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Chapter 1

Introduction

Many problems in mathematical finance require multivariate modelling to capture the

dependence between the components. An important field of application is, for example,

the modelling of operational risks. According to Basel II (2004), banks are obliged to

calculate capital charges for their operational risk. Moreover, they are required to distin-

guish between different cells (determined by business lines and loss event types) which

all contribute to the total operational risk of the bank. Thus, the univariate risks of the

single cells have to be modelled simultaneously and the dependencies between these cells

must be taken into consideration.

By defining copulas and deriving their fundamental properties Sklar (1959) introduced

a convenient way to model the marginal processes and the dependence structure between

them separately. This classical concept is particularly useful if there are few sources of

risk.

In the framework of multivariate Lévy processes the dependence may be described by

Lévy copulas. They are defined on the domain of Lévy measures instead of probability

measures. Kallsen and Tankov (2006) amongst others showed that many results from the

ordinary copula theory can be extended to Lévy copulas. Cont and Tankov (2004) dis-

cussed the concept and employed it for financial modelling. Further important references

for the theory of copulas are Nelsen (1997) and Joe (1997).

An application of Lévy copulas for modelling operational risks was presented by

Böcker and Klüppelberg (2006; 2008; 2009). They used a multivariate compound Pois-

son process (CPP) to model the risk in the univariate cells. In two other publications

Esmaeili and Klüppelberg (2010a; 2010b) introduced a maximum likelihood estimation

procedure for bivariate compound Poisson processes and bivariate stable Lévy processes,

respectively.

The aim of this thesis is to study the estimation of bivariate CPPs from a Bayesian
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2 CHAPTER 1. INTRODUCTION

perspective. We develop a Markov chain Monte Carlo (MCMC) estimation procedure

which, in particular, enables us to involve prior knowledge about the parameters of in-

terest. Moreover, whereas a purely frequentist approach results in point estimates of the

model parameters, the Bayesian method allows to derive additional knowledge about the

posterior distribution and hence about the uncertainty of the estimates given the expert

information contained in the priors.

This thesis is organized as follows. In Chapter 2 we summarize the theoretical back-

ground for the subsequent chapters. We first recall some definitions and properties of

stochastic processes and review the concept of Lévy copulas to describe the dependence

structure of a multivariate Lévy process. After presenting the most important notions of

Bayesian inference we also recall the concept of Bayes factors for model selection. When

outlining the main ideas of MCMC we discuss particularly the Metropolis-Hastings (MH)

algorithm and the Gibbs sampler.

In Chapter 3 we develop a MCMC procedure for the estimation of the posterior dis-

tribution in bivariate compound Poisson models. Since the choice of the proposal distri-

butions for the MH-steps has, as usual, a major impact on the behaviour of the sampling

algorithm, we present some guidelines on how to calibrate the proposals to make the sam-

pler highly efficient. Additionally, we discuss some other important issues, including the

choice of initial values, burn-in period and subsampling.

In Chapter 4 we check the performance of the adapted sampler in a simulation study.

First, we investigate the mixing and convergence behaviour of the produced chains. By

repeating the analysis for several simulations we are able to asses the quality of the

posterior mean estimates. Furthermore, we compare them to the maximum likelihood

estimates which are calculated using the method in Esmaeili and Klüppelberg (2010a).

In Chapter 5 we finally apply the sampler to Danish fire insurance data. After de-

scribing the structure of the data we present two different approaches. In the first we

consider the data in its original form whereas in the second we restructure the data and

transform it with the logarithm. We discuss briefly the advantages and drawbacks of these

approaches, before we analyze the two data sets separately. In each case, we fit several

Clayton models – including sliced distribution models – to the data and select the best

fitting one using Bayes factors and weighted Bayes factors. For the chosen model we inves-

tigate how sensitive the marginal posterior distributions are with respect to the choice of

the prior distributions. Subsequently, we illustrate how the estimated distributions vary

if less observations are included into the analysis and examine the impact of outliers.

Moreover, we compare the prior distributions to the estimated marginal posteriors.



Chapter 2

Theoretical background

Here we want to summarize some background from stochastics and statistics which is

important for the following chapters. First we recall some special stochastic processes and

look at their Lévy measure. Then we focus on dependence concepts for Lévy processes.

Introducing the notion of Lévy copula we are able to represent bivariate compound Poisson

processes (CPP) in an intuitive way and derive their likelihood which is fundamental for

our work. After some brief comments on Bayesian inference we deal with Markov chain

Monte Carlo (MCMC) methods. We state some results concerning Markov chains and

then discuss the two basic MCMC algorithms, the Metropolis-Hastings (MH) algorithm

and the Gibbs sampler.

2.1 Stochastic processes

In the following we assume that the reader is familiar with the notions of random variable,

probability space, measure, filtration, càdlàg function, Lévy process, Poisson process and

some other basic concepts. When stating the upcoming definitions and properties we

follow the explanations of Cont and Tankov (2004).

Since the multivariate compound Poisson process is very fundamental for this thesis

we want to recall its definition first.

Definition 2.1.1 (Multivariate compound Poisson process (CPP)).

A d-dimensional compound Poisson process with intensity λ > 0 and jump size distribu-

tions fi, i = 1, . . . , d, is a stochastic process S = (St)t≥0 := (S1
t , . . . , S

d
t )t≥0 on a filtered

probability space (Ω,F , (Ft)t≥0,P) with values in R
d. Each component Sit, i = 1, . . . , d, is

defined by

Sit =

N i
t

∑

k=1

X i
k ,

3



4 CHAPTER 2. THEORETICAL BACKGROUND

where, for all i, the jump sizes (X i
k)k≥1 are i.i.d. with distribution fi and (N i

t )t≥0 is a

Poisson process with intensity λi, independent from (X i
k)k≥1.

The CPP is one of the simplest examples of Lévy processes. A Poisson process itself

can be seen as a CPP on R such that Xk ≡ 1 for all k. This explains where the term ’com-

pound Poisson’ comes from. CPPs are the only Lévy processes with piecewise constant

trajectories, as shown by the following proposition.

Proposition 2.1.2.

(St)t≥0 is a CPP if and only if it is a Lévy process and its sample paths are piecewise

constant functions.

For the proof we refer to Cont and Tankov (2004).

Since any càdlàg function may be approximated by a piecewise constant function, one

may expect that general Lévy processes can be well approximated by compound Poisson

ones and that by studying CPPs one can gain insight into the properties of Lévy processes.

That is why we will focus mainly on CPPs.

The jump times (T in)n≥1, i = 1, . . . , d, of the components of the CPP have the same

law as the jump times of the underlying Poisson process (N i
t )t≥0. From the definition of

a Poisson process we know that they can be expressed as partial sums of independent

exponential random variables with parameter λi. We make use of this property in Section

2.2.2 in order to derive the likelihood of CPPs. These jump times together with the jump

sizes constitute for every single CPP its marked point process. Knowledge of it determines

the process uniquely.

Definition 2.1.3 (Marked point process).

A marked point process on (Ω,F , (Ft)t≥0,P) is a sequence (Tn,Xn)n≥1 where

• (Tn)n≥1 is an increasing sequence of FTn-adapted random times with Tn → ∞ almost

surely as n→ ∞.

• (Xn)n≥1 is a sequence of random variables taking values in E ⊆ R
d.

• The value of Xn is revealed at Tn: Xn is FTn-measurable.

In the following we need the concept of Lévy measure of stochastic processes. Before

introducing it we clarify some notions which lead us to the definition of the Lévy measure

for Lévy processes.

Let us begin with a simple example of a measure, determined by any Poisson process

(Nt)t≥0. Here the jump times T1, T2, . . . form a random configuration of points on [0,∞[
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and the Poisson process (Nt)t≥0 counts the number of such points in the interval [0, t].

This counting procedure defines a measure M on [0,∞[ : for any measurable set A ⊂ R
+

let

M(ω,A) = # {n ≥ 1, Tn(ω) ∈ A} .

Then M(ω, ·) is a positive, integer valued measure and M(ω,A) is finite with probability

1 for any bounded set A. Since the measure M(ω, ·) depends on ω, it is called a random

measure.

In the same manner as in the example above we can now associate a random measure

on [0,∞[×R
d to every d-dimensional càdlàg process (St)t≥0 (in particular to every CPP).

For every measurable set B ⊂ [0,∞[×R
d we define

JS(B) = # {(t,∆St) ∈ B} .

JS([t1, t2] × A) counts, for any measurable set A ⊂ R
d, the number of jump times of S

between t1 and t2 such that their jump sizes ∆St := St−St− are in A. Hence, JS is called

the jump measure of the process S.

From the notion of jump measure it is only a small step to the notion of Lévy measure.

All we have to do is to normalize the time interval on [0, 1] and to consider the average

numberinstead of the random number of jumps. This approach is much more general, since

the resulting measure does not depend on the uncertainty of the realization ω anymore.

Definition 2.1.4 (Lévy measure).

Let (St)t≥0 be a Lévy process on R
d. The measure Π on R

d defined by:

Π(A) = E [# {t ∈ [0, 1] : ∆S(t) 6= 0, ∆S(t) ∈ A}] , A ∈ B(Rd) ,

is called the Lévy measure of S: Π(A) is the expected number, per unit time, of jumps

whose size belongs to A.

Basically, the Lévy measure controls the jump behaviour of a Lévy process. For

instance, the Lévy measure Π of an one-dimensional CPP (St)t≥0 can be written in

terms of the (frequency) rate λ > 0 and the jump size distribution function F , namely

Π([0, x]) = λP (∆S ≤ x) = λF (x) for x ∈ [0,∞). Hence, the Lévy measure of a univariate

CPP gives the expected number of jumps per unit time with a jump size in a pre-specified

interval.

For the multivariate case it is quite similar: the Lévy measure controls the single and

joint jump behaviour (per unit time) of all components and contains all information of

dependence between the univariate components.



6 CHAPTER 2. THEORETICAL BACKGROUND

2.2 Dependence concepts for Lévy processes

In modelling financial data with Lévy processess – applications are e.g. portfolios of insur-

ance claims or operational risks – things get complicated when multi-dimensional processes

have to be considered. Then the main difficulty is to model the dependence between the

different marginal processes, in particular the dependence between the jumps of these

components. If the jumps are assumed to be Gaussian, their associatioin can be described

via correlation coefficients. If they are not, the classical approach is to use copulas. They

open a convenient way to represent the dependence structure for random variables, since

they contain all the dependence information which is, thus, clearly separated from the

marginal behaviour of the components. If there are few sources of jump risk, this classical

concept is very useful, because it allows to achieve a precise description of dependence

within a simple model. But when there are several sources of jump risk, the model quickly

becomes very complicated, because one has to introduce a separate copula for each jump

risk source. Another inconvenience of this modelling approach is that it does not allow to

couple components of different types.

To avoid these drawbacks, the Lévy copula is a sophisticated way to model the depen-

dence between the components in the framework of Lévy processes. In contrast to distri-

butional copulas which are defined on the domain of distribution functions, Lévy copulas

are defined on a different domain. Lévy copulas can be used to construct a d-dimensional

Lévy process by taking any set of one-dimensional Lévy processes and coupling them.

They allow to model the whole range of possible dependence structures in a parametric

fashion with a small number of parameters.

For ease of notation we present our Lévy copula concept for spectrally positive Lévy

processes (i.e. processes with only non-negative jumps). This is no restriction of the theory,

since the Lévy copula for general Lévy processes is specified for each quadrant separately.

In this section we follow again Cont and Tankov (2004), Böcker and Klüppelberg (2008)

and Kallsen and Tankov (2006).

2.2.1 The Lévy copula

The important dependence concept for Lévy copulas is the dependence of jumps. Hence,

for parametrizing the dependence between jumps of Lévy processes, the Lévy measure

plays the same role as the probability measure does for random variables. The principal

difference from the ordinary copula case is that Lévy measures are not necessarily finite.

Due to this fact, Lévy copulas are defined on infinite intervals rather than on [0, 1]d. The

role of distribution function is now played by the tail integral.
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Definition 2.2.1 (Tail integral).

Let Π be a Lévy measure on R
d
+. The tail integral is a function Π : [0,∞]d → [0,∞]

defined by

Π(x1, . . . , xd) =







Π([x1,∞)× · · · × [xd,∞)) , (x1, . . . , xd) ∈ [0,∞)d ,

0 , if xi = ∞ for at least one i .

The marginal tail integrals are defined for i = 1, . . . , d as Πi(x) = Πi([x,∞)) for x ≥ 0.

Practically, an one-dimensional tail integral is simply the expected number of jumps

per unit time that are above a given threshold x,

Πi(x) = Πi([x,∞)) = λi P (∆S
i > x) = λi F i(x) , x ∈ [0,∞) .

In the multivariate case the tail integral is the expected number of joint jumps such that

the marginal jump of each component is greater than xi, i = 1, . . . , d. We see that the

dependence of frequency and the dependence of jump size between different components

are both encoded in the tail integral.

To define the Lévy copula we need the notions of d-increasing function and grounded

function.

Definition 2.2.2 (Grounded function, d-increasing function).

Let F be a real d-dimensional function.

• Suppose that the domain of F is D1×· · ·×Dd where each Dk has a smallest element

ak. F is said to be grounded, if F (t) = 0 for all t in Dom F such that tk = ak for

at least one k.

• F is called d-increasing if VF (B) :=
∑

sgn(c)F (c) ≥ 0 for all d-boxes B = [a, b],

a ≤ b, whose vertices c lie in DomF . Here sgn(c) is defined by

sgn(c) =







1 , if ck = ak for an even number of vertices ,

−1 , else .

The notion d-increasing is thus nothing else than the multivariate extension of ’in-

creasing’. Groundedness guarantees that the Lévy copula defines a measure on [0,∞]d.
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Definition 2.2.3 (Positive Lévy copula).

A d-dimensional Lévy copula for Lévy processes with positive jumps, or, for short, a

positive Lévy copula, is a d-increasing grounded function C : [0,∞]d → [0,∞] with margins

Ck, k = 1, . . . , d, which satisfy Ck(u) = u for all u in [0,∞].

We want to stress that Lévy copulas allow for an intuitive and structural explanation

of what ’dependence’ actually can be thought of: dependence means that there are jumps

in different components which occur at the same time. More precisely, independence means

that jumps in different components never occur at the same time and that their jump size

variables are also independent. Complete positive dependence, on the other hand, means

that jumps always occur at the same points in time and that the jump size variables also

have a perfect positive dependence structure (comonotonicity).

Let us further remark that Lévy copulas give a dynamic description of the depen-

dence structure of a Lévy process S, in contrast to static models where the distributional

dependence between the margins of S for a predetermined and fixed t ≥ 0 is considered.

This is in particular an advantage when operational losses are modelled. Since operational

losses occur in time, a statical dependence model can never reflect coincidence of losses in

different cells, caused e.g. by the same catastrophic event. This is also acknowledged by

the regulators who, by assuming a statical dependence model, demand that losses which

affect different cells, but which are caused by one and the same event are not counted as

several small losses (simultaneously happening in different cells), but rather as one single

big loss impacting only a single cell. The reason is that a statical model would ’forget’ that

these losses actually have the same origin and it would falsely treat them as independent

events instead of one single, perhaps disastrous, incident. Of course, in the framework

of Lévy copulas as suggested here, this artificial correction is not necessary, because the

observation of joint losses is properly reflected in the dependence model.

The theorem we can finally formulate is a reformulation of Sklar’s (1959) theorem

for tail integrals and Lévy copulas. It shows that Lévy copulas link multidimensional

tail integrals to their margins in the same way as the distributional copulas link the

multivariate distribution functions to their margins.

Theorem 2.2.4.

Let Π be the tail integral of a d-dimensional Lévy process with positive jumps and let

Π1, . . . ,Πd be the tail integrals of its components. Then there exists a d-dimensional pos-

itive Lévy copula C such that for all vectors (x1, . . . , xd) in R
d
+,

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)) .
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If Π1, . . . ,Πd are continuous then C is unique, otherwise it is unique on RanΠ1 × · · · ×
RanΠd.

Conversely, if C is a d-dimensional positive Lévy copula and Π1, . . . ,Πd are the tail

integrals of Lévy measures on [0,∞), then the function Π defined above is the tail inte-

gral of a d-dimensional Lévy process with positive jumps having marginal tail integrals

Π1, . . . ,Πd.

A proof for the two-dimensional case is for example given in Cont and Tankov (2004).

For the general multivariate case, we refer to the proof of Sklar’s (1959) theorem.

The first part of this theorem states that all types of dependence of Lévy processes –

including complete dependence and independence – can be represented with Lévy copulas.

The second part provides a systematic way to construct multivariate Lévy processes by

specifying separately a jump dependence structure and one-dimensional Lévy processes.

These componenents can have very different structure, that is to say, one can couple

different Lévy processes.

If the dependence is specified via a Lévy copula and both the copula and the one-

dimensional tail integrals are sufficiently smooth, the Lévy density for bivariate Lévy

processes can be computed by differentiation, cf. Cont and Tankov (2004).

Proposition 2.2.5.

Let C be a two-dimensional Lévy copula, continuous on [0,∞]2, such that ∂2C(u,v)
∂u∂v

exists

on (0,∞)2 and let Π1 and Π2 be one-dimensional tail integrals with densities ν1 and ν2.

Then

ν(x, y) =
∂2C(u, v)

∂u∂v

∣

∣

∣

u=Π1(x),v=Π2(y)
ν1(x)ν2(y) (2.2.1)

is the Lévy density of a Lévy measure with marginal Lévy densities ν1 and ν2.

2.2.2 Representation of CPPs based on Lévy copulas

A bivariate model is particularly useful to illustrate how Bayesian statistics can be

used to estimate the parameters of Lévy processes. Therefore, we now consider the two-

dimensional case. Moreover, we focus on CPPs, since – as mentioned before – general

Lévy processes can be well approximated by them. We refer to Esmaeili and Klüppelberg

(2010a) for details about the subsequent results.

Let us assume that we observe a bivariate CPP (S(t))t∈[0,T ] = (S1(t), S2(t))t∈[0,T ] over
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a fixed time interval [0, T ], T > 0, where

S1(t) =

N1(t)
∑

i=1

Xi , 0 ≤ t ≤ T , and S2(t) =

N2(t)
∑

j=1

Yj, 0 ≤ t ≤ T .

Our goal is to determine the likelihood function of this CCP based on the observed jump

times and jump sizes in both components. As we will see, it is therefore very useful when

we work with a representation of CPPs which is based on Lévy copulas instead of ordinary

copulas.

The components Si, i = 1, 2, (representing the aggregate processes) of a bivariate CPP

S can always be split into jump dependent parts S
‖
i and independent parts S⊥i , i = 1, 2,

(this is a consequence of the Lévy-Itô decomposition),

S1 =

N1
∑

i=1

Xi = S⊥1 + S
‖
1 =

N⊥
1
∑

k=1

X⊥k +
N‖
∑

m=1

X‖m , (2.2.2)

S2 =

N2
∑

j=1

Yj = S⊥2 + S
‖
2 =

N⊥
2
∑

l=1

Y ⊥l +
N‖
∑

m=1

Y ‖m . (2.2.3)

Here S⊥1 and S⊥2 are independent from each other (no joint jumps) and from the other

two components, whereas S
‖
1 and S

‖
2 are dependent (the jumps of both components are

caused by the same event and thus always happen together). It can be shown that all

three processes S⊥1 , S
⊥
2 and (S

‖
1 , S

‖
2) are again compound Poisson and independent with

Poisson processes N⊥1 , N
⊥
2 and N‖, respectively.

Fixing the model completely requires to specify different quantities. Let us compare

these specifications for our two copula concepts: the ordinary copula and the Lévy copula.

In the first case we have to determine

• the intensity and jump size distribution of S⊥1 ,

• the intensity and jump size distribution of S⊥2 ,

• the intensity of common jumps,

• jump size distributions of S
‖
1 and S

‖
2 ,

• the copula of the last two distributions.

We see that the distributional copula approach requires a lot of different quantities. When

using the Lévy copula this is not the case. Here we only have to specify



2.2. DEPENDENCE CONCEPTS FOR LÉVY PROCESSES 11

• the margins via the intensity and jump size distribution of S1 and S2,

• the dependence structure via the Lévy copula of the process.

All other quantities can be derived from these ones, cf. Cont and Tankov (2004). This

results in a model with comparably few parameters, making it particularly advantageous

in case of rare data. Hence, the Lévy copula approach is obviously much more convenient

for modelling CPPs.

With the specification of CPPs by Lévy copulas, we can now compute the full likeli-

hood of two-dimensional CPPs. Due to Equations (2.2.2) and (2.2.3) and the fact that the

single components are independent from each other, one can write the likelihood func-

tion of the bivariate process (S1, S2) as the product of the likelihoods of the processes

S⊥1 , S
⊥
2 and (S

‖
1 , S

‖
2). Let us briefly describe the likelihood of an univariate CPP, before

considering the bivariate case.

Assume that within the time interval [0, T ] one observes n jumps at times T1, . . . , Tn,

each with jump size xi ∼ f(·|θ), where θ is a parameter vector of the jump size distri-

bution. Defining the inter-arrival times Zi := Ti − Ti−1 for i = 1, . . . , n with T0 = 0, and

recalling that the Zi are i.i.d. exponential random variables with parameter λ, we can

write the likelihood as

f(x, n|λ,θ) = e−λ(T−Tn)
n
∏

i=1

λe−λZi

n
∏

i=1

f(xi;θ) (2.2.4)

= λne−λT
n
∏

i=1

f(xi;θ) .

The last term in (2.2.4) is the likelihood of the observed jump sizes, the part in the

middle is the likelihood of the observed inter-arrival times and the first factor is simply

the probability that there is no jump within the interval (Tn, T ], that is P (Tn+1 > T ) =

P (Zn+1 > T − Tn) = e−λ(T−Tn).

The following theorem deals with the bivariate equivalent to the likelihood from above.

It is given in Esmaeili and Klüppelberg (2010a). Since it is a fundamental result for the

upcoming explanations, we here want to give a more detailed proof. Assume that we

observe a bivariate CPP S = (S1, S2) which is fully determined by the parameter set

ψ := (λ1,θ1, λ2,θ2, δ) .

Here λi > 0, i = 1, 2, denotes the frequency parameter of component Si which has jump

size distribution Fi with parametrization θi, i = 1, 2. The Lévy copula C is determined

by the parameter vector δ.
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Observing a CPP continuosly over a fixed time period [0, T ] is equivalent to observing

all jump times and jump sizes in this time interval. Let x̃, ỹ denote the observed inde-

pendent jump sizes of S1, S2, respectively, and (x,y) the joint jump sizes. Furthermore,

we write n⊥1 = N⊥1 (T ), n
⊥
2 = N⊥2 (T ) for the number of independent jumps in S1, S2,

respectively, and n‖ = N‖(T ) for the number of joint jumps. For notational convenience

we set

z := (x̃, ỹ,x,y, n⊥1 , n
⊥
2 , n

‖) .

Theorem 2.2.6.

Assume an observation scheme as above. Assume further that ∂2

∂u∂v
C(u, v; δ) exists for all

(u, v) ∈ (0, λ1)× (0, λ2), which is the domain of C. Then the full likelihood of the bivariate

CPP is given by

f(z
∣

∣ ψ) = (λ1)
n⊥
1 e−λ

⊥
1 T

n⊥
1
∏

i=1

[

f1(x̃i;θ1)

(

1− ∂

∂u
C (u, λ2; δ)

∣

∣

∣

u=λ1F 1(x̃i;θ1)

)]

(2.2.5)

× (λ2)
n⊥
2 e−λ

⊥
2 T

n⊥
2
∏

i=1

[

f2(ỹi;θ2)

(

1− ∂

∂v
C (λ1, v; δ)

∣

∣

∣

u=λ2F 2(ỹi;θ2)

)]

× (λ1λ2)
n‖

e−λ
‖T

n‖
∏

i=1

[

f1(xi;θ1)f2(yi;θ2)
∂2

∂u∂v
C (u, v; δ)

∣

∣

∣

u=λ1F 1(xi;θ1),v=λ2F 2(yi;θ2)

]

with λ‖ = λ‖(δ) = C(λ1, λ2; δ) and λ
⊥
i (δ) = λi − λ‖(δ) for i = 1, 2.

Proof: (cf. Esmaeili and Klüppelberg (2010a))

To calculate the likelihood function, we start with representations (2.2.2) and (2.2.3) of

a bivariate CPP. Since the components S⊥1 , S
⊥
2 and (S

‖
1 ,S
‖
2) are independent from each

other the tail integrals can be represented as Πi = Π
⊥
i +Π

‖
i , i = 1, 2.

Here we have for x > 0

Π1(x) = Π1([x,∞)) = λ1P (∆S1 > x) = λ1F 1(x) (marginal tail int.) , (2.2.6)

Π
⊥
1 (x) = Π([x,∞), {0}) = Π(x, 0)− lim

y→0+
Π(x, y)

Sklar
= Π1(x)− lim

y→0+
C(Π1(x),Π2(y); δ)

C cont.
= Π1(x)− C(Π1(x), lim

y→0+
Π2(y); δ)

= Π1(x)− C(Π1(x), λ2; δ) (tail int. of the independent part) , (2.2.7)

Π
‖
1(x) = lim

y→0+
Π
‖
(x, y)

x>0
= lim

y→0+
Π(x, y)

= C(Π1(x), λ2; δ) (tail int. of the jump dependent part) ,
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and analogously for i = 2. Furthermore, we can write

λ‖ = lim
x,y→0+

Π(x, y) = C(λ1, λ2; δ) ,

λ⊥1 = lim
x→0+

Π1(x)− lim
x,y→0+

Π(x, y) = λ1 − C(λ1, λ2; δ) ,

λ⊥2 = λ2 − C(λ1, λ2; δ) .

Thus, we obtain for x, y > 0 the independent parts and the jump dependent part of

(S1, S2) as

λ⊥1 F
⊥
1 (x) = Π

⊥
1 (x)

(2.2.7)
= Π1(x)− C(Π1(x), λ2; δ)

(2.2.6)
= λ1F 1(x)− C(λ1F 1(x), λ2; δ) ,

λ⊥2 F
⊥
2 (y) = λ2F 2(y)− C(λ1, λ2F 2(y); δ) , (2.2.8)

λ‖F
‖
(x, y) = Π

‖
(x, y)

x,y>0
= Π(x, y)

Sklar
= C(Π1(x),Π2(y); δ)

(2.2.6)
= C(λ1F 1(x), λ2F 2(y); δ) .

Let now L1(x̃, n
⊥
1

∣

∣ λ⊥1 ,θ1) denote the marginal likelihood function based on the obser-

vations of the jump times and jump sizes of the first component S⊥1 . To derive the function

L1 let T̃1, . . . , T̃n⊥
1
denote the jump times of S⊥1 , and define the sequence of inter-arrival

times Z̃i = T̃i − T̃i−1 for i = 1, . . . , n⊥1 , where T̃0 = 0. Then the Z̃i are i.i.d. exponentially

distributed random variables with parameter λ⊥1 and they are independent of the observed

jump sizes x̃1, . . . , x̃n⊥
1
. The likelihood function of the observations concerning S⊥1 is then

given by

L1(x̃, n
⊥
1

∣

∣ λ⊥1 ,θ1) = e
−λ⊥1 (T−T̃

n⊥
1
)
n⊥
1
∏

i=1

(

λ⊥1 e
−λ⊥1 Z̃i

)

n⊥
1
∏

i=1

f⊥1 (x̃i;θ1)

= (λ⊥1 )
n⊥
1 e−λ

⊥
1 T

n⊥
1
∏

i=1

f⊥1 (x̃i;θ1) , (2.2.9)

as we know from Equation (2.2.4). The density f⊥1 is found by taking the derivative in

the first equation of (2.2.8) which yields

f⊥1 (x) =
∂F⊥1 (x)

∂x
= −∂F

⊥
1 (x)

∂x

= − 1

λ⊥1

(

−λ1f1(x)−
∂

∂u
C(u, λ2; δ)

∣

∣

∣

u=λ1F 1(x)
(−λ1f1(x))

)

=
λ1f1(x)

λ⊥1

(

1− ∂

∂u
C(u, λ2; δ)

∣

∣

∣

u=λ1F 1(x)

)

.
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Together with Equation (2.2.9) we get

L1(x̃, n
⊥
1

∣

∣ λ1,θ1, δ) = (λ⊥1 )
n⊥
1 e−λ

⊥
1 T

n⊥
1
∏

i=1

[

λ1f1(x̃i;θ1)

λ⊥1

(

1− ∂

∂u
C(u, λ2; δ)

∣

∣

∣

u=λ1F 1(x̃i;θ1)

)]

= (λ1)
n⊥
1 e−λ

⊥
1 T

n⊥
1
∏

i=1

[

f1 (x̃i;θ1)

(

1− ∂

∂u
C (u, λ2; δ)

∣

∣

∣

u=λ1F 1(x̃i;θ1)

)]

.

The second part S⊥2 is treated analogously and we obtain L2(ỹ, n
⊥
2

∣

∣ λ2,θ2, δ).

For the joint jump part of the process (S
‖
1 , S

‖
2) we observe the number n‖ = n1 −

n⊥1 = n2 − n⊥2 of joint jumps with frequency λ‖ at times T1, . . . , Tn‖ with the observed

bivariate jump sizes (x1, y1), . . . (xn‖ , yn‖). Denote Zi = Ti − Ti−1 the inter-arrival times

and F ‖(x, y) the joint jump distribution of the jump sizes with joint density f ‖(x, y).

These are observations of a jump dependent CPP with frequency parameter λ‖ and Lévy

measure concentrated on (0,∞)2. Let us recall formula (2.2.1) for the Lévy density,

Π(dx, dy) =
∂2

∂u∂v
C(u, v; δ)

∣

∣

∣

u=Π1(x),v=Π2(y)
Π1(dx)Π2(dy) .

The derivative ∂2

∂u∂v
C(u, v; δ) exists by assumption and it is Π1(dx) = λ1f1(x) and

Π2(dy) = λ2f2(x) and Π(dx, dy) = λ‖f ‖(x, y). Hence, for (x, y) ∈ (0,∞)2, the likelihood

of the joint jump process is given by

L‖(x,y, n‖
∣

∣ λ1,θ1, λ2,θ2, δ)

= (λ‖)n
‖

e−λ
‖T

n‖
∏

i=1

f ‖(xi, yi; δ)

= (λ‖)n
‖

e−λ
‖T

n‖
∏

i=1

[

1

λ‖
λ1f1(xi;θ1)λ2f2(yi;θ2)

∂2

∂u∂v
C(u, v; δ)

∣

∣

∣

u=λ1F 1(xi;θ1),v=λ2F 2(yi;θ2)

]

= (λ1λ2)
n‖e−λ

‖T

n‖
∏

i=1

[

f1(xi;θ1)f2(yi;θ2)
∂2

∂u∂v
C(u, v; δ)

∣

∣

∣

u=λ1F 1(xi;θ1),v=λ2F 2(yi;θ2)

]

.

Because the components S⊥1 , S
⊥
2 and (S

‖
1 ,S
‖
2) are independent from each other, the

likelihood of the bivariate CPP is the product of the likelihoods of these components

which concludes the proof.

2
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2.3 Bayesian inference

In this section we briefly present the basic mathematics and notations of Bayesian data

analysis. Moreover, we introduce the Bayes factors which represent a Bayesian solution for

model selection. For a more detailed treatment of Bayesian statistics we refer to Gelman

et al. (2004) and Gilks (1996).

We understand under the notion Bayesian inference the process of fitting a probability

model to a set of data and, with it, being able to make inferences of quantities about which

we wish to learn, but which can not be observed directly. These results are summarized

by a probability distribution on the parameters of the model. Hence, the essential charac-

teristic of Bayesian methods is their explicit use of probability for quantifying uncertainty

in inferences based on statistical data analysis.

The unobserved quantities ψ ∈ R
m about which we want to draw conclusions can be

two kind: either they are potentially observable quantities, such as future observations

of a process, or they are quantities that are not directly observable, that is, parameters

that govern the hypothetical process leading to the observed data z. Since in our MCMC

application they are the latter we throughout talk about parameters in this context. From

a Bayesian perspective there is no fundamental difference between random variables and

parameters of a statistical model insofar as both are considered to be random. This uncer-

tainty is reflected in the prior distribution which contains all the prior knowledge about

the parameters ψ. The observation z contains new information about these parameters

and can therefore be used to update the knowledge. Let us explain how this is formally

done.

In order to make probability statements about ψ given z we must begin with a

statistical model providing a joint distribution for ψ and z. The joint density function

f(ψ, z) can be written as a product of the prior distribution π(ψ) and the likelihood

function f(z|ψ):
f(ψ, z) = f(z|ψ)× π(ψ) .

Simply conditioning on the observation z, using the basic property of conditional prob-

ability known as Bayes’ rule, yields the posterior distribution f(ψ|z) which is the object

of all Bayesian inference,

f(ψ|z) = f(ψ, z)

f(z)
=
f(z|ψ)× π(ψ)

f(z)
. (2.3.1)

Here f(z) =
∫

f(ψ|z)π(ψ)dψ is called the marginal distribution. It does, for fixed z, not

depend on ψ and can hence be considered a normalizing constant.
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Most of the practical difficulties in Bayesian statistics occur when trying to evaluate

the integral above. For some applications, e.g. the MCMC methods (to be introduced in

Section 2.4), this problem is irrelevant, since knowledge of the fundamental proportionality

f(ψ|z) ∝ f(z|ψ)× π(ψ) (2.3.2)

is sufficient. Hence, Equations (2.3.1) or (2.3.2), respectively, constitute the technical core

of Bayesian inference.

Since we will make use of so-called noninformative prior distributions in upcoming

chapters, let us define these distributions here. A prior is said to be noninformative or

uniform on the support S, if

π(ψ) ∝ 1S(ψ) .

Even though the name does not suggest it, we point out that such priors may contain

some information about ψ, reflected in the support S. The noninformative priors have to

be distinguished from the improper priors which integrate to ∞. A noniformative prior

may be improper, but obviously it does not have to be.

We want to clarify another notion used in the context of Bayesian inference. Instead

of confidence intervals considered in the classical approach one can determine credible

intervals for the parameters ψ. A 100(1− α)% credible interval for a parameter ψk ∈ R,

k = 1, . . . ,m, is an interval Ik :=
[

Ikleft, I
k
right

]

for which

∫

Ik
f(ψk|z) dψk = 1− α ,

where f(ψk|z) denotes the marginal posterior distribution for ψk, k = 1, . . . ,m. If we

choose Ik to be symmetric, the calculation of the 100(1− α)% credible interval simplifies

to computing the α/2 and 1 − α/2 quantiles of f(ψk|z), k = 1, . . . ,m. If the marginal

posterior distributions are not available in closed form, one has to use the empirical

quantiles.

The notion of credible interval facilitates a common-sense interpretation of statisti-

cal conclusions: a credible interval for an unknown quantity of interest can be directly

regarded as having a high probability of containing the unknown quantity, in contrast to

a frequentist confidence interval which may strictly be interpreted only in relation to a

sequence of similar inferences that might be made in repeated practice.

We now want to consider the problem of comparing different models {M1, . . . ,ML}
reflecting competing hypotheses about the data. Exemplary, these different assumptions

may be expressed by different marginal jump size distributions, as we will see in our
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real data analysis in Chapter 5. The standard Bayesian solution to assess which of the

competing models is best (for fitting to an empirical data set) is to employ the Bayes

factors.

Each of the models Ml, l = 1, . . . , L, is defined by the specification of a joint distribu-

tion f(ψ, z) for the observation (denoted by z) and the unobservable parameters (denoted

by ψ). From a Bayesian perspective it is clear that inference proceeds from f(ψ|z). But
since different models have different sets of parameters, the posterior distribution f(ψ|z)
does not allow us to judge a model given the observed data nor does it permit comparison

amongst models. Rather, it is f(z) which can assess model performance. Regardless of

the model – and hence regardless of the set of parameters – f(z) is a density over the

space of observables which can be compared with what was actually observed. The Bayes

factors are based on these densities and thus provide a relative weight of evidence for one

model against the other. We say relative, since they do not compare the models itself, but

rather the models in the light of the observed data.

Bayesian model selection proceeds by pairwise comparison of the modelsM1, . . . ,ML.

Let each model Ml, l = 1, . . . , L, be described by a model-specific parameter vector

ψl ∈ Ψl ⊂ R
dl , l = 1, . . . , L. If f(z|Ml) denotes the marginal density under model Ml, the

Bayes factor for model i against model j, i, j = 1, . . . ,M , i 6= j is defined by

Bij =
f(z|Mi)

f(z|Mj)
. (2.3.3)

Formally, the Bayes factor arises as the ratio of the posterior odds P (Mi|z)/P (Mj|z)
to the prior odds P (Mi)/P (Mj),

Bij =
P (Mi|z)/P (Mj|z)
P (Mi)/P (Mj)

=
P (Mi|z)/P (Mi)

P (Mj|z)/P (Mj)
=
f(z|Mi)

f(z|Mj)
.

When the prior odds on the models Mi and Mj is equal to one, the Bayes factor and

the posterior odds are obviously equal.

The problem that often occurs in practice – and will occur in our example, see Chapter

5 – when trying to calculate the Bayes factor (2.3.3), is the evaluation of the marginal

likelihood. It is equal to the normalizing constant of the posterior density and hence,

f(z|Ml) =
∫

Ψl fl(z|ψl)πl(ψ
l)dψl, with fl(z|ψl) denoting the posterior and πl(ψ

l) the

prior distribution for ψl in model Ml, l = 1, . . . , L. The computation of the integral is not

trivial to carry out in the general case. MCMC methods (reduced run) can be helpful, see

Chib (1995) for details.

Another way to avoid these problems is to approximate the Bayes factors. Among
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others Robert and Marin (2010) suggest to use the estimates

B̃ij(z) =
n−1i

∑ni

k=1 fi(z|ψi,k)

n−1j
∑nj

k=1 fj(z|ψj,k)
, i, j ∈ {1, . . . , L} , i 6= j ,

where ψi,k, k = 1, ..., ni, and ψ
j,k, k = 1, ..., nj , are two independent samples which are

generated from the prior distributions πi and πj, respectively. When representing the

Bayes factor as

Bij(z) =
f(z|Mi)

f(z|Mj)
=

∫

Ψi fi(z|ψi)πi(ψ
i)dψi

∫

Ψj fj(z|ψj)πj(ψ
j)dψj

=
Eπi [fi(z|ψi)]
Eπj [fj(z|ψj)]

, i, j ∈ {1, . . . , L} , i 6= j ,

it can be shown that B̃ij(z) is a strongly consistent estimate of Bij(z), that is to say B̃ij(z)

converges almost surely to Bij(z).

No matter in which form the Bayes factors are applied in practice, one important use

of the them is as a summary of the evidence for model i against model j provided by the

data. The strength of evidence can be expressed according to the Bayes factor scale by

Jeffreys1 (1961), see Table 2.1.

Bij Evidence for model i vs. model j

< 1 Negative (supports model j)

1− 3.2 Barely worth mentioning

3.2− 10 Substantial

10− 100 Strong

> 100 Decisive

Table 2.1: Calibration of the Bayes factor Bij for model i against j according to Jeffreys’
Bayes factor scale.

1This scale was proposed by the British mathematician, geophysicist and astronomer Sir Harold Jef-
freys, 1891-1989.
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2.4 Markov chain Monte Carlo methods

To conclude the chapter about fundamentals, we finally give an introduction to Markov

chain Monte Carlo2 (MCMC) methods. They are used to draw samples from a probability

distribution which – in this context – is known as the target density. First, let us briefly

discuss the question, where the advantage of MCMC methods is, compared to other

sampling procedures.

The simplest way to draw samples from a probability distribution is to make use of

the so-called probability integral transform. It says that any univariate random variable

can be represented as a transform of a uniform random variable via the generalized in-

verse F−. The problem here is oviously that we need a closed form distribution function

F , that means e.g. proportional knowledge of the target density is not enough. Thus, this

procedure only covers a small number of cases and we need a more general approach to

generate samples from mathematically less convenient distributions. There are several al-

ternative techniques – including Accept-Reject, importance sampling or MCMC strategies

– which only require to know the functional form of the target density f . The key to these

methods is to use a simpler density from which the simulation is actually done. However,

the appeal to MCMC methods is that they allow for greater universality than the other

two methods mentioned. They can be used to generate random samples from virtually

any target distribution known up to a normalizing constant, regardless of its analytical

complexity and its dimension.

Let us now state some results concerning Markov chains in general. Afterwards, we

have a look at the basic MCMC algorithm, which is called the Metropolis-Hastings al-

gorithm, and its special case, the Gibbs sampler. For a detailed introduction and back-

grounds to MCMC theory we refer Robert and Casella (2000), Liu (2001) and Chen et

al. (2000).

2.4.1 Markov chains

In this section we present some fundamental notions and results for Markov chains3 that

are needed to establish the convergence of the upcoming MCMC algorithms. Let us note

that we do not deal here with Markov models in continuous time (called Markov processes)

since the very nature of simulation leads us to consider only discrete-time stochastic

processes.

A Markov chain is a sequence of random variables that can be thought of as evolving

2The name was given by John von Neumann in reference to the casinos of Monte Carlo.
3Named after Andrey Andreyevich Markov, Russian mathematician, 1856-1922.
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over time, with transition probability depending on the particular set in which the chain

is. Thus, for the definition of the Markov chain we need the transition kernel which governs

its evolution on a space X ⊆ R
d.

Definition 2.4.1 (Transition kernel).

A transition kernel is a function K defined on X × B(X ) such that

1. ∀x ∈ X , K(x, ·) is a probability measure,

2. ∀A ∈ B(X ), K(·, A) is measurable.

In case of Markov chains, X is discrete and the transition kernel simply is a (transition)

matrix K with elements

P (x,y) = P (Xn = y|Xn−1 = x) , x,y ∈ X .

In the following, we thus write P (·, ·) and P (x, A) :=∑y∈A P (x,y) instead of K(·, ·) and
K(x, A), respectively.

Definition 2.4.2 (Markov chain).

Given a transition kernel P (·, ·), a sequence (Xn)n∈N of random variables is a Markov

chain if, for any t, the distribution of X t given xt−1,xt−2, . . . ,x0 is the same as the

distribution of X t given xt−1, that is,

P (xk, A) := P (Xk+1 ∈ A|xo,x1, . . . ,xk) = P (Xk+1 ∈ A|xk) , xk ∈ X , A ∈ B(X ) .

So, if the initial distribution or the initial state is known, the construction of the

Markov chain is entirely determined by its transition. The nth-step-ahead transition kernel

is then given by

P (n)(x, A) =
∑

y∈X
P (n−1)(y, A)P (x,y)

where P (1)(x,y) = P (x,y).

The two properties to be introduced next are important for a Markov chain’s asymp-

totic behaviour. Aperiodicity of the chain ensures that the chain does not cycle through a

finite number of sets. The notion of α-irreducibility, where α is a probability measure, is

basically the requirement that the chain is able to visit all sets with positive probability

under α from any starting point in X . This feature is crucial in the setup of MCMC

algorithms, because it leads to a guarantee of convergence as we will see.
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Definition 2.4.3 (Irreducibility, Aperiodicity).

• Given a probability measure α, the Markov chain (Xn)n∈N with transition kernel

P (·, ·) is α-irreducible if, for every A ∈ B(X ) with α(A) > 0, there exists n such

that P (n)(x, A) > 0 for all x ∈ X .

• The Markov chain (Xn)n∈N with transition kernel P (·, ·) is said to be aperiodic, if,

for all x ∈ X , the greatest divider of
{

n : P (n)(x,x) > 0
}

is 1.

The Markov chains encountered in MCMC settings enjoy a very strong stability prop-

erty, namely that an invariant distribution exists by construction. We prove this in Section

2.4.2. Therefore we need a property of Markov chains which is called reversibility. Let us

define these two notions next.

Definition 2.4.4 (Invariant distribution).

A σ-finite measure α is invariant on X , if, for all x ∈ X ,

α(A) =
∑

x∈X
P (x, A)α(x) , ∀A ∈ B(X ) .

If α is a probability measure, the invariant distribution is also referred to as stationary,

since Xn ∼ α, for any n, implies that all subsequent elements of the chain are also

distributed according to α. Thus, the chain is stationary in distribution.

Definition 2.4.5 (Reversibility).

The Markov chain (Xn)n∈N with transition kernel P (·, ·) is reversible, if, for all x,y ∈ X ,

g(x)P (x,y) = g(y)P (y,x) (2.4.1)

for a density g.

If the reversibility condition holds, then g is an invariant distribution, since

∑

x∈X
g(x)P (x, A) =

∑

x∈X

∑

y∈A
g(x)P (x,y) =

∑

x∈X

∑

y∈A
g(y)P (y,x) =

∑

y∈A
g(y) = g(A) .

These definitions allow us to state the following results which are fundamental for

MCMC methods. The first theorem gives conditions under which a strong law of large

numbers holds.
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Theorem 2.4.6.

Suppose (Xn)n∈N is an α-irreducible, aperiodic Markov chain with transition kernel P (·, ·)
and invariant distribution α. If P (x, ·) is absolutely continuous with respect to α for all

x ∈ X , then α is the unique invariant distribution of P (·, ·) and for all α-integrable

real-valued functions h,

1

M

M
∑

n=1

h(Xn) →
∫

h(x)α(x)dx as M → ∞ , a.s.

The second result gives conditions under which the probability density of the Mth

iterate converges to its unique, invariant density. For the proofs of the theorems see e.g.

Tierney (1994).

Theorem 2.4.7.

Suppose that (Xn)n∈N is an α-irreducible, aperiodic Markov chain which has transition

kernel P (·, ·) and invariant distribution α. Then for α-almost every x ∈ X and all sets

A ∈ B(X )

lim
M→∞

∥

∥P (M)(x, A)− α(A)
∥

∥ = 0 ,

where ‖·‖ denotes the total variation distance.

So, for almost every starting value the stationary distribution is a limiting distribution

in the upper sense. However, in the context of Markov chain Monte Carlo theory, where we

start the algorithm from some arbitrary point of measure zero, almost sure convergence

is not enough.

We need to guarantee convergence from every starting point. In general, this can

be attained when further ensuring a property called Harris recurrence. It basically says,

that the probability of an infinite number of returns to any set A is equal to 1. Because

Markov chains related to MCMC methods are, in fact, finite state-space Markov chains,

the property of Harris recurrence follows directly from irreducibility, cf. Robert and Casella

(2000).

In applications of MCMC methods, Theorem 2.4.6 and Theorem 2.4.7 play important

roles. Since the existence of the invariant distribution is given by construction, we only

have to check, if the produced chain is aperiodic and irreducible. We see in the following

section that these properties can be satisfied easily. More convergence results can be found

in Robert and Casella (2000).
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2.4.2 Metropolis-Hastings algorithm

A general form of MCMC methods is the Metropolis-Hastings4 (MH) algorithm which is

used to draw samples from the multivariate target density. The fundamental idea of this

method is to evolve a Markov chain so that the stationary distribution of it is the target

distribution f . Given this, we have seen in Section 2.4.1 that quite general conditions on

the Markov chain (e.g. aperiodicity and irreducibility) are sufficient to ensure that the

drawn samples are coming from the target density in the limit. Some exemplary conditions

which guarantee that the produced chain is aperiodic and irreducible are stated later on.

To produce values from the target density f(ψ) – where ψ denotes the parameters

of interest – the MH algorithm employs a proposal density q(ψc,ψp). This density serves

for two purposes: first, it supplies proposal values ψp of the parameters, given the current

values ψc, and second, it is the instrument to decide whether this values will be accepted

or not. This is done with the help of the acceptance probability χ(ψc,ψp). So, before

stating the algorithm, we first need to define χ,

χ(ψc,ψp) :=

{

min
[

f(ψp)×q(ψp,ψc)
f(ψc)×q(ψc,ψp)

, 1
]

if f(ψc)× q(ψc,ψp) > 0 ,

1 otherwise .
(2.4.2)

We see that here only the ratio of the target density is involved. Hence, proportional

knowledge of the target density is sufficient, the normalizing constant is not required.

Denoting by I the total number of iterations, the MH sampling procedure is classical, cf.

Chen et al. (2000):

Algorithm 2.4.8 (Metropolis-Hastings algorithm).

1. Specify the initial value ψ(0).

2. Repeat for i=1,...,I

• Draw a proposal value ψp from q(ψ(i−1), ·).
• Draw a sample u(i) from the uniform distribution U(0, 1).

• Let

ψ(i) :=

{

ψp if u(i) ≤ χ(ψ(i−1),ψp) ,

ψ(i−1) otherwise .

3. Return the values
{

ψ(1),ψ(2), ...,ψ(I)
}

.

4The Greek American physicist Nicholas Constantine Metropolis (1915-1999), along with others, first
proposed the algorithm for the specific case of the Boltzmann distribution. W. Keith Hastings, born 1930
in Toronto, Canada, extended the algorithm to the more general case in 1970.
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We already mentioned that the MH algorithm – as any MCMC procedure – always

produces chains whose stationary distribution is the target distribution by construction.

Let us briefly verify that this is true.

Let P (ψc,ψp) be the actual transition function of the algorithm which differs from

the proposal function q(ψc,ψp): the probability that we actually make the move from

ψc to ψp is equal to the proposal probability, q(ψc,ψp), multiplied by the acceptance

probability. That is,

P (ψc,ψp) = q(ψc,ψp)×min

{

f(ψp)× q(ψp,ψc)

f(ψc)× q(ψc,ψp)
, 1

}

.

Hence, for all ψc, ψp,

f(ψc)P (ψc,ψp) = f(ψc)q(ψc,ψp)×min

{

f(ψp)× q(ψp,ψc)

f(ψc)× q(ψc,ψp)
, 1

}

= min {f(ψc)q(ψc,ψp), f(ψp)q(ψp,ψc)} ,

which is a symmetric function in ψc and ψp. Thus, the reversibility condition (2.4.1) is

satisfied with the target density f , which yields that f is a stationary distribution of the

Markov chain, cf. Section 2.4.1.

To conclude this section, we state a proposition which ensures irreducibility and ape-

riodicity of the produced Markov chain. See Roberts and Tweedie (1996) for the proof.

Proposition 2.4.9.

Let f be the target density and q the proposal density. Assume that f is bounded and

positive on every compact set of its support S. If there exist positive numbers ǫ and δ such

that

q(ψc,ψp) > ǫ if ‖ψc −ψp‖ < δ ,

then the MH Markov chain is f -irreducible and aperiodic.

2.4.3 Gibbs sampler

The proposal transition in a MH sampler is often an arbitrary choice out of convenience.

However, MH algorithms can achieve higher levels of efficiency, if they take the specifics

of the target density f into account and, hence, enable to follow the local dynamics of it.

A very simple and powerful conditional sampling technique to be discussed in this section

is the Gibbs sampler5. It is a special case of the so-called multiple-block MH method: here

5The Gibbs sampler was given its name by Gelman and Gelman, who used it for analyzing Gibbs
distributions on lattices. However, its applicability is not limited to Gibbs distributions, of course.
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the parameter vector ψ is grouped into m blocks, ψ = (ψ1, . . . ,ψm), and each block is

sampled separately by the MH algorithm, conditioned on the remaining blocks.

A distinctive feature of the Gibbs sampler is that it uses at each iteration the so-called

full conditional distributions

f(ψk|ψ1, ...,ψk−1,ψk+1, ...,ψm) ,

as proposal densities for ψk, k = 1, . . . ,m. In doing so, high-dimensional problems can be

reduced to lower dimensions which usually makes the sampling procedure more tractable.

However, the main advantage of using full conditionals for construction of Markov chain

moves is that no rejection is incurred at any of the sampling steps. To explain why this

holds, we denote ψ
(i)
−k := (ψ

(i)
1 , . . . ,ψ

(i)
k−1,ψ

(i−1)
k+1 , . . . ,ψ

(i−1)
m ) for k = 1, . . . ,m, i = 1, . . . , I,

and write

f(ψk|ψ(i)
−k) =

f(ψk,ψ
(i)
−k)

f(ψ
(i)
−k)

∝ f(ψk,ψ
(i)
−k) .

The acceptance probability in Equation (2.4.2) is then given by

χk(ψ
(i−1)
k ,ψp

k

∣

∣ ψ
(i)
−k) = min

[

f(ψp
k,ψ

(i)
−k)× f(ψ

(i−1)
k |ψ(i)

−k)

f(ψ
(i−1)
k ,ψ

(i)
−k)× f(ψp

k|ψ
(i)
−k)

, 1

]

= min

[

f(ψp
k,ψ

(i)
−k)× f(ψ

(i−1)
k ,ψ

(i)
−k)

f(ψ
(i−1)
k ,ψ

(i)
−k)× f(ψp

k,ψ
(i)
−k)

, 1

]

= 1 ,

for k = 1, . . . ,m, i = 1, . . . , I. That is to say, every proposed value is accepted. Thus,

Algorithm 2.4.8 simplifies to:

Algorithm 2.4.10 (Gibbs sampler).

1. Specify the initial value ψ(0) = (ψ
(0)
1 , . . . ,ψ(0)

m ).

2. Repeat for i = 1, . . . , I

• Generate ψ
(i)
1 from the full conditional f(·

∣

∣ ψ
(i)
−1).

• Generate ψ
(i)
2 from the full conditional f(·

∣

∣ ψ
(i)
−2).

...

• Generate ψ(i)
m from the full conditional f(·

∣

∣ ψ
(i)
−m).

3. Return the values
{

ψ(1),ψ(2), . . . ,ψ(I)
}

.
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If the full conditionals appearing above are standard distributions, sampling from

them is trivial. We will see in Section 3.2 how the generation of values is actually done, if

this is not the case.



Chapter 3

The MCMC sampler for Clayton

models

The aim of this chapter is to develop a Markov chain Monte Carlo sampler for bivari-

ate CPPs. We will concentrate on a special class of CPPs, called Clayton models. Note

however, that other bivariate models can be treated analogously.

Proceeding from a Bayesian setting, we want to derive the posterior distribution of

the parameters of a bivariate CPP for a given prior. In Section 2.2.2 we derived the

full likelihood f(z|ψ) of two-dimensional CPPs based on Lévy copulas, see Equation

(2.2.5). Together with the prior distribution π(ψ) this likelihood determines the posterior

distribution f(ψ|z), see Equation (2.3.1). The difficulty that occurs when trying to work

with this term is to evaluate the marginal likelihood

f(z) =

∫

f(z|ψ)π(ψ) dψ .

For general bivariate CPPs, analytical evaluation is impossible and numerical evaluation

is very difficult and inaccurate. To avoid these problems we approximate the posterior

distribution using MCMC methods for which proportional knowledge of the posterior is

sufficient.

Sections 2.4.2 and 2.4.3 have shown that under fairly general conditions the chains

produced by MCMC algorithms converge to their target density (which is the poste-

rior distribution in our case). While such developments are obviously necessary, they are

nonetheless insufficient from the point of view of the implementation of MCMC meth-

ods. We know that convergence can be ’assured’, however it is not clear how fast the

chains converge in practice. The problem is that the stated results do not directly result

in methods of controlling the chain produced by an algorithm.

27
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Therefore, we now want to address some practical issues of our MCMC algorithm –

which is an application of the classical Gibbs sampler. As mentioned above we do this for

the specific class of Clayton models. After introducing them, we discuss the important

steps for adapting the Gibbs sampler to our application. In particular, we here have a

closer look at the choice of proposal densities. Finally, we state our MCMC algorithm to

be applied in detail.

3.1 Clayton models

In Section 2.2.2 we explained that the parametrization ψ = (λ1, λ2,θ1,θ2, δ) determines

a bivariate CPP completely. Now we want to consider a certain family of CPP models,

namely the Clayton models. Here the dependence structure between the two processes S1

and S2 is modelled by the one-parametric Clayton Lévy copula with parameter δ > 0,

C(u, v) = (u−δ + v−δ)−1/δ , u, v > 0 . (3.1.1)

This copula covers the whole range of positive dependence: for δ → 0 we obtain inde-

pendence of the marginal processes given by C⊥(u, v) = u1v=∞ + v 1u=∞, and jumps in

different cells never occur at the same time. For δ → ∞ we get the complete positive

dependence Lévy copula given by C‖(u, v) = min(u, v), and jumps always occur at the

same points in time. By varying δ the component dependence changes smoothly between

these two extremes.

When the Clayton Lévy copula (3.1.1) is used to model the dependence between the

two components we can calculate that

∂

∂u
C(u, v) =

(

1 +
(u

v

)δ
)−1/δ−1

, u, v > 0 ,

∂2

∂u∂v
C(u, v) = (1 + δ) (uv)δ

(

uδ + vδ
)−1/δ−2

, u, v > 0 ,

which is used when considering the full likelihood of bivariate CPPs, see (2.2.5). Moreover,

the parameters λ⊥1 , λ
⊥
2 and λ‖ can be calculated as

λ‖ = C(λ1, λ2) = (λ−δ1 + λ−δ2 )−1/δ and λ⊥i = λi − λ‖ , i = 1, 2 . (3.1.2)

That is to say the frequency of simultaneous jumps is a simple function of the Clayton

copula parameter δ.

Summarizing we list what is needed to specify a Clayton CPP uniquely:
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• λ1, λ2, the frequency parameters of the underlying univariate Poisson processes,

• θ1, θ2, the parameter vectors of the marginal jump size distributions F1, F2 and

• δ, the Clayton Lévy copula parameter.

We see that Clayton models only differ in the choice of the marginal jump size distributions

F1, F2 of the components. We will write F1 - F2 - Clayton model to specify the model

uniquely. For models where F1 = F2 = F , we introduce the notation (F )2 - Clayton

model.

In principle, any parametric distribution function that is considered as an appropriate

choice for modelling jump sizes can be used. In operational risk, for example, these are

typically (one-sided) heavy-tailed distributions that can handle big losses.

Motivated by Chapter 5 we now want to introduce two specific Clayton models which

we will consider in the following.

Example 3.1.1 (The (Burr/GPD)2 - Clayton model).

Under a (Burr/GPD)2 - Clayton model we understand a bivariate Clayton model where

the jump sizes in both components are modelled by a sliced (five-parametric) Burr/GPD

distribution.

It is composed by a Burr1 distribution with shape parameters ci, ki > 0 (location

and scale parameters could be introduced easily) and a generalized Pareto distribution2

(GPD) with parameters hi > 0 (location parameter), βi > 0 (scale parameter) and ξi > 0

(tail parameter), i = 1, 2. The transition between the two distributions is executed at the

fixed thresholds ui > 0, i = 1, 2. That is to say, we apply the Burr distribution for zi ≤ ui,

whereas for zi > ui the GPD is used. For zi > 0, the tail distribution is given by

F i(zi) = Ai

(

1(0,ui]

(

A−1i − 1 + (1 + zcii )
−ki
)

+ 1(ui,∞)

(

1 + ξi
zi + hi − ui

βi

)−1/ξi
)

.

The constant Ai is due to the truncation and is defined by

Ai :=

(

1− (1 + ucii )
−ki +

(

1 + ξi
hi
βi

)−1/ξi
)−1

.

1The Burr distribution – also known as the Singh-Maddala distribution – is named after the American
Irving Wingate Burr, 1908-1989. It is most commonly used to model household income and insurance
claims.

2The Pareto distribution is named after the Italian economist Vilfredo Pareto, 1848-1923. The dis-
tribution often describes social, scientific, geophysical, actuarial and many other types of observable
phenomena very well.
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The corresponding density for zi > 0 can be written as

fi (zi) = Ai

(

1(0,ui] cikiz
ci−1
i (1 + zcii )

−(ki+1) + 1(ui,∞)
1

βi

(

1 + ξi
zi + hi − ui

βi

)−1/ξi−1
)

.

For θi = (λi, ci, ki, hi, βi, ξi), i = 1, 2, the likelihood function of a bivariate CPP in the

(Burr/GPD)2 - Clayton model is then given by

f
(

x̃, ỹ,x,y, n⊥1 , n
⊥
2 , n

‖ ∣
∣ λ1,θ1, λ2,θ2, δ

)

= (λ1A1)
n⊥
1 (λ2A2)

n⊥
2

(

(1 + δ) (λ1λ2A1A2)
1+δ
)n‖

e−T(λ
⊥
1 +λ⊥2 +λ‖) (3.1.3)

×
n⊥
1
∏

i=1

[(

1(0,u1] c1k1x̃
c1−1
i (1 + x̃c1i )

−(k1+1) + 1(u1,∞)
1

β1

(

1 + ξ1
x̃i + h1 − u1

β1

)− 1
ξ1
−1
)






1−



1+

(

λ1
λ2
A1

)δ
(

1(0,u1]

(

A−11 −1+(1+x̃c1i )
−k1
)

+1(u1,∞)

(

1+ξ1
x̃i+h1−u1

β1

)− 1
ξ1

)δ




− 1
δ
−1












×
n⊥
2
∏

i=1

[(

1(0,u2] c2k2ỹ
c2−1
i (1 + ỹc2i )

−(k2+1) + 1(u2,∞)
1

β2

(

1 + ξ2
ỹi + h2 − u2

β2

)− 1
ξ2
−1
)






1−



1+

(

λ2
λ1
A2

)δ
(

1(0,u2]

(

A−12 −1+(1+ỹc2i )
−k2
)

+1(u2,∞)

(

1+ξ2
ỹi+h2−u2

β2

)− 1
ξ2

)δ




− 1
δ
−1












×
n‖
∏

i=1

[(

1(0,u1] c1k1x
c1−1
i (1 + xc1i )

−(k1+1) + 1(u1,∞)
1

β1

(

1 + ξ1
xi + h1 − u1

β1

)− 1
ξ1
−1
)

(

1(0,u2] c2k2y
c2−1
i (1 + yc2i )

−(k2+1) + 1(u2,∞)
1

β2

(

1 + ξ2
yi + h2 − u2

β2

)− 1
ξ2
−1
)

(

1(0,u1]

(

A−11 − 1 + (1 + xc1i )
−k1
)

+ 1(u1,∞)

(

1 + ξ1
xi + h1 − u1

β1

)− 1
ξ1

)δ

(

1(0,u2]

(

A−12 − 1 + (1 + yc2i )
−k2
)

+ 1(u2,∞)

(

1 + ξ2
yi + h2 − u2

β2

)− 1
ξ2

)δ



λδ1A
δ
1

(

1(0,u1]

(

A−11 − 1 + (1 + xc1i )
−k1
)

+ 1(u1,∞)

(

1 + ξ1
xi + h1 − u1

β1

)− 1
ξ1

)δ

+λδ1A
δ
2

(

1(0,u2]

(

A−12 − 1 + (1 + yc2i )
−k2
)

+ 1(u2,∞)

(

1 + ξ2
yi+h2−u2

β2

)− 1
ξ2

)δ




− 1
δ
−2





.
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Example 3.1.2 (The (Weibull)2 - Clayton model).

In the (Weibull)2 - Clayton model the jump sizes in both components of the bivariate

compound Poisson process are modelled by a Weibull distribution with parameters ai > 0

(scale parameter) and bi > 0 (shape parameter), i = 1, 2. The tail distribution is then

given by

F i (zi; ai, bi) = e
−
(

zi
ai

)bi

, zi ≥ 0 ,

with density

fi (zi) =
bi

abii
zbi−1i e

−
(

zi
ai

)bi

, zi ≥ 0 .

With the notation as in (2.2.5) the likelihood function of a bivariate CPP in the (Weibull)2

- Clayton model is thus given by

f
(

x̃, ỹ,x,y, n⊥1 , n
⊥
2 , n

‖ ∣
∣ λ1, a1, b1, λ2, a2, b2, δ

)

=
(

λ1b1a
−b1
1

)n⊥
1 e−λ

⊥
1 T−

∑n⊥
1

i=1(x̃i/a1)
b1

n⊥
1
∏

i=1






x̃b1−1i






1−



1 +

(

λ1e
−(x̃i/a1)b1

λ2

)δ




−1/δ−1












×
(

λ2b2a
−b2
2

)n⊥
2 e−λ

⊥
2 T−

∑n⊥
2

i=1(ỹi/a2)
b2

n⊥
2
∏

i=1






ỹb2−1i






1−



1 +

(

λ2e
−(ỹi/a2)b2

λ1

)δ




−1/δ−1












×
(

(1 + δ) (λ1λ2)
1+δ b1b2a

−b1
1 a−b22

)n‖

e−λ
‖T−(1+δ)∑n‖

i=1((xi/a1)
b1+(yi/a2)

b2) (3.1.4)

×
n
‖
1
∏

i=1

[

xb1−1i yb2−1i

(

(

λ1e
−(xi/a1)b1

)δ

+
(

λ2e
−(yi/a2)b2

)δ
)−1/δ−2

]

.

3.2 Adaption of the sampler for Clayton models

We approximate the posterior distributions of our models by an adapted Gibbs sampling

procedure using the MATLAB software. Now we want to explain the most important

features of our developed sampler. Thereby we follow the main steps that are required for

implementing the Gibbs sampler which are:
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• starting values must be provided;

• methods for sampling from the full conditional distributions must be determined;

• the output must be analyzed;

• the length of the burn-in period, the number of iterations and the subsampling

procedure must be specified.

3.2.1 Initialization

The very first step in every sampling procedure is the choice of initial values. Since the

convergence results from Sections 2.4.1 and 2.4.2 are independent from the starting values,

theoretically any initial value can be taken. Also practically it is not necessary to expend

much effort in choosing starting values, since their choice is unimportant if the Gibbs

sampler (or any other MCMC sampler) is run long enough to ’forget’ its initial states.

To decide what is ’long enough’ in the particular case, it is useful to perform a number

of runs with widely dispersed starting values. A rapidly mixing chain will quickly find its

way from extreme starting values. Initial values may need to be chosen more carefully for

slow-mixing chains, to avoid lengthy burn-in.

The convergence behaviour of the sampler is very satisfying in our case. From several

simulation studies we found that even if the initial values have been chosen quite far away

from the values used for simulation, the chain converged fast. However, a sophisticated

choice of starting values can avoid a very long burn-in. That is why we suggest maximum

likelihood estimates (MLE). They can be calculated quite efficiently since the maximiza-

tion of the likelihood for the Clayton models is only a relative small dimensional problem.

Therefore, we will use MLEs as initial values throughout, if not stated otherwise.

3.2.2 Sampling from full conditional distributions

For reasons given later we use the Gibbs sampler for our application. When applying the

Gibbs sampler (Algorithm 2.4.10), we have to draw serial values of the parameter blocks

ψk from the corresponding full conditionals f(ψk|ψ−k, z), k = 1, . . . ,m. In our case

each parameter forms a block by itself, i.e. we sample from one-dimensional distributions.

Considering that

f(ψk|ψ−k, z) =
f(ψ, z)

f(ψ−k, z)
=
f(z|ψ)π(ψ)
f(ψ−k, z)

∝ f(z|ψ)π(ψ) , k = 1, . . . ,m , (3.2.1)
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and looking at Equation (2.2.5) it gets clear immediately that all full conditional distri-

butions appearing in our application are non-standard. This means that simulation from

these functions is not trivial. Hence, (one-dimensional) Metropolis-Hastings steps have to

be conducted to simulate from the full conditionals and our Gibbs sampler can be seen

as a combination of MH steps applied to the different components. Note that in each

sampling step only one iteration of MH is required, because if ψ(i) is from the posterior

distribution f(·|z), then so is (ψ
(i+1)
k ,ψ

(i+1)
−k ), k = 1, . . . ,m.

It is essential that sampling from our full conditional distributions is highly efficient

computationally. Thus, the question arises how to choose the required proposal densities.

As seen in Section 2.4.2 proposal densities are needed to generate samples from non-

standard target densities. Their function is double: first, they supply proposal values

and, second, they help to decide whether these values are accepted as coming from the

target density, or not. In particular the second purpose influences the performance of the

MCMC sampler significantly. That is why we now want to emphasize the importance of

good proposals, before determining the proposal densities of our algorithm for the Clayton

models.

The need for good proposal densities

One of the most appealing aspects of MCMC algorithms is their universality. That is, the

fact that an arbitrary proposal distribution q, which has the same support as the target

density f , will ultimately deliver samples from f and, thus, will lead to the simulation

of the target density. However, this universality may be only a formality if the proposal

distribution q only rarely simulates points in the region where most of the mass of the

target distribution f is located. Knowing that the probability density of the produced

chain converges to the target distribution at any time, is not satisfying for practical

applications.

That means, even though theoretically the choice of the proposal density does not

matter (as long as the proposal has an adequate support), that is to say any density could

be taken, in practice the selection of good proposal densities is the decisive point in the

setup of a MCMC procedure. First, the rate of convergence to the stationary distribution

depends crucially on the relationship between the proposal q and the target density f ,

cf. Gilks et al. (1996). But moreover, even when the chain has ’converged’, it may still

mix slowly (i.e. move slowly around the support of f). The consequence would be that

the sampler has to be run much longer to obtain reliable estimates. On the other hand,

the better a proposal density is adapted to the target density, the better the mixing of

the produced Markov chains will be; as illustrated by Figure 3.1 it is obvious that there
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will be – generally speaking – less MH rejections and, hence, the acceptance rate will be

higher, if the proposal mimics the target density very well.

0 5 10
0

0.25

0.5

 

 

Normal target density
Gamma proposal density
Exponential proposal density

Figure 3.1: Comparison of proposal densities for a normal target density. The acceptance
probability of the MCMC sampler depends on ratios of the target density to the proposal
density.

To meet these requirement it is often necessary, especially in high-dimensional prob-

lems, to perform exploratory analyses to determine roughly the shape of f . This will help

in constructing a proposal q which leads to rapid mixing and fast convergence. Thereby,

progress in practice often depends on experimentation.

Apart from these considerations, there is an other aspect we finally want to mention.

During the sampling procedure we have to simulate many times from the proposal densi-

ties. So, for computational efficiency, the proposals should be chosen in such a way that

sampling and evaluation can be conducted easily.

Choice of proposal densities for Clayton models

Since the Gibbs sampler in our case uses m univariate updates we have to select proposal

densities for each of the full conditionals f(ψk|ψ−k, z), k = 1, . . . ,m. To get an idea of the

shape of the full conditionals it is helpful to make use of graphical analyzing tools. Hence,

we simulate data sets from the models (see Chapter 4) and plot the full conditionals

given the data, where all parameters except one are fixed to the known values from the

simulation. Here we make use of the proportionality relation in Equation (3.2.1).

For several Clayton models and various parameter sets and simulations, these full

conditionals looked quite symmetric and unimodal, see Figure 3.2. Thus, normal proposal

distributions seem to be a promising choice. They are very convenient, since simulating

from them as well as evaluating their densities can be carried out efficiently: implemen-
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10 12 14 16

(a) λ1 ((Weibull)2 - Clayton model)

0.2 0.25 0.3 0.35 0.4

(b) k1 ((Burr/GPD)2 - Clayton model)

Figure 3.2: Density estimates of full conditionals for two parameters of two different
Clayton model simulations. The densities are given up to a normalizing constant.

tations are available in every common statistical package. Using normal proposals is a

special case of the so-called independence sampler. Here the proposal does not depend on

the current value ψc,

q(ψc,ψp) = q(ψp) .

In case of normally distributed proposal densities it can also be shown quite easily, by

employing Proposition 2.4.9, that the produced chain is aperiodic and irreducible which

ensures that the drawn samples can be regarded as coming from the posterior distribution,

see Section 2.4.1.

To fully determine our proposal densities we have to specify the location parameters

µk and the scale parameters σk, k = 1, . . . ,m. To achieve good acceptance rates for the

MH steps, the expected value µk and the variance σ2
k are adapted several times during

the sampling procedure to fit the full conditional distributions best possible. This is done

by the following approach.

The parameters µk, k = 1, . . . ,m, are set to the values which maximize (for fixed

current values of the other parameters) the full conditionals f(ψk
∣

∣ ψ−k, z), each. Finding

these maxima is a univariate optimization problem each and requires only few computation

time. The standard deviations σk, k = 1, . . . ,m, are determined using a specific property

of the normal distribution density. Denoting by g(x;µ, σ2) the density of the univariate

normal distribution with mean µ and variance σ2 evaluated at x, one easily derives that

the second derivative of g is

g′′(x;µ, σ2) =
1

σ2

(

1

σ2
(x− µ)2 − 1

)

g(x;µ, σ2) .
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Hence, σ2 = −g(µ;µ, σ2)/g′′(µ;µ, σ2) , and a sensible choice for the variance of the pro-

posal density is given by

σ2
k = − f(µk|ψ−k, z)

f ′′(ψk|ψ−k, z)|µk
, k = 1, . . . ,m ,

which can be evaluated using numerical approximations of the second derivative of the

full conditional f(·|ψ−k, z) at µk.
Several simulation studies have shown that it is not necessary to adapt µk and σ2

k,

k = 1, . . . ,m, in each iteration of our MCMC sampling algorithm, except of the burn-in

phase, where adaption in each iteration improves the mixing of the sampler significantly.

Subsequently it is enough to redetermine the parameters of the proposal in every fiftieth

iteration.

3.2.3 Analyzing the output

The values for the parameters of interest generated by the sampler must be graphically

and statistically summarized to check mixing and convergence. Given the MCMC output
{

ψ
(i)
k , i = 1, . . . , I

}

for every parameter ψk, k = 1, . . . ,m, there are several analyzing

tools we make use of. Here we want to introduce them briefly.

Let B denote the length of burn-in (to be discussed in the next section), the posterior

mean estimates are then given by

ψk =
1

I −B

I
∑

i=B+1

ψ
(i)
k , k = 1, . . . ,m .

We will assess the performance of our sampler using these posterior means in the Sections

4.3 and 4.4.

Our estimation of the marginal posterior distributions is based on kernel density

estimations with normal kernel functions, using a bandwidth h which is a function of

the number of samples. That is, the approximated marginal posterior distributions are

functions f̃k(·|z) : R → R
+,

f̃k(ψk|z) =
1

(I −B)h

I
∑

i=B+1

1√
2π

exp



− 1√
2π

(

ψk − ψ
(i)
k

h

)2


 ,

for k = 1, . . . ,m.

To assess the convergence and mixing behaviour of the produced chains we apply
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two very simple but powerful visual methods. First, we plot the sample paths which are

defined as the functions sk : N → R,

sk(i) = ψ
(i)
k , k = 1, . . . ,m .

Second, we analyze the autocorrelation functions ρk : N → [−1, 1],

ρk(z) =

∑I−z
i=B+1(ψ

(i+z)
k − ψk)(ψ

(i)
k − ψk)

∑I
i=B+1(ψ

(i)
k − ψk)

2
, k = 1, . . . ,m .

3.2.4 Burn-in, number of iterations and subsampling

We have seen in the theoretical part of this thesis that under quite general conditions

the produced Markov chain converges to its stationary distribution which is the target

density. But still we have to be aware that this theoretically holds only in the limit:

stationarity is only achieved asymptotically. Hence, the simulated values can be regarded

as coming from the target density f(·|z) only when the number of iterations has become

very large. To cope with this fact we conduct an initial burn-in phase, after which the

chain is assumed to have converged. The drawn samples which are simulated during burn-

in are not considered anymore and the subsequent values are supposed to be approximate

draws from the posterior distribution.

The length of burn-in depends on the starting value and on the rate of convergence.

We note, that the use of maximum likelihood estimates as initial values – and thus values

which are close to the mode of f(·|z) – does not remove the need for burn-in, because

we want to assure that the samples are ’independent’ from the starting position. With

the graphical methods presented in the previous section we found from several simulation

studies that our produced chains converge quite fast. The good effective convergence

behaviour allows us to use only 1000 iterations for burn-in.

Deciding when to stop the chain is an important practical matter. The most obvious

informal method for determining the sample size I is again the monitoring of the sample

paths for different chains. In our case we set I = 21000, including the burn-in period.

The last practical aspect we want to address is the subsampling of simulated values.

As we will see in Chapter 4 the produced Markov chains for the parameters of interest

show significant autocorrelations over several time lags. One reason for this is obviously the

nature of the MH steps which allows to replicate the current value when the proposed value

is rejected. Even though autocorrelations are not problematic (there are even applications

for which autocorrelations are advantageous, e.g. the calculation of the posterior mean, cf.

Robert and Casella (2004)), one often wants to obtain samples that can be considered to
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be more or less ’independent’. Practically, to reduce the dependence between the samples

from our MCMC algorithm, we subsample; that is, we use only every 10th iteration to

approximate the posterior distribution. Subsampling in our application is possible, since

the computation time for 1000 iterations is moderate in our examples. Therefore, in order

to get 2000 samples from the posterior distribution we run the algorithm always for 21000

iterations and then use iterations 1010, 1020, . . . , 21000.

3.3 The sampling algorithm

To conclude the Chapter we want to state our developed MCMC sampler. As mentioned

before it is an application of the Gibbs sampler using MH steps for simulation from the full

conditionals. With the notation as in Section 2.4.2 and 2.4.3 it yields that the acceptance

probability is given by

χk(ψ
(i−1)
k , ψpk

∣

∣ ψ
(i)
−k) =











min

[

f(z|ψp
k
,ψ

(i)
−k

)×π(ψp
k
,ψ

(i)
−k

)× g(ψ(i−1)
k

;µk,σ
2
k
)

f(z|ψ(i−1)
k

,ψ
(i)
−k

)×π(ψ(i−1)
k

,ψ
(i)
−k

)× g(ψp
k
;µk,σ

2
k
)
, 1

]

if denom. > 0 ,

1 otherwise .

Algorithm 3.3.1.

1. Compute the MLEs and use them as initial values: ψ(0) = (ψ
(0)
1 , . . . , ψ

(0)
m ).

2. Repeat for i=1,. . . ,21000

Repeat for k=1,. . . ,m

• If
(

i ≤ 1000 or i
50

∈ N
)

µk = argmax {f(ψk|ψ(i)
−k, z)} ,

σ2
k = − f(µk|ψ(i)

−k, z) / f
′′(ψk|ψ(i)

−k, z)|µk .
• Draw a proposal value ψpk from N(µk, σ

2
k).

• Draw a sample u
(i)
k from the uniform distribution U(0, 1).

• Let

ψ
(i)
k :=







ψpk if u
(i)
k ≤ χk

(

ψ
(i−1)
k , ψpk

∣

∣ ψ
(i)
−k

)

,

ψ
(i−1)
k otherwise ,

with ψ
(i)
−k :=

(

ψ
(i)
1 , . . . , ψ

(i)
k−1, ψ

(i−1)
k+1 , . . . , ψ

(i−1)
m

)

.
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3. Return the values
{

ψ(1010),ψ(1020),ψ(1030), . . . ,ψ(21000)
}

.

We apply this sampler for the Clayton models in Chapter 4 and Chapter 5 for simu-

lation and real data studies, respectively.





Chapter 4

Simulation study

In this Chapter we assess mixing and convergence behaviour of the produced chains

and the quality of the posterior mean estimates using simulated data. Furthermore, we

compare the posterior mean estimates to the maximum likelihood estimates to check

whether there are significant differences. Since we therefore need to simulate sample paths

of bivariate CPPs we first discuss the simulation algorithm proposed in Esmaeili and

Klüppelberg (2010a) which is used for the entire study. Motivated by the real data analysis

in Chapter 5 we present the results for two different Clayton models, the (Burr/GPD)2 -

Clayton model and the (Weibull)2 - Clayton model.

4.1 Simulation algorithm for bivariate CPPs

In the representation of bivariate CPPs based on Lévy copulas we have seen that the

process is fully determined by ψ = (λ1,θ1, λ2,θ2, δ), cf. Section 2.2.2. For simulation

from this parametric model, we assume that we are given this parameter set and a time

interval [0, T ] for prespecified T > 0.

We now state the simulation algorithm for bivariate CPPs which is an extension

of Algorithm 6.2 of Cont and Tankov (2004) to two dimensions. It makes use of the

decomposition of the two components of the process. Let us therefore reconsider Equations

(2.2.2) and (2.2.3). Here (S
‖
1 , S

‖
2) is the dependent part and S⊥1 , S

⊥
2 are the independent

parts with jump intensities λ‖ = C(λ1, λ2; δ) and λ
⊥
1 = λ1−λ‖, λ⊥2 = λ2−λ‖. The algorithm

simulates the jump times and the jump sizes of these three components independently.

The functions F⊥1 , F⊥2 and F ‖ from Equation (2.2.8) describe the distribution functions

41
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of S⊥1 , S
⊥
2 and (S

‖
1 , S

‖
2), respectively:

F
⊥
1 (x) =

1

λ⊥1

(

λ1F 1 (x)− C
(

λ1F 1 (x) , λ2; δ
))

, (4.1.1)

F
⊥
2 (y) =

1

λ⊥2

(

λ2F 2 (y)− C
(

λ1, λ2F 2 (y) ; δ
))

, (4.1.2)

F
‖
(x, y) =

1

λ‖
C
(

λ1F 1 (x) , λ2F 2 (y) ; δ
)

.

When we further assume that the jump distributions F1 and F2 have no atom at 0, it

yields for the margins of the bivariate distribution function of the joint jumps that

F
‖
1 (x) = lim

y→0
F
‖
(x, y) = lim

y→0

1

λ‖
C
(

λ1F 1 (x) , λ2F 2 (y) ; δ
)

, (4.1.3)

F
‖
2 (y) = lim

x→0
F
‖
(x, y) = lim

x→0

1

λ‖
C
(

λ1F 1 (x) , λ2F 2 (y) ; δ
)

.

Let us denote by C(u, v) the survival copula of the joint jumps of (S
‖
1 , S

‖
2) given by

C
(

F
‖
1(x), F

‖
1(x)

)

= F
‖
(x, y). It follows that the distribution function of S

‖
2 given S

‖
1

equals

Hx (y) :=
∂

∂u
C
(

u, F
‖
2 (y)

) ∣

∣

∣

u=F
‖
1(x)

=



1 +

(

F
‖
1 (x)

F
‖
2 (y)

)δ

−
(

F
‖
1 (x)

)δ





−1/δ−1

. (4.1.4)

See Esmaeili and Klüppelberg (2010a) for details about the previous result.

Defining the generalized inverse h←(u) := inf {s ∈ R : h(s) ≥ u} for any increasing func-

tion h, we can finally state the algorithm.

Algorithm 4.1.1 (Simulation of a bivariate CPP).

1. Generate random numbers N1(T ), N2(T ) and N
‖(T ) from Poisson distributions with

parameters λ1T , λ2T and λ‖T = C(λ1, λ2)T , respectively. This implies then for the

number of single jumps that N⊥1 (T ) = N1(T )−N‖(T ) and N⊥2 (T ) = N2(T )−N‖(T ).

2. Generate independent [0, T ]-uniformly distributed random variables: U⊥1,i for i =

1, . . . , N⊥1 (T ), U
⊥
2,i for i = 1, . . . , N⊥2 (T ), and U

‖
i for i = 1, . . . , N‖(T ). These are

the Poisson points of single and joint jumps.

3. Generate independent standard uniform random variables: Ui for i = 1, . . . , N⊥1 (T ),

and Vi for i = 1, . . . , N⊥2 (T ). Then the single jump sizes of both components are

found by taking the inverse of F⊥1 and F⊥2 , that is, X⊥i
d
= F⊥←1 (Ui), i = 1, . . . , N⊥1 (T ),

and Y ⊥i
d
= F⊥←2 (Vi), i = 1, . . . , N⊥2 (T ).
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4. Generate new independent [0, 1]-uniform random variables for the bivariate jump

sizes: Ui for i = 1, . . . , N‖(T ), and Vi for i = 1, . . . , N‖(T ). Then X
‖
i

d
= F

‖←
1 (Ui)

and, given X
‖
i = x, Y

‖
i

d
= H←x (Vi), i = 1, . . . , N‖(T ).

5. The bivariate trajectory is then given by





S1(t)

S2(t)



 =





∑N⊥
1 (T )

i=1 1{U⊥
1,i≤t}X

⊥
i +

∑N‖(T )
i=1 1{

U
‖
i ≤t

}X
‖
i

∑N⊥
2 (T )

i=1 1{U⊥
2,i≤t}Y

⊥
i +

∑N‖(T )
i=1 1{

U
‖
i ≤t

}Y
‖
i



 , 0 < t < T .

Since we conduct our simulation study for the (Burr/GPD)2 - Clayton model and the

(Weibull)2 - Clayton model, we now explain briefly how to simulate from these specific

models.

Example 4.1.2 (Continuation of Example 3.1.1).

Let us consider again the case of the (Burr/GPD)2 - Clayton model, i.e. we have for

x, y > 0

F 1(x) = A1

(

1(0,u1]

(

A−11 − 1 + (1 + xc1)−k1
)

+ 1(u1,∞)

(

1 + ξ1
x+ h1 − u1

β1

)−1/ξ1
)

,

F 2(y) = A2

(

1(0,u2]

(

A−12 − 1 + (1 + yc2)−k2
)

+ 1(u2,∞)

(

1 + ξ2
y + h2 − u2

β2

)−1/ξ2
)

,

for Ai =

(

1− (1 + ucii )
−ki +

(

1 + ξi
hi
βi

)−1/ξi
)−1

, i = 1, 2. The dependence structure is

given by the Clayton Lévy copula C(u, v) = (u−δ + v−δ)−1/δ, u, v > 0.

All we need for simulation from the (Burr/GPD)2 - Clayton model are the functions

F
⊥
1 , F

⊥
2 , F

‖
1 and Hx. Applying Equations (4.1.1), (4.1.2), (4.1.3) and (4.1.4) for the given

model yields for x, y > 0,

F
⊥
1 (x) =

1

λ⊥1

[

λ1A1

(

1(0,u1]

(

A−11 −1+(1 + xc1)−k1
)

+1(u1,∞)

(

1+ξ1
x+h1−u1

β1

)− 1
ξ1

)

−



(λ1A1)
−δ
(

1(0,u1]

(

A−11 −1+(1+xc1)−k1
)

+1(u1,∞)

(

1+ξ1
x+h1−u1

β1

)− 1
ξ1

)−δ

+λ−δ2





−1
δ






,
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F
⊥
2 (y) =

1

λ⊥2

[

λ2A2

(

1(0,u2]

(

A−12 −1+(1 + yc2)−k2
)

+1(u2,∞)

(

1+ξ2
y+h2−u2

β2

)− 1
ξ2

)

−



λ−δ1 +(λ2A2)
−δ
(

1(0,u2]

(

A−12 −1+(1+yc2)−k2
)

+1(u2,∞)

(

1+ξ2
y+h2−u2

β2

)− 1
ξ2

)−δ



−1
δ






,

F
‖
1 (x) =

1

λ‖



(λ1A1)
−δ
(

1(0,u1]

(

A−11 −1+(1+xc1)−k1
)

+1(u1,∞)

(

1+ξ1
x+h1−u1

β1

)− 1
ξ1

)−δ

+λ−δ2





− 1
δ

,

Hx (y) =











(λ1A1)
−δ
(

1(0,u1]

(

A−11 −1+(1+xc1)−k1
)

+1(u1,∞)

(

1+ξ1
x+h1−u1

β1

)− 1
ξ1

)−δ

(λ1A1)
−δ
(

1(0,u1]

(

A−11 −1+(1+xc1)−k1
)

+1(u1,∞)

(

1+ξ1
x+h1−u1

β1

)− 1
ξ1

)−δ
+λ−δ2

+

(λ2A2)
−δ
(

1(0,u2]

(

A−12 −1+(1+yc2)−k2
)

+1(u2,∞)

(

1+ξ2
y+h2−u2

β2

)− 1
ξ2

)−δ

(λ1A1)
−δ
(

1(0,u1]

(

A−11 −1+(1+xc1)−k1
)

+1(u1,∞)

(

1+ξ1
x+h1−u1

β1

)− 1
ξ1

)−δ
+λ−δ2











− 1
δ
−1

.

Simulation of CPPs is then straighforward, employing Algorithm 4.1.1. In Figure 4.1

we see the sample paths and the marked point processes of one simulated CPP of the

(Burr/GPD)2 - Clayton model.
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(a) Sample paths
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40

0 2 4 6 8 10 12
0

20

40

(b) Same paths as marked point processes

Figure 4.1: Simulation of a bivariate CPP in the (Burr/GPD)2 - Clayton model over a
time interval of 12 months.
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Example 4.1.3 (Continuation of Example 3.1.2).

For simulation from the the (Weibull)2 - Clayton model we need for x, y > 0,

F
⊥
1 (x) =

1

λ⊥1

[

λ1e
−
(

x
a1

)b1

−
(

λ−δ1 e
δ
(

x
a1

)b1

+ λ−δ2

)−1/δ
]

,

F
⊥
2 (y) =

1

λ⊥2

[

λ2e
−
(

y
a2

)b2

−
(

λ−δ1 + λ−δ2 e
δ
(

y
a2

)b2
)−1/δ

]

,

F
‖
1 (x) =

1

λ‖

[

λ−δ1 e
δ
(

x
a1

)b1

+ λ−δ2

]−1/δ
,

Hx (y) =





λ−δ1 e
δ
(

x
a1

)b1

+ λ−δ2 e
δ
(

y
a2

)b2

λ−δ1 e
δ
(

x
a1

)b1

+ λ−δ2





−1/δ−1

.

4.2 Illustrative example

Let us now illustrate the MCMC algorithm in practice. In this section we present the

results for fitting the (Burr/GPD)2 - Clayton model to the simulated data set shown in

Figure 4.1. We also conducted the same study for other Clayton models, in particular the

(Weibull)2 - Clayton model. However, we do not explain them separately since the results

are pretty much the same. Nevertheless, we want to emphasize that our MCMC sampler

works very well for all Clayton models we tried.

We used the parameter values λ1 = 34, c1 = 4.1, k1 = 0.42, h1 = 7.3, β1 = 3.8,

ξ1 = 0.42, λ2 = 26, c2 = 1.2, k2 = 1.9, h2 = 16, β2 = 8.4, ξ2 = 0.18 and δ = 1.8 for

simulation. These values are motivated by the analysis of the Danish fire insurance data in

the following chapter. Furthermore, we set T = 12, which is again motivated by Chapter

5, where a time unit corresponds to one month. Observable are the single jump sizes x̃

and ỹ of both components, the jump sizes x and y of the joint jumps, the numbers n⊥1

and n⊥2 of single jumps in both components and the number n‖ of joint jumps. In general,

the observed number of jumps in these simulations is random, but it is always around

480.

Before starting the sampler we need to specify a prior distribution. That is the point

where, in practice, prior knowledge can be integrated. The hyperparameters1 would typ-

ically be specified by means of expert elicitation. Hence, the prior knowledge influences

1In Bayesian statistics hyperparameters are parameters of the prior distribution; the term is used to
distinguish them from parameters of the model.
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the model indirectly.

We use for all thirteen parameters independent Gamma2 prior distributions Γ(pk, bk),

k = 1, . . . , 13. Note that we always follow the parametrization where the Gamma density,

for p, b > 0, is given by

fΓ(x; p, b) =
bp

Γ(p)
xp−1e−bx 1[0,∞)(x) , x > 0 .

Hence, the mean is given by p/b and the variance by p/b2. The hyperparameters pk and bk,

k = 1, . . . , 13, are chosen in such a way that the means correspond to initial ML estimates

and the standard deviations are about one fourth of the means. In particular, the means

of the independent Gamma priors are calculated as 32, 4.2, 0.41, 4.7, 3.2, 0.72, 26, 1.3,

2.1, 16, 12, 0.17 and 2.3, respectively, for the parameters λ1, c1, k1, h1, β1, ξ1, λ2, c2, k2,

h2, β2, ξ2 and δ. The standard deviations are chosen to be 8.0, 1.0, 0.10, 1.2, 0.80, 0.18,

6.5, 0.33, 0.53, 4.1, 3.0, 0.043 and 0.57, respectively.

Now we can apply the Bayesian method using MCMC to recover the marginal pos-

terior distributions of all parameters used for simulation. As stated above the maximum

likelihood estimates are a convenient choice for starting values, because they help to

shorten the burn-in period. Figure 4.2 shows for each parameter of the (Burr/GPD)2 -

Clayton model the marginal posterior distribution together with the produced sample

path.

The marginal posterior distributions are all unimodal with peaks which are very close

to the MLEs and the distributions are all quite symmetric. Considering the sample paths

we see that the mixing behaviour of our MCMC sampler is very satisfying. We notice

that there are small differences in the evolution of the paths for the different parameters.

Particularly for βi, ξi, i = 1, 2, which determine the tails of the distributions, the chain does

not mix as fast as it does for the other parameters; in consequence the autocorrelations

are higher. Hence, we decided to use subsampling and to take only every 10th iteration

in order to reduce the autocorrelations. The acceptance rates for the thirteen parameters

of interest are all between 55% and 70%.

Repeating the analysis with different initial values has shown that the produced

Markov chains converge very fast, usually within 500 iterations. Thus, a burn-in period

of 1000 iterations is sufficient, and we use iterations 1010, 1020, 1030, . . . to derive nearly

independent samples from the posterior distribution.

2We want to stress that our explicit choice of prior distribution as well as the calibration of it, is
exemplary. Any appropriate distribution could be used instead.
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Figure 4.2: Density estimates of marginal posterior distributions and sample paths for
the parameters of the (Burr/GPD)2 - Clayton model. Simulated data and independent
Gamma priors are used.
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4.3 Quality of posterior mean estimates

To assess the quality of the posterior mean estimates (PME) we repeat the analysis from

Section 4.2 100 times for uniform priors. More precisely, we simulate 100 data sets, using

always the same fixed parameter set as before. We fit the (Burr/GPD)2 - Clayton model

to these 100 data sets by MCMC. Then we calculate the posterior mean estimates of the

parameters for all 100 data sets.

λ1 c1 k1 h1 β1 ξ1

True value 34 4.1 0.42 7.3 3.8 0.42

Mean 34.2 4.08 0.409 7.38 3.93 0.438

Std 1.72 0.320 0.0313 1.84 1.08 0.143

λ2 c2 k2 h2 β2 ξ2 δ

True value 26 1.2 1.9 16 8.4 0.18 1.8

Mean 26.1 1.26 1.97 16.5 8.68 0.173 1.88

Std 1.79 0.0726 0.150 3.18 1.99 0.0475 0.211

Table 4.1: Means and standard deviations of the posterior mean estimates in the
(Burr/GPD)2 - Clayton model for 100 simulations. The simulation parameters are given
in the first row of the table.

Table 4.1 assesses the means and the standard deviations of the posterior mean esti-

mates for the 100 data sets coming from the (Burr/GPD)2 - Clayton model, for all thirteen

parameters. It shows that on average the posterior mean estimates match the simulation

values very well and that the standard deviations are reasonably small. The ones for the

GPD parameters (hi, βi, ξi, i = 1, 2) could be further reduced when taking more obser-

vations into consideration. We can conclude that the performance of our sampler is very

satisfying.

We conduct the same procedure for the (Weibull)2 - Clayton model. For simulation

from this model we refer to Example 4.1.3. The corresponding results, which are given in

Table 4.2, illustrate that also in case of this specific Clayton model the MCMC sampler

works very well.
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4.4 Comparison of posterior mean and maximum like-

lihood estimates

To conclude the simulation study, we finally want to examine if there are significant

differences between the posterior mean estimates (PME) and the maximum likelihood

estimates (MLE). Because the results for the two previously considered Clayton models

are again very similar, we only show the results for the (Weibull)2 - Clayton model.

In Section 4.3 we calculated for 100 different simulations the PMEs for the parameters

λ1, λ2, a1, b1, a2, b2 and δ. We therefore used uniform priors to make the results ’inde-

pendent’ of the choice of the prior distribution (in particular of its mean). For the given

simulated data sets we now compute the MLEs which is a seven-dimensional optimization

problem, each.

Table 4.2 compares the means and the standard deviations of the MLEs and the

PMEs. We see that the means of both estimates are very close to each other and also to

the true simulation values. Neither the MLE nor the PME is systematically better than

the other (compare e.g. the means of the parameters λ1 and λ2). Also the differences in

the standard deviations are hardly worth mentioning.

λ1 λ2 a1 b1 a2 b2 δ

True value 12 5.5 0.83 1.1 1.3 1.1 0.86
Mean of MLE 12.0 5.41 0.829 1.10 1.34 1.13 0.891
Mean of PME 12.1 5.46 0.835 1.10 1.35 1.13 0.900

Std of MLE 0.681 0.514 0.0530 0.0521 0.113 0.0784 0.131
Std of PME 0.683 0.517 0.0534 0.0570 0.113 0.0782 0.132

Table 4.2: Means and standard deviations of the maximum likelihood and the posterior
mean estimates in the (Weibull)2 - Clayton model. The simulation parameters are given
in the first row of the table.

Figure 4.3 shows the residuals of the MLEs and the PMEs for the first 50 simulated

data sets. Here we see that for the parameters λ1, λ2, a1, a2 and δ the MLE for every

single simulation is greater than the corresponding PME (for b1 and b2 the estimates are

almost the same). Although this behaviour is interesting, the difference is too small to

judge which of the estimates is better in general.
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Figure 4.3: Comparison of residuals for maximum likelihood and posterior mean estimates
for the parameters λ1, λ2, a1, b1, a2, b2 and δ in the (Weibull)2 - Clayton model.



Chapter 5

Analysis of Danish fire insurance

data

In Chapter 4 we have shown that the developed MCMC sampler works very well. Hence,

we are now ready to apply it to an empirical data set which, in our case comes from

Danish fire insurance. By employing our MCMC sampler developed in Chapter 3 we want

to find a Clayton model which fits the data best and discuss some results implied by this

specific model. We do this for two different approaches to the data. First we consider the

data in its original form and second we transform it with the logarithm.

5.1 An exploratory analysis of the data set

The data were collected at Copenhagen Reinsurance, an aggregated form of them appears

for example in Embrechts et al. (1997). Our analysis comprises in total 847 observations

which were collected over the two-year period January 1, 2001 to December 31, 2002.

The fire losses are reported in millions of Danish Kroner (DKK)1. Every total claim has

been divided into loss of building, loss of content and loss of profit. However, we restrict

the data set to the first two categories of claims, because the losses of profit have rarely

non-zero values. Figure 5.1 shows the observed sample paths of the accumulated losses as

well as their representation as marked point processes for the whole data set and for the

year 2002.

As stated above the data is coming from a reinsurance company. This company is

only interested in claims that are in total above one million DKK, because the reinsurer

only has to pay in these cases. That is why only losses that are in the sum greater than

this threshold are reported. The consequence is that the data is incomplete, insofar as

1Given the exchange rate from May 25, 2010, 1 DKK is equal to 0.134409 EUR

51



52 CHAPTER 5. ANALYSIS OF DANISH FIRE INSURANCE DATA

the present small losses are not representative; there are ’small’ single losses in the data

set, but only if the sum of losses is above one million DKK. Also other small losses might

have occured in practice, but they are not reported since the total loss is smaller than

one million DKK.
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Figure 5.1: The Danish fire insurance data: observed sample paths of the accumulated
losses for buildings and contents, and their representation as marked point processes.

When trying to fit a good model to the data we have to be aware of this incompleteness.

Depending on the purpose we thus make different approaches to the Danish fire insurance

data. We consider in particular the following approaches. In the first we analyze the data

in its original form. The motivation for it is to cover also the ’small’ losses, i.e. losses that

are between one and two million DKK. These losses are important for the reinsurance

company, because there are many of them. In the second approach we remove all losses

which are smaller than one million DKK. Hence, we can guarantee that the remaining

claims are all coming from the same distribution which allows appropriate modelling of

large losses. In this approach we will also transform the data with the logarithm (as
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Esmaeili and Klüppelberg (2010a) did).

Let us have a look at the histograms of small losses of the year 2002, given in Figure

5.2. Obviously the marginal claims in both components are naturally bounded below by

zero. There are much more very small claims (below one million DKK) of content which

goes together with the intuitive idea of fire losses: small damages happen often inside the

house and when the building itself is affected it is, generally speaking, more expensive.

Note, however, that there are several big losses in both components which are not

given in the histograms. Hence, when trying to find a Clayton model which describes the

data very well, right-sided heavy-tailed distributions seem to be a promising choice and

should be considered above all. Moreover, the structure of the data suggests to include

sliced distributions into the analysis.
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Figure 5.2: Histograms of small losses together with different body distributions for the
Danish fire insurance data, year 2002.

To get an idea which distributions are appropriate for modelling the body of the data,

we compare some fits in Figure 5.2. We used in particular the following distributions:

Burr: f(x) = ck xc−1 (1 + xc)−(k+1) , x > 0 , c, k > 0.

Gamma: f(x) = xα−1

βαΓ(α)
exp (−x

β
) , x > 0 , α, β > 0.

Loggamma: f(x) = ba

Γ(a)
(x+ 1)−(b+1) (log(x+ 1))a−1 , x > 0 , a, b > 0.

Lognormal: f(x) = 1√
2πσx

exp (−(log x−µ)
2

2σ2 ) , x > 0 , µ ∈ R, σ > 0.

As we can see, the fit of the Burr distribution as well as the fit of the Loggamma

distribution is quite good. Hence, we particularly consider these two distributions in the

following.
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single jumps common jumps minimal loss maximal loss average loss

period January to December 2002

building 131 308 70,000 36,000,000 2,076,335
content 35 308 9,000 55,000,000 1,286,908

period July to December 2002

building 71 147 70,000 20,500,000 2,257,215
content 18 147 11,000 41,502,000 1,708,442

Table 5.1: Summary of the Danish fire insurance data: number of single and common jumps
and minimal, maximal and average losses in DKK for insured buildings and contents.

Let us now have a look at the summary given in Table 5.1. It is obvious, that especially

the losses of content are scattered very widely, although the average loss is relative small.

Furthermore, we see that about two out of three losses affect the building as well as the

contents, i.e. happen together. One reason therefore is probably the fact that only claims

above one million DKK are reported. Such high losses are caused particularly when there

are damages inside and outside the building. This also explains why there are quite few

losses which only occur in the content component: losses above one million DKK which

do not affect the building itself are happening rarely.

For completeness we also give the summary of the period July to December 2002. In

Section 5.2.4 we compare the estimates for these two time periods.

5.2 Analysis of the original data

In this section we analyze the Danish fire insurance data in its original form. That is to

say, we do neither remove any claims nor do we transform the data. We here consider 474

losses which were reported over the year 2002. In the second row of Figure 5.1 we see the

sample paths and the time series of the observations.

We begin our analysis by fitting several Clayton models to the data. Using the Bayes

factors introduced in Section 2.3 we decide which of them fits the data best. For the

selected model we finally present in detail the results coming from our MCMC sampler:

we examine the role of the prior and check the parameter estimates for robustness.
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5.2.1 Model selection via Bayes factors

We now want to find the Clayton model which describes the Danish fire insurance data

best possible. Therefore we fit different models to the data and compare the results using

the Bayes factors. Let us start with some remarks on the model selection procedure.

At first we consider only Clayton models in which the marginal jump sizes in both com-

ponents are described by the same distribution family. Motivated by the explorative data

analysis we compare in particular right-sided heavy-tailed distributions, including Burr,

Exponential, (shifted) Loggamma, Lognormal, (truncated) Normal, Pareto and Weibull

distributions. Assessing the competing models with the Bayes factors yields the results

given in Table 5.2.

M1 M2

Exp Logg Logn trNorm Par Wei

Burr 1072 1010 1012 1049 10250 1037

Exponential 10−62 10−60 10−23 10178 10−35

(shifted) Loggamma 102 1039 10240 1027

Lognormal 1037 10238 1025

(truncated) Normal 10201 10−12

Pareto 10−213

Table 5.2: Bayes factors of model M1 vs. model M2 for Clayton models.

The high values of these factors tell us that there are huge differences in the goodness

of fit. For example, the (Burr)2 - Clayton model has a Bayes factor of 1010 against the

second best (Loggamma)2 - Clayton model. Hence, according to Jeffreys’ Bayes factor

scale, see Table 2.1 in Section 2.3, we have an absolutely decisive evidence in favor of

the (Burr)2 - Clayton model versus the other. However, with the conclusions from our

explorative data analysis in mind, there is the chance to improve our fit further if we allow

combined models or sliced models. That is why we now consider additionaly combined

Clayton models, where the marginal jump size distributions F1, F2 may be different from

each other, and sliced Clayton models, where the marginal jump size distributions F1, F2

may be sliced distributions, each.

After having fitted several of these Clayton models – we hereby focused on combi-

nations of the distributions from above – to the data set, it finally turned out that the
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(Burr/GPD)2 - Clayton model is the best choice (following again a Bayes factor analysis).

In Table 5.3 we compare the best five models using the approximated Bayes factors. We

see here that the choice of the (Burr/GPD)2 - Clayton model is clearly justified by very

decisive Bayes factors.

(Burr/GPD)2 vs. (Loggamma/GPD)2 2.1× 103

(Burr/GPD)2 vs. (Lognormal/GPD)2 7.3× 104

(Burr/GPD)2 vs. (Burr)2 1.4× 108

(Burr/GPD)2 vs. Burr - Loggamma 1.8× 108

Table 5.3: Approximated Bayes factors for the (Burr/GPD)2 -Clayton model, results for
Γ1 priors. 10,000 simulations are used for calculation.

5.2.2 Model selection via weighted Bayes factors

In some applications – for example in operational risk where modelling of large losses is

crucial – one may like to increase the impact of the tails on the model selection procedure.

Therefore, it can be advantageous to use a weighted Bayes factor instead of the common

Bayes factor. Let us point out how this idea can be realized practically.

So far we made use of the Bayes factor approximation

B̃ij(z) =
n−1i

∑ni

k=1 fi(z|ψi,k)

n−1j
∑nj

k=1 fj(z|ψj,k)
, i, j ∈ {1, . . . , L} , i 6= j ,

introduced in Section 2.3. We now heuristically define the weighted approximated Bayes

factor as

W̃ α
ij(z) =

n−1i
∑ni

k=1

[

α fi(z[0%−90%)|ψi,k) + (1− α) fi(z[90%−100%]|ψi,k)
]

n−1j
∑nj

k=1

[

α fj(z[0%−90%)|ψj,k) + (1− α) fj(z[90%−100%]|ψj,k)
] ,

for i, j ∈ {1, . . . , L}, i 6= j, 0 ≤ α ≤ 1. Here z[0%−90%) denotes the observations which are

below the empirical 90% quantiles, and z[90%−100%] the ones which are above these values.

Obviously, we get for the marginal value α = 0 the classical Bayes factor for the tails

only, whereas for α = 1 we obtain the classical Bayes factor for the body. For 0 < α < 1

we get a combination of these two extremes.

In applications where the fit of the tails is of particular interest, one should therefore

also consider the weighted factors. We illustrate this for the exemplary chosen value
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α = 60%. That is to say, we assign 60% of the total weight to the lower 90% of the data

and consequently 40% of it to the upper 10%. The results are given in Table 5.4. We see

that using the weighted factors instead of the common Bayes factors does not have an

impact on the final model choice in our case; the (Burr/GPD)2 - Clayton model is still

the best choice.

(Burr/GPD)2 vs. (Loggamma/GPD)2 1.3× 103

(Burr/GPD)2 vs. (Lognormal/GPD)2 4.3× 104

(Burr/GPD)2 vs. (Burr)2 5.7× 108

(Burr/GPD)2 vs. Burr - Loggamma 6.5× 108

Table 5.4: Approximated weighted Bayes factors for the (Burr/GPD)2 -Clayton model,
results for Γ1 priors. 10,000 simulations are used for calculation.

5.2.3 The impact of the prior distribution

We now examine how the choice of prior distribution affects the approximated posteriors.

Since we have seen in the previous section that the (Burr/GPD)2 - Clayton model actually

allows the best fit to the data, we present the results for this specific model. Note that

we had to fix the thresholds u1, u2 of this sliced model (cf. Example 3.1.1) before fitting

the data to it. Exemplary, we set these values equal to the empirical 90% quantiles of the

components, i.e. u1 = 3.96, u2 = 3.90. For a comprehensive theory how to model these

thresholds and extremal events in general we refer to Embrechts et al. (1997), Section 6.5.

In Figure 5.3 we show approximated marginal posterior densities for the parameters

λ1,θ1, λ2,θ2, δ of the (Burr/GPD)2 - Clayton model for the original Danish fire insurance

data of the year 2002. Furthermore, the last plot in this figure describes the relative

frequency of joint jumps which is directly calculated from the drawn samples of the

parameters. We see that on average the probability for a joint jump is about 50%.

Three different prior distributions for the parameters are used: uniform priors, inde-

pendent Gamma priors with large standard deviations (denoted by Γ1) and independent

Gamma priors with smaller standard deviations (denoted by Γ2). In the first case the

standard deviations of the priors are taken as the corresponding mean divided by 4, in

the second case as the corresponding mean divided by 20, hence smaller by factor 5.

We clearly see the impact of the prior distributions on the uncertainty in the param-

eters. Whereas for the uniform prior and the Γ1 priors the results are quite similar, the
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Figure 5.3: Marginal posterior distributions for the parameters of the (Burr/GPD)2 -
Clayton model together with the relative frequency of joint jumps. Three different prior
distributions are used.



5.2. ANALYSIS OF THE ORIGINAL DATA 59

marginal densities are much more concentrated for the Γ2 priors. Particularly the esti-

mates for the parameters of the GPD distribution used to model the tail of the sliced

distributions show significant uncertainties for the uniform and the Γ1 prior. Remember-

ing that we have only about 40 observations available to model both tails, this behaviour

is not further remarkable and could have been expected.

As we can see in Table 5.5 the posterior mean estimate is, for each parameter, very

close to the MLE. Moreover, the table reports the 95% credible intervals of the posterior

means for all parameters and for the relative joint jump frequency, given the three different

priors. Summarizing the plots and the credible intervals it becomes apparent that the

choice of the standard deviations in the prior distributions has a major impact on the

simulated values and the estimated posterior distributions. When choosing large values

there is no significant difference compared to an uniform prior. Maybe in practice the

experience of the user of the MCMC sampler allows to choose small standard deviations

in the priors and, hence, to make them quite informative. From Figure 5.3, however, one

can see that this comes along with the risk of underestimating the uncertainty about the

parameter estimates.

Finally, to get a visual idea of the quality of the fit, we plot the density of the adapted

(Burr/GPD)2 - Clayton model together with the empirical histograms, see Figure 5.4. We

do this only for the fit based on the uniform prior distributions, since the differences are

minor. Using the posterior mean estimates as marginal jump size parameters in either

case yields the explicit densities for x, y > 0:

f1(x) = 1(0,3.96] 1.49x
3.10

(

1 + x4.10
)−1.42

+ 1(3.96,∞) 0.226 (1 + 0.108 (x+ 3.36))−3.40 ,

f2(y) = 1(0,3.90] 1.98 y
0.196

(

1 + y1.20
)−2.94

+ 1(3.90,∞) 0.101 (1 + 0.0217 (y + 11.7))−6.47 .
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Figure 5.4: Fitted marginal jump size densities in the (Burr/GPD)2 - Clayton model.
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λ1 c1 k1

(ML estimate) 33.49 4.094 0.4202
uniform prior 33.66 [30.90, 36.47] 4.096 [3.578, 4.658] 0.4178 [0.3507, 0.4926]
Γ1 prior 33.37 [30.52, 36.25] 4.095 [3.568, 4.637] 0.4202 [0.3541, 0.4895]
Γ2 prior 33.44 [31.44, 35.39] 4.091 [3.791, 4.396] 0.4200 [0.3865, 0.4558]

h1 β1 ξ1

(ML estimate) 7.325 3.776 0.4027
uniform prior 7.319 [5.506, 9.235] 3.846 [1.597, 6.356] 0.4170 [0.0885, 0.7748]
Γ1 prior 7.291 [5.830, 8.973] 3.776 [2.928, 4.744] 0.4007 [0.2718, 0.5489]
Γ2 prior 7.338 [6.707, 7.984] 3.778 [3.457, 4.116] 0.4023 [0.3646, 0.4412]

λ2 c2 k2

(ML estimate) 25.85 1.193 1.946
uniform prior 26.02 [23.69, 28.39] 1.196 [1.081, 1.318] 1.940 [1.647, 2.251]
Γ1 prior 25.82 [23.49, 28.16] 1.191 [1.084, 1.306] 1.941 [1.680, 2.209]
Γ2 prior 25.80 [24.14, 27.39] 1.192 [1.113, 1.273] 1.943 [1.790, 2.102]

h2 β2 ξ2

(ML estimate) 15.51 8.566 0.1690
uniform prior 15.60 [ 9.67, 22.23] 8.424 [3.629, 13.32] 0.1830 [0.0499, 0.4152]
Γ1 prior 15.29 [12.16, 18.73] 8.460 [6.616, 10.33] 0.1700 [0.1049, 0.2504]
Γ2 prior 15.52 [14.22, 16.93] 8.578 [7.840, 9.32] 0.1689 [0.1528, 0.1863]

δ rel. λ‖

(ML estimate) 1.829 50.2%
uniform prior 1.824 [1.630, 2.025] 50.1% [46.8%, 53.2%]
Γ1 prior 1.822 [1.650, 2.016] 50.1% [47.0%, 53.1%]
Γ2 prior 1.826 [1.704, 1.950] 50.2% [48.1%, 52.2%]

Table 5.5: Posterior mean estimates together with 95% credible intervals, maximum like-
lihood estimates for comparison. The 95% credible intervals are based on the empirical
2.5% and 97.5% quantiles. Results for three different prior distributions.
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5.2.4 Robustness of the parameter estimates

Let us now examine how the estimates change when we base our analysis on less observa-

tions. Therefore we now apply our MCMC sampler to a smaller data set, namely the data

points of the Danish fire insurance data which were reported during the six-month period

July 1, 2002, to December 31, 2002 (T=6), cf. Table 5.1. We then compare the estimates

to the ones obtained from the previous analysis of the 12-month period (T=12). Table

5.6 contains the results of the fit of the (Burr/GPD)2 - Clayton model to both data sets.

λ1 c1 k1

T = 12 33.37 [30.52, 36.25] 4.095 [3.568, 4.637] 0.4202 [0.3541, 0.4895]
T = 6 33.20 [29.55, 37.07] 4.113 [3.441, 4.799] 0.4092 [0.3258, 0.4957]

h1 β1 ξ1

T = 12 7.291 [5.830, 8.973] 3.776 [2.928, 4.744] 0.4007 [0.2718, 0.5489]
T = 6 7.210 [5.424, 9.277] 3.839 [2.838, 4.961] 0.3900 [0.2447, 0.5597]

λ2 c2 k2

T = 12 25.82 [23.49, 28.16] 1.191 [1.084 , 1.306] 1.941 [1.680, 2.209]
T = 6 25.17 [22.00, 28.47] 1.132 [0.9830, 1.288] 1.881 [1.504, 2.301]

h2 β2 ξ2

T = 12 15.29 [12.16, 18.73] 8.460 [6.616, 10.33 ] 0.1700 [0.1049 , 0.2504]
T = 6 14.40 [10.56, 18.56] 7.645 [5.689, 9.789] 0.1630 [0.09763, 0.2462]

δ rel. λ‖

T = 12 1.822 [1.650, 2.016] 50.1% [47.0%, 53.1%]
T = 6 1.778 [1.529, 2.044] 48.1% [44.7%, 53.3%]

Table 5.6: Comparison of posterior mean estimates (for Γ1 prior) for the periods January
to December 2002 to the estimates for the period July to December 2002. The estimates
are given with 95% credible intervals which are based on the empirical 2.5% and 97.5%
quantiles.

As to expect, the 95% credible intervals are bigger for the shorter time period, since

our sampler works with less data points. However, from the credible intervals we can

conclude that the changes are not significant.

We finally want to mention that we also checked our model fits for the impact of
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outliers. We therefore removed the three largest claims of both components – the losses of

building and the losses of content. We then applied our MCMC sampler to the remaining

data set for different Clayton models. Using the Bayes factors it turned out that the order

of the models did not change; the Bayes factors themselves only changed slightly. For

the best Clayton model, i.e. (Burr/GPD)2 - Clayton, the posterior mean estimates and

the credible intervals did not show significant differences compared to the full data set.

Hence, we can conclude that the existence of outliers does not have decisive impact on

the estimates.

5.3 Analysis of the log-transformed data

In this section we present our second approach to the Danish fire insurance data. First, we

describe how we adapt and transform the data being considered. Afterwards we analyze

this data set with the help of MCMC. Here we focus mainly on the results and do not

discuss in detail the single steps of the analyzing procedure, since they are very similar

to the ones of the first approach.

5.3.1 The transformed data

As explained in Section 5.1 the Danish fire insurance data is incomplete, because there

are those small claims missing which are in the sum smaller than one million DKK. That

is why we now base our analysis on the losses being larger than this threshold in both

components. The remaining set is complete as far as only the total losses above two million

DKK are considered. Hence we are able to model ’large’ losses, that is to say losses which

are in the sum above two million DKK, in an appropriate way. The drawback of this

approach is obvious: total claims below two million DKK which are also of interest for

the reinsurance company are not modelled at all.

single losses of building single losses of content joint losses

whole data 215 70 562

restructured data 201 51 85

remaining losses 93.5% 72.9% 15.1%

Table 5.7: Danish fire insurance data: comparison of the number of losses before and after
removing of ’small’ claims.
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Moreover, we transform the data with the logarithm before fitting the models to it.

By doing so outlying claims can be modelled more exactly and the fit gets better.

We here consider the losses of the period January 1, 2001, to December 31, 2002,

as given in the first row of Figure 5.1. After removing the ’small’ claims we keep 336

observation points out of the original 847, which is about 39.8%. In Table 5.7 we see the

number of single and joint losses before and after adapting the data set. As illustrated the

removing of the claims changes the relation of single and joint jumps significantly. There

are only 85 joint losses out of the initial 562 left which is a share of 15.1%. In comparison

we keep 93.5% and 72.9% of single losses, respectively. Hence, due to the restructuring of

the data we change the dependence structure of the claims. We state these results without

intending to judge the different approaches.

5.3.2 Results

After having transformed the losses with the logarithm the resulting data set is not that

much heavy-tailed as it is in its original form, see the empirical histograms in Figure

5.5. That also explains why the model selection procedure (which is again based on the

Bayes factors) yields a Clayton model which is less heavy-tailed than the one for the

untransformed data.

(Weibull)2 vs. (Gamma)2 1.13

(Weibull)2 vs. Gamma - Weibull 6.81

(Weibull)2 vs. (Exponential)2 69.8

Table 5.8: Approximated Bayes factors for the (Weibull)2 - Clayton model. 10000 simu-
lations are used for simulation.

Table 5.8 compares the four best fitting models. According to Jeffreys’ Bayes factor

scale the evidence of the (Weibull)2 - Clayton model over the (Gamma)2 - Clayton model

is barely worth mentioning. However, we decide to use the (Weibull)2 - Clayton model for

the upcoming analysis. When using the posterior mean estimates as jump size parameters

the marginal jump size densities in the (Weibull)2 - Clayton model are explicitly given by:



64 CHAPTER 5. ANALYSIS OF DANISH FIRE INSURANCE DATA

f1(x) = 1.379 (log x)0.115 exp
(

−1.237 (log x)1.115
)

, x > 1 ,

f2(y) = 0.8696 (log y)0.110 exp
(

−0.7834 (log y)1.110
)

, y > 1 .

In Figure 5.5 we see the fit of the marginal jump size distributions to the transformed

data and Figure 5.6 depicts the corresponding QQ-Plots.
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Figure 5.5: Histograms and fitted marginal jump size densities in the (Weibull)2 - Clayton
model.
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Figure 5.6: QQ-Plots for the marginal jump size distributions in the (Weibull)2 - Clayton
model.

The results for the fit by MCMC are given in Figure 5.7. Note that we used the

prior Γ1 which has relatively large standard deviation, cf. Section 5.2.3 for details. The

corresponding credible intervals are illustrated in Table 5.9.
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Figure 5.7: Comparison of marginal prior distributions and marginal posterior distribu-
tions for the parameters λ1, λ2, a1, b1, a2, b2 and δ in the (Weibull)2 - Clayton model for
the Danish fire insurance data.
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λ1 λ2

prior 11.94 [ 6.824, 18.46] 5.480 [3.132, 8.474]
posterior 11.93 [10.663, 13.30] 5.480 [4.682, 6.327]

a1 b1

prior 0.8277 [0.4728, 1.279 ] 1.119 [0.6402, 1.732]
posterior 0.8262 [0.7478, 0.9122] 1.115 [1.0291, 1.203]

a2 b2

prior 1.246 [0.7115, 1.925] 1.118 [0.6393, 1.729]
posterior 1.246 [1.0730, 1.433] 1.110 [0.9735, 1.247]

δ

prior 0.8562 [0.4893, 1.3239]
posterior 0.8532 [0.7349, 0.9772]

Table 5.9: Comparison of posterior mean estimates (for Γ1 prior) to prior means. The
estimates are given with 95% credible intervals which are based on the (empirical) 2.5%
and 97.5% quantiles.

We strikingly see what happens when passing from the prior to the posterior distribu-

tion. The data contains lots of information and adds substantially to the knowledge about

the parameters, which is expressed in a significant reduction of the uncertainty given by

the 95% credible intervals. These are reduced to about one fourth of their original size.

Hence, the posterior distributions are much less variable than the priors.

Finally, to conclude our analysis we have a look at the estimated number of single

and joint losses in our two different approaches to the Danish fire insurance data. Table

5.10 states the estimated absolute numbers of losses per month together with the relative

frequencies. These estimates are the means of the number of losses which were calculated

for each of the 2000 samples via Equation (3.1.2).

Obviously, these estimates differ quite clearly for the two approaches. Whereas in our

first approach every second loss affects both components, this is only the case for every

fourth in the second approach. Instead, lots of losses occur only in the building component.

Also the number of estimated absolute losses depends significantly on the approach which

is, of course, explained by the removing of data points.
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single losses of building single losses of content joint losses

First approach 13.6 (34.5%) 6.1 (15.4%) 19.7 (50.1%)

Second approach 8.6 (61.0%) 2.1 (15.1%) 3.4 (23.9%)

Table 5.10: Comparison of estimated numbers of losses per month for the two different
approaches. Absolute numbers together with relative frequencies.





Chapter 6

Final remarks

In this thesis we developed a Bayesian estimation procedure for the parameters of bivariate

compound Poisson processes whose dependence is modelled by the Lévy Clayton copula.

The Bayesian approach allows to take prior knowledge into consideration and permits to

derive uncertainties about the parameters of interest.

Based on Sklar’s theorem for Lévy copulas and the accordingly derived likelihood

function of bivariate CPPs we developed a Markov chain Monte Carlo sampler for the

specific class of Clayton models. By applying this sampler we were able to derive and

analyze the posterior distributions.

A simulation study has proven that the sampler works very well. The elaborate dy-

namic adaption procedure for the proposal densities guarantees a satisfying mixing and

convergence behaviour. Moreover, the posterior mean estimates match the simulation val-

ues very well. Significant differences between the maximum likelihood estimates and the

posterior mean estimates were not detected. We have seen that the choice of the prior

distributions plays an important role. One must be aware, that decisions based on the

posterior mean estimates and the posterior distributions are affected also by the priors.

Therefore, the choice of a certain informative prior must be well-founded, in particular

when the data sets used for the analysis are small. Here the impact of the prior is, of

course, higher than for large data sets.

Using the sampler we analyzed the Danish fire insurance data. We pursued two dif-

ferent approaches. First, we modelled the original data and illustrated the use of sliced

distributions. In the second approach we transformed the data taking logarithms.

After an initial explorative data analysis we treated the two approaches separately.

In each case we considered several Clayton models and selected the best among these

models using Bayes factors. By introducing weighted Bayes factors we were able to ana-

lyze the fits of the models more detailed. The ultimately chosen models were the sliced

69
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(Burr/GPD)2 -Clayton model (thirteen parameters) and the (Weibull)2 - Clayton model

(seven parameters) for the two data sets, respectively. Finally, we investigated how the

information about the parameters increased from the prior to the posterior distribution.

Let us emphasize that the intention of this thesis was to illustrate the procedure of

model fitting and model selection for bivariate CPPs in a Bayesian context. The specific

selection of the transformations and the prior distributions was exemplary. Practically,

these choices have to be made carefully with respect to the application.

Moreover, we want to stress again that the presented Bayesian estimation procedure

for the specific class of bivariate Clayton models can easily be carried over to other

bivariate compound Poisson processes, as long as we know the likelihood function up to a

normalizing constant. The likelihood for general (not necessarily Clayton) bivariate CPPs

is given in Esmaeili and Klüppelberg (2010a). Thus, for any bivariate Lévy copula, which

is chosen to model the dependence between the components of the CPP, our MCMC

sampler can be adapted quite easily.

In many applications two-dimensional modelling is not sufficient and one has to con-

sider a higher-dimensional case. One-parametric Lévy copula models would not be ap-

propriate anymore, because one should be able to model the dependence between the

different components more flexible. Combining several bivariate copulas might be a solu-

tion, but that increases the number of parameters considerably. Besides, new parameters

for the additional margins have to be introduced. Thus, in those cases where it is possible

to derive the likelihood function of the process, the large number of parameters could

be problematic for frequentist approaches like maximum likelihood estimation. However,

Markov chain Monte Carlo methods as introduced in this thesis should work fine also in

such cases.
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