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Q̂(s̄, l̄, Ē) the estimated cumulative return probability
us the proportional usage of the credit limit
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Chapter 1

Introduction

1.1 Background

Major events such as the Asian crisis in 1997, the Russian default on short-term debt
in 1998, the downfall of the hedge fund Long-Term Capital Management in 1998 and
the disruption in payment systems following the World Trade Center attack in 2001, all
resulted in increased management’s attention to liquidity risk.

Liquidity risk is a secondary risk in the sense that its increase always follows one or
more spikes in other financial risks. For this reason, it is often called a consequential risk.
Usually a banker’s main function is to provide liquidity to the economy and not to gen-
erate a liquidity crisis. It is hard to imagine that a bank can have a liquidity problem
without having incurred severe losses due to market, credit or operational risk.

There are usually two ways for the bankers to survive during the liquidity crisis. One
way is to sell the available liquid securities (e.g. trade assets or involve in repurchase
(repo) market to create cash inflow, given that he or she is already an established repo
player). The other way refers to the committed lines at other banks, among which the
most important is the revolving credit line (RCL). With the credit line reserved, the
bank can draw any amount below the limit as the liquidity crisis attacks. Obviously the
bank who offers RCL should know, how large amount would be drawn from the commit-
ment limit (the liquidity requirement).

To estimate the liquidity requirement of the revolving credit lines, the research in re-
cent years has indicated that liquidity cost plays an important role (please refer to [Neu
et al., 2007, p. 146-169]). The higher the liquidity is reserved, the lower the liquidity risk
is, but the higher the liquidity costs. In other words, too low amount of reserved lines
may lead to short of liquidity in sudden crisis, but too high may lead to long-term rise of
liquidity cost. Thus the commitment line is regarded as a balance between the liquidity
cost and liquidity risk and the drawn amount is highly related to the market scenarios.
Apart from a liquidity cost model, we can also find models which attribute the usage of
revolving credit line to the demand of liquidity to fund unexpected investment opportu-
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CHAPTER 1. INTRODUCTION 2

nities [Spencer and Anthony, 1997, p.1331-1350], etc.

However, it is hard to identify what is the real purpose of the customer to draw the
loan, and therefore it is risky to model the behavior of liquidity requirement based on
the usage originated from certain purposes. When the market changes, the main original
reason to draw from a credit line may also change, and the model loses its accuracy. In
this diploma thesis, instead of considering the possible usage of credit loan that gives
rise to the liquidity requirement (like investment opportunity) or the possible factor that
confines the usage (like the liquidity cost), we build up our model in a statistical way.
In our framework, the start and return of a credit line is described by the probability to
draw a RCL and to return the drawn amount, which are referred to as draw and return
probability respectively. We estimate these probabilities from the empirical data in the
nearest past, and derive the expectation of usage in theory. In this way, the market sce-
narios as well as the different origin of the liquidity requirement are all reflected on the
draw and return probabilities, which are to be updated monthly. It will provide us with a
more flexible procedure for short-term control and prediction of the liquidity risk for the
bank.

1.2 Revolving Credit Line

Revolving credit line is a kind of credit loan product, where the borrower has the right
to draw any amount of loan within a maximal limit during a predetermined time period.
The difference between the revolving credit loan and the traditional loan is in:

1. Interest start date and interest end date
For a traditional loan, the start time of the loan is agreed upon before the loan
has taken place. On the opposite, for revolving credit line, the bank (and in most
cases the customers) are not aware when the loan will be drawn. What has been
compromised is a commitment period. During that period, the customer has the
right to draw repeatedly any amount of money at any time he or she likes.

2. Size of the credit line
For the ordinary credit product, the amount of loan is predetermined before the
loan is drawn. For a revolving credit loan, there does not exist a certain amount,
but only an upper limit (the credit line). Below the specific credit line limit, the
customer is allowed to draw a part or the complete amount, as he or she wants.

3. Credit regulation
For an ordinary credit loan product, the loan is given to the customer only once.
When the loan is returned, the contract is closed. For the revolving credit line, the
customer has the right to draw the credit loan again even if he or she has already
returned the loan from the last draw.

4. Term-out-option
Once the maturity of the loan is reached for a ordinary credit line, the customer
has to repay it. Otherwise the bank will regard the customer as default and exercise
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the corresponding procedures. For the RCL, the credit line usually contains a term-
out-option. That is the right to prolong the usage of credit loan for another year.
This option is only attached to short-term credit lines (with a commitment period
less than or equal to 1 year). For example, a customer has reserved a credit line
with maturity of 1 year. The line contains a term-out-option. Suppose the customer
draws part of the line in the 5-th month. In the 10-th month (two months before
maturity), if the customer can not return the loan before the maturity, he or she
can exercise the term-out-option, and inform the bank that he or she would like to
postpone the maturity to the 24-th month.

5. Renewal rule
The ordinary credit loan contract is a one time contract. If the current contract has
finished and the customer wishes to get another loan, he or she has to run the same
application process again, which is time consuming. In order to simplify the process
for qualified customers, the bank can exercise a renewal rule for the RCL. If the
bank regards the customer as qualified, the bank will roll over the new commitment
line. If the customer is not qualified, he or she will be eliminated from the customers
group. The criterium for the qualification is called the renewal-rule.

6. The fees
For the normal credit loan, the customer pays the fee in form of interest on the
amount of money borrowed over the usage period. It is constant and predetermined.
For RCL, the customer has two fees to cover. The first fee is the commitment
(obligation) fee. This fee is independent of the usage of the credit loan. The customer
has to pay the obligation fee as long as he or she has the RCL contract signed with
the bank. The level of obligation fee is related to the upper limit of the RCL. The
higher the limit is, the more the customer has to pay for the obligation fee. The
second fee is the interest (usage) fee. The interest rate is usually a daily or monthly
based interest rate. The bank starts charging the usage fee when a certain amount
of loan is drawn by the customer. The drawn loan amount multiplied by the daily
interest rate is called the usage fee for the loan for each day. If the usage exceeds
1 month, 3 months or more, the interest rate is to be changed with respect to the
length of the usage.

There are significant advantages of the revolving credit line for both bankers and customers
in comparison to ordinary loan. For the bankers, the application procedure of RCL is easier
than that of short term loans, which saves management costs. For customers, RCL has
a series of advantages that cannot be matched by traditional credit loan. As there is no
money borrowed, the customer pays a small obligation fee. When the demand of liquidity
rises, the draw of the loan is quick, efficient and the interest is counted flexibly per day.

1.3 Mathematical Modelling of a RCL

We suppose the bank has granted a number of credit lines to n customers. The customer
i has ni credit lines reserved. The j-th credit line of customer i has an upper limit of l ijt

(given in EUR) at time t. Then the total credit limit is
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Ft =
n∑

i=1

ni∑
j=1

l ijt .

Please note that the limit of a single credit line l ijt is not always constant but maybe
changed to 0 if the credit line is not renewed by the bank at maturity. Thus at every time,
the total limit Ft is also changing. The easiest way for the bank to cover the liquidity
requirement of the credit lines is to assign an amount of Ft aside at time t. However
according to empirical experience, not all the customers will fully draw their credit lines
simultaneously. If we assume that the proportional usage of the j-th credit line of i-th
customer at time t is U ij

t , the total loan drawn at time t

Ft =
n∑

i=1

ni∑
j=1

l ijU ij
t

is below the total credit limit

Ft ≤ Ft, ∀t ∈ {1, 2, ..., T} .

This means that the bank can use Ft − Ft for other usage (such as investment), which
will reduce its liquidity risk and increase profit. Our goal is to investigate the behavior
of Ft both in theory and through simulation. We first simulate the Ft using Monte Carlo
methods to get a brief overview of its characteristics and afterwards develop a theory to
explain the simulation results.

To determine the liquidity requirement Ft, with reference to [Duffy et al., 2005, p. 353-
369], the following questions are to be answered:

1. What is the credit rating of the customers in the current month?
The credit rating is regarded as a Markov process. The updated credit rating is the
basic information we need to study the liquidity requirement.

2. Whether the customer starts a credit line in the current month?
If a credit line is not yet in use, we need to decide whether the customer starts
the credit line in the current month. If he or she or she draws the loan, the drawn
amount contributes to the total liquidity requirement of the credit line group. The
draw decision is, according to our assumption, dependent on the credit rating of the
customer. Since the credit rating reflects the financial condition of the customer,
our assumption indicates in fact that the decision is dependent on the financial
condition of the customer.

3. Whether a customer decides to return a credit line in the current month?
If a credit line is in use, we need to know whether the loan will be returned in the
current month. If it is returned, the total liquidity requirement will decrease. The
return decision of the customer, according to our assumption, depends on his current
credit rating, the time when the loan starts and the time rest till the maturity. The
reason why the time also plays an important role in the return decision is that the
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longer the credit line is drawn, the heavier the interest is. So the customer should
take the time to maturity into consideration while making the return decision.

4. How large amount of loan is drawn?
Once the customer has decided to take the loan, next question is to determine the
amount of the loan to be drawn. The amount of money is determined by what is the
money used for. The purpose varies widely from the customer to customer and from
time to time. For simplification, we assume the usage of an r-rated customer is equal
to the average usage of all the r-rated customers for each credit rating r = 1, ..., 8.
Thus we assumed that the usage is dependent only on the rating of the customer
and is a constant for every credit rating.

5. Whether the customer exercises the term-out-option?
As we have discussed, the RCL includes a term-out-option if its maturity is less than
or equal to 1 year. Normally the customer should not exercise the option, unless his
financial condition turns bad and he or she is not capable to return the loan before
the maturity. The term-out-rule provides us with the information about conditions
under which the customer will exercise the option. It is an empirical rule and differs
among the banks.

6. Whether the bank renews the credit line?
Similar to the term-out-rule, the bank has a renewal rule to decide whether to grant
the credit line again to the customer. This rule is also empirical and differs among
the banks.

1.4 Monte Carlo Simulation

Monte Carlo simulation is a widely used class of computational algorithms for simulating
the behavior of various mathematical and physical systems. The method is distinguished
from other simulation methods (such as molecular dynamics) by being stochastic (non-
deterministic) as opposed to deterministic algorithms. The Monte Carlo algorithm is often
used to find the distribution of stochastic variables whose distribution cannot be easily
determined.

We use the Monte Carlo simulation to simulate our liquidity requirement Ft. The generic
procedure is as following:

1. Build up the relationship between target and input stochastic variable:
In our case the input stochastic variables are the draw decision variable, the return
decision variable, the updated credit rating, etc. The target stochastic variable is
Ft.

2. Define the distribution of the input stochastic variables:
Each input stochastic variable has its own distribution. Detailed models are built
correspondingly, in which the parameters are estimated by means of empirical anal-
ysis on the available data.
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3. Generate the necessary input variables:
For example we need to generate an indicator variable X for the decision to draw or
not to draw from the credit line. We generate firstly a uniformly distributed random
variable U . If we assume a draw probability of 0.8 and U ≤ 0.8, then the indicator
variable X is 1, otherwise 0.

4. Calculate the observation of target stochastic variable:
With the observations of the input variables, we calculate the observation of target
variable through the relationship between the input and target stochastic variables
we built up in step 1.

5. Replication:
Repeating the simulation from step 3 for K times, we get K observations of the
target variable. Further we conduct a value at risk (VaR) analysis on these obser-
vations.

1.5 Value at Risk Analysis

Historically seen, the value at risk (VaR) is a measure of how the market value of an asset
or of a portfolio is likely to decrease over a certain time period.

Definition 1.1 (Value at Risk (VaR)). Suppose Ft is the liquidity requirement of the
credit line group at time t (a random variable) and α ∈ [0, 1]. Fα

t is the Value at Risk at
the α quantile if

P {Ft ≤ Fα
t } = α.

The VaR value Fα
t can be interpreted as following. In 100(1 − α)% of times, a liquidity

reserve Fα
t is not sufficient. The value of α is often chosen as 0.9995, 0.9975 and 0.9950.

For α = 0.9995 and Fα
t = 20Mio, we have that in 5/10000 times the liquidity reserve of

20Mio is not sufficient.

Suppose we have 5000 observations of Ft at time t: F1
t ,F2

t , ...,F5000
t , we estimate the VaR

F0.9995
t as following. We list the 5000 observations in ascending order: F (1)

t ≤ F (2)
t ≤ ... ≤

F (5000)
t . Then F (4998)

t (5000 · 0.9995 = 4998) is the empirical VaR at α = 0.9995. For more
details, please refer to [Gupton and Finger, 1996, p. 3-36].

1.6 Overview of the thesis

The thesis is organized as follows. In chapter 2, we introduce the credit rating transition
model to describe the updated credit rating of the customer in the current month. In
chapter 3, we introduce the credit start model, the credit return model, the term-out-rule
to describe the decision of the customer as well as the renewal rule to describe the decision
of the bank. In chapter 4, we present the results of the simulation.

In chapters 5, 6 and 7, we theoretically derive the explicit distribution and expectation of
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the liquidity requirement. In chapter 5, we consider the simplest case, the distribution of
the usage for a single credit line in single period. In chapter 6, we extend the distribution
to the multiple period case. The last chapter contains the derivation of the distribution of
several credit lines in multiple period case. In the final chapter we compare the simulation
approach to the theoretical one and draw conclusions.



Chapter 2

Modelling Credit Rating Transitions

In this chapter, we describe how a yearly transition matrix can be used to determine
monthly transition matrices. We need this step because in most cases only the annual
transition matrix is available. We follow the approach taken by Sidelnikova and Krenin
[2001].

Afterwards we present an approach to model the transition of the credit rating of a
single customer. Instead of separate estimation of the default, downgrade and upgrade
probability of the credit rating, these credit rating transitions will be modelled jointly.
For this we will use an asset return model, in which two successive steps are involved:

1. Specify a model for the underlying process (in our case, a model for the asset
return value), the distribution of which is known to us (here we use the standard
normal distribution).

2. Specify the relationship between the underlying process and the credit rating
transition process (here between the Markov process and the asset return value).

These two steps allow us to simulate the credit rating process through the underlying
process and the mapping which relates the underlying process to the credit rating process.

Finally, the credit rating transition model is extended from a single customer to a group of
customers assuming that the correlation between the customers depends on the industry
sectors they belong to.

2.1 Regularization of the Transition Matrix

Definition 2.1 (Quasi Monthly Transition Matrix). Suppose the credit rating system
has 8 levels: S = {1, 2, ..., 8}. 1 Denote the yearly transition matrix by Py ∈ R8×8. Then
Pm ∈ R8×8 is called quasi monthly transition matrix, if

P12
m = Py.

11 ∧= AAA, 2 ∧= AA, 3 ∧= A,4 ∧= BBB, 5 ∧= BB, 6 ∧= B, 7 ∧= CCC, 8 ∧= D.

8
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The existence of Pm is discussed in Sidelnikova and Krenin [2001] as well as the fact that
Pm is not unique. But it is important to point out that Pm is not necessarily a transition
matrix (with all the elements non-negative and the sum of each row equal to 1). We first
denote all transition matrices by A:

A =

{
A|A ∈ R8×8 ,

8∑
r=1

Asr = 1 ∀s ∈ S , Asr ≥ 0 ∀s, r ∈ S

}
.

We need to select a matrix P from A such that it has minimal distance from Pm compared
to all other transition matrices. P is called the optimal monthly transition matrix. So an
optimization problem - Quasi optimization of the root Matrix (QOM) - is involved.

Problem 1 (QOM, Sidelnikova and Krenin (2001), p.29). Given Py ∈ R8×8 and one of
its root matrix Pm such that P12

m = Py, find a matrix P which fulfills the following two
conditions:

(1) P ∈ A
(2) ‖P−Pm‖ = min

A∈A
‖A−Pm‖

where ‖·‖ is the Euclidian norm in the space of 8× 8 matrices.

Considering the fact that the set of transition matricesA can be represented as a Cartesian
product of 8 identical 8-dimensional simplices:

AS =

{
a|a ∈ R8,

8∑
s=1

as = 1 , as ≥ 0 ∀s ∈ S

}
,

the QOM problem can thus be solved on a row-by-row basis and Problem 1 can be refor-
mulated to the distance minimization problem for root matrix (DMPM).

Problem 2 (DMPM, Sidelnikova and Krenin (2001), p.31). Given pm ∈ R8, (a row of
the root matrix Pm), find a vector p such that

p = arg min
a∈AS

‖pm − a‖ = arg min
a∈AS

8∑
s=1

((pm)s − as)
2.

To solve the Problem 2, we need the following Lemma.

Lemma 2.1. Suppose a,pm ∈ R8, S8 is the group of permutation of 8 elements and π is
a permutation, π ∈ S8. Denote a′ = π (a), p′m = π (pm). If p′ ∈ AS fulfills ‖p′ − p′m‖ =
min
a′∈AS

‖a′ − p′m‖, then we have that p = π−1 (p′) fulfills ‖p− pm‖ = min
a∈AS

‖a− pm‖.
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Proof. It is obvious that we have

‖p′ − p′m‖ = ‖p− pm‖

and
min
a′∈AS

‖a′ − p′m‖ = min
a∈AS

‖a− pm‖ .

Together with the condition

‖p′ − p′m‖ = min
a′∈AS

‖a′ − p′m‖ ,

we get
‖p− pm‖ = min

a∈AS

‖a− pm‖

in which p = π−1 (p′).

Furthermore, Sidelnikova and Krenin [2001] proposed the following procedure to solve the
DMPM.

1. Find a permutation π ∈ S8 that arranges the elements of pm in descending order

p′m = π (pm) .

2. Find the optimal solution p′ that is nearest to the p′m

‖p′ − p′m‖ = min
a′∈AS

‖a′ − p′m‖ .

3. Arrange the p′ using the inverse permutation π−1 ∈ S8 and get the final optimal
solution

p = π−1 (p′) .

Without loss of generality, Problem 2 can be confined to the following Problem 3.

Problem 3 (Sidelnikova and Krenin (2001), p.30). Given pm ∈ R8 with (pm)1 ≥ (pm)2 ≥
. . . ≥ (pm)8, find a vector p which fulfills

p = arg min
a∈AS

8∑
s=1

(as − (pm)s)
2.

Lemma 2.2. Assume p is the optimum solution to Problem 3. Then there exists an index
d ≥ 1, such that ps > 0 for 1 ≤ s ≤ d and ps = 0 for s > d.
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Proof. Suppose we have a candidate solution p with ps = 0 and ps+δ > 0 for some
s ∈ 1, ..., 7 and 1 ≤ δ ≤ 8− s. We should have

p =


p1, ..., ps

‖
0

, ..., ps+δ
∨
0

, ..., p8


 .

Consider a new vector p∗ where ps and ps+δ in p are exchanged, namely

p∗ =


p1, ..., ps+δ

∨
0

, ..., ps
‖
0

, ..., p8


 .

Then we have

‖p− pm‖ = (p1 − (pm)1)
2+. . .+(ps − (pm)s)

2+. . .+(ps+δ − (pm)s+δ)
2+. . .+(pn − (pm)8)

2

‖p∗ − pm‖ = (p1 − (pm)1)
2+. . .+(ps+δ − (pm)s)

2+. . .+(ps − (pm)s+δ)
2+. . .+(pn − (pm)8)

2

and thus
‖p∗ − pm‖ − ‖p− pm‖ = 2ps+δ ((pm)s+δ − (pm)s) < 0,

since (pm)1 ≥ (pm)2 ≥ ... ≥ (pm)8 and ps+δ ≥ 0 by assumption. Thus p is more away from
pm than the constructed new vector p∗, and is not the optimum solution, which conflicts
with our assumption.

Lemma 2.3. Assume p is the optimal solution to Problem 3, then all the positive elements
ps of p should have the form ps = (pm)s + λ for s = 1, 2, ..., d where λ ∈ R is a constant.

Proof. According to Lemma 2.2, we know that p should have the following form

p = (p1, ..., pd, 0, ..., 0) .

1. If d = 1, p = (p1, 0, ..., 0) , we just set λ = p1 − (pm)1.
2. If d ≥ 2, then for each 1 ≤ τ < δ ≤ d , we can write p in the following form

p = (p1, ..., pτ , ..., pδ, ..., pd, 0, ..., 0) .

Now we construct a new vector by perturbing pτ , pδ with ε ∈ R

pε = (p1, ..., pτ − ε, ..., pδ + ε, ..., pd, 0, ..., 0) .

Since we assumed that p is the optimal solution, this means

‖p− pm‖ − ‖pε − pm‖ ≤ 0 for ∀ε ∈ R.

Consequently we have

−2ε2 + 2ε (pτ − (pm)τ − pδ + (pm)δ) ≤ 0 for ε ∈ (−∞, +∞) . (2.1)
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Further calculation shows

ε ∈




(−∞, +∞) if (pτ − (pm)τ − pδ + (pm)δ) = 0
(−∞, 0] ∪ [(pτ − (pm)τ − pδ + (pm)δ) , +∞) if (pτ − (pm)τ − pδ + (pm)δ) > 0
(−∞, (pτ − (pm)τ − pδ + (pm)δ)] ∪ [0, +∞) if (pτ − (pm)τ − pδ + (pm)δ) < 0

Thus only when (pτ − (pm)τ − pδ + (pm)δ) = 0, we have that the inequality 2.1 is satisfied
for ε ∈ (−∞, +∞). So we set

λ := pτ − (pm)τ = pδ − (pm)δ, ∀1 ≤ τ < δ ≤ d,

and
ps = (pm)s + λ, ∀1 ≤ s ≤ d.

Together with Lemma 2.2 and Lemma 2.3, we find that the optimal solution should have
following form

p =




dPosComponents︷ ︸︸ ︷
(pm)1 + λ, ..., (pm)d + λ,

(8−d)ZeroComponents︷ ︸︸ ︷
0, 0, ..., 0, 0


 .

The Problem 3 can further be reduced to an optimization problem over λ, d.

Problem 4 (Sidelnikova and Krenin (2001), p.32). Assume pm ∈ Rn with (pm)1 ≥
(pm)2 ≥ ... ≥ (pm)8. Find d∗ and λ∗ such that

(d∗, λ∗) = arg min
d∈{1,...,8},λ∈R

(
dλ2 +

8∑

s=d+1

(pm)2
s

)

under the condition

dλ +
d∑

s=1

(pm)s = 1 and λ ≥ −(pm)s ∀s ∈ {1, 2, ..., d} .

Since we assumed that (pm)1 ≥ (pm)2 ≥ ... ≥ (pm)8, so λ ≥ −(pm)s for s ∈ {1, 2, ..., d} is

equivalent to λ ≥ −(pm)d. Substituting λ = 1
d

(
1−

d∑
s=1

(pm)s

)
, we reduce Problem 4 to

an optimization problem for d only.

Problem 5 (Sidelnikova and Krenin (2001), p.32). Assume pm ∈ R8 with (pm)1 ≥
(pm)2 ≥ ... ≥ (pm)8. Find d∗ such that

d∗ = argmin
d∈{1,2,...,8}

f(d) := argmin
d∈{1,2,...,8}


1

d

(
1−

d∑
s=1

(pm)s

)2

+
n∑

s=d+1

(pm)2
s




under the condition

S(d) :=
d∑

s=1

((pm)s − (pm)d) ≤ 1.
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Solution of Problem 5
(1) Prove that f (d) is non-increasing function in d.

f (d)− f (d− 1) =
1
d

(
1−

d∑
s=1

(pm)s

)2

+
8∑

s=d+1

(pm)2s −
1

d− 1

(
1−

d−1∑
s=1

(pm)s

)2

−
8∑

s=d

(pm)2s

Since
d∑

s=1

(pm)s =
d∑

s=1

((pm)s − (pm)d) + d(pm)d = S (d) + d(pm)d

d−1∑
s=1

(pm)s =
d−1∑
s=1

((pm)s − (pm)m) + (d− 1) (pm)d = S (d) + (d− 1) (pm)d

we have

f (d)− f (d− 1) = − [1− S (d)]2

d (d− 1)
≤ 0.

(2) Prove that S (d) is non-decreasing in d and non-negative.

S (d)− S (d− 1) = (d− 1) ((pm)d−1 − (pm)d) ≥ 0

S (1) =
1∑

s=1

((pm)s − (pm)1) = 0.

(3) Since f (d) is non-increasing, we just need to find the index d∗ that satisfies S (d∗) ≤ 1
and S (d∗ + 1) > 1 from the series of S (d). Correspondingly we get

λ∗ =
1

d∗

(
1−

d∗∑
s=1

(pm)s

)
=

1− S (d∗)
d∗

− (pm)d∗ .

Algorithm for determining a monthly transition matrix:
As a summary for this section, we list the necessary steps to find an optimal monthly
transition matrix P given a quasi monthly transition matrix Pm.

1. Select the first row pm ∈ R8 of the root transition matrix Pm.

2. Permute the elements of pm into descending order: p′m = π (pm).

3. Calculate the sequence S (d) based on p′m using the iteration formula

S (d)− S (d− 1) = (d− 1)
(
(pm)′d−1 − (pm)′d

) ∀d = 2, ..., 8

and initial value
S (1) = 0.
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4. Select d∗ such that:
S (d∗) ≤ 1 and S (d∗ + 1) > 1.

5. Calculate λ∗ using:

λ∗ =
1− S (d∗)

d∗
− (p′m)d∗

and set

(p′)s :=

{
((pm)′)s + λ∗, 1 ≤ s ≤ d∗,
0, d∗ < s ≤ 8.

6. Rearrange the p′ to get the final result:

p = π−1 (p′) .

Example 2.1.
Suppose we have the yearly transition matrix Py and try to calculate the optimal monthly
transition matrix P.

Py =




0.5308 0.3380 0.1102 0.0142 0.0047 0.0012 0.0004 0.0007
0.0326 0.5228 0.3486 0.0666 0.0193 0.0062 0.0003 0.0036
0.0055 0.0834 0.6103 0.2045 0.0630 0.0232 0.0019 0.0082
0.0037 0.0255 0.2050 0.4451 0.1983 0.0791 0.0073 0.0360
0.0015 0.0062 0.0394 0.1229 0.4564 0.2226 0.0210 0.1300
0.0006 0.0026 0.0129 0.0367 0.1688 0.3993 0.0438 0.3355
0.0002 0.0009 0.0067 0.0265 0.0690 0.0971 0.0862 0.7134
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000




First of all, we calculate the quasi monthly transition matrix Pm = P
1/12
y .

Pm =




0.94713 0.05165 0.00114 −0.00005 0.00013 −0.00002 0.00012 −0.00007
0.00485 0.94227 0.05091 0.00103 0.00070 0.00005 −0.00006 0.00023
0.00039 0.01179 0.95091 0.03244 0.00347 0.00095 0.00002 0.00004
0.00041 0.00175 0.03204 0.92340 0.03491 0.00623 0.00051 0.00074
0.00015 0.00039 0.00204 0.02166 0.92436 0.04270 0.00236 0.00633
0.00005 0.00020 0.00079 0.00246 0.03166 0.91584 0.01582 0.03321
0.00000 −0.00001 −0.00015 0.00556 0.01541 0.03079 0.80886 0.13954
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000




(1) Select the first row of the root matrix

pm = (0.94713, 0.05165, 0.00114,−0.00005, 0.00013,−0.00002, 0.00012,−0.00007) .

(2) Permute the elements of pm into descending order

p′m = π (pm) = (0.94713, 0.05165, 0.00114, 0.00013, 0.00012,−0.00002,−0.00005,−0.00007) .
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(3) Calculate the sequence of S (m)

S = (0, 0.89548, 0.99650, 0.99953, 0.99956, 1.00029, 1.00045, 1.00055) .

(4) From the sequence of S (m), we get m∗ = 5.

(5) Calculate λ∗ = 1−S(5)
5

− (pm)5 = −3.3× 10−5 and

p′ = (0.94710, 0.05161, 0.00111, 0.00010, 0.00009, 0, 0, 0) .

(6) Inverse the permutation of the p′ and get the final result

p = (0.94710, 0.05161, 0.00111, 0, 0.00010, 0, 0.00009, 0) .

(7) Conduct for all rows. We obtain the optimal monthly transition matrix.

P =




0.94710 0.05161 0.00111 0.00000 0.00010 0.00000 0.00009 0.00000
0.00485 0.94227 0.05091 0.00103 0.00070 0.00005 0.00000 0.00023
0.00039 0.01179 0.95091 0.03244 0.00347 0.00095 0.00002 0.00004
0.00041 0.00175 0.03204 0.92340 0.03491 0.00623 0.00051 0.00074
0.00015 0.00039 0.00204 0.02166 0.92436 0.04270 0.00236 0.00633
0.00005 0.00020 0.00079 0.00246 0.03166 0.91584 0.01582 0.03321
0.00000 0.00000 0.00000 0.00552 0.01537 0.03076 0.80883 0.13951
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000




Notice that P12 given below is relatively close to Py.

P12 =




0.53057 0.33770 0.10995 0.01444 0.00458 0.00124 0.00066 0.00099
0.03259 0.52276 0.34858 0.06665 0.01937 0.00611 0.00121 0.00317
0.00550 0.08340 0.61028 0.20450 0.06301 0.02319 0.00199 0.00816
0.00370 0.02550 0.20499 0.44508 0.19829 0.07910 0.00732 0.03599
0.00150 0.00620 0.03942 0.12290 0.45640 0.22260 0.02100 0.12999
0.00060 0.00260 0.01295 0.03670 0.16879 0.39928 0.04380 0.33548
0.00020 0.00096 0.00719 0.02650 0.06889 0.09698 0.08616 0.71314
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000




While Pm has several negative entries, all elements of P are non - negative.

2.2 Modelling Credit Rating Transition for a Single

Customer

Suppose the monthly credit rating transition matrix is known, we continue with modelling
the transition rating for a single customer using an asset return model. The asset return
model consists of three parts:
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1. Formulate the credit rating process (Rt)t∈{1,...,T}, whose distribution is known.

2. Propose an underlying process
(
R̃t

)
t∈{1,...,T}

, whose distribution is also known.

3. Build up a relationship between (Rt)t∈{1,...,T} and
(
R̃t

)
t∈{1,...,T}

.

For the background information, please refer to Greg and Gupton [1997, p. 57-80]. We
first give out the first two parts through two assumptions.

Assumption 2.1 (Credit Rating Process). The credit rating transition process (Rt)t∈{1,...,T}
is Markov process with transition matrix P ∈ R8×8, i.e. P (s, s′) := P (Rt = s′|Rt−1 = s),
state space S and initial state s0.

Assumption 2.2 (Underlying Process). The credit rating is determined by the asset re-

turn
(
R̃t

)
t∈{1,...,T}

of the company, which we assume as normally distributed with constant

mean µ and constant volatility σ: R̃t ∼ N (µ, σ2) for every t ∈ N0.

In the next step we need to construct a mapping system between the credit rating process
and asset return process. Since a company’s asset return determines its ability to return
the loan, we may regard that there exists a special level such that if the company’s asset
return falls below this level, he or she will not be able to meet his payment obligations
and his credit rating will be regarded as default. For example, if the asset return is less
than -0.8: R̃t ∈ (−∞,−0.8], we can assume the credit rating as default: Rt = 8. Similarly,
it is reasonable to imagine that there exists a series of interval of asset return which can
be mapped into other level of credit rating.

Theorem 2.1. Given a normally distributed random variable: R̃t ∼ N (µ, σ2) and a
Markov chain (Rt)t∈{1,...,T} with transition matrix P and Rt−1 = s0, we have

P (Rt = s|Rt−1 = s0) = P
(
R̃t ∈ (σzs0,s+1, σzs0,s)

)
, s = 1

P (Rt = s|Rt−1 = s0) = P
(
R̃t ∈ (σzs0,s+1, σzs0,s]

)
, s = 2, 3, ..., 8

in which

zs0,s :=





Φ−1

(
8−s∑
ς=0

P(s0, 8− ς)

)
, s = 1, 2, ..., 8,

−∞, s = 9.

Proof. For s = 1, we have

P
(
R̃t ∈ (σzs0,2, σzs0,1)

)
= [Φ (σzs0,1/σ) + µ]− [Φ (σzs0,2/σ) + µ]

= Φ (zs0,1)− Φ(zs0,2) =
7∑

ς=0
P(s0, 8− ς)−

6∑
ς=0

P(s0, 8− ς) = P(s0, 1) = P (Rt = 1|Rt−1 = s0) .
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Similarly, for s = 2, 3, ..., 8 we have

P
(
R̃t ∈ (σzs0,s+1, σzs0,s]

)
= [Φ (σzs0,s/σ) + µ]− [Φ (σzs0,s+1/σ) + µ]

= Φ (zs0,s)− Φ(zs0,s+1) =
8−s∑
ς=0

P(s0, 8− ς)−
7−s∑
ς=0

P(s0, 8− ς) = P(s0, s) = P (Rt = s|Rt−1 = s0) .

From the derivation, we see that the mean value does not have effect on the final result.
So we could choose the mean value 0: R̃t ∼ N (0, σ2). In next step we prove that the
volatility also does not have an impact on the result.

Lemma 2.4. If X ∼ N(η, κ2) and Y = aX + b with a, b ∈ R, then Y ∼ N (aη + b, a2κ2).
Especially if X ∼ N(0, 1) and Y = aX, then Y = aX ∼ N (0, a2).

For the proof, please refer to ?, p. 89. Using Lemma 5.1, we can present R̃t ∼ N(0, σ2) as
R̃t = σX in which X ∼ N(0, 1). Thus we have

P (Rt = s|Rt−1 = s0) = P (σX ∈ (σzs0,s+1, σzs0,s]) = P (X ∈ (zs0,s+1, zs0,s]) .

So the volatility has no effect on the transition matrix. We can replace R̃t ∼ N (µ, σ2)
by Xt ∼ N (0, 1) as our underlying process in Assumption 2.2 and simplify the map-
ping between the underlying process and credit rating process as shown in the following
theorem.

Theorem 2.2. Given Xt ∼ N(0, 1) and a homogeneous Markov chain (Rt)t∈N0
with

transition matrix P and Rt−1 = s0, then we have

P (Rt = s|Rt−1 = s0) = P (Xt ∈ (zs0,s+1, zs0,s)) = P (Xt ∈ (zs0,2, +∞)) , s = 1

P (Rt = s|Rt−1 = s0) = P (Xt ∈ (zs0,s+1, zs0,s]) , s = 2, 3, ..., 8

in which

zs0,s :=





Φ−1

(
8−s∑
ς=0

P(s0, 8− ς)

)
, s = 1, 2, ..., 8,

−∞, s = 9.

If we suppose the initial credit rating is BB, the asset return model will divide (+∞,−∞)
into 8 sections as shown in the Figure 2.1. If the observation of Xt lies in region B for
example, the updated credit rating will be B.
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Figure 2.1: Asset Return Model

2.3 Credit Rating Transition of Customer Group

In the simulation of credit migration for a single company, we generate a standard normally
distributed stochastic variable Xt ∼ N (0, 1). If there are n companies at time t, and if
the asset return of all the companies has independent identical distribution (standard
normal), we need to generate a stochastic vector

Xt ∼ Nn(0, In).

But in reality the companies are not independent. The companies in the same indus-
try should have higher correlation than those in different industries. So the ratings of
companies in the same industry are more likely to shift down or up together according to
economic surroundings. So it is reasonable to assume that the customers have a correlation
matrix of Σ instead of In. So we need to generate

X̃t ∼ Nn(0, Σ).

Suppose there are 2 industries. In the first one, there are two companies, while in the
second industry there are 3 companies. Assume the correlation in the same industry is c,
the correlation between industry 1 and 2 is c12, c12 = c21. Then correlation matrix has the
following form:

Σ =




1 c c12 c12 c12

c 1 c12 c12 c12

c12 c12 1 c c
c12 c12 c 1 c
c12 c12 c c 1




.

In practice the computer can easily generate a multivariate normally distributed variable
Xt ∼ Nn(0, In) by generating n realizations of a standard normally distributed variable.
In order to generate X̃t ∼ Nn(0, Σ), we need the following lemma.

Lemma 2.5. If Xt ∼ N (0, In) and Σ = BBT , then X̃t = BXt ∼ Nn (0, Σ).
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Proof. (1) If X is multivariate normally distributed, then X = BY is also multivariate
normally distributed. Obviously the mean is 0.

(2) Since Σ is symmetric real matrix, we can decompose the matrix as

Σ = ADAT = AEET AT = BBT

in which D is diagonal matrix and B := AE.

(3) The covariance matrix of X̃t is

Cov
(
X̃t

)
= Cov (BXt) = Cov (AEXt) = (AE) Cov (Xt)

(
ET AT

)
= ADAT = Σ.

Thus we have
X̃t ∼ Nn (0, Σ) .

2.4 Summary for Credit Rating Transition Model

As a summary for this chapter, we list the procedures which is followed in the Credit
Rating Transition Model in Monte Carlo simulation.

Input:
Annual Transition Matrix Py

Initial Credit Rating for customer group (s1
0, s

2
0, ..., s

n
0 )

Industry correlation Matrix Σ ∈ Rn×n

Block 1
It needs to be run once to get the data prepared for the following procedure.

1. Regularization of root transition matrix and get P

2. Decompose the correlation matrix Σ = BBT

Block 2
For each time t we run Block 2 repeatedly.

1. Generate n independent normally distributed variables

X i
t ∼ N(0, 1) , i = 1, 2, ...n ⇒ Xt =

(
X1

t , . . . , Xn
t

) ∼ Nn(0, In).

2. Adjust the independent scenarios into correlated scenarios

X̃t = BXt ∼ Nn (0, Σ) .
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3. For the customer currently under simulation, select the scenario X̃ i
t from X̃t, credit

rating si
0 from (s1

0, s
2
0, ..., s

n
0 ) and corresponding row from the monthly transition

matrix P: (
P(si

0, 1),P(si
0, 2), ...,P(si

0, 8)
)

.

4. Calculate the threshold asset return

zs0,s :=





Φ−1

(
8−s∑
ς=0

P(s0, 8− ς)

)
, s = 1, 2, ..., 8,

−∞, s = 9.

5. Map the generated scenario to credit rating

X̃ i
t ∈ (zs+1, zs] ⇒ Ri

t = s.

6. Go back to step 3, simulate the credit rating for the next customer.



Chapter 3

Credit Start, Return Model and
Empirical Rules

In this chapter, we suppose that we already have the updated credit rating, and present
the credit loan start, credit loan return model as well as the empirical renewal rule and
term-out-rule.

3.1 Modelling the draw decision of customers who

have not started using the credit line

Definition 3.1 (Draw Probability). The draw probability ps is the probability that the
customer starts the credit loan in the current month. It only depends on the credit rating.

Let As be the stochastic decision variable for a customer with credit rating s, i.e.

P (As = 1) = ps and P (As = 0) = 1− ps for s ∈ S

in which As = 1 represents that the customer draws the loan and As = 0 represents not
draw.

A realization of As can be generated as follows:

- Generate U ∼ U(0, 1).

- If U ≤ ps, then set As := 1, otherwise As = 0.

Note the draw decision probability is independent of the time t. It only depends on the
credit rating s.

To estimate the values of ps, we use the historical bank data. Let Ns,start be the number
of customers with rating s at time −1 who started their credit line at time 0. Let Ns be
the number of customers with rating s at time −1 who have not used their credit line at
time −1. Then ps is estimated as:

p̂s :=
Ns,start

Ns

.

21
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3.2 Modelling the return decision of customers who

have started their credit lines

Definition 3.2 (Return Probability). The return probability is the probability that the
customer returns the credit loan within current month.

The decision to return the loan is modelled only for the customers who have already
drawn the credit loan. We denote the month when he or she drew the loan as tstart. In
our model, we assume that the probability for the customer to return the credit loan at
current time t depends on three factors:

1. The updated credit rating of the customer at time t: Rt ∈ S.

Rt is updated through the credit rating transition model.

2. The time (in months) from tstart − 1 till the maturity date, which we denote by E.

Given the starting time of a loan tstart ∈ {1, ..., T} and the maturity of the credit
line m ∈ {12, 24, 36, 48}, we can determine E. There are two situations, namely the
single-maturity situation and the multi-maturity situation.

- In the single-maturity situation, the time period of our simulation T contains only
one maturity m i.e. T = m. The customer can start the credit loan only within the
first maturity period: tstart ∈ {1, ..., m}. Under this situation, E is calculated as:

E := m− tstart + 1.

If E = 1, the customer starts the credit line in the last month before the maturity.
If E = 2, the last second month and so on. Obviously we have E ∈ {1, 2, ..., m}.
An example is given in Figure 3.1. Suppose we simulate a time period of 12 months
and the credit line has a maturity of 12 months. The customer draws the loan 15
days after the beginning of the 4-th month (marked by the black round point in the
figure). Thus we have tstart = 4 and E = 12− 4+1 = 9. It means that the customer
starts the credit loan in the 9 months before the maturity.

- Generally the time period of our simulation T contains more than one maturity m,
i.e. T = km, k ∈ N. Suppose the credit line is renewed at maturity, the customer
can start the credit loan during the next maturity period. Under this situation, E
should be calculated as:

E := m− (tstart mod m) + 1,

in which

km mod m := m, (km + γ) mod m := γ for γ = 1, 2, ..., (m− 1) , k ∈ N.

Obviously we have again E ∈ {1, 2, ..., m}. An example is given in Figure 3.2. The
time period that we simulate for a return is 24 months and the maturity of the
credit line is 12 months. Given the credit line is renewed on the first maturity date
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Figure 3.1: Return probability for the line started in single-maturity period

t = 12, we have altogether 2 maturities within our simulation. Suppose the customer
draws the credit loan in the 3-th day of the 16-th month, we have tstart = 16,
E = 12− 16mod12 + 1 = 9. It means that the customer starts the credit loan 9-th
months before the next maturity date. Since the return probability is used only for
the credit line that has already started, so E is always known and can be regarded
as a constant.

Figure 3.2: Return probability for the line started in the multi-maturity period

3. The time (in months) from t− 1 until the maturity date, which we denote as Lt.

Similar to E, Lt can be calculated as:

Lt := m− t + 1,

for single-maturity situation. Please consider the example in Figure 3.1. We already
know that the customer started the credit line at tstart = 4 and want to model
the probability that the customer returns the loan in each of the following months.
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Suppose the customer is in the 20-th day of the 9-th month (marked by the black
triangle), we have t = 9. And thus L9 = 12− 9 + 1 = 4. It means that 4 months are
left until the maturity date. In the multi-maturity period, we have again a similar
formula:

Lt := m− (t mod m) + 1.

Remark 3.1. When t = km, we get Lt = 1. It means that one month is left for the customer
to return the loan. In order to include the situation that the loan is not return till the
maturity date, we define Lt := 0 in this case. So generally we have Lt ∈ {0, 1, ..., E}.
Given E, Lt = l and Rt = s, we denote the return probability as

q(s, l, E), s ∈ S, l ∈ {0, 1, ..., E} and E ∈ {1, 2, ..., m} .

Under the condition that l 6= 0, the return probability represents the probability that the
customer started the credit line in the E-th month before the maturity date and returned
the loan in the l-th month before the maturity date with a credit rating of s at the time he
or she returns the loan. Under the condition that l = 0, the return probability represents
the probability that the customer started the credit line in the E-th month before the
maturity date and the loan is never returned (default) with the credit rating of s at the
maturity date.

Precisely speaking we simulate based on a monthly time unit, so E, l are on a monthly
base and s can take values of each credit rating level. If we want to simulate over 48
months, we need to estimate the probability of q(s, l, E) for s ∈ {1, 2, ..., 8}, E = 1, 2, ....48
and l = 0, 1, 2, ..., E. Thus 8 · (2 + 3 + ... + 49) = 9, 408 different probabilities have to
be estimated. Our historical data contains approximately 20,000 credit lines. Thus the
problem of estimating 9,408 probabilities is not realistic. For this reason, we define a
series of credit rating buckets and time buckets.

As introduced before, we have 8 levels of credit ratings. We ignore s = 8 because the
default company is not allowed to take credit loans and thus there is no need to estimate
the return probability for it. The rating levels from 1 to 7 are grouped into 3 credit rating
buckets:

s̄ = c (s) :=





1
2
3

s ∈ {1, 2, 3} ,
s ∈ {4, 5, 6} ,

s ∈ {7} .
(3.1)

Using this mapping, we can change the credit rating in our sample into the new value
R̄t = c (Rt). The classification of credit rating may be considered as reasonable, because
customers within the same rating class are similar in using the loan and in their capability
to return the loan. For example, for A-rated companies, it is easy to get money directly
through the money market by issuing bonds or certificates. So their frequency of using
the loan and the usage amount may appear less than than the B/C-rated companies.

The maturity of credit lines in our simulation can take four different values,
m ∈ {12, 24, 36, 48}. For credit line with m = 12, we define 4 time buckets. Each bucket
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has a length of 3 months. For credit line with m = 24, we define 8 time buckets. Each
bucket has a length of 3 months. For credit line with m = 36, we divide the 36 months
into two parts. The first part is from t = 1 till t = 12 and we define 2 time buckets. Each
bucket has a length of 6 months. The second part is from t = 13 till t = 36 and we define
8 buckets. Each bucket has a length of 3 months. For credit line with m = 48, we divide
the 48 months into two parts. The first part is from t = 1 till t = 24 and we define 4
time buckets. Each bucket has a length of 6 months. The second part is from t = 25 till
t = 48 and we define 8 buckets. Each bucket has a length of 3 months. For a graphical
representation, please see Figure 3.3.

Figure 3.3: Time bucket (month index is below the line while the time bucket index is
above the line)

Using the definition of the time bucket, we can map the E and Lt from monthly time unit
to the unit in time bucket.

Ē := gm (E) and L̄t := gm (Lt) m = 12, 24, 36, 48.

The mapping function is defined in Figure 3.4.
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Figure 3.4: Mapping between time bucket and time (in months)

Such a definition of the time buckets may be considered as reasonable, since most cus-
tomers tend to keep the loan till the maturity date. So in the time period close to maturity
date we observe more frequent return of the credit lines. That is why this time period
should consist of smaller time buckets in comparison to the time period not close to
maturity date.

Assumption 3.1. Given two credit lines with maturities m1,m2 ∈ {12, 24, 36, 34} (not
necessarily equal), the two return probabilities during the usage of two credit loans q(s, l, E)
and q(s′, l′, E ′) coincide if:

1. c (s) = c (s′)

2. gm1 (E) = gm2 (E ′)

3. gm1 (l) = gm2 (l′)

Definition 3.3 (Grouped Return Probability). The return probability after mapping is
called grouped return probability.

q(s̄, l̄, Ē) for s̄ ∈ {1, 2, 3} , Ē ∈ {1, 2, ..., 12} , l̄ ∈ {
0, 1, ..., Ē

}
.

The number of probabilities needed to be estimated is reduced from 9, 408 down to 3 ·
(2 + 3 + ... + 13) = 270. The estimation of 270 probabilities is feasible using our historical
data.

Example 3.1.
For each class of credit rating, we get from empirical data a table of simplified return
probabilities as shown in Table 3.1 (here only listed till the 4th time bucket for s̄ = 1).

To simulate the return decision, we need to convert the return probability into the cumu-
lative return probability. It describes the probability for the customer to return the loan
by the end of usage period.
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Table 3.1: Grouped Return probability for s̄ = 1
Ē = 1 Ē = 2 Ē = 3 Ē = 4

l̄ = 0 q(1, 0, 1) q(1, 0, 2) q(1, 0, 3) q(1, 0, 4)
l̄ = 1 q(1, 1, 1) q(1, 1, 2) q(1, 1, 3) q(1, 1, 4)
l̄ = 2 q(1, 2, 2) q(1, 2, 3) q(1, 2, 4)
l̄ = 3 q(1, 3, 3) q(1, 3, 4)
l̄ = 4 q(1, 4, 4)

Definition 3.4 (Cumulative Return Probability). A cumulative return probability Q(s̄, l̄, Ē)
is defined as

Q(s̄, l̄, Ē) :=
Ē∑

i=l̄

q(s̄, i, Ē) for s̄ ∈ {1, 2, 3} , Ē ∈ {1, 2, ..., 12} and l̄ ∈ {
0, 1, ..., Ē

}
.

The cumulative return probability represents the probability that the customer with credit
rating s̄ started the credit line in Ē-th month before the maturity date and returned the
loan before l̄-th month prior to the maturity date.

Example 3.2.
For customers in each credit rating class, we get a table of cumulative return probabilities.
Table 3.2 represents cumulative return probability for a customer with s̄ = 1 (here only
listed till the 3rd time bucket).

Table 3.2: Cumulative return probability with s̄ = 1
Ē = 1 Ē = 2 Ē = 3

l̄ = 1 Q (1, 1, 1) =
1∑

i=1

q (1, i, 1) Q (1, 1, 2) =
2∑

i=1

q (1, i, 2) Q (1, 1, 3) =
3∑

i=1

q (1, i, 3)

l̄ = 2 Q (1, 2, 2) =
2∑

i=2

q (1, i, 2) Q (1, 2, 3) =
3∑

i=2

q (1, i, 3)

l̄ = 3 Q (1, 3, 3) =
3∑

i=3

q (1, i, 3)

To estimate the cumulative return probability and the grouped return probability, we do
the following procedure.

1. For the j-th credit line of i-th customer, we count the number of returns of the
credit loans that have started Ē time buckets before maturity and returned l̄ time
buckets before maturity and had a credit rating in the rating bucket s̄ at the time
the loan was returned: Ni,j,s̄,l̄,Ē.

2. Sum up Ni,j,s̄,l̄,Ē over all the credit lines, so that we get the total number of returns of
the credit loans, that have been started Ē time buckets before maturity and returned
L̄ time buckets before maturity and had a credit rating in the rating bucket s̄ at

the time the loan was returned: Ns̄,l̄,Ē =
n∑

i=1

ni∑
j=1

Ni,j,s̄,l̄,Ē.
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3. Sum up Ni,j,s̄,l̄,Ē over l̄, so that we get the number of returns of the credit loans,
that have been started Ē time buckets before maturity and had a credit rating in

the rating bucket s̄ at the time the loan was returned: Ns̄,Ē =
Ē∑

l̄=0

Ns̄,l̄,Ē.

4. The grouped return probability is estimated by: q̂
(
s̄, l̄, Ē

)
=

Ns̄,l̄,Ē

Ns̄,Ē
.

5. The cumulative return probability is estimated through: Q̂
(
s̄, l̄, Ē

)
=

Ē∑
i=l̄

q̂
(
s̄, i, Ē

)
.

Assumption 3.2. Suppose the credit line has a maturity m. The customer’s decision to
return the credit loan at time t, which started E months before maturity (E is known)
is described by a random variable BE

t (return decision variable). The distribution of the
return decision variable is determined by the cumulative return probability.

P
(
BE

t = 1
)

= Q(R̄t, L̄t, Ē) and P
(
BE

t = 0
)

= 1−Q(R̄t, L̄t, Ē),

in which R̄t = c(Rt), L̄t = gm(Lt) and Ē = gm(E).

BE
t = 1 represents that the customer returns the loan while BE

t = 0 does not return the
loan.

Remark 3.2. The return decision probability is dependent on R̄t, L̄t with given E. Since
both of the two factors are dependent on t, our distribution of return decision variable is
also dependent on t. That is why we denote it as BE

t .

3.3 Modelling the Amount of Credit Loan drawn by

the Customers

In this section we answer the question how large amount of credit loan the customer will
take out once he or she decided to start the loan. The usage amount in this chapter is a
fraction. It represents the proportion of the committed limit drawn by the customer.

Assumption 3.3. The proportion of the committed limit to be used at time t is dependent
on the credit rating of the customer and is denoted as Ut.

P {Ut = us} = 1 if Rt = s for s ∈ {1, 2, ..., 8} ,

in which us ∈ (0, 1) is a constant for every s ∈ {1, 2, ..., 8}, i.e. the customer uses a fixed
proportion of the committed limit corresponding to his or her current credit rating s.

To estimate us, we use the empirical mean.

1. For the j-th credit line of i-th customer, we count the number of credit loans started
when the customer had a credit rating s: Ni,j,s, s ∈ S.

2. For the j-th credit line of i-th customer, we sum up the percentage usages of the
customer when he or she had a rating s: µi,j,s, s ∈ S.
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3. Sum up Ni,j,s over all the credit lines, such that we get the total number of starts

of credit line by the customer with credit rating s: Ns =
n∑

i=1

ni∑
j=1

Ni,j,s, s ∈ S.

4. Sum up µi,j,s over all the credit lines, such that we get the total amount of loan used

by customers with a credit rating of s: µs =
n∑

i=1

ni∑
j=1

µi,j,s, s ∈ S.

5. us is estimated by ûs = µs

Ns
, s ∈ S.

An example is given in Figure 3.5. Suppose for the j-th credit line of i-th customer, we
find in the historical data 3 times of the starts of credit loan with a credit rating of s = 4
at the time the loans were started. Then we have Ni,j,4 = 3. If the usages are 0.6, 0.33, 0.7
respectively, we have µi,j,4 = 0.6 + 0.33 + 0.7 = 1.63. Please note that µi,j,s can be larger
than 1 although each draw us had a maximal value 1.

Figure 3.5: Estimation of usage amount

3.4 Modelling the Term-out-rule

For credit lines with maturity equal to 12 months, there exists a term-out-option. It is
the right of the customer to prolong the maturity for another year. The question is when
will the customer exercise this term-out-option. We assume an empirical expert rule that
describes the term-out decision by the customer.

Assumption 3.4 (Term-out-rule). We assume that the customer will exercise the term-
out-option under either of the two conditions:

1. The customer’s credit rating decreased down to B (s = 6) or below.

2. The customer’s credit rating has been downgraded by 4 levels within the past 12
months.

Definition 3.5 (Term out variable). The term out decision of the customer can be de-
scribed using a random variable (term out variable) Tet. Given the updated credit rating
Rt, according to Assumption 3.4, Tet should have the following form

Tet :=

{
1,
0,

{{Rt ∈ {6, 7}} ∪ {Rt−11 −Rt ≥ 4}} ∩ {Teτ 6= 1, τ = 1, 2, ..., t− 1} ,
else.
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in which Tet = 1 represents that at time t the customer exercises the term-out-option,
while Tet = 0 means not exercise.

Once the term-out-option is exercised, the maturity will increase by 12 months:

m → m + 12.

3.5 Modelling the Renewal Rule

When the maturity date is reached and the credit loan is already given back to the bank,
the bank has to decide whether to grant the line to the customer again or to eliminate
the customer out of the credit portfolio.

Assumption 3.5 (Renewal Rule). The bank will renew the credit line to the customer if
the credit loan is totally repaid by the end of last maturity date and the customer has a
credit rating higher than B (s = 6) at that time.

Definition 3.6. The renewal decision of a bank can be described by a random variable
(renewal variable) Ret with t = km for k ∈ N. Given the updated credit rating of the i-th
customer Rt and the amount of j-th credit line in use Ut at the maturity t = km, k ∈ N,
Rekm should have following form according to Assumption 3.5.

Rekm :=

{
1,
0,

{Rkm ∈ {1, 2, 3, 4, 5}} ∩ {Ukm = 0}
else

,

where k ∈ N. Here Rekm = 1 represents that the bank renews the credit line while
Rekm = 0 means no renewal is allowed.

Once a renewal is denied by the bank, the customer will never get another loan from the
revolving credit line, just as if he or she had a credit rating of default. In this case, we set
the credit rating of the customer manually as default in our simulation:

Rt := 8 for t = km + 1, km + 2, . . . . if Rekm = 0,

and the credit limit of the credit line will be set zero:

l i,jt := 0 for t = km + 1, km + 2, . . . . if Rekm = 0.

Please note that the limit of other credit lines of the i-th customer are not changed.

3.6 Modelling the Expiration Rule

At the maturity date, if the customer has not returned the credit loan, we have the expi-
ration rule to describe the situation.

Assumption 3.6 (Expiration Rule). If the customer has not returned the credit loan at
the maturity date, the customer will never return the loan and we regard the credit line
as expired.
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Definition 3.7. The expiration situation can be described by a random variable called
expiration variable Ext with t = km for k ∈ N. Given the usage proportion of the credit
loan Ut at the maturity date km, the expiration variable should have the following form.

Exkm :=

{
1,
0,

Ukm > 0
Ukm = 0

,

where k ∈ N. Here Exkm = 1 represents that the credit line is expired, while Exkm = 0
not expired.

To reflect the expiration rule, we manually set the credit rating of the customer as default,

Rt := 8 for t = km + 1, km + 2, . . . .if Exkm = 1.

3.7 Summary for Monte Carlo Simulation

In this section we make a short summary for the simulation part of the thesis. We first
make a symbol list for all the variables that we have defined for the simulation. It is shown
in Table 3.3. For simplification, we just denote the j-th credit line of i-th customer as
credit line (i, j).

Table 3.3: Symbol list of variables used in the model
Symbol Explanation

n the number of customers
ni the number of the credit lines of customer i

l ijt the credit limit of credit line (i, j) at time t (given in EUR)
mij the maturity of credit line (i, j), mij ∈ M = {12, 24, 36, 48} ∀i, j
Ri

t the credit rating of customer i at time t, Ri
t ∈ S = {1, 2, ..., 8}

in which 1
∧
= AAA, 2

∧
= AA, 3

∧
= A,4

∧
= BBB, 5

∧
= BB, 6

∧
= B,

7
∧
= CCC, 8

∧
= D

Li,j
t the time period between the return of loan and maturity for credit line (i, j)

Ei,j the time period between the start of loan and maturity for credit line (i, j)
R̄i

t Ri
t in unit of credit rating bucket

L̄i,j
t Li,j

t in unit of time bucket
Ēi,j Ei,j in unit of time bucket
As the draw decision variable for customer with credit rating s

BEi,j

t the return decision variable for credit line (i, j) at time t
with the start time of credit loan Ei,j months before the maturity

Tei,j
t the term out decision variable for credit line (i, j) at time t

Exi,j
t the expiration decision variable for credit line (i, j) at time t

Rei,j
t the renewal decision variable for credit line (i, j) at time t
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To start the simulation, we need to estimate or input the following parameters.

Table 3.4: Symbol list of input and estimated parameters used in the model
Symbol Explanation

Py the yearly transition matrix Py ∈ R8×8

P the optimal monthly transition matrix
Σ the correlation matrix of the customers
p̂s the estimated draw probability for customer with credit rating s

Q̂(s̄, l̄, Ē) the estimated cumulative return probability
for customer who has a credit rating bucket s̄,
started the credit loan Ē time buckets before the maturity
and returned the loan L̄ time buckets before the maturity

ûs the estimated proportional usage of the credit limit
for customer who has a credit rating s

In the end, the model gives out the following results of simulation.

Table 3.5: Symbol list of outputs
Symbol Explanation

Û ij
t the simulated proportional usage for credit line (i, j) at time t

F̂t the total committed credit limit at time t, F̂t =
n∑
i

ni∑
j

l ijt

F̂t the total amount of credit loan drawn at time t, F̂t =
n∑
i

ni∑
j

l ijt U ij
t

f̂t the proportional usage of total committed limit at time t, f̂t = F̂t/F̂t

Remark 3.3. For the output results, we need to note that:

1. The total committed limit of the credit portfolio is not always constant but de-
creasing because part of the credit lines are not renewed during our simulation time
period, which leads to the reduction of F̂t. So we need to recalculate the F̂t at each
time.

2. We replicate simulation 1000 times at each time t and get 1000 values of F̂t, namely
F̂1

t , F̂2
t , ... , F̂1000

t . In next step we select the VaR of F̂t at 0.75, 0.90 and 0.95

quantile: F̂ (750)
t , F̂ (900)

t and F̂ (950)
t . (Please refer to our definition of VaR in Chapter

1). The same procedure is run for f̂t. The plot of F̂α
t and f̂α

t , α ∈ {750, 900, 950} will
be given in the next chapter.

Now we give out a flow chart of the complete simulation process and explain how different
models interact and cooperate with each other. Please see Figure 3.6. Consider the credit
line (i, j) at time t. Assume we know that the credit rating of the customer in previous
month is Ri

t−1. The work flow is as follows.
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Figure 3.6: Flow chart of the simulation process

1. Run the Credit Rating Transition Model to derive the updated credit rating for all
customers and pick out the credit rating: Ri

t.

2. If U ij
t−1 = 0, run the expiration rule.

(1) If ∃k ∈ N such that t = km, set Exi,j
t = 0 and the line is not expired, run the

renewal rule.

- If Ri
t ∈ {1, 2, ..., 5}, set Rei,j

t = 1, the bank renews the credit line. We jump to
step (2) and run the credit start model.

- If Ri
t ∈ {6, 7, 8}, set Rei,j

t = 0, the bank refuses to renew the credit line. We
set Ri

t = 8 for t = km + 1, ... and li,jt = 0. Update the usage U i,j
t = 0.

(2) If t 6= km, ∀k ∈ N, set Exi,j
t = 0, the credit loan not is expired. Run the credit

loan start model and generate draw decision variable As.

- If As = 1, the customer draws the credit loan, update the usage U ij
t = ûR̄i

t
.

- If As = 0, the customer does not draw the credit line and the usage U ij
t = 0.

3. If U ij
t−1 > 0, run the expiration rule.
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(1) If ∃k ∈ N such that t = km, we set Exi,j
t = 1. (the credit loan expired).

- We regard the customer as default: Ri
t = 8 for t = km + 1, ...T . Update the

usage U i,j
t = U i,j

t−1.

(2) If t 6= km, ∀k ∈ N, set Exi,j
t = 0, since the credit line has not expired. Run

the term-out rule.

- If
{{Ri

t ∈ {6, 7}} ∪
{
Ri

t−11 −Ri
t ≥ 4

}}∩{Tei,j
τ 6= 1, τ = 1, 2, ..., t− 1}, set Tei,j

t =
1, the credit line is termed out: m = m + 12. Go to step (3) and run the credit
return model.

- Else, set Tei,j
t = 0, the customer does not term out the line. Go to step (3) and

run the credit return model.

(3) Generate return decision variable BĒi,j

t .

- If BĒi,j

t = 1, the customer returns the credit loan. Update the usage U ij
t = 0.

- If BĒi,j

t = 0, the customer does not return the loan. Update the usage U ij
t = ûRi

t
.



Chapter 4

Monte Carlo Simulation and Results

4.1 Credit Portfolio Parameters

Customer Information
We select randomly 76 customers from the historical data base together with their initial
credit ratings Ri

t. The distribution of customers with respect to credit rating is:

Table 4.1: Selected customers grouped by their initial credit ratings Ri
t

The customers are located in seven industries, namely Consuming Goods, Energy, Real
Estate, Materials, Oil Services, Financial Service, Technology. The distribution of cus-
tomers with respect to the industries is as shown in Table 4.2.

Table 4.2: Selected customers grouped by their industries

35
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We use the correlation among the exchange traded funds (ETFs) of different industries
(Table 4.3) to represent the correlation among the industries as well as among the cus-
tomers in different industries. These correlations are listed in Table 4.3.

Table 4.3: The correlation cxy between the industries. Source: S&P Index Month 2006.

In this way, we get the correlation between the customers within different industries: cxy

for x, y = 1, ..., 7 and x 6= y. For companies within the same industry, we use a correlation
of cxx = 0.8 for x = 1, ..., 7.

Credit Line Information
For 76 customers, we have in all 120 revolving credit lines selected from the historical
database. Each of the customers has maximum 3 credit lines committed. The total com-
mitted limit is EUR 83.37 Mio. The distribution of credit lines with respect to maturity
is shown in Table 4.4.

Table 4.4: Credit lines grouped by maturities m

If we sum up all the committed lines within the same credit rating s and maturity m,
we get the distribution of the total amount of the committed lines in TEUR (thousand
EUR) with respect to maturity and credit rating as shown in Table 4.5.
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Table 4.5: Credit lines grouped by credit rating s and maturity m

4.2 Input Parameters

Transition Matrix

From Bloomberg Server, we obtain the yearly credit rating transition matrix Py, see
Table 4.6.

Table 4.6: Credit rating transition matrix Py. Source: S&P Credit Week (2002).

After the regularization procedure we have described in Chapter 2, we get the optimal
monthly credit rating transition matrix P as shown in Table 4.7.

Table 4.7: Monthly credit rating transition matrix P
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Credit Draw Probability

We use the historical data in Jan 2007 and Feb 2007 (20,000 credit lines) to estimate
the draw probability. Using the empirical mean, we get the estimated draw probability as
in Table 4.8. The default customers are not allowed to get a credit loan, so we have to set
their draw probability 0.

Table 4.8: Estimated draw probability p̂s for s ∈ S

Credit Line Usage

To estimate the usage proportion and the return probability, we need more historical
data. Here we retrieved from the database the usage information of revolving credit lines
from 1999 till 2007, with around 20,000 credit lines in each month. We need to estimate
7 usage proportion in all. The estimation result is given in Table 4.9.

Table 4.9: Estimated credit line usage ûs for s ∈ S

Credit Return Probability

As we have calculated, we need to estimate 270 grouped return probabilities. With 20,000
historical credit lines, we have approximately 75 data to estimate one single probability.
After getting the grouped return probability, we use that to calculate the estimated cu-
mulative return probability. Tables 4.10, 4.11, 4.12 and 4.13 contain the cumulative return
probability for customers with s̄ = 1, 2, 3, 4 correspondingly. In Table 4.13, all the cumu-
lative return probabilities are 0, since the default customers are regarded not to return
the loan.
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Table 4.10: Estimated cumulative return probability Q̂(s̄, l̄, Ē) for customer with s̄ = 1

Table 4.11: Estimated cumulative return probability Q̂(s̄, l̄, Ē) for customer with s̄ = 2

Table 4.12: Estimated cumulative return probability Q̂(s̄, l̄, Ē) for customer with s̄ = 3
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Table 4.13: Estimated cumulative return probability Q̂(s̄, l̄, Ē) for customer with s̄ = 4

Furthermore in order to illustrate the cumulative return probability, we plot the probabil-
ity Q̂(s̄, l̄, Ē) against l̄ for Ē ∈ {1, 2, ..., 12} and s̄ = 1. We get 12 decreasing curves given
in Figure 4.1. The curves are decreasing since customers tend to keep the loan till the
maturity. As l̄ decreases, we expect more frequent return of credit loan, which is reflected
in a higher return probability.

Figure 4.1: Estimated cumulative return probability Q̂(s̄, l̄, Ē) for customer with s̄ = 1
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4.3 Simulation Parameters and Results

With all the input data, we start our Monte Carlo simulation. We simulate within a
period of 48 months, t = 0, 1, ..., 48. For each credit line, at each time, we replicate the
simulation K = 1000 times to calculate 1000 realizations of the total liquidity requirement
F̂t. For VaR analysis, we select the time series (path) in α = 0.75, 0.9, 0.95 quantile of
total usage amount (given in TEUR). Moreover, we obtain the α = 0.75, 0.9, 0.95 quantile
of proportion f̂t of total committed limit which was in use at each time point t. The
simulation result is shown in Figure 4.2 and Figure 4.3.

Figure 4.2: Estimated liquidity requirement F̂t in TEUR

Figure 4.3: Estimated liquidity requirement f̂t as percentage of total committed limit
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4.4 Sensitivity Analysis

After we get the simulation result of our liquidity requirement, we may ask whether this
result is stable related to the parameters like the estimated usage ûs and estimated draw
probability p̂s. Thus we carry out a sensitivity analysis. In the analysis, the credit portfolio
is not changed (76 customers with 120 credit lines). We observe how the total liquidity
requirement changes according to the change of us and ps at a certain time point e.g.
t = 1 here.
We have introduced the estimated proportional usage ûs for s ∈ S in Section 3.3. Consider
a vector

û = (û1, û2, ..., û8).

The usage is changed by multiplying û with a constant c, i.e. we define u := cû. Changing
the constant c = 0.6, 0.7, ..., 1.4, we get different total simulated usage F̂t of credit loan
drawn by the customer group. The plot of the F̂t against c is given in Figure 4.4.

Figure 4.4: Sensitivity of F̂t with respect to c (in units of ûs) at time t = 1

The analysis of sensitivity of F̂t to the draw probability is similar. We consider

p := cp̂ = c(p̂1, p̂2, ..., p̂8).

Changing c = 0.6, ..., 1.4, we obtain F̂t corresponding to p̂. The plot is given in Figure
4.5.
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Figure 4.5: Sensitivity of F̂t with respect to c (in units of p̂s) at time t = 1

Similarly we get the sensitivity analysis at time t = 20. See the Figures below.

Figure 4.6: Sensitivity of F̂t with respect to c (in units of ûs) at time t = 20
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Figure 4.7: Sensitivity of F̂t with respect to c (in units of p̂s) at time t = 20



Chapter 5

Distribution of the Liquidity
Requirement for a Single Credit Line
with Single Maturity

In this chapter, we derive the distribution of the liquidity requirement Ft:

Ft =
n∑

i=1

ni∑
j=1

l ijt U ij
t .

For simplification, we assume the committed limit li,jt unchanged over the time. The
expectation of the liquidity requirement E (Ft) is

E (Ft) =
n∑

i=1

ni∑
j=1

l ijt E
(
U ij

t

)
.

We consider a single credit line and can therefore ignore the indices in this chapter. Denote

Ri
t → Rt U ij

t → Ut l ijt → l m ij
t → m.

Since l is a constant, our key problem is to derive the distribution of Ut for t ∈ {0, 1, 2, ..., km},
k ∈ N. Here k represents the number of maturities we have during the simulated period.
Suppose we are simulating a time period of 48 months and the maturity of the credit line
is 12 months, then we have k = 4. For simplification, we investigate in this chapter a time
period with k = 1. We call it a single-maturity (SM) situation. In the next chapter, we
extend our distribution of Ut to multi-maturity (MM) situation (k > 1). The difference
between SM and MM situation is in the presence of renewal rule when k ≥ 2. For detailed
description, please refer to Chapter 6.
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5.1 Distribution of Usage in Single Period

Before we start the derivation, we give an overview of the notations we are going to use.

1. Credit Rating
The credit rating Rt for t ∈ {0, 1, 2, ...., m} is a Markov process with initial state
R0 = s0, state space S = {1, 2, ....7, 8} and transition matrix P. Thus

P (Rt = s|Rt−1 = s′, Rt−2 = s′′, ...) = P (Rt = s|Rt−1 = s′) = ps′s, (5.1)

where ps′s is the element of optimal monthly transition matrix.

2. Draw Probability
The draw probability is denoted as ps and it represents the probability that the
customer has not drawn the credit line in last month and starts the loan this month
under the condition that he or she has a credit rating of s, i.e.

ps := P (Ut > 0, Ut−1 = 0|Rt = s) , (5.2)

with s ∈ S. This definition is the same as in the simulation. That is why we use the
same notation. But be careful that the return probability in theory and in simulation
are different. Please refer to the Remark 5.1.

3. Joint Return Probability
Suppose at time t, the customer has a credit rating Rt = s and uses the credit
loan, which started at t − l + 1 (l − 1 is the number of the months that the credit
loan is kept in use). The probability of the customer to return the loan at time t
is P (Ut = 0, Ut−1 > 0, Ut−2 > 0, ..., Ut−l+1 > 0, Ut−l = 0|Rt = s). On the other hand,
we have the time period between the start time of the credit loan and the maturity
E = m− t + l. The time period between the return of the credit loan and maturity
is Lt = m − t + 1. Denote the return probability as q̃(Rt, E, Lt) = q̃(s, (m − t +
l), (m− t + 1)), namely

q̃(s, (m− t+ l), (m− t+1)) := P (Ut = 0, Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0|Rt = s) ,
(5.3)

where s ∈ S, l ∈ {1, 2, ..., t− 1} and t ∈ {1, 2, ...,m}. If at the maturity the credit
loan is still in use, we regard the credit loan as expired. The expiration probability
is considered as a special case of return probability with t = m + 1 in (5.3), namely

q̃(s, l + 1, 0) := P (Um > 0, ..., Ut−1 > 0, Ut−2 > 0, ..., Ut−l+1 > 0, Ut−l = 0|Rm = s) ,
(5.4)

So in general we have s ∈ S, l ∈ {1, 2, ..., t− 1} and t ∈ {1, 2, ...,m + 1} for (5.3). An
explanation of the difference between the joint return probability we have defined
here and the return probability we have used in simulation is given in Remark 5.1.

4. Usage
The usage at time t is denoted as Ut with t ∈ {0, 1, 2, ...., m}, initial state U0 = 0
and state space U = {u1, u2, ..., u7, u8} where u8 = 0.
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Remark 5.1. In simulation, we consider the return decision at time t under the condition
that the usage information in the past Ut−1, Ut−2, ..., U1 and Rt are already known. The
probability of return is thus P (Ut = 0|Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0, Rt = s). Compar-
ing this form to the right hand side of (5.3), we find out that two return probabilities are
different. According to our notation in Chapter 4, the return probability in simulation is
denoted as q(s,m−t+l,m−t+1) (Rt = s, E = m−t+l and Lt = m−t+1) and we can call
it conditional return probability more precisely. In contrast, q̃(s,m− t + l, m− t + 1)
is called joint return probability.

Remark 5.2. In the following calculation, we need a short notation for q̃(s,m− t + l, m−
t+1) in order to make our formulae more compact. We denote from now on q̃(Rt, E, Lt) ≡
Rt q̃

E
Lt

.

Remark 5.3. As in the simulation, we will assume that the us is a fraction that represents
the proportion of the credit limit drawn by the customer. It can take only 8 values us for
s ∈ S according to the credit rating of the customer (see Assumption 1 below).

In this chapter we obtain the distribution of Ut at each time point: P (Ut = us) for
s ∈ S and t ∈ {1, ..., m}. Now we give the assumptions under which we determine the
P (Ut = us).

Assumption 5.1. If the credit rating of the customer is not default (Rt 6= 8) and the
customer starts to use the credit line (Ut > 0), the proportion of the loan drawn by the
customer is us, i.e.

P (Ut = us|Rt = s, Ut > 0) = 1, (5.5)

where t ∈ {1, 2, ..., m} and s ∈ S\ {8}.
Assumption 5.2. If the credit rating of the customer is default (Rt = 8) and the customer
has already started using the credit line (Ut−1 > 0), then the usage is not changed (Ut =
Ut−1), i.e.

P (Ut = us|Rt = 8, Ut−1 = us) = 1, (5.6)

where t ∈ {1, 2, ..., m} and s ∈ S\ {8}.
Assumption 5.3. The usage of previous months has no impact on the credit rating of
the current month, i.e.

P (Rt = s|Ut−δ = us′) = P (Rt = s) , δ = 1, 2, ..., t, (5.7)

and

P (Rt = s|Ut−α = usα , Ut−2 = us2 , ..., Ut−δ = usδ
) = P (Rt = s) , α ≤ δ. (5.8)

Assumption 5.4. There is no term-out-option for the credit line.

Suppose the initial credit rating is s0, and define

Ps0(Ut = us) := P (Ut = us|R0 = s0).

We first give out three lemmas before we formulate our theorem.
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Lemma 5.1. Suppose the initial credit rating s0 is given. Then

Ps0(Ut = us) =





Ps0 (Rt = s, Ut > 0) + Ps0 (Ut = us, Rt = 8) , s ∈ S \ {8} ,

1−
7∑

ρ=1

Ps0 (Ut = uρ), s ∈ {8} .
(5.9)

Proof. Assume s ∈ S \ {8}. We have

Ps0 (Ut = us)
= Ps0 (Ut = us|Rt = s, Ut > 0) Ps0 (Rt = s, Ut > 0)
+Ps0 (Ut = us|Rt = 8, Ut > 0) Ps0 (Rt = 8, Ut > 0)
+

∑
ρ∈S\{s,8}

Ps0 (Ut = us|Rt = ρ, Ut > 0) Ps0 (Rt = ρ, Ut > 0)

+Ps0 (Ut = us|Rt = s, Ut = 0) Ps0 (Rt = s, Ut = 0)
+Ps0 (Ut = us|Rt = 8, Ut = 0) Ps0 (Rt = 8, Ut = 0)
+

∑
ρ∈S\{s,8}

Ps0 (Ut = us|Rt = ρ, Ut = 0) Ps0 (Rt = ρ, Ut = 0)

(5.10)

According to Assumption 5.1, we have

Ps0 (Ut = us|Rt = s, Ut > 0) = 1,

we get

Ps0 (Ut = uρ|Rt = s, Ut > 0) = 0 for ρ ∈ S \ {s} .

Expression (5.10) can thus be reduced to

Ps0 (Ut = us)
= Ps0 (Ut = us|Rt = s, Ut > 0) Ps0 (Rt = s, Ut > 0)
+Ps0 (Ut = us|Rt = s, Ut = 0) Ps0 (Rt = s, Ut = 0)
+Ps0 (Ut = us|Rt = 8, Ut = 0) Ps0 (Rt = 8, Ut = 0)
+

∑
ρ∈S\{s,8}

Ps0 (Ut = us|Rt = ρ, Ut = 0) Ps0 (Rt = ρ, Ut = 0).

(5.11)

On the other hand, we have that us > 0 for s ∈ S\ {8}, thus Ps0 (Ut = us|Rt = s, Ut = 0) =
0 for s ∈ S\ {8}. Expression (5.11) can thus be reduced to

Ps0 (Ut = us)
= Ps0 (Ut = us|Rt = s, Ut > 0) Ps0 (Rt = s, Ut > 0)
+Ps0 (Ut = us|Rt = 8, Ut = 0) Ps0 (Rt = 8, Ut = 0)
= Ps0 (Ut = us, Ut > 0, Rt = s) + Ps0 (Ut = us, Ut > 0, Rt = 8)
= Ps0 (Ut = us, Rt = s) + Ps0 (Ut = us, Rt = 8) .

(5.12)

Expression (5.12) tells us that the probability of the usage us consists of two parts. The
first part (Ps0 (Rt = s, Ut > 0)) is the probability that the customer is not default and has
a usage of us. The second part (Ps0 (Ut = us, Rt = 8)) is the probability that the customer
is default and has a usage of us. In order to refer to these two probabilities simply later
on, we add the following definition.



CHAPTER 5. USAGE OF SINGLE CREDIT LINE IN SINGLE PERIOD 49

Definition 5.1. No default usage probability is the probability that the customer has
not defaulted at time t when using us proportion of credit limit given an initial rating
s0 and the maturity of the credit line m. We denote it as m

s0
bs
t := Ps0 (Rt = s, Ut > 0),

where s0 is the initial rating of the customer, m is the maturity of the credit line, t is the
current time and s is the current credit rating of the customer. The m

s0
bs
t is dependent on

m through the joint return probability sq̃
m−t+l
m−t+1.

Definition 5.2. Default usage probability is the probability that the customer defaults at
time t when using us proportion of credit limit given an initial rating s0 and the maturity
of the credit line m. We denote it as m

s0
ds

t := Ps0 (Ut = us, Rt = 8), where s0 is the initial
rating of the customer, m is the maturity of the credit line, t is the current time and s is
the current credit rating of the customer.

Lemma 5.2 (Calculation of no default usage probability m
s0

bs
t). Suppose the draw proba-

bility ps, the return probability sq̃
E
Lt

, the transition matrix P are given. The credit line has
a maturity of m and the customer has an initial credit rating of s0. Then

m
s0

bs
t =





ps (pt)s0s , t = 1,

(pt)s0s

[(
ps − sq̃

m−t+1
m−t+1

)
+

t∑
l=2

(
s0y

l
t − sq̃

m−t+l
m−t+1

)]
, t = 2, 3, ...,m,

where s ∈ S\ {8} and

m
s0

yl
t =

8∑
ρ=1

(
ρq̃

m−t+l
0 (pm)s0ρ +

m−t+1∑
τ=1

ρq̃
m−t+l
m−t−τ+2

(
pt+τ−1

)
s0ρ

)
, l = 2, 3, ..., t. (5.13)

Here (pt)s0s is the corresponding element of the tth-power of transition matrix P.

Proof.

(1) We first show Ps0 (Rt = s, Ut > 0) =
t∑

l=1

Ps0 (Rt = s, Ut > 0, ..., Ut−l = 0), namely

Ps0 (Rt = s, Ut > 0)
= Ps0 (Rt = s, Ut > 0, Ut−1 > 0) + Ps0 (Rt = s, Ut > 0, Ut−1 = 0)
= Ps0 (Rt = s, Ut > 0, Ut−1 = 0) + Ps0 (Rt = s, Ut > 0, Ut−1 > 0, Ut−2 = 0)
+Ps0 (Rt = s, Ut > 0, Ut−1 > 0, Ut−2 > 0)
· · ·
= Ps0 (Rt = s, Ut > 0, Ut−1 = 0) + Ps0 (Rt = s, Ut > 0, Ut−1 > 0, Ut−2 = 0) + ...
+Ps0 (Rt = s, Ut > 0, Ut−1 > 0, Ut−2 > 0, ..., U1 > 0, U0 = 0)

(5.14)

For more practical explanation, please refer to Remark 5.4.
(2) Further we show that

Ps0 (Rt = s, Ut > 0, ..., Ut−l+1 > 0, Ut−l = 0)

=

{
ps (pt)s0s , l = 1,

(pt)s0s

[
Ps0 (Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)− sq̃

m−t+l
l−1

]
, l = 2, ..., t.
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If l = 1, we have

Ps0 (Rt = s, Ut > 0, ..., Ut−l+1 > 0, Ut−l = 0) = Ps0 (Rt = s, Ut > 0, Ut−1 = 0)
= Ps0 (Ut > 0, Ut−1 = 0|Rt = s) Ps0 (Rt = s) = ps (pt)s0s .

(5.15)

If l = 2, 3, ..., t, we get

Ps0 (Rt = s, Ut > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= Ps0 (Rt = s, Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)
−Ps0 (Rt = s, Ut = 0, Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0) .

(5.16)

From Assumption 5.3 and properties of Markov processes, we have

Ps0 (Rt = s, Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= Ps0 (Rt = s|Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)
×Ps0 (Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= Ps0 (Rt = s) Ps0 (Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= (pt)s0s Ps0 (Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0) .

(5.17)

From (5.3), we have

Ps0 (Rt = s, Ut = 0, Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= Ps0 (Ut = 0, Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0|Rt = q) Ps0 (Rt = s)
= sq̃

m−t+l
m−t+1 (pt)s0s .

(5.18)

Using expressions (5.16), (5.17) and (5.18), we get

Ps0 (Rt = s, Ut > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= (pt)s0s

[
Ps0 (Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)− sq̃

M−t+l
M−t+1

]
.

(5.19)

Thus

Ps0 (Rt = s, Ut > 0) = (pt)s0s

t∑
l=1

[
Ps0 (Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0)− sq̃

m−t+l
m−t+1

]
.

(5.20)
(3) Further we show that

Ps0 (Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0) =
8∑

ρ=1

(
ρq̃

m−t+l
0 (pm)s0ρ +

m−t+δ∑
τ=1

ρq̃
m−t+l
m−t+δ−τ+1

(
pt−δ+τ

)
s0ρ

)
,

(5.21)
where δ = 1, 2, ..., t− 1 and l = δ + 1, δ + 2, ..., t.
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Ps0 (Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= Ps0 (Ut−δ+1 = 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
+Ps0 (Ut−δ+1 > 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
= Ps0 (Ut−δ+1 = 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
+Ps0 (Ut−δ+2 = 0, Ut−δ+1 > 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
+Ps0 (Ut−δ+2 > 0, Ut−δ+1 > 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
· · ·
= Ps0 (Ut−δ+1 = 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
+Ps0 (Ut−δ+2 = 0, Ut−δ+1 > 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
+......
+Ps0 (Um = 0, Um−1 > 0, ..., Ut−δ+1 > 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
+Ps0 (Um > 0, Um−1 > 0, ..., Ut−δ+1 > 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0) .

(5.22)

Expression (5.22) can be rewritten as following:

Ps0 (Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0) = Ps0 (Um > 0, ..., Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)

+
m−t+δ∑

τ=1

Ps0 (Ut−δ+τ = 0, Ut−δ+τ−1 > 0..., Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0).

(5.23)
For a more detailed explanation of the meaning of (5.23), please refer to Remark 5.5.
Furthermore, we have

Ps0 (Ut−δ+τ = 0, ..., Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)

=
8∑

ρ=1

Ps0 (Rt−δ+τ = ρ) Ps0 (Ut−δ+τ = 0, ..., Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0|Rt−δ+τ = ρ)

=
8∑

ρ=1
ρq̃

m−t+l
m−t+δ−τ+1 (pm)s0ρ τ = 1, ..., (m− t + δ) ,

(5.24)
and

Ps0 (Um > 0, ..., Ui−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)

=
8∑

ρ=1

Ps0 (Um > 0, ..., Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0|Rm = ρ) Ps0 (Rm = ρ)

=
8∑

ρ=1
ρq̃

m−t+l
0 (pm)s0ρ,

(5.25)

where the definition of return probability in (5.3) and Assumption 5.3 were used. Using
expression (5.22), (5.24) and (5.25), we get

Ps0 (Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0) =
8∑

ρ=1

(
ρq̃

m−t+l
0 (pm)s0ρ +

m−t+δ∑
τ=1

ρq̃
m−t+l
m−t+δ−τ+1

(
pt−δ+τ

)
s0ρ

)
,

(5.26)
where l = δ + 1, δ + 2, ..., t.
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For δ = 1 we define

m
s0

yl
t := Ps0 (Ut−1 > 0, ..., Ut−l+1 > 0, Ut−l = 0) =

8∑
ρ=1

(
ρq̃

m−t+l
0 (pm)s0ρ +

m−t+1∑
τ=1

ρq̃
m−t+l
m−t−τ+2

(
pt+τ−1

)
s0ρ

)
,

(5.27)
where l = 2, 3, ..., t.

Here m
s0

yl
t stands for the probability that the customer starts a credit line at t− l + 1, and

till time t − 1 he is still in use of the credit line. Using (5.27) and (5.16), we get the no
default usage probability.

m
s0

bs
t = Ps0 (Rt = s, Ut > 0) =

(
pt

)
s0s

[
(
ps − sq̃

m−t+1
m−t+1

)
+

t∑

l=2

(
m
s0

yl
t − sq̃

m−t+l
m−t+1

)
]

, (5.28)

t = 2, 3, 4, ..., m.

which concludes the proof of the Lemma.

Remark 5.4. Ps0 (Rt = s, Ut > 0, ..., Ut−l+1 > 0, Ut−l = 0) is the probability that the cus-
tomer with credit rating s has started the credit line at t − l + 1 and keeps it in use till
current time t. Expression (5.14) means that the probability that the customer is in use
of the credit line at time t is equal to the sum of probabilities that the customer starts
the credit line at each time point in the past from 1 till t− 1 and keeps in use till current
time.

Remark 5.5. Ps0 (Ut−δ+τ = 0, ..., Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0) is the probability that
the customer with initial credit rating s0 started the credit line at time t−l+1 and returned
the loan at t−δ+τ . Ps0 (Um > 0, Um−1 > 0, ..., Ut−δ+1 > 0, Ut−δ > 0, ..., Ut−l+1 > 0, Ut−l = 0)
is the probability that the customer started the credit line at time t− l + 1 and defaulted
at the maturity. The expression (5.23) describes the probability that the customer started
using a credit line and kept it in use till current time as the sum of probabilities that he
or she returns the loan at any time in the future or defaults.

Lemma 5.3 (Calculation of default usage probability m
s0

ds
t). Suppose the draw probability

ps, the return probability sq̃
E
Lt

and the transition matrix P are given. The maturity of the
credit line is m and the customer has an initial rating of s0. The default usage probability
m
s0

ds
t is

m
s0

ds
t =

{
0, t = 1,
(pt)s08 Ps0 (Ut−1 = us) , t = 2, 3, ...,m,

where s ∈ S\ {8}.
Proof.
For t = 1, we have

Ps0 (U1 = us, R1 = 8) =
8∑

ρ=1

Ps0 (U1 = us, R1 = 8|U0 = uρ) Ps0 (U0 = uρ) . (5.29)
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Since the initial usage is 0 and u8 = 0, we have Ps0 (U0 = uρ) = 0 for ρ ∈ S\ {8}. We get

Ps0 (U1 = us, R1 = 8)
= Ps0 (U1 = us, R1 = 8|U0 = u8) Ps0 (U0 = u8)
= Ps0 (U1 = us, R1 = 8, U0 = u8)
= Ps0 (U1 = us|R1 = 8, U0 = u8) Ps0 (R1 = 8, U0 = u8) .

(5.30)

Using Assumption 5.2, we get

Ps0 (U1 = us|R1 = 8, U0 = u8) = 0, (5.31)

and

Ps0 (U1 = us, R1 = 8) = 0, (5.32)

where s ∈ S\ {8}.
For t = 2, 3, 4, ..., m, we have

Ps0 (Ut = us, Rt = 8)

=
8∑

ρ=1

Ps0 (Ut = us, Rt = 8, Ut−1 = uρ)

=
8∑

ρ=1

Ps0 (Ut = us|Rt = 8, Ut−1 = uρ) Ps0 (Rt = 8, Ut−1 = uρ)

= Ps0 (Ut = us|Rt = 8, Ut−1 = us) Ps0 (Rt = 8, Ut−1 = us)
= Ps0 (Rt = 8, Ut−1 = us, Ut = us)
= Ps0 (Ut = us|Rt = 8, Ut−1 = us) Ps0 (Rt = 8, Ut−1 = us)
= Ps0 (Rt = 8, Ut−1 = us) = Ps0 (Rt = 8) Ps0 (Ut−1 = us)
= (pt)s08 Ps0 (Ut−1 = us) .

(5.33)

With Lemma 5.1, 5.2 and 5.3, we can formulate Theorem 5.1. For simplicity, we denote
m
s0

xs
t := Ps0 (Ut = us) = m

s0
bs
t + m

s0
ds

t and formulate the following theorem.

Theorem 5.1 (Distribution of Usage for SM Situation). Given the initial credit rating
of the customer s0, the maturity of the credit line as m, the distribution of usage m

s0
xs

t is
given by

m
s0

xs
t =





m
s0

bs
t + m

s0
ds

t , s ∈ S \ {8} ,

1−
7∑

ρ=1

m
s0

xρ
t , s ∈ {8} .

(5.34)

where t = 0, 1, ..., m. Here

m
s0

bs
t =





0, t = 0,
(p)s0s ps, t = 1,

(pt)s0s

(
ps − sq̃

m−t+1
m−t+1 +

t∑
l=2

(
m
s0

yl
t − sq̃

m−t+l
m−t+1

))
, t = 2, ..., m,

(5.35)
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and

m
s0

ds
t =





0, t = 0, 1,
ps (p)s0s (p2)s08 , t = 2,

ps (p)s0s

t−2∏
δ=0

(
pt−δ

)
s08

+
t−3∑
τ=0

(
m
s0

bs
t−τ−1

τ∏
δ=0

(
pt−δ

)
s08

)
, t = 3, ..., m,

(5.36)

where

m
s0

yl
t =

8∑
ρ=1

(
ρq̃

m−t+l
0 (pm)s0ρ +

m−t+1∑
τ=1

ρq̃
m−t+l
m−t−τ+2

(
pt+τ−1

)
s0ρ

)
. (5.37)

Proof.
(1) Consider the case t = 0.

Since the usage for t = 0 is zero, we have

m
s0

xs
0 = Ps0 (U0 = us) = 0 for s ∈ S\ {8} .

and
m
s0

xs
0 = m

s0
bs
0 + m

s0
ds

0 = 0.

(2) Assume t = 1.
From Lemma 5.2 and 5.3, we get

m
s0

xs
1 = m

s0
bs
1 + m

s0
ds

1 for s ∈ S\ {8} (5.38)

with

m
s0

bs
1 = ps (p)s0s and m

s0
ds

1 = 0.

(3) For t = 2, ..., m , using Lemma 5.1 and 5.3, we get

m
s0

xs
t =

(
pt

)
s08

(
m
s0

xs
t−1

)
+ m

s0
bs
t for s ∈ S\ {8} , (5.39)

m
s0

xs
t = 1−

7∑
ρ=1

m
s0

xρ
t for s ∈ {8} . (5.40)

Define m
s0
xt = (m

s0
x1

t , ...,
m
s0

x8
t )
′, m

s0
bt = (m

s0
b1
t , ...,

m
s0

b7
t , 1)′ and matrix s0At:

s0At =




(pt)s08 0 0 0 0 0 0 0
0 (pt)s08 0 0 0 0 0 0
0 0 (pt)s08 0 0 0 0 0
0 0 0 (pt)s08 0 0 0 0
0 0 0 0 (pt)s08 0 0 0
0 0 0 0 0 (pt)s08 0 0
0 0 0 0 0 0 (pt)s08 0
−1 −1 −1 −1 −1 −1 −1 0




.
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Then (5.39) and (5.40) can be rewritten as

m
s0
xt = s0At

m
s0
xt−1 + m

s0
bt,

with initial value m
s0
x1 and t = 2, 3, 4, ..., m.

For t = 2, from (5.39) and (5.38), we can easily get

m
s0

xs
2 = ps (p)s0s

(
p2

)
s08

+ m
s0

bs
2. (5.41)

Since on the other hand we have

m
s0

xs
2 = m

s0
bs
2 + m

s0
ds

2,

we have that
m
s0

ds
2 = ps (p)s0s

(
p2

)
s08

. (5.42)

For t = 3, 4, ..., m

m
s0
xt = s0At

m
s0
xt−1 + m

s0
bt

= s0At

(
s0At−1

m
s0
xt−2 + m

s0
bt−1

)
+ m

s0
bt = s0At s0At−1

m
s0
xt−2 + s0At

m
s0
bt−1 + m

s0
bt

= s0At s0At−1

(
s0At−2

m
s0
xt−3 + m

s0
bt−2

)
+ s0At

m
s0
bt−1 + m

s0
bt

= s0At s0At−1 s0At−2
m
s0
xt−3 + s0At s0At−1

m
s0
bt−2 + s0At

m
s0
bt−1 + m

s0
bt

= ......

=

(
t−2∏
δ=0

s0At−δ

)
m
s0
x1 +

t−3∑
τ=0

((
τ∏

δ=0
s0At−δ

)
m
s0
bt−τ−1

)
+ m

s0
bt.

(5.43)
Since

0∏
δ=0

s0At−δ = s0At and
τ∏

δ=0
s0At−δ = s0At

(
τ∏

δ=1

(
pt−δ

)
s08

)
, τ ≥ 1,

expression (5.43) can be rewritten as

m
s0

xs
t = m

s0
bs
t + ps (p)s0s

(
t−2∏

δ=0

(
pt−δ

)
s08

)
+

t−3∑
τ=0

(
m
s0

bs
t−τ−1

τ∏

δ=0

(
pt−δ

)
s08

)
. (5.44)

The expectation of usage amount of liquidity requirement of the single credit line is

m
s0

Et := E (Ft) = E (lUt) = lE (Ut) = l
(

m
s0
xt

)′
u,

where u = (u1, u2, ..., u8). The expectation of the liquidity requirement at time t is de-
pendent on the initial rating of the customer s0 and the maturity of the credit line m.
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5.2 Estimation for Input Parameters

To plot the expectation of the liquidity requirement m
s0

Et, we need to estimate the following
input parameters.

1. Estimated draw probability p̂s,

2. Estimated proportional usage ûs,

3. Estimated joint return probability s
ˆ̃q

m−t+l

m−t+1.

The estimated draw probability and the estimated proportional usage are the same as we
have got in the simulation part. We only need to estimate the joint return probabilities

s
ˆ̃q

m−t+l

m−t+1. The joint return probability is defined as

sq̃
m−t+l
m−t+1 = P (Ut = 0, Ut−1 > 0, Ut−2 > 0, ..., Ut−l+1 > 0, Ut−l = 0|Rt = s) . (5.45)

Notice that these probabilities are not grouped as those in Section 3.2, i.e. the probabilities
are on a monthly basis instead of time bucket basis and on a normal credit rating units
instead of credit rating buckets. To estimate the joint return probabilities, we first group
them as described in Section 3.2. We estimate the grouped joint return probabilities

sˆ̄q
m−t+l
m−t+1 and map them inversely to joint return probabilities s

ˆ̃q
m−t+l

m−t+1 as described below.

Step 1: Estimation of the grouped joint return probability.

1. For the j-th credit line of i-th customer, we count the number of the returns of the
credit loans that have started Ē time buckets before maturity and returned l̄ time
buckets before the maturity and had a credit rating in the rating bucket s̄ at the
time the loan was returned: Ni,j,s̄,l̄,Ē.

2. Sum up Ni,j,s̄,l̄,Ē over all the credit lines, so that we get the total number of the
returns of the credit loans that have been started Ē time buckets before maturity
and returned l̄ time buckets before the maturity and had a credit rating in the rating

bucket s̄ at the time the loan was returned: Ns̄,l̄,Ē =
n∑

i=1

ni∑
j=1

Ni,j,s̄,l̄,Ē.

3. Sum up Ns̄,l̄,Ē over l̄, Ē, so that we get the number of the returns of the credit
loans with a credit rating in the rating bucket s̄ at the time the loan was returned:

Ns̄ =
12∑

Ē=1

Ē∑
l̄=0

Ns̄,l̄,Ē.

4. The grouped joint return probability is estimated by: s̄ˆ̄q
Ē
l̄ :=

Ns̄,l̄,Ē

Ns̄
.

Using the estimator, we can get the grouped joint return probability as following.
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Figure 5.1: Grouped joint return probability for customer with s̄ = 1.

Figure 5.2: Grouped joint return probability for customer with s̄ = 2.

Figure 5.3: Grouped joint return probability for customer with s̄ = 3.

Figure 5.4: Grouped joint return probability for customer with s̄ = 4.
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Step 2: Mapping between the grouped joint return probability and the joint
return probability. The grouped joint return probabilities in Table 5.1, 5.2, 5.3 and 5.4
are to be mapped to joint return probabilities. Three different situations described below
are possible.

1. Default situation (l̄ = 0 and Ē = 1, 2, ..., 8, or l̄ = 0 and Ē = 9, ..., 12).
The default situation corresponds to the first line in the table of grouped joint
return probabilities. Each combination of l̄, Ē can represent 3 sub-situations (for
l̄ = 0 and Ē = 1, ..., 8) or 6 sub-situations (for l̄ = 0 and Ē = 9, ..., 12). In order to
describe the pattern that can arise for different combination of l̄ and Ē, we consider
the case l̄ = 0, Ē = 1 and s̄ = 1. Following sub-situations may occur.

1) The customer starts the credit line 3 months before the maturity and the credit
loan is not returned till the maturity.

2) The customer starts the credit line 2 months before the maturity and the credit
loan is not returned till the maturity.

3) The customer starts the credit line 1 month before the maturity and the credit loan
is not returned till the maturity.

Please refer to Figure 5.5.

Figure 5.5: Mapping between the grouped joint return probability and joint return prob-
ability for l̄ = 0 and Ē = 1.

For simplification, we assume that the joint probabilities in each of the sub-situations

are equal (s̄
ˆ̃q

1

0 = s̄
ˆ̃q

2

0 = s̄
ˆ̃q

3

0) and the sum of the probabilities in each sub-situation is

equal to the probability of the grouped situation (
3∑

E=1
s̄
ˆ̃q

E

0 = s̄ˆ̄q
Ē
0 ).

So we set

s̄
ˆ̃q

E

l :=
1

3
s̄ˆ̄q

Ē
l̄ for l = 0, E = 1, 2, 3.

In general, we set

s̄
ˆ̃q

E

l :=

{
1
3 s̄ˆ̄q

Ē
l̄ , l = 0, E = 1, ..., 8,

1
6 s̄ˆ̄q

Ē
l̄ , l = 0, E = 9, ..., 12.
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2. Diagonal situation (l̄ = Ē = 1, ..., 8 or l̄ = Ē = 9, ..., 12).
The diagonal situation corresponds the diagonal of the table of grouped joint return
probabilities without the first line. Each combination of Ē, l̄ contains 6 sub-situations
for l̄ = Ē = 1, ..., 8 or 21 sub-situations for l̄ = Ē = 9, ..., 12. We take l̄ = Ē = 1
with s̄ = 1 as example. It represents the following sub-situations.

1) The customer starts the credit line 3 months before the maturity and returns it 3,
2 or 1 month before maturity.

2) The customer starts the credit line 2 months before the maturity and returns it 2
or 1 month before the maturity.

3) The customer starts the credit line in the last month and returns it in the same
month.

Please refer to Figure 5.6. The general inverse mapping is:

s̄
ˆ̃q

E

l :=

{
1
6 s̄ˆ̄q

Ē
l̄ , l = E = 1, ..., 8,

1
21 s̄ˆ̄q

Ē
l̄ , l = E = 9, ..., 12.

Figure 5.6: Mapping between the grouped joint return probability and joint return prob-
ability for l̄ = 1 and Ē = 1.

Similarly, for l̄ = Ē = 9, ..., 12, the total number of sub-situations for each combi-
nation is 1 + 2 + ... + 6 = 21.

3. Normal situation (Ē = 1, ..., 8 and l̄ = 1, ..., E − 1, or Ē = 9, ..., 12 and l̄ =
1, ..., E − 1).
Each combination of Ē, l̄ contains 9 sub-situations (Ē = 1, ..., 8 and l̄ = 1, ..., E− 1)
or 36 sub-situations (Ē = 9, ..., 12 and l̄ = 1, ..., E − 1). We take l̄ = 1 and Ē = 2
with s̄ = 1 as example. It represents the following sub-situations.

1) The customer starts the credit line 6 months before the maturity and returns it 3,
2 or 1 month before the maturity.
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2) The customer starts the credit line 5 months before the maturity and returns it 3,
2 or 1 month before the maturity.

3) The customer starts the credit line 4 months before the maturity and returns it 3,
2 or 1 month before the maturity.

Please refer to Figure 5.7. The general mapping is:

s̄
ˆ̃q

E

l :=

{
1
9 s̄ˆ̄q

Ē
l̄ , Ē = 1, ..., 8 and l̄ = 1, ..., E − 1,

1
36 s̄ˆ̄q

Ē
l̄ , Ē = 9, ..., 12 and l̄ = 1, ..., E − 1.

Figure 5.7: Mapping between the grouped joint return probability and joint return prob-
ability for l̄ = 1 and Ē = 2.

Furthermore, we assume that s̄
ˆ̃q

E

l = s
ˆ̃q

E

l if s̄ = c(s) (customer within the same credit
rating buckets share the same joint return probability given that they have the same
E, l). So we can summarize the mapping between the grouped joint return probability
and joint return probability as following.

s
ˆ̃q

E

l :=





1
3 s̄ˆ̄q

Ē
l̄ , l = 0, E = 1, ..., 8,

1
6 s̄ˆ̄q

Ē
l̄ , l = 0, E = 9, ..., 12.

1
6 s̄ˆ̄q

Ē
l̄ , l = E = 1, ..., 8,

1
21 s̄ˆ̄q

Ē
l̄ , l = E = 9, ..., 12.

1
9 s̄ˆ̄q

Ē
l̄ , Ē = 1, ..., 8 and l̄ = 1, ..., E − 1,

1
36 s̄ˆ̄q

Ē
l̄ , Ē = 9, ..., 12 and l̄ = 1, ..., E − 1.

(5.46)

where s ∈ S with credit rating bucket s̄, and s̄ˆ̄q
Ē
l̄ is the grouped joint return probability

that we have estimated in step 1.

5.3 Empirical analysis

In this section, we plot the time series of the expectation of the total usage, the default
usage and the no default usage.
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Suppose our customer has an initial credit rating of s0 = 7 (CCC) and the maturity of
the credit line is 1 year (m = 12). The expectation of usage Ut (or m

s0
xs

t), the default usage
m
s0

ds
t and the no default usage m

s0
bs
t are given in Figure 5.8.

Figure 5.8: Expectation of Ut(or m
s0

xs
t),

m
s0

bs
t and m

s0
ds

t .

The default usage is caused by the customers who default during the usage of their credit
lines never returning the loan. Thus the default usage always increases in time. The no
default part is to be repaid and we notice that it decreases as the maturity comes near.
In Fig 5.9, the usage of customers with different initial credit ratings are plotted, in Fig
5.10 the default usage and in Fig 5.11 the no default usage.

Figure 5.9: Expectation of Ut (or m
s0

xs
t) for different initial credit rating levels.
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Figure 5.10: Expectation of default usage as proportion of total committed limit (for
different credit rating levels).

Figure 5.11: Expectation of no default usage as proportion of total committed limit (for
different credit rating levels).



Chapter 6

Distribution of Liquidity
Requirement for a Single Credit Line
in Multiple Maturity Situation

6.1 Distribution of Usage in Multiple Period

The distribution of usage in multiple periods is different from that in single period in that
the renewal rule and the expiration rule take effect every time the credit line is matured.

Assumption 6.1. If the customer still has credit loan us in use with s ∈ S\ {8} at the
maturity t = km, k ∈ N, the customer never pays back the loan in the following periods.
So the usage at each time point in the following time period is the same as that at time
t = km.

Ps0 (Ut = us|Ukm = us) = 1,

Ps0 (Ut = us, Ut−1 = us, ..., Ukm+1 = us|Ukm = us) = 1,

for t = km + 1, km + 2, ..., (k + 1) m where s ∈ S\ {8} and s0 is the initial credit rating.

Assumption 6.2. If the customer is not in use of credit loan at the maturity Ut = u8 = 0
and t = km, k ∈ N having a credit rating sk = 6, 7, 8 at maturity t = km, then the
customer will not be allowed to reserve the credit line in the future and the usage of the
credit loan will always be zero.

Ps0 (Ut = u8|Ukm = u8, Rkm = sk) = 1, t = km + 1, km + 2, ..., (k + 1) m

where sk ∈ {6, 7, 8} and s0 is the initial credit rating.

Assumption 6.3. If the customer in not in use of credit loan at the maturity Ut = u8 = 0,
t = km, k ∈ N, and has a credit rating sk = 1, 2, 3, 4, 5 at t = km, then the customer will
be allowed to reserve the credit line from t = km + 1 and the following is assumed.

Ps0 (Ut = us|Ukm = u8, Rkm = sk) = m
sk

xs
t−km, t = km + 1, km + 2, ..., (k + 1) m

where sk ∈ {1, 2, 3, 4, 5} and s0 is the initial credit rating.

63
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Lemma 6.1. Suppose the initial credit rating of the customer is s0, the maturity of the
credit line is m. Last maturity is t = km, k ∈ N and we know the transition matrix P.
Then we have

Ps0 (Ut = us) = m
s0

xs
km +

5∑
sk=1

m
sk

xs
t−km

((
pkm

)
s0sk

− Ps0 (Ukm > 0, Rkm = sk)
)
,

for t = km + 1, ..., (k + 1)m where s ∈ S \ {8}.
Proof. Obviously we have for s ∈ S \ {8},

Ps0 (Ut = us) = Ps0 (Ut = us, Ukm = us)+Ps0 (Ut = us, Ukm = u8)+
∑

ρ 6=s,8

Ps0 (Ut = us, Ukm = uρ).

According to Assumption 6.1, we have Ps0 (Ut = us, Ukm = uρ) = 0, ρ ∈ S \ {s0, 8}. Thus

Ps0 (Ut = us)
= Ps0 (Ut = us, Ukm = us) + Ps0 (Ut = us, Ukm = u8)
= Ps0 (Ut = us|Ukm = us) Ps0 (Ukm = us) + Ps0 (Ut = us, Ukm = u8) .

Again using Assumption 6.1, we get Ps0 (Ut = us|Ukm = us) = 1 for s ∈ S\ {8}, so

Ps0 (Ut = us) = Ps0 (Ukm = us)

+
8∑

sk=6

Ps0 (Ut = us, Ukm = u8, Rkm = sk) +
5∑

sk=1

Ps0 (Ut = us, Ukm = u8, Rkm = sk).

(1) For the first term on the right hand side, we have Ps0 (Ukm = us) = s0x
s
km.

(2) For the second term on the right hand side, we use Assumption 6.2 and get

8∑
sk=6

Ps0 (Ut = us, Ukm = u8, Rkm = sk) = 0.

(3) For the third term on the right hand side, we use the Assumption 6.3 and get

5∑
sk=1

Ps0 (Ut = Us, Ukm = U8, Rkm = sk)

=
5∑

sk=1

Ps0 (Ut = Us|Ukm = U8, Rkm = sk) Ps0 (Ukm = U8, Rkm = sk)

=
5∑

sk=1

m
sk

xs
t−km (Ps0 (Rkm = sk)− Ps0 (Ukm > 0, Rkm = sk))

=
5∑

sk=1

m
sk

xs
t−km

((
pkm

)
s0sk

− Ps0 (Ukm > 0, Rkm = sk)
)
.
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For simplicity, we denote m
s0

bs
km = Ps0 (Ukm > 0, Rkm = sk). (Please compare it with the

definition of no default usage probability in single period m
s0

bs
t = Ps0 (Ut > 0, Rt = s),

t = 1, ..., m). It represents the probability that the customer is not default at the k-th
maturity t = km, but still in use of the credit loan. The explicit form of m

s0
bs
km is derived

in following lemma.

Lemma 6.2. Let k, sk and s0 be given, then

m
s0

bsk
km = Ps0 (Ukm > 0, Rkm = sk)

=
(
pkm

)
s0sk

(
psk

+
m∑

δ=2

(
m
s0

yδ
m − sk

qδ
1

)
+

k−1∑
τ=1

(τ+1)m∑
δ=τm+1

8∑
ρ=1

(
ρq̃

δ−τm
0

(
p(k−τ)m

)
s0ρ

))
,

(6.1)

for sk ∈ S\ {8} where m
s0

yδ
m is defined in (5.27) with t = m and l = δ. It stands for the

probability that the customer starts a credit line at time m− δ + 1 and till time m− 1,
he is still in use of the credit line.

Proof. Obviously for k ≥ 2, we have

Ps0 (Rkm = sk, Ukm > 0)

=
km∑
δ=1

Ps0 (Rkm = sk, Ukm > 0, ..., Ukm−δ+1 = 0, Ukm−δ = 0)

= Ps0 (Rkm = sk, Ukm > 0, Ukm−1 = 0)

+
m∑

δ=2

Ps0 (Rkm = sk, Ukm > 0, ..., Ukm−δ+1 = 0, Ukm−δ = 0)

+
2m∑

δ=m+1

Ps0 (Rkm = sk, Ukm > 0, ..., Ukm−δ+1 = 0, Ukm−δ = 0)+

......

+
km∑

δ=(k−1)m+1

Ps0 (Rkm = sk, Ukm > 0, ..., Ukm−δ+1 = 0, Ukm−δ = 0).

(1) For δ = 1,

Ps0 (Rkm = sk, Ukm > 0, Ukm−1 = 0)
= Ps0 (Ukm > 0, Ukm−1 = 0|Rkm = sk) Ps0 (Rkm = sk) = psk

(
pkm

)
s0sk

.
(6.2)

(2) For δ = 2, 3, ..., m,

Ps0 (Rkm = sk, Ukm > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)
= Ps0 (Rkm = sk, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)
−Ps0 (Rkm = sk, Ukm = 0, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0) .

(6.3)

For the first term on the right hand side, we have

Ps0 (Rkm = sk, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)
= Ps0 (Rkm = sk)Ps0 (Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)
=

(
pkm

)
s0sk

Ps0 (Ukm = 0, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0) +(
pkm

)
s0sk

Ps0 (Ukm > 0, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)

=
(
pkm

)
s0sk

8∑
ρ=1

(
pkm

)
s0ρ

(
ρq̃

δ
1 + ρq̃

δ
0

)
=

(
pkm

)
s0sk

m
s0

yδ
m,
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in which we used Assumption 5.3 in the first step and the definition of joint return
probability (5.3), (5.4) in the third step, and the definition of m

s0
yδ

m in (5.27) in the last
step.

For the second term on the right hand side, we have

Ps0 (Rkm = sk, Ukm = 0, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)
= Ps0 (Ukm = 0, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0|Rkm = sk) Ps0 (Rkm = sk)
= sk

q̃δ
1

(
pkm

)
s0sk

.

So we get for δ = 2, 3, ...,m,

Ps0 (Rkm = sk, Ukm > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0) =
(
pkm

)
s0sk

(
m
s0

yδ
m − sk

q̃δ
1

)
.

(3) For δ ≥ m + 1

(τ+1)m∑
δ=τm+1

Ps0 (Rkm = sk, Ukm > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)

=
(τ+1)m∑
δ=τm+1

(
Ps0 (Rkm = sk, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)
−Ps0 (Rkm = sk, Ukm = 0, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)

)

=
(τ+1)m∑
δ=τm+1

Ps0 (Rkm = sk, Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)

=
(τ+1)m∑
δ=τm+1

Ps0 (Rkm = sk)Ps0 (Ukm−1 > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0)

=
(τ+1)m∑
δ=τm+1




Ps0 (Rkm = sk)
×Ps0

(
Ukm−1 > 0, ..., U(k−τ)m+1 > 0|U(k−τ)m > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0

)
×Ps0

(
U(k−τ)m > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0

)




=
(τ+1)m∑
δ=τm+1

Ps0 (Rkm = sk)Ps0

(
U(k−τ)m > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0

)

=
(τ+1)m∑
δ=τm+1




(
pkm

)
s0sk

×
8∑

ρ=1
Ps0

(
U(k−τ)m > 0, ..., Ukm−δ+1 > 0, Ukm−δ = 0|R(k−τ)m = ρ

)
Ps0

(
R(k−τ)m = ρ

)




=
(
pkm

)
s0sk

(τ+1)m∑
δ=τm+1

(
8∑

ρ=1

(
ρq̃

δ−τm
0

(
p(k−τ)m

)
s0ρ

))
.

(6.4)

With (6.2) , (6.3) and (6.4), we get

m
s0

bsk
km =

(
pkm

)
s0sk


psk

+
m∑

δ=2

(
m
s0

yδ
m − sk

q̃δ
1

)
+

k−1∑
τ=1

(τ+1)m∑

δ=τm+1

8∑
ρ=1

(
ρq̃

δ−τm
0

(
p(k−τ)m

)
s0ρ

)

 ,

where sk ∈ S\ {8}.
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From Lemma 6.1 and 6.2, we can easily get distribution of usage for multiple period.

Theorem 6.1 (Distribution of usage for multiple maturity case). Suppose the distribution
of usage m

s0
xs

t for t = 1, ..., km, the draw probability ps, the joint return probability s0 q̃
E
l

are known, where s0 ∈ S is the initial credit rating, s ∈ S is the credit rating of customer
at time t and m ∈ M is the maturity of the credit line. Then

m
s0

xs
t =





m
s0

xs
km +

5∑
sk=1

m
sk

xs
t−km

((
pkm

)
s0sk

− k
s0

bsk
m

)
, s ∈ S\ {8} ,

1−
7∑

ρ=1

m
s0

xρ
t , s ∈ {8} ,

where

m
s0

bsk
km =

(
pkm

)
s0sk


psk

+
m∑

δ=2

(
m
s0

yδ
m − sk

q̃δ
1

)
+

k−1∑
τ=1

(τ+1)m∑

δ=τm+1

8∑
ρ=1

(
ρq̃

δ−τm
0

(
p(k−τ)m

)
s0ρ

)



for t = km + 1, km + 2, ..., (k + 1) m and k ≥ 2.

Remark 6.1. Theorem 6.1 gives us an iterative way to calculate the distribution of usage
period by period. Suppose we already know the initial credit rating s0 of a customer and
the maturity of the credit line m, we can summarize our calculation of distribution of
usage of a single credit line in multiple period as following.

1. Calculate m
s0

yδ
m for δ = 1, ...,m.

2. Calculate the no default probability m
s0

bs
t for s ∈ S and t = 1, ..., m.

3. Calculate the default probability m
s0

ds
t for s ∈ S and t = 1, ..., m.

4. Calculate the distribution of the usage in the first period: m
s0

xs
t for s ∈ S and t = 1, ..., m.

5. Calculate the no default usage probability at each following maturity m
s0

bsk
km where s ∈

{1, 2, 3, 4, 5} and k = 2, 3, ....

6. Use m
s0

bsk
m , sk ∈ {1, 2, 3, 4, 5} and m

s0
xs

m, s ∈ S to calculate the distribution of the usage
in the second period m

s0
xs

t for s ∈ S and t = m + 1, ..., 2m.

7. Use m
s0

bsk
2m, sk ∈ {1, 2, 3, 4, 5} and m

s0
xs

2m, s ∈ S to calculate the distribution of the usage
in the third period m

s0
xs

t for s ∈ S and t = 2m + 1, ..., 3m.

8. Repeat till the last period.

6.2 Simulation I

Assume the transition matrix, draw probability and joint return probability are the same
as in the single period situation. Our worst credit rating to be renewed at maturity is
sc = 5 (BB). The credit line has a maturity of 12 months: m = 12. Our simulation period
is 48 months, which covers 4 maturities: k = 4. We run Monte Carlo simulation with these
input parameters.
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From Theorem 6.1 we get the curve of the expectation of usage E[Ut] directly. For the
Monte Carlo simulation, we replicate 1000 realizations of the usage at each time and get
the average usage Ūt. Both curves are plotted in Figure 6.1.

Figure 6.1: Comparison between the Monte Carlo simulation and theoretical analysis.

Remark 6.2. From the comparison, we can see a consistence between the theoretical and
simulation result in the sense of trend, model and magnitude level.

Remark 6.3. There exists a bias between the two curves. The curve resulting from simula-
tion is above the curve that comes from theory. The reason lies in the return probabilities.
In theorem we use the joint return probability, which is mapped from the grouped return
probability. And for simplicity, we have assumed that the joint return probabilities in
each month in the same time bucket are the same. We use this simplification due to lack
of historical data and consequently, it leads to the under-estimation or over-estimation of
the return probability in comparison to the return probability used in the simulation.

Based on the model with multiple maturity for a single credit line, we can calculate the
expectation of usage of each customer. The expectation is determined by two factors: the
initial credit rating of the customer s0 and the maturity of the credit line m. Two different
customers will have the same expectation of usage if they have the same initial rating and
maturity of the credit loan. We denote the expectation as m

s0
Et.

Furthermore, we define Ω ∈ R4×8, where the element (Ω)m∈M,s0∈S is as following.

(Ω)m∈M,s0∈S =
∑

(i,j)∈Cs0,m

lij, Cs0,m := {(i, j) ∈ N|i ≤ n , j ≤ ni , si = s0,mij = m} ,

where lij is the credit limit of the j-th credit line of i-th customer, mij is the corresponding
maturity of the credit line, si is the initial rating of i-th customer, ni is the number of credit
lines that customer i has reserved and n is the number of customers. It represents the
sum of all the commitment of credit lines with maturity m that is reserved by customers
with credit rating s0. Ω is called the credit distribution matrix.
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Theorem 6.2 (Expectation of Usage of Several Credit Lines in Multiple Maturity Sit-
uation). Suppose m

s0
Et for s0 ∈ S, m ∈ M and Ω are given. The expectation of the total

amount of liquidity requirement at time t will be:

Ξt =
∑
s0∈S

∑
m∈M

(
m
s0

Et

)
((Ω)m,s0), (6.5)

Remark 6.4. The proportional usage ξt equals

ξt =
∑
ρ∈S

∑
m∈M

(
m
ρ Et

)
((Ω)m,ρ/L), (6.6)

where the total commitment L :=
n∑

i=1

ni∑
j=1

lij0 is set constant. lij0 is the initial commitment

limit of the j-th credit line of i-th customer at time t = 0.

6.3 Simulation II

We use Theorem 6.4 to calculate the theoretical expectation of usage for a group of credit
lines. Grouping the 120 credit lines that we use in the Monte Carlo simulation, we get
Ω/L.

Ω/L =




0.1259 0.1273 0.0299 0.0108 0.0000 0.0000 0.0000 0.0000
0.1113 0.1591 0.0396 0.0582 0.0000 0.0000 0.0000 0.0000
0.0492 0.1089 0.0264 0.0180 0.0000 0.0000 0.0000 0.0000
0.0240 0.0096 0.0360 0.0300 0.0360 0.0000 0.0000 0.0000




From 1000 replications in our Monte Carlo simulation, we obtain the VaR at 0.75, 0.90,
0.975 and 0.9995 quantile together with the mean value. The results are plotted in Figure
6.2 and Figure 6.3.
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Figure 6.2: Simulated liquidity requirement as percentage of total committed limit

Figure 6.3: Comparison between Monte Carlo simulation and theoretical analysis
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Conclusion

1. The 99.95% -percentile does not exceed 40% of the total committed limit within 48
months. Therefore the bank may set aside 60% of the committed capital for other usage.

2. The theoretical expectation of the liquidity requirement is close to the simulated mean.
Therefore the theoretical analysis can be used instead of the simulation.

3. The result from Monte Carlo simulation is more fluctuant during each year. The reason
is that, in the theorem, we have ignored the correlation between the customers within the
same and across different industries, while in the simulation the correlation is taken into
consideration.

4. Another difference between the two curves is that the simulation result is above the
theoretical curve. The reason is that we have term-out-option in the simulation, which is
ignored in the theoretical model. When there is term-out-option, the customer is allowed
to keep the usage of loan after the maturity, which increases the liquidity requirement.

5. Simulation method allows for quantile estimation, but with the theoretical derived
model, high quantiles are not estimable since the model is discrete.



Chapter 7

Summary of the Thesis

In this thesis, we did the analyzed the liquidity requirement of the revolving credit lines
in two ways: Monte Carlo simulation and theoretical model.

In the Monte Carlo simulation, we built up a series of models to describe the business
circle of the revolving credit lines including the transition of credit rating of the customer
(Chapter 2), the draw and return of the credit loan and the drawn amount of the customer,
the renewal decision of the bank etc. (Chapter 3). The credit rating transition is the most
important part of our simulation, in which we applied the asset return model. The updated
credit rating serves as the input information to the other models. The estimation of the
parameters (the draw probability, return probability and the drawn amount) are given in
Chapter 4, together with the result of the simulated liquidity requirement for a sample
group of real customers of the bank. The sensitivity analysis convinces us of the stability
and reliability of the simulation.

In the theoretical analysis, we first started with the analysis of a single credit line in
single maturity situation (Chapter 5). In this simplest theoretical model, we have taken
into consideration of the credit rating transition, the start and return of the credit loan.
Taking additionally the renewal rule and expiration rule of the bank at each maturity
into consideration, we extend our result in single maturity situation to multiple maturities
(Chapter 6). In the end, we apply the result of single credit line analysis to describe the
liquidity requirement of a group of credit lines. To illustrate the consistence between the
simulation and theorem, we have used the same sample customer group as input and
compared the output liquidity requirement from both simulation and theorem.

Outlook and suggestions for future analysis

The following suggestions are made for further analysis of the modelling of the liquid-
ity requirement for revolving credit line.

In simulation, to ensure a more accurate result, we suggest to do the statistics on the
historical data on monthly bases. This would allow us to avoid the error induced by

72
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mapping of return probability.

In theory, to develop the model further, we suggest following improvements.
1. Introduce the industry correlation among the customers in the theoretical model.
2. Introduce the term-out-option in the theoretical model.
3. Introduce more sophisticated assumption for the usage of credit loan. Instead of con-

stant usage for customers with certain credit rating, we can replace it with an appropriate
probability distribution.
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