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Betreuer: Prof. Dr. M. Sørensen

Abgabetermin: 01.Juni 2008
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Introduction

In this thesis we will a take a closer look at a particular type of diffusion. The Pearson
diffusions are stationary solutions to a stochastic differential equation for the form

dXt = −θ(Xt − µ)dt+
√

2θ(aX2
t + bXt + c)dWt

where θ > 0 and a, b and c are chosen in such a way, that the square root is well defined. In
particular, µ is the mean level of the process. We will see in chapter 4, that the drift and
the diffusion coefficient are of course crucial for the existence of a solution (see chapter 3).
Under certain conditions to the scale and speed density we can derive the existence of a
solution. Since the Pearson diffusions are closed under linear transformation, we gain six
different types of Pearson diffusions. Fortunately in all six possible cases for the Pearson
diffusion is the existence of a solution guaranteed.
For this particular type of diffusions it is possible to derive a recursive formula for the
moments and the conditional expectations. In this context we will see that the generator
and its eigenfunctions play an important role. We will see that eigenfunctions of Pearson
diffusions are polynomials and therefore especially comfortable. Further can we assume
that the parameter for the highest order is equal to one. Thus can we derive a recursive
formula for the conditional moments.
Another interesting fact about Pearson diffusions is, that the maximum likelihood esti-
mator is not the most simple estimator to calculate. Instead, with the knowledge about
their conditional moments we can derive an optimal estimating function, which has got
some comfortable properties and converges under certain assumption.
The main part of this thesis deals with the extension of those processes by adding jumps.
Assume that Nt is a Poisson process with a constant parameter λ, then Nt is the number
of jumps in the time interval (0, t). Further we postulate that the random variable Jk is
distributed with distribution FXτk−

where Xτk− is the last state of the process before the
kth jump. Then our new process looks like

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θ(aX2

s + bXs + c)dWs +
Nt∑
n=1

g(Jn, Xn−), t ≥ 0

with g being a function with certain properties (see chapter 6). Then, under certain
conditions, the existence of a unique solution can be proved.
The existence of the moments on the other hand is rather tricky. Under the assumption of
a global Lischitz condition (which is satisfied in some cases), we can prove the existence
of the first two moments. Since you can not apply the global Lipschtiz condition for the
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proof of higher moments, as we will apply it for the proof of the first two moments, we
have to find other conditions under which the proof of the existence of higher moments
is possible. Those assumptions are nevertheless quiet similar.
Under the assumption of the existence of moments, we can derive an ordinary differential
equation to calculate the conditional moments of Xt. We gain as in the case without jumps
a recursive formula for the conditional moments.
Similar to the case without jumps we can derive a recursive formula for the eigenfunctions.
In this case this recursive formula is of course a bit more complicated than in the easier
case, but we can clearly see the connection to the jump less case. At first we need to
derive the generator first to gain the eigenfunctions of the process. Coincidentally the
eigenfunctions are again polynomials like in the jump less case.



Chapter 1

Estimating functions

Suppose as a model for the data X1, X2, . . . , Xn ∈ Ψ ⊂ Rn that they are observations
from a stochastic process indexed by a parameter θ ∈ Θ ⊂ Rp. We define an
estimating function, as a p-dimensional function of the parameter θ and the data, as
follows

Gn(θ;X1, X2, . . . , Xn) : Θ×Ψ → R.

For ease of notation we write Gn(θ). From the estimation function we can derive an
estimator for θ by solving the equation

Gn(θ) = 0.

Depending on the situation, there could be more than one solution as well as none at all.
We call an estimating function unbiased if and only if Eθ(Gn(θ)) = 0.

1.1 Martingale estimating functions

An estimating function Gn(θ) which is also a martingale, i.e. an estimating function
satisfying

Eθ(Gn(θ)|Fn−1) = Gn−1(θ), n = 1, 2, . . .

where Fn−1 is the σ-field generated by the observations X1, . . . , Xn−1

(G0 = 0,F0 = {Ω, ∅}), have in particular nice properties and relatively simple asymptotic
theory based on well-developed martingale limit theory as summarized in the Appendix.
As we will see later on, the score function is usually a martingale estimating function. In
the case where it is difficult to calculate the score function, we want to approximate the
score function by much simpler martingale estimating functions. The following example
is a typical one

Gn(θ) =
n∑
i=1

a(Xi−1; θ)
(
f(Xi)− Eθ(f(Xi−1)|Fi−1)

)
(1.1)

where f is a suitable function of the data, while a (typically a matrix) is chosen to ensure
that the dimension of Gn(θ) equals the dimension of the parameter and to optimise the
estimator.
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CHAPTER 1. ESTIMATING FUNCTIONS 2

Proposition 1.1. The estimating function in (1.1) is in fact a martingale, if f is mea-
surable, Eθ(f(Xi)) <∞ and all a(x; θ) <∞.

Proof.

Eθ(Gn(θ)−Gn−1(θ)|Fn−1) =a(Xn−1; θ)Eθ(
(
f(Xn)− Eθ(f(Xn−1)|Fn−1)

)
|Fn−1)

=a(Xn−1; θ)
(
Eθ(f(Xn−1)|Fn−1)

− Eθ(Eθ(f(Xn−1)|Fn−1)|Fn−1)
)

=0

which is with the linearity of the expectation equivalent to Eθ(Gn(θ)|Fn−1) = Gn−1(θ).
Furthermore

E(|Gn(θ)|) =
n∑
i=1

a(Xi−1; θ)︸ ︷︷ ︸
<∞

(
E(f(Xi))︸ ︷︷ ︸

<∞

−E(Eθ(f(Xi−1)|Fi−1))︸ ︷︷ ︸
<∞

)
<∞

and since f is measurable and the conditional expectation is also measurable (definition),
we gain that the estimating function in (1.1) is also measurable.

The function a is usually called an instrument and it is discussed in Bibby, Jacobsen
& Sørensen (2004), chapter 4, how it should be chosen to be optimal. Now we want to
quote a version of the central limit theorem for martingales.

We can write Gn(θ) in the form Gn(θ) =
n∑
i=1

Hi(θ) with Hi(θ) = Gi(θ) − Gi−1(θ). If we

assume that Gn(θ) has variance, then we can define the quadratic characteristic of Gn(θ)
as the random positive semi-definite p× p-matrix

〈G(θ)〉n =
n∑
i=1

Eθ
(
Hi(θ)Hi(θ)

T |Fi−1

)
.

Theorem 1.2. Assume that for n→∞
1

n

n∑
i=1

Eθ
(
Hi(θ)Hi(θ)

T
)
→ Σθ (1.2)

〈G(θ)〉n
n

Pθ→ Σθ (1.3)

and
1√
n

sup
i≤n

|Hi(θ)|
Pθ→ 0, (1.4)

where Σθ is a positive definite p× p-matrix. Then

〈G(θ)〉−
1
2

n Gn(θ)
D→ N(0, Ip). (1.5)

Here Ip denotes the p × p identity matrix. A proof of a one-dimensional version of
the theorem can be found in Hall & Heyde (1980). The multivariate version follows by
the Cramér-Wold device. You can see from the conditions of the theorem, that we have a
weak law of large numbers

n−1Gn(θ)
Pθ→ 0,

which is a necessary condition for consistency.
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1.2 Limit results for diffusion processes

Let us now consider (mainly one-dimensional) diffusion models, which are solutions of
stochastic differential equations (short SDEs) of the form

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt (1.6)

where Wt is a standard Wiener process at time point t. We assume that the drift b and
the diffusion coefficient σ depend on the parameter θ which varies in a subset Θ ⊂ Rp.
The parameter θ will not be discussed in this section. We also assume that b and σ are
smooth enough to garantee the existence of a solution for all θ ∈ Θ (see chapter 3 for the
conditions on b and σ). The state space of X is the interval (l, r).
In condition 4.1 you can find a condition to ensure that the solution Xt is ergodic.
We consider Xt is ergodic with invariant probability measure πθ. We further assume that
X0 ∼ πθ (i.e. X0 has the same distribution like πθ), so that X is a stationary process with
Xt ∼ πθ for all t ≥ 0. Therefore the density of the distribution of (Xt, Xt+s) for t, s > 0 is
given by

Qs
θ(x, y) = πθ(x)p(s, x, y; θ),

where y 7→ p(s, x, y; θ) is the transition density, i.e. the conditional density of Xt+s given
that Xt = x. For a function f : (l, r)2 → R, we use the notation

Qs
θ(f) =

∫
(l,r)2

f(x, y)p(s, x, y; θ)πθ(x)dydx,

assuming that the integral exists. Similarly we define for a function f : (l, r) 7→ R

πθ(f) =

∫ r

l

f(x)πθ(x)dx.

Suppose that a unique weak ergodic solution of (1.6) exists and that f : (l, r) → R satisfies
πθ(|f |) <∞, and that g : (l, r)2 → R satisfies Q∆

θ (|g|) <∞ for a ∆ > 0. Then

1

n

n∑
i=1

f(Xi∆)
a.s.→ πθ(f) (1.7)

and

1

n

n∑
i=1

g(X(i−1)∆, Xi∆)
a.s.→ Q∆

θ (g) (1.8)

as n → ∞, see Billingsley (1961b). Note that the first result is a particular case of the
second one also and that equidistant observations, i.e. ti = ∆i, are required to ensure the
stationarity of f(Xi∆) and g(X(i−1)∆, Xi∆).

Further, if we assume the sum
n∑
i=1

g(X(i−1)∆, Xi∆) to be a martingale, i.e. that

∫ r

l

g(x, y)p(∆, x, y; θ)dy = 0
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for all x ∈ (l, r), with finite variance Q∆
θ (g2), then under Condition 4.1 from Chapter 4

1√
n

n∑
i=1

g(X(i−1)∆, Xi∆)
D→ N

(
0, Q∆

θ (g2)
)

as n→∞, see Billingsley (1961a).



Chapter 2

Estimating functions for diffusions

In this chapter will take a more intensive look at estimating functions for diffusion models.
We assume Xt0 , . . . , Xtn to be observations of a stochatical differential equation like (1.6).
Here we also assume that b and σ are known apart from the parameter θ and that they
are smooth enough to ensure the existence of a unique weak solution for all θ in Θ. From
now on we will denote by p(s, x, y, θ) (y → p(s, x, y, θ)) the transition density, i.e. the
conditional density of Xt+s given that Xt = x (s > 0).

2.1 Maximum likelihood estimation

The diffusion process X is a Markov process, therefore we can derive the likelihood func-
tion (conditional on X0) as

Ln(θ) =
n∏
i=1

p(ti − ti−1, Xti−1
, Xti ; θ).

The vector Un(θ) = ∂ logLn(θ)
∂θ

is called the score function. To get a maximum likelihood
estimator, you solve the equation Un(θ) = 0. Therefore we affiliate

Un(θ) =
n∑
i=1

∂θ log p(∆i, Xti−1
, Xti ; θ) (2.1)

based on the observations Xt0 , Xt1 , . . . , Xtn and with ∆i = ti − ti−1.

Proposition 2.1. The score function (2.1) is a martingale estimating function if we
assume that the interchanging of differentiation and intergration is allowed.

Proof. First we want to show that

E(Un(θ)− Un−1(θ)|Xt1 , . . . , Xtn−1) = 0.

5



CHAPTER 2. ESTIMATING FUNCTIONS FOR DIFFUSIONS 6

Let n ∈ N, then we gain

E(Un(θ)− Un−1(θ)|Xt1 , . . . , Xtn−1) = Eθ(∂θ log p(∆n, Xtn−1 , Xtn ; θ)|Xt1 , . . . , Xtn−1)

= Eθ
(∂θp(∆n, Xtn−1 , Xtn ; θ)

p(∆n, Xtn−1 , Xtn ; θ)
|Xtn−1

)
=

∫ r

l

∂θp(∆n, Xtn−1 , y; θ)

p(∆n, Xtn−1 , y; θ)
p(∆n, Xti−1

, y; θ)dy

= ∂θ

∫ r

l

p(∆n, Xtn−1 , y; θ)dy︸ ︷︷ ︸
=1

= 0.

With Fn = σ{Xts |0 ≤ s ≤ n} we get Un(θ) is Fn-measurable.

Under weak regularity conditions the maximum likelihood estimator is efficient. Since
the transiton density is only rarely explicitly known, there are a number of numerical
approaches that render likelihood inference feasible for diffusion models. Some of them
are mentioned in Bibby, Jacobsen & Sørensen (2004), as well as some estimators which
are not based on the score function.

2.2 Martingale estimating functions for diffusion

models

The score function is a martingale estimating function of the form

Gn(θ) =
n∑
i=1

g(∆i, Xti−1
, Xti ; θ). (2.2)

If we want to approximate the score function, it is most natural to do this by martingale
estimating functions of the general function (2.2) with

g(∆, x, y; θ) =
N∑
j=1

aj(∆, x; θ)hj(∆, x, y; θ) (2.3)

where hj(∆, x, y; θ), j = 1, . . . , N are given real valued functions satisfying

Ep(∆,x,y;θ)(hj) =

∫ r

l

hj(∆, x, y; θ)p(∆, x, y; θ)dy = 0

for all ∆ > 0, x ∈ (l, r) and θ ∈ Θ. It is most efficient to obtain estimators by combining
the hj’s in an optimal way instead of defining each hj as an estimating function of the form
(2.2). It is straightforward how to choose the weights aj (in the econometric literature
also known as instruments) in an optimal way (see Bibby, Jacobsen & Søresen (2004),
Chapter 4). The correct choice of the hj, on the other hand, is rather difficult. The ability
to tailor these functions to a given model or to particular parameters of interests is a
considerable strength of the estimating functions methodology.
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Martingale estimating functions have turned out to be very useful in obtaining estimators
for discretely sampled diffusion-type models.
In the case of N = 1 the linear estimating function is a simple one and is given by

h1(∆, x, y; θ) = y − F (∆, x; θ),

with

F (∆, x; θ) = Eθ(X∆|X0 = x) =

∫ r

l

yp(∆, x, y; θ)dy.

Since the conditional expectation F (∆, x; θ) as well as the conditional variance φ(∆, x; θ)
are unknown in most models, they have to be determined by simulations which usually
can be done easily.
Linear martingale estimating functions for diffusion models were used by Bibby &
Sørensen(1995) to approximate the continuous time likelihood function. Its advantage is,
that it is very robust to model misspecification as well as the esimator being consistent if
only the first moment F of the transition distribution is correctly specified.
The linear estimating function is too simple to be useful, when the diffusion coefficient
(the volatility) σ depends on a parameter, whereas the quadratic estimating functions are
a natural applicable choice. In the one-dimensional casethey are given by N = 2 and

h1(∆, x, y; θ) = y − F (∆, x; θ)

h2(∆, x, y; θ) = (y − F (∆, x; θ))2 − φ(∆, x; θ),

where

φ(∆, x; θ) = Varθ(X∆|X0 = x) =

∫ r

l

(y − F (∆, x; θ))2p(∆, x, y; θ)dy.

Analogously you can derive the version for multivariate diffusions.
In the case where ∆ is small, the Gaussian density function with expectation F (∆, x; θ)
and variance φ(∆, x; θ) is a good approximation to the transition density p. If we insert
this Gaussian density in (2.1) we get the approximate score function as follows

Un(θ) =
n∑
i=1

∂θ log p(∆i, Xti−1
, Xti ; θ)

=−
n∑
i=1

∂θ
((Xti − F (∆i, Xti−1

; θ)2)

2φ(∆i, Xti−1
; θ)

− 1

2
log(φ(∆i, Xti−1

; θ)−1)
)

=
n∑
i=1

(∂θF (∆i, Xti−1
; θ)

φ(∆i, Xti−1
; θ)

(Xti − F (∆i, Xti−1
; θ))

+
∂θφ(∆i, Xti−1

; θ)

2φ(∆i, Xti−1
; θ)2

(Xti − F (∆i, Xti−1
; θ))2 −

∂θφ(∆i, Xti−1
; θ)

2φ(∆i, Xti−1
; θ)

)
=

n∑
i=1

(∂θF (∆i, Xti−1
; θ)

φ(∆i, Xti−1
; θ)

(Xti − F (∆i, Xti−1
; θ))

+
∂θφ(∆i, Xti−1

; θ)

2φ(∆i, Xti−1
; θ)2

(
(Xti − F (∆i, Xti−1

; θ))2 − φ(∆i, Xti−1
; θ)
))
.
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If the first two moments of the transition density are correctly specified, the obtained
estimator is consistent and are again rather robust to model misspecifications.

Example 2.2. Let us take a look at a mean-reverting diffusion model

dXt = −β(Xt − α)dt+ σ(Xt)dWt (2.4)

where β > 0. Under weak conditions on σ it can be shown that

F (t, x;α, β) = xe−βt + α(1− e−βt). (2.5)

This can also be seen by the fact that f(t) = F (t, x;α, β) solves the ordinary differ-
ential equation f ′ = −β(f − α) (remember that F (∆, x; θ) = Eθ(X∆|X0 = x) and
E(
∫
σ(Xt)dWt) = 0). Therefore the linear estimating function can be easily calculated.

If we consider σ(x) = τ
√
x (τ > 0) we get the CIR process (proposed by Cox, Ingersoll,

Jr & Ross (1985)). In this case φ(x;α, β, τ) can be derived explicitly

φ(x;α, β, τ) =
τ 2

β

(
(
1

2
α− x)e−2β − (α− x)e−β +

1

2
α
)
.

We can also derive the quadratic estimating function explicitly when we assume σ2 =
β + x2 and α = 0. Then we get

φ(x; β) = x2e−2β(e− 1) +
β

2β − 1

(
1− e1−2β

)
.

∆

By choosing the hjs of the following form

hj(∆, x, y; θ) = fj(y; θ)− ξθ∆(fj(θ))(x) = fj(y; θ)− Eθ(fj(X∆; θ)|X0 = x)

for suitable chosen functions fj, we obtain a natural generalisation of the quadratic mar-
tingale estimating functions. We will refer to the functions fj, j = 1, . . . , N as the base of
the estimating function. It may be useful to choose a base that is tailored to a particular
diffusion model, in particular if the tranisition density is far from Gaussian. A good ex-
ample are estimating functions based on eigenfunctions of the generator of the diffusion
(see chapter 2.3).
In most of the cases the conditional moments are unknown and therefore they have to be
calculated numerically, if interested see Bibby, Jacobsen & Sørensen (2004).

2.3 Explicit estimating functions

In this section we consider a martingale estimating function of the form

Gn(θ) =
n∑
i=1

a(∆i, Xti−1
, θ)
(
f(Xti ; θ)− ξθ∆(f(θ))(Xti−1

)
)

(2.6)
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with f = (fj)1≤j≤N a (column) vector of given functions, the base, and
a = (akj)1≤k≤p,1≤j≤N a p×N -matrix of given functions, the weights. If all the fj and akj
are given explicitly and if the conditional expectations ξθ∆(f(θ))(x) can be determined
explicitly, then we call Gn(θ) explicit.
The most simple case where ξθ∆(f(θ))(x) can be found explicitly, is where the base consists
of eigenfunctions for the generator of the diffusion as proposed by Kessler & Sørensen
(1999) for one-dimensional diffusions. In that case we take a look at the eigenfunctions of
the generator. The generator is given by

Aθ = b(x; θ)
d

dx
+

1

2
σ2(x; θ)

d2

dx2

and we call a twice differentiable function ψ(x; θ) eigenfunction for the generator if a real
number λ(θ) ≥ 0 exists such that

Aθψ(x; θ) = −λ(θ)ψ(x; θ).

The number λ(θ) is called eigenvalue. Under weak regularity conditions, see Section 4.3,

ξθ∆(ψ(θ))(x) = Eθ(ψ(X∆; θ)|X0 = x) = e−λ(θ)∆ψ(x; θ)

and therefore we can derive

hj(∆, x, y; θ) = ψj(y; θ)− e−λ(θ)∆ψ(x; θ).

The special case of Pearson diffusions will be discussed in Section 4.3.



Chapter 3

Solutions to SDEs

Let us now examine a real-valued process X which is a solution to a stochastic differential
equation (SDE) given by

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0. (3.1)

We assume that b, σ are continuous functions on (l, r) ⊂ R and σ > 0,

P
⋂
t>0

(Xt ∈ (l, r)) = 1,

and in particular x0 ∈ (l, r).
It is our aim to find conditions on the functions b and σ to ensure that X stays away from
the boundary point l and r even in the case where l = −∞ or r = +∞.
For any twice differentiable function S : (l, r) → R we obtain with the Itô formula

dS(Xt) = AS(Xt)dt+ S ′(Xt)σ(Xt)dWt

where A is the second order differential operator

Af(x) = b(x)f ′(x) +
1

2
σ2(x)f ′′(x).

We want to achieve that S(Xt) is a continuous local martingale (see Appendix for further
information). Therefore we gain the equation AS = 0, i.e.

S ′′(Xt) = −2b(Xt)

σ2(Xt)
S ′(Xt).

If we apply the theory for ordinary differential equations, we gather the solution given by

S ′(x) = c exp

(
−
∫ x

x0

2b(u)

σ2(u)
du

)
for some c. In particular, S(x) is strictly increasing if c > 0. The function S(x) is called
the scale function for the diffusion Xt.

10
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For a, b with the property l < a < x0 < b < r, we define the stopping time
τab = inf{t : Xt = a or Xt = b}. Since (S(Xt))

τab = (S(Xt∧τab
)) is a bounded local

martingale, it is a true martingale (see the Appendix for a proof). Therefore we can
derive for each t

Ex0S(Xτab∧t) = Ex0S(X0) = S(x0)

and for t→∞, by dominated convergence

Ex0S(Xτab
) = S(x0),

where

S(Xτab
) =


S(b) if τb < τa
S(a) if τa < τb

lim
t→∞

S(Xt) if τab = ∞

exists by the martingale convergence theorem and τc := inf{t : Xt = c} for c ∈ (l, r).

Theorem 3.1. If l < a ≤ x0 ≤ b < r, we get

P (τab <∞) = 1

with τab as defined above.

Proof. Since lim
t→∞

S(Xt) exists almost surely (a.s.). on (τab = +∞) and because S is strictly

increasing and continuous, lim
t→∞

Xt also exists a.s. on (τab = +∞).

Let φ : [a, b] → R be continuous and let f denote the unique solution to

Af(x) = −φ(x) (a ≤ x ≤ b), f(a) = f(b) = 0.

Then

df(Xt) =Af(Xt)dt+ f ′(Xt)σ(Xt)dWt

=− φ(Xt)dt+ f ′(Xt)σ(Xt)dWt

and therefore

ηt(f) := f(Xt) +

∫ t

0

φ(Xs)ds

is a continuous, local martingale and especially η(f)τab . Since

sup
s≤t

|ητab∧s(f)| ≤ sup
a≤x≤b

|f(x)|+ t sup
a≤x≤b

|φ(x)| <∞

, η(f)τab is a true martingale and in particular

f(x0) =E(η0(f)) = E(ηt∧τab
(f))

=E(f(Xt∧τab
)) + E(

∫ τab∧t

0

φ(Xs)ds),
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which is equal to

E(

∫ τab∧t

0

φ(Xs)ds) = f(X0)− E(f(Xt∧τab
)).

We assumed f to be continuous, therefore limt→∞ f(Xt∧τab
) = f(Xτab

) exists a.s. and by
dominated convergence we get

E(f(Xτab
)) = lim

t→∞
E(f(Xt∧τab

)).

Further, if we assume φ ≥ 0 or φ ≤ 0 (otherwise write φ = φ+−φ− where φ+ = max(0, φ)
and φ− = max(0,−φ)), we get by the monotone convergence (i.e. the theorem by Beppo-
Levi)

lim
t→∞

E(

∫ t∧τab

0

φ(Xs)ds) = E( lim
t→∞

∫ t∧τab

0

φ(Xs)ds) = E(

∫ τab

0

φ(Xs)ds)

so that for a continuous φ

E(

∫ τab

0

φ(Xs)ds) = f(x0)− E(f(Xτab
)).

Taking φ ≡ 1 on [a, b], this gives us

E(τab) = f0(x0)− E(f0(Xτab
))

where f0 solves Af0 ≡ −1, f0(a) = f0(b) = 0. Because the expression on the right hand
side is finite, we get E(τab) <∞ and in particular P (τab <∞) = 1. Also for general φ we
get

E(

∫ τab

0

φ(Xs)ds) = f(x0)

since E(f(Xτab
)) = 0 because f(a) = f(b) = 0.

Now we can show that

S(x0) = E(S(Xτab
)) = S(b)P (τb < τa) + S(a)P (τa < τb)

i.e.

P (τb < τa) = 1− P (τa < τb) =
S(x0)− S(a)

S(b)− S(a)

, the basic formula.

Theorem 3.2. Let S be an arbitrary scale function with

S ′(x) = c exp(−
∫ x

x0

2b(y)

σ2(y)
dy)

for some c > 0 and define k : (l, r) → R+ by

k(x) =
2

σ2(x)S ′(x)
.
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Then the unique solution f to Af = −φ on [a, b], f(a) = f(b) = 0, where φ is a given
continuous function, is

f(x) =

∫ b

a

Gab(x, y)φ(y)k(y)dy

where Gab is the Green function Gab(x, y) = Gab(y, x) and

Gab(x, y) =
(S(x)− S(a))(S(b)− S(y))

S(b)− S(a)
(a ≤ x ≤ y ≤ b).

Proof. We get f(a) = f(b) = 0 easily from Gab(a, y) = Gab(x, b) = 0. If x < z ∈ [a, b], we
obtain

f(z)− f(x) =
S(x)− S(z)

S(b)− S(a)

∫ x

a

(S(y)− S(a))φ(y)k(y)dy

+
S(z)− S(x)

S(b)− S(a)

∫ b

z

(S(b)− S(y))φ(y)k(y)dy

+
1

S(b)− S(a)

∫ z

x

(
(S(y)− S(a))(S(b)− S(z))

− (S(x)− S(a))(S(b)− S(y))
)
φ(y)k(y)dy.

The integrand in the last term is

≤ (S(z)− S(a))(S(b)− S(z))− (S(x)− S(a))(S(b)− S(z)) = (S(z)− S(x))(S(b)− S(z))

and, by similar reasoning

≥ −(S(z)− S(x))(S(x)− S(a)).

Then the integral itself is

≤ (S(z)−S(x))(S(b)−S(z))

∫ z

x

φ(y)k(y)dy, ≥ −(S(z)−S(x))(S(x)−S(a))

∫ z

x

φ(y)k(y)dy.

By reading, it follows that, by dividing the whole equation by S(z)− S(x) and by taking
the limit z → x (i.e. the last integral disappears), that

f ′(x)

S ′(x)
=− 1

S(b)− S(a)

∫ x

a

(S(y)− S(a))φ(y)k(y)dy

+
1

S(b)− S(a)

∫ b

x

(S(b)− S(y))φ(y)k(y)dy.

By differentiating this equation with respect to (w.r.t.) x, we obtain(
f ′

S ′

)′
(x) =− 1

S(b)− S(a)

(
(S(x)− S(a))φ(x)k(x) + (S(b)− S(x))φ(x)k(x)

)
=− φ(x)k(x).
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On the other hand we get (
f ′

S ′

)′
=

1

S ′

(
f ′′ − (logS ′)′f ′

)
=
kσ2

2
(f ′′ +

2b

σ2
f ′)

=kAf

and thus Af(x) = −φ(x).

The measure m on (l, r) with density k, m(dx) = k(x)dx is called the speed measure
for the diffusion X. Note that if the scale function S is replaced by c1 + c2S (where
c1 ∈ R, c2 > 0), k is replaced by 1

c2
k.

We summarize the results obtained so far in the following theorem.

Theorem 3.3. Let X be given by

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0

a (l, r)-valued diffusion, where b and σ > 0 are continuous. It holds for a < x < b,
a, b ∈ (l, r) that Px(τab <∞) = 1,

Px(τb < τa) =
S(x)− S(a)

S(b)− S(a)
,

and for φ : [a, b] → R bounded and measurable, that

Ex(

∫ τab

0

φ(Xs)ds) =

∫ b

a

Gab(x, y)φ(y)k(y)dy

in particular

Ex(τab) =

∫ b

a

Gab(x, y)k(y)dy.

In the formula above, S, given by (apart from an additive constant)

S ′(x) = exp(−
∫ x

x0

2b(y)

σ2(y)
dy)

for some x0 ∈ (l, r), is an arbitrary scale function and

k(x) =
2

σ2(x)S ′(x)

is the corresponding speed measure density.

Proof. The statements are clear, see theorems before.
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Keep in mind that we have assumed that

Px
⋂
t≥0

(Xt ∈ (l, r)) = 1,

i.e. that τr = τl ≡ ∞ Px-a.s. The next results will tell us what the properties of S and
k are that prevent X from reaching either of the boundaries l and r. Throughout S is a
given scale density and k the matching density for the speed measure. Define

S(r) = lim
y→r

S(y) ≤ ∞ and S(l) = lim
y→l

S(y) ≥ −∞.

Theorem 3.4. (i) Either S(r) = ∞ or
∫ r
y
(S(r) − S(z))k(z)dz = ∞ (y ∈ (l, r)) and

similarly S(l) = −∞ or
∫ y
l
(S(z)− S(l))k(z)dz = ∞ (y ∈ (l, r)).

(ii) For a < x < b we gain

Px(τa <∞) =
S(r)− S(x)

S(r)− S(a)
, Px(τb <∞) =

S(x)− S(l)

S(b)− S(l)
,

in particular Px(τy < ∞) > 0 for all x, y ∈ (l, r). Further, Px(τa < ∞) = 1 is true
iff S(r) = ∞ and Px(τb <∞) = 1 iff S(l) = −∞.

(iii) If S(r) <∞, then
lim
t→∞

Xt = r Px-a.s. on A−,

where A− =
⋃

a:a<x

(τa = ∞), Px(A−) = S(x)−S(l)
S(r)−S(l)

, and if S(l) > −∞, then

lim
t→∞

Xt = l Px-a.s. on A+,

where A+ =
⋃
b:b>x

(τb = ∞) and Px(A+) = S(r)−S(x)
S(r)−S(l)

.

(iv) If S(r) <∞ and S(l) = −∞, then Px( lim
t→∞

Xt = r) = 1 and

if S(r) = ∞ and S(l) > −∞, then Px( lim
t→∞

Xt = l) = 1.

(v) If S(r) <∞ and S(l) > −∞, then

Px( lim
t→∞

Xt = r) = 1− Px( lim
t→∞

Xt = l) =
S(x)− S(l)

S(r)− S(l)
.

(vi) If S(r) = ∞ and S(l) = −∞, then X is recurrent in the sense that

Px
⋂

y∈(l,r)

⋂
t>0

⋃
s>t

(Xs = y) = Px
⋂

y∈(l,r)

lim sup
t→∞

(Xt = y) = 1,

i.e. X hits any level infinitely often in any interval [t,∞), t ≥ 0.
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Proof. Let l < a < x < b < r. For b ↗ r, τb ↗ τr ≡ ∞ (by assuming that Xt never hits
r), since P (τb < τa) + P (τa < τb) = 1, we gain 1(τb<τa) → 1{τa=∞} and therefore we get

Px(τa = ∞) = lim
b→r

Px(τb < τa) = lim
b→r

S(x)− S(a)

S(b)− S(a)

=
S(x)− S(a)

S(r)− S(a)

and then

Px(τa <∞) =1− Px(τa = ∞) = 1− S(r)− S(a)

S(b)− S(a)

=
S(r)− S(x)

S(r)− S(a)
.

That is the proof for (ii), because the other statements follow directly or analogously from
this one.
If S(r) <∞, we know from (ii) that Px(τa = ∞) > 0. Then we consider that S(Xt)

τa is a
bounded local martingale, hence a true martingale, so the r.v.

S(Xτa) =

{
S(a) on (τa <∞)

limt→∞ S(Xt) on (τa = ∞)

is well defined Px-a.s. and satisfies

Ex(S(Xτa)) = S(x).

On the other hand

S(x) = Ex(S(Xτa)) = S(a)
S(r)− S(x)

S(r)− S(a)
+ Ex(S(Xτa)1τa=∞)

implying that

Ex(S(Xτa)1τa=∞) = S(r)Px(τa = ∞) = S(r)
S(x)− S(a)

S(r)− S(a)
.

Since S(Xτa) ≤ S(r), it follows that S(Xτa) = S(r) Px-a.s. on (τa = ∞), i.e. lim
t→∞

Xt = r

Px-a.s. on (τa = ∞) and (iii) follows since P (τa = ∞) ↗ A− as a↘ l so

Px(A−) = lim
a↘l

Px(τa = ∞) =
S(x)− S(l)

S(r)− S(l)
.

Now we can prove (i). If S(r) <∞, then we get with (ii) that lim
b↑r

τab = τa Px-a.s. and so

by monotone convergence

Ex(τa) = lim
b↑r

∫ b

a

Gab(x, y)k(y)dy.
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But because of (ii), Px(τa = ∞) > 0, the left hand side is infinite. The right hand side is
equal to

lim
b↑r

(∫ b

x

(S(x)− S(a))(S(b)− S(y))

S(b)− S(a)
k(y)dy +

∫ x

a

(S(y)− S(a))(S(b)− S(x))

S(b)− S(a)
k(y)dy

)
=
S(x)− S(a)

S(r)− S(a)

∫ b

x

(S(r)− S(y))k(y)dy +
S(r)− S(x)

S(r)− S(a)

∫ x

a

(S(y)− S(a))k(y)dy

with the last term finite, hence the first integral is positive infinite and (i) is proved.
The statements in (iv) and (v) follow directly from (i) and (iii).
It remains to establish (vi). From (iii) we know that Px(τa < ∞) = Px(τb < ∞) = 1 for
all a < x, b > x. Let an ↘ l and bn ↗ r, then τan ↗∞ and τbn ↗∞ Px-a.s. and between
τan and τbn Xt passes through all levels y ∈ [an, bn] since it is continuous. Now (vi) follows
easily from this.

Instead of starting with a solution of the SDE (3.1), assume we have given an open
interval (l, r) and continuous functions b : (l, r) → R, σ : (l, r) → R+, that satisfy the
conditions from Theorem 3.4 (i), i.e.

S(r) = +∞ or
∫ r
y
(S(r)− S(z))k(z)dz = +∞

S(l) = +∞ or
∫ y
l
(S(z)− S(l))k(z)dz = +∞

with y ∈ (l, r) and where for some x0 ∈ (l, r)

S ′(x) = exp(−
∫ x

x0

2b(y)

σ2(y)
dy) and k(x) =

2

σ2(x)S ′(x)
.

Theorem 3.5. Let (l, r), b, σ be as above, let Wt be a Wiener process in (Ω,F ,Ft, P ) and
let U ∈ F0 be a given (l, r)-valued r.v. Then the SDE

dXt = b(Xt)dt+ σ(Xt)dWt, X0 ≡ U,

has a unique solution, which is a diffusion. If U ≡ x0, the distribution Πx0 of X does not
depend on the the choice of (Ω,F ,Ft, P ) and Wt, and with an arbitrary initial condition
U ∈ F0, the distribution of Xt is the mixture

∫
(l,r)

ΠxP (U ∈ dx).

Proof. This follows from the classical charackterization of welldefined regular diffusions
through their scale function and speed measure, see Freedman (1971).

Let X again be a diffision on (l, r)

dXt = b(Xt)dt+ σ(Xt)dWt, X0 ≡ U,

with scale function S, speed measure density k, satisfying the critical conditions from
Theorem 3.4 (i). As usual b, σ are continuous with σ > 0. The problem we shall now
study is that of investigating whether there exists a probability π on (l, r), such that if U
has distribution π, Xt is stationary for all t, and Xt has distribution π. The parameter
π is also called an invariant probablility for X. If it exists, π is uniquely determined and
typically, for all x, pt(x, .) → π as t→∞, with pt(x, .) the transition probability from x.
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Theorem 3.6. The process Xt has an invariant probability π if and only if
κ :=

∫ r
l
k(x)dx <∞ and in that case

π(dx) =
1

κ
k(x)dx.

In particular, in order for the invariant probability to exist, it is necessary that Xt is
recurrent, i.e. S(r) = ∞ and S(l) = −∞.

Proof. Suppose first that the invariant probability π exists. Let ϕ denote the set of
C2-functions f : (l, r) → R with compact support. By the Itô formula, for any f ∈ ϕ,

f(Xt) = f(X0) +

∫ t

0

Af(Xs)ds+

∫ t

0

f ′(Xs)σ(Xs)dWs. (3.2)

Since f ∈ ϕ, it follows that f ′σ is bounded and therefore the local martingale Mt :=∫ t
0
f ′(Xs)σ(Xs)dWs is a true martingale with M0 = 0. Writing π(g) =

∫
gdπ and taking

conditional expectations we get, since π is invariant,

π(f) =Eπ(f(Xt)) = Eπ(f(X0)) + Eπ(

∫ t

0

Af(Xs)ds) + Eπ(

∫ t

0

f ′(Xs)σ(Xs)dWs)︸ ︷︷ ︸
=0

=π(f) + tπ(Af),

i.e. π(Af) = 0. But then we identify π(dx) = u(x)dx and by using partial integration, we
get

0 =

∫ r

l

(b(x)f ′(x) +
1

2
σ2(x)f ′′(x))u(x)dx

=

∫ r

l

(b(x)u(x)− 1

2
(σ2u)′(x))f ′(x)dx.

This holds for all f ∈ ϕ iff

b(x)

σ2(x)

(
σ2(x)u(x)

)
− 1

2

(
σ2(x)u(x)

)′ ≡ 0,

i.e.

σ2(x)u(x) = exp(

∫ x

x0

2b(y)

σ2(y)
dy),

and it follows that u is proportional to k.
If conversely

∫ r
l
k(y)dy < ∞, define π(dx) = u(x)dx, u(x) = k(x)R r

l k(y)dy
. Then certainly

π(Af) = 0 for all f ∈ ϕ, the last term in the expansion of f in (3.2) is still a true
martingale, and consequently, if X0 has distibution π,

Eπ(f(Xt)) = Eπ(f(X0)),
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i.e. π is the invariant probability.
It remains to verify that if

∫ r
l
k(y)dy < ∞, then S(r) = ∞, S(l) = −∞. But for an

arbitrary x ∈ (l, r),

∞ =

∫ r

x

(S(r)− S(y))k(y)dy ≤
∫ r

l

k(y)dy(S(r)− S(x))

so
∫ r
l
k(y)dy <∞ forces S(r) = ∞.



Chapter 4

The Pearson diffusions

A stationary solution of a stochastic differential equation of the form

dXt = −θ(Xt − µ)dt+
√

2θ(aX2
t + bXt + c)dWt, (4.1)

where θ > 0 and where the square root is well defined, is called a Pearson diffusion. The
parameter θ > 0 is a scaling parameter of time which determines how fast the process
moves. The other parameters (µ, a, b, c) determine the state space of the diffusion, the
invariant distribution and especially, µ is the expectation of the diffusion.
We can obtain a lot of informations about the solution by looking at the scale and speed
density which are defined as follows

s(x) = exp(

∫ x

x0

u− µ

au2 + bu+ c
du) and m(x) =

1

s(x)(ax2 + bx+ c)

where ax2
0 + bx0 + c > 0 with a fixed x0. Assume that (l, r) is an interval such that

ax2 + bx+ c > 0 for all x ∈ (l, r).

Condition 4.1. The following holds for a x0 ∈ (l, r)∫ x0

l

s(x)dx = ∞,

∫ r

x0

s(x)dx = ∞

and ∫ r

l

m(x)dx =: B <∞.

It has been proved (see Chapter 3), that there exists a unique weak solution with an
invariant probability measure to the stochastic differential equation (4.1) if and only if
Condition 4.1 is satisfied. It also can be shown, that this soulution is ergodic. Its invariant
density is given by

π(x) = B−1m(x) ∝ m(x), x ∈ (l, r)

i.e. the invariant distribution is proportional to the speed density. Especially, it follows
from

dm(x)

dx
= −(2a+ 1)x− µ+ b

ax2 + bx+ c
m(x), (4.2)

that the invariant distribution belongs to the Pearson system, which is defined as the class
of probability densities, which solve the differential equation (4.2).

20
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4.1 Classification of the stationary solutions

Proposition 4.2. The Pearson class of diffusions is closed under translations and scale-
transformations.

Proof. Let(Xt)t≥0 be an ergodic Pearson diffusion with the stochastic differential equation
(4.1) and X̃t = γXt + δ with γ 6= 0. Then

dXt = −θ(Xt − µ)dt+
√

2θ(aX2
t + bXt + c)dWt

and with Xt = γ−1X̃t − δ we obtain

1

γ
dX̃t = −θ(X̃t − δ

γ
− µ)dt+

√
2θ
(
a(
X̃t − δ

γ
)2 + b(

X̃t − δ

γ
) + c

)
dWt.

Then the last equation is equal to

dX̃t = −θ̃(X̃t − µ̃)dt+

√
2θ̃(ãX̃2

t + b̃X̃t + c̃)dWt

where θ̃ = θ, µ̃ = γµ+ δ, ã = a, b̃ = bγ − 2aδ and c̃ = cγ2 − bγδ + aδ2.

Therefore there are six cases of diffusions according to whether the squared diffusion
coefficient (σ2(x)) is constant, linear, a convex parabola with either zero, one or two roots,
or a concave parabola with two roots.

Case 1. σ2(x) = 2θ

It is not difficult to see that s(x) ∝ exp(1
2
x2 − µx) ∝ exp( (x−µ)2

2
) and furthermore

m(x) ∝ exp(− (x−µ)2

2
) ∝ N (µ, 1) and therefore (l, r) = (−∞,∞). From this we can

conclude that Condition 4.1 is satisfied for all µ ∈ R. In this special case the Pearson
diffusion is an Ornstein-Uhlenbeck process, which in the finance literature is often referred
to as the Vasic̆ek model.

Case 2. σ2(x) = 2θx
Here we get s(x) ∝ exp (x− µ lnx) = x−µex and m(x) ∝ xµ−1e−x. In this case a unique
ergodic solution to (4.1) exists on the interval (0,∞) if and only if µ ≥ 1. Then the invari-
ant distribution is the gamma distribution with scale parameter 1 and shape parameter
µ, thus [l, r) = [0,∞). In the case where 0 < µ < 1 the boundary 0 can be reached at
finite time with positive probability. On the other hand, if the boundary is made instan-
taneously reflecting, we also obtain a stationary process with the gamma distribution just
like in the case with µ ≥ 1. In the finance literature the process is often refered to as the
CIR-process; Cox, Ingersoll & Ross (1985).

Case 3. a > 0 and σ2(x) = 2θax2

If you calculate the scale and speed density in this case, you get s(x) = x
1
a exp( µ

ax
) and

m(x) = x−
1
a
−2 exp(− µ

ax
). If and only if µ > 0 there exists a unique ergodic solution for

all a > 0 on the positive halfline, i.e. [l, r) = [0,∞). Especially the invariant distribution
is an inverse gamma distribution with shape parameter 1 + 1

a
and the scale parameter a

µ
.

Its mean is µ and it has moments of order k for k < 1 + 1
a
. This process is also known as

the GARCH diffusion model.
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Case 4. a > 0 and σ2(x) = 2θa(x2 + 1)
In this case the scale density and the speed density are given by
s(x) = (x2 + 1)

1
2a exp(−µ

a
tan−1 x) and m(x) = (x2 + 1)−

1
2a
−1 exp(µ

a
tan−1 x). For all

a > 0 a unique solution of (4.1) is given for all µ ∈ R on the real line, i.e. (l, r) = (−∞,∞).

For µ = 0 the invariant distribution is a scaled t-distribution (scale parameter ν−
1
2 ) with

ν = 1+a−1 degress of freedom. Furthermore if µ 6= 0 the invariant distribution is skew and
has a tail decaying at the same rate as the t-distribution with 1 + a−1 degress of freedom.
Therefore this distribution is called the skew t-distribution and it is also known as the
Pearson’s type IV distribution. In both cases the mean is µ and the invariant distribution
has moments of order k where k < 1+a−1. As a result of the skewness and the heavy tailed
marginal distribution the class of diffusions with µ 6= 0 is potentially very useful in many
applications e.g. finance. It was studied and fitted to the Nikkei 225 index, the TOPIX
index and the Standard and Poors 500 index by Nagahara (1996) using the linearization
method of Ozaki (1985). The skew t-distribution mean zero, ν degrees of freedom, and
skewness parameter ρ has (unnormalised) density

f(z) ∝
(
(
z√
ν

+ ρ)2 + 1
)− (ν+1)

2 exp
(
ρ(ν − 1) tan−1(

z√
ν

+ ρ)
)
, (4.3)

which is the invariant density of the diffusion Zt =
√
ν(Xt − ρ) with ν = 1 + a−1 and

ρ = ν. By the transformation result (see Proposition 4.2), the corresponding stochastic
differential equation is

dZt = −θZtdt+

√
2θ(ν − 1)−1(Z2

t + 2ρν
1
2Zt + (1 + ρ2)ν)dWt. (4.4)

For ρ = 0 the invariant distribution is the t-distribution with ν degrees of freedom.

Case 5. a > 0 and σ2(x) = 2θax(x+ 1)

Here the scale and speed density are given by s(x) = (1 + x)
µ+1

a x−
µ
a and

m(x) = (1 + x)−
µ+1

a
−1x

µ
a . You can derive that if and only if µ ≥ a and a > 0 (i.e.µ

a
≥ 0),

there exists a unique ergodic solution on the positive halfline, i.e. [l, r) = [0,∞). This
invariant distribution is a scaled F-distribution with 2µ

a
and 2

a
+ 2 degrees of freedom,

scale parameter µ
1+a

, mean µ and it has moments of order k for k < 1 + 1
a
. In the case

where 0 < µ < 1 the boundary 0 can be reached with positive probability at finite time,
but if we make the boundary 0 instantaneously reflecting, a stationary process is obtained
with the indicated F-distribution as the invariant distribution.

Case 6. a < 0 and σ2(x) = 2θax(x− 1)

For this model the scale and speed density are s(x) = (1− x)
1−µ

a x
µ
a and

m(x) = (1 − x)−
1−µ

a
−1x−

µ
a
−1. We can see that Condition 4.1 holds if and only if µ

a
≤ −1

and 1−µ
a

≤ −1. Therefore for all a < 0 and µ > 0 such that min(µ, 1 − µ) ≥ −a, a
unique solution of (4.1) exists on the interval (l, r) = (0, 1). In particular, the invariant
distribution is a Beta distribution with shape parameters µ

−a ,
1−µ
−a and mean µ. If 0 <

µ < −a the boundary 0 can be reached with positive probability at finite time, but if we
make the boundary 0 instantaneously reflecting, a stationary process is obtained with the
indicated Beta distribution as the invariant distribution. A similar argument applies to
the boundary 1 when 0 < 1− µ < −a. These diffusion are often referred to as the Jacobi
diffusion, since their eigenfunctions are Jacobi polynomials.
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4.2 Moments

In the case of a linear drift and the existence of the second order moment, it can be shown
that the autocorrelation function is given by

ρ(t) = Cor(Xs, Xt+s) = e−θt.

Now we want to find an expression for the moments and conditional moments of the
marginal distribution. In the previous section we saw that E(|Xt|k) < ∞ if and only if
a < (k − 1)−1. Therefore all moments exists if a ≤ 0 and we get with Itô’s formula

dXn
t =

(
− θnXn−1

t (Xt − µ) + θn(n− 1)Xn−2
t (aX2

t + bXt + c)
)
dt

+ nXn−1
t σ(Xt)dWt. (4.5)

By using (4.5) we can get a recursive formula to calculate the nth moment of the marginal
distribution. If E(X2n

t ) is finite (i.e. if a < (2n− 1)−1), we gain the following proposition.

Proposition 4.3. In the case of a < (2n− 1)−1 we get

E(Xn
t ) = a−1

n (bnE(Xn−1
t ) + cnE(Xn−2

t )), (4.6)

where an = θn(1− (n−1)a), bn = θn(µ+(n−1)b) and cn = θn(n−1)c for n = 0, 1, 2, . . . .
The initial conditions are given by E(X0

t ) = 1 and E(Xt) = µ.

Proof. With (4.5) it is easy to see that

dXn
t = −anXn

t dt+ bnX
n−1
t dt+ cnX

n−2
t dt+ nXn−1

t σ(Xt)dWt,

with an, bn and cn as defined in the statement. Since a < (2n − 1)−1, it is important to
notice that the latter term of the previous formula is a martingale (since

E(n2X
2(n−1)
t σ2(Xt)) = 2n2θE(aX2n

t + bX2n−1
t + cX

2(n−1)
t ) < ∞ and by using the theory

of stochastic integration; see in the Appendix for further information). For that reason
and the fact, that Xt is stationary ((Xs, . . . , Xs+k) ∼ (Xt, . . . , Xt+k)) we conclude

µn := E(Xn
t ) =E(Xn

0 )︸ ︷︷ ︸
=µn

−an
∫ ∫ t

0

Xn
s dsdP + bn

∫ ∫ t

0

Xn−1
s dsdP

+ cn

∫ ∫ t

0

Xn−2
s dsdP +

∫ ∫ t

0

nXn−1
s σ(Xs)dWsdP.

This is with Fubini equivalent to

µn =µn − an

∫ t

0

E(Xn
s )ds+ bn

∫ t

0

E(Xn−1
s )ds+ cn

∫ t

0

E(Xn−2
s )ds

0 =− tanE(Xn
s ) + tbnE(Xn−1

s ) + tcnE(Xn−2
s )

E(Xn
t ) =a−1

n (bnE(Xn−1
t ) + cnE(Xn−2

t )).

The term
∫ ∫ t

0
nXn−1

s σ(Xs)dWsdP disappears by the fact that it is a martingale with the
value zero at time zero.
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Example 4.4. Now we can take (4.6) to find the moments of the skewed t-distribution
(see Case 4) even if we do not know the normalising constant of the density of (4.3). In
particular, for the diffusion (4.4) where µ = 0,

E(Z2
t ) = Var(Zt) =

(1 + γ2)ν

ν − 2
,

E(Z3
t ) =

4γ(1 + γ2)ν
3
2

(ν − 3)(ν − 2)

and

E(Z4
t ) =

24γ2(1 + γ2)ν2 + 3(ν − 3)(1 + γ2)2ν2

(ν − 4)(ν − 3)(ν − 2)
.

∆

It is not far to get form Proposition 4.3 a recursive formula like (4.6) for the conditional
moments. If we denote qn(x, t) := E(Xn

t |X0 = x) and the 2nth moment exists, then the
recursion is given by

d

dt
qn(x, t) = −anqn(x, t) + bnqn−1(x, t) + cnqn−1(x, t) + cnqn−2(x, t). (4.7)

Solving this differential equation with initial qn(x, 0) = xn we get

qn(x, t) = xne−ant + bnIn−1(an, x, t) + cnIn−2(an, x, t)

with Iη(α, x, t) = e−αt
∫ t

0
eαsqη(x, s)ds. We also get a recursion for Iη(α, x, t) if we apply

partial integration and (4.7).

Iη(α) =Iη(α, x, t)

=e−αt
∫ t

0

eαsqη(x, s)ds

=e−αt
( 1

α
eαsqη(x, s)

∣∣∣∣t
0

+
aη
α

∫ t

0

eαsqη(x, s)ds

− bη
α

∫ t

0

eαsqη−1(x, s)ds−
cη
α

∫ t

0

eαsqη−2(x, s)ds
)

=
e−αt

α

(
eαtqη(x, t)− xη

)
+
aη
α
Iη(α)− bη

α
Iη−1(α)− cη

α
Iη−2(α)

which is equivalent to

Iη(α) =
xη(e−aηt − e−αt) + bη(Iη−1(aη)− Iη−1(α)) + cη(Iη−2(aη)− Iη−2(α))

α− aη
.

To get I1(α, x, t) we use the fact that I0(α, x, t) = α−1(1 − e−αt) as q0(x, t) = 1 and
c1 = 1. We see that qn(x, t) is a polynomial of order n in x for fixed t. A somewhat easier
derivation of this result comes by means of the eigenfunctions considered below.
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4.3 Eigenfunction

For any diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt (4.8)

where Wt is the Wiener process, we define the generator as follows

A = b(x)
d

dx
+

1

2
σ2(x)

d2

dx2
. (4.9)

We call a twice continuous diffential function h an eigenfunction of the diffusion process
if there exists a positive number λ, the eigenvalue, such that

Ah(x) = −λh(x).

Proposition 4.5. Assume h is an eigenfunction with eigenvalue λ. Further, the condition∫ t

0

E(h′(Xs)
2σ2(Xs))ds <∞ (4.10)

holds for all t > 0. Then

E(h(Xt)|X0 = x) = e−λth(x). (4.11)

Proof. Set Yt = eλth(Xt), then apply Itô’s formula. Then we get

dYt =λeλth(Xt)dt+ eλth′(Xt)dXt +
1

2
eλth′′(Xt)σ

2(Xt)dt

=λeλth(Xt)dt+ eλth′(Xt)b(Xt)dt+
1

2
eλth′′(Xt)σ

2(Xt)dt

+ eλth′(Xt)σ(Xt)dWt

=λeλth(Xt)dt+ eλt (h′(Xt)b(Xt) +
1

2
h′′(Xt))︸ ︷︷ ︸

=Ah(Xt)=−λh(Xt)

dt+ eλth′(Xt)σ(Xt)dWt

=eλth′(Xt)σ(Xt)dWt.

Since the condition (4.10) holds, Mt :=
∫ t

0
eλsh′(Xs)σ(Xs)dWs is a martigale with M0 = 0.

Therefore we obtain,

E(eλth(Xt)|X0 = x) = h(X0) + E(

∫ t

0

eλsh′(Xs)σ(Xs)dWs)︸ ︷︷ ︸
=0

which is equivalent to
E(h(Xt)|X0 = x) = e−λth(x).
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Property (4.11) can be used to construct martingale estimation functions. In the case
of Pearson diffusions that have linear drift and a quadratic squared diffusion coefficient
the generator maps polynomials into polynomials. It is not diffcult to show that

pn(x) =
n∑
j=0

pn,jx
j is an eigenfunction if there exists an eigenvalue λn > 0 that satisfies

θ(ax2 + bx+ c)p′′n(x)− θ(x− µ)p′n(x) = −λnpn(x), i.e.
n∑
j=0

(λn − aj)pn,jx
j +

n−1∑
j=0

bj+1pn,j+1x
j +

n−2∑
j=0

cj+2pn,j+2x
j = 0

where aj = jθ(1− (j − 1)a), bj = jθ(µ+ (j − 1)b) and cj = j(j − 1)cθ for j ∈ N. Without
loss of generality we can assume pn,n = 1 and therefore we get λn = an = θn(1−(n−1)a).
Further, if we define pn,n+1 = 0, then the coefficients (pn,j)j=0,...,n−1 solve the linear system

(aj − an)pn,j = bj+1pn,j+1 + cj+2pn,j+2. (4.12)

Note that λn is positive if and only if a < (n − 1)−1, which is exactly the condition
ensuring that pn(x) is integrable with respect to the invariant distribution. If even the
stronger condition a < (2n− 1)−1 holds, the first n eigenfunctions belong to the space of
the functions that are square intregrable with respect to the invariant distribution, and
they are orthogonal with respect to the inner product. The space of square integrable and
twice continuously differentiable functions is often taken as the domain of the generator.
By using the linearity of the expectation and with (4.11), we can show that

E(Xn
t |X0 = x) = e−ant

n∑
j=0

pn,jx
j −

n−1∑
j=0

pn,jE(Xj
t |X0 = x), (4.13)

provided that the drift and diffusions coefficient are of linear growth and that the eigen-
function is of polynomial growth. The conditional expectation is for any fixed t a polyno-
mial of order n in x with coefficients which are linear combinations of 1, e−λ1t, . . . , e−λnt.
Set λ0 = 0 and

E(Xn
t |X0 = x) = qn(x, t) =

n∑
j=0

qn,jx
j =

n∑
j=0

n∑
l=0

qn,j,le
−λltxj. (4.14)

Especially qn,j,n = pn,j and qn,j,l = −
n−1∑
k=l

pn,kqk,j,l for l = 0, . . . , n− 1.

If a ≤ 0 in (4.1), then there exist infinitely many polynomial eigenfunctions and they
are well-known families of orthogonal polynomials (see the table below). In particular all
moments exists for these marginal distributions.

case marginal distribution eigenfunction
1 Normal Hermite polynomials
2 Gamma Laguerre polynomials
6 Beta Jacobi polynomials on (0, 1)



CHAPTER 4. THE PEARSON DIFFUSIONS 27

On the other hand if a > 0 (remaining cases) implies that there is only a finite number
of polynomial eigenfunctions. The number is the integer part of 1 + a−1, which is also the
order of the highest moment of the marginal distribution. Wong (1964) has shown that
the spectrum of these diffusions is not discrete. The spectrum has a continuous part with
eigenvalues that are larger than those in the discrete part of the spectrum.
It is known for instance that polynomial associated with the inverse gamma distribution
are the Bessel polynomials.

Example 4.6. We want to derive the first two conditional moments for the skew t-
diffusion (4.4). Here is a = (ν − 1)−1, therefore we get λn = n(ν −n)(ν − 1)−1θ for n < ν.
Using (4.12) and (4.13) we can calculate the first eigenfunctions

p1(z) = z,

p2(z) = z2 − 4γν
1
2

ν − 3
z − (1 + γ2)ν

ν − 2
,

p3(z) = z3 − 12γν
1
2

ν − 5
z2 +

24γ2ν + (1 + γ2)ν(ν − 5)

(ν − 5)(ν − 4)
z +

8γ(1 + γ2)ν
3
2

(ν − 5)(ν − 3)
,

and

p4(z) =z4 − 24γν
1
2

ν − 7
z3 +

144γ2ν + 6(1 + γ2)ν(ν − 7)

(ν − 7)(ν − 6)
z2

+
8γ(1 + γ2)ν

3
2 (ν − 7) + 48γ(1 + γ2)ν

3
2 (ν − 6)− 192γ3ν

3
2

(ν − 7)(ν − 6)(ν − 5)
z

+
3(1 + γ2)2ν(ν − 7)− 72γ2(1 + γ2)ν2

(ν − 7)(ν − 6)(ν − 4)

assuming ν > 4. Now we can calculate the first and second conditional moments, which
are

E(Zt|Z0 = z) = ze−θt

and

E(Z2
t |Z0 = z) = e−

2ν−4
ν−1

θtz2 +
4γν

1
2

ν − 3

(
e−θt − e−

2ν−4
ν−1

θt
)
z +

(1 + γ2)ν

ν − 2
(1− e−

2ν−4
ν−1

θt).

∆



Chapter 5

Estimating functions for Pearson
diffusions

Now we want to find estimating functions for Pearson diffusions. Suppose we have a
sequence of observations Y0, Y1, . . . , Yn at time points ti = i∆ for i = 0, 1, . . . , n. Our aim
is to estimate a parameter ψ belonging to the parameter space Ψ ⊂ Rd. The parameter
ψ might be the parameter (θ, µ, a, b, c) (with θ, µ, a, b and c defined as in (4.1)) of the full
class of Pearson diffusions, or it might be a subclass, e.g. a class corresponding to one of
the Pearson types. In this chapter we discuss estimations methods that are simpler for
the Pearson diffusion than for general diffusions.

5.1 Maximum likelihood estimation

The maximum likelihood estimation is well known for the different case of Pearson diffu-
sions as seen in Chapter 4. Especially well known is the case of the Ornstein-Uhlenbeck
process, where the transition is Gaussian with a simple expression for the first and second
conditional moments. In the case of the CIR process (Case 2) the transition density is a
non-cetral X 2-distribution which can be expressed in terms of a modified Bessel function.
Therefore exact likelihood interference is relatively easy for these models. For a diffusion
with a discrete spectrum representation of the transition density exists with the help of
the eigenfunction and we get

π(∆, x, y) = m(y)
∞∑
j=1

e−∆λjpj(x)pj(y)cj

with y 7→ π(∆, x, y) the transition density. It is also given that pj is the jth eigenfunction
with the eigenvalue λj and c−1

j =
∫ r
l
pj(x)

2m(x)dx. In the case of the Ornstein-Uhlenbeck
process this is just Mehler’s formula for Hermite polynomials and in the case of the CIR
process it is just a classical expansion of the modified Bessel function.
The remaining Pearson diffusions have only a finite amountof discrete eigenvalues and
the spectrum comprises a continuous part. A number of general techniques for maximum
likelihood interference for discretely obeserved diffusions are available, some of them are

28
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mentioned in Forman & Sørensen (2007). Due to the fact that these methods do not
simplify the Pearson diffusion, they will not be considered furtheron.

5.2 Estimation based on conditional moments

We have seen that maximum likelihood interference is, at least approximately, feasible
for the Pearson diffusions. However, much simpler estimators can be found by using the
explicit expression available for the conditional polynomial moments. Those estimators
have, if properly chosen, an efficiency close to the maximum likelihood, if the sampling
frequency is not too small.
From the last chapter we know, that the conditional moments of Pearson diffusion are
polynomials. If the first N moments exists, then the first N eigen-polynomials
p1(., ψ), . . . , pN(., ψ) are well defined. Therefore we can apply a martingale estimating
function of the type (2.6) as following,

Gn(ψ) =
n∑
i=1

N∑
j=1

αj(Yi−1, ψ){pj(Yi, ψ)− e−λj(ψ)∆pj(Yi−1, ψ)} (5.1)

where α1, . . . , αN are weight functions and λ1(ψ), . . . , λN(ψ) are eigenvalues. We can also
write it in a matrix form, then we get the associated estimating equation in the form

Gn(ψ) =
n∑
i=1

α(Yi−1, ψ)h(Yi−1, Yi, ψ) = 0 (5.2)

with hj(x, y, ψ) = pj(y, ψ)− e−λj(ψ)∆pj(x, ψ) for j = 1, . . . , N and α is the n×N weight
matrix. Later on we will assume that the diffusions has finite moments of the order of 2N
in order to apply a central limit theorem.
We shall focus on the optimal estimating function of the type (5.2). In this case we
define the optimal estimating function in the way that the weight function α is chosen to
minimise the asymptotic variance of the related estimator.

5.3 Optimal martingale estimating function

An advantage of the Pearson diffusion in terms of efficient interference is that the optimal
weights in the sense of Godambe & Heyde (1987) are simple and explicit. We assume that
the Pearson diffusion is ergodic, has moments of order 2N (in particular a < (2N − 1)−1)
and that the mapping ψ 7→ τ = (θ, µ, a, b, c) is differentiable. The optimal weights for
(5.1) are by

a∗(x, ψ) = −S(x, ψ)TV (x, ψ)−1 (5.3)

where

Sj,k(x, ψ) =− Eψ(∂ψk
pj(Yi, ψ)|Yi−1 = x) + ∂ψk

(e−λj(ψ)∆pj(x, ψ)) (5.4)

Vj,k(x, ψ) =Eψ(pj(Yi, ψ)pk(Yi, ψ)|Yi−1 = x)− e−(λj(ψ)+λk(ψ))∆pj(x, ψ)pk(x, ψ), (5.5)
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i.e. Vj,k(x, ψ) = COVx(h) with |j − k| = h. Note that the indicated conditions imply that
S and V are well defined.

Proposition 5.1. The matrix Vj,k(x, ψ) as it is defined in (5.5) is invertible.

Proof. We want to show that the matrix is positive definite. Since Vj,k(x, ψ) = COVx(h)
is Vj,k(x, ψ) positive semidefinite for all (x, ψ). Moreover, for z ∈ RN it holds that
zTV (x, ψ)z = 0 iff

0 =
N∑
j=0

zj(pj(y, ψ)− e−λj(ψ)∆pj(x, ψ))

for almost every y with respect to the conditional distribution of Yi given Yi−1 = x under
ψ. However, the equation above is a polynomial in y with order j and leading coefficient
pj,j = 1. Therefore we can deduce that zTV (x, ψ)z = 0 iff z = 0.

With the help of equations (4.12) and (4.13) we can get the optimal weight explicitly.
Then we get

Sj,k(x, ψ) =pj(Yi, ψ)e−λj(ψ)∆∂ψTλj(ψ) +

j∑
j′=0

(qj′(x,∆, ψ)− e−λj(ψ)∆xj
′
)∂ψT pj,j′(ψ)

Vj,k(x, ψ) =

j∑
j′=0

k∑
k′=0

pj,j′(ψ)pk,k′(ψ)qj′+k′(x,∆, ψ)− e−(λj(ψ)+λk(ψ))∆pj(x, ψ)pk(x, ψ)

where qj(x, t, ψ) = Eψ(Xj
t |X0 = x) is specified by equations (4.13) and (4.14). The j, k′th

element of S(x, ψ) is the polynomial of the order j with sj,k(x) =
∑j

l=0 sj,k,lx
l and coeffi-

cients

sj,k,l = e−λj∆(pj,lδψk
λj − δψk

pj,l) +
l∑

j′=0

∂ψk
pj,j′qj′,l(∆)

and similar for the j, k′th element of V (x, ψ) is a polynomial vj,k(x) =
j+k∑
l=0

vj,k,lx
l with

coefficients given by

vj,k,l =
0∑

j′=0

k∑
k′=0

pj,j′pk,k′(qj′+k′,l(∆)− e−(λj+λk)∆Ij′+k′=l).

It is important to notice that we can derive from (4.12) that the derivatives dj,l = ∂ψT pj,l
satisfy the recursion

dj,l =
bl+1dj,l+1 + cl+2dj,l+2 + pj,l∂ψT (al − aj) + pj,l+1∂ψT bl+1 + pj,l+2∂ψT cl+2

al − aj

for l = j − 1, j − 2, . . . , 0 where initially dj,j = dj,j+1 = 0.
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5.4 Asymptotic theory

Under mild regularity conditions, the optimally martingale estimating function (5.1) pro-
vides consistent and asymptotically normal estimators of the parameter of the Pearson
diffusion. From now on ψ0 denotes the true parameter.

Theorem 5.2. Suppose that the following hold true:

(i) The Pearson diffusion is ergodic and has moments of the order 2N where N ≥ 2.

(ii) The true parameter ψ0 belongs to the interior of Ψ.

(iii) The mapping ψ 7→ τ = (θ, µ, a, b, c) is differentiable and ∂ψτ(ψ0) has full rank d.

Then with probability tending to one as n→∞ there exists a solution ψ̂n to the estimating
equation (5.2) with weights specified by (5.3) such that ψ̂n converges to ψ0 in probability
and √

n(ψ̂n − ψ0)
D→ N (0,W (ψ0)

−1)

where W (ψ0) = Eψ0(S(Yi, ψ0)
TV (Yi, ψ0)

−1S(Yi, ψ0)).

The proof of this theorem is given in the appendix of Forman & Sørensen (2007). By
the condition (i) in the theorem above is ensured, that the eigenfunctions are well defined
and that h1, . . . , hN have finite variance so that Gn(ψ0) is indeed a martingale, i.e. implies
(i) that Gn(ψ) is a square integrable martingale.

Example 5.3. Let us consider (4.4), the skewed t-diffusion, where the parameter ψ =
(θ, ν, ρ) is the canonical parameter,

τ = (θ, ν, a, b, c) =
(
θ, 0,

1

ν − 1
,
2ρν

1
2

ν − 1
,
(1 + ρ2)ν

ν − 1

)
and

∂τ

∂ψT
=


1 0 0 0 0

0 0 − 1
(ν−1)2

ρ

ν
1
2 (ν−1)

− 2ρν
1
2

(ν−1)2
1+ρ2

ν−1
− ν(1+ρ2)

(ν−1)2

0 0 0 2ν
1
2

ν−1
2νρ
ν−1


has full rank three. Hence, consistent and asymptotically normal estimators are obtained
by means of the optimally weighted martingale estimating functions under the further
assumption that ν0 > 2N .

∆



Chapter 6

Pearson diffusions with jumps

Now we want to extend the process (4.1) by adding jumps. Although Zhou (2003) gives
us a good guideline, we want to consider a more general process.
We still consider the process to be one dimensional and extend the diffusion (4.1) to the
following process

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θ(aX2

s + bXs + c)dWs +
Nt∑
n=1

g(Jn, Xτn−) (6.1)

where Wt is the standard Brownian motion and Wt,Nt are independent. We assume that
Nt is a Poisson process with a constant jump rate λ > 0. Then we define the stopping
time τk := inf{t > τk−1|Nt −Nt− > 0} which is the kth jump for k ∈ N and
τ1 = inf{t > 0|Nt − Nt− > 0} and Nt− = lims→t,s<tNs. Furthermore Jt ∈ R\{0} is a
random variable and we assume that they are distributed with some distribution FXt−

and a density function fXt− , i.e. the distribution of JXs− does only depend on the value
of the process just before the jump. Furthermore we assume that the function x→ Fx is
continuous with respect to x. Let

g : R× R → R, (y, x) 7→ g(y, x)

be a function and let g be continuously differential with respect to y. We further assume
that the inverse function of g with respect to y exists, i.e. for all x ∈ R\{0} there exists
a function g−1

x (y) such that g(g−1
x (y), x) = 1, and that |∂yg(y, x)−1| 6= 0 for all x and y.

Furthermore we assume that the first two moments of g(y, x) with respect to y exist, i.e.
that ∫

R
|g(y, x)|fx(y)dy <∞ and

∫
R
|g(y, x)|2fx(y)dy <∞.

We can for example assume that g is a product of a function w, where

w : R → R, x 7→ w(x)

and w is of such a form that the properties of g as described above are satisfied, and y,
i.e.

g(y, x) = yw(x). (6.2)

32
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The parameters a, b and c have to be discussed later on. To ensure a solution to the
ordinary differential equation (6.61), we assume that

λE(g(JNt , Xt−)k|Xt− = x) = λ

∫
g(y, x)kfx(y)dy =

k∑
j=0

αj,kx
j (6.3)

with αjk ∈ R for all k ∈ N and 0 ≤ j ≤ k holds. It is worth to mention, that αj,k = 0
if j /∈ [0, . . . , k]. We will see that (6.3) is an important condition if we want to derive a
formula to calculate the conditional moments.
In order to simplify the writing, we will now use b(Xt) for −θ(Xs − µ) and σ(Xt) for√

2θ(aX2
s + bXs + c).

For further use (see Subsection 6.2) we shall convert (6.1). We shall introduce two measures

Ψ((0, t]× A) =
Nt∑
n=1

1(Jn∈A) and (6.4)

Λ((0, t]× A) = λ

∫ t

0

∫
A

fXs−(y)dyds, (6.5)

then we can convert (6.1) to

Xt =X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs +
Nt∑
n=1

g(Jn, Xτn−)

=X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
R
g(y,Xs−)dΨ(s, y)

=X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
R
g(y,Xs−)dΨ(s, y)

−
∫ t

0

∫
R
g(y,Xs−)dΛ(s, y) +

∫ t

0

∫
R
g(y,Xs−)dΛ(s, y)

=X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
R
g(y,Xs−)dÑ (s, y)

+

∫ t

0

∫
R
g(y,Xs−)dΛ(s, y) (6.6)

with Ñ (s, y) := Ψ(s, y)− Λ(s, y). Then∫ t

0

∫
R
g(y,Xs−)dÑ (s, y)

is a martingale (see the part about Poisson integration in the Appendix). If we define

h(x) =

∫
R
g(y, x)fx(y)dy,
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then we can further convert (6.6) to

Xt =X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
R
g(y,Xs−)dÑ (t, y)

+ λ

∫ t

0

h(Xs−)ds

=X0 +

∫ t

0

c(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
R
g(y,Xs−)dÑ (t, y) (6.7)

with c(x) = b(x) + λh(x).
Due to the addition of the jump function g(y, x), a proposition like 4.2 is in the case
of (6.1) not given for all g(y, x). It is possible, that unpleasant occurences could appear
such as aX2

t + bXs + c < 0. If we assume for a moment, that we do assume that this
case does not occur (later on will give some constrictions for the several cases), then we
gain that a process of the form of (6.1) is closed under linear transformation, i.e. if we
define X̃t = γXt + δ with γ 6= 0 then we gain a new process of the type (6.1) where
θ̃ = θ, µ̃ = γµ + δ, ã = a, b̃ = bγ − 2aδ, c̃ = cγ2 − bγδ + aδ2 and g̃(y, x) = g(y, x−δ

γ
) (the

proof is similar to the proof of proporsition 4.2). The linear transformation on x to get
g̃(y, x), does not change the properties that g(y, x) satisfies.
Since a linear transformation is possible, like in the case without jumps, it is sufficient to
briefly discuss the 6 different types like in Subsection 4.1. We also shall briefly discuss un-
der which assumptions the Condition (6.28) holds, where we assume that the distribution
of J is independent from the state of the process. In this case Λ((0, t]× A) simplifies to

Λ((0, t]× A) = λ

∫ t

0

∫
A

fXs−(y)dyds = λt

∫
A

f(y)dy (6.8)

and h(x) to

h(x) =

∫
R
g(y, x)f(y)dy.

Case 1. If we assume σ2(x) = 2θ, we get in this first case

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θdWs +

Nt∑
n=1

g(Jn, Xτn−). (6.9)

Since the term under the square root does not depend on Xt, we do not need constraints
on the function g(y, x).
Under the assumption that g(y, x) is Lipschitz-continuous with respect to x, i.e. there
exists a L > 0 such that for all x1, x2 ∈ R and for all y

|g(y, x1)− g(y, x2)| ≤ Lr(y)|x1 − x2|, (6.10)

with r : R → R,
∫

R r
2(y)f(y)dy := Z < ∞, the existence of the second moment for the

distribution of J and futher
∫

R r
2(y)f 2(y)dy := O < ∞, we derive that the condition
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(6.28) is satisfied. For any x1, x2 ∈ R, we gain that

|c(x1)− c(x2)|2 + |σ(x1)− σ(x2)|2 + λ

∫
R
|g(y, x1)− g(y, x2)|2f(y)dy

≤ |θ(x1 − x2) + λ(h(x1)− h(x2))|2 + |
√

2θ −
√

2θ|2 + λL2|x1 − x2|2
∫

R
r(y)2f(y)dy

≤ 2θ2|(x1 − x2)|2 + 2λ2|
∫

R
(g(y, x1)− g(y, x2))f(y)dy|2 + λZL2|x1 − x2|2

≤ K|x1 − x2|2

with K = 2θ2 + 2λ2OL2 + λZL2 < ∞. Since all the three parts of (6.9) are Lipschitz
continuous, we gather

|g(y, x)| = |g(y, x)− g(y, 0) + g(y, 0)| ≤ |g(y, x)− g(y, 0)|+ |g(y, 0)|
≤ Lr(y)|x− 0|+ |g(y, 0)| ≤ Lr(y)|x|+ |g(y, 0)|
≤ Kg(1 + |x|)

where Kg = max{|g(y, 0)|, Lr(y)}. We can do the same trick with c(x) and σ(x), and
therefore the Condition (6.29) is satisfied.

Case 2. Like in Chapter 4, we assume in the second case σ2(x) = 2θx and then we gain

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θXsdWs +

Nt∑
n=1

g(Jn, Xτn−). (6.11)

In this case we have to prevent that Xt < 0 and therefore we need a condition on the
function g(y, x) such as

Px(g(J, x) > −x) = 1. (6.12)

In order to satisfy (6.28), we need that σ(x) satisfies

(σ(x1)− σ(x2))
2 ≤ C|x1 − x2|2 (6.13)

for all x1, x2 ≥ 0 and C > 0. In this case we have the situation that

(σ(x1)− σ(x2))
2 = 2θ(

√
x1 −

√
x2)

2

and therefore we do not obtain a constant C > 0 such that (6.13) for all x1, x2 ≥ 0 holds.
One possible proof is to look at the derivative of σ(x). Then you can see that σ′(x) goes
to infinity when x goes towards 0. In this case you only get a local Lipschitz condition for
big x.

Case 3. In the third case we assume, that a > 0 and σ2(x) = 2θax2 and therefore we get

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θX2

sdWs +
Nt∑
n=1

g(Jn, Xτn−). (6.14)
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Like in Case 1 we do not need any restrictions on g(y, x) since the term below the sqare
root is always positive.
But contrary to Case 2, we notice that for all x1, x2 ≥ 0

(σ(x1)− σ(x2))
2 = 2θ(x1 − x2)

2 ≤ C(x1 − x2)
2

where C = 2θ. Then we gain with the assumption like in Case 1, e.g. that g(y, x) satisfies
(6.10), that (6.14) satisfies (6.28).

Case 4. Now we consider σ2(x) = 2θa(x2 + 1) and a > 0, then we gain

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θa(x2 + 1)dWs +

Nt∑
n=1

g(Jn, Xτn−). (6.15)

Since σ2(x) ≥ 0 we do not need any constraints on g(y, x).
If we take a closer look at the derivative of σ(x) then we obtain

∂σ(x) =
2θax√

2θa(x2 + 1)

and the derivative is therefore bounded. Thus σ(x) is Lipschitz continuous with
√

2θa as
Lipschitz constant. Then we gain, that Condition (6.28) and Conditon (6.29) are satisfied
under the same assumptions as in Case 1.

Case 5. This time we assume σ2(x) = 2θax(x+ 1) and a > 0, so we gain

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θax(x+ 1)dWs +

Nt∑
n=1

g(Jn, Xτn−). (6.16)

In this case we need to assume like in Case 2, that g(y, x) satisfies (6.12).
Like in Case 2 we do not obtain the condition (6.28) is satisfied for all x1, x2 ≥ 0.

Case 6. In the last case we consider like in Chapter 4 σ2(x) = 2θax(x − 1) and a < 0.
Therefore the process has the following form

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θax(x− 1)dWs +

Nt∑
n=1

g(Jn, Xτn−). (6.17)

In the last case we need a restriction on g(y, x) in such a way that Xt ∈ (0, 1). Thus we
assume that

Px(−x < g(J, x) < 1− x) = 1. (6.18)

Like in Case 2 we do not obtain, that the Condition (6.28) is satisfied for all 0 ≤ x1, x2 ≤ 1.
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6.1 The existence of a solution

In this section we want to deal with the existence of a solution for (6.1). Sørensen (1991)
gives us some conditions on (6.1) for the existence of a unique solution. Since the square
root in (6.1) is defined in such a way, that 2θ(aX2

s + bXs + c) ≥ 0, we gain that

e(t, x) := σ(t, x)σ(t, x)T = σ(x)2 (6.19)

is a continuous function on R+×R and is everywhere strictly positive definite. In partic-
ular, b(x) is bounded on {x : ||x|| ≤ n} for all n ∈ N. Those two statements are the first
two conditions in Sørensen (1991) (condition C on page 73) to secure a unique solution.
It is only left to check the last condition. In our case equation (2.7) in Sørensen (1991) is
equal to

K(x,A) =

∫
R

1A(g(y, x))Fx(dy) (6.20)

for all Borel subsets A of R. From (6.20) we can see that

K(x,A) = Px(g(J, x) ∈ A).

From the last equation we gain that K(x, ·) is the distribution of g(x, J) when J ∼ Fx.
Since x is fixed, we can say that g(x, y) = gx(y). With the assumputions on g in the
introduction of Chapter 6, we can gain the density function hx(y) from gx(y) with the
transformation theorem. We gain

hx(y) = fx(g
−1
x (y))|∂yg−1

x (y)|, (6.21)

where fx is the density function of Fx. Thus hx is the density function of K(x, ·). In order
to gain the existence of a unique solution for (6.1), we need to show that the function

x→
∫
A

(|y|2 ∧ 1)hx(y)dy (6.22)

is continuous on R for all Borel subsets A of R. We can simplify (6.22) to

l(x) :=

∫
A

(|y|2 ∧ 1)hx(y)dy

=

∫ 1

−1

y21A(y)hx(y)dy︸ ︷︷ ︸
a)

+

∫ −1

−∞
1A(y)hx(y)dy︸ ︷︷ ︸

b)

+

∫ ∞

1

1A(y)hx(y)dy︸ ︷︷ ︸
c)

. (6.23)

It is left to show that (6.23) is a continuous function with respect to x, i.e. that for xn → x
we can derive lim

n→∞
l(xn) = l(x). We want to apply the dominated convergence theorem,

because then we can interchange the integral and the limites, i.e.

lim
n→∞

l(xn) = lim
n→∞

(

∫ 1

−1

y21A(y)hxn(y)dy +

∫ −1

−∞
1A(y)hxn(y)dy +

∫ ∞

1

1A(y)hxn(y)dy)

=

∫ 1

−1

y21A(y)h lim
n→∞

xn(y)dy +

∫ −1

−∞
1A(y)h lim

n→∞
xn(y)dy +

∫ ∞

1

1A(y)h lim
n→∞

xn(y)dy

= l( lim
n→∞

xn) = l(x) (6.24)
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for any xn → x. Our next aim is to find dominating functions for a), b) and c) in (6.23)
to apply the dominated convergence theorem to gather (6.24).
Under the assumption that hx(y) is bounded on [−1, 1] we can dominate 1A(y)y2hx(y) by

max
y∈[−1,1]

y2hx(y)

and therefore the interchanging of the integral and the limes are allowed for a) in (6.23).
The assumpution that hx(y) is bounded on a compact interval is a rather small one
compared to the following.
Since b) and c) in (6.23) need similar assumptions, we are going to discuss them together.
There are two convergence theorems which can help us in this case. Both theorems can be
used to derive (6.24). First of all the dominated convergence theorem, which has already
been mentioned above. We assume that for any x there exists a neighbourhood U that
for all x ∈ U a function h(y) exists, with hx(y) ≤ h(y) and h(y) is integrable on [1,∞)
((−∞,−1]). Otherwise we can apply the monotone convergence theorem. If x→ hx(y) is
a monotone increasing or decreasing function, then we also gather the desired property.

Example 6.1. Let us consider the case of (6.2). Since g(x, y) still has the same properties,
we can consider w(x) is continuous and w(x) 6= 0 for all x ∈ R. Then we get that

g−1
x (y) =

y

w(x)
, ∂yg

−1
x (y) =

1

w(x)

and

hx(y) = fx(
y

w(x)
)| 1

w(x)
|. (6.25)

Since w(x) and (y, x) 7→ fx(y) are continuous, we obtain that (6.25) is a continuous
function. Then (6.23) is in this case equivalent to

l(x) =

∫ 1

−1

1A(y)y2fx(
y

w(x)
)| 1

w(x)
|dy +

∫ −1

−∞
1A(y)fx(

y

w(x)
)| 1

w(x)
|dy

+

∫ ∞

1

1A(y)fx(
y

w(x)
)| 1

w(x)
|dy. (6.26)

Furthermore fx is a density function and then we can dominate hx(y) by

max
y∈[−1,1]

y2fx(
y

w(x)
)| 1

w(x)
|

on [−1, 1]. In this particular example we do not need to assume a dominated function for
the last two integrals in (6.26). We can simply do a transformation again with y = g−1

x (y)
and then we gather for example for the third intergral∫ ∞

1

fx(
y

w(x)
)| 1

w(x)
|dy =

∫ g−1
x (∞)

g−1
x (1)

fx(y)dy =

∫ ∞

1
w(x)

fx(y)dy. (6.27)
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Therefore we need some assumptions on fx(y) just like we do have them above. In the
case where the distribution of jumps are independent from x we get that the last equation
is continous in x, because it is equal to

1− F (
1

w(x)
)

and with F (z) and 1
w(x)

being continuous the respect to x we gain the desired property.

∆

6.2 The existence of moments

Let us now take a look at the existence of moments. In order to get some results we have
to constrain our model (6.1) a bit. We assume, that the distribution of the jumps do not
depend on the state of the process, i.e. the Jt are i.i.d. with a density function f(x).
In the case where the process satisfies a global Lipschitz condition, i.e. there exists a
K1 > 0 such that for all x1, x2 ∈ R

(c(x1)− c(x2))
2 + (σ(x1)− σ(x2))

2 + λ

∫
R
|g(y, x1)− g(y, x2)|2f(y)dy

≤ K1|x1 − x2|2, (6.28)

and a growth condition, i.e. there exists a K2 > 0 such that for all y ∈ R

c(x)2 + σ2(x) + λ

∫
R
|g(y, x)|2f(y)dy ≤ K2(1 + |x|2), (6.29)

we can gain, that the first two moments ofXt with t ≥ 0 exist. Unfortunally the Conditions
(6.28) and (6.29) are not given for all six different types of Pearson diffusions.

Theorem 6.2. Let Xt satisfy the Conditions (6.28) and (6.29). Further we assume that
E(|X0|2) <∞ with n ∈ N. Then the first two moments of Xt exist.

Proof. We define for all t ≥ 0 and m ∈ N the sequence

X
(m+1)
t = X

(m)
0 +

∫ t

0

c(X(m)
s )ds+

∫ t

0

σ(X(m)
s )dWs +

∫ t

0

∫
R
g(y,X

(m)
s− )dÑ (s, y) (6.30)

and X0
t = X0 for all t ≥ 0. We can prove with induction that X

(m)
t is adaptive and càdlàg

(see Theorem 4.2.12 in Applebaum (2004)). For all t ≥ 0, we have

X
(m+1)
t −X

(m)
t =

∫ t

0

(
c(X(m)

s )− c(X(m−1)
s )

)
ds+

∫ t

0

(
σ(X(m)

s )− σ(X(m−1)
s )

)
dWs

+

∫ t

0

∫
R

(
g(y,X

(m)
s− )− g(y,X

(m−1)
s− )

)
dÑ (s, y). (6.31)
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With induction we can easily proof that for all x1, x2, . . . , xk ∈ R with k ∈ N

|x1 + x2 + . . .+ xk|2 ≤ k(|x1|2 + |x2|2 + . . .+ |xk|2). (6.32)

We need some inequalities about E( sup
0≤s≤t

|X(m+1)
s −X(m)

s |2) and we start with the simplest

case. Then we get with (6.31) and (6.32) for m = 0

|X(1)
t −X0|2 =

∣∣∣∫ t

0

c(X0)ds+

∫ t

0

σ(X0)dWs +

∫ t

0

∫
R
(g(y,X0)dÑ (s, y)

∣∣∣2
≤ 3
(∣∣∫ t

0

c(X0)ds
∣∣2 +

∣∣∫ t

0

σ(X0)dWs

∣∣2 +
∣∣∫ t

0

∫
R
(g(y,X0)dÑ (s, y)

∣∣2)
= 3
(∣∣tc(X0)

∣∣2 +
∣∣σ(X0)Wt

∣∣2 +
∣∣∫

R
(g(y,X0)Ñ (t, dy)

∣∣2)
for each t ≥ 0. Now we take the expectation to obtain

E( sup
0≤s≤t

|X(1)
s −X0|2) ≤3E

(
sup

0≤s≤t

((
sc(X0)

)2
+
(
σ(X0)Ws

)2
+
(∫

R
g(y,X0)dÑ (t, y)

)2))
=3E

(
t2c(X0)

2
)

+ 3E
(

sup
0≤s≤t

(
σ(X0)Ws

)2)
+ 3E

(
sup

0≤s≤t

(∫
R
(g(y,X0)Ñ (s, dy)

)2)
. (6.33)

With Doob’s martingale inequality (see Theorem 11 in the Appendix) we get

3E( sup
0≤s≤t

(
σ(X0)Ws

)2
) ≤ 12E(|Wt|2|σ(X0)|2) = 12tE(|σ(X0)|2) (6.34)

and since
∫

R(g(y,X0)Ñ (t, dy) is a martingale we gain that
(∫

R g(y,X0)dÑ (t, y)
)2

is a

submartingale. Again with Doob’s martingale inequality we gather

3E
(

sup
0≤s≤t

(∫
R
(g(y,X0)Ñ (s, dy)

)2) ≤ 12E

((∫
R
g(y,X0)dÑ (t, y)

)2
)
. (6.35)

If we apply the Itô isometry (see p. 199 in Applebaum (2004)) we can simplify (6.35) to

3E
(

sup
0≤s≤t

(∫
R
(g(y,X0)dÑ (t, y)

)2) ≤ 12t

∫
R
E(|g(y,X0)|2)f(y)dy. (6.36)

Then we finally get with (6.33), (6.34) and (6.36) that

E( sup
0≤s≤t

|X(1)
s −X0|2) ≤3t2E

(
c(X0)

2
)

+ 12tE
(
|σ(X0)|2

)
+ 12tλ

∫
R
E
(
|g(y,X0)|2

)
f(y)dy.



CHAPTER 6. PEARSON DIFFUSIONS WITH JUMPS 41

Then the last inequality is with (6.29) equivalent to

E( sup
0≤s≤t

|X(1)
s −X0|2) ≤ C1(t)tK2(1 + E(|X0|2)) (6.37)

where C1(t) = max{3t, 12}. We have shown that for m = 0

E( sup
0≤s≤t

|X(1)
s −X0|2) <∞.

Now we want to consider the case for general m ∈ N. With similar arguments as above
(Doob’s martingale inequality) we obtain

E
(

sup
0≤s≤t

|X(m+1)
s −X(m)

s |2
)
≤3E

(
sup

0≤s≤t

(∫ s

0

(c(X(m)
u )− c(X(m−1)

u ))du
)2
)

+ 12E

((∫ t

0

(σ(X(m)
s )− σ(X(m−1)

s ))dWs

)2
)

+ 12E

((∫ t

0

∫
R
g(y,X

(m)
s− )− g(y,X

(m−1)
s− )

)2

dÑ (s, y)

)
.

(6.38)

With the Cauchy-Schwarz inequality we get for all s ≥ 0(∫ s

0

(c(X(m)
u )− c(X(m−1)

u ))du
)2 ≤ s

∫ s

0

(c(X(m)
u )− c(X(m−1)

u ))2du

and with the Itô isometry again we finally obtain

E( sup
0≤s≤t

|X(m+1)
s −X(m)

s |2) ≤C1(t)

(∫ t

0

E(|c(X(m)
s )− c(X(m−1)

s )|2)ds

+

∫ t

0

E
(
(σ(X(m)

s )− σ(X(m−1)
s ))2

)
ds

+ λ

∫ t

0

∫
R
E
(
(g(y,X

(m)
s− )− g(y,X

(m−1)
s− ))2

)
f(y)dyds

)
.

Since the interchanging of the integrals is allowed and with the Lipschitz condition (6.28),
we gather

E( sup
0≤s≤t

|X(m+1)
s −X(m)

s |2) ≤ C1(t)K1

∫ t

0

E
(

sup
0≤u≤s

|X(m)
u −X(m−1)

u |2
)
ds. (6.39)

Thus we can prove via induction based on (6.37) and (6.39) that

E( sup
0≤s≤t

|X(m+1)
s −X(m)

s |2) ≤ C2(t)
mKm

3

m!
(6.40)

for all m ∈ N and where C2(t) = tC1(t) and

K3 = max{K1, K2(1 + E(|X0|2))}.
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As we know || · ||2 := (E(| · |2)) 1
2 denotes a norm on L2(R,B, P ). With (6.40) we can prove

now, that X
(m)
t is convergent in L2. For all m, l ∈ N and for all 0 ≤ s ≤ t we observe that

||X(m)
s −X(l)

s ||2 ≤
m∑

r=l+1

||X(r)
s −X(r−1)

s ||2 ≤
m∑

r=l+1

C2(t)
r
2K

r
2
3

(r!)
1
2

and since the right series converges, we have that each (X
(m)
s ,m ∈ N) is Cauchy. Hence

each (X
(m)
s ,m ∈ N) is convergent to some Xs ∈ L2(R,B, P ). Then we yield the usefull

estimate

||Xs −X(m)
s ||2 ≤

∞∑
r=m+1

||X(r)
s −X(r−1)

s ||2 ≤
∞∑

r=n+1

C2(t)
r
2K

r
2
3

(r!)
r
2

(6.41)

for all m ∈ N, 0 ≤ s ≤ t. We also need to establish almost sure convergence of Xm
t for

m ∈ N. If we apply the Chebyshev-Markov inequality (P (|X| ≥ C) ≤ E(|X|n)
Cn ) on (6.40),

we gather

P
(

sup
0≤s≤t

|X(n+1)
s −X(n)

s | ≥ 1

2n

)
≤ [4K3C2(t)]

n

n!

and with this inequality we gather with Borel’s lemma

P
(
lim sup
n→∞

{
sup

0≤s≤t
|X(n+1)

s −X(n)
s | ≥ 1

2n
})

= 0.

With

P
(
lim inf
n→∞

D(n)c
)

= 1− P
(
lim sup
n→∞

D(n)
)
,

where D(n) with n ∈ N is a sequence of events in B, we gather that

P
(
lim inf
n→∞

{
sup

0≤s≤t
|X(n)

s −X(n−1)
s | < 1

2n

})
= 1.

Hence given any δ > 0 there exists n0 ∈ N such that for n, l > n0, we have

sup
0≤s≤t

|X(n)
s −X(l)

s | ≤
n−1∑
r=l

sup
0≤s≤t

|X(r+1)
s −X(r)

s | <
n−1∑
r=l

1

2r
< δ

with probability 1, from which we see that X
(n)
t for n ∈ N is almost surely uniformly

Cauchy on compact intervals and hence is almost surely convergent on compact intervals.
From this we conclude that Xt is adapted and càdlàg.
It is left to show that Xt satisfies (6.7). Then we define X̃t for all t ≥ 0 the stochastic
process by

X̃t = X0 +

∫ t

0

c(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
R
g(y,Xs)dÑ (s, y).
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Hence for each n ∈ N we gather

X̃t −X
(n)
t =

∫ t

0

(
c(Xs)− c(X(n)

s )
)
ds+

∫ t

0

(
σ(Xs)− σ(X(n)

s )
)
dWs

+

∫ t

0

∫
R

(
g(y,Xs)− g(y,X(n)

s )
)
dÑ (s, y).

Now we can apply the same arguments which led us to (6.39) and apply (6.41), and obtain
for all 0 ≤ s ≤ t <∞

E(|X̃s −X(n)
s |2) ≤ C1(t)K1

∫ t

0

E(|Xu −X(n)
u |2)du

≤ C2(t)K1 sup
0≤u≤t

E(|Xu −X(n)
u |2)

≤ C2(t)K1

(
∞∑

r=n+1

C2(t)
r
2K

r
2
3

(r!)
1
2

)2

→ 0 as n→∞.

Hence each X̃s = L2 − limn→∞X
(n)
s and so, by uniqueness of limits X̃t = Xt as required.

Now we can prove the existence of the first two moments. With (6.41) we gain especially

||Xt −X0||2 ≤
∞∑
r=1

||X(r)
t −X

(r−1)
t ||2 ≤ C(t)

where C(t) ≥ 0 and then we get

E(|Xt|2) ≤ 2E(|Xt −X0|2)︸ ︷︷ ︸
≤C(t)2

+2E(|X0|2)︸ ︷︷ ︸
<∞

<∞.

Due to the fact that (6.30) has to be derived for higher moments from the Itô formula
with f(x) = xn for n ∈ N and the fact that a estimation like (6.39) is not possible, because
the Lipschitz condition does not apply, we have to find another way to proof the existence
of higher moments.
In the book of Gihman and Skorohod (1972) (Theorem 4 in Chaper 6) is a proof for
the existence of higher moments in the case without jumps. We want to investigate now
whether it is possible to extend the proof for our case. At first we calculate the SDE for
Xn
t . Let f be a twice continuously differential function, then we get if we apply the Itô
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formula (the version with jumps see the appendix) on (6.1)

f(Xt) =f(X0) +

∫ t

0

f ′(Xs−)dXs +
1

2

∫ t

0

f ′′(Xs−)σ2(Xs)ds

+
Nt∑
n=1

(f(Xτn− + g(Jn, Xτn−))− f(Xτn−)︸ ︷︷ ︸
=:SJn

τn

−f ′(Xτn−)g(Jn, Xτn−))

=f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs)
)
ds

+

∫ t

0

σ(Xs)f
′(Xs)dWs +

Nt∑
n=1

SJn
τn . (6.42)

Now we apply the same trick as we have done it before and use the measures Ψ(s, y) and
Λ(s, y) as we defined in (6.4) and (6.5).
Then we gather

f(Xt) =f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs)
)
ds

+

∫ t

0

σ(Xs)f
′(Xs)dWs +

∫ t

0

∫
R
SysdΨ(s, y)

=f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs)
)
ds

+

∫ t

0

σ(Xs)f
′(Xs)dWs +

∫ t

0

∫
R
Sys (dÑ (s, y))︸ ︷︷ ︸

=:Mt

+

∫ t

0

∫
R
SysdΛ(s, y)

=f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs)
)
ds

+Mt +

∫ t

0

∫
R
SysdΛ(s, y), (6.43)

where Mt is a martingale (see the Appendix for further information) with M0 = 0 (note
that E(Mt) = 0). In order for the next theorem we need some more definitions, therefore
we define for some N ∈ R+

X0,N =

{
X0 for |X0| ≤ N

Nsign(X0) for |X0| > N
,

bN(x) =

{
b(x) for |x| ≤ N

b(Nsign(x)) for |x| > N
,

hN(x) =

{
h(x) for |x| ≤ N

h(Nsign(x)) for |x| > N
,

σN(x) =

{
σ(x) for |x| ≤ N

σ(Nsign(x)) for |x| > N
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and

gN(y, x) =

{
g(y, x) for |x| ≤ N

g(y,Nsign(x)) for |x| > N
,

where sign (x) = 1 if x > 0 and sign (x) = −1 if x < 0. Then we can define the bounded
process

Xt,N = X0,N +

∫ t

0

bN(Xs,N)ds+

∫ t

0

σN(Xs,N)dWs +

∫ t

0

∫
R
gN(y,Xs,N)Ψ(ds, dy),

which is equivalent to

Xt,N = X0,N +

∫ t

0

cN(Xs,N)ds+

∫ t

0

σN(Xs,N)dWs +

∫ t

0

∫
R
gN(y,Xs,N)Ñ (ds, dy),

(6.44)

where

cN(x) = bN(x) + λhN(x) = bN(x) + λ

∫
R
gN(y, x)f(y)dy.

In addition to the proof we also need some other conditions than (6.28) and (6.29) but
they are very similar. For N > 0 and for all |x|, |y| ≤ N there exist a K1,N > 0 and a
K2 > 0 such that

|c(x)− c(y)|+ |σ(x)− σ(y)| ≤ K1,N |x− y| (6.45)

and

xb(x) + σ2(x) ≤ K2,N(1 + x2) (6.46)

for all t ∈ [0, T ] holds. Then we gain the following theorem.

Theorem 6.3. Assume that the coefficients of (6.1) satisfy the conditions (6.45) and
(6.46), that Jt is independent from the state of the procees (i.e. J ∼ F ) and that E(X2n

0 ) <
∞. Then we can find a C, depending only on n,K2 and D > 0, for which

E(X2n
t ) ≤ E(1 +X2n

0 )eCt <∞. (6.47)

Proof. In order to take expecatations on (6.43) for the bounded process (6.44) for f(x) =
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x2n, we need to prove that the expectation of X2n
t,N is bounded. We get with (6.44)

E

(
(Xt,N)2n

)
=E

(
42n

(
1

4
X0,N +

1

4

∫ t

0

cN(Xs,N)ds

+
1

4

∫ t

0

σN(Xs,N)dWs +
1

4

∫ t

0

∫
R
gN(y,Xs,N)Ñ (ds, dy)

)2n
)

≤42n−1E

(
2n

X0,N︸︷︷︸
a

)
+ 42n−1E

((∫ t

0

cN(Xs,N)ds

)2n

︸ ︷︷ ︸
b

)

+ 42n−1E

((∫ t

0

σN(Xs,N)dWs

)2n

︸ ︷︷ ︸
c

)

+ 42n−1E

((∫ t

0

∫
R
gN(y,Xs,N)Ñ (ds, dy)

)2n

︸ ︷︷ ︸
d

)
. (6.48)

Hence it is suffient to show that all part of (6.48) are finite. Then a in (6.48) is finte since
E(X2n

0,N) ≤ E(X2n
0 ) <∞. Now let us take a look at b in (6.48), then we obtain(∫ t

0

cN(Xs,N)ds

)2n

≤
∫ t

0

(
cN(Xs,N)

)2n

ds.

Since bN(x) is bounded by a constant B and hN(x) is bounded by a constant H, we gain
that cN(x) ≤ B + λH =: C. Thus we gather(∫ t

0

cN(Xs,N)ds

)2n

≤
∫ t

0

(
cN(Xs,N)

)2n

ds ≤ C2n

∫ t

0

ds = C2nt <∞.

We gain the finiteness of the parts d and c of (6.48) on the same way (similarly arguments
like in the proof of theorem 6.2), since both integrals are martingales. Thus we only
consider part c. Then we gain

E
(
(

∫ t

0

σN(Xs,N)dWs)
2n
)
≤ E

(
sup

0≤s≤t

((∫ s

0

σN(Xu,N)dWu

)2
)n)

and with the Doob martingale inequality (see the Appendix) we gather

E

(
sup

0≤s≤t

((∫ s

0

σN(Xu,N)dWu

)2
)n)

≤
(

n

n− 1

)n
E

((∫ t

0

σN(Xs,N)dWs

)2
)
.

Now we apply the Itô- Isometrie to gain(
n

n− 1

)n
E

((∫ t

0

σN(Xs,N)dWs

)2
)

=

(
n

n− 1

)n ∫ t

0

E
(
(σ(Xs,N))2

)
ds
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and thus

E
(
(

∫ t

0

σN(Xs,N)dWs)
2n
)
≤
(

n

n− 1

)n ∫ t

0

E
(
(σ(Xs,N))2

)
︸ ︷︷ ︸

≤A

ds

≤
(

n

n− 1

)n
At <∞.

Now we take expectation at both sides of (6.43) and then we gain with f(x) = x2n

E(X2n
t ) = E(X2n

0 ) + E

(∫ t

0

(
2nbN(Xs)X

2n−1
s + n(2n− 1)σ2(Xs)X

2n−2
s

)
ds

+

∫ t

0

∫
R
SysΛ(ds, dy)

))
(6.49)

with

Sys = (Xs− + g(y,Xs−))2n −X2n
s− (6.50)

and remember that the expectations of the martingales are zero. Then we take a closer
look at (6.50) and we can simplify it to

Sys = (Xs− + g(y,Xs−))2n −X2n
s−

=
2n∑
i=0

(
2n
i

)
X2n−i
s− g(y,Xs−)i −X2n

s−

=
2n−1∑
i=0

(
2n
i+ 1

)
X2n−i−1
s− g(y,Xs−)i+1

and then we get, if we use (6.3),∫ t

0

∫
R
SysdΛ(s, y) = λ

∫ t

0

∫
R

2n−1∑
i=0

(
2n
i+ 1

)
X2n−i−1
s− g(y,Xs−)i+1f(y)dyds

=

∫ t

0

2n−1∑
i=0

(
2n
i+ 1

)
X2n−i−1
s− λ

∫
R
g(y,Xs−)i+1f(y)dy︸ ︷︷ ︸
=λE(g(J,Xs−)i+1)

ds

=

∫ t

0

2n−1∑
i=0

(
2n
i+ 1

)
X2n−i−1
s− E(g(J,Xs−)i+1)︸ ︷︷ ︸

Pi+1
j=0 αj,i+1X

j
s−

ds

=

∫ t

0

2n−1∑
i=0

(
2n
i+ 1

) i+1∑
j=0

αj,i+1X
2n−1−i+j
s− ds
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since j ≤ i we see that the sums form a polynomial of Xs− with the 2n the highest order.
Therefore we can define

2n−1∑
i=0

(
2n
i+ 1

) i+1∑
j=0

αj,i+1X
2n−1−i+j
s− =

2n∑
k=0

dkX
k
s−,

where

dk =
2n∑

i=2n−k

(
2n
i

)
αi−2n+k,i.

Then we gain ∫ t

0

∫
R
SysdΛ(s, y) =

∫ t

0

2n∑
k=0

dkX
k
s−ds (6.51)

Therefore we gain with the last equation and (6.49) that

E(X2n
t ) = E(X2n

0 ) + E

(∫ t

0

(
2nbN(Xs)X

2n−1
s + n(2n− 1)σ2(Xs)X

2n−2
s

+
2n∑
k=0

dkX
k
s−
)
ds

)
. (6.52)

Then we get for the bounded process X2n
t,N

E(X2n
t,N) = E(X2n

0,N) + E

(∫ t

0

(
2nbN(Xs,N)X2n−1

s,N

+ n(2n− 1)σ2
N(Xs,N)X2n−2

s,N +
2n∑
k=0

dkX
k
s−,N

)
ds

)
. (6.53)

Let us take a look a the polynominal again. Then we can derive the following inequalitiy

2n∑
i=0

dix
i ≤ D(1 + 2x2n)

with D > 0 constant. Then we gain with (6.53)

E(X2n
t,N) ≤ E(X2n

0,N) + E

(∫ t

0

((
2nbN(Xs,N)Xs,N + n(2n− 1)σ2

N(Xs,N)
)
X2n−2
s,N

+D(1 + 2X2n
s,N)

)
ds

)
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and then we derive with (6.46)

E(X2n
t,N) ≤ E(X2n

0,N) + (2n+ 1)nK2

∫ t

0

E

(
(1 +X2

s,N)X2n−2
s,N +D(1 + 2X2n

s,N)

)
ds

and with

(1 + x2)x2n−2 = x2n−2 + x2n ≤ 1 + x2n + x2n = 1 + 2x2n

we get

E(X2n
t,N) ≤ E(X2n

0 ) + (2n+ 1)nK

∫ t

0

(1 + 2E(X2n
s,N))ds

≤ E(X2n
0 ) + (2n+ 1)nKt+ (2n+ 1)2nK

∫ t

0

E(X2n
s,N))ds.

where K = max{D,K2}. Then we get with Lemma of Gronwall

E(X2n
t,N) ≤ E(X2n

0 ) + (2n+ 1)nKt

+ (2n+ 1)2nK

∫ t

0

e2n(2n+1)K(t−s)
(
E(X2n

0 ) + s(2n+ 1)nK
)
ds.

Hence follows the inequality (6.47) for X2n
t,N with C = n(2n+ 1)K.

The last step is to prove that equation also holds for X2n
t and not only for X2n

t,N . Therefore
we define

ΩN = {ω ∈ R| sup
0≤s≤t

|X2n
s,N(ω)| ≤ N}.

It is obvious that ΩN → R for N →∞. Further we gain that

E(X2n
t,N) = E(X2n

t,N1ΩN
) = E(X2n

t 1ΩN
) → E(X2n

t )

for N →∞. On the other hand

E(X2n
t,N) ≤ E(1 +X2n

0 )eCt <∞

where the constant C does not depend on N .

6.3 Conditional moments

If we assume that the first n moments exist, then we can derive a formula for the condi-
tional moments. In order to do so, we apply the Itô formula (the version with jumps see
the appendix) on (6.1) and we gain, like in (6.42),

f(Xt) =f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ2(Xs)f

′′(Xs)
)
ds

+

∫ t

0

σ(Xs)f
′(Xs)dWs +

Nt∑
n=1

SJn
τn
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with f : R → R twice continuous differentiable function and

Sys = f(Xs− − g(y,Xs−))− f(Xs−).

We would like to get an equation of the form

f(Xt) = f(X0) +

∫ t

0

Af(Xs)ds+Mt (6.54)

where Mt is a martingale (in particluar M0 = 0) and A an operator. We still assume, like
in Chapter 4, that

∫ t
0

√
2θ(aX2

s + bXs + c)f ′(Xs)dWs is a true martingale. In the case,
that f(x) is a polynomial of finite order, we gain that it is a true martingale. We still need

to deal with the last term (
Nt∑
n=1

SJn
τn ). With Λ(s, y) like (6.5) and with Ψ(s, t) like (6.4) we

gain

f(Xt) =f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)
)
ds+

∫ t

0

σ(Xs)f
′(Xs)dWs

+
Nt∑
n=1

SJn
τn

=f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)
)
ds+

∫ t

0

σ(Xs)f
′(Xs)dWs

+

∫ t

0

∫
R
SysΨ(ds, dy)

=f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)
)
ds+

∫ t

0

σ(Xs)f
′(Xs)dWs

+

∫ t

0

∫
R
Sys Ñ (ds, dy) +

∫ t

0

∫
R
SysΛ(ds, dy)

where Ñ (s, y) = Ψ(s, y)− Λ(s, y). It can be shown (see the Appendix), that∫ t
0

∫
R S

y
s Ñ (ds, dy) is a martingale if Sys is predictable, which it is since Sys only depends

on Xτn−. If we further define

Mt :=

∫ t

0

σ(Xs)f
′(Xs)dWs +

∫ t

0

∫
R
Sys Ñ (ds, dy), (6.55)

we obtain

f(Xt) =f(X0) +

∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)
)
ds

+Mt +

∫ t

0

∫
R
SysΛ(ds, dy). (6.56)

Since we assumed that Mt is a martingale, we obtain from (6.56)

Af(x) = b(x)f ′(x) +
1

2
σ(x)2f ′′(x) +

∫
R
λ(f(x+ g(y, x))− f(x))Fx(dy). (6.57)
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If we take the conditional expectation on both sides of (6.56), we get

E(f(Xt)|X0) = f(X0) + E
( ∫ t

0

(
b(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)
)
ds

+

∫ t

0

∫
R
SysΛ(ds, dy)|X0

)
,

under the assumption that Mt is a true martingale with M0 = 0. Then we get the condi-
tional moments of Xt, by using f(x) = xk for k ≥ 1 and X0 = x,

Ex(X
k
t ) = Xk

0︸︷︷︸
xk

+Ex

(∫ t

0

(
b(Xs)kX

k−1
s + σ(Xs)

2k(k − 1)Xk−2
s +

∫
R
SysΛ(ds, dy)

)
ds

)
.

We still can simplify the equation under those assumptions we made above.
Since Sys = f(Xs− + g(y,Xs−))− f(Xs−) = (Xs− + g(y,Xs−))k −Xk

s− and
Λ(ds, dy) = λdFXs−(y)ds, we get

Ex(X
k
t ) = xk + Ex

(∫ t

0

b(Xs)kX
k−1
s + σ(Xs)

2k(k − 1)Xk−2
s

+ λ

∫
R

(
(Xs− + g(y,Xs−))k −Xk

s−

)
dFXs−(y)ds

)
,

and finally

Ex(X
k
t ) =xk + Ex

(∫ t

0

b(Xs)kX
k−1
s + σ(Xs)

2k(k − 1)Xk−2
s

+ λEFXs

(
(Xs + g(Js, Xs))

k −Xk
s

)
ds

)
. (6.58)

The last term of (6.58) we can simplify and it is then equivalent to

λEFXs

((
Xs + g(Js, Xs)

)k −Xk
s

)
=λ

k∑
j=0

(
k
j

)
EFXs

(g(Js, Xs)
jXk−j

s )− EFxs (X
k
s )

=λ
k∑
j=1

(
k
j

)
EFXs

(g(Js, Xs)
jXk−j

s )

=
k∑
j=1

(
k
j

)
Xk−j
s λEFXs

(g(Js, Xs)
j). (6.59)

If the interchanging of expectation and integration is allowed we can derive an ordinary
differential equation from (6.58) and (6.59)

∂sEx(X
k
s ) = Ex[b(Xs)kX

k−1
s + σ(Xs)

2k(k − 1)Xk−2
s +

k∑
j=1

(
k
j

)
Xk−j
s− λEFXs

(g(Js, Xs)
j)]
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and by using the Condition (6.3) we get the following equation

∂sEx(X
k
t ) =Ex(b(Xs)kX

k−1
s + σ(Xs)

2k(k − 1)Xk−2
s

+
k∑
j=1

(
k
j

)
Xk−j
s

j∑
i=0

αi,jX
i
s). (6.60)

Assumption (6.2) is a very important one and it is also large restriction. In order to get
a recursive formula, there are a lot of constraints on the function w(x). If for instance
w(x) is a polynomial of a order greater than one, then we can see from (6.60), that the
kth moment would also depend on the (k+1)th moment and so on, i.e. we would not get
a triangular matrix in (6.61). Therefore there are only limited types of functions, which
w(x) can take the form of.
If we denote with Ex(Xt) = E(Xt|X0 = x) = [Ex(Xt), Ex(X

2
t ), . . . , Ex(X

k
t )]

′ we can derive
from (6.60) a linear differential equation system

∂sEx(Xt) = A(β)Ex(Xt) + g(β) (6.61)

where A(β) is a lower-triangular k × k matrix, g(β) is a k × 1 vector and
β = (θ, µ, a, b, c, α0,1, . . . , αk,k). With the theory about differential equations we get the
following solution

Ex(Xt) = etA(β)X0 + A(β)−1(etA(β) − I)g(β) (6.62)

where I is the k × k identical matrix and X0 = [x, x2, . . . , xk]′.

Example 6.4. Let us take a look again at Example 4.6 in Chapter 4. Here is the diffusion
given by

dZt = −θZtdt+

√
2θ(ν − 1)−1(Z2

t + 2ρν
1
2Zt + (1 + ρ2)ν)dWt

with ν 6= 3 and Z0 = z. Since this is still a case without jumps, we should get the same
results for the first two conditional moments as before if we apply (6.61) and (6.62). In
this case we get

∂tEz(Z
k
t ) =

(
−kθ + θ

k(k − 1)

ν − 1

)
Ez(Z

k
t ) + 2

ρν
1
2

ν − 1
k(k − 1)Ez(Z

k−1
t )

+
k(k − 1)

ν − 1
(1 + ρ2)νθEz(Z

k−2
t ).

In paticular we obtain for k = 1

∂tEz(Zt) = −θEz(Zt)

and for k = 2

∂tEz(Z
2
t ) = (−2θ +

2θ

ν − 1
)Ez(Z

2
t ) +

4ρν
1
2

ν − 1
Ez(Zt) +

1 + ρ2

ν − 1
2νθ.
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Now we can read off A(β) and g(β) from (6.61)

A(β) =

(
−θ 0
4ρν

1
2

ν−1
−θ(2ν−4

ν−1
)

)
,

A−1(β) =
ν − 1

θ2(2ν − 4)

(
−θ(2ν−4

ν−1
) 0

−4ρν
1
2

ν−1
−θ

)

and

g(β) =

(
0

1+ρ2

ν−1
2νθ

)
.

To gain the solution we just need to calculate

Ez(Zt) = etA(β)Z0 + A(β)−1(etA(β) − I)g(β). (6.63)

Therefore we need etA(β) =
∞∑
i=0

(tA(β))i

i!
. In order to do so we need the eigenvalues of tA(β),

which are given in this case by λ1 = −tθ and λ2 = −tθ 2ν−4
ν−1

, and their eigenvectors e1 and

e2, since tAel = λlel and (tA)kel = λkl el it follows that etAel = eλlel for l = 1, 2. We get
the eigenvectors with simple calculation to be

e1 =

(
1

4ρν
1
2

3−ν

)
and e2 =

(
0

4ρν
1
2

3−ν − z

)
.

Now we can express Z0 =

(
z
z2

)
with e1 and e2 in the following way

Z0 = z(e1 − e2).

With this information we can gain the first term of (6.63)

etA(β)Z0 =

(
ze−θt

z 4ρν
1
2

3−ν e
−θt + z2e−θt

2ν−4
ν−1 − z 4ρν

1
2

3−ν e
−θt 2ν−4

ν−1

)
.

Similarly we get for the second term in (6.63)(
0

(1−ρ2)ν
ν−2

(1− e−tθ
2ν−4
ν−1 )

)
.

With these information we get

Ez(Zt) =

(
ze−tθ

e−
2ν−4
ν−1

θtz2 + 4γν
1
2

ν−3

(
e−θt − e−

2ν−4
ν−1

θt
)
z + (1+γ2)ν

ν−2
(1− e−

2ν−4
ν−1

θt)

)

which is the same result as in Example 4.6 in Chapter 4.
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∆

Example 6.5. If we assume a process of the following form

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θ(aX2

s + bXs + c)dWs +
Nt∑
n=1

JnXτn− (6.64)

where J is i.i.d. exponential distributed with a paramtere ψ ≥ 1 and X0 = x. Since the
kth moment of an exponential distributed random variable is known to be E(Jk) = k!

ψk ,

thus (6.3) is equal to
λEFXτn−

(JknX
k
τn−) = αk,kX

k
τn− ,

i.e. αk,k = λ k!
ψk and αj,k = 0 for j 6= k. Therefore we get

∂sEx(X
k
s ) =Ex

(
b(Xs)kX

k−1
s + σ(Xs)

2k(k − 1)Xk−2
s +

k∑
j=1

(
k
j

)
αj,jX

k
s−

)
=Ex

(
b(Xs)kX

k−1
s + σ(Xs)

2k(k − 1)Xk−2
s + βkX

k
s−

)

with βk =
k∑
j=1

(
k
j

)
αj,j. Furthermore we assume that b(Xs) = −θ(Xs − µ),

σ(Xs) =
√

2θ(aX2
s + bXs + c) and X0 = x. Then we get

∂sE(Xk
s ) =(βk − θk + 2θk(k − 1)a)Ex(X

k
s ) + (θkµ+ 2bθk(k − 1))Ex(X

k−1
s )

+ 2θck(k − 1)Ex(X
k−2
s )).

Now we can take the same approach as in the example above. We get for k = 1

∂sEx(Xs) = (β1 − θ)Ex(Xs) + θµ

and for k = 2

∂sEx(X
2
s ) = (β2 − 2θ + 4aθ)Ex(X

2
s ) + (4bθ − 2µθ)Ex(Xs) + 4θc

and then we gain

A(β) =

(
β1 − θ 0

4bθ − 2µθ β2 − 2θ + 4aθ

)
,

g(β) =

(
θµ
4cθ

)
and

A(β)−1 =
1

(β2 − 2θ + 4aθ)(β1 − θ)

(
β2 − 2θ + 4aθ 0
−4bθ + 2µθ β1 − θ

)
.
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The eigenvalues of tA(β) are then λ1 = (β1− θ)t and λ2 = (β2− 2θ+4aθ)t. Then we gain
with the same method as in the example before

etA(β)X0 =

(
xeλ1

dx(eλ1 − eλ2) + x2eλ2

)
where d := t(2µθ−4bθ)

λ1−λ2
and

(etA(β) − I)g(β) =

(
θµ(eλ1 − 1)

dθµ(eλ1 − eλ2)− 4θc(eλ2 + 1)

)
.

Now we finally get

Ex(Xt) = xeλ1 +
t

λ1

θµ(eλ1 − 1)

and

Ex(X
2
t ) =dx(eλ1 − eλ2) + x2eλ2

− θt

λ2

(
2tθµ

λ1

(eλ1 − 1)(2b− µ)− dµ(eλ1 − eλ2)− 4c(eλ2 − 1))

)
.

∆

6.4 The generator and eigenfunctions

We can now get the new generator from our thoughts in the last section. We already
mentioned this generator in equation (6.57). Now we want to find eigenfunctions for those
processes, i.e. a function f and a positive real number λ such that

Af(x) = −λf(x)

with Af(x) given by

Af(x) = b(x)f ′(x) +
1

2
σ(x)2f ′′(x) +

∫
R
λ(f(x+ g(y, x))− f(x))Fx(dy).

If we consider f to be polynomial then we can see that this generator also maps polynomi-
als into polynomials. This is ensured by the assumption (6.3), because if f is polynomial,
so is f(x+ g(y, x))− f(x) and (6.3) ensures that the intergral in (6.57) is again a polyno-
mial. Since the first two terms of (6.57) are also polynomials, we get a polynomial after
all.

If we consider fn(x) =
n∑
i=0

pn,ix
i with pn,n = 1, then we get

fn(x+ g(y, x))− fn(x) =
n∑
i=0

pn,i(x+ g(y, x))i −
n∑
i=0

pn,ix
i

=
n∑
i=0

pn,i

i∑
k=0

(
i
k

)
xi−kg(y, x)k −

n∑
i=0

pn,ix
i

=
n∑
i=0

pn,i

i∑
k=1

(
i
k

)
xi−kg(y, x)k
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and therefore we obtain with (6.3)∫
R
λ(fn(x+ g(y, x))− fn(x))Fx(dy) = λ

n∑
i=0

pn,i

i∑
k=1

(
i
k

)
xi−kEFx(g(y, x)

k)

=
n∑
i=0

pn,i

i∑
k=1

(
i
k

)
xi−k

k∑
j=0

αj,kx
j

=
n∑
i=0

i∑
k=1

k∑
j=0

pn,i

(
i
k

)
αj,kx

i−k+j.

This last term is a polynomial of the maximum order of n. With this information we
gather the equation

−λn
n∑
i=0

pn,ix
i =− θ(x− µ)

n∑
i=0

ipn,ix
i−1 + θ(ax2 + bx+ c)

n∑
i=0

i(i− 1)pn,ix
i−2

+
n∑
i=0

i∑
k=1

k∑
j=0

pn,i

(
i
k

)
αj,kx

i−k+j

=
n∑
i=0

θi(a(i− 1)− 1)pn,ix
i +

n∑
i=0

θi(b(i− 1) + µ)pn,ix
i−1

+
n∑
i=0

θci(i− 1)pn,ix
i−2 +

n∑
i=0

i∑
k=1

k∑
j=0

pn,i

(
i
k

)
αj,kx

i−k+j

=−
n∑
i=0

aipn,ix
i +

n−1∑
i=0

bi+1pn,i+1x
i +

n−2∑
i=0

ci+2pn,i+2x
i

+
n∑
i=0

i∑
k=1

k∑
j=0

pn,i

(
i
k

)
αj,kx

i−k+j (6.65)

with ai := θi(1− a(i− 1)), bi := θi(b(i− 1) + µ) and ci := θci(i− 1). It is not surprising,
that ai, bi and ci are defined in the same way as in Section 4.3. Then quation (6.65) is
equivalent to

n∑
i=0

(ai − λn)pn,ix
i −

n−1∑
i=0

bi+1pn,i+1x
i −

n−2∑
i=0

ci+2pn,i+2x
i =

n∑
i=0

i∑
k=1

k∑
j=0

pn,i

(
i
k

)
αj,kx

i−k+j.

(6.66)

Since it is easy to gather information about the coeffcients of the polynomial from the left
side of the equation (6.66), the right side causes some inconvenience. Therefore we shall



CHAPTER 6. PEARSON DIFFUSIONS WITH JUMPS 57

keep on simplifing the left side and we gain

n∑
i=0

i∑
k=1

k∑
j=0

pn,i

(
i
k

)
αj,kx

i−k+j =
n∑
i=0

i∑
k=1

k∑
l=0

pn,i

(
i
k

)
αk−l,kx

i−l

=
n∑
i=0

i∑
k=1

i∑
r=i−k

pn,i

(
i
k

)
αk−i+r,kx

r

=
n∑
i=0

pn,i

i∑
r=0

xr
i∑

k=(i−r)∨1

(
i
k

)
αk−i+r,k

=
n∑
i=0

pn,i

i∑
r=0

xrβr,i

=
n∑
i=0

xi
n∑
r=i

pn,rβi,r

where

βr,i =
i∑

k=(i−r)∨1

(
i
k

)
αk−i+r,k (6.67)

and (i − r) ∨ 1 = max{(i − r), 1}. If i = r, we denote βr := βr,r =
r∑

k=1

(
r
k

)
αk,k. Then

we finally get that (6.66) is equivalent to

n∑
i=0

(ai − λn)pn,ix
i −

n−1∑
i=0

bi+1pn,i+1x
i −

n−2∑
i=0

ci+2pn,i+2x
i =

n∑
i=0

xi
n∑
r=i

pn,rβr,i. (6.68)

Then we get the eigenvalue λn by taking a look at the highest order n (remember that
we assumed pn,n = 1)

λn = an − βn = an −
n∑
k=1

(
n
k

)
αk,k. (6.69)

We get for 0 ≤ j < n

(aj − λn)pn,j − bj+1pn,j+1 − cj+2pn,j+2 =
n∑
i=j

pn,iβj,i

which is equivalent to

pn,j =

bj+1pn,j+1 + cj+2pn,j+2 +
n∑

i=j+1

pn,iβj,i

aj − βj − λn
. (6.70)

In the case of Pearson diffusion with jumps, can we derive a similar property as for those
without jumps as mentioned in Proposition 4.5.
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Proposition 6.6. Let h be an eigenfunction to the eigenvalue λ, then under the assump-
tion that

Mt :=

∫ t

0

σ(Xs)f
′(Xs)dWs +

∫ t

0

∫
R
Sys Ñ (ds, dy) <∞,

is a true martingale, it holds that

E(h(Xt)|X0 = x) = eλt.

Proof. The proof is analogue to the proof of Proposition 4.5. We take a look at the process
Yt = eλth(Xt) and apply the Itô formula like we did in the Section 6.3. Then we get the
equation eλth(Xt) = h(X0) +

∫ t
0
MsdWs where Mt is martingale with M0 = 0 by using

the property of the eigenfunction. Then we gain E(eλth(Xt)|X0 = x) = h(X0) which is
equivalent to the assumption in the proposition.

With this last proposition we get like in the jumpless case, since the eigenfunction is
again a polynomial with pn,n = 1,

E(Xn
t |X0 = x) = Ex(X

n
t ) = e−λnt

n∑
i=0

pn,ix
i −

n−1∑
i=0

pn,iEx(X
i
t). (6.71)

The conditional expectation is for any fixed t a polynomial of the order n in x with
coefficients which are linear combinations of 1, e−λ1t, . . . , e−λnt. Then we can derive that

Ex(X
n
t ) =

n∑
i=0

qn,jx
j =

n∑
j=0

n∑
l=0

qn,j,le
−λltxj (6.72)

with qn,j,n = pn,j and qn,j,l = −
∑n−1

k=l pn,kqk,j,l for l = 0, . . . , n− 1. Then we derive for the
first two moments

Ex(Xt) = e−λ1tx+ p1,0(e
−λ1t − 1) (6.73)

and

Ex(X
2
t ) =e−λ2tx2 + (p2,1e

−λ2t − p2,1e
−λ1t)x

+ p2,0(e
−λ2t − 1)− p2,1p1,0(e

−λ1t − 1). (6.74)

Example 6.7. Let us assume a process of the following form

Xt = X0 −
∫ t

0

θ(Xs − µ)ds+

∫ t

0

√
2θdWs +

Nt∑
n=1

JnXτn− (6.75)

where Jn is i.i.d. with an exponential distribution with the parameter ψ ≥ 1 and X0 =
x > 0. Further we consider that P (Xt > 0) = 1 fo all t ∈ R.We get with g(y, x) = yx,
that

|g(y, x1)− g(y, x2)| = |y(x1 − x2)| = |y||x1 − x2|
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and since ∫
R
|y|2f(y)dy <∞,

where f ∼ exp(ψ) and thus the process satisfies the global Lipschitz condition (6.28).
With the Example 6.1 and w(x) = x we gain that there exists a unique solution to this
particular process. Furthermore it is well known, that the kth moment of an exponential
distributed r.v. is k!

ψk and therefore we get

λEFXt−
((JNtXt−)k) = λ

k!

ψk
Xk
t−,

i.e. αk,k = λ k!
ψk and αj,k = 0 for j 6= k. Then we get the eigenvalue with equation (6.69),

i.e.

λn = an − βn = θn(2− n)− λ
n∑
k=1

(
n
k

)
k!

ψk

and further it is worth to mention, that βr,i = 0 if r 6= i. Now it is possible to write a
recursive formula for the parameters of the eigenfunction. Thus we gather

pn,j =
bj+1pn,j+1 + cj+2pn,j+2

aj − βj − λn

=
θ(j + 1)µ

θj(2− j)− βj − (an − βn)
pn,j+1

=
θjµ

θ(j(2− j)− n(2− n))− (βj − βn)
pn,j+1

for 0 ≤ j < n. Then we can calculate the first twoconditional moments with (6.73) and
(6.74). We get

p1,0 =
θµψ

λ− θψ
,

p2,0 =
θµψ2

λψ + 2λ

and

p2,1 =
θµψ2

θψ2 + 2λ
.

Then the first two moments are

Ex(Xt) = e−λ1tx+
θµψ

λ− θψ
(e−λ1t − 1)

and

Ex(X
2
t ) = e−λ2tx2 + (

θµψ2

θψ2 + 2λ
e−λ2t − θµψ2

θψ2 + 2λ
e−λ1t)x

+
θµψ2

λψ + 2λ
(e−λ2t − 1)− θµψ2

θψ2 + 2λ

θµψ

λ− θψ
(e−λ1t − 1)

with λ1 = θ − λ
ψ

and λ2 = 2θ − ( λ
ψ
− 2λ

ψ2 ).
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∆

Example 6.8. Let us extend Example 4.6 in Chapter 4. Let us assume again that
g(Jn, Xτn−) = JnXτn− and that Jn is i.i.d. Beta distributed with the parameters p, q > 0.
Then we gain a process of the form

dZt = −θZtdt+

√
2θ(ν − 1)−1(Z2

t + 2ρν
1
2Zt + (1 + ρ2)ν)dWt +

Nt∑
n=1

JnXτn−

and X0 = x > 0. With the assumption P (Xt > 0) = 1 for all t ∈ R we gain like in
the previous example, that this process satisfies the global Lipschtiz condition (6.28) and
that there exists a unique solution to this process. The characteristic function of the beta
distribution is given by

φ(t) =
∞∑
k=0

Γ(p+ k)Γ(p+ q)

Γ(p)Γ(p+ q + k)

iktk

k!

and due the fact that E(xl) = φl(0)
il

and Γ(a+ k) = (k − 1)!Γ(a) for k ∈ N, we gather the
kth moment of the beta distribution to be

E(Xk) =
k−1∏
i=0

p+ i

p+ q + i
.

Then (6.3) is equivalent to

λEFXt−
(JNtX

k
t−) = λ

k−1∏
i=0

p+ i

p+ q + i
Xj
t− = αk,kX

j
t−

where αk,k = λ
k−1∏
i=0

p+i
p+q+i

and αl,k = 0 if l 6= k. Thus we get the nth eigenvalue by using

(6.69)

λn = θn(1− n− 1

ν − 1
)−

n∑
k=1

(
n
k

)
αk,k

and the coefficient with (6.70)

pn,j =
bj+1pn,j+1 + cj+2pn,j+2

aj − βj − λn

=
2θρ

√
ν j(j+1)

(ν−1)
pn,j+1 + θ(1 + ρ2)ν (j+1)(j+2)

ν−1
pn,j+2

θj(1− j−1
ν−1

)− θn(1− n−1
ν−1

)−
∑j

k=1

(
j
k

)
αk,k +

∑n
k=1

(
n
k

)
αk,k

for 0 ≤ j < n. Then we again can calculate the first twoconditional moments with (6.73)
and (6.74). We get

p1,0 = p2,0 = 0
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and

p2,1 = 4
θρ

√
ν

ν−1

θ(1− 2ν−2
ν−1

)− λ p(p+1)
(p+q)(p+q+1)

.

Then the first two moments are

Ex(Xt) = e−λ1tx

and

Ex(X
2
t ) = e−λ2tx2+

(
4

θρ
√
ν

ν−1

θ(1− 2ν−2
ν−1

)− λ p(p+1)
(p+q)(p+q+1)

e−λ2t

− 4
θρ

√
ν

ν−1

θ(1− 2ν−2
ν−1

)− λ p(p+1)
(p+q)(p+q+1)

e−λ1t

)
x

with λ1 = θ − λ p
p+q

and λ2 = 2θ(ν−2
ν−1

)− λ p
p+q

(1 + p+1
p+q+1

).

∆



Appendix

Martingale theory

In this section we want to state briefly some important conclusions from the martingale
theory. We assume a probability space (Ω,F , P ) and an increasing sequence of σ-algebras
(Fn)n≥0, having the property Fn ⊂ Fn+1 ⊂ F for all n ≥ 0.

Definition 1. Let (Xn)n≥0 ⊂ Ω be a sequence of random variables. We call (Xn)n≥0 a
martingale if

(i) E(|Xn|) <∞ for all n, i.e. if Xn is integrable;

(ii) Xn is Fn measurable for all n;

(iii) E(Xn|Fm) = Xm for all m ≤ n.

Example 2. Let (Xn)n≥0 be i.i.d. ±1 random viarables with p = P (X1 = 1) and S0 =

0, Sn =
n∑
i=1

Xi for n > 0 is the corresponding random walk. Then Yn = Sn − n(2p − 1) =

Sn − E(Sn) is a martingale, because

E(Yn − Yn−1|Fn−1) = E(Xn − (2p− 1)|Fn−1)

= E(Xn|Fn−1)− (2p− 1)

= E(Xn)− (2p− 1)

= 0

which is equivalent to
E(Yn|Fn−1) = E(Yn−1|Fn−1) = Yn−1

and the other two properties are obvious.

∆

Now we want to define a time continuous martingale, which we need later on.

Definition 3. Let Xt be a process and Ft = σ{Xs|s ≤ t} for t ≥ 0. We call Xt a time
continuous martingale if

(i) E(|Xt|) <∞ for all t ≥ 0, i.e. if Xt is integrable;

(ii) Xt is Ft measurable;
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(iii) E(Xt|Fs) = Xs for all s ≤ t.

Example 4. Let Nt be a Poisson process with a parameter λ > 0. Further we define the
compensated Poisson process Ñt = Nt − λt. Then Ñt is a martingale. It is obvious that
Ñt is Ft measurable and further we know that

E(Ñt) = E(Nt − λt) = E(Nt)− λt = 0.

Then we get that for all s ≤ t

E(Ñt − Ñs|Fs) = E(Nt −Ns|Fs)− λ(t− s)
ind.
= E( Nt −Ns︸ ︷︷ ︸

∼Poi(λ(t−s))

)− λ(t− s) = 0

and therefore is Ñt a martingale. It can also be proved that Ñ 2
t − λt is a martingale.

∆

Definition 5. A random variable T : Ω → N is called stopping time if {T ≤ n} ∈ Fn for
all n. Futher we call a stopping time bounded by a constant c if P (T ≤ c) = 1.

It is equivalent to show {T = n} ∈ Fn instead of {T ≤ n} ∈ Fn, because

{T = n} = {T ≤ n}︸ ︷︷ ︸
Fn

∪{T ≤ n− 1}c︸ ︷︷ ︸
Fn−1⊂Fn

∈ Fn.

If T is a finite stopping time, we denote by XT (ω) = XT (ω)(ω) the random variable with
the value Xn whenever T = n.

Theorem 6. (Stopping theorem)
Let T be a c bounded stopping time and (Xn)n≥0 a martingale. Then E(XT ) = E(X0).

Proof. Without loss of generality we assume that c is an integer. Therefore we can write

XT =
∞∑
n=0

Xn(ω)1{T=n} =
c∑

n=0

Xn(ω)1{T=n}.

With the fact that {T = n} ∈ Fn, we gain

E(XT ) = E(
c∑

n=0

Xn1{T=n}) =
c∑

n=0

E(Xn1{T=n})

=
c∑

n=0

E(E(Xc|Fn)1{T=n})

=
c∑

n=0

E(E(Xc1{T=n}|Fn))

=
c∑

n=0

E(Xc1{T=n}) = E(Xc

c∑
n=0

1{T=n})

= E(Xc) = E(E(Xc|F0))

= E(X0).
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Now let us assume that (Yn)n≥0 is an adaptive sequence of i.i.d. random viarables with

m = E(Y1), σ2 = var(Y1) <∞

and Yn+1 is independent to Fn for all n ≥ 0. We define the partial sum

S0 = 0, Sn = Y1 + . . . Yn, n ≥ 1.

Theorem 7. (Wald’s identity)
Let T be a stopping time with E(T ) <∞. Then ST ∈ L1 and E(ST ) = mE(T ).
Further, if m = 0 then E(S2

T ) = σ2E(T ) or if T independent from (Yn)n≥0 we get
Var(ST ) = σ2E(T ) +m2Var(T ).

Proof. Let us take a look at the following process

Xn = Sn − nm, n ≥ 0, (6.76)

then Xn is a martingale (see Example 2). Since T does not have to be bounded, we can
achieve it by taking an integer k and by examing (T ∧ k) = min(T, k). If we now apply
the stopping theorem (Theorem 6), we get

E(ST∧k) = mE(T ∧ k) + E(XT∧k)︸ ︷︷ ︸
E(X0)=0

= mE(T ∧ k) (6.77)

for every stopping time T . The right side of (6.77) converges with the theorem about the
monoton convergence to mE(T ). In the case where T <∞ P-a.s., ST∧k converges a.s. to
ST . If we can show that (ST∧k)k≥0 has a integrable major then we get E(ST ) = mE(T )
with theorem of Lebesque.

If we define Ȳi = |Yi|, i ∈ N, S̄0 = 0, S̄n =
n∑
i=1

Ȳi, n ≥ 0, the Ȳi, i ∈ N are i.i.d. with

m̄ = E(|Yi|) and analogue to above we can derive

E(S̄T∧k) = m̄E(T ∧ k), k ≥ 0.

Now we can apply the theorem of monoton convergence onto both sides. Especially we
derive from E(T ) <∞ that E(S̄T ) <∞, i.e. S̄t ≥ |ST∧k| is the integrable major we were
looking for. So far we have shown that ST ∈ L1 and E(ST ) = mE(T ).
Let us examine now the martingale

Mn = X2
n − nσ2.

It is a martingale since

E(Mn+1 −Mn|Fn) = E((Yn+1 −m)2)− σ2 + 2Xn(Yn+1 −m)|Fn) = 0

and the other two properties are obvious. From E(T ) < ∞ we can consider analogue to
above that

σ2E(T ) = E(X2
T )− E(MT )︸ ︷︷ ︸

=0

= E((ST − Tm)2) = E(S2
T )− 2mE(TST ) +m2E(T 2)
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For m = 0 we get E(S2
T ) = σ2E(T ).

In the case where T is independent from (Yi)i≥1, we get

E(TST ) =
∞∑
i=1

iE(Si1{T=i})︸ ︷︷ ︸
imP (T=i)

= mE(T 2)

and therefore

Var(ST ) = E(S2
T )− (E(ST ))2

= σ2E(T ) +m2E(T 2)− (mE(T ))2

= σ2E(T ) +m2Var(T ).

There exist several theorems about the convergence of martingales. We just want to
quote the probably most important ones.

Theorem 8. (Martingale Convergence Theorem)

a) Let (Xn)n≥1 be a martingale and suppose (Xn)n≥1 is a uniformly integrable collection
of r.v.s. Then

lim
n→∞

Xn = X∞

exists a.s., X∞ is in L1 and Xn converges to X∞ in L1.
Moreover Xn = E(X∞|Fn).

b) Conversely let Y ∈ L1 and consider the martingale Xn = E(Y |Fn). Then (Xn)n≥1

is a uniformly integrable collection of r.v.s.

Proof. See Jacod and Protter (2004), pages 231 to 232.

There also exists a central limit theorem for martingales.

Theorem 9. (Martingale Central Limit Theorem)
Let (Xn)n≥1 be a sequence of random variables satisfying

(i) E(Xn|Fn−1) = 0

(ii) E(X2
n|Fn−1) = 1

(iii) E(|Xn|3|Fn−1) ≤ K <∞.

Let Sn =
n∑
i=1

Xi and S0 = 0. Then lim
n→∞

1√
n
Sn = Z, where Z ∼ N (0, 1) and where the

convergence is in distribution.

Proof. See Jacod and Protter (2004), pages 235 to 237.

We shall also briefly discuss a very important property for submartingales.
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Definition 10. Let (Xn)n≥0 ⊂ Ω be a sequence of random variables. We call (Xn)n≥0 a
submartingale (supermartingale), if

(i) E(|Xn|) <∞ for all n, i.e. if Xn is integrable;

(ii) Xn is Fn measurable for all n;

(iii) E(Xn|Fm) ≥ Xm (E(Xn|Fm) ≤ Xm) for all m ≤ n.

For the proof of Theorem 6.2 we need the following theorem.

Theorem 11. (Doob’s martingale inequality)
If Xt with t ≥ 0 is a positive submartingale then, for any p > 1

E( sup
0≤s≤t

Xp
s ) ≤ qpE(Xp

t )

where 1
p

+ 1
q

= 1.

Proof. See Dellacherie and Meyer (1980), page 18.

Futher we briefly define a local martingale and mention one important proporsition.

Definition 12. Let τn be a stopping time for all n ∈ N with τn →∞. We call a process
Mt a local martingale if

M τn
t = Mt∧τn

is a matrtingale.

Proposition 13. Let Mt be a bounded local martingale, then Mt is a true martingale.

Proof. Let (τn) be a sequence of stopping times with τn → ∞ for n → ∞. For s ≤ t we
know that ∫

F

Mτn∧sdP =

∫
F

Mτn∧tdP,

for all F ∈ Fs. Since Mτn∧s →Ms, Mτn∧t →Mt a.s. for n→∞ and sups |Mτn∧s| ≤ C, we
gain with the dominated convergence theorem∫

F

MsdP =

∫
F

lim
n→∞

Mτn∧sdP

= lim
n→∞

∫
F

Mτn∧sdP

= lim
n→∞

∫
F

Mτn∧tdP

=

∫
F

lim
n→∞

Mτn∧tdP

=

∫
F

MtdP

for all F ∈ Fs, i.e. E(Mt|Fs) = Ms. The fact that Mt is Ft-measurable follows from
the definition of Ft = σ{Xs|s ≤ t}. You can show E(|Mt|) < ∞ with the dominated
convergence theorem as above.
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Stochastic integration

In this very short section we want to announce a few very important statements from the
theory of stochastic integration. It is our aim to define a stochatical integral

∫ t
0
HsdXs for

some random variable Xt.

Example 14. A typical example are trading earnings. Assume that (Xt)t∈N, (Ht)t∈N
timediscrete processes, where

Xt : stock prize at time point t

Ht : the number of stocks at time point t.

Then we get the trading earnings at time point t to be Ht (Xt −Xt−1)︸ ︷︷ ︸
=:∆Xt

and the total

earnings in the time periode from 0 to t are
t∑

s=0

Hs∆Xs.

The aim is to give a definition for the total earnings if we assume (Xs)s∈R+ , (Hs)s∈R+ .

∆

To ease of notation we writeWt for the standard Brownian motion (or standard Wiener
process) at time point t. For reasons of simplicity we consider a time periode [0, T ] with
T ∈ R+, instead of R+. Further we define 0 = t0 < t1 < · · · < tp = T .

Definition 15. a) A process (Ht)t∈[0,T ] is called a simple process, if it is of the form

Ht(ω) =

p∑
i=1

φti(ω)1(ti−1,ti](t),

where φi are Fti−1
-measurable, bounded random variables.

b) For simple processes we define the stochastic intergal I(
I(H)

)
t∈[0,T ]

=
(∫ t

0

HsdWs

)
t∈[0,T ]

by

I(H)t =

p∑
i=1

φi(Wti∧t −Wti−1∧t)

=
k∑
i=1

φi(Wti −Wti−1
) + φk+1(Wt −Wtk) for t ∈ (tk, tk+1].

This integral has got several properties. A very important one is given by the next
theorem.

Theorem 16. Let (Ht)t∈[0,T ] be a simple process and φn are Ftn−1 measurable random

variables, then
(
I(H)

)
t∈[0,T ]

is a well defined, continuous martingale.
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Proof. The integral is well defined due to the fact that the representation does not de-
pend on t0, . . . , tp. The process is adapted, because Wt is adaptive. The continuity and
integrability are also clear. Therefore it is only left to show that E(I(H)t|Fs) = I(H)s for
s ≤ t. Without loss of generality we assume that s, t ∈ {t0, . . . , tp}, otherwise add more
supporting points. Since E(E(X|Ft)|Fs) = E(X|Fs) for s ≤ t, we deduce

E(I(H)tn|Ftn−2) = E(E(I(H)tn|Ftn−1)|Ftn−2) = E(I(H)tn−1|Ftn−2).

It is only left to show that E(I(H)tn|Ftn−1) = I(H)tn−1 .

E(I(H)tn|Ftn−1) =E(I(H)tn−1 + φn(Wtn −Wtn−1)|Ftn−1)

=I(H)tn−1 + φn (E(Wtn|Ftn−1)︸ ︷︷ ︸
=Wtn−1

−Wtn−1)

︸ ︷︷ ︸
0

=I(H)tn−1 .

Now we want to extend the class of processes which are integrable with respect to the
Wiener process. If we take a closer look at

H := {(Ht)t∈[0,T ]|(Ht) is measurable, adaptive and E(

∫ T

0

H2
sds) <∞},

we can prove that there exists an explicit mapping

J : H → {(Xt)t∈[0,T ]|X is a continuous martingale}

where J(H) = I(H) exept a nullset independent of t for all simple processes H. For
H ∈ H we call (

∫ t
0
HsdWs)t∈[0,T ] := (J(H)t)t∈[0,T ] stochastic integral of H with respect to

W .
It is very important to point out that if X ∈ H, we know that

∫
XsdWs is a martingale.

It is still possible to expand the class of processes that are integrable with respect to the
Wiener process. We define this class as following

H̃ := {(Ht)t∈[0,T ]|(Ht) is measurable, adaptive and

∫ T

0

H2
sds <∞ a.s.}.

In this case there exists an explicit mapping

J̃ : H̃ → {(Xt)t∈[0,T ]|X is a continuous process},

where J̃(H) = I(H) exept a nullset independent of t for all simple processes H. Again we
call

∫ t
0
HsdWs := J̃(H)t stochastic integral of H with respect to W for all H ∈ H̃.

It is important to point out again that H̃ is usually not a martingale, but it is a local
martingale.
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Itô processes and the Itô formula

In the previous section we took a look at processes which are integrable with respect to
the standard Brownian motion process (which we still denote with Wt). Under certain
conditions we will find some process (Xt)t∈[0.T ] with the property that they define an
integral

∫
LsdXs for some process L.

Definition 17. Let (Ht)t∈[0.T ], (Kt)t∈[0.T ] be adaptive, measurable processes with the prop-

erties
∫ T

0
|Hs|2ds < ∞,

∫ T
0
|Ks|ds < ∞ almost surely. Further X0 is a F0-measurable

random variable. We call a process Itô process if the process is of the following form

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdWs. (6.78)

We sometimes use a different notation for (6.78)

dXs = Ksds+HsdWs

which is the same since ∫ t

0

dXs︸ ︷︷ ︸
=Xt−X0

=

∫ t

0

Ksds+

∫ t

0

HsdWs.

The processes Ks and Hs of a Itô process are explicit. Now we are able to define a
stochastic integration with respect to an Itô process.

Definition 18. Let (Xt)t∈[0,T ] be an Itô process with (Kt)t∈[0,T ] and (Ht)t∈[0,T ] like in
Definition 17. Further we assume that (Lt)t∈[0,T ] is an adaptive measurable process with∫ T

0
|LsKs|ds <∞ and

∫ T
0

(LsHs)
2ds <∞ almost surly. Then we can define the stochastic

integral with respect to the Itô process (Xt)t∈[0,T ]∫ t

0

LsdXs :=

∫ t

0

LsKsds+

∫ t

0

LsHsdWs.

If we want to go any further in the theory of Itô processes we need to define the
quadratic variation process of X and the covariation process of X and Y.

Definition 19. Let Xt = X0 +
∫ t

0
Ksds +

∫ t
0
HsdWs and Yt = Y0 +

∫ t
0
K̆sds +

∫ t
0
H̆sdWs

be Itô processes.

1. The process ([X,X]t)t∈[0,T ] with [X,X]t :=
∫ t

0
H2
sds is called quadratic variation

process of X. Another notation is 〈X,X〉 .

2. The process ([X, Y ]t)t∈[0,T ] with [X, Y ]t :=
∫ t

0
HsH̆sds is called covariation process

of X and Y. Another notation is 〈X, Y 〉 .

The following theorem is called the Itô formula and it plays an important role if you
deal with stochastic integration.
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Theorem 20. (Itô formula)
Let (Xt)t∈[0,T ] be an Itô process and f : R2 → R a twice continuously differentiable func-
tion. Then (f(t,Xt))t∈[0,T ] is a Itô process of the form

f(t,Xt) = f(0, X0) +

∫ t

0

∂1f(s,Xs)ds+

∫ t

0

∂2f(s,Xs)dXs +
1

2

∫ t

0

∂22f(s,Xs)H
2
sds.

Proof. You can proof it by using the Taylor expansion and the theorem about the
quadratic variation of the Brownian motion.

Example 21. Assuming that Xt = Wt and f(x) = x2, we can derive with Theorem 20

W 2
t = W 2

0︸︷︷︸
=0

+

∫ t

0

2WsdWs +
1

2

∫ t

0

2ds

which leads to ∫ t

0

WsdWs =
1

2
(W 2

t − t).

∆

As we used it in Chapter 6 there also exists an Itô formula for diffusions with jumps.
We call Xt a semimartingale if it has an composition of the form

Xt = X0 +Mt + At

where At ∈ Θ and Mt is a local martingale. The set Θ is the set of processes Yt which are
Ft-measurable, right continuous with limits from the left, Y0 = 0 and have finite variation
in finite intervals e.g. a compounded Poisson process.

Theorem 22. (Itô formula with jumps)
Let Xt = (X1,t, . . . , Xk,t) be a k-dimensional semimartingale, and let f : Rk → R be a
twice continuously differentiable function. Then f(Xt) is a semimartingale, and

f(Xt) =f(X0) +
k∑
i=1

∫ t

0

∂f

∂xi
(Xs−)dXi,s +

1

2

k∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs−)d

〈
Xc
i , X

c
j

〉
s

+
∑
s≤t

(
f(Xs)− f(Xs−)−

k∑
i=1

∂f

∂xi
(Xs−)∆Xi,s

)
,

where Xc is the continuous martingale part of X.

Example 23. Let us consider the following SDE

dXt = Xt−dt+Xt−dWt +Xt−dNt, X0 = x0,

where Nt is a Poisson process that is independent of the standard Wiener process Wt. Let
us apply the Itô formula with jumps on Yt = ln(Xt) = f(Xt). Then we obtain

Yt = ln(Xt)

= ln(X0) +

∫ t

0

1

Xs−
dXs −

1

2

∫ t

0

1

X2
s−
X2
s−ds+

∑
s≤t

(ln(Xs)− ln(Xs−)− 1

Xs−
∆Xs).
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Since ∆Xs = Xs − Xs−, Xs = Xs− + ∆Xs and Nt the number of jumps in the interval
[0, t], we gain

ln(Xt) = ln(x0) +

∫ t

0

ds+

∫ t

0

dWs+

∫ t

0

dNt −
1

2

∫ t

0

ds+
Nt∑
j=1

(ln(2Xτj−)− ln(Xτj−)− 1)

= ln(x0) + t+Wt −
1

2
t+Nt +

Nt∑
j=1

(ln(2)− 1)

= ln(x0) +
1

2
t+Wt +Nt +Nt(ln(2)− 1)

= ln(x0) +
1

2
t+Wt +Nt ln(2)

and the solution for the SDE is

Xt = x0 exp(Wt +
1

2
t)2Nt .

Poisson integration

Now we want to define the integral with respect to a Poisson process and the integral
with respect to compensated Poisson random measure. For simplicity reason we consider
that the distribution of Jt is independent from the state of the process, i.e. J ∼ F .
Let us consider that Nt is a Poisson process with a parameter λ > 0 for t ≥ 0. We
have seen that the compensated Poisson process Ñt is a martingale (see example 4 in the
Appendix).

Definition 24. Let (S,A) be a measurable space (Ω,F , P ) be probability space. A ran-
dom measure M on (S,A) is a collection of random variables M(B) with B ∈ A such
that

(i) M(∅) = 0,

(ii) given any sequence (An, n ∈ N) of mutually disjoint sets in A,

M

(⋃
n∈N

An

)
=
∑
n∈N

M(An) a.s.

(iii) for each disjoint family (B1, . . . , Bn) in A, the random variables M(B1), . . . ,M(Bn)
are independent.

Further we say that we have a Poisson random measure if each M(B) has a Poisson
distribution whenever M(B) <∞.

As we defined in section 6 (equation (6.4)) we have that

Ψ((0, t]× A) =
Nt∑
n=1

1(Jn∈A) = #{0 ≤ s ≤ t|∆Js ∈ A}

71



is a Poisson random measure (especially A→ Ψ((0, t]×A) is a counting measre on B\{0}).
We call

Λ((0, t]× A) = λ

∫ t

0

∫
A

f(y)dyds = λt

∫
A

f(y)dy,

where f is a density function, as we defined in (6.8) a intensity measure.
Now we can define the Poisson integral. Let g be a Borel measureable function from R to
R, then we define the integral for any t > 0, ω ∈ Ω by∫

A

g(x)Ψ(t, dx)(ω) =
Nt∑
n=1

g(Jn)1{Jn∈A}(ω).

Note that each
∫
A
g(x)Ψ(t, dx) is a R-valued random variable and gives rise to a càdlàg

stochastic process as we vary t. Then we define for each t ≥ 0 and A the compensated
Poisson random measure by

Ñ (t, A) = Ψ(t, A)− Λ(t, A)

and therefore we define the compensated Poisson integral for g ∈ L1(A,Λ(1, A)), i.e. all g
with E(

∫
R |g(y)|f(y)dy) <∞, by∫

A

g(x)Ñ (t, dx) =

∫
A

g(x)Ψ(t, dx)−
∫
A

g(x)Λ(t, dx).

Theorem 25. Let g ∈ L1(A,Λ(1, A)) and t ≥ 0, then∫
A

g(x)Ñ (t, dx)

is a martingale.

Proof. With Ft = σ{Xs|s ≤ t} we get
∫
A
g(x)Ñ (t, dx) is Ft-measurable. Let us take a

look at

E
(∫

A

g(x)Ψ(t, dx)−
∫
A

g(x)Ψ(s, dx)|Fs
)

=E
( Nt∑
n=1

g(Jn)1{Jn∈A} −
Ns∑
n=1

g(Jn)1{Jn∈A}|Fs
)

=E
( Nt∑
n=Ns+1

g(J)1J∈A|Fs
)

=E
( Nt∑
n=Ns

g(J ∈ A)|Ns

)
=E
(
Nt −Ns|Ns

)
E
(
g(J ∈ A)|Fs

)
=E
(
Nt−s

)
E
(
g(J ∈ A)

)
=λ(t− s)E

(
g(J ∈ A)

)
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with s ≤ t and then at

E
(∫

A

g(x)Λ(t, dx)−
∫
A

g(x)Λ(s, dx)|Fs
)

= E
(
λ(t− s)

∫
A

g(x)f(x)dx|Fs
)

= E
(
λ(t− s)E(g(J ∈ A))|Fs

)
= λ(t− s)E

(
g(J ∈ A)

)
.

For s ≤ t we get then

E
(∫

A

g(x)Ñ (t, dx)−
∫
A

g(x)Ñ (s, dx)|Fs
)

= E
(∫

A

g(x)Ψ(t, dx)−
∫
A

g(x)Ψ(s, dx)|Fs
)

− E
(∫

A

g(x)Λ(t, dx)−
∫
A

g(x)Λ(s, dx)|Fs
)

= λ(t− s)E(g(J ∈ A))

− λ(t− s)E(g(J ∈ A))

= 0

and therefore we get

E(

∫
A

g(x)Ñ (t, dx)|Fs) =

∫
A

g(x)Ñ (s, dx).

Now we want to prove E(|
∫
A
g(x)Ñ (t, dx)|) <∞. We get for g ∈ L1(A,Λ(1, A)) that

E(|
∫
A

g(x)Λ(t, dx)|) = E(|λt
∫
A

g(x)f(x)dx|) ≤ λtE(

∫
a

|g(x)|f(x)dx) <∞

and

E(|
∫
A

g(x)Ψ(t, dx)|) = E(|
Nt∑
n=1

g(J)1J∈A|)

≤ E(|
Nt∑
n=1

g(J)|)

≤ E(
Nt∑
n=1

|g(J)|)

= λtE(|g(J)|)︸ ︷︷ ︸
<∞

<∞.

Then we gain with

|
∫
A

g(x)Ñ (t, dx)| ≤ |
∫
A

g(x)Ψ(t, dx)||+ |
∫
A

g(x)Λ(t, dx)|,

that

E(|
∫
A

g(x)Ñ (t, dx)|) <∞.
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