prim-
itives operate on a generic instance model which decouples a model from its meta-
model in order to ease migration. However, the language enforces conformance of a
model to its metamodel at the boundaries of a coupled operation. Expressiveness is
provided by embedding the primitives into the Turing-complete scripting language.
Reuse is provided by using the abstraction mechanism of functions that allow lan-
guage engineers to specify a coupled operation independently of a metamodel by
means of parameters. (see Section 5.3|(Language to Specify the Coupled Evolution))

266

9. Summary 9.1. Contributions

Library of Reusable Coupled Operations. While performing the case studies with
COPE, we built up a library of 61 reusable coupled operations using the coupled
evolution language [Herrmannsdoerfer et al., 2010b]. These reusable coupled oper-
ations have proven sufficient enough to cover most model migrations that occur in
practice. To facilitate finding the appropriate coupled operation for a certain change
at hand, the library is organized according to a number of criteria. First, the reusable
coupled operations can be grouped according to their semantics, allowing to find an
operation based on one’s intention. Second, they can be characterized by their impact
on the set of conforming models or on existing models, permitting to reason about
model migration. Third, reusable coupled operations can be related to each other by
an inverse relationship, allowing to revert both the metamodel adaptation and the
model migration. (see Section[5.2| (Library of Reusable Coupled Operations))

Limitations of Automating Model Migration. In cases where the migration
is specific to a restricted set of models, the model migration cannot inher-
ently be automated. We formally characterized these cases by proving seman-
tics preservation through coupled operations [Herrmannsdoerfer and Ratiu, 2009,
Herrmannsdoerfer and Ratiu, 2010]. Model-specific migration is necessary if the
metamodel change requires to refine the semantics of existing models and there are
multiple models by which an existing model can be refined. Then, model-specific in-
formation may be necessary to choose the correct model. To support model-specific
migrations, we can either determine the effort for manual migration by analyzing ex-
isting models, we can enable interactive migration, or we can allow language users
to refine a model migration for a certain subset of existing models. (see Section
(Limzitations of Automating Model Migration))

Metamodel to Record Coupled Operations. From our experience, language engi-
neers prefer to use the metamodel editor over specifying the coupled evolution in the
language. Consequently, COPE provides further abstraction from this language by
a non-invasive integration into a metamodel editor [Herrmannsdoerfer, 2011]. The
integration is based on a versioning metamodel to record the history of a metamodel
as a sequence of coupled operations [Herrmannsdoerfer, 2009]. The history meta-
model is expressive enough to capture all changes to the metamodel as well as to
group changes to custom and reusable coupled operations. A migrator specified in
the language can be automatically generated from a history model conforming to
this metamodel. COPE provides advanced functions to inspect, refactor and reverse
engineer the history model based on the history metamodel. (see Chapter [f

Suppor)

Evaluation through Case Studies. We have implemented COPE based on the
Eclipse Modeling Framework (EMF) which is one of the most widely used mod-
eling frameworks. Thereby, it was possible to perform six real-life case studies
with the implemented tool. To deeply evaluate the approach, we performed dif-
ferent kinds of case studies: reverse engineering, forward engineering and com-
parison case studies. First, we reverse engineered the history model of the Palla-
dio Component Model (PCM) [Herrmannsdoerfer et al., 2009a] as well as the his-
tory models for all metamodels from the Graphical Modeling Framework (GMF)
[Herrmannsdoerfer et al., 2009c]. Second, we forward engineered the history model

267

9.2. Outlook

9. Summary

of the Quamoco quality metamodel as well as the Unicase UML-like metamodel.
Third, we compared COPE to other model transformation and migration tools
in the Transformation Tool Contest (TTC) [Herrmannsdoerfer, 2010] as well as by
means of a case study performed together with the authors of other migration tools
[Rose et al., 2010al]. The case studies demonstrate that COPE addresses both chal-
lenges. First, all the case studies confirmed the results of the empirical study that
most of the migration can be covered by reusable coupled operations. Second, the
comparison case studies indicated that COPE is more likely to lead to a semantics-

preserving model migration. (see Chapter /| (Case Studies))

Metamodel Usage Analysis for Identifying Metamodel Improvements. After the
language engineers released a modeling language, they may want to validate the
metamodel. An approach to validate the usability of the metamodel is to analyze
the models built with the metamodel. Therefore, we defined a number of patterns to
compare the actual usage in existing models to the expected usage derived from the
metamodel [Herrmannsdoerfer et al., 2010a]]. Using these patterns, we can identify
deviations between actual and expected usage and recommend operations to better
align the metamodel with its usage. To identify the potential of this method, we
performed an empirical study applying the patterns to seven metamodels and their
models. We found a significant number of deviations, many of which could be used
to improve the usability of the metamodel. The patterns helped either to restrict the
metamodel or to extend it by introducing first-class constructs for often used values.
(see Section [8.2| (Metamodel Usage Analysis for Identifying Metamodel Improvements))

Semantics-Preserving Model Migration. When evolving a modeling language, we
also need to adapt the semantics definition in response to metamodel adaptation.
In case the adaptation of the semantics definition is consistent with the model mi-
gration, we can constructively ensure that the semantics is preserved during model
migration [Herrmannsdoerfer and Koegel, 2010b]. Consequently, reusable coupled
operations need to be extended with an appropriate adaptation of the semantics def-
inition. We demonstrated the applicability of the approach on the well-known ex-
ample evolution of the petri net modeling language. Finally, we showed that many
reusable coupled operations from the library can be easily extended with an appro-
priate semantics adaptation. For custom coupled operations, which however occur
rarely in practice, the adaptation of the semantics definition needs to be specified
manually. (see Section [8.3|(Towards Semantics-Preserving Model Migration])

9.2 Outlook

While the coupled evolution approach presented in this thesis addresses major short-
comings of existing approaches, there are still open problems that need to be solved.
This section discusses possible improvements of the presented approach and illus-
trates directions for further research on coupled evolution in particular and evolu-
tionary metamodeling in general.

Dissemination — Eclipse Project Edapt. The community around the Eclipse Mod-

268

9. Summary

9.2. Outlook

eling Framework (EMF) has recognized the need for tools supporting metamodel
adaptation and model migration. However, there is currently no adequate tool sup-
port for model migration in EMFE. Therefore, we have been invited to present our
tool COPE at several Eclipse conferences and demo camps. There has been quite
some interest in COPE, and COPE already has a number of active users. Due to the
large interest, we decided to make COPE open source under the Eclipse Public Li-
cense (EPL)!. Therefore, we applied for the Eclipse project Edapt* which has been
accepted. In order to further increase the attention for COPE, we are currently mak-
ing the tool available through the Eclipse project Edapt. There are plans to integrate
the different projects around EMF into a workbench for developing EMF-based mod-
eling languages. We plan to propose COPE as a solution to support the maintenance
of modeling languages within this workbench.

Verification and Validation of Coupled Operations. Currently, syntax preservation
of a coupled operation can only be checked dynamically, while executing it on a
certain model. However, it is difficult to constructively ensure syntax preservation,
as COPE decouples a model from its metamodel within a coupled operation to be
able to specify only the difference for both metamodel and model. To some degree,
reusable coupled operations constructively ensure syntax preservation, since they
provide a consistent and well-tested couple of metamodel adaptation and model mi-
gration. The problem is more important for custom coupled operations which re-
quire to manually specify an appropriate model migration for a recorded metamodel
adaptation. There are two solutions to this problem. First, we can develop a static
analysis to verify syntax preservation in a model-independent way. Second, we can
refine the coupled evolution language with a syntax that ensures syntax preserva-
tion in a more constructive manner. We plan to evaluate the two solutions in order
to statically ensure syntax preservation.

In contrast to the verification of properties, validation is more concerned with
whether the migration performs as intended. Usually, the primary goal of model mi-
gration is to preserve the semantics of existing models. In this thesis, we already out-
lined an approach to ensure semantics preservation in a constructive manner. This
approach mostly targets reusable coupled operations which are extended by an adap-
tation of the semantics definition. However, there is no support to ensure semantics
preservation for custom coupled operations. Moreover, the approach does not work
for modeling languages which do not have an explicit semantics definition. As an
advantage of the operation-based approach, we can independently validate seman-
tics preservation for each coupled operation. In order to validate coupled operations,
we plan to develop a framework for the rigorous testing of model migrations. This
may include specific coverage criteria as well as a method to derive new test models.

Migration of other Artifacts. In this thesis, we were mostly concerned with the mi-
gration of models in response to metamodel adaptation. However, there are also
other artifacts—like e.g. editors and interpreters—which depend on the metamodel
and which thus have to be migrated. According to our terminology, also the mod-
els defining the concrete syntax and semantics depend on the metamodel. We first

'see EPL web site: http://www.eclipse.org/legal/epl-v10.html
Zsee Edapt web site: http://www.eclipse.org/edapt/

269

http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/edapt/

9.2. Outlook

9. Summary

focused on model migration, as the number of models of a successful modeling lan-
guage typically outnumbers the number of other artifacts. In this thesis, we already
showed that the migration of other artifacts by coupled operations is feasible: In
a case study, we used the coupled evolution language to express the migration of
change histories, and we extended reusable coupled operations with an adaptation
of the semantics definition to ensure semantics preservation. We plan to refine the
approach to be able to specify the migration of any other artifacts depending on the
metamodel. Therefore, we need to extend the coupled evolution language with addi-
tional constructs to specify the migration of other artifacts and we need to elaborate
our mechanism to extend existing reusable coupled operations. Our final goal is to
provide an integrated approach to support the maintenance of modeling languages.

Language Profiling. In this thesis, we examined an approach to identify metamodel
improvements by analyzing models built with the metamodel. Through an empir-
ical study, we showed that—even in the case of mature languages—the analysis of
models can reveal issues with the modeling language. Consequently, we are con-
vinced that the analysis of models built with a modeling language is a useful tool
for evolutionary metamodeling. However, the presented approach is restricted to
very simple usage patterns and to EMF as a modeling framework. Due to the re-
sults of the empirical study, it is promising to extend the approach to a workbench
for language profiling, i.e. for analyzing the use of the language in order to assess its
quality. First, we can refine the presented analyses by fine-tuning them according to
the results from the empirical study. Second, we need to add new analyses which
are currently missing in the catalog. For instance, we might even be able to auto-
matically identify constraints which are not yet implemented. Third, we can build
a language that allows the language engineer to easily specify new patterns of lan-
guage use. Forth, we might want to apply the approach also to modeling languages
that are not built using EMF. Then, we can also analyze models of languages that
are more widely used in industry like e.g. Matlab Simulink. Fifth, we envision as a
future direction of research the definition of techniques that anonymize the content
of the model and send the language engineers only a limited information needed for
analyzing the language use. Then, we can also profile modeling languages that are
used by different organizations and where the models carry intellectual property.

Quality of Modeling Languages. Through our case studies, we have found out that
a significant number of changes are performed to improve the quality of metamod-
els. To avoid these changes in the first place, we have to get a better understanding
about the quality of modeling languages. More specifically, we have to answer the
following questions: What does quality mean for metamodels? How can we measure
the quality of metamodels? How can we improve the quality of metamodels? To an-
swer these questions, we could apply the quality modeling approach developed in
the Quamoco® project to modeling languages. Therefore, we need to define a qual-
ity model with factors that influence the quality of modeling languages as well as
measures that reliably quantify the factors. To build such a quality model, we need
to search the literature for guidelines and metrics that are defined for modeling lan-
guages or that can at least be transferred to modeling languages. From the quality

3see Quamoco web site: http://www.quamoco.de

270

http://www.quamoco.de

9. Summary

9.2. Outlook

model, we can then generate a guideline that can be used to support engineering of
high-quality modeling languages. Moreover, the quality model can be used to au-
tomatically assess the modeling language in a continuous manner. Thereby, we can
early identify and avoid defects in the metamodels and thus secure the quality of
the modeling language. Finally, the approach presented in this thesis can be used to
implement metamodel improvements.

271

Appendix

Papers Excluded from the Survey

This section lists the papers which were excluded from the survey presented in Chap-
ter[d](State of the Art: A Cross-Space Survey on Coupled Evolution]) based on the exclusion
criteria.

A.1 Excluded Papers Within the Relevant Domain

Following is a list of papers, which were within the domain of the survey, yet were
rejected as they fall outside the scope definition. For each publication, we list its
bibliographic information, followed by the reason for rejection.

e Amiel, E., Bellosta, M.-]., Dujardin, E., and Simon, E. (1994). Supporting excep-
tions to schema consistency to ease schema evolution in oodbms. In VLDB "94:
Proceedings of the 20th International Conference on Very Large Data Bases, pages
108-119, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. Focus on
schema evolution, no database migration: no coupling.

e Andrade, L. F. and Fiadeiro, J. L. (2001). Coordination technologies for man-
aging information system evolution. In CAiSE ‘01: Proceedings of the 13th Inter-
national Conference on Advanced Information Systems Engineering, pages 374-387,
London, UK. Springer-Verlag. Does not adress coupled evolution, rather sys-
tem evolution in general.

e Andrikopoulos, V., Benbernou, S., and Papazoglou, M. P. (2008). Managing
the evolution of service specifications. In CAiSE ‘08: Proceedings of the 20th
international conference on Advanced Information Systems Engineering, pages 359—
374, Berlin, Heidelberg. Springer-Verlag. Extension is not completely defined
by the intensional definition.

e Ariav, G. (1991). Temporally oriented data definitions: managing schema evo-
lution in temporally oriented databases. Data Knowl. Eng., 6(6):451-467. Pri-
mary focus on providing temporal features to schema of temporally oriented
databases, there is little discussion on a coupling to the temporally oriented
content.

273

A.1. Excluded Papers Within the Relevant Domain A. Papers Excluded from the Survey

e Banerjee, J., Chou, H.-T,, Garza, J. E, Kim, W., Woelk, D., Ballou, N., and Kim,
H.-J. (1987). Data model issues for object-oriented applications. ACM Trans.
Inf. Syst., 5(1):3-26. Several extensions for ORION, one is schema evolution,
but only without real migration.

e Beech, D. and Mahbod, B. (1988). Generalized version control in an object-
oriented database. In Proceedings of the Fourth International Conference on Data
Engineering, pages 14-22, Washington, DC, USA. IEEE Computer Society. On
database versioning, not schema versioning.

e Bernstein, P. A. (2003). Applying model management to classical meta data
problems. In CIDR. No migration of elements.

e Bernstein, P. A., Haas, L. M., Jarke, M., Rahm, E., and Wiederhold, G. (2000).
Panel: Is generic metadata management feasible? In VLDB “00: Proceedings
of the 26th International Conference on Very Large Data Bases, pages 660—-662, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc. Summary of a panel
discussion, out of scope.

e Bertino, E. (1992). A view mechanism for object-oriented databases. In EDBT
'92: Proceedings of the 3rd International Conference on Extending Database Technol-
ogy, pages 136-151, London, UK. Springer-Verlag. On views, no focus on
coupling.

e Blaha, M. and Premerlani, W. (1996). A catalog of object model transforma-
tions. In WCRE '96: Proceedings of the 3rd Working Conference on Reverse Engi-
neering (WCRE "96), page 87, Washington, DC, USA. IEEE Computer Society.
Describes a library of transformations on class diagrams, but without the co-
transformation of instances.

e Bratsberg, S. E. (1992). Unified class evolution by object-oriented views. In ER
'92: Proceedings of the 11th International Conference on the Entity-Relationship Ap-
proach, pages 423-439, London, UK. Springer-Verlag. Focused on preventing
coupled evolution.

e Cabasino, S., Paolucci, P. S., and Todesco, G. M. (1992). Dynamic parsers and
evolving grammars. SIGPLAN Not., 27(11):39-48. Support the addition of
context-sensitive rules by dynamically evolving the grammar when parsing
a program.

e Casais, E. (1992). An incremental class reorganization approach. In ECOOP
'92: Proceedings of the European Conference on Object-Oriented Programming, pages
114-132, London, UK. Springer-Verlag. Evolution of object-oriented software,
about recommending refactorings.

e Chou, H.-T. and Kim, W. (1988). Versions and change notification in an object-
oriented database system. In DAC "88: Proceedings of the 25th ACM/IEEE Design
Automation Conference, pages 275-281, Los Alamitos, CA, USA. IEEE Computer
Society Press. Primarily focused on versions and change notifications, only
briefly mentions dynamic schema evolution, no coupling.

e Clifford, J. and Croker, A. (1987). The historical relational data model (hrdm)
and algebra based on lifespans. In Proceedings of the Third International Confer-
ence on Data Engineering, pages 528-537, Washington, DC, USA. IEEE Computer

274

A. Papers Excluded from the Survey A.1. Excluded Papers Within the Relevant Domain

Society. On database versioning, but not schema versioning.

e Cohen, Y. and Feldman, Y. A. (2003). Automatic high-quality reengineering
of database programs by abstraction, transformation and reimplementation.
ACM Trans. Softw. Eng. Methodol., 12(3):285-316. Migration of legacy data
to modern database systems.

e Drumm, C., Schmitt, M., Do, H.-H., and Rahm, E. (2007). Quickmig: auto-
matic schema matching for data migration projects. In CIKM '07: Proceedings
of the sixteenth ACM conference on Conference on information and knowledge man-
agement, pages 107-116, New York, NY, USA. ACM. Migration of legacy data
into modern database systems.

e Ewald, C. A. and Orlowska, M. E. (1993). A procedural approach to schema
evolution. In CAiSE '93: Proceedings of Advanced Information Systems Engineer-
ing, pages 22-38, London, UK. Springer-Verlag. Preserve well-formedness
during schema evolution, no co-evolution.

e Fan, H. and Poulovassilis, A. (2004). Schema evolution in data warehousing
environments — a schema transformation-based approach. In Atzeni, P, Chu,
W., Lu, H., Zhou, S., and Ling, T. W., editors, Conceptual Modeling — ER 2004, vol-
ume 3288 of Lecture Notes in Computer Science, pages 639-653. Springer Berlin /
Heidelberg. About evolution of schema integration framework on evolution
of schema modeling language, such that schema integration can be reused:
Extension not completely defined by intensional definition.

e Gibbs, S., Casais, E., Nierstrasz, O., Pintado, X., and Tsichritzis, D. (1990). Class
management for software communities. Commun. ACM, 33(9):90-103. Only
mentions class evolution as problem in software communities, no real ap-
proach.

e Grandi, F. (2004). Svmgr: A tool for the management of schema versioning.
In Atzeni, P, Chu, W,, Lu, H., Zhou, S., and Ling, T. W.,, editors, Conceptual
Modeling — ER 2004, volume 3288 of Lecture Notes in Computer Science, pages
860-861. Springer Berlin / Heidelberg. Only a short tool description.

e Hainaut, J.-L. (2006). The transformational approach to database engineering.
In Lammel, R., Saraiva, J., and Visser,]., editors, Generative and Transformational
Techniques in Software Engineering, volume 4143 of Lecture Notes in Computer Sci-
ence, pages 95-143. Springer Berlin / Heidelberg. Hainaut states in the conclu-
sion: "Several problems still are to be addressed ... How can data structure
transformations be propagated to the other components of the information
system, notably the data (data conversion)?".

o Ipser, Jr., E. A. (1992). Exploratory language design. SIGPLAN Not., 27(4):41-50.
Introduces evolutionary language design, but does not provide an approach
to migrate language utterances.

e Kim, W., Banerjee, J., Chou, H.-T., and Garza, J. F. (1990a). Object-oriented
database support for cad. Comput. Aided Des., 22(10):469-479. Several exten-
sions for ORION, one is schema evolution, but only without real migration.

e Kim, W.,, Garza, J. E, Ballou, N., and Woelk, D. (1990b). Architecture of the
orion next-generation database system. IEEE Trans. on Knowl. and Data Eng.,

275

A.1. Excluded Papers Within the Relevant Domain A. Papers Excluded from the Survey

2(1):109-124. A general description of ORION, it only briefly discusses dy-
namic schema evolution in ORION. Not relevant enough for the survey, the
ORION features are already discussed in other included papers.

e Li, Q. and McLeod, D. (1994). Conceptual database evolution through learning
in object databases. IEEE Trans. on Knowl. and Data Eng., 6(2):205-224. The
paper discusses the direction of ontoloware and does not explicitly talk about
instance migration.

e Liu, L., Zicari, R., Hiirsch, W., and Lieberherr, K. J. (1997). The role of poly-
morphic reuse mechanisms in schema evolution in an object-oriented database.
IEEE Trans. on Knowl. and Data Eng., 9(1):50-67. Migration of queries in re-
sponse to schema evolution.

e Lopez, J.-R. and Olivé, A. (2000). A framework for the evolution of temporal
conceptual schemas of information systems. In CAiSE ‘00: Proceedings of the
12th International Conference on Advanced Information Systems Engineering, pages
369-386, London, UK. Springer-Verlag. Propagation of evolution from con-
ceptual to logical schemas to extensions and programs, no co-evolution.

e Markowitz, V. M. and Makowsky, J. A. (1988). Incremental restructuring of re-
lational schemas. In Proceedings of the Fourth International Conference on Data
Engineering, pages 276-284, Washington, DC, USA. IEEE Computer Society.
Markowitz et al. state: "We assume in this paper that the database state is
empty. The coupling of schema restructuring manipulations with state map-
pings is investigated in [26].".

e McBrien, P. and Poulovassilis, A. (1997). A formal framework for er schema
transformation. In ER "97: Proceedings of the 16th International Conference on Con-
ceptual Modeling, pages 408-421, London, UK. Springer-Verlag. Paper focuses
on schema integration, there is no evolution aspect involved.

e McBrien, P. and Poulovassilis, A. (1998). A formalisation of semantic schema
integration. Inf. Syst., 23(5):307-334. Papers focuses on schema integration,
there is no evolution aspect involved.

e McBrien, P. and Poulovassilis, A. (1999). Automatic migration and wrapping
of database applications - a schema transformation approach. In ER "99: Pro-
ceedings of the 18th International Conference on Conceptual Modeling, pages 96-113,
London, UK. Springer-Verlag. Papers focuses on schema integration, there is
no evolution aspect involved.

e McKenzie, E. and Snodgrass, R. T. (1990). Schema evolution and the relational
algebra. Inf. Syst., 15(2):207-232. Extends relational algebra with a time
concept to handle evolution of data and schemas, it has little focus on estab-
lishing a coupling.

e Melnik, S. (2005). Model management: First steps and beyond. In BTW. Volume

65 of LNL., GI (2005) 455. Does not focus on coupled evolution, only mentions
it as an issue in model management.

e Moerkotte, G. and Zachmann, A. (1993). Towards more flexible schema man-
agement in object bases. In Proceedings of the Ninth International Conference on
Data Engineering, pages 174-181, Washington, DC, USA. IEEE Computer Soci-

276

A. Papers Excluded from the Survey A.1. Excluded Papers Within the Relevant Domain

ety. On preserving schema consistency during evolution.

e Narayanaswamy, K. and Rao, K. V. B. (1988). An incremental mechanism for
schema evolution in engineering domains. In Proceedings of the Fourth Inter-
national Conference on Data Engineering, pages 294-301, Washington, DC, USA.
IEEE Computer Society. On schema evolution, which does not affect existing
data, thus preventing the need for database migration, thus not on coupled
evolution.

e Norrie, M. C,, Steiner, A., Wiirgler, A., and Wunderli, M. (1996). A model
for classification structures with evolution control. In ER '96: Proceedings of
the 15th International Conference on Conceptual Modeling, pages 456471, London,
UK. Springer-Verlag. Focus on evolution of objects, not their structure de-
scription. Thereby no vertical coupling.

e Odberg, E. (1994). Category classes: flexible classification and evolution in
object-oriented databases. In CAiSE "94: Proceedings of the 6th international con-
ference on Advanced information systems engineering, pages 406—420, Secaucus, NJ,
USA. Springer-Verlag New York, Inc. Evolution of objects (and their classifi-
cation) in the extension, no evolution of the classification scheme.

e Oertly, F. and Schiller, G. (1989). Evolutionary database design. In Proceedings
of the Fifth International Conference on Data Engineering, pages 618—-624, Washing-
ton, DC, USA. IEEE Computer Society. Data migration is not discussed.

e Olivé, A., Costal, D., and Sancho, M.-R. (1999). Entity evolution in isa hierar-
chies. In ER "99: Proceedings of the 18th International Conference on Conceptual
Modeling, pages 62-80, London, UK. Springer-Verlag. Focus on entity evolu-
tion, no instance adaptation: no coupling.

e Osborn, S. L. (1989). The role of polymorphism in schema evolution in an
object-oriented database. IEEE Trans. on Knowl. and Data Eng., 1(3):310-317.
Migration of queries in response to schema evolution.

e Peters, R. J. and Ozsu, M. T. (1995). Axiomatization of dynamic schema evolu-
tion in objectbases. In ICDE "95: Proceedings of the Eleventh International Confer-
ence on Data Engineering, pages 156-164, Washington, DC, USA. IEEE Computer
Society. Peters et al. state: "Due to space restrictions, change propagation is
not addressed in this paper.".

e Peters, R. J. and Ozsu, M. T. (1997). An axiomatic model of dynamic schema
evolution in objectbase systems. ACM Trans. Database Syst., 22(1):75-114. Dis-
cusses a formalization of dynamic schema evolution, there is little discussion
of evolution propagation through coupling.

e Poulovassilis, A. and Mc. Brien, P. (1998). A general formal framework for
schema transformation. Data Knowl. Eng., 28(1):47-71. Papers focuses on
schema integration, there is no evolution aspect involved.

e Shapiro, M. (1989). Persistence and migration for C++ objects. In Proceedings of
the 1989 European Conference on Object-Oriented Programming, East Midland Con-
ference Centre, University of Nottingham, 10-14 July 1989, page 191. Cambridge
University Press. Migration of runtime C++ objects from a node to another
in a distributed setting.

277

A.2. Excluded Papers Outside the Relevant Domain A. Papers Excluded from the Survey

e Shu, N. C,, Housel, B. C.,, and Lum, V. Y. (1975). Convert: a high level transla-
tion definition language for data conversion. Commun. ACM, 18(10):557-567.
Focus on evolution of data, not their schema. Thereby no vertical coupling.

e Takahashi, J. (2002). Hybrid relations for database schema evolution. In Com-
puter Software and Applications Conference, 1990. COMPSAC 90. Proceedings.,
Fourteenth Annual International, pages 465-470. IEEE. Proposes hybrid rela-
tions to prevent the need for a coupling at evolution.

e Tewksbury, L., Moser, L., and Melliar-Smith, P. (2001). Live upgrades of corba
applications using object replication. In ICSM “01: Proceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM'01), page 488, Washington,
DC, USA. IEEE Computer Society. Migration of objects in a running applica-
tion when their classes change.

e Thiran, P, Hainaut, J.-L., Houben, G.-]., and Benslimane, D. (2006). Wrapper-
based evolution of legacy information systems. ACM Trans. Softw. Eng.
Methodol., 15(4):329-359. Integration of legacy systems into modern systems.

e Thiran, P, Houben, G.-]., Hainaut, J.-L., and Benslimane, D. (2004). Updating
legacy databases through wrappers: Data consistency management. In WCRE
'04: Proceedings of the 11th Working Conference on Reverse Engineering, pages 58—
67, Washington, DC, USA. IEEE Computer Society. Integration of legacy sys-
tems into modern systems.

e Tratt, L. (2008). Evolving a dsl implementation. pages 425-441. Avoids
migration of programs written with the evolving DSL.

e van Deursen, A. and Klint, P. (1998). Little languages: little maintenance. Jour-
nal of Software Maintenance, 10(2):75-92. Effort for program evolution rather
than that for language evolution.

e Zabback, P, Onyuksel, I, Scheuermann, P., and Weikum, G. (1998). Database
reorganization in parallel disk arrays with i/o service stealing. IEEE Trans. on
Knowl. and Data Eng., 10(5):855-858. About load balancing during migration
rather than about migration itself.

A.2 Excluded Papers Outside the Relevant Domain

This section enumerates the papers we rejected for falling outside the considered
domain. Each subsection is devoted to a particular domain. Note that these are not
intended to be complete lists for any of the domains, they merely enumerate the
papers considered for the survey.

A.2.1 Process Evolution

e Agostini, A. and Michelis, G. D. (2000). Improving flexibility of workflow
management systems. In Business Process Management, Models, Techniques, and
Empirical Studies, pages 218-234, London, UK. Springer-Verlag.

e Edmond, D. and ter Hofstede, A. H. M. (2000). A reflective infrastructure for

278

A. Papers Excluded from the Survey A.2. Excluded Papers Outside the Relevant Domain

workflow adaptability. Data & Knowledge Engineering, 34(3):271 — 304.

e Ellis, C. A. and Keddara, K. (2000). A workflow change is a workflow. In Busi-
ness Process Management, Models, Techniques, and Empirical Studies, pages 201-
217, London, UK. Springer-Verlag.

e Han, Y. and Sheth, A. (1998). On adaptive workflow modeling. In Proceedings
of the 4th International Conference on Information Systems Analysis and Synthesis,
pages 108-116. Orlando, Florida.

e Heinl, P, Horn, S., Jablonski, S., Neeb, J., Stein, K., and Teschke, M. (1999). A
comprehensive approach to flexibility in workflow management systems. In
Proceedings of the international joint conference on Work activities coordination and
collaboration, WACC "99, pages 79-88, New York, NY, USA. ACM.

e Jaccheri, L., Larsen, J., and Conradi, R. (1992). Software process modeling
and evolution in epos. In Software Engineering and Knowledge Engineering, 1992.
Proceedings., Fourth International Conference on, pages 574 -581.

e Joeris, G. and Herzog, O. (1998). Managing evolving workflow specifications.
In Cooperative Information Systems, 1998. Proceedings. 3rd IFCIS International Con-
ference on, pages 310 -319.

e Kradolfer, M. and Geppert, A. (1999). Dynamic workflow schema evolution
based on workflow type versioning and workflow migration. In Cooperative
Information Systems, 1999. CooplS '99. Proceedings. 1999 IFCIS International Con-
ference on, pages 104 —-114.

e Liu, C. and Conradi, R. (1993). Automatic replanning of task networks for
process model evolution in EPOS. In Proceedings of the 4th European Software En-
gineering Conference on Software Engineering, ESEC "93, pages 434450, London,
UK. Springer-Verlag.

e Reichert, M. and Dadam, P. (1998). ADEPTflex — supporting dynamic changes
of workflows without losing control. Journal of Intelligent Information Systems,
10:93-129. 10.1023/A:1008604709862.

e Reichert, M., Rinderle, S., and Dadam, P. (2003). On the common support of
workflow type and instance changes under correctness constraints. In On The
Move to Meaningful Internet Systems 2003: CooplS, DOA, and ODBASE, volume
2888 of Lecture Notes in Computer Science, pages 407—-425. Springer Berlin / Hei-
delberg. 10.1007/978-3-540-39964-3_26.

e Rinderle, S., Reichert, M., and Dadam, P. (2003). Evaluation of correctness cri-
teria for dynamic workflow changes. In Proceedings of the 2003 international
conference on Business process management, BPM’03, pages 41-57, Berlin, Heidel-
berg. Springer-Verlag.

e van der Aalst, W. M. P. and Basten, T. (2002). Inheritance of workflows: an
approach to tackling problems related to change. Theoretical Computer Science,
270(1-2):125 - 203.

e van der Aalst, W. M. P, Basten, T., Verbeek, H. M. W., Verkoulen, P. A. C,,
and Voorhoeve, M. (1999). Adaptive workflow: On the interplay between
flexibility and support. In Filipe, J. and Cordeiro,]., editors, Proceedings of the

279

A.2. Excluded Papers Outside the Relevant Domain A. Papers Excluded from the Survey

first International Conference on Enterprise Information Systems, volume 2, pages
353-360. Settibal, Portugal.

A.2.2 Software Evolution

e Balaban, I, Tip, F,, and Fuhrer, R. (2005). Refactoring support for class library
migration. In Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’05, pages
265-279, New York, NY, USA. ACM.

e Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel, G. (2005). Towards a
taxonomy of software change: Research articles. |. Softw. Maint. Evol., 17:309—
332.

e Demeyer, S., Ducasse, S., and Nierstrasz, O. (2000). Finding refactorings via
change metrics. In Proceedings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’00, pages
166-177, New York, NY, USA. ACM.

e Godfrey, M. W. and Zou, L. (2005). Using origin analysis to detect merging and
splitting of source code entities. IEEE Trans. Softw. Eng., 31:166-181.

e Henkel, J. and Diwan, A. (2005). Catchup!: capturing and replaying refactor-
ings to support api evolution. In Proceedings of the 27th international conference
on Software engineering, ICSE "05, pages 274-283, New York, NY, USA. ACM.

e Lehman, M. M. and Ramil, J. F. (2003). Software evolution: background, theory,
practice. Inf. Process. Lett., 88:33—44.

e Lieberherr, K. J. and Xiao, C. (1993). Object-oriented software evolution. IEEE
Trans. Softw. Eng., 19:313-343.

e Lum, V,, Dadam, P, Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H., and
Woodfill, J. (1984). Designing dbms support for the temporal dimension. In
Proceedings of the 1984 ACM SIGMOD international conference on Management of
data, SIGMOD ’84, pages 115-130, New York, NY, USA. ACM.

e Opdyke, W. E. (1992). Refactoring object-oriented frameworks. Technical re-
port, Champaign, IL, USA.

e Roock, S. and Havenstein, A. (2002). Refactoring tags for automatic refactor-
ing of framework. In In XP’02: Proceedings of Extreme Programming Conference,
pages 182-185.

e Tokuda, L. and Batory, D. (2001). Evolving object-oriented designs with refac-
torings. Automated Software Engg., 8:89-120.

e Tourwé, T. and Mens, T. (2003). Automated support for framework-based soft-
ware evolution. In Proceedings of the International Conference on Software Mainte-
nance, ICSM 03, pages 148—, Washington, DC, USA. IEEE Computer Society.

280

A. Papers Excluded from the Survey A.2. Excluded Papers Outside the Relevant Domain

A.2.3 Ontology Evolution

e Noy, N. F. and Klein, M. (2004). Ontology evolution: Not the same as schema
evolution. Knowl. Inf. Syst., 6:428-440.

e Pittas, N., Jones, A. C., and Gray, W. A. (2001). Evolution support in large-scale
interoperable systems: a metadata driven approach. In Proceedings of the 12th
Australasian database conference, ADC '01, pages 161-168, Washington, DC, USA.
IEEE Computer Society.

e Plessers, P., De Troyer, O., and Casteleyn, S. (2005). Event-based model-
ing of evolution for semantic-driven systems. In Pastor, O. and Falcado e
Cunha, J., editors, Advanced Information Systems Engineering, volume 3520 of
Lecture Notes in Computer Science, pages 49-62. Springer Berlin / Heidelberg.
10.1007/11431855_6.

A.2.4 Difference Calculation & Representation

e Cicchetti, A., Ruscio, D. D., and Pierantonio, A. (2007). A metamodel inde-
pendent approach to difference representation. Journal of Object Technology,
6(9):165-185.

e Rivera, J. E. and Vallecillo, A. (2008). Representing and operating with model
differences. In Aalst, W., Mylopoulos, J., Sadeh, N. M., Shaw, M.]., Szyperski,
C., Paige, R. F,, and Meyer, B., editors, Objects, Components, Models and Patterns,
volume 11 of Lecture Notes in Business Information Processing, pages 141-160.
Springer Berlin Heidelberg. 10.1007/978-3-540-69824-1_9.

e Treude, C., Berlik, S., Wenzel, S., and Kelter, U. (2007). Difference computation
of large models. In Proceedings of the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, ESEC-FSE "07, pages 295-304, New York, NY, USA. ACM.

A.2.5 Schema Matching & Integration

e Abiteboul, S., Cluet, S., and Milo, T. (2002). Correspondence and translation
for heterogeneous data. Theor. Comput. Sci., 275:179-213.

e Chen, Y. and Benn, W. (1999). Integrating heterogeneous oo schemas. In Data
Engineering, 1999. Proceedings., 15th International Conference on, page 101.

e Del Fabro, M. D. and Valduriez, P. (2007). Semi-automatic model integration
using matching transformations and weaving models. In Proceedings of the 2007
ACM symposium on Applied computing, SAC '07, pages 963-970, New York, NY,
USA. ACM.

e McBrien, P. and Poulovassilis, A. (2002). Schema evolution in heterogeneous
database architectures, a schema transformation approach. In Proceedings of the
14th International Conference on Advanced Information Systems Engineering, CAiSE
'02, pages 484-499, London, UK, UK. Springer-Verlag.

e Milo, T. and Zohar, S. (1998). Using schema matching to simplify heteroge-

281

A.2. Excluded Papers Outside the Relevant Domain A. Papers Excluded from the Survey

neous data translation. In Proceedings of the 24rd International Conference on Very
Large Data Bases, VLDB "98, pages 122-133, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

e Navathe, S. B. (1980). Schema analysis for database restructuring. ACM Trans.
Database Syst., 5:157-184.

e Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic
schema matching. The VLDB Journal, 10:334-350.

e Wiederhold, G. (1992). Mediators in the architecture of future information
systems. Computer, 25:38-49.

282

Bibliography

[W3C, 2008] (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C.
http://www.w3.0rg/TR/REC—xml/. (cited on p 96)

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. (cited
on p 29)

[Al-Jadir and Léonard, 1998] Al-Jadir, L. and Léonard, M. (1998). Multiobjects to ease
schema evolution in an OODBMS. In Ling, T. W.,, Ram, S., and Lee, M.-L., editors, Con-
ceptual Modeling - ER 98, 17th International Conference on Conceptual Modeling, Singapore,
November 16-19, 1998, Proceedings, volume 1507 of Lecture Notes in Computer Science, pages
316-333. Springer. (cited on p 92)

[Allen and Cartwright, 2002] Allen, E. and Cartwright, R. (2002). The case for run-time types
in generic Java. In PPP] ‘02/IRE '02: Proceedings of the inaugural conference on the Principles
and Practice of programming, 2002 and Proceedings of the second workshop on Intermediate rep-
resentation engineering for virtual machines, 2002, pages 19-24, Maynooth, County Kildare,
Ireland, Ireland. National University of Ireland. (cited on p 18)

[Ambler and Sadalage, 2006] Ambler, S. W. and Sadalage, P.]. (2006). Refactoring Databases:
Evolutionary Database Design. Addison-Wesley Professional. (cited on pp 90,232)

[Andany et al., 1991] Andany, J., Léonard, M., and Palisser, C. (1991). Management of
schema evolution in databases. In VLDB '91: Proceedings of the 17th International Confer-
ence on Very Large Data Bases, pages 161-170, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc. (cited on p 93)

[Atkinson and Kiihne, 2007] Atkinson, C. and Kiihne, T. (2007). A tour of language cus-
tomization concepts. Advances in Computers, 70:105-161. (cited on p 253)

[AUTOSAR Development Partnership, 2008] AUTOSAR Development Partnership (2008).
AUTOSAR Specification V3.1. (cited on p 17)

[Banerjee et al., 1987] Banerjee, J., Kim, W., Kim, H.-]., and Korth, H. F. (1987). Semantics
and implementation of schema evolution in object-oriented databases. SIGMOD Rec.,
16(3):311-322. (cited on pp 92,110,116, 119,120,122,123, 125,126,129, 130, 135)

[Becker et al., 2007] Becker, S., Goldschmidt, T., Gruschko, B., and Koziolek, H. (2007). A
process model and classification scheme for semi-automatic meta-model evolution. In
Proc. 1st Workshop MDD, SOA und IT-Management (MSI'07), pages 35-46. GiTO-Verlag.
(cited on pp 57,98,116,119, 120, 122,123,125, 126,129, 263)

[Benatallah, 1999] Benatallah, B. (1999). A unified framework for supporting dynamic
schema evolution in object databases. In Akoka, J., Bouzeghoub, M., Comyn-Wattiau,

283

http://www.w3.org/TR/REC-xml/

Bibliography

Bibliography

1., and Métais, E., editors, Conceptual Modeling - ER 99, 18th International Conference on Con-
ceptual Modeling, Paris, France, November, 15-18, 1999, Proceedings, volume 1728 of Lecture
Notes in Computer Science, pages 16-30. Springer. (cited on pp 91,94)

[Benz, 2007] Benz, S. (2007). Combining test case generation for component and integration
testing. In Proceedings of the 3rd International Workshop on Advances in Model-based Testing
(A-MOST), pages 23-33, New York, NY, USA. ACM. (cited on p 74)

[Bézivin and Heckel, 2006] Bézivin, J. and Heckel, R. (2006). Guest editorial to the special
issue on language engineering for model-driven software development. Software and Sys-
tems Modeling, 5(3):231-232. (cited on p 15)

[Bosch, 1998] Bosch, J. (1998). Design patterns as language constructs. JOOP - Journal of
Object-Oriented Programming, 11(2):18-32. (cited on p 253)

[Bouneffa and Boudjlida, 1995] Bouneffa, M. and Boudjlida, N. (1995). Managing schema
changes in object-relationship databases. In Papazoglou, M. P., editor, OOER 95: Object-
Oriented and Entity-Relationship Modelling, 14th International Conference, Gold Coast, Aus-
tralia, December 12-15, 1995, Proceedings, volume 1021 of Lecture Notes in Computer Science,
pages 113-122. Springer. (cited on p 93)

[Braun, 2003] Braun, P. (2003). Metamodel-based integration of tools. In Proceeding of ES-
EC/FSE 2003, TIS 2003 Workshop on Tool Integration in System Development. Citeseer. (cited
on pp 29,63)

[Braun, 2004] Braun, P. (2004). Metamodellbasierte Kopplung von Werkzeugen in der Softwareen-
twicklung. PhD thesis, Technische Universitdt Miinchen. (cited on pp 29, 63)

[Braun and Marschall, 2003] Braun, P. and Marschall, E. (2003). Transforming object oriented
models with BOTL. Electronic Notes in Theoretical Computer Science, 72(3):103 — 117. GT-
VMT’2002, Graph Transformation and Visual Modeling Techniques (First International
Conference on Graph Transformation). (cited on p 62)

[Breche, 1996] Breche, P. (1996). Advanced primitives for changing schemas of object
databases. In CAiSE '96: Proceedings of the 8th International Conference on Advances In-
formation System Engineering, pages 476-495, London, UK. Springer-Verlag. (cited on
pp 92,116,119,120,122,123,125,126,129)

[Breche et al., 1995] Breche, P., Ferrandina, F., and Kuklok, M. (1995). Simulation of schema
change using views. In Database and Expert Systems Applications, volume 978, pages 247—
258. Springer Berlin / Heidelberg. (cited on p 94)

[Broy et al., 2010] Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., and Ratiu, D.
(2010). Seamless model-based development: From isolated tools to integrated model en-
gineering environments. Proceedings of the IEEE, 98(4):526 — 545. (cited on p 44)

[Broy and Stelen, 2001] Broy, M. and Stelen, K. (2001). Specification and development of inter-
active systems: focus on streams, interfaces, and refinement. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA. (cited on p 50)

[Bruegge et al., 2008] Bruegge, B., Creighton, O., Helming, J., and Koegel, M. (2008). Unicase
— an ecosystem for unified software engineering research tools. In ICGSE '08: Distributed
software development: methods and tools for risk management ; ICGSE Workshop 2008, volume
Online. (cited on p 197)

[Buchwald and Jakumeit, 2010] Buchwald, S. and Jakumeit, E. (2010). A GrGen.NET solu-
tion of the model migration case for the Transformation Tool Contest 2010. In Transforma-
tion Tool Contest (TTC 2010). (cited on p 208)

[Burger and Gruschko, 2010] Burger, E. and Gruschko, B. (2010). A change metamodel for
the evolution of MOF-based metamodels. In Modellierung 2010, volume P-161 of GI-LNI.
(cited on p 116)

284

Bibliography

Bibliography

[Bézivin, 2005] Bézivin, J. (2005). On the unification power of models. Software and Systems
Modeling, 4(2):171-188. (cited on p 30)

[Casais, 1995] Casais, E. (1995). Managing class evolution in object-oriented systems. pages
201-244. (cited on pp 91,94)

[Chen et al., 2005] Chen, K., Sztipanovits, J., and Neema, S. (2005). Toward a semantic an-
choring infrastructure for domain-specific modeling languages. In Proceedings of the 5th
ACM international conference on Embedded software, EMSOFT '05, pages 35-43, New York,
NY, USA. ACM. (cited on pp 29,45,49)

[Cicchetti et al., 2010] Cicchetti, A., Meyers, B., and Wimmer, M. (2010). Abstract and con-
crete syntax migration of instance models. In Transformation Tool Contest (TTC 2010). (cited
on p 208)

[Cicchetti et al., 2008] Cicchetti, A., Ruscio, D. D., Eramo, R., and Pierantonio, A. (2008). Au-
tomating co-evolution in model-driven engineering. In Ceballos, S., editor, Enterprise Dis-
tributed Object Computing Conference, 2008. EDOC’08. 12th International IEEE. IEEE Com-
puter Society. (cited on pp 57,61, 66,78,99,116,119,120,122,123,125,126,129, 215, 263)

[Cicchetti et al., 2009] Cicchetti, A., Ruscio, D. D., and Pierantonio, A. (2009). Managing de-
gmg
pendent changes in coupled evolution. In ICMT2009 - International Conference on Model
Transformation. Springer LNCS. (cited on p 99)

[Clamen, 1994] Clamen, S. M. (1994). Schema evolution and integration. Distributed and
Parallel Databases, 2(1):101-126. (cited on p 93)

[Claypool et al., 1998] Claypool, K. T., Jin, J., and Rundensteiner, E. A. (1998). SERF: schema
evolution through an extensible, re-usable and flexible framework. In CIKM "98: Proceed-
ings of the seventh international conference on Information and knowledge management, pages
314-321, New York, NY, USA. ACM. (cited on p 92)

[Claypool et al., 2000] Claypool, K. T., Rundensteiner, E. A., and Heineman, G. T. (2000).
ROVER: A framework for the evolution of relationships. In Conceptual Modeling - ER 2000,
volume 1920 of Lecture Notes in Computer Science, pages 893-917. Springer Berlin / Heidel-
berg. (cited on pp 92,116,119,120,122,123,125,126,129)

[Codd, 1970] Codd, E. E. (1970). A relational model of data for large shared data banks.
Commun. ACM, 13(6):377-387. (cited on p 89)

[Cook et al., 2007] Cook, S., Jones, G., Kent, S., and Wills, A. (2007). Domain-specific develop-
ment with Visual Studio DSL Tools. Addison-Wesley Professional. (cited on pp 16,30)

[Crestana-Jensen et al., 2000] Crestana-Jensen, V., Lee, A., and Rundensteiner, E. (2000). Con-
sistent schema version removal: an optimization technique for object-oriented views.
Knowledge and Data Engineering, IEEE Transactions on, 12(2):261 —280. (cited on p 94)

[Curino et al., 2008a] Curino, C., Moon, H. J., Tanca, L., and Zaniolo, C. (2008a). Schema
evolution in Wikipedia - toward a web information system benchmark. In ICEIS 2008
- Proceedings of the Tenth International Conference on Enterprise Information Systems, Volume
DISI, Barcelona, Spain, June 12-16, 2008, pages 323-332. (cited on pp 66, 90,197)

[Curino et al., 2008b] Curino, C., Moon, H. J., and Zaniolo, C. (2008b). Graceful database
schema evolution: the PRISM workbench. PVLDB, 1(1):761-772. (cited on p 90)

[Curino et al., 2009] Curino, C. A., Moon, H. J., Ham, M., and Zaniolo, C. (2009). The PRISM
workwench: Database schema evolution without tears. In ICDE "09: Proceedings of the 2009
IEEE International Conference on Data Engineering, pages 1523-1526, Washington, DC, USA.
IEEE Computer Society. (cited on p 90)

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. W. (2000). Generative pro-
gramming: methods, tools, and applications. ACM Press/Addison-Wesley Publishing Co.,

285

Bibliography

Bibliography

New York, NY, USA. (cited on p 15)

[Czarnecki and Helsen, 2006] Czarnecki, K. and Helsen, S. (2006). Feature-based survey of
model transformation approaches. IBM Syst. J., 45(3):621-645. (cited on pp 63, 64,219)

[Dassault Systemes, 2010] Dassault Systemes (2010). Catia. http://www.catia.com.
(cited on p 19)

[Deissenboeck et al., 2007] Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., and Girard,
J. (2007). An activity-based quality model for maintainability. In IEEE International Confer-
ence on Software Maintenance, 2007. ICSM 2007, pages 184-193. (cited on pp 53,190)

[Dig and Johnson, 2006] Dig, D. and Johnson, R. (2006). How do APIs evolve?
a story of refactoring. J. Softw. Maint. Evol., 18(2):83-107. (cited on
pp 18,66,67,116,119,120,122,123,125,126,129)

[Ehrig et al., 2008] Ehrig, K., Kiister,]. M., and Taentzer, G. (2008). Generating instance mod-
els from meta models. Software and Systems Modeling. (cited on p 32)

[Eichler et al., 2006] Eichler, H., Scheidgen, M., and Soden, M. (2006). A meta-modelling
framework for modelling semantics in the context of existing domains platforms. In
Hajo Eichler, T. R., editor, ECMDA Workshop on Integration of Model Driven Development
and Model Driven Testing. Fraunhofer FOKUS, Berlin. (cited on p 52)

[Favre, 2003] Favre,]J.-M. (2003). Meta-model and model co-evolution within the 3D soft-
ware space. In Proceedings of the ELISA workshop Evolution of Large-scale Industrial Software
Evolution, pages 98-109. (cited on pp 54, 66)

[Favre, 2005] Favre,].-M. (2005). Languages evolve too! changing the software time scale.
In Principles of Software Evolution, Eighth International Workshop on, pages 33-42. (cited on
pp 17,53,81,83,187,188)

[Ferrandina et al., 1995] Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., and Madec, J. (1995).
Schema and database evolution in the O2 object database system. In VLDB "95: Proceedings
of the 21th International Conference on Very Large Data Bases, pages 170-181, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc. (cited on p 92)

[Flouris et al., 2008] Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., and An-
toniou, G. (2008). Ontology change: Classification and survey. Knowl. Eng. Rev., 23(2):117-
152. (cited on p 85)

[Fowler, 1999] Fowler, M. (1999). Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc.,, Boston, MA, USA. (cited on
pp 72,116,119,120,122,123,125,126,129, 187)

[Fowler, 2005] Fowler, M. (2005). Language workbenches: The killer-app for domain specific
languages? http://martinfowler.com/articles/languageWorkbench.html.
(cited on pp 16,43)

[France and Rumpe, 2007] France, R. and Rumpe, B. (2007). Model-driven development of
complex software: A research roadmap. In FOSE ‘07: 2007 Future of Software Engineering,
pages 37-54, Washington, DC, USA. IEEE Computer Society. (cited on pp 15,16,17,28)

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley. (cited on p 216)

[Garcés et al., 2009] Garcés, K., Jouault, F., Cointe, P.,, and Bézivin, J. (2009). A domain
specific language for expressing model matching. In Proceedings of the 5ére Journée sur
I'Ingénierie Dirigée par les Modeles (IDMO09). (cited on pp 66,218,220)

[Garcés et al., 2009] Garcés, K., Jouault, F., Cointe, P., and Bézivin, J. (2009). Managing model
adaptation by precise detection of metamodel changes. In Model Driven Architecture - Foun-
dations and Applications, volume 5562 of Lecture Notes in Computer Science, pages 34—49.

286

http://www.catia.com
http://martinfowler.com/articles/languageWorkbench.html

Bibliography

Bibliography

Springer Berlin / Heidelberg. (cited on pp 67,78,99,215,218,220,263)

[Garlan et al., 1994] Garlan, D., Krueger, C. W., and Lerner, B. S. (1994). TransformGen: au-
tomating the maintenance of structure-oriented environments. ACM Trans. Program. Lang.
Syst., 16(3):727-774. (cited on pp 67,95)

[Geest et al., 2008] Geest, G. d., Vermolen, S., Deursen, A. v., and Visser, E. (2008). Generating
version convertors for domain-specific languages. In WCRE "08: Proceedings of the 2008 15th
Working Conference on Reverse Engineering, pages 197-201, Washington, DC, USA. IEEE
Computer Society. (cited on pp 67,99)

[Gil and Maman, 2005] Gil, J. and Maman, 1. (2005). Micro patterns in Java code. In 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, pages 97-116. (cited on p 253)

[Goldschmidt et al., 2008] Goldschmidt, T., Becker, S., and Uhl, A. (2008). Classification of
concrete textual syntax mapping approaches. In ECMDA-FA "08: Proceedings of the 4th Eu-
ropean conference on Model Driven Architecture, pages 169-184, Berlin, Heidelberg. Springer-
Verlag. (cited on p 45)

[Greenfield et al., 2004] Greenfield, J., Short, K., Cook, S., and Kent, S. (2004). Software Fac-
tories: Assembling Applications with Patterns, Models, Frameworks, and Tools. John Wiley &
Sons. (cited on pp 16,29)

[Gronback, 2009] Gronback, R. C. (2009). Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley Professional. (cited on pp 216,245)

[Grenmo et al., 2009] Grenmo, R., Meller-Pedersen, B., and Olsen, G. (2009). Comparison
of three model transformation languages. In Model Driven Architecture - Foundations and
Applications, volume 5562 of LNCS, pages 2-17. Springer. (cited on p 219)

[Gruschko, 2006] Gruschko, B. (2006). Towards structured revisions of meta models and
semi-automatic model migration. In Eclipse Modeling Symposium at Eclipse Summit Europe
2006. (cited on p 98)

[Gruschko et al., 2007] Gruschko, B., Kolovos, D. S., and Paige, R. E. (2007). Towards syn-
chronizing models with evolving metamodels. In Workshop on Model-Driven Software Evo-
lution at CSMR 2007. (cited on pp 57,66, 78,98,223)

[Guerrini and Mesiti, 2008] Guerrini, G. and Mesiti, M. (2008). X-Evolution: A comprehen-
sive approach for XML schema evolution. In Database and Expert Systems Application, 2008.
DEXA ’08. 19th International Conference on, pages 251-255. (cited on p 97)

[Guerrini et al., 2007] Guerrini, G., Mesiti, M., and Sorrenti, M. A. (2007). XML schema evo-
lution: Incremental validation and efficient document adaptation. In Database and XML
Technologies, volume 4704 of Lecture Notes in Computer Science, pages 92-106. Springer
Berlin / Heidelberg. (cited on p 97)

[Guizzardi, 2005] Guizzardi, G. (2005). Ontological foundations for structural conceptual models.
PhD thesis, University of Twente, Enschede, The Netherlands. (cited on p 15)

[Hage and van Keeken, 2009] Hage, J. and van Keeken, P. (2009). Neon: A library for lan-
guage usage analysis. In Software Language Engineering, volume 5452 of Lecture Notes in
Computer Science, pages 35-53. Springer Berlin / Heidelberg. (cited on p 254)

[Harel and Rumpe, 2004] Harel, D. and Rumpe, B. (2004). Meaningful modeling: what’s the
semantics of "semantics"? Computer, 37(10):64-72. (cited on pp 29,49)

[Henderson-Sellers and Gonzalez-Perez, 2006] Henderson-Sellers, B. and Gonzalez-Perez,
C. (2006). Uses and abuses of the stereotype mechanism in UML 1.x and 2.0. In MoD-
ELS '06, volume 4199 of LNCS, pages 16-26. Springer. (cited on p 253)

[Herrmannsdoerfer, 2009] Herrmannsdoerfer, M. (2009). Operation-based versioning of

287

Bibliography

Bibliography

metamodels with COPE. In CVSM "09: Proceedings of the 2009 ICSE Workshop on Compari-
son and Versioning of Software Models, pages 49-54, Washington, DC, USA. IEEE Computer
Society. (cited on pp 22,149, 267)

[Herrmannsdoerfer, 2010] Herrmannsdoerfer, M. (2010). Migrating UML activity models
with COPE. In Transformation Tool Contest (TTC 2010). (cited on pp 23,167,208,268)

[Herrmannsdoerfer, 2011] Herrmannsdoerfer, M. (2011). COPE - a workbench for the cou-
pled evolution of metamodels and models. In Malloy, B., Staab, S., and van den Brand,
M., editors, Software Language Engineering, volume 6563 of Lecture Notes in Computer Sci-
ence, pages 286-295. Springer Berlin / Heidelberg. (cited on pp 22,149,267)

[Herrmannsdoerfer et al., 2008a] Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2008a).
Automatability of coupled evolution of metamodels and models in practice. In Czar-
necki, K., Ober, I, Bruel,].-M., Uhl, A., and Vélter, M., editors, Model Driven Engineering
Languages and Systems (MODELS 2008), volume 5301/2008 of Lecture Notes in Computer
Science, pages 645-659. Springer Berlin / Heidelberg. (cited on pp 21,65, 265)

[Herrmannsdoerfer et al., 2008b] Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2008b).
COPE: A language for the coupled evolution of metamodels and models. In Ist In-
ternational Workshop on Model Co-Evolution and Consistency Management. (cited on
pp 22,105, 266)

[Herrmannsdoerfer et al., 2009a] Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2009a).
COPE - automating coupled evolution of metamodels and models. In ECOOP 2009 -
Object-Oriented Programming, volume 5653 of Lecture Notes in Computer Science, pages 52—
76. Springer Berlin / Heidelberg. (cited on pp 22,105, 167,266, 267)

[Herrmannsdoerfer et al., 2009b] Herrmannsdoerfer, M., Haberl, W., and Baumgarten, U.
(2009b). Model-level simulation for COLA. In MISE "09: Proceedings of the 2009 ICSE
Workshop on Modeling in Software Engineering, pages 38—43, Washington, DC, USA. IEEE
Computer Society. (cited on p 52)

[Herrmannsdoerfer and Koegel, 2010a] Herrmannsdoerfer, M. and Koegel, M. (2010a). To-
wards a generic operation recorder for model evolution. In IWMCP "10: Proceedings of
the 1st International Workshop on Model Comparison in Practice, pages 76-81, New York, NY,
USA. ACM. (cited on pp 149,199)

[Herrmannsdoerfer and Koegel, 2010b] Herrmannsdoerfer, M. and Koegel, M. (2010b). To-
wards semantics-preserving model migration. In Proceedings of the International Workshop
on Models and Evolution. (cited on pp 23,231,268)

[Herrmannsdoerfer et al., 2008c] Herrmannsdoerfer, M., Konrad, S., and Berenbach, B.
(2008c). Tabular notations for state machine-based specifications. Cross Talk, The Journal of
defense Software Engineering. (cited on p 46)

[Herrmannsdoerfer and Ratiu, 2009] Herrmannsdoerfer, M. and Ratiu, D. (2009). Limita-
tions of automating model migration in response to metamodel adaptation. In Proc. of the
Joint ModSE-MCCM Workshop on Models and Evolution. (cited on pp 22,105,267)

[Herrmannsdoerfer and Ratiu, 2010] Herrmannsdoerfer, M. and Ratiu, D. (2010). Limita-
tions of automating model migration in response to metamodel adaptation. In Models
in Software Engineering, volume 6002 of Lecture Notes in Computer Science, pages 205-219.
Springer Berlin / Heidelberg. (cited on pp 22,105,267)

[Herrmannsdoerfer et al., 2010a] Herrmannsdoerfer, M., Ratiu, D., Koegel, M., Herrmanns-
doerfer, M., Ratiu, D., and Koegel, M. (2010a). Metamodel usage analysis for identifying
metamodel improvements. In Malloy, B., Staab, S., and van den Brand, M., editors, Soft-
ware Language Engineering, volume 6563 of Lecture Notes in Computer Science, pages 62-81.
Springer Berlin / Heidelberg. (cited on pp 23,231,268)

288

Bibliography

Bibliography

[Herrmannsdoerfer et al., 2009c] Herrmannsdoerfer, M., Ratiu, D., and Wachsmuth, G.
(2009¢). Language evolution in practice: The history of GMF. In Software Language En-
gineering, volume 5969 of Lecture Notes in Computer Science, pages 3—22. Springer Berlin /
Heidelberg. (cited on pp 22,167,215,267)

[Herrmannsdoerfer et al., 2010b] Herrmannsdoerfer, M., Vermolen, S., Wachsmuth, G., Her-
rmannsdoerfer, M., Vermolen, S., and Wachsmuth, G. (2010b). An extensive catalog of op-
erators for the coupled evolution of metamodels and models. In Malloy, B., Staab, S., and
van den Brand, M., editors, Software Language Engineering, volume 6563 of Lecture Notes in
Computer Science, pages 163-182. Springer Berlin / Heidelberg. (cited on pp 22,105,267)

[Hildisch et al., 2007] Hildisch, A., Steurer, J., and Stolle, R. (2007). HMI generation for plug-
in services from semantic descriptions. In Proceedings of the 4th International Workshop on
Software Engineering for Automotive Systems (SEAS), Washington, DC, USA. IEEE Computer
Society. (cited on p 73)

[Horn, 2010] Horn, T. (2010). Model migration with GReTL. In Transformation Tool Contest
(TTC 2010). (cited on p 208)

[Hofler et al., 2005] HofBler, J., Soden, M., and Eichler, H. (2005). Models and Human Rea-
soning, chapter Coevolution of Models, Metamodels and Transformations, pages 129-154.
Wissenschaft und Technik Verlag, Berlin. (cited on p 99)

[Huber et al., 1996] Huber, F.,, Schitz, B., Schmidt, A., and Spies, K. (1996). AutoFocus: A
tool for distributed systems specification. In FTRTFT ’96: Proceedings of the 4th Interna-
tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 467—
470, London, UK. Springer-Verlag. (cited on p 53)

[Hussey and Paternostro, 2006] Hussey, K. and Paternostro, M. (2006). Advanced features of
EMEF. Tutorial at EclipseCon 2006, California, USA. [Accessed 07 September 2009] Avail-
able at: http://www.eclipsecon.org/2006/Sub.do?id=171. (cited on p 218)

[Jouault and Bézivin, 2006] Jouault, F. and Bézivin, J. (2006). KM3: A DSL for metamodel
specification. In Gorrieri, R. and Wehrheim, H., editors, Formal Methods for Open Object-
Based Distributed Systems, volume 4037 of Lecture Notes in Computer Science, pages 171-185.
Springer Berlin / Heidelberg. (cited on pp 30,31)

[Jouault and Kurtev, 2006] Jouault, F. and Kurtev, I. (2006). Transforming models with ATL.
In Satellite Events at the MoDELS 2005 Conference, volume 3844 /2006 of Lecture Notes in
Computer Science, pages 128-138. Springer Berlin / Heidelberg. (cited on pp 63,220)

[Juergens and Pizka, 2006] Juergens, E. and Pizka, M. (2006). The language evolver Lever —
tool demonstration —. Electronic Notes in Theoretical Computer Science, 164(2):55 — 60. Pro-
ceedings of the Sixth Workshop on Language Descriptions, Tools, and Applications (LDTA
2006), Sixth Workshop on Language Descriptions, Tools, and Applications. (cited onp 96)

[Kalnina et al., 2010] Kalnina, E., Kalnins, A., Iraids, J., Sostaks, A., and Celms, E. (2010).
Model migration with MOLA. In Transformation Tool Contest (TTC 2010). (cited on p 208)

[Kang et al., 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.
(1990). Feature-oriented domain analysis (FODA) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering Institute. (cited on p 86)

[Karsai et al., 2009] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., and V&lkl,
S. (2009). Design guidelines for domain specific languages. In The 9th OOPSLA Workshop
on Domain-Specific Modeling. (cited on p 236)

[Kelly and Pohjonen, 2009] Kelly, S. and Pohjonen, R. (2009). Worst practices for domain-
specific modeling. IEEE Software, 26(4):22-29. (cited on p 236)

[Kelly and Tolvanen, 2007] Kelly, S. and Tolvanen, J.-P. (2007). Domain-Specific Modeling. John
Wiley & Sons. (cited on pp 15,16,27,28,30)

289

http://www.eclipsecon.org/2006/Sub.do?id=171

Bibliography

Bibliography

[Kieburtz et al., 1996] Kieburtz, R. B., McKinney, L., Bell,]. M., Hook, J., Kotov, A., Lewis, .,
Oliva, D. P, Sheard, T., Smith, I., and Walton, L. (1996). A software engineering experi-
ment in software component generation. In ICSE '96: Proceedings of the 18th international
conference on Software engineering, pages 542-552, Washington, DC, USA. IEEE Computer
Society. (cited on p 27)

[Kim, 1990] Kim, W. (1990). Introduction to object-oriented databases. MIT Press, Cambridge,
MA, USA. (cited on p 89)

[Kim and Chou, 1988] Kim, W. and Chou, H.-T. (1988). Versions of schema for object-
oriented databases. In VLDB ’88: Proceedings of the 14th International Conference on Very
Large Data Bases, pages 148-159, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc. (cited on p 93)

[Kitchenham and Charters, 2007] Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming Systematic Literature Reviews in Software Engineering. Technical Report EBSE
2007-001, Keele University and Durham University Joint Report. (cited on p 84)

[Klés et al., 2010] Klids, M., Lampasona, C., Nunnenmacher, S., Wagner, S., Herrmannsdoer-
fer, M., and Lochmann, K. (2010). How to evaluate meta-models for software quality? In
DASMA Metrik Kongress. (cited on p 190)

[Kleppe, 2008] Kleppe, A. (2008). Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley Professional. (cited on pp 16,17,29,37)

[Kleppe and Rensink, 2008] Kleppe, A. G. and Rensink, A. (2008). A graph-based semantics
for UML class and object diagrams. Technical Report TR-CTIT-08-06, Centre for Telematics
and Information Technology, University of Twente, Enschede, Netherlands. (cited on
pp 31,32,33,34,35,37,38,40)

[Kleppe et al., 2003] Kleppe, A. G., Warmer, J., and Bast, W. (2003). MDA Explained: The
Model Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA. (cited on pp 16,26,28,176)

[Klint et al., 2005] Klint, P, Limmel, R., and Verhoef, C. (2005). Toward an engineering dis-
cipline for grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331-380. (cited on
pp 18,66,114)

[Koch et al., 2010] Koch, A., Jubeh, R., and Ziindorf, A. (2010). UML 1.4 to 2.1 activity di-
agram model migration with Fujaba - a case study. In Transformation Tool Contest (TTC
2010). (cited on p 208)

[Koegel, 2008] Koegel, M. (2008). Towards software configuration management for unified
models. In CVSM '08: Proceedings of the 2008 international workshop on Comparison and
versioning of software models, pages 19-24, New York, NY, USA. ACM. (cited on p 198)

[Koegel et al., 2009a] Koegel, M., Helming, J., and Seyboth, S. (2009a). Operation-based con-
flict detection and resolution. In CVSM '09: Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models, pages 43—48, Washington, DC, USA. IEEE
Computer Society. (cited on p 198)

[Koegel et al., 2009b] Koegel, M., Herrmannsdoerfer, M., Helming, J., and Li, Y. (2009b).
State-based vs. operation-based change tracking. In Models and Evolution - Joint MoDSE-
MCCM Workshop, pages 132-141. online. (cited on pp 164,198)

[Koegel et al., 2010a] Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J., and David,]J.
(2010a). Comparing state- and operation-based change tracking on models. In Proceedings
of the IEEE International EDOC Conference. (cited on p 198)

[Koegel et al., 2010b] Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., and Helming,
J. (2010b). Operation-based conflict detection. In IWMCP "10: Proceedings of the 1st Interna-
tional Workshop on Model Comparison in Practice, pages 21-30, New York, NY, USA. ACM.

290

Bibliography

Bibliography

(cited on p 166)

[Koenig et al., 2007] Koenig, D., Glover, A., King, P., Laforge, G., and Skeet, J. (2007). Groovy
in Action. Manning Publications Co., Greenwich, CT, USA. (cited on pp 110,136, 255)

[Kolovos, 2009] Kolovos, D. (2009). An Extensible Platform for Specification of Integrated Lan-
guages for Model Management. PhD thesis, University of York, United Kingdom. (cited on
p 218)

[Kriiger et al., 2006] Kriiger, I. H., Mathew, R., and Meisinger, M. (2006). Efficient exploration
of service-oriented architectures using aspects. In ICSE "06: Proceedings of the 28th interna-
tional conference on Software engineering, pages 62-71, New York, NY, USA. ACM. (cited on
p 53)

[Kugele et al., 2007] Kugele, S., Tautschnig, M., Bauer, A., Schallhart, C., Merenda, S., Haber],
W.,, Kiihnel, C., Miiller, E, Wang, Z., Wild, D., Rittmann, S., and Wechs, M. (2007). COLA -
the component language. Technical Report TUM-10714, Institut fiir Informatik, Technische
Universitdt Miinchen. (cited on p 53)

[Kurtev et al., 2002] Kurtev, L., Bézivin, J., and Aksit, M. (2002). Technological spaces: An ini-
tial appraisal. In CoopIS, DOA Federated Conferences, Industrial track. (cited on pp 66, 81, 82)

[Lammel, 2001] Lammel, R. (2001). Grammar adaptation. In FME 2001: Formal Methods
for Increasing Software Productivity, volume 2021 /2001 of Lecture Notes in Computer Science,
pages 550-570. Springer Berlin / Heidelberg. (cited on pp 96,99,179)

[Lammel, 2004] Lammel, R. (2004). Coupled software transformations (extended abstract).
In First International Workshop on Software Evolution Transformations. (cited on p 83)

[Lammel et al., 2005] Lammel, R., Kitsis, S., and Remy, D. (2005). Analysis of XML schema
usage. In Conference Proceedings XML 2005. (cited on p 253)

[Lammel and Lohmann, 2001] Lammel, R. and Lohmann, W. (2001). Format Evolution. In
Proc. 7th International Conference on Reverse Engineering for Information Systems (RETIS 2001),
volume 155 of books@ocg.at, pages 113-134. OCG. (cited on p 97)

[Lammel and Pek, 2010] Lammel, R. and Pek, E. (2010). Vivisection of a non-executable,
domain-specific language - understanding (the usage of) the P3P language. In Proceedings
of the 2010 IEEE 18th International Conference on Program Comprehension, ICPC '10, pages
104-113, Washington, DC, USA. IEEE Computer Society. (cited on p 253)

[Lammel and Verhoef, 2001] Lammel, R. and Verhoef, C. (2001). Semi-automatic grammar
recovery. Softw. Pract. Exper., 31(15):1395-1448. (cited on pp 67,189)

[Lammel and Zaytsev, 2009a] Lammel, R. and Zaytsev, V. (2009a). An introduction to gram-
mar convergence. In IFM '09: Proceedings of the 7th International Conference on Integrated
Formal Methods, pages 246-260, Berlin, Heidelberg. Springer-Verlag. (cited on p 96)

[Lammel and Zaytsev, 2009b] Lammel, R. and Zaytsev, V. (2009b). Recovering grammar re-
lationships for the Java language specification. Source Code Analysis and Manipulation, IEEE
International Workshop on, 0:178-186. (cited on pp 67,96,114,189,197)

[Lange et al., 2006] Lange, C. E. J., DuBois, B., Chaudron, M. R. V., and Demeyer, S. (2006).
An experimental investigation of UML modeling conventions. In Model Driven Engineer-
ing Languages and Systems, volume 4199 of Lecture Notes in Computer Science, pages 27—41.
Springer Berlin / Heidelberg. (cited on p 253)

[Lano and Rahimi, 2010] Lano, K. and Rahimi, S. K. (2010). Model migration transformation
specification in UML-RSDS. In Transformation Tool Contest (TTC 2010). (cited on p 208)

[Lautemann, 1996] Lautemann, S.-E. (1996). An introduction to schema versioning in
OODBMS. In DEXA ’96: Proceedings of the 7th International Workshop on Database and Ex-
pert Systems Applications, pages 132-139, Washington, DC, USA. IEEE Computer Society.

291

Bibliography

Bibliography

(cited on p 93)

[Lautemann, 1997] Lautemann, S.-E. (1997). A propagation mechanism for populated
schema versions. In ICDE "97: Proceedings of the Thirteenth International Conference on Data
Engineering, pages 67-78, Los Alamitos, CA, USA. IEEE Computer Society. (cited on p 93)

[Ledeczi et al., 2001] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., and Volgyesi, P. (2001). The Generic Modeling Environment.
In WISP. (cited on pp 30,97)

[Lerner, 1997] Lerner, B. S. (1997). TESS: automated support for the evolution of persistent
types. In ASE '97: Proceedings of the 12th international conference on Automated software engi-
neering (formerly: KBSE), page 172, Washington, DC, USA. IEEE Computer Society. (cited
onp 92)

[Lerner, 2000] Lerner, B. S. (2000). A model for compound type changes encountered in
schema evolution. ACM Trans. Database Syst., 25(1):83-127. (cited on pp 66, 92)

[Lerner and Habermann, 1990] Lerner, B. S. and Habermann, A. N. (1990). Beyond schema
evolution to database reorganization. SIGPLAN Not., 25(10):67-76. (cited on p 92)

[Levendovszky et al., 2010] Levendovszky, T., Balasubramanian, D., Narayanan, A., and
Karsai, G. (2010). A novel approach to semi-automated evolution of DSML model trans-
formation. In Software Language Engineering, volume 5969 of Lecture Notes in Computer
Science, pages 23—41. Springer Berlin / Heidelberg. (cited on p 263)

[Li, 1999] Li, X. (1999). A survey of schema evolution in object-oriented databases. In 31st In-
ternational Conference on Technology of Object-Oriented Language and Systems (TOOLS), page
362. IEEE Computer Society. (cited on p 95)

[Li et al., 2006] Li, X., Shannon, D., Walker, J., Khurshid, S., and Marinov, D. (2006). Analyz-
ing the uses of a software modeling tool. Electronic Notes in Theoretical Computer Science,
164(2):3 — 18. Proceedings of the Sixth Workshop on Language Descriptions, Tools, and
Applications (LDTA 2006), Sixth Workshop on Language Descriptions, Tools, and Appli-
cations. (cited on p 254)

[Lientz and Swanson, 1980] Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance
Management. Addison-Wesley. (cited on pp 54,182,184,187,188,195)

[Liu et al., 1993] Liu, C.-T., Chrysanthis, P. K., and Chang, S.-K. (1993). Schema evolution
through changes to ER diagrams. |. Inf. Sci. Eng., 9(4):657-683. (cited on p 94)

[Liu et al., 1994] Liu, C.-T., Chrysanthis, P. K., and Chang, S.-K. (1994). Database schema evo-
lution through the specification and maintenance of changes on entities and relationships.
In Loucopoulos, P, editor, Entity-Relationship Approach - ER 94, Business Modelling and Re-
Engineering, 13th International Conference on the Entity-Relationship Approach, Manchester,
U.K., December 13-16, 1994, Proceedings, volume 881 of Lecture Notes in Computer Science,
pages 132-151. Springer. (cited on p 94)

[Marschall, 2005] Marschall, F. (2005). Modelltransformationen als Mittel der modellbasierten
Entwicklung von Software-Systemen. PhD thesis, Technische Universitidt Miinchen. (cited
on pp 62,115)

[Mealy, 1976] Mealy, G. (1976). A method for synthesizing sequential circuits. Computer
design development: principal papers, 34:58. (cited on pp 56,107)

[Mens and Demeyer, 2008] Mens, T. and Demeyer, S. (2008). Software Evolution. Springer
Publishing Company, Incorporated. (cited on p 17)

[Mens and Tourwé, 2004] Mens, T. and Tourwé, T. (2004). A survey of software refactoring.
IEEE Trans. Softw. Eng., 30(2):126-139. (cited on p 232)

[Mens and Van Gorp, 2006] Mens, T. and Van Gorp, P. (2006). A taxonomy of model trans-

292

Bibliography

Bibliography

formation. Electron. Notes Theor. Comput. Sci., 152:125-142. (cited on pp 62, 63, 64,109,219)

[Mens et al., 2005] Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., and
Jazayeri, M. (2005). Challenges in software evolution. In 8th International Workshop on
Principles of Software Evolution (IWPSE), pages 13-22. (cited on p 17)

[Mesiti et al., 2006] Mesiti, M., Celle, R., Sorrenti, M. A., and Guerrini, G. (2006). X-evolution:
A system for XML schema evolution and document adaptation. In Advances in Database
Technology - EDBT 2006, volume 3896 of Lecture Notes in Computer Science, pages 1143-1146.
Springer Berlin / Heidelberg. (cited on p 97)

[Meyer, 1996] Meyer, B. (1996). Schema evolution: Concepts, terminology, and solutions.
Computer, 29(10):119-121. (cited on pp 54, 66)

[Meyer, 2000] Meyer, B. (2000). Principles of language design and evolution. In Millennial
Perspectives in Computer Science (Proceedings of the 1999 Oxford-Microsoft Symposium in Hon-
our of Sir Tony Hoare, pages 229-246. Palgrave. (cited on p 18)

[Monk and Sommerville, 1993] Monk, S. and Sommerville, 1. (1993). Schema evolution in
OODBs using class versioning. SIGMOD Rec., 22(3):16-22. (cited on p 93)

[Moore, 1956] Moore, E. (1956). Gedanken-experiments on sequential machines. Automata
studies, 34:129-153. (cited on pp 27,56, 106)

[Muller et al., 2005] Muller, P.-A., Fleurey, E,, and Jézéquel,].-M. (2005). Weaving executabil-
ity into object-oriented meta-languages. In Model Driven Engineering Languages and Sys-
tems, volume 3713 of Lecture Notes in Computer Science, pages 264-278. Springer Berlin /
Heidelberg. (cited on pp 52,254)

[Narayanan et al., 2009] Narayanan, A., Levendovszky, T., Balasubramanian, D., and Karsai,
G. (2009). Automatic domain model migration to manage metamodel evolution. In Model
Driven Engineering Languages and Systems, volume 5795 of Lecture Notes in Computer Science,
pages 706-711. Springer Berlin / Heidelberg. (cited on pp 66,78,98,263)

[Nguyen and Rieu, 1989] Nguyen, G. T. and Rieu, D. (1989). Schema evolution in object-
oriented database systems. Data Knowl. Eng., 4(1):43-67. (cited on p 92)

[Object Management Group, 2001] Object Management Group (2001). Unified Modeling
Language (UML) specification version 1.4. http://www.omg.org/spec/UML/1.4/\
(cited on p 205)

[Object Management Group, 2003] Object Management Group (2003). Model Driven Ar-
chitecture (MDA) guide version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/
03-06-01.pdf. (cited on p 28)

[Object Management Group, 2004] Object Management Group (2004). Human-usable tex-

tual notation (HUTN) specification version 1.0. |http://www.omg.org/spec/HUTN/
1.0/. (cited on p 46)

[Object Management Group, 2006a] Object Management Group (2006a). Meta Object Fa-
cility (MOF) core specification version 2.0. http://www.omg.org/spec/MOF/2.0/.
(cited on pp 29, 30,97,130)

[Object Management Group, 2006b] Object Management Group (2006b). Object Constraint
Language (OCL) specification version 2.0. http://www.omg.org/spec/OCL/2.0/.
(cited on pp 40,41, 44,51,177)

[Object Management Group, 2007] Object Management Group (2007). XML Metadata Inter-
change (XMI) specification version 2.1.1. http://www.omg.org/spec/XMI/2.1.1/.
(cited on pp 44, 46,205)

[Object Management Group, 2008a] Object Management Group (2008a). MOF model to
text transformation language version 1.0. http: //www.omg.org/spec/MOFM2T/1.0/.

293

http://www.omg.org/spec/UML/1.4/
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/spec/HUTN/1.0/
http://www.omg.org/spec/HUTN/1.0/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/MOFM2T/1.0/

Bibliography

Bibliography

(cited on pp 44,51)

[Object Management Group, 2008b] Object Management Group (2008b). MOF
Query/View /Transformation (QVT) specification version 1.0. |http://www.omg.
org/spec/QVT/1.0/. (cited on pp 29,44,51,63)

[Object Management Group, 2009] Object Management Group (2009). Unified Modeling
Language (UML) superstructure version 2.2. http://www.omg.org/spec/UML/2.2/.
(cited on pp 16,17,28,30, 32,41, 43,53,97,106, 205)

[Overbey and Johnson, 2009] Overbey, J. L. and Johnson, R. E. (2009). Regrowing a language:
refactoring tools allow programming languages to evolve. In OOPSLA 09: Proceeding of
the 24th ACM SIGPLAN conference on Object oriented programming systems languages and
applications, pages 493-502, New York, NY, USA. ACM. (cited on pp 67,96)

[Paige et al., 2000] Paige, R. F., Ostroff,]. S., and Brooke, P. J. (2000). Principles for modeling
language design. Information and Software Technology, 42(10):665 — 675. (cited on p 236)

[Penney and Stein, 1987] Penney, D. J. and Stein, J. (1987). Class modification in the Gem-
Stone object-oriented DBMS. In OOPSLA '87: Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 111-117, New York, NY, USA. ACM.
(cited on p 92)

[Pizka and Juergens, 2007a] Pizka, M. and Juergens, E. (2007a). Automating language evo-
lution. In TASE "07: Proceedings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects
of Software Engineering, pages 305-315, Washington, DC, USA. IEEE Computer Society.
(cited on p 96)

[Pizka and Juergens, 2007b] Pizka, M. and Juergens, E. (2007b). Tool supported multi level
language evolution. In Software and Services Variability Management Workshop - Concepts,
Models and Tools, number 3 in Helsinki University of Technology Software Business and
Engineering Institute Research Reports, pages 48—67. (cited on p 96)

[Pons, 1997] Pons, A., K. R. (1997). Schema evolution in object databases by catalogs. In
Database Engineering and Applications Symposium, 1997. IDEAS '97. Proceedings., Interna-
tional, pages 368 -376. (cited on pp 95,116,119,120,122,123,125,126,129)

[Pretschner et al., 2007] Pretschner, A., Broy, M., Kruger, I. H., and Stauner, T. (2007). Soft-
ware engineering for automotive systems: A roadmap. In FOSE "07: 2007 Future of Software
Engineering, pages 55-71, Washington, DC, USA. IEEE Computer Society. (cited on p 15)

[Ra and Rundensteiner, 1995a] Ra, Y.-G. and Rundensteiner, E. A. (1995a). Towards sup-
porting hard schema changes in TSE. In CIKM ’95: Proceedings of the fourth international
conference on Information and knowledge management, pages 290-295, New York, NY, USA.
ACM. (cited on p 94)

[Ra and Rundensteiner, 1995b] Ra, Y.-G. and Rundensteiner, E. A. (1995b). A transparent
object-oriented schema change approach using view evolution. In ICDE "95: Proceedings of
the Eleventh International Conference on Data Engineering, pages 165-172, Los Alamitos, CA,
USA. IEEE Computer Society. (cited on p 94)

[Ra and Rundensteiner, 1997] Ra, Y.-G. and Rundensteiner, E. A. (1997). A transparent
schema-evolution system based on object-oriented view technology. IEEE Trans. on Knowl.
and Data Eng., 9(4):600-624. (cited on p 94)

[Rahm and Bernstein, 2006] Rahm, E. and Bernstein, P. A. (2006). An online bibliography on
schema evolution. SIGMOD Rec., 35(4):30-31. (cited on pp 66, 89)

[Rashid and Sawyer, 2000] Rashid, A. and Sawyer, P. (2000). Object database evolution using
separation of concerns. SIGMOD Rec., 29(4):26-33. (cited on p 93)

[Rashid and Sawyer, 2005] Rashid, A. and Sawyer, P. (2005). A database evolution taxonomy

294

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/UML/2.2/

Bibliography

Bibliography

for object-oriented databases: Research articles. J. Softw. Maint. Evol., 17(2):93-141. (cited
on pp 91,93)

[Robbes and Lanza, 2007] Robbes, R. and Lanza, M. (2007). A change-based approach to
software evolution. Electron. Notes Theor. Comput. Sci., 166:93-109. (cited on pp 77,175)

[Roddick, 1992] Roddick, J. F. (1992). Schema evolution in database systems: an annotated
bibliography. SIGMOD Rec., 21(4):35-40. (cited on p 89)

[Roddick, 1995] Roddick, J. E. (1995). A survey of schema versioning issues for database
systems. Information and Software Technology, 37(7):383 — 393. (cited on p 90)

[Ronstrom, 2000] Ronstrém, M. (2000). On-line schema update for a telecom database. In
Data Engineering, 2000. Proceedings. 16th International Conference on, pages 329 -338. (cited
onp 89)

[Rose et al., 2010a] Rose, L., Herrmannsdoerfer, M., Williams,]J., Kolovos, D., Garcés, K.,
Paige, R., and Polack, F. (2010a). A comparison of model migration tools. In Petriu, D.,
Rouquette, N., and Haugen, O., editors, Model Driven Engineering Languages and Systems,
volume 6394 of Lecture Notes in Computer Science, pages 61-75. Springer Berlin / Heidel-
berg. (cited on pp 23,167,268)

[Rose et al., 2010b] Rose, L., Kolovos, D., Paige, R., and Polack, F. (2010b). Migrating activity
diagrams with Epsilon Flock. In Transformation Tool Contest (TTC 2010). (cited on p 208)

[Rose et al., 2010c] Rose, L. M., Kolovos, D. S., Paige, R. F.,, and Polack, E. A. (2010c). Model
migration case for TTC 2010. In TTC 2010: Proc. Transformation Tool Contest Workshop.
(cited on pp 205,207)

[Rose et al., 2010d] Rose, L. M., Kolovos, D. S., Paige, R. F.,, and Polack, E A. C. (2010d).
Model migration with Epsilon Flock. In Theory and Practice of Model Transformations, vol-
ume 6142 of Lecture Notes in Computer Science, pages 184-198. Springer Berlin / Heidelberg.
(cited on pp 66,78, 98,215,218,263)

[Rose et al., 2009] Rose, L. M., Paige, R. E,, Kolovos, D. S., and Polack, E. A. (2009). An anal-
ysis of approaches to model migration. In Proc. Models and Evolution (MoDSE-MCCM)
Workshop, 12th ACM/IEEE International Conference on Model Driven Engineering, Languages
and Systems. (cited on pp 66,95, 96,97,100,116,262)

[Rumpe, 1998] Rumpe, B. (1998). A note on semantics (with an emphasis on UML). In
Kilov, H. and Rumpe, B., editors, Second ECOOP Workshop on Precise Behavioral Semantics.
Technische Universitat Miinchen, TUM-19813. (cited on pp 50,141)

[Sadilek and Wachsmuth, 2008] Sadilek, D. A. and Wachsmuth, G. (2008). Prototyping visual
interpreters and debuggers for domain-specific modelling languages. In ECMDA-FA "08:
Proceedings of the 4th European conference on Model Driven Architecture, pages 63-78, Berlin,
Heidelberg. Springer-Verlag. (cited on p 52)

[Sadilek and Weifdleder, 2008] Sadilek, D. A. and Weiflleder, S. (2008). Testing metamodels.
In ECMDA-FA '08: Proceedings of the 4th European conference on Model Driven Architecture,
pages 294-309, Berlin, Heidelberg. Springer-Verlag. (cited on p 54)

[Schitz, 2010] Schitz, B. (2010). UML model migration with PETE. In Transformation Tool
Contest (TTC 2010). (cited on p 208)

[Schwaber and Beedle, 2002] Schwaber, K. and Beedle, M. (2002). Agile software development
with Scrum, volume 18. Prentice Hall Upper Saddle River, NJ. (cited on p 191)

[Selic, 2007] Selic, B. (2007). A systematic approach to domain-specific language design us-
ing UML. Object-Oriented Real-Time Distributed Computing, IEEE International Symposium
on, 0:2-9. (cited on p 16)

[Sen et al., 2009] Sen, S., Moha, N., Baudry, B., and Jézéquel, J.-M. (2009). Meta-model prun-

295

Bibliography

Bibliography

ing. In MODELS "09: Proceedings of the 12th International Conference on Model Driven Engi-
neering Languages and Systems, pages 32-46, Berlin, Heidelberg. Springer-Verlag. (cited on
p 253)

[Shneiderman and Thomas, 1982] Shneiderman, B. and Thomas, G. (1982). An architecture
for automatic relational database system conversion. ACM Trans. Database Syst., 7(2):235—
257. (cited on p 90)

[Singer et al., 2009] Singer, J., Brown, G., Lujan, M., Pocock, A., and Yiapanis, P. (2009). Fun-
damental nano-patterns to characterize and classify Java methods. In 9th Workshop on
Language Descriptions, Tools and Applications, pages 204-218. (cited on p 253)

[Sjeberg, 1993] Sjeberg, D. (1993). Quantifying schema evolution. Information and Software
Technology, 35(1):35 — 44. (cited on pp 66,90)

[Skarra and Zdonik, 1986] Skarra, A. H. and Zdonik, S. B. (1986). The management of chang-
ing types in an object-oriented database. In OOPLSA "86: Conference proceedings on Object-
oriented programming systems, languages and applications, pages 483-495, New York, NY,
USA. ACM. (cited on p 93)

[Sockut and Goldberg, 1979] Sockut, G. H. and Goldberg, R. P. (1979). Database
reorganization—principles and practice. ACM Comput. Surv., 11(4):371-395. (cited on

p 90)
[Spinellis, 2001] Spinellis, D. (2001). Notable design patterns for domain-specific languages.
J. Syst. Softw., 56(1):91-99. (cited on p 27)

[Sprinkle and Karsai, 2004] Sprinkle, J. and Karsai, G. (2004). A domain-specific visual lan-
guage for domain model evolution. Journal of Visual Languages and Computing, 15(3-4):291-
307. (cited on pp 18, 66,78,98,262)

[Sprinkle, 2003] Sprinkle, J. M. (2003). Metamodel driven model migration. ~PhD the-
sis, Vanderbilt University, Nashville, TN, USA. Director-Karsai, Gabor. (cited on
pp 17,57,60, 61, 64, 98)

[Stachowiak, 1973] Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer-Verlag, Wien.
(cited on p 26)

[Staudt et al., 1987] Staudt, B.]., Krueger, C. W., and Garlan, D. (1987). A structural approach
to the maintenance of structure-oriented environments. In SDE 2: Proceedings of the second
ACM SIGSOFT/SIGPLAN software engineering symposium on Practical software development
environments, pages 160-170, New York, NY, USA. ACM. (cited on p 95)

[Steinberg et al., 2009] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2009).
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional. (cited on
pp 16,97,109,131,242)

[Steinke, 2006] Steinke, S. (2006). A380 cable problems threaten airbus. http://www.
flug-revue.rotor.com/FRHeft /FRHeft06/FRH0612/FR0612b.htm. (cited on

p 19)

[Street and Pettit, 2005] Street, J. A. and Pettit, R. G. (2005). The impact of UML 2.0 on exist-
ing UML 1.4 models. In Model Driven Engineering Languages and Systems, volume 3713 of
Lecture Notes in Computer Science, pages 431-444. Springer Berlin / Heidelberg. (cited on
p 99)

[Suetal, 2001] Su, H., Kramer, D., Chen, L., Claypool, K. T., and Rundensteiner, E. A. (2001).
XEM: Managing the evolution of XML documents. In Eleventh International Workshop on Re-
search Issues in Data Engineering on Document Management for Data Intensive Business and Sci-
entific Applications, pages 103-110, Washington, DC, USA. IEEE Computer Society. (cited
onp 97)

296

http://www.flug-revue.rotor.com/FRHeft/FRHeft06/FRH0612/FR0612b.htm
http://www.flug-revue.rotor.com/FRHeft/FRHeft06/FRH0612/FR0612b.htm

Bibliography

Bibliography

[Taentzer et al., 2005] Taentzer, G., Ehrig, K., Guerra, E., Lara, J. D., Levendovszky, T.,
Prange, U., and Varro, D. (2005). Model transformations by graph transformations: A
comparative study. In Model Transformations in Practice Workshop at MoDELS 2005, Mon-
tego, page 05. (cited on p 219)

[Tan and Goh, 2005] Tan, M. and Goh, A. (2005). Keeping pace with evolving XML-Based
specifications. In Current Trends in Database Technology - EDBT 2004 Workshops, volume
3268 of Lecture Notes in Computer Science, pages 280-288. Springer Berlin / Heidelberg.
(cited on p 97)

[Tisi et al., 2009] Tisi, M., Jouault, E, Fraternali, P.,, Ceri, S., and Bézivin, J. (2009). On the
use of higher-order model transformations. In Paige, R., Hartman, A., and Rensink, A.,
editors, Model Driven Architecture - Foundations and Applications, volume 5562 of Lecture
Notes in Computer Science, pages 18-33. Springer Berlin / Heidelberg. (cited on p 62)

[Tolvanen, 1998] Tolvanen, J.-P. (1998). Incremental Method Engineering with Modeling Tools:
Theoretical Principles and Empirical Evidence. PhD thesis, University of Jyvaskyld. (cited on
p 253)

[Tresch and Scholl, 1993] Tresch, M. and Scholl, M. H. (1993). Schema transformation with-
out database reorganization. SIGMOD Rec., 22(1):21-27. (cited on p 94)

[van Deursen et al., 2000] van Deursen, A., Klint, P, and Visser, J. (2000). Domain-specific
languages: an annotated bibliography. SIGPLAN Not., 35(6):26-36. (cited on p 17)

[van Sterkenburg, 2003] van Sterkenburg, P. (2003). A practical guide to lexicography. John
Benjamins Publishing Co. (cited on p 82)

[Ventrone and Heiler, 1991] Ventrone, V. and Heiler, S. (1991). Semantic heterogeneity as a
result of domain evolution. SIGMOD Rec., 20(4):16-20. (cited on p 90)

[Vermolen and Visser, 2008] Vermolen, S. D. and Visser, E. (2008). Heterogeneous coupled
evolution of software languages. In Czarnecki, K., Ober, I, Bruel,].-M., Uhl, A., and Volter,
M., editors, Model Driven Engineering Languages and Systems (MODELS 2008), volume 5301
of Lecture Notes in Computer Science, pages 630—-644. Springer. (cited on p 95)

[Wachsmuth, 2007] Wachsmuth, G. (2007). Metamodel adaptation and model co-adaptation.
In ECOOP 2007 - Object-Oriented Programming, volume 4609/2007 of Lecture Notes
in Computer Science, pages 600-624. Springer Berlin / Heidelberg. (cited on
pp 66,78,98,99,114,116,119,120,122,123, 125,126,129, 180, 215, 254, 256, 263)

[Walmsley, 2001] Walmsley, P. (2001). Definitive XML Schema. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA. (cited on p 96)

[Weiss and Lai, 1999] Weiss, D. M. and Lai, C. T. R. (1999). Software product-line engineering:
a family-based software development process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA. (cited on p 27)

[Winskel, 1993] Winskel, G. (1993). The formal semantics of programming languages: an intro-
duction. MIT Press, Cambridge, MA, USA. (cited on p 49)

[Zicari, 1991] Zicari, R. (1991). A framework for schema updates in an object-oriented
database system. In Data Engineering, 1991. Proceedings. Seventh International Conference
on, pages 2 -13. (cited on p 92)

[Zimmermann et al., 2005] Zimmermann, T., Weifigerber, P., Diehl, S., and Zeller, A. (2005).
Mining version histories to guide software changes. IEEE Transactions on Software Engi-
neering, pages 429-445. (cited on p 181)

297

Index

abstract class,
adaptive maintenance,
attribute,

backwards-compatible =~ metamodel
change,

breaking metamodel change,
class,

composite reference, [40]
concrete syntax,
conformance,

preservation
metamodel,
model,
constructor, [114]

corrective maintenance, [54]
coupled change, [67]
metamodel-independent,
metamodel-specific,
model-independent,
model-specific,
coupled evolution, 8__3|
coupled operation, [107]
constructor, [114]
custom, [T10} [137]
destructor, {114
inverse, [T19]
safe,
self-,
model-preserving,
refactoring,
reusable,
safely model-migrating, 114

semantics-preserving, 141} 257]
sequential composition,

syntax-preserving, [140]

custom coupled operation,

data type,

dataware,
object-oriented,
relational,

default value,

derived feature,

destructor, [114

directed multigraph,

Domain-Specific Modeling,

Eclipse Modeling Framework,
Ecore, [137]

Ecore, [137]

empirical study,

discussion, [168
execution, [T6§
goal,
object,

result, [168

threats to validity, [16§
enumeration, 39|
extension, 83

feature,

generic instance model,

grammarware, [83} 05|
graph constraint,
Graphical Modeling Framework, 47]

higher-order model transformation,
history model,

identifier attribute, [40]

299

Index

Index

intensional definition,

language history,
metamodel,

maintenance
adaptive,
corrective, 54
perfective,
preventive, [54]

meta hierarchy,

Meta Object Facility,
abstract class,
attribute,
class,

Complete,
composite reference, [40]
data type,

default value,
derived feature,
enumeration, 39
Essential,
feature,

identifier attribute, 40|
multiplicity,
ordered feature,
package,

primitive type, 38|
reference,

type, B9

metametamodel,

metamodel,
adaptation,
change,

backwards-compatible,
breaking, [57]
coupled,
metamodel-only, [67]
greatest common,
metamodel-independent coupled
change,
metamodel-only metamodel change,
67

metamodel-specific coupled change,

20|

metamodeling language,

model,
empty, [55]
migration, [T07]

model-specific,
semantics-preserving, [6]]
syntax-preserving, [60]
sub-,
transformation,
definition,
endogenous,
exogenous, [63]
higher-order,
in-place,
language,
out-of-place,
Model-Driven Architecture,
model-independent coupled change,
/0
model-specific coupled change,
modeling language,
abstract syntax,
concrete syntax, 45|
for defining semantics, [254]
semantics, [49]

modelware, [83] 07]
multiplicity,

ordered feature, 40|

package, 0]
perfective maintenance,
preventive maintenance, 54

primitive type, 38|

refactoring,
reference, 30} B6]

reusable coupled operation,

composite
delegation, [124]
inheritance, {123
merge / split,[12§]
replacement,

specialization / generalization,
[I21]
primitive
non-structural,
structural,

semantics, 49|
adaptation, 255]
change,

refactoring,
refinement,

300

Index

Index

semantics-preserving

coupled operation,

model migration,
Software Factories,
software language,

evolution,

extension, [83]

intensional definition,

migration, [83]

utterance, [82]

syntax-preserving
coupled operation, [T40]
model migration,

technical space,
dataware,

grammarware, 83} [05]
modelware, 83} [97]

XMLware, 83} [96]
type, 39
type graph,

with constraints,

UML

class diagram, [43]
object diagram,
utterance, [82]

XMLware, 83} [96]

301

	Introduction
	Context: Modeling Languages
	Problem: Modeling Language Evolution
	Thesis: Recording Metamodel Adaptations
	Approach: Evolutionary Metamodeling
	Contributions of this Thesis
	Outline of this Thesis

	Background: Engineering of Modeling Languages
	Model-based Development
	Models and Modeling Languages
	Benefits and Risks
	The Quest for Abstraction
	Major Initiatives

	Metamodeling – Modeling the Abstract Syntax of Modeling Languages
	Meta Object Facility
	Abstract Syntax of a Modeling Language
	Simplified E-MOF Metametamodel
	Complete E-MOF Metametamodel
	UML Object and Class Diagrams
	Eclipse Modeling Framework

	Concrete Syntax of Modeling Languages
	Concrete Syntax of a Modeling Language
	Implementing the Concrete Syntax

	Semantics of Modeling Languages
	Semantics of a Modeling Language
	Implementing the Semantics

	Evolution of Modeling Languages
	Reasons for Language Evolution
	Metamodel and Semantics Evolution
	Breaking Metamodel Changes
	Model Migration
	Model Transformation for Model Migration

	Summary

	State of the Practice: Automatability of Model Migration
	State of the Art
	Classification of Metamodel Changes
	Running Example
	Model-Specific Coupled Change
	Model-Independent, Metamodel-Specific Coupled Change
	Metamodel-Independent Coupled Change

	Study Design
	Study Goal
	Study Object
	Study Execution

	Study Implementation
	Study Result
	Study Discussion
	Threats to Validity

	Requirements for Automating Model Migration
	Summary

	State of the Art: A Cross-Space Survey on Coupled Evolution
	Cross-Space Terminology
	Review Systematics
	Search Strategy
	Selection Criteria

	Classification of Approaches
	Technical Space
	Evolution
	Migration
	Evaluation

	Dataware
	Relational Dataware
	Object-Oriented Dataware

	Grammarware
	XMLware
	Modelware
	Cross-Space Comparison
	Motivation of our Approach
	Requirements
	Classification

	Summary

	COPE – Coupled Evolution of Metamodels and Models
	COPE in a Nutshell
	Running Example
	Incremental Coupled Evolution
	Coupled Operations
	Custom Coupled Operations
	Reusable Coupled Operations
	Classification of Coupled Operations

	Library of Reusable Coupled Operations
	Origins of Reusable Coupled Operations
	Overview of the Library
	Structural Primitives
	Non-Structural Primitives
	Specialization / Generalization Operations
	Inheritance Operations
	Delegation Operations
	Replacement Operations
	Merge / Split Operations
	Discussion

	Language to Specify the Coupled Evolution
	Decoupling Metamodel and Model
	Breaking Metamodel Changes Revisited
	Primitives for Metamodel Adaptation and Model Migration
	Implementing Coupled Operations

	Limitations of Automating Model Migration
	Considering Semantics of Modeling Languages
	Characterizing Model-Specific Migration
	Coping with Model-Specific Migration

	Summary

	Tool Support
	Recording the Coupled Evolution
	Tool Workflow
	User Interface

	Maintaining the Coupled Evolution
	Inspecting the Coupled Evolution
	Refactoring the Coupled Evolution
	Recovering the Coupled Evolution

	Operation-based Metamodel Versioning
	History Metamodel
	Recording and Interpreting the History
	Preserving the History

	Summary

	Case Studies
	GMF Generator Model and Palladio Component Model
	Study Goal
	Study Object
	Study Execution
	Study Result
	Study Discussion
	Threats to Validity

	Graphical Modeling Framework
	Study Goal
	Study Object
	Study Execution
	Study Result
	Study Discussion
	Threats to Validity

	Quamoco Quality Metamodel
	Study Goal
	Study Object
	Study Execution
	Study Result
	Study Discussion
	Threats to Validity

	Unicase Unified Model
	Study Goal
	Study Object
	Study Execution
	Study Result
	Study Discussion
	Threats to Validity

	Transformation Tool Contest
	Study Goal
	Study Object
	Study Execution
	Study Result
	Study Discussion
	Threats to Validity

	Comparison of Model Migration Tools
	Study Goal
	Study Object
	Study Execution
	Study Result
	Study Discussion
	Threats to Validity

	Summary

	Beyond Model Migration: Evolutionary Metamodeling
	The Process of Evolutionary Metamodeling
	Elicit Metamodel Changes
	Implement Metamodel Changes
	Migrate dependent Artifacts
	Verify Model Migration
	Release Modeling Language

	Metamodel Usage Analysis for Identifying Metamodel Improvements
	Templates for defining Usage Analyses
	Towards a Catalog of Usage Analyses
	Prototypical Implementation
	Study Goal
	Study Execution
	Study Object
	Study Result
	Study Discussion
	Threats to Validity
	State of the Art

	Towards Semantics-Preserving Model Migration
	Adaptation of the Semantics Definition
	Ensuring Semantics Preservation
	Case Study
	Revisiting the Library
	State of the Art

	Summary

	Summary
	Contributions
	Outlook

	Papers Excluded from the Survey
	Excluded Papers Within the Relevant Domain
	Excluded Papers Outside the Relevant Domain
	Process Evolution
	Software Evolution
	Ontology Evolution
	Difference Calculation & Representation
	Schema Matching & Integration

	Bibliography
	Index

