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Abstract

The current study deals with the emerging field of mechanical contact problems. The behavior
of two dimensional uni- and bilateral, frictionless and frictional contact problems is studied
by using the h-, p-, hp-, and the rp-version of the Finite Element Method. The contact
constraints are introduced by the penalty method. The main focus of the work is drawn
to the level of accuracy which is to be derived with the different versions of the FEM. The
accuracy is measured for the unilateral Hertzian contact problem in terms of the contact stress
distribution in the contact interface and its neighborhood. Additionally, the convergence of
the error in strain energy norm is studied as well. Both studies prove the capability of the
p-version of the Finite Element Method and its adaptive extensions. A high polynomial degree
in combination with an exact representation of the curved geometry leads together with the
rp-method to a very high accuracy in the contact stresses. This is achieved by relocation of a
Finite Element node to the end of the contact interface where the boundary condition changes
from contact to no-contact, avoiding oscillations in the high-order polynomial shape functions
at this point. The convergence rate of the strain energy reveals that a singularity exists in
the solution domain. This singularity is located at the end of the contact interface where
the boundary condition changes from contact to no-contact. The singularity at this point is
equivalent to a singularity at the end of a distributed load. Only for the case that the load
value and its first derivative is zero at the end of the loading area, the singularity vanishes.
As this is generally not the case for contact problems, these singularities lead to convergence
rates of algebraic type for the h-, p-, and the rp-version of the FEM. The hp-version instead
is able to isolate this singularity, allowing for exponential rates of convergence.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Thema des unilateralen und bilateralen, reibfrei-
en und reibungsbehafteten Kontakts. Dabei werden die h-, p-, hp- und rp-Version der Finite
Elemente Methode untersucht. Die Kontaktrandbedingungen werden mit Hilfe des Penalty
Verfahrens in die Finite-Element-Formulierung integriert. Im Fokus der Arbeit steht der Grad
der Genauigkeit, der mit den verschiedenen Verfahren erzielt werden kann. Die erzielbare Ge-
nauigkeit wird hierbei am Beispiel des unilaterale Hertz’sche Kontaktproblems anhand der
Spannungen im Kontaktbereich und den angrenzenden Bereichen angegeben. Weitere Studien
untersuchen die Konvergenz des Fehlers in der Dehnungs-Energienorm. Sie bestätigen das ho-
he Potential der p-Version der FEM und ihrer adaptiven Erweiterungen. Die Untersuchung der
Kontaktspannungen bei Anwendung der rp-Methode zeigt eine hohe Genauigkeit der Lösung.
Der hohe Polynomgrad der Ansatzfunktionen bei Verwendung der exakten kreisförmigen Geo-
metrie führt zu sehr exakten Ergebnissen, wenn das Kontaktende mit einem Finite Element
Knoten zusammenfällt. Dies kann mit Hilfe des rp-Verfahrens erreicht werden, wodurch Os-
zillationen in den Ansatzfunktionen des Elements in der Umgebung dieses Punktes verhindert
werden. Die Untersuchung der Konvergenzraten der Dehnungsenergienorm zeigt das Vorhan-
densein einer Singularität im Lösungsgebiet an. Diese liegt am Ende des Kontaktbereichs, an
dem ein Wechsel der Randbedingungen von in Kontakt stehend, zu kontaktfrei vorhanden
ist. Die Singularität ist von der gleichen Ordnung wie die Singularität, die am Ende einer
verteilten Kraftrandbedingung auftritt. Sie verschwindet nur für den Spezialfall, dass nicht
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nur der Wert der Last, sondern auch ihre Ableitung am Ende des Lastbereichs verschwindet.
Da dies für allgemeine Kontaktprobleme nicht der Fall ist, führen die entstehenden Singu-
laritäten zu einer algebraischen Konvergenzordnung in der Energienorm bei Anwendung der
h-, p- und rp-Version der FEM. Bei Verwendung der hp-Methode sind darüber hinaus expo-
nentielle Konvergenzraten möglich, wenn auf die Singularität am Kontaktende entsprechend
verfeinert wird.
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Chapter 1

Introduction

Contact mechanics has been a research field in engineering and science since more than 100
years. The variety of studied examples over this period reaches from analytical solutions of
problems of simple geometry to complex three dimensional dynamic contact analyses with
finite strains. Nowadays, complex and highly nonlinear problems are essentially analysed by
numerical schemes such as the Finite Element Method.

1.1 Motivation

A detailed study of contact phenomena is important in various fields of engineering and beyond.
Numerous examples in mechanical engineering arise in the automotive industry in fields as car
crash analysis or sheet metal forming. Further examples address the abrasive wear of engine
parts or car tires. In civil engineering, contact mechanics plays an important role in the
behavior of roller bearings as often used for bridges, seismic dampers like friction pendulums
for buildings and bridges, and analysis of the mantle friction of drilled or driven piles in soil
mechanics. Another emerging field is the area of medical engineering. Important problems
are for examples related to hip or knee implants like the wear between the individual implant
parts, or the bond between the implant and the bone. Dentistry is another field that calls for
contact mechanics analysis to optimize the position and shape of dental prosthesis, implants
and inlays.

So far research in contact analysis is mainly driven by low-order Finite Element techniques in-
volving a large number of isoparametric linear elements to discretize the computation domain.
The small size of the elements is beneficial in order to capture a large number of small frag-
mented contact areas. On the other hand the description of arbitrarily curved geometries is
only approximated linearly thus introducing a significant modeling error. Linear ansatz func-
tions for the displacements are restricted to a constant pressure inside the Finite Elements,
which is insufficient for the representation of contact pressure of e.g. wearing problems. The
use of polynomial shape functions of higher order improves the results in various applications.
These so called high-order Finite Elements are beneficial for the computation of large homo-
geneous structures. The p-FEM meshes are usually coarse and the elements tend to be large
performing well also for aspect ratios of up to 1:1000. They are therefore advantageous for
thin structures with relatively large and continuous contact areas. The application of the p-FE
method for contact analysis is thus intended to be applied to for example metal sheet forming
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processes, where a thin metal sheet is coming in contact with the die, punching the desired
shape into the metal sheet.

1.2 Objectives

The objectives of the current work addresses the performance of high-order Finite Elements
applied to two dimensional, unilateral and bilateral, frictionless and frictional mechanical
contact problems. The performance is evaluated in terms of the accuracy in the contact
stresses and in the convergence of the error in energy norm. The quality of four different
Finite Element Methods will be studied:

h-version of the Finite Element Method

p-version of the Finite Element Method

hp-version of the Finite Element Method

rp-version of the Finite Element Method.

In order to exploit the advantages of the p-version of the Finite Element Method, special
attention will be drawn on handling the reduced regularity at the end of the contact interface.
Therefore the two adaptive hp- and the rp-methods will be employed and studied in detail.

1.3 Structure

In the following, the structure of this work will be given for each chapter.

Chapter 2 provides a summary of the general concept of the high-order Finite Element
Method. Starting with the kinematics, the balance principles, and the material law,
the weak form of equilibrium will be derived in compact form. This is followed by an
introduction into the mapping concept, the hierarchical shape function basis, and the
blending function method.

Chapter 3 recalls the principles of contact mechanics. First the kinematics, for normal and
tangential contact is given, before the weak form of contact is derived. The discretization
of the additional contact constraints with the penalty method is presented, and the
discretization of the contact interface is given. The linearization by a numerical Newton
algorithm follows at the end of this chapter.

Chapter 4 deals with the extensions of the Finite Element Method implemented to handle
the reduced regularity at the end of the contact interface. It describes the difficulties
at these points by studying their stress intensity factor and discussing the analogy of
contact problems and a Neumann boundary condition. Conclusions are drawn and the
two adaptive hp- and rp-methods are introduced.

Chapter 5 shows the numerical models and results obtained for various examples. The
examples cover the unilateral and bilateral frictionless Hertzian contact problem in 2D,
the contact between an elastic ring and a rigid foundation, contact between a stiff axle
and a (Donut) ring, and the bilateral frictional example of two contacting bars.
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Chapter 6 is a summary of the presented project, drawing conclusions, and providing an
outlook for future work.
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Chapter 2

Finite Element Method

The Finite Element Method (FEM) is a well-known and well-understood numerical solution
scheme for problems from engineering and the natural sciences [19]. The physical problem
which idealizes the real problem can be described with a mathematical model, leading to a
system of partial differential equations. The Finite Element Method is then a technique to
solve the system of partial differential equations numerically. The general procedure is to
decompose the given spacial domain into a finite number of elements, where the ansatz or
shape functions and hence the unknowns live. The resulting, global system of equations which
is composed (assembled) from all the individual elements is then solved for the unknowns.
The accuracy of the Finite Element Method is limited by three error sources, the model error,
the discretization error, and the roundoff error. All three errors have to be controlled in order
to achieve reliable results [57].

The discretization error which depends on the level of discretization of the physical domain,
can be controlled by global mesh refinement for the case when the h-version of the FEM is
used. When the p-version of the FEM is used instead, the mesh is kept fixed and the shape
functions’ polynomial degree is raised in order to reduce the discretization error. Nevertheless
a successive refinement of the discretization (by h- or p-refinement) may have a dramatic
influence on the numerical effort of the solution procedure [57].

The model error originates from assumptions which are introduced to simplify the given phys-
ical properties. These can be assumptions like a simplified constitutive model, negligence of
time dependent effects, or the use of dimensionally reduced models like for beams, plates, and
shells. The roundoff error is nowadays negligible, if a stable algorithm in combination with
the up to date computer precision is used.

The main challenge in the Finite Element development is to formulate methods for physical
problems in such a way, that they represent the physical properties well and additionally show
numerically good convergence characteristics.

2.1 Linear Elasticity

The behavior of solid objects with a given material distribution and no yielding is generally
described by the linear theory of elasticity, assuming small deformations and small strains.
When larger displacements are to be considered, hyperelastic material properties have to be
used. Literature can be found for example in [10, 87].
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The basic governing equations are derived by the principles of elastostatics. These are the
kinematic, equilibrium, constitutive model, and boundary conditions which will be formulated
on the infinitesimal volume with homogeneous material properties and small displacement
gradients in the following sections.

2.1.1 Kinematics

The state of motion and the state of deformation of a body Ω at any time t is covered by
kinematics. One differs between the Eulerian and the Lagrangian formulation. The Eulerian
formulation (also called spacial formulation) traces changes happening at a specific point in
space over time and is often applied in fluid mechanics. The Lagrangian formulation (also
called material formulation) instead focuses on the individual particle and its individual mo-
tion [10]. It is mostly used in solid mechanics and will therefore be used here.
As shown in Figure 2.1 a particle in a body Ω can be uniquely defined by its position vector
X ∈ Ωref , with Ωref being the bodies’ reference configuration. A reference position X in
the three dimensional Euclidean space IE3 is defined with respect to an orthonormal basis
(Cartesian coordinate system) with origin O. The motion of a single particle P is sketched in

X

x

e1
e2

e3

u
Ωref

ΩtP

p

φ

O

Figure 2.1: General motion of a deformable Body Ω.

Figure 2.1. At time t the location vector for the material point P has changed over time to a
new position p that is specified in the bodies’ current configuration Ωt. The mapping φt then
describes the motion of the particle between the reference position X and the new position x

x = φt(X) (2.1)

It should be noted, that the reference configuration does at no time has to be occupied by the
body. It can be chosen arbitrarily. An example for this is the isoparametric concept within
the Finite Element Method where an easy to handle reference configuration is chosen which
is pure fictive [87]. The difference of the location vectors X in Ωref and x in Ωt is expressed
by the displacement vector u.

u = x − X or (2.2)

x = X + u (2.3)
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which is a combination of rigid body displacements, rotations, and deformations within the
body.
Forces acting on a body entail deformations u.

u = [ux, uy, uz]
T (2.4)

The deformation process is described locally by the deformation gradient F, mapping from the
reference to the current configuration [87]. The tensor F enables to describe the relative spatial
position of two neighboring particles after deformation, by their relative material position
before deformation. This single material vector dX in Ωref is associated to the corresponding
vector dx in Ωt by the deformation gradient F as:

dx = F dX (2.5)

The deformation gradient itself can be split up into two terms [29]:

F = I + H (2.6)

where I is a unit matrix and H is the displacement gradient, containing the partial derivatives
of the displacement coordinates in the reference configuration [59].

H =
∂u

∂X
= Grad u (2.7)

Introducing the Green-Lagrange strain tensor E as the difference of the squared line element
dX before and after deformation [29, 59]:

dx dx − dX dX = FdX FdX − dX dX

= dX (FTF) dX − dX dX (2.8)

= dX (FTF − I) dX

= dX (H + HT + HTH) dX

The strain tensor E is formed as:

E =
1

2
(FTF − I) (2.9)

=
1

2
(H + HT + HTH) . (2.10)

The term HTH shows the nonlinear character of the Green-Lagrange strain tensor [87]. When
linear theory is used, this term is neglected by assuming small displacement gradients (‖H‖ <<
1). This leads to the linear strain tensor ε:

ε =
1

2
(H + HT) . (2.11)

From a momentum equilibrium it can be seen that the shear strain γxy = γyx. The same
applies to γxz = γzx and γyz = γzy. Therefore the three dimensional symmetric strain tensor ε

consists of only six independent strain components which are arranged in Voigt notation as

ε = [εxx, εyy, εzz, γxy, γyz, γxz]
T . (2.12)
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x
y

z

σx

σx
σy

σy

σz

σz

τyx

τyx

τzx

τzx

τzy

τzy

τxy

τxy

τxz

τxz

τyz τyz

Figure 2.2: Sign convention of stresses on the differential element

Each of the independent strain components is then given by the following relation.

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, εzz = ∂uz

∂z

γxy = ∂ux

∂y
+ ∂uy

∂x
, γyz = ∂uy

∂z
+ ∂uz

∂y
, γxz = ∂ux

∂z
+ ∂uz

∂x
.

(2.13)

Introducing the matrix for the differential operator D:

D =



















∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x



















(2.14)

the strains ε in matrix-vector notation is derived from the displacements u by:

ε = Du . (2.15)

2.1.2 Equilibrium

Every resting object is in a static equilibrium. In order to obtain solid and resting structures,
a key objective is to find the equilibrated state of the system of interest. As Newton already
described in his third Axiom: actio = reactio, forces acting on a body have to be in an
equilibrated state. Thus, the internal forces have to be equal to the external forces in size and
direction. On a differential element plotted in Figure 2.2 we can formulate the equilibrium
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conditions as differential equations of the form:

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
+ fx = 0

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
+ fy = 0 (2.16)

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
+ fz = 0

where f = [fx, fy, fz]
T represent the body force per unit volume. The stress tensor of second

order takes the following form.

σ =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 (2.17)

As for the strain tensor, under our assumptions only six stress components are independent
due to symmetry reasons. Using the Voigt notation, σ therefore reduces to:

σ = [σxx, σyy, σzz, σxy, σyz, σxz]
T (2.18)

Together with the differential operator D and σ, Equation 2.16 reduces to:

DT σ + f = 0 (2.19)

2.1.3 Constitutive Model

Constitutive models are needed to describe the relation between stresses and strains, consid-
ering the material properties. For the general case of a linear elastic and isotropic material
property, which is being focused on here, the stresses are directly related to the corresponding
strains by the material matrix C. The well known Hooke’s law therefore is:

σ = Cε . (2.20)

Herein the material matrix C is only depending on the Young’s modulus E and the Poisson

ratio ν.

C =
E

(1 + ν)(1 − 2ν)



















(1 − ν) ν ν 0 0 0
ν (1 − ν) ν 0 0 0
ν ν (1 − ν) 0 0 0

0 0 0 (1−2ν)
2

0 0

0 0 0 0 (1−2ν)
2

0

0 0 0 0 0 (1−2ν)
2



















(2.21)

2.1.4 Boundary Conditions

Neumann boundary conditions ΓT (prescribed stresses) and Dirichlet (or geometric) bound-
ary conditions ΓD (prescribed displacements) have to be defined on the boundary ∂Ω of a body
Ω. The boundary conditions are set by using the normal and tangential vector on the bounding
edge or surface. The unit normal vector is defined positive, when pointing outwards. A load
vector t on the boundary is therefore related to the stress tensor σ by the following equation:

t = σn (2.22)
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2.1.5 Principle of Virtual Work

The principle of virtual work is one of the major basics of structural mechanics. Starting
from Equation 2.19 when seeking for the unknown displacement field u one introduces virtual
deformations, called test functions v. Multiplication of the test functions with the differential
Equation 2.19 and integrating over the relevant domain Ω leads to the following expression.

∫

Ω

DT σv dΩ +

∫

Ω

fv dΩ = 0 for all v (2.23)

Herein, equilibrium is only fulfilled in an integral sense. Integration by parts and applying the
Gauss theorem on Equation 2.23 leads together with the constitutive relations to the weak
form of equilibrium where the internal work ε(v) σ(u) is related to body Ω and Γt represents
the boundary of the domain.

∫

Ω

ε(v) σ(u) dΩ −
∫

Ω

fv dΩ −
∫

Γt

tv dΓt = 0 (2.24)

In matrix notation Equation 2.24 transforms to:
∫

Ω

(Dv)T C (Du) dΩ =

∫

Ω

fv dΩ +

∫

Γt

tv dΓt . (2.25)

In order to solve this equation, the objective is now to find the function uex with finite strain
energy, satisfying the boundary conditions such that

B(uex,v) = F(v) (2.26)

holds for all functions v, with v being an arbitrary function with finite strain energy. The
function uex is the weak solution of the elasticity problem and minimizes the potential energy
Π with respect to the admissible displacement function [57].

Π(uex) = min
u∈Ω

Π(u) (2.27)

Following [59] the left hand side of Equation 2.26 is called the bilinear form of the internal
work

B(u,v) =

∫

Ω

ε(v) σ(u) dΩ (2.28)

and the right hand side of Equation 2.26 expresses the external work.

F(v) =

∫

Ω

vf dΩ +

∫

Γt

vt dΓt (2.29)

The strain energy is derived from the internal work by

U(u) =
1

2
B(u,u) (2.30)
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with its corresponding energy norm

‖u‖E(Ω) =
√

U(u) =

√

1

2
B(u,u) . (2.31)

The systems’ total potential Π(uex) energy used in Equation 2.27 is then expressed by:

Π(uex) = U(uex) −F(uex) =
1

2
B(uex,uex) −F(uex) . (2.32)

2.2 High-Order FEM-Approximation

In most cases it is not possible to find an exact solution for Equation 2.26. Generally uex can
only be approximated. In order to achieve this, the Finite Element Method can be applied
which introduces subdomains Ωe of the total domain Ω. A set of basis functions is then
defined on Ω in such a way that each basis function is non zero in the region of each Ωe or its
neighboring region. These regions Ωe are called elements. The basis functions are constructed
from polynomial functions which are defined on standard elements. Mapping functions are
then used to map the standard elements onto the actual geometry. The displacement functions
are introduced as follows.

uFE =





ux

uy

uz



 = Na =







∑n

i=1 ai Ni(x, y, z)
∑n

i=1 an+i Ni(x, y, z)
∑n

i=1 a2n+i Ni(x, y, z)






(2.33)

where n is the number of basis functions used to approximate the exact solution uex The
matrix of the basis functions N is:

N =





N1 N2 · · · Nn 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 N1 N2 · · · Nn 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 N1 N2 · · · Nn



 (2.34)

and the degrees of freedom a are:

a =
[

a1 a2 · · · an an+1 an+2 · · · a3n

]T
. (2.35)

Splitting Equation 2.34 into different sets,

Ni =











































































Ni(x, y, z)
0
0



 ; i = 1, 2, . . . , n





0
Ni(x, y, z)

0



 ; i = n+ 1, n+ 2, . . . , 2n





0
0

Ni(x, y, z)



 ; i = 2n+ 1, 2n+ 2, . . . , 3n

(2.36)
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it is possible to formulate the principle of virtual work (Equation 2.26) in matrix notation for
all virtual basis functions Nj.

B
(

3n
∑

i=1

aiNi,Nj

)

= F(Nj) (2.37)

Here, the expression u = Na has to satisfy the geometric boundary conditions. The left side
of Equation 2.37 can be rewritten to:

B
(

3n
∑

i=1

aiNi,Nj

)

=
3n
∑

i=1

ai B(Ni,Nj) (2.38)

=
3n
∑

i=1

ai

∫∫∫

Ω

(DNi)
T CDNj dx dy dz (2.39)

=
3n
∑

i=1

ai

r
∑

e=1

∫∫∫

Ωe

(DNe
i )

T CDNe
j dx dy dz (2.40)

where i and j are the degrees of freedom of the Finite Element discretization. The triple
integral over the domain Ω is actually the assembly of the triple integral over the domain
Ωe of each individual Finite Element. The integral term in Equation 2.39 forms the global
stiffness matrix as

K = (kij)i,j=1,...,3n
=





∫∫∫

Ω

(DNi)
T CDNj dx dy dz





i,j=1,...,3n

(2.41)

and the element stiffness matrix is derived by

Ke =
(

ke
ij

)

i,j∈Ie
=





∫∫∫

Ωe

(DNe
i )

T CDNe
j dx dy dz





i,j∈Ie

(2.42)

where Ie is the set of all functions which are nonzero within the element e and Ne is the
matrix of the basis functions within the element. Applying the differential operator matrix D
(see Equation 2.14) to the basis functions N (Equation 2.34) leads to the strain-displacement
matrix which is also known as the strain interpolation matrix B.

B = DN (2.43)

The element stiffness matrix in Equation 2.42 then simplifies to

Ke =

∫∫∫

Ωe

Be T C Be dx dy dz (2.44)

Having the expression for the stiffness matrix, the equation system to be solved can be derived
from Equation 2.37

KU = F (2.45)
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where U is vector approximating the displacements. The load vector F can be derived analo-
gously to the element stiffness matrices [59]:

Fe(Nj) = Fe
Ω(Nj) + Fe

Γt
(Nj) (2.46)

with

Fe
Ω(Nj) =

∫∫∫

Ωe

NT
j f dx dy dz (2.47)

Fe
Γt

(Nj) =

∫∫

Γt

NT
j t dΓt . (2.48)

2.2.1 Mapping Functions

The basis functions used in Equation 2.34 which will be further discussed in Section 2.2.2
are defined on a standard element. In order to apply these basis functions to more generally
shaped elements with the same number of degrees of freedom, mapping functions Qe are
applied to transform the standard element to the real element, usually given in cartesian
coordinates x. Two different coordinate systems are used to distinguish between the two
settings. For quadrilateral elements, the standard elements’ coordinate system is specified in
the local coordinates ξ, within the region Ωst = [(−1, 1) × (−1, 1) × (−1, 1)].

x = Qe(ξ, η, ζ) (2.49)

In order to obtain the elements’ stiffness matrix, the strain-displacement relation (B matrix)
has to be derived by differentiating the basis functions (Equation 2.43) with respect to the
global coordinate system. Therefore the chain rule has to be applied after the coordinate
transformation has been performed. Generally the Jacobian matrix J is being used to perform
the coordinate transformation.

J =









∂x
∂ξ

∂y

∂ξ
∂z
∂ξ

∂x
∂η

∂y

∂η
∂z
∂η

∂x
∂ζ

∂y

∂ζ
∂z
∂ζ









(2.50)

The base function transformations are then given as follows:









∂Nst
i

∂ξ

∂Nst
i

∂η

∂Nst
i

∂ζ









= J









∂Ni

∂x

∂Ni

∂y

∂Ni

∂z









(2.51)

and its inverse as:








∂Ni

∂x

∂Ni

∂y

∂Ni

∂z









= J−1









∂Nst
i

∂ξ

∂Nst
i

∂η

∂Nst
i

∂ζ









(2.52)
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It is obvious that the Jacobian matrix must not be singular in order to have an existing inverse.
It is therefore important to construct the Finite Element mesh with the necessary diligence
in order to avoid overlapping elements. After transformation, the expression for the element
stiffness matrix given in Equation 2.44 transforms to:

Ke =

1
∫

−1

1
∫

−1

1
∫

−1

Be T C Be detJ dξ dη dζ (2.53)

by making use of

dx dy dz = detJ dξ dη dζ (2.54)

Applying this to the load vector components given in Equation 2.46, they transform to:

Fe
Ω(Nj) =

1
∫

−1

1
∫

−1

1
∫

−1

NT
j fΩ detJ dξ dη dζ (2.55)

Fe
Γt

(Nj) =

1
∫

−1

1
∫

−1

NT
j t detJ dξ (2.56)

2.2.2 General Shape Functions

The shape functions N presented in Section 2.2.1 are used as ansatz functions for the Finite
Elements. Ansatz functions were already introduced before 1940, but were until then only
used to define an ansatz in a global form over the whole domain [11]. The decomposition
of the domain into a finite number of elements and ensuring the ansatz on them was the
beginning of the FEM. Polynomial function N e

i defined on the elements Ωe are assembled
to form piecewise polynomials defined on the whole domain Ω. In general the local shape
functions N e

i are constructed in such a way that C0 continuity of the global shape function
Ni over element boundaries is guaranteed. This means, that the displacement functions at
element boundaries are continuous but in general not differentiable. Continuity is not asked
for in the discontinuous Galerkin method [96].
Depending on the chosen Finite Element Method, different types of basis functions are needed.
One generally distinguishes between the h- and the p-version of the FEM. Both versions are
well established and verified, but have significant differences.

The h-version of the Finite Element Method obtains convergence by increasing the num-
ber of elements and using a fixed polynomial degree of mostly one or two. It often applies
an isoparametric element concept by using the same polynomial shape functions for the
elements’ geometric representation and its displacements. This concept is widely used
and the h-version is applicable to a large variety of linear and non-linear problems. Due
to the fact that the shape functions’ polynomial degree is usually uniform in space and
equal to either one, two, or three, arbitrarily curved geometries can only be approximated
by these functions. In order to describe a given (especially curved) geometry exactly
with these low order polynomial functions and sufficient accuracy, the domain has to
be resolved with many small elements to limit the geometric discretization error. The
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smaller the elements are, the better does the approximation matches the real physics. It
is therefore possible to control the discretization error and derive a converging system.
Elements of low order should be typically restricted to an aspect ratio of around one
(smaller than two) and are prone to show locking effects. These locking effects lead
to an underestimation of the displacements, due to an overestimation of the structural
stiffness. More informations can be found in [6], [45], and [95]. The possible conver-
gence rates are of algebraic type and therefore for many problem types slower than the
p-versions’ convergence rates [83].

The p-version achieves convergence by keeping the number of elements fixed and in-
creases the shape functions’ polynomial degree instead. The elements are generally large
and the elements’ aspect ratio can be very large without significantly reducing the ac-
curacy. Different polynomial degrees can be chosen in the different local directions of
the element. As the mesh is usually coarse, it is crucial to guarantee a good geometric
representation, especially of the objects boundary. It can be achieved by making use of
the blending function method described in Section 2.2.4. For smooth problems, expo-
nential convergence rates can be obtained for small strain elastic problems [81] and also
for finite strain hyperelastic applications [20], [41], [91].

The type of basis functions used for the h- and the p-version is crucial for their respective
convergence characteristics. For the p-version, when high order polynomials are used, the
matrices’ condition number is very much depending on the chosen polynomial basis. A general
introduction into Finite Element ansatz spaces as well as basic properties of Lagrange and
Legendre polynomials is given in the following Section 2.2.3.

2.2.3 Hierarchic Shape Functions used for High-Order Finite Ele-
ments

In the following we will focus on the p-version of the Finite Element Method and its extensions,
following closely [81] and [19]. Different sets of basis functions do generally span the same
Finite Element space. Nevertheless the choice of the set of basis functions can have influences
on the performance of the numeric simulation. The most widely-used space for low order Finite
Elements is defined by Lagrange polynomials. For high-order ansatz spaces either Legendre
polynomials or Non-Uniform Rational B-Splines (NURBS) can be used. The latter currently
draw large attention due to their use in the isogeometric analysis concept [12]. Szabó and
Babuška [81] encouraged the use of Legendre polynomials for constructing high-order ansatz
spaces. They are structured in such a way that the shape functions of low order are included
in the set of higher-order shape functions. As usually the derivatives of the shape functions
are used in the FEM approach, another interesting and convenient property of the integrated
Legendre polynomials is beneficial. In the one dimensional case, they form an orthogonal basis
with respect to the bilinear form and therefore have a very positive influence on the condition
number of the stiffness matrix, even in higher dimensions.

2.2.3.1 One Dimensional Hierarchic Shape Functions

In the one dimensional space for the two node standard element Ωst = [−1, 1], the first two
linear basis functions N1(ξ) and N2(ξ) are given in Equation 2.57 and 2.58. They form the



16 2. Finite Element Method

basis of both, the standard Lagrange as well as the hierarchic Legendre basis and are common
to be used in the regular h-version of the Finite Element Method. These first two modes are
nodal based because either of the two nodes has a value of one and the other one a value of
zero.

p = 1 p = 1

p = 2 p = 2

p = 3 p = 3

Figure 2.3: Set of one-dimensional standard basis functions for p = 1, 2, 3 on the left and hierarchical
basis functions on the right

The nodal based higher-order Lagrange polynomials shown in Figure 2.3 on the left have
equidistant nodes in the interval of [-1,1]. As a consequence always one of these shape functions
has at one node the value of one and at all other nodes a value of zero. The integrated Legendre
polynomials, plotted for p = 1, 2, and 3 in Figure 2.3 on the right have a hierarchic basis and
are in contrast to the Lagrange basis, modal based. The general Legendre basis is derived by:

N1(ξ) = 1/2(1 − ξ) (2.57)

N2(ξ) = 1/2(1 + ξ) (2.58)

Ni(ξ) = φi−1(ξ), i = 3, 4, . . . , p+ 1 (2.59)

of which the first two linear basis functions N1(ξ) and N2(ξ) (equations 2.57 and 2.58) are
nodal based. The additional higher-order polynomial functions Ni(ξ) for 3 ≤ i ≤ p+ 1 enrich
the ansatz space with the corresponding polynomial function without referring to actual nodes
(for p > 1). These higher modes vanish on the element boundaries (see Equation 2.60) and
only influence the interior domain. This motivates their name as internal or bubble modes.

Ni(−1) = Ni(1) = 0, i = 3, 4, . . . (2.60)

The Legendre polynomials {Ln(x)}∞n=0 are solutions of the Legendre differential equation

((1 − x2)y′)′ + n(n+ 1)y = 0, x ∈ (−1, 1), n = 0, 1, 2, . . . (2.61)

and are used to derive the integrated Legendre polynomials φj(ξ) applied in Equation 2.59:

φj(ξ) =

√

2j − 1

2

ξ
∫

−1

Lj−1(x) dx =
1√

4j − 2
(Lj(ξ) − Lj−2(ξ)) , j = 2, 3, . . . (2.62)

which form the basis functions for the p-version of the Finite Element Method. The Legendre
polynomials {Ln(x)}∞n=0 can be obtained by applying the Rodriguez formula

Ln(x) =
1

2n n!

dn

d xn
(x2 − 1)n , x ∈ (−1, 1), n = 0, 1, 2, . . . (2.63)

or Bonnet’s recursion formula [81].

Ln(x) =
1

n
[(2n− 1)xLn−1(x) − (n− 1)Ln−2(x)] , x ∈ (−1, 1), n = 2, 3, 4, . . . (2.64)
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with the first two Legendre polynomials being L0(x) = 1 and L1(x) = x.
The Legendre polynomials are orthogonal in the interval of I = (−1, 1) which is expressed by
the following term:

1
∫

−1

Ln(x)Lm(x) dx =







2

2n+ 1
if n = m

0 else
(2.65)

It leads to the fact (see [19], [66]) that the condition number of the resulting stiffness matrix
is improved, compared to the Lagrangian basis [93] when higher polynomial spaces are used.
The Lagrange basis, which is nodal based for all polynomial degrees, fulfills the partition of
unity.

p+1
∑

1

Np
i (ξ) = 1 (2.66)

This does generally not hold for the Legendre basis and polynomial degrees of p > 1. Here
already the first two hierarchic base functions N1(ξ) and N2(ξ) fulfill the partition of unity.
Additional shape functions for p > 1 therefore exceed this unity property in the hierarchic
concept.

2.2.3.2 Two Dimensional Hierarchic Shape Functions

Figure 2.4 depicts the standard quadrilateral Finite Element on which the implementation of
the p-version in two dimensions is based. The quadrilateral element formulation is using the
ansatz functions introduced by Szabó and Babuška [81].

N2

ξ

η

pξ

pη

N1

N3N4

E1

E2

E3

E4

Ωq
st = [(−1, 1) × (−1, 1)]

Figure 2.4: Standard quadrilateral element: definition of nodes, edges and polynomial degree

The shape functions in two-dimensions can be classified into three groups [40]:

1. Nodal modes: The nodal modes

NNi

1,1(ξ, η) =
1

4
(1 + ξi ξ)(1 + ηi η) , i = 1, ..., 4 (2.67)
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are the standard bilinear shape functions, well known from the isoparametric four-noded
quadrilateral element. The local coordinates (±1,±1) of the ith node are named (ξi, ηi).
The mode for node 1 is shown in Figure 2.5.

ξ
η

1

1

1

0.75

0.5

0.5

0.5

0.25

0
0

0 -0.5-0.5

-1

-1

Figure 2.5: Standard bilinear shape function for node 1: NN1

1,1 (ξ, η) = 1
4 (1 − ξ)(1 − η)

2. Edge modes: The edge modes are defined separately for each individual edge. They
vanish at all other edges. For p ≥ 2 there exist 2(pξ − 1) + 2(pη − 1) edge modes. The
corresponding 2(pξ − 1) modes for edge E1 and E3 in ξ-direction read:

NE1

i,1 (ξ, η) =
1

2
φi(ξ)(1 − η), i = 2, . . . pξ, (2.68)

NE3

i,1 (ξ, η) =
1

2
φi(ξ)(1 + η), i = 2, . . . pξ . (2.69)

The 2(pξ − 1) modes for edge E2 and E4 in η-direction are:

NE2

1,i (ξ, η) =
1

2
(1 + ξ)φi(η), i = 2, . . . pη, (2.70)

NE4

1,i (ξ, η) =
1

2
(1 − ξ)φi(η), i = 2, . . . pη . (2.71)

In Figure 2.6 the mode for edge 1 with i = 2 is plotted.

ξ
η

1

1

0.5

0.5

-0.25

0

0

0

-0.5

-0.5-0.5

-1

-1

Figure 2.6: Quadratic shape function forming the edge mode of edge 1 (i = 2): NE1

2,1(ξ, η) = 1
2 (1 −

η)φ2(ξ)



2.2. High-Order FEM-Approximation 19

3. Internal modes (bubble modes): The number of internal modes for the tensor prod-
uct space is (p − 1)(q + 1), with (p, q ≥ 2). For the trunk space the internal modes
appear the first time for higher polynomial orders of p ≥ 4 [81]. All internal modes

N int
i,j (ξ, η) = φi(ξ)φj(η) (2.72)

are purely local and vanish at the edges of the quadrilateral element. Figure 2.7 depicts
the internal mode for i = j = 2.

ξ
η

1

1

0.5

0.5

0.5

0.25

0
0

0 -0.5
-0.5

-1

-1

Figure 2.7: Internal mode (i = j = 2): N int
2,2(ξ, η) = φ2(ξ)φ2(η)

The index of the shape function i, j denote the polynomial degree of pξ and pη in the local
direction ξ, η of the standard element Ωq

st.

2.2.4 The Blending Function Method

As already mentioned in Section 2.2.2, the h- and the p-version of the FEM differ with respect
to the geometric discretization. The isoparametric element concept used for the h-version
couples the ansatz for the geometry with the ansatz for the displacement field [87, 94]. In order
to get a converged solution, the element size is gradually reduced. With this the geometric
discretization error is reduced as well, as the smaller elements give a better approximation
of the actual geometry. When the p-version is used, one needs to be able to represent the
bounding geometry independent of the chosen polynomial ansatz space. Thus coarse meshes
with large elements can be chosen to discretize the domain. One method to describe the
geometry of even complex structures is the blending function method introduced by Gordon
and Hall [34, 35]. In comparison with the isoparametric concept it leads to an improved quality
of the solution [44].

2.2.4.1 Two Dimensional Blending

Figure 2.8 shows the transformation Qe(ξ) = [Qe
x(ξ), Qe

y(ξ)]T of a quadrilateral standard
element Ωq

st = [(−1, 1) × (−1, 1)] with local coordinates ξ = [ξ, η]T to a general quadrilateral
element with global coordinates x = [x, y]T . Its four nodes Xi = [Xi, Yi]

T with i = 1, ..., 4 and
edges Ei = [Eix, Eiy]

T with i = 1, ..., 4 define the element geometry in IR2.
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N2
x

y

ξ

η

N1

N3N4

E1

E2

E3

E4 X1

X2

X3

X4

E2(η)

Qe(ξ, η)

Figure 2.8: Concept of blending function method for quadrilateral element

The edges’ geometry is defined by the parametric curve description:

Ei =

[

Eix(ξ)
Eix(ξ)

]

i = 1, 3 Ej =

[

Ejx(η)
Ejx(η)

]

j = 2, 4 {ξ, η} ∈ [−1, 1] (2.73)

Equation 2.74 gives the general blending from the local parameter space ξ = [ξ, η]T into the
global, cartesian space x = [x, y]T .

x = Qe(ξ, η) =
4
∑

i=1

NNi

1,1(ξ, η)Xi +
4
∑

i=1

ei(ξ, η) (2.74)

The first term in Equation 2.74 correlates with the standard bilinear mapping of an isopara-
metric quadrilateral with linear shape functions NNi

1,1(ξ, η). The second term accounts for the
curved geometry of the edge and will be further discussed in Equation 2.75 on local edge
number two E2(η), going through the points X2 and X3. It generally augments the bilinear
mapping of the first term by the difference between the curve E2(η) and the straight line
connecting N2 and N3 (see the part in the square bracket in Equation 2.75).

e2(ξ, η) =

[

E2(η) −
(

1 − η

2
X2 +

1 + η

2
X3

)]

1 + ξ

2
(2.75)

The blending term [(1+ξ)/2] assures that the geometric blending of edge E2 fades out linearly
to the opposing edge E4, where (1 + ξ)/2 = 0. For the case of a quadrilateral with curved
edges on each side, Equation 2.74 turns to:

x =
1

2

[

(1 − η)E1(ξ) + (1 + ξ)E2(η) + (1 + η)E3(ξ) + (1 − ξ)E4(η)

]

− [ NN1

1,1 (ξ, η)X1 + NN2

1,1 (ξ, η)X2 + NN3

1,1 (ξ, η)X3 + NN4

1,1 (ξ, η)X4 ] (2.76)
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Chapter 3

Contact Mechanics

The following section gives an introduction into the topic of contact mechanics. Its main
focus is to show the basic equations and definitions related to this topic. For a profound
review of the theory of contact mechanics the monographs of Wriggers [88], Laursen [54], and
Wriggers & Zavarise [89] are referred to. The introduction in this sections follows closely
[24, 37, 54, 89, 88, 90].
The mathematical description of contact problems leads even for the special case of small de-
formations to a nonlinear problem. The nonlinearity derives from the fact, that the system’s
boundary conditions change during the simulation due to the contact deformation. Only a
few analytical solutions exist for the solution of the evolving nonlinear relations for simple ge-
ometries. Due to the problem’s intrinsic geometric nonlinearity, its solution is time consuming
when numerical methods are applied.
Any continuum problem with hyperelastic material can be treated as a minimization problem
[89], meaning that the system’s total potential energy assumes a minimum at the solution
point.

Π(u) →MIN (3.1)

In the case of static contact problems, the minimization is restricted by the set of all possible
contact constraints Gc(u), thus leading to an inequality constrained minimization problem.

minimize Π(u) (3.2)

subject to Gc(u) ≥ 0 (3.3)

In order to solve the contact problems, special attention has to be drawn to the contact
detection. For complex structures with a priori unknown contact regions, the contact search
has to be performed in every time step, load step and iteration of the numerical simulation.
Therefore the contact search often dominates the computation which is usually split into a
global and a local algorithmic task.
Due to the problem’s nonlinear nature, iterative algorithms have to be used. A direct solution
of the Finite Element discretization

R(u) − P = 0 (3.4)

with R(u) being the stress divergence term and P being the applied load, is generally not
possible when the contact inequality constraint is considered. The convergence rates, or more
generally the convergence behavior of the chosen iterative algorithm is therefore of crucial
relevance [89].
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3.1 Contact Kinematics

Given a domain Ωγ where γ denotes the individual body with boundary Γγ, we can divide
the boundary into parts with Dirichlet Γγ

D, Neumann Γγ
N and contact boundary condition

Γγ
c where objects Ωγ are in contact. In the contact interface, the boundaries of in general

two objects (excluding self contact) share the same space which is referred to as the contact
boundary of for example Γ1

c and Γ2
c . The following constraints have to be satisfied [37]:

Γγ
D ∪ Γγ

N ∪ Γγ
c = ∂Ωγ and Γγ

D ∩ Γγ
N = Γγ

N ∩ Γγ
c = Γγ

D ∩ Γγ
c = 0 ∀γ ∈ N (3.5)

The contact boundary condition can be split into a normal and a tangential part which will
be discussed later.
A point with initial position Xγ on object Ωγ is being deformed by uγ to the current position
xγ where γ denotes the respective body (see Equation 2.2 for comparison).

xγ = Xγ + uγ (3.6)

Figure 3.1 shows two deformable bodies which come into contact.

Γ1

Γ2

Ω1

Ω2

x1

x2

Γ1
c

Γ2
c

Γ1

Γ2

Ω1

Ω2

X

Γc

Figure 3.1: Geometrical setup of two contacting bodies.

3.2 Normal Contact

Two conditions have to be fulfilled simultaneously in order to satisfy the contact constraints in
normal direction. One is the non-penetration condition and the other one is the compressive
stress condition. The first condition prevents that two objects occupy the same space and the
second assures that only compressive stresses are present in the contact interface. Adhesion
and therefore tensile forces are nor allowed in this formulation.
The normal distance between two points x2 and x1 living on Γ1

c and Γ2
c can be defined via the

gap function gN as

gN = (x2 − x1) · n1 (3.7)
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with n1 being the outward normal on x1 of Γ1
c [24, 90].

The physical requirements (geometric constraint) of impenetrability of the contacting objects
is enforced by the normal contact constraint as stated above. For this we can define the
non-penetration condition as:

gN ≥ 0 (3.8)

This inequality condition is then resolved by splitting it into the penetration function ḡN for
the case of contact and a case when no contact is present.

ḡN =

{

(x2 − x1) · n1 if (x2 − x1) · n1 < 0

0 otherwise
(3.9)

The normal contact pressure (normal component of the contact traction) and the gap function
are connected through the second and third Kuhn–Tucker condition:

pN ≤ 0 (3.10)

gN pN = 0 (3.11)

where pN is the contact pressure in the contact interface [90]. Equation 3.10 implies that
only compressive contact stresses can occur in the contact interface, while tensile stresses
are prohibited. Equation 3.11 states that either the gap gN , or the compressive stress pN is
always zero (complementarity condition). In the case of a positive gap, the contacting objects
are separated and no active contact constraints, respective contact stresses, are present. For
the case of a closed gap (ḡN = 0), positive contact stresses develop in the contact interface.
A visual representation of the Kuhn-Tucker conditions is plotted in Figure 3.2. The bold
line represents the admissible combination of gN and pN . From Figure 3.2 it is clear, that
in the case of contact (gN = 0), the function of the Kuhn-Tucker condition is ambiguous,
discontinuous, and therefore not differentiable.

pN

gN

no contact

contact

Figure 3.2: Visualization of Kuhn-Tucker condition for normal contact.

Another effect that is related with the normal contact behavior is the effect of adhesion. It
takes into consideration that tensile forces between the objects can develop in the contact
interface due to e.g. van der Waals attraction between interacting bodies. This field of study
has not yet gained much attention in the past, but studies have lately been performed for
example by Sauer [67].



24 3. Contact Mechanics

3.3 Tangential Contact

The relative tangential movement of two objects which are unconstrained in tangential direc-
tion is restricted, when frictional contact effects are taken into account. Therefore, in addition
to the contact description in normal direction, contact conditions for the tangential direction
have to be considered as well. Normal and tangential contact constraints are required to fully
describe the interaction between non-connected objects. In the following the basic contact
parameters for the frictional contact will be introduced by using the Coulomb friction model.
The Coulomb friction model is the classical and relatively simple model to incorporate the ef-
fect of sliding into the computation. Nevertheless, more complex models could be used instead
(see Hartmann [37]).
The friction coefficient µ is a coefficient that is used to describe the capability of an individual
material to carry loads in tangential direction in the contact interface. This is a physical
property which is different for each material as it depends on the material’s surface roughness
on the microlevel and its Young’s modulus. It is usually derived from experiments. With the
friction coefficient µ, an interrelation between the normal and tangential traction pT can be
formulated.

‖pT‖ ≤ µ · pN (3.12)

The tangential traction is therefore bounded by a fraction of the normal traction. Within the
tangential traction a difference has to be made between the sticking and the slipping state.

‖pT‖ < µ · pN in case of stick (3.13)

‖pT‖ = µ · pN in case of slip (3.14)

For the tangential force smaller than µ · pN , no relative tangential motion exists between the
contacting partners and the system is in a sticking state. For the tangential force exceeding
µ · pN , the value is set to µ · pN thus allowing the objects to slide.
The relative tangential motion of two contacting objects for the case of stick can be formulated
in terms of a tangential gap function. In the case of stick, the relative tangential movement
between the colliding objects is zero in the contact interface. Equation 3.15 gives the tangential
gap gT in the case of stick, with n1

t being the tangent vector on Γ1
c

gT = (x2 − x1) · n1
t = 0 (3.15)

Slip occurs when points on Γ1
c slide in tangential direction on Γ2

c . For this case the load is
bounded by the value of µ · pN , and the tangential gap is smaller or larger than zero.

‖gT‖ =
∥

∥(x2 − x1) · n1
t

∥

∥ 6= 0 (3.16)

As pictured in Figure 3.3, the Kuhn-Tucker condition for tangential contact shows that the
tangential gap gT is zero in the case of stick. When the tangential contact force is exceeding
the critical value of µ · pN , the contact boundaries start to slide on each other. Here it should
be noted that the frictional term is path dependent and therefore strongly depends on the
direction of the applied load.
The effect of thermo-mechanical contact and wear are not considered in this study. It should
be noted that they are a matter of and therefore related to frictional contact mechanics (see
[88]).
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pT

gT

µpN

−µpN

slip

slip
stick

Figure 3.3: Visualization of Kuhn-Tucker condition for tangential contact.

3.4 Weak Form of Contact

The weak form of contact is derived from Equation 2.32 which was introduced earlier in Section
2.1.5. It can be modified in such a way that it accounts for the behavior of two independent
objects Ωγ, γ = 1, 2 without contact as shown in Equation 3.17.

2
∑

γ=1







1

2

∫

Ωγ

εγ(v) σγ(u) dΩ −
∫

Ωγ

fγvγ dΩ −
∫

Γγ

tγvγ dΓ







= 0 (3.17)

The two objects are treated separately and do not interact. Enhancing Equation (3.17) with
an additional term Πc, leads to a formulation of the total energy which accounts for contact
phenomena1.

2
∑

γ=1







1

2

∫

Ωγ

εγ(v) σγ(u) dΩ −
∫

Ωγ

fγvγ dΩ −
∫

Γγ

tγvγ dΓ







+ Πc = 0 (3.18)

3.5 Contact Constraints

There are several different methods available to enforce the contact constraints. Formulations
for Πc given in Equation (3.18), are for example the penalty method, the barrier method, the
augmented Lagrangian method, the Lagrange multiplier method, or the mortar method. The
two three of these methods, satisfy the Kuhn-Tucker conditions exactly whereas the first three
methods (penalty, barrier, and augmented Lagrangian method) do only fulfill the Kuhn-Tucker
conditions approximatively. They either violate the non-penetration condition gN ≥ 0 (penalty
and augmented Lagrangian method), or the complementarity condition gNpN = 0 (penalty,
barrier, and augmented Lagrangian method). A detailed description of the aforementioned

1Note that in the case of frictional sliding contact the solution becomes dissipative and therefore path-
dependent. Hence the presented formulation is only valid for non frictional contact [88, 89].
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methods can be found in [54] and [88]. In this work, the penalty method is chosen in order to
incorporate the contact constraints into the Finite Element formulation. A brief summary of
the penalty method is given in the next paragraph.
The name of the penalty method stems from the fact, that it penalizes a violation of the
non-penetration condition (Equation 3.8). When a penetration of one body into another one
is detected, it will be penalized by adding a large stiffness and a corresponding force to the
elements in contact. From a mechanical point of view, the penalty method puts, in case of
penetration, a spring with large stiffness ǫ in between the contacting nodes/edges. Applying
the penalty method, the contact term Πc in Equation (3.18) can be modeled by

ΠP
c =

1

2

∫

Γc

(ǫN(ḡN)2 + ǫT gT · gT) dΓ , ǫN , ǫT > 0. (3.19)

The contact boundary of the body is represented by Γc, ǫN and ǫT are the penalty parameters
in the normal and tangential direction respectively [88]. The normal gap between the objects
is given by gN , which is greater than (no contact), or equal to zero. In case of penetration, the
active normal gap values are denoted by ḡN . In the case of friction, gT denotes the movement
in tangential direction.
The variation of Equation (3.19) yields Equation (3.20) which is valid for the case of stick2.

δΠP stick
c =

∫

Γc

(ǫN ḡNδḡN + ǫT gT · δgT) dΓ , ǫN , ǫT > 0 (3.20)

In the case of slip, the virtual work includes the tangential stress given by the constitutive law
of frictional sliding (like the Coulomb friction model, Section 3.3) [88, 24].

δΠP slip
c =

∫

Γc

(ǫN ḡNδḡN + tT · δgT) dΓ , ǫN > 0 (3.21)

Considering only normal contact, Equation (3.19) reduces to:

ΠP
c =

1

2

∫

Γc

ǫN(ḡN)2dΓ (3.22)

which clearly illustrates the mechanical idea behind the penalty method method. Taking the
penalty parameter ǫN as the spring stiffness, and ḡN as the penetration of the two bodies,
it is obvious that ΠP

c corresponds to the strain energy of a linear elastic spring distributed
over the contact boundary Γc, connecting the two bodies. From this it is evident that the
non-penetration condition of Equation 3.8 is not fulfilled exactly in general. Only for the case
of an infinite value of the penalty parameter, the penetration converges to zero and satisfies
the non-penetration condition, see [50] and [56]. However, large numbers of ǫN and ǫT lead to
an ill-conditioned numerical problem [88]. The behavior for increasing values of the penalty
parameter is tested on a simple unilateral example setup shown in Figure 3.4(a), where the two

2Be aware that by using the penalty method to incorporate the contact constraints, a relative (tangential)
motion between the sticking contact partners is possible.
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domains Ω1 and Ω2 are initially not in contact, having an infinitesimal gap. The convergence
of the penetration, strain, and strain energy is shown in Figure 3.4(b) and plotted in a double
logarithmic scale. Herein the error in the strains is computed by

√

|εref − εFE| /εref and the

error in the strain energy is computed by
√

|Uref − UFE|/Uref (here not given in percent). The
penetration is an error by itself, as the penetration should be zero. The linear behavior between
the penalty parameter and the plotted variables is visible. To compromise the aforementioned
ill-conditioning and numerical accuracy, a penalty value of ǫ = 1000 ∗ E, with E being the
Young’s modulus, is used in the current (static, steady state) study as the standard value.
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Figure 3.4: Convergence behavior for increasing values of the penalty parameter for a simple example
setup.

For a numerical implementation of Equation (3.22), the integral along the contact boundary
is evaluated e.g. by a Gaussian integration rule. The variation of Equation 3.22 leads to:

δΠP
c =

∫

Γc

ǫN ḡN δḡN dΓ , ǫN > 0 (3.23)

An advantage of the penalty method is that it is purely geometrically based and therefore does
not introduce additional degrees of freedom to the resulting equation system. The normal
contact stress is then given by:

pN =

{

ǫN gN if gN ≤ 0 contact

0 if gN > 0 no contact
(3.24)

Figure 3.5 plots the Kuhn–Tucker condition regularized by the penalty method. The conver-
gence of the penalty method for ǫN → ∞ towards the exact fulfillment of the Kuhn-Tucker
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pN

gN1

ǫN

Figure 3.5: Kuhn-Tucker condition for normal contact regularized by the penalty method.

condition is clearly visible in this picture. The tangential component of the contact constraint
can be regularized in a similar way.
Once the penetration ḡN at a given Gauss point of an edge is computed, its value will be
multiplied with the penalty parameter ǫN and the resulting traction is then considered during
the integration of the load vector. The overall set of nonlinear equations arising from the
discretization is solved by means of the Newton Raphson method. The approximated tangent
stiffness matrix is computed numerically by differentiation of the residual force vector with
respect to the degrees of freedom [87], thus applying the discrete Newton Raphson scheme
(see Section 3.7).

3.6 Contact Interface Discretization

One of the most important and difficult tasks of describing contact problems numerically, is
to capture the spacial interaction of the objects involved. The deformation of the contacting
objects lead to contact stresses in the contact interface. These contact stresses have to be equal
in a pointwise sense on the contacting boundaries, forming an equilibrium in the interface.
The fact that the Finite Element meshes of the objects are in general non-matching in the
contact interface, limits the choice of the method used for the contact discretization.
A well known and popular method to discretize the contact is the node-to-segment (NTS)
method in which the classical master-slave concept is used. Its main idea is that any node on
the slave side is not allowed to penetrate any master segment. The gap function is evaluated
only at these slave nodes thus satisfying the contact constraints like the non-penetration
condition only pointwise. Figure 3.6 shows the master and slave side with the corresponding
nodes. The non-penetration condition is enforced on node x2

1. In the rest of the domain,
gaps and penetration along the elements can occur. This becomes evident when looking at
the nodes x2

1, x
2
2, x

2
3, x

1
1, and x1

2 in Figure 3.7. For the case when the nodes x2
1, x

2
2, and x2

3,
which are nodes on the slave side, fulfill the non-penetration condition by not penetrating
into the master surface, nodes x1

1 and x1
2 will in the general case by no chance (for curved

geometries) satisfy the non-penetration condition at the same time. Therefore the master
nodes are not used to enforce the contact conditions, like the non-penetration condition. This
also motivates why generally a finer mesh is chosen for the slave, than for the master side, in
oder to get a better approximation in the contact interface. A better resolution (finer mesh)
of the master surface would, in the case of single sided contact, not improve the quality of the
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Figure 3.6: Node-to-segment contact discretization.

results significantly but increase the computational effort. Following the master-slave concept,
the contact conditions are transferred from the slave to the master surface.
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Figure 3.7: Node-to-segment contact discretization. Non-penetration condition is only fulfilled point-
wise for the nodes on the slave surface.

In the case when isoparametric Finite Elements with a polynomial order of one are used to
discretize the objects in contact, no smooth geometric description of the contacting boundaries
exists. The geometry will only be described approximatively, leading to kinks in the geometric
discretization along the boundaries. For this case, if a slave node slides from one contacting
master element to its neighboring master element, the non-smooth geometric representation
can lead to non-physical peaks in the corresponding contact forces. Several smoothing algo-
rithms to overcome these peaks and jumps have been developed and can be found in [63, 65, 78].
The segment-to-segment (STS) approach was developed by Simo, Wriggers, and Taylor [74]
to overcome the problems described for the NTS method. It discretizes the contact interface
with contact segments on which the gap functions and Lagrange multipliers are interpolated
(see Figure 3.8). It allows to use different interpolation schemes for the gap function and the
Lagrange parameter. An intermediate contact line will then be defined inside of the contact
segments which is C1-continuous. This contact line does not has to lie in the middle of
the segments, but can be placed anywhere inside the segment. Even one of the contacting
surfaces can be chosen as the intermediate contact line. However this does not mean, that
the interpolation of one of the contact boundaries is equivalent to the intermediate contact
line since it is still C1 continuous [88]. As the segment-to-segment approach only fulfills the
non-penetration condition in an average (integral) way, gaps and penetrations can occur in
the contact interface as sketched in Figure 3.9). Similar formulations were introduced by [64]
and [92].
The mortar method is currently favored by many researchers in the field of contact mechanics.
It is based on a segment-to-segment approach. Its main idea is the weak (integral) enforcement
of the contact constraints in the contact interface. To enforce these constraints, the penalty and
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Γ1
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intermediate contact line

Figure 3.8: Segment-to-segment contact discretization with geometrical interpretation of the inter-
mediate contact line.

Ω1Ω1

Ω2

Ω2

contact segment

Figure 3.9: Segment-to-segment approach: The gray segments illustrate the contact segments. In
the case of contact (right figure), the non-penetration condition is only fulfilled in an
integral sense. The right figure is therefore giving a geometrical interpretation of the
average gap [88].
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the Lagrange multiplier method can be applied, even though the Lagrangian method is being
mostly used. The method was introduced by Bernardi, Debit, and Maday in [7] and further
developed in [8] and [9]. Detailed mathematical investigations showed that the continuity
condition’s integral enforcement did lead to better results than their exact fulfillment on
discrete nodes. By enforcing the contact constraints not pointwise but in an integral sense,
as done in the STS and mortar method, jumps in the contact forces will be smoothed. This
is why the mortar method is well adopted in the low order Finite Element community where
the bodies’ geometric description is usually approximated by linear or quadratic polynomials.
Further details on the mortar method are for example given in [31, 54, 86, 88].

Lately, studies are carried out which apply the isogeometric analysis concept introduced by
Hughes [46] to contact mechanics, see [14], [55] and [84]. The use of isogeometric ansatz spaces
enables a smooth geometric representation of the contact boundary combined with the ability
to control the continuity on individual points. De Lorenzis [14] and Temizer [84] combine the
isogeometric concept with the mortar method to introduce the contact constraints.

All of the aforementioned methods make use of the master-slave, respective mortar side and
non-mortar side, concept. The constraints are usually only enforced at the slave nodes or
surfaces and then transferred onto the master boundary. Especially for the NTS method, the
nodes on the master side generally do not satisfy the Kuhn-Tucker condition given in equations
3.8-3.11. The reason for this is the poor geometric description mostly used in combination
with low order Finite Element Methods. It is simply not possible to enforce the Kuhn-Tucker
conditions on the master and slave side at the same time when curved shapes are considered
(see Figure 3.7).

Representing the geometry exactly by making use of the blending function method as described
in Section 2.2.4, enables to enforce the contact constraints on both contacting boundaries
simultaneously when higher order basis functions are used to describe the objects’ displace-
ments. But in order to obtain good results it is insufficient to simply check for penetration of
the elements at the corner nodes. Since p-version meshes are usually very coarse, the test for
penetration is rather performed along the contact interface on the level of quadrature points,
namely Gauss-Legendre points. An important property of the Gauss-Legendre points is that
the points live on the interval of −1 < xi < +1, with xi being the Gaussian node’s position.
From this it is clear that the corner nodes of the elements do not enter the quadrature and
the normal direction on each Gauss point is uniquely defined. In contrast to this, the interval
of the Gauss-Lobatto points −1 ≤ xi ≤ +1, includes the boundaries of the interval −1 and
+1, which leads due to the FEM’s C0 continuity on the nodes to ambiguous normal directions
on Finite Element nodes (see Figure 3.10). Thus the use of Gauss-Legendre nodes is recom-
mended for the evaluation of the gap function. It can generally be stated, that a high-order
of quadrature points on both contact boundaries is superior to a low number, especially when
curved geometries are considered. It is theoretically possible to use various solution algorithms
for contact in combination with this approach like the penalty, Lagrange, augmented Lagrange
or other methods, although only the penalty method is studied in this work. Due to the fact
that the contact detection is performed sequentially on each contact boundary, non matching
meshes can be used in the contact interface. Nevertheless special treatment of the end points
of the contact interface is necessary in order to improve the results. Further discussion of this
issue will be given in Chapter 4. In the following paragraph the local contact search algorithm
will be explained for the bilateral case as suggested by Gabriel [28].
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Gauss-Legendre nodes Gauss-Lobatto nodes

Figure 3.10: Ambiguity of normal on Gauss-Lobatto nodes and unique normal on Gauss-Legendre
nodes.

Local Contact Search for High-Order Finite Element Methods

Disregarding the discretization method described in the previous section, the contact has to
be detected by evaluating the gap function for individual points. Focusing on the high order
scheme with continuous and smooth boundary descriptions, the corresponding contact search
can be performed on the Gauss-Legendre points as stated before. For this case, the contact
boundary of two contacting objects is displayed in Figure 3.11, where Γ1

c and Γ2
c denote the

deformed boundaries of objects Ω1 and Ω2, respectively. Points x1 and x2 in their deformed
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Figure 3.11: Ambiguous normal directions and gaps depending on the generic point.

configuration are located on the deformed boundaries as shown in Equation 3.6. Taking the
point x1 as a generic point on Γ1

c , it is evident that there are two different points (x2 and x2)
on Γ2

c whose potential contact partner is x1. The projection of x1 on Γ2
c yields x2 and the

projection of x2 on Γ1
c yields x1. Thus the definition of an algorithmic contact pair for x1 is

not unique, leading to two different possible contact pairs for x1 : {x1,x2} and
{

x1,x2
}

. The

corresponding oriented distances d12 and d21 are:

d12 = x2 − x1 (3.25)
(3.26)

d21 = x1 − x2 (3.27)

It follows that d12⊥Γ1
c and d21⊥Γ2

c , but d12 6= d21 for the general case. If d12 and d21 are
not equal, the corresponding pressures will also differ for point x1, depending on whether x1

is projected onto Γ2
c or x2 is projected onto Γ1

c . Therefore Newton’s action-reaction principle
is not satisfied a priori. Yet, in the case of convergence of the overall solution, Γ1

c and Γ2
c and

hence d12 and d21 will become parallel to each other (as plotted in Figure 3.12), resulting in
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x2 = x2 and d12 = d21. In order to satisfy Newton’s action-reaction principle, it is necessary,
in contrast to the classical master-slave concept [88], to evaluate the gap function for each
Gaussian node on each contacting edge separately, so that no contact boundary is given
preference. This leads to a symmetric treatment.

Ω1

Ω2

Γ1
c

Γ2
c

Figure 3.12: Discretization using the blending function method in combination with high order basis
functions.

From a theoretical point of view the local contact search itself is relatively easy. The normal
vector on arbitrary (Gaussian) points can be derived from the tangent tγ

GP of this point on
the deformed boundary. The normal vector nγ

GP hast to fulfill the following condition:

tγ
GP⊥nγ

GP → tγ
GP · nγ

GP = 0 (3.28)

To detect contact, the intersection of the normal (ray) and a deformed element boundary of
the other domain has to be checked. For isoparametric linear element descriptions this is easily
derived in a closed form analytically. For arbitrary representations of the boundary like for
a combination of the initially exact geometry representation (blending function method) and
a deformation derived from high order polynomials, the intersection test is numerically more
demanding. In the present work it is performed by a numeric algorithm that iteratively finds
the intersection point between a ray and an arbitrary curve. A good overview of algorithms
in two and three dimensions can be found in [68].

Usually the Gauss order changes with the chosen polynomial degree p. In order to have an
exact integration of the load vector and stiffness matrix, a Gauss order of p + 1 has to be
chosen. This scheme is also applied in the present study, but a very precise integration scheme
with a Gaussian order as high as fifty is chosen along each edge for the contact detection. At a
first glance it would seem reasonable to use different Gaussian orders for different polynomial
degrees. Yet, with varying numbers of Gauss points their individual local positions along the
edge vary as well. Whereas this might not be important for elements lying completely in the
contact region, it can be of crucial relevance for elements which are only partly in contact.
For these elements it is even possible to obtain better results with a lower Gauss order, just
because the position of the Gauss points is fortunate. By choosing a constant value of fifty
along the boundaries for the contact detection, an influence of the individual Gauss point
position for changing polynomial orders (p+ 1) can be excluded.



34 3. Contact Mechanics

3.7 Linearization of Contact Contributions

The linearization of the contact contributions is usually performed analytically for polynomial
degrees of low order. Higher order linearizations of the contact terms are difficult to derive
and are not in the scope of this work. A possible method is described in Konyukhov et al. [52].
In the present study, a finite difference scheme is applied to derive the approximate tangent
stiffness matrix.

Finite Difference Method

The derivative of a function a(x) in x-direction is approximated by the first order forward
finite difference formulation as:

a(x)foward
x =

a(x+ ∆x) − a(x)

∆x
(3.29)

where the disturbance term ∆x is small but finite. A detailed introduction into finite difference
schemes can be found in Hirsch [43]. Further schemes are the first order backward difference
method (Equation 3.30) and the second order central difference method (Equation 3.31)

a(x)backward
x =

a(x) − a(x− ∆x)

∆x
(3.30)

a(x)central
x =

a(x+ ∆x
2

) − a(x− ∆x
2

)

∆x
(3.31)

Following Wriggers [87], the forward difference method can be used to approximate the tangent
stiffness matrix K. When the Newton Raphson method [87] is applied in combination with
the forward difference method, the discrete Newton Raphson method is derived. It uses the
residual of the equation system, which is derived from Equation 2.45.

G = F − K · U (3.32)

To approximate the mth-column km of the tangent stiffness matrix K with N unknowns, the
following scheme can be used:

km ≈ 1

hm

[G(ui + hm em, λ) − G(ui, λ)] (3.33)

with K = [k1 k2 k3 · · · km · · · kN ] . (3.34)

The method is therefore depending on the residual G, the step size hm, the load factor λ,
and the mth unit vector em which is zero everywhere except at index m where it takes the
value of one. In order to obtain a good approximation for km, hm should be chosen very small.
Unfortunately the value of hm is bounded by the computer’s machine accuracy η. An estimate
for the value of hm can be derived by

hm = ν
(

|(um)| + 10−3
)

with ν = 10−3 . . . 10−5 <
√
η . (3.35)

Applying the discrete Newton Raphson scheme with the forward difference scheme as given
above, the tangent stiffness matrix K for contact problems can be derived. Due to the fact that
the forward difference method only takes points on one side of the point of interest (x) into
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consideration, it is called a one-sided-difference formula. This property is in fact not well suited
for contact problems, because of the inequality condition in the contact constraints. When
calculating the derivative and hence the stiffness matrix it makes a big difference in which
direction the disturbance is applied. If it is applied in such a way that the disturbed object
comes in contact, a large increase of the individual stiffness term is expected. If the disturbance
is applied in the opposite direction, away from the other contacting object, no change in the
stiffness term will occur. It is therefore not possible (or only with additional effort) to derive
a symmetric stiffness matrix by applying the forward, or backward finite difference scheme.
From this it follows that the central difference method is due to its symmetric formulation the
method which is (out of the three methods) best suited to capture the contact and derive a
symmetric stiffness matrix. It is therefore used in the present work. The symmetric equation
system3 to derive the tangent stiffness matrix for the problem of contact mechanics, is therefore
derived as:

km ≈ 1

hm

[

G(ui +
hm

2
em, λ) − G(ui −

hm

2
em, λ)

]

. (3.36)

The mayor drawback of the applied method is the enormous computational effort that has to
be spend to evaluate the residuum G for each disturbed solution vector u. Each disturbance
requires to check for contact and evaluate the gap function again. For an equation system
with N unknown displacements, the residuum vector G has to be evaluated N times. In each
evaluation, the check for contact has to be performed twice, because of the application of the
central difference method. The whole computation time is therefore ruled by the derivation
of the tangent stiffness matrix. A possible alternative to the method applied here is given by
Konyukhov et al [52]. It defines the weak form of the contact in a local coordinate system
living on the contact boundary. With this covariant form, the linearization of the contact
term, even for large displacements and high-order ansatz spaces can be derived.

3 It should be noted, that the normal direction on the disturbed position of each Gauss point should not be
recomputed while computing the tangent stiffness matrix numerically. Instead the normal direction on each
Gauss point in the undisturbed configuration has to be used to evaluate the gap function (Equation 3.7) in
the disturbed configuration. That way a symmetric matrix system can be derived, even for the described case,
where the stiffness matrix is computed by separate contact search runs along each objects’ contact boundary.
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Chapter 4

FE Extensions - Adaptive Mesh
Methods

Important tasks in engineering practice are to develop, analyze, and plan for example eco-
nomical and ecological impacts, consumer products, estimate processes and risks, and design
rural and urban infrastructure. For each application and task the engineer is working with
and generating simplified models to approximate the real world. The limits of these models
have to be known and understood by engineers in order to obtain estimates which are sound
and of such quality that decisions based on them are essentially the same as if the correct so-
lution is known a priori. Applying this to mechanical problems solved with the Finite Element
Method, we have to be sure that the approximation that we get for our solution vector uFE is
in a range which is acceptable for the problem at hand. As an optimum, the solution of the
Finite Element Method is almost as good as the exact solution uex. In order to achieve this
it is obvious that we need to take care of our problem’s discretization, where discretization
is meant to cover the whole range from linear and non-linear theories, material laws, meshes,
ansatz spaces etc. A measure for the quality of the discretization can be a convergence of
stresses, strains, displacements, reactions, strain energy, et cetera. To check their conver-
gence, modifications of the FEM can be used, where modification stands for a process that
systematically changes the FE discretization by means of an increase of degrees of freedom,
or mesh adaption. With these progressively improving approximation properties, better solu-
tions can be obtained and evaluated by means of convergence to an estimated exact solution.
Before talking more about the extension strategies, a classification of error estimators and
further criteria for the decision making should be discussed first.

4.1 Problem Classification

In order to distinguish between different problem types of partial differential equations, it is
useful to establish a simple classification for the character of the exact solution uex, based on
a priori informations about the problem’s regularity. Further details about the classification
can be found in [80, 81].

Category A: The nature of a problem of category A is that its solution uex is analytic
everywhere in the solution domain, including the boundaries. A function is said to be
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analytic in a point when it can be expressed using a Taylor series expansion about that
point.

Category B: A problem of category B has the nature that uex is analytic everywhere inside
the solution domain, including the boundaries, but with the exception of a finite number
of points. These finite number of points are called singular points which is due to the
fact, that the solution is not analytic, but singular at these points. The position of the
singular points is known a priori such that the Finite Element mesh can be constructed
in a way that the singular points coincide with the Finite Element nodes. For 3D cases
additional singular edges can occur. In between the singular points and edges, the
solution is analytic.

Category C: Category C contains all problem types where uex can not be expressed by
category A, nor category B. Singularities occur inside the solution domain or on the
boundaries. Their position is not known a priori. Thus a FE mesh can not be constructed
in a way that the points where the solution is not analytic are nodal points (or edges in
3D).

Alternating boundary conditions generally lead at least to a reduced regularity at the transi-
tion from for example a fixed support to a free boundary. A similar loss of regularity can be
observed in the interface from boundaries with distributed loads to the free boundary condi-
tions. These problems are therefore of category B, because the location of the points where
the solution is not analytic is known a priori. In a similar way, contact mechanics can be
understood as a problem with changing boundary conditions in each iteration step [87]. At
the a priori not known location of the end of the contact interface, the boundary condition
changes from contact (load boundary condition) to a free boundary condition. The nature of
contact mechanics therefore is a problem of category C. The aim of adaptive mesh methods
is to turn a problem of category C into a problem of category B. A posteriori error estimators
(see following section) are used to modify the mesh in such a way that non analytic (singu-
lar) points either coincide with FE nodes (rp-version of the FEM) or are isolated by a single
small element (hp-version of the FEM). Details on error estimators and the different adaptive
schemes are given in the following sections. Due to the analogy of the contact problem to a
Neumann boundary condition, studies will first show the convergence rates of the Neumann
boundary condition (Section 4.5) before the results for the contact examples will be given in
Chapter 5.

4.2 Error Estimation and Convergence Rates

During the last twenty years numerous authors have been working on the topic of error esti-
mation. Several strategies have been developed in order to estimate the error which occurs in
Finite Element approximations. For a detailed discussion the reader is referred to the work of
[1], [85], and [87]. As a first and most obvious classification of error estimates, the following
description is given which is based on the input data used.

a priori: These error estimates are available for many problems of category A, B, and C.
They are not based on results obtained during the Finite Element computation itself,
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but based on an a priori analysis of the structure of the exact solution (like its smooth-
ness). The structure depends on boundary conditions and the geometric layout of the
problem for example. The a priori analysis enables to choose the right approximation
method, discretization scheme, mesh layout, and estimates the possible convergence
rates. Depending on the problem’s category and chosen discretization, possible conver-
gence rates can be of algebraic, or exponential nature (see Figure 4.1). A detailed survey
can be found in [4, 71, 81].

a posteriori: These error estimates are also available for many problems of category A, B,
and C. They make use of the data computed by the Finite Element Method. In a
postprocessing routine, it estimates the error’s distribution and magnitude. This qualifies
it to be used for adaptive schemes, by judging which scheme should be used and how
and where the adaptivity should be applied. Possible methods include global or local
mesh refinements, global or local adaption of the shape functions’ polynomial degree,
and mesh relocation. Out of the large variety of a posteriori error estimators a few like
explicit, implicit, residual based, and hierarchy based estimators should be named.

In the motivation of Chapter 2 several different error sources were mentioned. In order to
measure the error e of a Finite Element approximation uFE,

e = uex − uFE (4.1)

the strain energy of a solution as defined in Equation 2.31 can be used

‖u‖E(Ω) =
√

U(u) =

√

1

2
B(u,u) .

Besides others, the strain energy is a good measure for the quality of a solution (if the exact
solution uex is known), because it generally covers the whole domain of the computation and
can be computed for every problem without a priori knowledge of the solution’s properties.
The error in strain energy norm, as a measure for the quality of the approximation, is:

‖e‖2
E(Ω) = ‖uex − uFE‖2

E(Ω) . (4.2)

The relative error in strain energy norm η which is used in the convergence plots in the
following Chapters and Sections is computed as:

η =

√

|Uref − UFE|
Uref

· 100 [%] . (4.3)

In general one distinguishes between different ratios of convergence for the various error types
such as i.e. the error in energy norm. To judge the error’s behavior, the relative error in
energy norm is usually plotted in a double logarithmic scale where η is considered to be a
function of the number of unknowns log N . In Figure 4.1, some fundamental convergence
rates, reaching from algebraic to exponential, are sketched. In the conventional h-version of
the Finite Element Method, global or local mesh refinement is used in order to improve the
quality of the solution. The optimal rate of convergence for the relative error in energy norm
(Equation 4.3) for the h-refinement is algebraic. The value of the negative gradient of the
convergence rate β (plotted in Figure 4.1), is a function of the applied polynomial degree of
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Figure 4.1: Overview of convergence rates in energy norm for a two dimensional problems.

the shape functions and has a value of β = 1
2
p for two dimensional problems in linear elasticity.

For a bilinear ansatz space, β takes the maximum value of 0.5 and for a biquadratic ansatz
(p = 2) the gradient for β is ≤ 1. The given gradient is only defining the upper bound, but can
vary according to the smoothness of the solution. The error ‖e‖E(Ω) for algebraic convergence
behavior is generally given by:

‖e‖E(Ω) ≤
k

Nβ
(4.4)

with k being a constant, and N being the number of degrees of freedom.
For the p-version of the FEM as presented in Section 2.2.3, the mesh remains the same, but the
polynomial degree of the applied ansatz function is increased. Exponential rates of convergence
of the error in strain energy norm are possible for smooth problem types of category A. For
problems of category B or C, containing singularities like reentrant corners or nonlinearities,
like elasto-plasticity, or contact, the convergence rate is at least in the asymptotic range only
of algebraic type if the general p-version of the FEM is used. Nevertheless it is still superior
to the convergence rate of the h-version for problems of category B or C. The gradient is
depending on the smoothness of the solution. In order to improve the convergence rate for
these problem classes, enhanced Finite Element Methods like for example the hp-, rp-, or
hp−d-method [18, 58] should be used. In the following it will be shown, that even for contact
problems, exponential rates of convergence of the error in energy norm are possible if the
p-version of the FEM in combination with adaptive methods is used. The error ‖e‖E(Ω) for
exponential convergence behavior is generally given by:

‖e‖E(Ω) ≤
k

exp (γN θ)
(4.5)

where γ and θ denote another constant with θ ≥ 0.5 [81].

4.3 Stress Intensity Factors

The stress intensity is an indicator for the evaluation of the smoothness, meaning continuity
and differentiability of the problem at hand. With its help the identification of singular points



4.4. Stress Intensity Factors for Contact Problems 41

inside the solution domain is possible. A short introduction into the topic is given in the
following.

From a mathematical point of view, the exact solution for two-dimensional problems of linear
elasticity can be written as a sum of two functions u1 and u2. Of these, u1 is a smooth
function and the function u2 exists in the neighborhood of a finite number (m) of points Pi.
The function u1 is neglected in the following discussion and we will focus on function u2:

u2 =
∞
∑

i=1

Ai · rλi · ψ(θi) (4.6)

The polar coordinates r and θi are centered on the singular points Pi. The coefficient Ai

symbolizes the stress intensity factors. The exponent λi characterizes the smoothness of the
solution and ψ(θi) are smooth functions [81].

The stress intensity factors Ai depend on material parameters, the loading, and in particular
on the position of Pi. As indicators for the smoothness (continuity and differentiability) of
the solution at Pi, the stress intensity factors Ai can be derived by an asymptotic expansion
around Pi [21].

The lowest λ, corresponding to the term with a non-zero coefficient, governs the asymptotic
rate of convergence. The size of Ai influences the pre-asymptotic behavior. Suppose A1 = 0,
A2 is small in comparison with A3. Then in the pre-asymptotic range the rate of conver-
gence would be dominated by λ3 but in the asymptotic range it would slow down to the rate
corresponding to λ2 [82].

4.4 Stress Intensity Factors for Contact Problems

Kinderlehrer [51] and Schumann [70] studied the regularity for Signorini’s contact problem [50]
in linear elasticity, where the Signorini problem is a generalization of the unilateral Hertzian
2D problem. In particular they studied the regularity of the solution at the end of the contact
interface. They showed, that the solution of the Signorini problem belongs to the Hölder
space C1+α with 0 < α ≤ 1. In this C1 means that the function is one times continuously
differentiable and C1+α says that the first derivative satisfies the Hölder condition with index
α [38]. For α = 1, the first derivative is therefore Lipschitz continuous. For α = 0, the
first derivative is bounded. It can thus be summarized that the unilateral contact problem of
Signorini type is not more than C2 continuous.

This property is as well studied in the obstacle problem (Figure 4.2). It describes the behavior
of a membrane which comes in contact with a rigid obstacle. Having two functions where u(x)
defines the membrane (boundary Γu) and g(x) defines the boundary (boundary Γo) of the
obstacle, one has to divide the solution domain Ω into two sub-domains D1 and D2. Domain
D1 is the area, where the differential equation for the general linear elasticity holds. Its
complement D2 is the contact interface where, additional to the linear elasticity, the solution
u touches the obstacle with u(x) = g(x). The so called contact interface point marks the end
points of the contact interface where Γ∗ := ∂D1 ∩ ∂D2. These points are generally not known
a priori. The solution’s regularity at this point is such that it is not more than H2 regular,
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u(x)

g(x)

D1D1 D2

Figure 4.2: Setup of the obstacle problem - a membrane described by u(x) in contact with a rigid
obstacle whose surface is given by g(x).

where H defines the Sobolev space. It can then be said that

u|Γ∗

= g|Γ∗

and (4.7)

∂u

∂x

∣

∣

∣

∣

Γ∗

=
∂g

∂x

∣

∣

∣

∣

Γ∗

(4.8)

which states that u and g are identical on Γ∗. Furthermore, the solution is continuous and
possesses Lipschitz continuous (bounded by some finite value) first derivatives which is also
identical in Γ∗. In addition, the solution is generally discontinuous in the second derivatives
across Γ∗. For further informations on this topic the reader is referred to the book of Großmann
and Roos [36], and Schröder [69].
Eck [21] studied the asymptotic expansion for the Signorini type problem and showed that
the first term of the stress intensity factor vanishes in Γ∗. Unfortunately, the higher order
terms do not vanish at the end of the contact interface as desired, thus introducing a reduced
regularity at this point. Following this study, the rate of convergence for a general p-version
of the FEM is therefore limited to be of algebraic type.
Another way to explain and understand the behavior of a Signorini type problem is to analyze
the effect of the boundary condition arising from the contact side constraints. As shown in
Section 4.1, the mechanical contact problem can be understood as a problem with changing
boundary conditions in every iteration step. Assuming that the distribution of the contact
stresses in the contact interface is known for every iteration step, it would from a theoretical
point of view not make any difference if the contact problem is computed, or if an equiva-
lent system of separate objects is computed where the known contact loads are applied in
every iteration step. The contact boundary conditions can therefore be seen as a boundary
condition of Neumann type, by applying distributed loads (stresses) along the boundary. In
general it is well known that loads have to be applied carefully on a given domain in order to
avoid singularities or at least avoid points with reduced regularity. Some aspects of Neumann
boundary conditions are discussed in the following section.

4.5 Neumann boundary conditions

From an engineering and mathematical point of view it is well understood that concentrated
point loads applied on a given domain lead to a singularity in the stresses at the application
point. As the stresses are equivalent to the applied load per area it is clear, that the stresses
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become infinite when the affiliated element size (area) is decreased to zero in the limit point.
But also distributed loads can reduce the regularity of a solution, depending on the object’s
geometry and whether the load is applied on finite area only (inhomogeneous boundary condi-
tions). For example a jump in the stresses is generally introduced at the end of a rectangular
distributed load acting normal to the boundary1. This jump in the stress distribution is not a
problem for the convergence of the Newton algorithm during the computation, as it matches
the C0 continuity requirement of the FEM at Finite Element nodes, but it is certainly a
point with reduced regularity in the solution domain (not part of problem category A). Some

φ

−φ

(a) (b) (c)

Figure 4.3: Rectangular load on different settings, causing solutions with reduced regularity.

possible problematic setups are shown in Figure 4.3(a), (b), and (c). They show a reduced
regularity at the end of the area where the load is applied. If this area is discretized with
Finite Elements, attention has to be drawn to the chosen element size around this point. The
error introduced is related to this element size as it frames the affected area and thus how
far the error spreads. The solution will finally always be governed by this error. In the pre-
asymptotic range, exponential rates of convergence can possibly be obtained for the p-version
of the Finite Element Method. As long as the overall error in the solution domain is larger
than the error introduced due to the singularity at the end of the load application area, the
rate of convergence is of exponential nature (pre-asymptotic convergence rate). As soon as
the solution in the domain is represented well by the applied high order shape functions, the
singularity due to the loading will govern the convergence rate, leading to asymptotic alge-
braic rates of convergence. When an adaptive scheme like the hp-method is used, exponential
rates of convergence are to be expected as the influence area for the error is reduced in each
adaptive step (see Section 4.7).
For triangular loads, two problematic areas can occur. The end with high loading, will exhibit
the same loss of regularity as described for the rectangular load. Assuming a proper treatment
of this side and focusing on the end where the load approaches zero, a reduced regularity can
be observed as well, leading to a similar convergence behavior, but with a higher rate. As for
the rectangular load distributions, some setups are shown in Figure 4.4(a), (b), and (c) that
lead to a reduced regularity at the end of the line (area) load.
As a simple test case, a model consisting of two elements is chosen to show the convergence
characteristic for different Neumann boundary conditions acting on parts of a boundary. The
distribution of the load is either rectangular or triangular. The loads are applied separately
giving two different load cases. The material of the block is steel with a Young’s modulus

1This does not cause a problem if the neighboring, unloaded edge is attached within an angle of exactly φ±90
degrees. Further studies should be performed to test the sensitivity of the enclosed angle of the neighboring
edge to the amount of reduced regularity in the solution. An article dealing with these types of inhomogeneous
boundary conditions and their resulting stress singularities in elasticity and asymptotic analysis is given by
Sinclair [75].
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Figure 4.4: Triangular load on different settings, causing solutions with reduced regularity.

of 206900 [N/mm2] and a Poisson ration of 0.29. Small displacements are assumed and the
polynomial degree is varied between three and twenty. The system for the numerical setup is
shown in Figure 4.5. The reference solution for the computation of the relative error in energy

2 [mm]

2 [mm]

1000 [N ]

1000 [N ]

Figure 4.5: Simple test case of a rectangular block discretized by two elements, loaded by two dif-
ferent load cases (rectangular and triangular).

norm is computed on a uniformly refined mesh with a refinement factor of ten, resulting in
a mesh with 200 elements, computed with a polynomial degree of ten. The relative error in
energy norm is plotted in Figure 4.6 for the two load cases. A pure algebraic rate of convergence
is visible for both load cases, with a higher convergence rate for the triangular load. The
algebraic rate of convergence is a consequence of the singularity occurring at the end of the
load application area. Figure 4.7 shows the relative error of the von Mises stresses for the two
different load patterns. The error in the domain is derived by showing the difference between
the computation with two elements and p = 20 and the computation with two elements and
p = 10. The model with two elements and p = 20 is therefore taken as a reference instead
of the 200 element mesh. This is done because the error in the von Mises stresses are much
easier derived from discretizations having the same meshes. But as it is shown in Figure 4.6,
the solution of the two element mesh and p = 20 is also showing small errors in the energy
norm for the rectangular and triangular load case.
In Figure 4.7, the scaling in the legend gives the span from zero error to a relative error of 0.5%.
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Figure 4.6: Convergence rate of the relative error in energy norm for the simple test case of a block
discretized with two elements. The polynomial degree is varied between p = 3 and
p = 20. A rectangular and triangular load case is studied.

The relative error of 0.5% means that the maximum value in this plot shows the area where
the error is larger than 0.5% of the maximal von Mises stress occurring for this load. More
interesting than the quantitative evaluation of this Figure is the qualitative information that it
contains. It can well be seen that the system loaded with the rectangular load (Figure 4.7(a))
is experiencing larger oscillations than the system loaded with the triangular load (Figure
4.7(b)). This is due to the sudden change in the boundary condition occurring at the end of

(a) (b)

relative error in
von Mises stresses

0.5%

0

Figure 4.7: Relative error in von Mises stresses for the two element example with different load cases
given in Figure 4.5. High discontinuities are visible at the end of the applied load for the
rectangular load case (a) and the triangular load case (b).

the rectangular load distribution. A jump in the stresses in vertical direction is induced at the
end of the element by this load pattern. For the triangular load case, a reduced regularity in
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the stresses in y-direction is existing at the end of the load application area (where the value
of the load is zero) and in the axis of symmetry. When picturing the full model (twice as
wide), a kink in the load is also present at the axis of symmetry, leading to another reduced
regularity there.
Due to the simple test case, the convergence rate (Figure 4.6) is even algebraic in the pre-
asymptotic range as the displacement distribution inside the domain is basically linear. The
deformation can therefore already be represented well with the ansatz space of p = 1. In
this case, higher polynomial spaces do not improve the solution significantly in the interior
domain, but only around the singularities. The convergence rate is therefore bounded by the
regularity which occurs at the end of the distributed load and thus of algebraic type. For more
complex geometries with more complex solutions for the displacement, an exponential rate of
convergence would be visible in the pre-asymptotic range, but the asymptotic convergence
behavior will always be of algebraic type due to the singularities at the end of the Neumann
boundary condition2.
To demonstrate this, further tests are performed on a different geometry to broaden the
understanding of the effects of different load patterns. The studied example is a plate with
a hole, loaded by five different loads. The plate’s material is steel with a Hookean material
having a Young’s modulus of 200000 [N/mm2], computed with small displacements as a plane
strain problem. The loads are applied in such a way that it starts and ends exactly with a
Finite Element node, as in the previous example. The system, including the mesh with eight
elements is shown in Figure 4.8 for each load case. The integral of each distributed load is
kept constant and the material parameters and dimensions are chosen identical for each load
case. The tested load cases are a constant rectangular load, a triangular load, a quadratic
B-Spline load distribution (only one segment) with zero gradient where the load approaches
zero, a quadratic B-Spline distribution with zero gradient on both ends of the load distribution
(Equation 4.9), and a load distribution in the shape of a Hermite polynomial given in Equation
4.10. The B-Spline load distribution with the zero gradient on one side is built from the right
section of a quadratic B-Spline and given as 1/2 · (1 − t)2. The B-Spline has a zero gradient
on both sides and is composed from two piecewise quadratic B-Spline functions, with a C1

continuity at their interface.

p =

{

−t2 + t+ 1
2

0.5 ≤ t ≤ 1
1
2
(1 − t)2 0 ≤ t ≤ 1

(4.9)

p = 2 − 3t+ t3 − 1 ≤ t ≤ 1 (4.10)

To locate the position of the maximum error in each computation, a comparison is performed
between the calculation with a polynomial degree of p = 20 and a polynomial degree of p = 10
for each load case separately. Even though the solution of the eight element mesh and p = 20
might not be a real reference solution, its result is however of good quality as shown for the
previous example of the rectangle discretized with two elements. The von Mises stresses are

2Remark: When studying the same geometry with loading along the complete bottom edge, no singularities
occur in the solution domain. It would therefore not be possible to plot the convergence rate for the same
geometry with a rectangular load along the complete edge. The linear displacement solution is too simple for
a demonstration of the convergence behavior. A polynomial degree of one would therefore already represent
the exact solution and an increase of the polynomial degree would have no benefit.
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Figure 4.8: Plate with a hole and five different loading patterns. (a) rectangular, (b) triangular, (c)
B-Spline with zero gradient where value is zero, (d) B-Spline with zero gradient on both
sides, (e) Hermite polynomial.

chosen as an indicator for a qualitative measure to locate error sources. The relative error
for each load case is shown in Figure 4.9. The legend of the plot is scaled to a maximum
value of 0.1% of the maximal von Mises stress occuring inside the domain for the individual
load pattern. The maximal value of the von Mises stress occurs where the horizontal axis
of symmetry touches the circle. For the rectangular load distribution, e.g., the approximate
maximal von Mises stress is around 2000 at this point (for p = 20 and p = 10). Values
larger than 0.1% of the maximum von Mises stress are colored in red, as for the value of
0.1%. The plot in Figure 4.9 is thus displaying a range from 0 to 2. As an example for the
error occurring in the rectangular load setup, the maximal difference in von Mises stresses (for
the computation with p = 20 and p = 10) is around 70 and located at the end of the load
application area.

As expected, a large error is visible at the end of the rectangular load (Figure 4.9(a)), in
the middle of the upper and lower boundary. This results from the jump in the stresses,
introduced by the rectangular load pattern. In comparison to the computation with p = 20,
the polynomial of order ten is responsible for the checkerboard pattern in the error as it
shows minor oscillations. The error induced at the end or the load, spreads though the two
neighboring elements.

For the triangular load case plotted in Figure 4.9(b), a much smaller error (than for the
rectangular load case) appears at the end of the load area in the middle of the upper and
lower boundary. Still the two neighboring elements are affected by this error. The regularity
of the solution is again reduced at this point, but not as much as for the rectangular load case.
As in the previous example of the two element model, an error is also visible at the corner in
the vertical axis of symmetry. It derives from the kink in the stresses at this point which is
obvious if the full system would have to be modeled.

The plot in Figure 4.9(c) shows the error in the von Mises stresses for the quadratic B-Spline
load distribution. Basically no error can be observed at the end of the applied load, where the
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(a) (b) (c)

(d) (e)

relative error in
von Mises stresses

0.1%

0

Figure 4.9: Relative error in von Mises stresses for the different load cases given in Figure 4.8. High
discontinuities are visible at the end of the applied load for the rectangular load case (a)
and the triangular load case (b). For the case of the plate with a hole being loaded by a
B-Spline load distribution (c), very small errors are visible. No errors at the end of the
loading are visible for loadings of type (d) and (e). Loading (d) shows errors at the C1

continuous position where the segments of the piecewise B-Spline are assembled.

gradient of the load is zero. But here an error is visible in the same corner as for the triangular
load case, at the axis of symmetry. This error results from the fact that the gradient of the
loading function is nonzero in the symmetry axis, therefore imagining the full system and load,
a kink in the load distribution is present at this point. This non-smooth load distribution in
the axis of symmetry, induces a local error in the computation.
Another computation is performed with a quadratic piecewise B-Spline load function having
a zero gradient at both ends of the load (Figure 4.9(d)). Here, no error prone area is visible
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at both ends of the applied load, but small oscillations can be seen in the interior of the
loading domain. This derives from the fact, that a piecewise quadratic B-Spline with the
given properties (zero gradient on both sides) is only C1 continuous at the interior point
where the segments of the piecewise B-Spline are assembled. This reduced regularity results
in oscillations around this point when polynomial functions are used for its discretization.
Even though the amplitude of the error is quite small, its influence area is relatively large
compared to the triangular or B-Spline load case.

Finally another computation is performed, using a scaled Hermite polynomial to describe the
load distribution. No error can be seen in the whole domain, proving that a load does only
then induce no error to the solution, when not only the function value, but also its derivatives
fulfills certain criteria. On the free boundary, the function value and its derivative needs to
be zero and on the axis of symmetry, only the derivative (gradient) needs to be zero.

This example shows the sensibility of the results toward the shape of the applied distributed
load. These Figures also show, that for every load pattern unlike the Hermite polynomial (or
others with similar properties), some error source will remain in the solution.

The convergence rates of the error in energy norm is plotted for the plate with a hole and every
load pattern in Figure 4.10 for polynomial degrees from p = 2 to p = 15. As reference solutions
the energy for each individual load case and p = 20, computed on the same meshes, is used.
The pre-asymptotic exponential, asymptotic algebraic rate of convergence is clearly visible
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Figure 4.10: Pre-asymptotic exponential, asymptotic algebraic rates of convergence of relative error
in energy norm for the plate with a hole under the five different loading patterns shown
in Figure 4.8. It can well be seen that the rectangular load distribution shows the worst,
and that the Hermite polynomial load distribution shows the best rates of convergence.
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for all curves. The rectangular load case shows the slowest rate of convergence compared to
the other curves. The pre-asymptotic range is shorter here because the singularity introduced
at the end of the load is quantitatively larger than the remaining error in the domain and
therefore governing the convergence behavior. The other load cases show better rates of
convergence. The curve for the Hermitian load clearly possesses the highest convergence rates
in this comparison which even have a tendency to be of exponential type. It should generally
be noted, that all load cases exhibit a level of accuracy which is extraordinary. Additionally,
the trend of the curves in Figure 4.10 is matching the results displayed in Figure 4.9 for the
error in von Mises stresses very well.

To summarize the results obtained for the Neumann boundary condition it can be said that
errors occur at the end of a Neumann load if this position does not coincide with for example a
ninety degree corner of the geometry in the direction of the applied load. These errors can only
be avoided by meeting special properties in the shape of the load. These special properties
involve the smoothness of the load distribution and the value of the load and its derivative
at the end of the load area. The load distribution has to be representable by a polynomial
function. At the end of the load area, the value of the load and its directional derivative
have to vanish. If these requirements are not met, areas with reduced regularity appear in the
domain. This results in a potentially pre-asymptotic exponential, but certainly asymptotic
algebraic rate of convergence because at some point the reduced regularity at the end of the
applied load (or inside the load distribution for case (d)) will control the convergence rate.

4.6 Conclusions for the Mechanical Contact Problem

As discussed in the previous sections, the regularity for a general mixed boundary value
problem like the contact problem is reduced at the contact interface point Γ∗ on the boundary
Γ. This was shown by the discussion on the stress intensity factor and by considerations
regarding the Neumann boundary and its analogy with the contact problem. The solution of
u admits near each of the Γ∗ a separate asymptotic expansion of the type given in Equation
4.6. The stress intensity factor at the contact interface point is generally nonzero, indicating
a reduced regularity at this point. Using the analogy of the contact problem to a Neumann
boundary condition it turns out that for the general case of contact problems, at least a
reduced regularity occurs at the end of the contact interface at Γ∗. The contact problem is
therefore in general a problem of reduced regularity and is non-smooth, which theoretically
entails a convergence rate of algebraic type for the error in energy norm when a pure h- or
p-version of the FEM is used3.

In the following, the rp- and hp-version of the FEM will be explained as two extensions for
the classical h- and p-version. Both methods make use of a posteriori error estimators and
are used in the study of contact mechanical problems.

3Beside the previously discussed matter of singularities at the end of a Neumann boundary condition the
application of a pure h- or p-version is even more crucial, as generally the end point Γ∗ of the contact interface
does not coincide with a Finite Element node. This change in boundary condition inside a Finite Element
leads to oscillations of the polynomial shape function.
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4.7 hp-Extension

The hp-version, is an adaptive method and an extension of the p-version. It combines the p-
version with a local mesh refinement. In areas with strong discontinuities, or large gradients,
it uses small elements with low polynomial degrees to minimize the influence area of the
singularity. In areas with smooth solutions large elements with higher polynomial degrees are
used. In the case of a point singularity, the resulting meshes are graded, such that the sizes
of elements decrease in geometric progression towards the critical point [81]. For the 1D case,
the geometric progression factor which leads to the optimal results is 0.17 [81], even though
some authors (see [15]) use a constant progression factor of 0.5. As the element size decreases
towards the singular point, the elements’ polynomial degree decreases in a optimal extension
strategy as well. A singularity will therefore be discretized (framed) with small low order Finite
Elements. This limits the influence area and reduces oscillations in the results which could
occur when higher polynomials are used at the singularity. More details on the hp-version can
be found in [2, 3, 15, 16, 17, 53, 61, 62, 71]. Even for problems with singularities, this method
allows to obtain exponential rates of convergence of the error in energy norm. An example for
this is the so called L-shaped domain which exhibits a singularity at the reentrant corner. The
example is discussed in the literature, e.g. [81] or [59]. As the hp-version is beneficial when
point singularities occur in the solution domain, its application to contact mechanical problems
is logical. The idea is to refine the mesh close to the end of the contact interface at Γ∗ in order
to isolate the source of error which is present there. First an estimate of the approximate
location of the contact interface point Γ∗ has to be obtained. The new location of Γ∗ can be
derived from the gap values at the different Gauss points of an edge in contact (see Figure 4.11)
after each Finite Element computation. The method is thus using a posteriori informations to

GP1

GP2GP3

Γ∗

Ω1

Ω2

Γ1
c

Γ2
c

Figure 4.11: Derivation of the contact interface point Γ∗.

modify the mesh for the next computation. The difference between the previous and current
estimated position of Γ∗ can be understood as an a posteriori error estimation. In Figure
4.11, the Gaussian points on boundary Γ1

c of object Ω1 are denoted as GP1, GP2, and GP3.
The domain of the rigid objects is denoted as Ω2 and Γ2

c is its corresponding boundary. As
stated before, it is of crucial importance to detect the exact location of Γ∗. Knowing that
the critical point is at the end of the contacting zone, an estimated position can be obtained
from the active and inactive sets of Gauss points used for the contact detection. When the
penalty method is used, a small penetration of the two bodies is allowed for in the contact
interface. Due to the fact that Gauss points are used to calculate the gap between the two
colliding objects, there must be two neighboring Gauss points where the gap function changes
from penetration to no penetration (see GP2 and GP1 in Figure 4.11). By making use of the
Pegasus method [22] as a numerical root finding algorithm, a new approximated location of
the contact interface point Γ∗ can be computed from the two neighboring Gauss points. Once
Γ∗ is determined for the current setup, the mesh will be refined in a hp-manner, such that
the smallest element encloses Γ∗. A progression factor of 0.5 towards Γ∗ is chosen. A sketch
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Figure 4.12: Schematic procedure of the hp-method for a fictitious singularity at the position marked
with the dot. The progression rate of the hp-method in this example is 0.5.

of the schematic procedure of the hp-method is given in Figure 4.12. The numbers inside
the mesh indicates the polynomial degree of the corresponding element. The dot • marks the
position of a singular point in the solution (like the contact interface point Γ∗) whose position
has changed after each iteration step. With decreasing element size it may happen that the
new position of Γ∗ does not fall in the previously defined interval where Γ∗ is expected to be
located in. Therefore a hp-refinement from at least the second last mesh towards the new
guess of the contact point Γ∗ needs to be allowed for.
A flowchart of the adaptive hp-method that is used in a contact mechanical simulation is given
in Figure 4.13. The gap function will be evaluated in an a posteriori step, allowing to estimate
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no
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∆Γ∗ < eps

nonlinear FEA

find

intersection Γ∗

hp-refinement

towards Γ∗ from

last mesh

Γ∗ inside
interval

hp-refinement

towards Γ∗ from

second last mesh

Figure 4.13: Iterative mesh generation for the adaptive hp-method of the FEM, by computing the
contact interface point Γ∗.
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a new position of the contact interface point Γ∗. The stop criterion is denoted by eps. The
increment of the contact interface position Γ∗ between the last and the current iteration step
is given by ∆Γ∗. The hp-refinement step involves, in addition to the mesh refinement, an
adaptive p-refinement, which means a reset of the polynomial orders of each finite element.

4.8 rp-Extension

The rp-extension, like the hp-extension gives the opportunity to resolve singular points in
the solution. The use of high order polynomials as shape functions for the displacements
does cause problems when singularities are present within one element, as these singularities
introduce an error in the computation. Its discretization with high order Finite Elements
leads to oscillations in the stresses around the singular point as the polynomial function tries
to resolve the singularity. One way to reduce, or even eliminate these oscillations is to make
use of the C0 continuous nature of the FEM and place a Finite Element node or edge exactly
at the existing singularity. This also motivates the name of the method, as the r in the rp-
method stands for relocation. In contrast to a complete remeshing, only one, or a few Finite
Element nodes, or edges change their position during the relocation process. No extra FE
node is added by applying this method. The method works in such a way that it relocates
a FE-node, edge, and or face in order to coincide with the existing singularity. Exponential
rates of convergence can be obtained for certain nonlinear problem classes.

It was shown in [60] that exponential convergence rates in energy norm are achievable with the
rp-version for nonlinear problems of elastoplasticity in 2D. The exponential convergence rates
were made possible by having the elastic-plastic front coincide with an element’s boundary in
an iterative edge relocation process, thus making use of the rp-method. A change from elastic
to plastic material behavior inside one element leads to a kink in the element’s displacement
field. This kink has a similar influence on the solution as a loss of regularity has due to a
change in the boundary conditions (as for contact problems), or a change in the material
properties. For the case of non-fitting mesh and plastic front, the shape functions are not able
to display the kink and therefore the approximation starts to oscillate.

Figure 4.14 gives the flowchart of the rp-algorithm for the contact problem. After one con-
verged computation, the current contact interface point Γ∗ is detected in the same manner as
described for the hp-extension. Once the approximate position of Γ∗ is known, the closest Fi-
nite Element node on the boundary will be moved to the position of Γ∗. Due to the nonlinear
nature of the problem, several iterations are needed in order to get a good estimate for the
position of Γ∗. As the polynomial degree of the ansatz space is constant over the domain and
throughout the computation, no extra loop for a p-adaption is needed.
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Figure 4.14: Iterative mesh relocation for the rp-method of the FEM by computing the contact
interface point Γ∗.

4.9 Extrapolation Method to Estimate the Exact Solu-

tion

In order to be able to plot error curves of various kind, the exact solution of a given problem
has to be known. For linear problems an analytical solution might be available for simple
geometries, but as soon as the geometries become more complicated, nearly no exact solution
is known. The same applies if physical or geometric nonlinearities are considered. For these
examples usually a reference solution has to be derived numerically by for example an overkill
solution, which is characterized by a very large number of elements and high polynomial
orders. Another possibility to estimate the exact (reference) solution for a given problem
is to extrapolate a solution from existing numerical simulations. This of course bears the
risk to estimate a reference solution which is in no way close to the real exact solution if
the used data for the extrapolation is far from exact. This could happen if for example
important nonlinear effects are not at all considered in the computation, or the chosen model
or discretization is simply not suited for this example4. Therefore the approximated results
used for the extrapolation method should be checked against results obtained by a third party
program.

In the following the extrapolation method will be presented which uses the numerical result
of three consecutive computations. In case of the h-version of the FEM where the solution’s
quality is improved by global or local mesh refinement, it has to be ensured that the Finite
Element meshes are hierarchically refined such that the finer meshes embed the coarser ones.
For the p-version, three consecutive polynomial degrees have to be chosen and used for a
computation on the same mesh to extrapolate the exact solution. The p-version’s hierarchic

4This is of course a problem which is present for any numerical simulation.



4.9. Extrapolation Method to Estimate the Exact Solution 55

ansatz space ensures a monotonic convergence characteristic which is a prerequisite for the
application of the extrapolation method discussed here. The method has proven to be reliable
and accurate (see [79]) especially when the number of degrees of freedom is sufficiently large.
Starting with the strain energy U(u) given in Equation 2.30,

U(u) =
1

2
B(u,u)

Equation 4.2 can be derived

‖e‖2
E(Ω) = ‖uex − uFE‖2

E(Ω) = |U(uex) − U(uFE)| .

Using the property of Galerkin’s methods that the strain energy U(uFE) is monotonically
increasing, and therefore U(uex) > U(uFE), Equation 4.2 can be transformed to

‖e‖2
E(Ω) = U(uex) − U(uFE) . (4.11)

The error for the algebraic rate of convergence given in Equation 4.4 is assumed to derive

‖e‖2
E(Ω) ≈

k2

N2β
(4.12)

for the error in energy norm. With Equation 4.11 being set equal to Equation 4.12 follows

U(uex) − U(uFE) ≈ k2

N2β
. (4.13)

Choosing the polynomial degrees of {p− 2, p− 1, p} with the number of degrees of freedom
{Np−2, Np−1, Np} and the strain energies {Up−2(uFE),Up−1(uFE),Up(uFE)} of the exact solution
U(uex) can be estimated with Equation 4.14. For each of the three computation an equation of
the form 4.12 can be formulated. When the logarithmic quotient of the number of degrees of
freedom of subsequent calculations is considered as well, the exact solution can be estimated
from the following relation:

U(uex) − Up(uFE)

U(uex) − Up−1(uFE)
≈

(U(uex) − Up−1(uFE)

U(uex) − Up−2(uFE)

)

















log
Np−1

Np

log
Np−2

Np−1

















(4.14)

where an iterative method like the Newton-Raphson scheme has to be used to derive an
estimate for the exact solution of the energy norm U(uex).
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Chapter 5

Numerical Examples

To illustrate the performance of the developed and implemented methods, the concepts intro-
duced in the previous chapter are applied in the following on various examples. The examples
include unilateral, bilateral, frictionless and frictional contact problems with small and large
displacements. Special attention is drawn to the Hertzian contact problem in 2D which is used
to study the performance of each method presented earlier like the h-, p-, rp-, and hp-version
of the Finite Element Method, for their application on mechanical contact problems1.

5.1 Plate with a Hole in Full Contact

The first example is chosen to demonstrate that the chosen contact formulation is consistent
and complete. The unilateral setup of the symmetric half of the plate with a hole being pressed
onto a rigid plate is given in Figure 5.1. The bottom edge is completely in contact with the rigid
block. Symmetry boundary conditions are chosen on the left side. The Neumann boundary
at the top of the plate is loaded by a distributed force of 1000 [N/mm2] in vertical direction.
The plate has a thickness of one. To incorporate the contact constraints with the penalty
method, a penalty factor of 1000 ∗E (with E being the Young’s modulus) and a Poisson ratio
of ν = 0.29 is chosen. The geometry of the plate with a hole is discretized with four elements.
The circular geometry of the hole is represented exactly by the blending function method
(see Section 2.2.4). Figure 5.2 shows the deformed mesh and the von Mises stresses for the
described problem computed with a shape function’s polynomial degree of six. For the same
computation, the stresses in vertical direction are plotted in Figure 5.3. The deformation in
both Figures is scaled by a factor of ten. The reference solution is derived on the same mesh,
but with fixed Dirichlet boundary conditions in vertical direction along the bottom edge. It
therefore does not allow for any penetration or angular deflection of the edge at the bottom.
The reference solution is needed in order to plot the relative error in energy norm for different
polynomial degrees in the ansatz spaces. The plot in Figure 5.4 shows the convergence of
the relative error in energy norm for the given problem with polynomial degrees varying from
p = 2 to p = 6. The x-axis plots the number of degrees of freedom, whereas the y-axis
plots the relative error in energy norm (relative to the reference solution). Both axis have
a logarithmic scale. An exponential rate of convergence can be observed in the chart. This

1The charts are generated with the software Gnuplot [32]. The colored stress-plots are created with the
software-tool GiD [30]. The program Inkscape [47] is used to further format the Figures.
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Figure 5.1: Model of the plate with hole Ω1 in contact with a rigid plate Ω2.
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Figure 5.2: Von Mises stresses plotted
on a ten times scaled de-
formed geometry for the
plate with hole in contact
and p = 6.
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Figure 5.3: Stresses in vertical direc-
tion plotted on a ten times
scaled deformed geometry
for the plate with hole in
contact and p = 6.
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Figure 5.4: Exponential convergence rate of the relative error in energy norm for the plate with hole
example for p = 2 to p = 6.

is due to the fact that the example has a nonuniform, but regular and continuous boundary
condition without sudden changes. The bottom edge, which is contacting the rigid object, is
completely in contact. Thus no singularity occurs inside the solution domain, neither on the
loaded nor on the contact edge. The exponential rate of convergence obtained for this contact
problem is therefore the usual convergence of the p-version of the Finite Element Method for
smooth problems without singularities.

5.2 2D Hertzian Contact Problem

Intensive tests are performed on the two dimensional Hertzian contact problem. The general
three dimensional problem of two contacting cylinders of infinite length, can be reduced to
a two dimensional, plane strain problem as shown in Figure 5.5. This example is one of the
few for which an analytical solution exists for various parameters like the contact width, and
contact stresses in the contact interface. An analytical solution for this problem was first
published by Hertz [42] in 1881.

5.2.1 Hertz Theory

Hertz introduced the following assumptions: Each body can be regarded as an elastic, homo-
geneous and isotropic half-space loaded over a small elliptical region of its smooth surface. The
surfaces are assumed to be frictionless, the contact interface is assumed to be small compared
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to the surfaces’ radii and body’s dimensions. The circular geometry of the contact boundary
is approximated by a quadratic polynomial. For the unilateral case where the radius of the
bottom cylinder is taken as infinite, rigid material properties are assumed as shown in Figure
5.6.
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x

y

z

2b

F

F

Figure 5.5: 2D plane strain Hertzian con-
tact model for two infinitely long
cylinders.

r1

rigid

F

Figure 5.6: 2D plane strain Hertzian con-
tact model for contact between a
cylinder and a rigid plate.

We consider the situation of two cylindrical objects that are in contact as depicted in Figure
5.5. Following [72] Hertz’s analytical solution, the half width b of the contact interface can be
expressed as

b =

√

4F

πl

(1 − ν2
1) /E1 + (1 − ν2

2) /E2

(1/r1) + (1/r2)
. (5.1)

In the x-direction, the contact interface of half width b has a rectangular shape. Its size
depends on the applied force F in z-direction, the Poisson ratios ν1 and ν2 for each cylinder
respectively, the corresponding elastic moduli E1 and E2, the sphere’s radii r1 and r2, and the
cylinder’s length l in x-direction. The pressure distribution for the half width b in the contact
interface is given with Equation (5.2) (see [33]):

p(y) =
2F

πlb2

√

b2 − y2

(5.2)

=
1

2r1
+ 1

2r2

1−ν2

1

E1
+

1−ν2

2

E2

√

√

√

√

√

2F
1−ν2

1

E1
+

1−ν2

2

E2

πl
(

1
2r1

+ 1
2r2

) − y2 .

For the case of having one cylinder in contact with a flat and rigid plate, r2 and E2 have to be
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set to ∞. The pressure distribution in the contact interface, Equation (5.2), then reduces to

p(y) =
E

2r (1 − ν2)

√

4F
(1 − ν2) r

πlE
− y2 . (5.3)

More quantities can be calculated using Hertz’s theory, but they will not be listed here. For
further discussion see Shigley et al. [72], Goldsmith [33], Johnson [48], and Wriggers [88].

The Hertzian Model was improved by Shtayerman in 1939 by allowing for a general geometric
description (e.g. higher order polynomials) of the contacting bodies in the contact interface. A
detailed discussion can be found in Shtayerman [73]. The relevant equations are summarized
in [49] and given below. The geometric outline of the gap function is defined by

f(t) = f1(t) − f2(t) (5.4)

with f1(t) and f2(t) being the geometric representations of body one and two respectively.
The interval of the contact width b is derived from the following two relations

b
∫

−b

f ′(t)dt√
b2 − t2

= 0 (5.5)

b
∫

−b

tf ′(t)dt√
b2 − t2

= K F (5.6)

with K =
κ1 + 1

4G1

+
κ2 + 1

4G2

. (5.7)

Using Gi for the shear modulus and ρi for the Poisson’s ratio of ith body (i = 1, 2), κi is
derived as:

κi = 3 − 4νi for plane strain (5.8)

κi =
3 − νi

1 + νi

for generalized plane stress . (5.9)

The contact pressure distribution in the interval (−b, b) is then given by

p(y) =

√

b2 − y2

π K

b
∫

−b

f ′(t)dt√
b2 − t2(t− y)

. (5.10)

5.2.2 Numerical Model

The geometric setup of the model used for the numerical simulation is plotted in Figure 5.7
for the unilateral plane strain case of a cylinder which is pressed onto a rigid plate. Only
one quarter of the full model is discretized to reduce the computational effort. The circular
geometry is represented exactly in this model by the blending function method. Symmetric
boundary conditions are applied in the x− z plane. In order to eliminate the influence of the
concentrated single load at the top of the cylinder, the load is replaced by an equivalent uniform
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Figure 5.7: Hertz model for the uni-
lateral 2D case.
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Figure 5.8: Hertz model
for the bilat-
eral 2D case.

Dirichlet boundary condition at the cylinders center plane. The simulation model applies the
following parameter values [25]: The length of the cylinder is set to one (in x-direction) and
the penalty value ǫn is chosen to be 1000 times higher than the Young’s modulus E and
therefore set to ǫn = 2.1× 108[N/mm2]. The value of the penalty parameter is crucial for the
accuracy and numerical stability of the contact problem. As the penalty parameter is directly
influencing the amount of penetration which is allowed for the contacting objects, it also has
an influence on the accuracy of the solution. Therefore a large penalty value is beneficial.
Unfortunately the penalty parameter is assembled in the stiffness matrix and introduces large
values in off diagonal positions. This dramatically increases the condition number witch
effects the stability and convergence rate of the Newton algorithm. The choice of the penalty
parameter is therefore a compromise between accuracy and condition number of the resulting
equation system. For the given example, the penalty factor of ǫn = 2.1×108[N/mm2] is chosen
because further studies revealed that a further increase of the penalty parameter by a factor
of more than 7 resulted in an increase of the maximal contact pressure of less than 0.02%.

The prescribed displacements v0 along the Dirichlet boundary corresponds to a resulting load
F on the Hertzian model of 70000[N ], see Figure 5.5. The use of a quarter system instead of
a half, or even the full system has several advantages. First of all, the computational effort
is reduced when the quarter system is computed. Furthermore, the reduced quarter system
allows to eliminate the influence of the single concentrated load with which the Hertzian
problem is usually loaded. As it was shown in Section 4.5, a single load, as well as most
distributed loads induce singularities in the solution domain. Loading the quarter system by
a Dirichlet boundary condition at its top boundary instead allows to omit these error sources.
Differences in the results obtained during the following contact survey can thus only originate
from a different discretization of the contact region. Therefore the following study allows to
discuss solely the contact phenomena.

To derive the displacement distribution for the quarter system, computations are performed on
the symmetric half system first. From these computations, the displacement distribution at the
cylinder’s mid height is plotted in Figure 5.9. By taking this displacement distribution as the
load for the quarter system, singularities due to the loading do not occur. As a simplification,
a constant displacement distribution is used as the load for the quarter system instead of the
distribution derived from the symmetric half cylinder system. A small error is caused by using
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Figure 5.9: Comparison of the derived displacement in z-direction at cylinder’s mid height and as-
sumed constant Dirichlet boundary condition which is used in the following computa-
tions.

this constant displacement on the Dirichlet boundary v0 on the quarter cylinder instead of a
Neumann boundary condition F on the top of the half cylinder. Choosing a half cylinder with
Neumann boundary condition for the computation, the resulting displacement distribution in
z-direction at cylinder’s mid height is almost constant over the cylinder’s width, as plotted
in Figure 5.9. The difference between the smallest and the biggest displacement value in z-
direction on the cylinder’s mid height is 0.3%. The Figure also shows the constant displacement
distribution on the Dirichlet boundary which is applied in the following computations. The
constant value for the prescribed displacement distribution on the Dirichlet boundary is chosen
such that its integral value is equal to the integral displacement distribution derived from
computations of the half cylinder model. Comparing the maximal contact pressure computed
with the half cylinder and the maximal contact pressure computed with the Dirichlet boundary
condition, the error ((σhalf − σaverage) /σhalf ) turns out to be in the order of 0.0001%.

5.2.3 Numerical Results

The numerical results presented in this section show the comparison of the different FE-
methods described in the previous chapter. The comparison is performed by means of the
contact pressure distribution in the contact interface and its vicinity against the Hertzian
solution given in Section 5.2.1, and by means of the convergence rates of the error in energy
norm. Although the maximal/minimal stresses and strains are generally a matter of engineer-
ing concern, it is the contact pressure that is mainly discussed in this section. In order to prove
the reliability and accuracy of a method, a single value like the maximal or minimal stress
would not be capable of giving the explanation for every phenomena observed. In addition
to that, problems like wearing require that the stress distribution on the contact boundary is
known as well. Wear, as a surface phenomenon, is a critical factor that can limit substantially
the life span of machines [39]. Oscillations in the pressure distribution will artificially scarify
the surface and reduce the simulated resistance against wear. Understanding the error’s source
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is essential for the development of techniques to improve the quality of the solution.

5.2.3.1 Contact Stresses for the h-Version of the FEM

In a first step, we consider the Hertzian model defined in Section 5.2 and 5.2.1 (Figure 5.7).
Starting with the classical h-version of the FEM we use three different meshes which are
depicted in Figures 5.10(a), 5.10(b), and 5.10(c). Mesh 5.10(a) is a uniformly distributed,
irregular mesh with 335 quadrilateral elements. Mesh 5.10(b) is uniformly refined and consists
of 995 quadrilateral elements and mesh 5.10(c) is a mesh with 315 elements which is a priori
locally refined in the contact region. The contact pressure distribution for each of the three

(a) (b) (c)

Figure 5.10: Isoparametric elements with a polynomial degree of one for a mesh with (a) 335, (b)
995 quasi-uniform distributed, and (c) a priori locally refined 315 elements.

meshes with isoparametric elements and a polynomial degree of one is presented in Figure
5.11. The axes in Figure 5.11 plot the normal contact pressure against the contact width.
Both axes are normalized with the analytical value for the contact width b and the maximal
analytical contact pressure pmax to a value of one2. The solid line represents the contact
pressure distribution derived by the Hertzian formula (Equation 5.10), whereas the other three
curves plot the pressure distribution for the meshes given in Figure 5.10. The circle in the
lower left corner of the graph shows a magnification of the end of the contact interface. As the
pressures are derived from the post processing (from the strains), a non-continuous pressure
distributions in the contact interface can be observed. The zig-zag path follows from the C0

continuous approach of the linear FE method, which leads to jumps in the stress distribution
at element nodes. This effect is well known and discussed in literature [52, 37]. Mesh (c)
(Figure 5.10) gives the best results out of this three meshes due to its refined discretization
in the contact region. However, the advantage in accuracy and time against mesh (b) (Figure
5.10) is counterbalanced by the additional effort of creating the a priori or iteratively locally
refined mesh.

2It should be noted that the plotted contact pressure distribution is derived in the regular post processing
step from the solution vector U and hence results from the strains. It is not showing the distribution of the
penalty force, representing the contact stresses which are applied during the computation.
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Figure 5.11: Contact pressure for the typical h-version of the FEM using isoparametric elements
with linear shape functions.
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Figure 5.12: Contact pressure for the typical h-version of the FEM using isoparametric elements
with quadratic shape functions.
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The computations for a polynomial degree of two are performed on virtually the same meshes
as used for p = 1 given in Figure 5.10. Due to the isoparametric concept that is usually applied
for low order Finite Elements, the geometric representation of the circle is changed from a
linear to quadratic polynomial for each element though. The corresponding contact pressure
distributions in the contact interface are plotted in Figure 5.12. The most accurate results are
obtained using the locally refined mesh (c) with 315 elements. Generally a much smoother
and better approximation of the Hertz solution in the contact interface is obtained using
quadratic isoparametric elements (compared to the linear isoparametric element description).
No jumps in the contact interface can be observed at the Finite Element nodes. Looking at
the end of the contact interface around Γ∗, a large error especially for the coarse mesh shown
in Figure 5.10(a) occurs. For this mesh the error is even bigger than for the same example
mesh using isoparametric linear elements (Figure 5.11). This overshooting behavior derives
from the fact that the polynomial of second order has a point with reduced regularity in its
interior domain. Naturally a smooth polynomial function is not able to represent the point
with reduced regularity in the solution and therefore starts to oscillate. It is also visible that
the influence area of the oscillation reduces, the closer the FE node is to the correct end of
the contact interface Γ∗. This example also shows that for a given polynomial ansatz of the
shape functions, a fine discretization of the mesh in the contact region is advantageous against
a coarse discretization since the error in the pressure distribution due to not matching the end
point of the contact interface is reduced drastically.

5.2.3.2 Contact Stresses for the p-Version of the FEM

The p-version of the Finite Element Method is characterized by coarse meshes as given in
Figure 5.13(a). The geometric representation of the circular edge is obtained by using the
blending function method as described in Section 2.2.4 (see [34, 35]). It should be noted

A

(a) (b)

Γ∗

(c)

Figure 5.13: (a) 4 element mesh for p-version (including one element for modeling the rigid founda-
tion); (b) final mesh for hp-version; (c) 4 element mesh after performing the iterative
rp-version of the FEM.

that Figure 5.13(a) is a mesh that is modeled in such a way that element number one (bottom
left) is mostly but not completely in contact. The element width is approximately 26% wider
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Figure 5.14: Contact pressure for three different polynomial degrees (pure p-refinement) on mesh
5.13(a) where the contact width does not coincide with the elements width.

than the contact interface. Node A in Figure 5.13(a) is therefore significantly off the contact
interface. Thus the element experiences a change in boundary condition along one edge. Figure
5.14 shows the contact pressure distribution for mesh 5.13(a) for the three different polynomial
degrees p = 5, p = 8, and p = 15. Due to the fact that for this mesh the end of the element
does not coincide with the end of the contact interface at Γ∗, oscillations can be observed in
the pressure distributions [26]. This effect is similar as already observed and discussed for
the isoparametric elements with quadratic shape functions (Figure 5.12). Figure 5.14 shows
that the amplitude of the oscillations reduces when the shape function’s polynomial degree is
increased. A higher polynomial order yet increases the frequency of the oscillations. For the
curve of p = 15 the higher order oscillation is clearly visible. The oscillations are again due to
the loss of regularity of the exact solution at the end of the contact interface which cannot be
precisely represented by higher order polynomials, spanning this region.

5.2.3.3 Contact Stresses for the hp-Version of the FEM

Figure 5.13(b) depicts the final mesh which is used for the computation with the hp-version
of the FEM (see Section 4.7). The mesh is generated iteratively by using a four element
mesh as the starting mesh. After one FEM computation, the end point Γ∗ of the contact
interface is estimated and the mesh is refined towards this estimated point in a hp-manner.
A constant progression factor of 0.5 is used for each refinement step, following [15]. This
refinement procedure is applied four times to arrive at the mesh depicted in Figure 5.13(b).
The point with reduced regularity given by Γ∗ lies on the edge of the innermost element.
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The contact pressure curves for three different refinement steps are given in Figure 5.15. It
plots the pressure distribution for a constant polynomial degree of p = 8 on geometrically
refined meshes. From this it is obvious that a refinement toward the contact interface point
Γ∗ decreases the error of the approximation significantly.
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Figure 5.15: Contact pressure with a constant polynomial degree of p = 8 on different geometrically
refined meshes. Starting with the initial mesh 5.13(a) to derive at mesh 5.13(b) after
four refinement steps.

When the full adaptive hp-scheme is applied as pictured in Figure 4.12, a slightly different
result is obtained for the pressure distribution plotted in Figure 5.16. The initial mesh for
the adaptive hp-refinement is shown in Figure 5.33(a). The results are plotted for the first,
second, fourth, and eighth refinement step. Following the adaptive hp-scheme, an element
with polynomial degree of one is used in the area at the end of the contact interface around
Γ∗. Due to this, a relatively poor representation of the stresses is achieved in the smallest
element. The geometric refinement towards this point needs to be performed eight times in
order to obtain a thorough and reliable result.

5.2.3.4 Contact Stresses for the rp-Version of the FEM

When the rp-version of the FEM is used to compute the Hertzian contact problem, very
accurate results can be obtained for the contact stresses. The distribution of the contact
stresses matches Hertzian’s solution quite well for the case when the ends of the contact
interface coincides with Finite Element nodes [27]. The final iterated four element mesh is
shown in Figure 5.13(c). The corresponding contact pressure distributions for polynomial
order of five, eight and fifteen respectively are plotted in Figure 5.17. The FE computation
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Figure 5.16: Contact pressure for different refinement steps of the adaptive hp-method. Starting
with the mesh given in Figure 5.33(a), and refining it in a hp-manner as shown in
Figure 5.33(c) after four refinement steps.

has to be performed several times in an iterative process until the location of Γ∗ coincides with
a Finite Element node. The number of iterations which is needed to obtain the final mesh
differs depending on the chosen polynomial order and geometric discretization. With higher
polynomial orders, the end point Γ∗ of the contact interface is approximated better, already
after the first computation. Therefore less iterations are needed to relocate the mesh in a way
that Γ∗ coincides with a Finite Element node. Obviously, very good results can be obtained
when the rp-version is applied. Oscillations of the shape functions are avoided by placing
a Finite Element node at the end of the contact interface at Γ∗, where a reduced regularity
exists. This in combination with a smooth geometric description and a high polynomial degree
leads to very accurate and smooth stress distributions in the contact interface. Interestingly it
seems that the more accurate the numerical results become, the more does the contact width
differ from the analytical Hertz solution and converge to a different solution. The same effect,
can as well be observed in the previously shown results for the computations with constant
polynomial degree on geometrically refined meshes and for the hp-method. This matter will
be further discussed in the following.

The iteration process and hence convergence of the automatic relocation algorithm for the
four element mesh of Figure 5.13(a) and a polynomial degree of five is visible in Figure 5.18.
Apparently the algorithm works well and converges to the correct contact interface. The
geometrical offset of the closest FE-node to the location of Γ∗ has in the first iteration a
value of 26% to the right with respect to the analytical contact width. After 20 iterations a
very good match of the contact interface point Γ∗ and the closest FEM node is found. The
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Figure 5.17: Contact pressure for three different polynomial degrees by using the rp-version of the
FEM on a mesh shown in Figure 5.13(c).
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Figure 5.18: Contact pressure: three solutions during the rp-iteration process for the four element
mesh and a constant polynomial degree of p = 5.
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computational time needed for each iteration is seventeen seconds3.

It is already stated above, that the numerical results do not match the Hertzian solution
exactly. Especially the fact that the contact width in the numeric solution tends to converge
to a smaller value than the one predicted by Hertz provokes further studies. Attention is
drawn to the assumptions made by Hertz, especially the geometric simplification in the contact
interface of using a polynomial of second order to represent the cylinder’s circular shape. Tests
are performed using Shtayerman’s theory which allows to use the exact circular geometry and
therefore the same geometry which is used in the numeric computation. A comparison of
the two analytical solutions from Hertz and Shtayerman is given in Figure 5.19 where the
equivalent contact stress distributions are plotted. Besides minor differences between the two
curves, it can be observed, that the contact width of the Shtayerman solution (red dotted
line) is slightly smaller than for the Hertzian solution. Comparing the best results shown
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Figure 5.19: Contact pressure: comparison of the analytical Hertz and Shtayerman solution.

previously (rp-method, p=15 and constant p=8 on geometrically refined meshes) with the
analytical Shtayerman solution, a far better match of the contact width can be observed
(Figure 5.20). The effect is interesting and worth to be mentioned, even though it should be
stated, that in the present example, a contact width of nearly 20% of the radius is present.
This could violate Hertz’s assumption that the contact interface is small compared to the
cylinders radius.

A comparison of the different results apart from the previously shown contact stress distribu-
tion is given in Table 5.1. It plots the degrees of freedom, calculation times, and error of the

3on an Intel Core 2 Quad CPU Q6600, 2,4GHz
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Figure 5.20: Contact pressure: Shtayerman solution plotted against the best results obtained for the
rp-method and for p = 8 on geometrically refined meshes.

stresses in L2-norm for each previously discussed discretization.

‖eσ‖L2 =

√

∫ 1.5b

0
(σHertz − σFE)2 dx
∫ 1.5b

0
σHertz dx

· 100 [%] (5.11)

The error in L2-norm gives the error in the contact pressure between Hertz’s or Shtayerman’s
analytical and the corresponding discretized solution respectively. To account for the oscilla-
tions outside of the contact interface, the L2-norm is calculated up to a width of 1.5 · b. The
error value is scaled by the analytical value for the contact pressure and multiplied with 100
and therefore given in percent.

The results for the bilateral Hertzian contact problem are generally the same as for the uni-
lateral problem. For the case of contact between two equally sized cylinders with the same
material parameters, the result is identical to the case of contact between a cylinder and a rigid
plate discussed in the previous section. As specified in Section 3.6, in the present approach
no conventional master-slave concept is applied in the bilateral contact interface. The gap
function is derived in each iteration step for each boundary separately, giving no preference
to either of the bodies. The result is a smooth and continuous contact boundary where each
point on both boundaries satisfies the contact constraints (neglecting the error due to the
penalty method). The vertical stresses for the bilateral model are plotted in Figure 5.21.
For the sake of completeness, all components of the stress distributions are plotted for the
unilateral Hertzian contact problem in Figures 5.22 - 5.25.
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discretization deg. of calculation error in L2-norm [%] compared
freedom time [sec] to Hertz to Shtayerman

p=1
335 elements 710 87 6.5511 24.0830
995 elements 2060 512 0.2285 0.2338
315 elements 690 240 0.1022 0.1026

p=2
335 elements 2760 173 0.1316 0.1355
995 elements 8100 896 0.0693 0.0706
315 elements 2640 400 0.0331 0.0265

p=5 4 elements 220 17 0.1708 0.1738
p=8 4 elements 544 132 0.1050 0.1085
p=15 4 elements 1860 2945 0.0415 0.0420
rp=5 4 elements 220 17 0.0633 0.0547
rp=8 4 elements 544 132 0.0397 0.0301
rp=15 4 elements 1860 2945 0.0337 0.0207
p=8 locally refined mesh 2144 1069 0.0488 0.0317

Table 5.1: Discretization, degrees of freedom, calculation time, and error in L2-norm for each model
compared to the Hertzian and Shtayerman reference solution.
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Figure 5.21: Bilateral Hertian contact using six elements and rp=6.
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Figure 5.22: Stresses σyy and σzz given in [ N
mm2 ].
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Figure 5.23: Shear stresses σyz and stresses along the cylinder’s axis σxx given in [ N
mm2 ].
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Figure 5.24: Principal stresses σ1 and σ2 given in [ N
mm2 ].
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Figure 5.25: Von Mises stresses σvon Mises.

5.2.4 Convergence of the error in energy norm for the unilateral
Hertzian contact problem

An introduction into the theory of error estimation was given in Section 4.2. Different con-
vergence properties were presented and discussed. Algebraic convergence rates are typical for
low order Finite Element Methods and problems of nonlinear nature approximated by the
p-version of the FEM. Uniform high-order Finite Element Methods have the potential to show
exponential rates of convergence, but generally only for the case of smooth problem types.
The application of the hp-version allows to obtain exponential rates of convergence even for
problems including singularities. In [60] it was furthermore shown that exponential rates of
convergence can also be obtained for solutions with singularities, like elastoplastic problems
by making use of the rp-version of the FEM.

According to Schumann [70] and Schröder [69], the contact problem is at most C2 regular. It
was shown and discussed in Section 4.5, that a point singularity exists at the end of the contact
interface in the contact interface point Γ∗. A change from a contact boundary condition to a
non-contact boundary condition is present in this point. The behavior is similar to a change
from Neumann boundary condition to a free boundary condition.

Studies by Paczelt et al. [61] were performed on an example similar to the Hertzian contact
problem. The bottom object was rigid and flat and the top object was curved with a given
parabolic boundary representation. The rp-version of the FEM was applied for this example
as well. The convergence of the error in energy norm was plotted in logarithmic scale and seen
to be of algebraic type. Further studies on the convergence rates were performed by Baksa [5]
for the h-, p-, hp-, and the rp-method.

Besides all the different methods which are applied in the present study, a big problem is
to obtain a good and reliable reference solution for the Hertzian strain energy. Hertz does
not supply an analytic reference solution for the strain energy because he only considered the
contact interface in his studies and did not take the rest of his object into account. Therefore
no closed solution exists describing the stresses or strains throughout the whole cylindrical
body. Numerical models suffer from the fact of the point singularity at the end of the contact
interface at Γ∗.

In the present study, the reference solution is obtained by applying the adaptive hp-method
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with eight refinement steps towards the end of the contact interface, starting with the mesh
shown in Figure 5.33(a). The maximal polynomial degree used in this computation of the
reference solution is therefore of order ten, with decreasing polynomial order advancing the
singularity at the end of the contact interface (see Figure 4.12 for a schematic sketch of the
adaptive hp-FEM). For this model, a strain energy of 7754.057 [ N

mm2 ] is derived which is used
as a reference solution in the following studies.

Convergence studies are performed for the h-, p-, rp-, and hp-version of the Finite Element
Method. The respective results are shown and discussed in the following sections.

5.2.4.1 Convergence Rates for h-Version of the FEM

The convergence rates for the unilateral Hertzian contact problem with pure h-refinement
(global mesh refinement) is plotted in Figure 5.26. The meshes are unstructured quadrilateral
meshes with isoparametric ansatz spaces similar as the meshes plotted in Figure 5.10. The
meshes are non-adaptive and do not use a priori or a posteriori informations to optimize the
element size in the contact region. Polynomial orders of p = 1 and p = 2 are studied here.
The rate of convergence is of algebraic nature, where the slope of the curve as a measure for
the convergence rate is β ≈ 0.5 for p = 1 and β ≈ 0.8 for p = 2.
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Figure 5.26: Algebraic convergence rate of relative error in energy norm for the Hertzian contact
problem computed with isoparametric element formulations with polynomial orders of
p = 1 and p = 2.
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5.2.4.2 Convergence Rates for p-Version of the FEM

The rate of convergence for a pure p-refinement, without special treatment of the end of the
contact interface, is plotted for the four element mesh (Figure 5.13(a)) in Figure 5.27. The
Finite Element node A in Figure 5.13(a) does not coincide with the end of the contact interface
Γ∗. It is approximatively 26% further to the right than the contact interface point Γ∗. For
this kind of mesh the rate of convergence is seen to be of algebraic type with a gradient of
β ≈ 1.0. From the comparison of the two Figures 5.26 and 5.27 it can clearly be seen that for
a relative error in strain energy norm of less than 1% approximately 6500 degrees of freedom
(DOF) are needed in the h-version, but only around 900 DOF in the p-version.
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Figure 5.27: Algebraic convergence rate of relative error in energy norm for the Hertzian contact
problem computed with the four element mesh given in Figure 5.13(a) and polynomial
orders ranging from p = 2 to p = 12.

Referring to the studies shown in Section 4.4 for the plate with a hole, the error in the von
Mises stresses is studied for the unilateral Hertzian problem as well. Here again, the difference
in the von Mises stresses for p = 10 and p = 20 is investigated and plotted in Figure 5.28. It
indicates the location of error sources like singularities, occurring in the domain. As before,
the legend in Figure 5.28 is scaled to show the range from zero to the maximal value of about
0.1% of the maximal von Mises stress occurring in the reference model (eight hp-refinement
steps on initially four element mesh with p = 20). It can well be seen that the main error is
induced in the bottom left element which is only partly in contact. The oscillations of this
element are in an order of magnitude that it is influencing the neighboring element as well.
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relative error in
von Mises stresses

0.1%

0

Figure 5.28: Relative error in von Mises stresses for the 4 element mesh shown in Figure 5.13(a) by
applying the p-version of the FEM. The maximal value in the legend shows 0.1% of the
maximal von Mises stress occurring in the reference model.

5.2.4.3 Convergence Rates for rp-Version of the FEM

Judging from the quality of the stress distribution plots shown in the previous section, a high
accuracy and rate of convergence in energy norm is expected for the rp-version of the FEM.
In order to resolve the C1+α continuity at the end of the contact interface at Γ∗, it should
be sufficient to have this point Γ∗ coincide with a Finite Element node. Thus making use of
the C0 continuous property of the Finite Element solution at nodes and edges. Unfortunately
the continuous, but reduced differentiability at Γ∗ continues into the domain surrounding Γ∗.
In order to resolve this with an appropriate discretization, knowledge about the direction of
the ’vault line’ is required. This is unfortunately not the case for general geometries and load
directions.

The effect of a contact pressure acting on a defined part of a boundary is first tested in a
simplified test case.

5.2.4.3.1 A Simplified Test Example

As a test case for the given boundary condition in the contact example, a geometry very
similar to the Hertzian problem is chosen. Here only the quarter circle is calculated as in
the original example, but no contact takes place. Instead, a triangular load is applied on the
contact boundary, as a simplification of the parabolic Hertzian load distribution. Symmetry
boundary conditions are applied at the left and top boundary. The rest of the parameters
is chosen as for the Hertzian contact example given in the previous section. The example is
studied since the boundary conditions are fixed and known a priori. No iteration of the end
of the contact interface (Γ∗) is necessary, because the load is applied on a specified area. The
reference solution is obtained by the extrapolation method presented in Section 4.9 for the
respective meshes.

The convergence of the error in energy norm is plotted for the two meshes given in Figure 5.29
with polynomial orders between p=2 and p=20 in Figure 5.30. The convergence characteristic
for this example is of algebraic nature. The slope β ≈ 1.75 for the 3 element mesh and β ≈ 1.85
for the 147 element mesh. Due to the fact that the boundary conditions are known and
the deformations and stress distribution is not very complex, the absence of the exponential
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Figure 5.29: Test case for the convergence in energy of a body with circular boundary and triangular
load on a (a) 3 element mesh and a (b) 147 element mesh.
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Figure 5.30: Algebraic convergence rate of relative error in energy norm for the simplified Hertzian
geometry and load boundary conditions without contact. The plotted graphs show the
p-convergence for the three (p=1 to p=20) and 147 element (p=1 to p=15) mesh given
in Figure 5.29(a) and (b).
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convergence rates results from the reduced regularity at the end of the Neumann boundary.

5.2.4.3.2 Convergence Rates for Hertz Problem with the rp-Refinement

After showing the results for the simplified test example of the Hertzian contact problem,
convergence studies are performed on various meshes and high polynomial orders. The errors
in energy norm derive from computations with meshes which are iterated in such a way that
the end of the contact interface Γ∗ coincides with a Finite Element node. The meshes are
given in Figure 5.13(c) and 5.31. The 36 and 144 element mesh are uniform refinements of the

(a) (b) (c)

Figure 5.31: (a) 9 element interface mesh; (b) 36 element interface mesh; (c) 144 element interface
mesh for calculation with the p-version of the FEM.

9 element mesh. The iteration to derive the correct position of Γ∗ is performed to a degree
that it coincides with the Finite Element node at this position up to the tenth digit of the
y-coordinate. The corresponding convergence rates are plotted in Figure 5.32 for each mesh.
They are of algebraic type with a negative slope of β ≈ 1.4. A relative error of less than
1% is obtained by a computation with about 550 DOF for the four element mesh. As for
the small test example, the reduced regularity at Γ∗ controls the slope of the convergence
curve and limits it to be of algebraic type. Due to the rather simple deformation and pressure
distribution for this geometry and boundary condition, exponential rates are not even visible
in the pre-asymptotic range.
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Figure 5.32: Algebraic convergence rate of relative error in energy norm for the Hertzian contact
problem in two dimensions computed with the rp-version of the FEM on the meshes
given in Figure 5.13(c) and Figure 5.31.

5.2.4.4 Convergence Rates for hp-Version of the FEM

The computations with the hp-method are performed on the initially four element mesh shown
in Figure 5.33(a), turning into the 16 element mesh shown in Figure 5.33(c) after four adaptive
refinement steps.

(a) (b) (c)

Figure 5.33: Meshes used for the derivation of the convergence rate of the error in energy norm.
Mesh (a): initial mesh, mesh (b): after two h-refinements, and mesh (c): after four
h-refinement steps.
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The convergence of the relative error in energy norm for each mesh given in Figure 5.33 (initial
mesh and meshes refined twice, and four times) is plotted in Figure 5.34. The dashed curves
represent the computations performed with a constant polynomial degree of p = 2 to p = 10
on geometrically h-refined meshes shown in Figure 5.33. For the computations with constant
lower polynomial orders (p = 2, p = 3, p = 4) on h-refined meshes, an asymptotic algebraic
rate of convergence is visible. It derives from the poor discretization of the large element with
the relatively low polynomial orders which is partly in contact. The rate of convergence for
the computations with higher polynomial orders and h-refined mesh, is of exponential nature.
The rate of convergence reaches a value of β = 5.5. The solid line shows the convergence of the
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Figure 5.34: Exponential rates of convergence of the relative error in energy norm for the Hertzian
contact problem when the hp-method (solid line) is applied. The dashed lines, showing
exponential convergence rates as well, represent the computations performed with a
constant polynomial degree of p = 2 to p = 10 on geometrically h-refined meshes shown
in Figure 5.33.

error in energy norm for the full hp-scheme. Here, the element having the change in bound-
ary conditions from contact to no contact is always having the minimal polynomial degree of
pmin = 1. For each element further away from the end of the contact interface, the element’s
polynomial degree is increased by one. The rate of convergence for the computations with the
full adaptive hp-scheme, is of exponential nature. The convergence rate is equal to β = 2.7.
Around 750 DOFs are necessary to get an error of less than 1%. It can therefore be assumed
that the reduced regularity at the end of the contact interface is sufficiently isolated by the
inner element, not causing significant oscillations in the neighboring elements and limiting the
influence area by enclosing the singular point.
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The difference in von Mises stresses is studied as well for the rp- and hp-method of the FEM
for the unilateral Hertzian contact problem. The difference in the von Mises stresses for p = 10
and p = 20 is plotted for the corresponding meshes in Figure 5.35. A large error zone is visible

relative error in
von Mises stresses

0.1%

0

(a) (b) (c)

Figure 5.35: Relative error in von Mises stresses for the 4 and 36 element mesh by applying the
rp-version of the FEM shown in Figure 5.31(a) and (b) and for the 18 element mesh
derived by the h-refinement and shown in Figure 5.33(c). The label on the right is
scaled to a maximum value of 0.1% of the maximal von Mises stresses occuring in the
reference solution (max. value in reference solution: 14253).

in plot 5.35(b) at the end of the contact interface around Γ∗ for the 36 element mesh with
the rp-adaption applied. The two elements next to it are dominated by this error, which
is geometrically limited by the edges of these elements. The checkerboard pattern derives
from the polynomial of order ten, which oscillates with small amplitudes compared to the
polynomial of order 20. The maximum relative difference in the von Mises stresses for p = 10
and p = 20 is about seven percent and located at the end of the contact interface at point Γ∗.
The four element mesh shown in Figure 5.35(a) behaves much worse. Due to its very large
elements, basically the whole domain is affected by the error which is introduced at the end
of the contact interface. It is also interesting to see, that the error travels through the whole
large curved element even up to the upper right corner of the model, which could already be
seen in the studies of the Neumann boundary condition in Section 4.5 for the rectangular load
cases. Even though Figure 5.35(a) looks tremendously flawed one should keep in mind that
the red color is indicating the area with more than only 0.1% of the maximal von Mises stress
occurring for this model. The maximal difference in the von Mises stresses for this model is
around fifteen percent, located in the singular point Γ∗ at the end of the contact interface.
The zone of the error in the von Mises stresses plotted in Figure 5.35(c) for the four times
h-refined model is geometrically limited by the smallest element, framing the end of the con-
tact interface. The error, or largest difference between p = 10 and p = 20 on this mesh is
approximately ten percent of the von Mises stresses in the reference solution. Its value is
therefore larger than for the (rp-adapted) 36 element mesh shown in Figure 5.35(b), but more
limited in space extension, therefore affecting the solution more locally than the 36 element
mesh.
Contrary to the statement of Eck et al. given in Section 4.4 that there will not be a singu-
larity at this point for the Signorini type problem, clear hints for a stress concentration (or
singularity) can be identified in the numerical result.
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In order to compare the convergence rates and show the performance of the four presented
discretization schemes, Figure 5.36 plots the convergence rates for the h-version with p = 1,
p-, and rp-version for the four element mesh, and for the adaptive hp-version of the FEM. It
is clearly visible, that the convergence rate of the h-FEM is much slower than for every other
(p-FEM) method.
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Figure 5.36: Rate of convergence of the relative error in energy norm for the Hertzian contact problem
in two dimensions for the h-version with p = 1, p-, and rp-version for the four element
mesh, and for the adaptive hp-version of the FEM.

5.3 Contact of an Elastic Ring with a Rigid Foundation

We consider a numerical example which has been presented by Fischer [23]. It is in several
ways more complex than the Hertzian contact problem. Besides the nonlinearity introduced
by the contact problem, the shell like structure undergoes large deformations and exhibits a
nonlinear material behavior. Even when taking advantage of the symmetry, in the rp-version
approach the positions of two FE-nodes have to be controlled to coincide with the end of
the contact interface in order to obtain an accurate approximation. The problem setup is
as follows: An elastic ring is in contact with a rigid foundation. The structure consists of
an outer and an inner ring both having the same thickness t = 5[mm] but different material
properties. The stiffness of the inner ring is 100 times higher than the stiffness of the outer
ring. A Neo-Hooke material law is assumed. The mesh which discretizes the ring with only
twelve elements is displayed in Figure 5.37. Contrary to the initial setup used in [23], the
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Figure 5.37: Geometric setup, loads and mesh for a composite elastic ring in contact with a rigid
foundation.

displacement boundary condition is replaced by a Neumann boundary condition4 acting in
vertical direction, see Figure 5.37. To obtain a similar deformation pattern as in [23], the
traction is applied on a stiff strip which has a high Young’s modulus of E = 107[N/mm2].
In addition to this, the deformation of the strip is constrained in horizontal direction. The
cylindrical Arclength Method [13] is utilized in this computation. The penalty parameter
equals ǫN = 106[N/mm2], and a polynomial degree of p = 5 is chosen for the ansatz space of
the quadrilateral elements. The material parameters are as follows:

inner ring:

E = 105[N/mm2]

ν = 0.3

outer ring:

E = 103[N/mm2]

ν = 0.3

Due to the applied load, a maximum displacement of 35.28 [mm] occurs at the top of the
rings. The maximal lift off occurring at the axis of symmetry has a value of 1.6 [mm]. The
rp-method of the FEM is used in this example to eliminate oscillations in the contact stresses
at the contact boundary. In Figure 5.38, the deformed ring and the distribution of the von
Mises stresses are shown. The inner part of the composite ring is carrying the main load due
to its higher material stiffness5. To get an idea about the accuracy of the shown discretization
we consider the reaction force which is computed by integrating the traction vector over the
contact interface. The reaction force amounts to 2200 [N ]. Comparing this value with the

4The Arclength Method used in this simulation is only implemented for load controlled problems. Therefore
the boundary conditions had to be changed from Dirichlet, to Neumann boundary conditions.

5The occurring stresses in the inner ring due to bending are large compared to the contact stresses in the
contact interface. Convergence problems were experienced during the computation of this example presumably
due to the large element deformations. As a result of these problems it was not possible to obtain results for
two different FEM versions having the same load factor. Therefore no comparison of different versions of the
FEM is presented for this example.
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applied load of 2070 [N ], we find that the relative error of the reaction force becomes 6.3%.
More accurate results can be obtained by further increasing the polynomial degree. However,
from this example it is evident, that a rather coarse discretization provides already a quite
accurate approximation when applying the rp-version of the FEM.

von Mises
stresses
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12286
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9215

7679
6143
4607
3072
1536
0

Figure 5.38: Von Mises stresses and deformation for the composite ring in contact with a rigid
foundation.

5.4 Stiff Axle in Elastic Ring

Another example studied for the unilateral case is the setup of a rigid axle located in an elastic
ring. The geometric parameters of the plane strain problem are shown in Figure 5.39. The
radii are r1 = 2.0, r2 = 0.7, and r3 = 0.6. Only one half of the symmetric system is modeled
in the numerical setup. The Young’s modulus of the ring is set to E = 1000 with a Poisson
ratio of ν = 0.0. The computations are performed geometrically nonlinear, allowing for large
displacements. Only normal contact is considered using a penalty parameter of ǫN = 106. The
displacement based load υ0 = 0.45 acts on the rigid axle in vertical direction. Three different
meshes are used for the computation. For each mesh the principal stress σ1 is plotted in the
following Figures. Its distribution is indicated in Figure 5.40(a) by the blue color. The contact
stress acts in normal direction on the contact boundary. As it (the contact stress) defines the
main stresses in the given setup, it is equivalent to the principal stress on the boundary.
Figure 5.40(b) shows the result where the ring is computed with two elements only having
a polynomial degree of p = 4. The results for a uniformly refined mesh with 12 elements is
shown in Figure 5.41(a), computed also with a polynomial degree of p = 4. A locally h-refined
mesh is used for the computations with the 16 element mesh (for the ring) and the polynomial
degree is set to p = 5. The corresponding strain energy is: ‖u‖E(Ω) = 77.01673366 for the two
element mesh, ‖u‖E(Ω) = 76.52192848 for the 12 element mesh, and ‖u‖E(Ω) = 76.51554562
for the 16 element mesh.
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Figure 5.39: Geometric Setup of elastic ring with rigid axle.
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Figure 5.40: (a) shows the principal stress trajectories for the contact between an elastic ring and a
rigid axle computed with two elements and p=4. The principal stresses σ1 are displayed
in blue and stresses σ2 are displayed in red. (b) shows the principal stresses in σ1-
direction for a mesh where the ring is modeled with two elements and p=4.
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Figure 5.41: (a) shows the principal stres of the normal contact component σ1 for a mesh where
the ring is modeled with 12 elements and p=4. (b) shows the equivalent results for a
h-refined mesh with 16 elements and p=5.

5.5 Frictional Two Bar System

Contact including friction is studied for the unilateral and bilateral case. The corresponding
theory is given in Section 3.3. At the end of the contact interface, a point with reduced
regularity exists, as described for the normal contact in the previous section. When sliding
contact with the Coulomb friction model is to be considered as well, a second point with
reduced regularity occurs. This point is located at the interface between the zone in stick and
slip. A kink in the stress distribution occurs there. As for the reduced regularity at Γ∗, the
hp- or rp-method can be used to resolve this singularity. Applying the rp-method, a Finite
Element node has to coincide with this point. When the hp-method is used, the area around
this second point with reduced regularity has to be refined adaptively.

5.5.1 Numerical Model and Reference Solution

The example studied for the case of frictional contact is a system that consists of two beams
which are placed on top of each other as shown in Figure 5.42. The bottom beam is relatively
stiff with a Poisson ratio of zero. The top beam is pressed onto the bottom beam by a
Dirichlet boundary condition of υ0 = 0.03 to establish contact and then loaded horizontally
by a uniformly distributed load of 300. The penalty parameter is chosen to be ǫn = 108. The
polynomial degree is set to p = 15 in x-direction and to p = 5 in y-direction (vertical direction).
For the case of pure stick, this geometric setup corresponds to the system of a monolithic plate
with inclined edge (also referred to as the L-shaped domain), studied extensively by [81] and
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Figure 5.42: Geometric setup and loads for the two bar example with frictional stick.

[59]. It is well known that for this problem type a singularity is present in the solution at the
inclined corner of the plate.
In order to prove the accuracy of the contact algorithm for bilateral problems, the results of
the contact simulation have to be compared to a reference solution. The reference solution for
the case of pure stick is computed in a setup where both beams are connected monolithically.
As the penalty method is used to incorporate the contact constraints, the non-penetration
condition is violated by allowing for some small penetration of the two beams in the contact
interface. This reduces the effective displacement, acting on the two bars, as the displacement
of 0.03 applied on the top of the upper beam is partly dissipated by the penetration of the two
beams. A model without a penalty parameter (spring) in the contact interface (monolithic
model) therefore needs a smaller displacement at the top in order to exhibit the same strains
inside the domain and serve as a reference solution. The reduced value for the displacement
boundary condition applied at the top can be derived by taking a system of coupled springs,
once with and once without the penalty spring stiffness. Figure 5.43 shows the difference
between the spring models of the contact model (Figure 5.43(a)) and monolithic model (Figure
5.43(b)). In the contact model, the Young’s modulus of each bar forms the stiffness of the top
and bottom springs. In between, the spring stiffness is equivalent to the penalty parameter.
The residual spring stiffness Ka

res for the monolithic system (a) is:

1

Ka
res

=
1

E1

+
1

E2

. (5.12)

The residual spring stiffness Kb
res for system (b) is derived by:

1

Kb
res

=
1

E1

+
1

ǫn
+

1

E2

. (5.13)

As the forces Fi = Ki · υi
0 should be equal for both models the equality Ka

res · υa
0 = Kb

res · υb
0

can be formulated. The new value of υb
0 for the monolithic system is then derived by

υb
0 =

Kb
res

Ka
res

· υa
0 = 0.029997003 . (5.14)

Both models, the reference solution and the frictional contact solution have to deal with the
singularity at the inclined edge, as explained before. In order to be able to compare the results
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Figure 5.43: Substituted mechanical system to derive the reduced value for the Dirichlet boundary
condition on the monolithic two bar example with frictional stick.

derived from the contact simulation with the reference simulation, the discretization of both
problems (contact and monolithic) has to be exactly identical. Therefore the mesh for the
reference solution, its material parameters, and its ansatz space are the same for both models.
The effect of the tangential penalty parameter, accounting for the stick part of the friction
model is more complex. The tangential penalty parameter allows for some artificial micro
slip in tangential direction which is not accounted for in the monolithic setup and is therefore
mainly introducing an error in the horizontal displacement and its derivative, the strain σx.

5.5.2 Numerical Results

Numerical results are shown for the model where the frictional contact is modeled with full
stick and for the model where a Coulomb friction model is used for the frictional contact part.

5.5.2.1 Comparison of monolithic solution and contact solution with stick

A comparison of the error in strain energy shows a good correlation of both models (contact
and monolithic model). The geometry is discretized using three elements only. The mesh can
for example be seen in the displacement pot in Figure 5.47. For an ansatz space of fifteen in
x-direction and five in y-direction, the monolithic model has a strain energy of 39.71208524
whereas the model including contact results in a strain energy of 39.71209717. Scaling it to
the strain energy of the monolithic model it turns out to be an error of 3 · 10−5%. The error
of the strains in L2-norm, given in Equation 5.15, is computed in the contact domain for the
monolithic model compared with the contact model.

‖eε‖L2 =

√

∫ 8

0
(εmonolytic − εcontact)

2 dx
∫ 8

0
εmonolytic dx

(5.15)

The error in L2-norm for the strains in y-direction is
∥

∥eεy

∥

∥

L2
= 0.002%. The error for the

strains in x-direction is much larger due to the aforementioned difference between the two



5.5. Frictional Two Bar System 91

models, therefore the error turns out to be ‖eεx
‖L2 = 30.696% when the full contact inter-

face is considered. From these 30.696%, the largest part is observed in the vicinity of the
inclined edge. Dividing the domain, we get an error in L2-norm of ‖eεx

‖L2 = 2.501% for
the interval x = (0, 7.5) and an error ‖eεx

‖L2 = 45.633% in the interval x = 7.5, 8.0). This
becomes evident when looking at the corresponding εx-strains, plotted in Figure 5.44. In the

monolytic solution
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Figure 5.44: Strain εx for monolithic model and contact model in the contact interface.

monolithic solution, tensile strains are occurring in the vicinity of the singularity, turning into
compressive strains further away from the singular point. The contact solution is allowing for
some displacement in tangential direction by definition. Therefore, deflection and compressive
strains arise already at x=8, explaining the large difference occurring there locally. Even more
interesting is a plot of the strains εxy (see Figure 5.45), which correspond in this setup to the
tangential strains in the contact interface and therefore to the contact stresses. Its error in
L2-norm turns out to be

∥

∥eεxy

∥

∥

L2
= 0.172% which is good concerning the error due to the

tangential penalty parameter. The plot shows clearly the singularity at the inclined edge,
occurring in the case of stick. The result of both models coincide in Figure 5.45, showing
only one line. The plot also clearly shows the pattern of a polynomial of order 15, as minor
oscillations can be observed. Figure 5.46 shows the corresponding trend of the shear stresses
σxy for the monolithic model, or tangential contact stresses σt. In this case the stresses are
connected to the strains by a linear material law. Therefore the trend of the curves given in
Figures 5.45 and 5.46 are identical.
In Figures 5.47, and 5.48, the displacement and stress in x-direction for the contact model
of the two bar system with friction in the pure stick case is shown. Figure 5.49 plots the
tangential shear stresses σxy for the model considering contact. The error in the von Mises
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Figure 5.45: Strain εxy for monolithic model and contact model coincide in the contact interface.
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Figure 5.46: Stresses σxy for monolithic model and contact model coincide in the contact interface.
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stresses is shown in Figure 5.50. The maximal value in the legend shows an error of 0.1%
of the maximal von Mises stress occurring in the monolithic model. As already seen in the
previously plotted line charts, the only position where an error occurrs is around the area of
the inclined edge.
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Figure 5.47: Horizontal displacement in x-direction for pure stick case.
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Figure 5.48: Stresses in x-direction for pure stick case.
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Figure 5.49: Tangential shear stresses σxy for pure stick case.
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Figure 5.50: Relative error in von Mises stresses for the 3 element mesh of the two bar example.
Comparison of monolithic model and frictional contact model in the case of pure stick.
The maximal value in the legend shows an error of 0.1% of the maximal von Mises
stress occurring in the monolithic model.
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5.5.2.2 Results using the Coulomb Friction Model

Computations are also performed for the frictional contact with sliding, using a Coulomb
friction model. A friction coefficient of µ = 0.3 is assumed. The geometry, loads, boundary
condition, material and polynomial degree is chosen to be the same as in the previous model,
p = 15 in x-direction and p = 5 in y-direction. Figure 5.51 plots the normal and tangential
contact stress in the contact interface. Especially when compared to Figure 5.46 it is clearly
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Figure 5.51: Normal and tangential contact stress in the contact interface for Coulomb friction
model.

visible, that the Coulomb friction law limits the maximal tangential friction stress σt. The
dotted line marks the friction bound of 0.3 · σn. The frictional contact stress in slip (solid
line) is generally seen to be bounded by this value, even though oscillations in the tangential
stresses can be observed. They derive from the fact that a point with reduced regularity is
existing in the tangential stress distribution. At the interface from slip to stick, a reduced
regularity in the solution is present. The continuous polynomial of order p = 15 is not able to
resolve this point and therefore starts to oscillate. The oscillatory behavior could be avoided
by either have the interface from stick to slip coincide with a Finite Element node (by applying
the rp-method), or by framing this singular point with a small element in a hp-manner.
The horizontal deformations ux the horizontal stresses σx and tangential stresses σxy are
plotted in Figures 5.52 - 5.54.
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Figure 5.52: Horizontal displacement ux with Coulomb friction law and frictional contact in stick
and slip.
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Figure 5.53: Horizontal stresses σx with Coulomb friction law and frictional contact in stick and slip.
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Figure 5.54: Tangential shear stresses σxy with Coulomb friction law and frictional contact in stick
and slip.
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Chapter 6

Summary and Outlook

In the present work the applicability and performance of high-order Finite Elements in the field
of computational contact mechanics is investigated. Studies are performed for two dimensional
unilateral, bilateral, frictionless and frictional contact cases with infinitesimal and finite strains
considering non-matching meshes. Various high- and low-order schemes are investigated in
terms of accuracy of the contact stresses and in terms of the convergence behavior of the
error in strain energy norm. To incorporate the contact constraints into the analysis, the
penalty method is implemented, allowing for a small penetration of the contacting objects.
The error introduced by this approximative fulfillment of the non penetration condition is
small and without a significant influence on the present study. Nevertheless, the applied
high- and low-order schemes could also be used with different discretization methods like the
Lagrangian or augmented Lagrangian method. The mortar method could as well be applied,
but it is assumed that no significant benefit would result from it, as its main advantage lies
in the treatment of non matching meshes, which is solved differently in the present study.
Furthermore, the border of the contact interface where the boundary condition changes from
contact to non-contact, would have to be treated in the same way as presented here to avoid
oscillations of the high-order polynomials used as the ansatz space.

This can be seen in the study of the contact stresses. For the test case of the unilateral friction-
less Hertzian contact problem, conventional low-order (h-version) and high-order (p-version)
schemes of the Finite Element Method are investigated. Within the p-version approach, the
hp- and the rp-version as an adaptive extension of the p-version are applied. The hp-method
increases its accuracy at singular points by a combination of a local mesh refinement and an
adaptive method where the shape function’s polynomial degree for each element is chosen
separately. The rp-method resolves the singular point by moving a Finite Element node into
the singular point in the solution domain. The evaluation of the results for the contact stresses
shows rather that the conventional low order methods with isoparametric element concepts
lead to bad results especially for curved geometries. When high-order ansatz functions are
used instead, the quality of the result is generally improved. However, the reduced regularity
at the end of the contact interface at Γ∗ (where a change exists in the boundary conditions)
leads to oscillations in the case of the high polynomials. These oscillations can be reduced
or avoided when the adaptive hp- or rp-method is applied. The improved accuracy of both
methods is achieved by an adaptive scheme, requiring a precise location of the contact in-
terface for the rp-, and a fairly precise location of the contact interface for the hp-method.
Therefore several iterations have to be performed to obtain the desired accuracy in the contact
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stresses. The hp-method minimizes the influence area of the point Γ∗ with reduced regularity
at the end of the contact interface, therefore limiting the oscillatory area and its effect as
well. Oscillations occur, but only in the innermost element, which contains the change in the
boundary condition. When the rp-version of the FEM is applied, oscillations in the contact
stresses can even be completely avoided, by having a Finite Element node coincide with Γ∗ at
the end of the contact interface.
Studies performed on the convergence rate of the error in strain energy norm also provide a
measure for the quality of the overall solution. These studies are performed for the same h-,
p-, hp-, and rp-version of the FEM. The results have a similar trend than the one obtained
for the survey of the contact stresses. The h- and the p-version show an algebraic rate of
convergence, with a higher gradient β for the pure p-FEM approach. The application of the
rp-FE method shows as well an algebraic rate of convergence, but with a higher gradient than
the non-adaptive methods. The convergence is faster because oscillations in the polynomial
ansatz functions are avoided by the method. The reason for the algebraic rate of convergence
can be explained with the analogy of the contact problem to a Neumann boundary condition.
Contact stresses acting on a boundary cause the same kind of reduced regularity at the end
of the contact interface at Γ∗ as in general a Neumann boundary at its ends of a distributed
loading zone. Only under certain geometric and loading conditions, this singularity does not
introduce any error to the numerical solution. The reduced regularity therefore limits the
convergence rate to be of algebraic type in the asymptotic range. In the pre-asymptotic range
exponential rates of convergence can occur for structures having complex solution patterns if
the p-version and its extensions are used. Even higher rates of convergence can be observed
for the hp-version. The rate of convergence is of exponential nature if the full adaptive hp-
scheme is applied. The combinations of high polynomial degrees in the solution domain and
a low polynomial order in the small area where the singularity at the end of the contact
interface occurs further limits the influence area in each refinement step and therefore results
in an exponential rate of convergence. Furthermore the number of iteration steps needed for a
certain level of accuracy in the hp-scheme, is less than the one needed in the rp-scheme. This
counterbalances the additional introduced degrees of freedom due to the additional elements
and the increased computation time for each single iteration step.
Bilateral frictional contact is studied for the case of stick and slip for the example of two
contacting bars. For both cases, a good correlation of the model with contact and the reference
solution without contact can be observed. The error in tangential direction occurring in the
case of stick is solely due to the tangential penalty factor. In the case of frictional contact with
slip, a Coulomb friction model with elastic stick is applied. It generally shows reasonably good
results, but demonstrates the need to resolve the location between the stick and the slip zone.
This could either be done by the rp- or the hp-method as described for the normal contact.
This example also shows the performance of the implemented bilateral contact description.
The application of high-order Finite Element Methods is therefore well suited for mechanical
contact problems. The discretization of the domain should contain rather large elements and
the contact boundaries should have a rather smooth geometric setup with considerably large
contact interfaces. The hp-version of the FEM shows the overall best solution regarding the
contact stresses and the convergence of the error in strain energy norm.

A topic that should be addressed by future research is the extension of the proposed hp-version
to three-dimensional problems, especially to thin solids. The success of such a research signif-
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icantly depends on the mesh generation and adaptive refinement in the 3D contact zone. This
is especially true if curved geometries are considered. Studies on hexahedral mesh generation
for these curved geometries have lately been performed by Sorger et al. [76, 77]. Especially for
the simulation of deep drawing processes of thin sheet metal with the p-version of the Finite
Element Method the described method creates meshes of high quality and great geometric
accuracy, which are therefore well suited for the computation. Furthermore the linearization
of the contact problem needs to be changed from the numerical discrete Newton method to
an analytical method suited for the high-order approach. A promising linearization technique
was introduced by Konyukhov [52] which is based on a covariant description of the contact
problem.
As the Isogeometric Element concept introduced by Hughes [46] and Cottrell [12] is closely
related to the p-version of the Finite Element Method, it is believed that many of the results
obtained for the p-version of the FEM in the present study do also apply for the Isogeometric
concept. Nevertheless, a detailed study should be performed to prove this assumption.
The Neumann boundary condition and its reduced regularity at the end of the load distribution
zone should also be studied in more detail. This is, independent from the contact formulation,
a field of research which is of great interest due to its frequent appearance. It is assumed,
that having the Finite Element node coincide with the end of the distributed load is generally
sufficient for the discretization of the edge, but the reduced regularity due to the load must
travel into the domain as well, causing the error there. If the path of the ’fault line’ could be
located, the reduced regularity might be resolved by having it coincide with a Finite Element
edge. Possibly a detailed study of the stress intensity factor at this point could help in
classifying and localizing the direction of the error in the domain.
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[82] B.A. Szabó and I. Babuška. Introduction to Finite Element Analysis – Formulation,
Verification and Validation. John Wiley & Sons, 2011.

[83] B.A. Szabó, A. Düster and E. Rank. The p-version of the Finite Element Method.
In E. Stein, R. de Borst and T. J. R. Hughes, editors, Encyclopedia of Computational
Mechanics, volume 1, chapter 5, pages 119–139. John Wiley & Sons, 2004.

[84] I. Temizer, P. Wriggers and T.J.R. Hughes. Contact treatment in isogeometric analysis
with NURBS. Computer Methods in Applied Mechanics and Engineering, 200(9-12):1100
– 1112, 2011.

[85] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement
techniques. John Wiley & Sons and B.G. Teubner, 1996.

[86] B.I. Wohlmuth. Discretization methods and iterative solvers based on domain decompo-
sition, volume 17 of Lecture Notes in Computational Science and Engineering. Springer-
Verlag, Berlin, 2001.

[87] P. Wriggers. Nichtlineare Finite-Element-Methoden. Springer-Verlag, 2001.

[88] P. Wriggers. Computational Contact Mechanics. Springer, 2nd Auflage, 2006.



Bibliography 107

[89] P. Wriggers and G. Zavarise. Computational Contact Mechanics. In E. Stein, R. de Borst
and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, volume 2, chap-
ter 6, pages 195–226. John Wiley & Sons, 2004.

[90] B. Yang, T.A. Laursen and X. Meng. Two dimensional mortar contact methods for large
deformation frictional sliding. International Journal for Numerical Methods in Engineer-
ing, 62:1183–1225, 2005.

[91] Z. Yosibash, S. Hartmann, U. Heisserer, A. Düster, E. Rank and M. Szanto. Axisymmet-
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