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Chapter 1

Introduction

Continuous time autoregressive moving average (CARMA) processes are the continu-
ous time analogue of the well-known (discrete time) ARMA processes (see e.g. [13]).
The advantage of continuous time modelling is that it allows handling irregularly spaced
time series and in particular high frequency data often appearing in finance. In practice
multivariate models are necessary in many applications in order to take account of the
joint behavior of several time series. The multivariate version of the CARMA process
(MCARMA) was introduced by Marquardt and Stelzer [41].

Originally, driving processes of CARMA models were restricted to Brownian motion;
however, Brockwell [11] allowed for Lévy processes which have a finite r-th moment for
some r > 0.

It was not only the past two years where the worst worldwide financial and eco-
nomic crisis since 1929 has demonstrated impressively that there is a necessity for new
models incorporating more of the so-called stylized facts (for instance heavy tails, i.e. very
high/low values are far more likely than in the normal distribution) which one can observe
in real financial observation data. Bargel and Wenzel [5] explained in a press release of
the Deutsche Mathematiker-Vereinigung from 1st April 2009 that new models are formed
using Lévy processes but that these are not established as a business standard yet.

In order to illustrate the basic difference between a Gaussian distribution and a distri-
bution with a long tail, Montroll and Shlesinger [43] proposed to compare the distribution
of heights with the distribution of annual incomes for American adult males. An average
individual who seeks a friend twice his height would fail. On the other hand, one who
has an average income will have no trouble to discover a richer person, who, with a little
diligence, may locate a third person with twice his income, etc. The income distribution
in its upper range has a Pareto inverse power tail; however, most of the income distribu-
tions follow a log-normal curve, but the last few percent have a stable tail with exponent
α = 1.6 (cf. Badgar [4]), i.e., the mean is finite but the variance of the corresponding
1.6-stable distribution diverges.

Mandelbrot [40] and Fama [25] proposed the α-stable distribution for modelling stock
returns. However, in the case of financial data these models are extreme in the sense
that stable distributions (excluding the Gaussian) do not have a finite variance. But in
contrast to “classical” finance (stocks, bonds, currencies, storable commodities, etc.) there
are many other fields of application where it is reasonable to assume infinite variance for
the data. Garćıa, Klüppelberg and Müller [28] for instance fitted a stable CARMA(2, 1)
model to spot prices from the Singapore New Electricity Market. Other examples where
α-stable stochastic modelling seems to be appropriate are given in Chapter 7 in Janicki
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2 CHAPTER 1. INTRODUCTION

and Weron [32].

Figure 1.1 depicts a simulation of (univariate) driving Lévy processes which are sym-
metric α-stable with α-values of 2 (Brownian Motion) and 1.6 (heavy-tailed). Furthermore,
we plotted for each of the two driving processes the simulated values of a corresponding
stationary CARMA(3, 1) process with parameters p(z) = z3+4.5z2+6.5z+3 and q(z) = z
and a CARMA(2, 1) process with parameters p(z) = z2+5z+6 and q(z) = 2z+4. One can
see nicely, how the tail behavior of the driving Lévy process determines the tail behavior
of the corresponding CARMA processes. Moreover recall that in the case of Brownian
Motion the sample paths of the related CARMA processes are continuous whereas in the
case α = 1.6 only the corresponding CARMA(3, 1) process possesses continuous sample
paths, i.e. the heavy tails come from the jumps of the underlying Lévy process, but the
paths exhibit only continuous shocks. The CARMA(2, 1) process in that case has a jump
whenever the underlying Lévy process has one (cf. [41, Proposition 3.32]).

The main topic of this thesis is the analysis of the spectral representation of Lévy
and Lévy-driven CARMA processes, which in the Brownian case is well-understood. In
the Lévy-case with finite second moments this representation has been briefly studied in
[41]. We extend the representation to the cases when the driving Lévy process has infinite
second moment, but is regularly varying with index between one and two. Furthermore,
we study in detail properties of the resulting random measure. Additionally we provide
new conditions for multivariate infinitely divisible processes to be mixing and apply them
to CARMA processes.
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3

Outline of the thesis

In Chapter 2, we begin with a summary of employed notation. In Section 2.2 we provide
a brief overview of important results concerning multivariate Lévy processes and the
last section is dedicated to Fourier transformations on the real line. We focus on the
Lp, 1 ≤ p ≤ 2, theory which is rather standard. However, since we consider complex
matrix-valued functions on the real line we give the “multivariate” proofs of well-known
results for complex-valued functions on the real line.

The third chapter considers multivariate CARMA processes where the underlying Lévy
processes are supposed to have finite second moments. In that case one can use so-called
random orthogonal measures, which we introduce in Section 3.1, in order to construct a
spectral representation of square-integrable Lévy processes. This representation is recalled
in Section 3.2. Thereafter we propose further properties of the “Fourier transform” of a
square-integrable Lévy process, i.e. we show some general results concerning the relation
between properties of a Lévy process and its associated random orthogonal measure.
Chapter 3 finishes with the definition of multivariate CARMA processes.

Symmetric α-stable MCARMA processes are then considered in the fourth chapter.
Sections 4.1 and 4.2 recall basic results about symmetric stable random variables, pro-
cesses and integrals. A general procedure how one can extend symmetric α-stable random
measures from semi-rings to the Borel sets with finite control measure is described in the
third section and will be used for the proof of a spectral representation, in the summa-
bility sense, of symmetric α-stable Lévy processes in Section 4.4. The last part of this
chapter gives both, a spectral and a moving average representation of symmetric α-stable
MCARMA processes.

Chapter 5 is an extension of the results obtained in Chapter 4 to regularly varying
Lévy and MCARMA processes. The proofs are similar to those of the preceding chapter,
however, one has to find conditions such that the introduced stochastic integrals depend
continuously on their integrands.

The last chapter of this thesis recalls well-known mixing conditions for univariate in-
finitely divisible processes and then establishes their multivariate generalizations. Finally,
we apply these conditions in order to show that the MCARMA processes of Chapter 4
and 5 are always mixing and thus in particular ergodic.
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Chapter 2

Preliminaries

2.1 General notation

We denote by N, Z, R and C the set of all natural numbers, integers, real and complex
numbers, resp., and R+ := [0,∞). For the minimum of two real numbers a, b ∈ R we
write shortly a ∧ b := min(a, b) and for the maximum a ∨ b := max(a, b). The real and
imaginary part of a complex number z ∈ C is written as Re(z) and Im(z), respectively.
The set of n × d matrices over the field K is denoted by Mn×d(K), where K ∈ {R,C}.
We set Md(K) := Md×d(K) and define Sd(K) as the linear subspace of symmetric and
Hermitian matrices in the real and complex case, respectively. The positive semidefinite
cone is denoted by S+

d (K) and the strictly positive definite matrices by S++
d (K). For

a positive definite and positive semidefinite matrix A ∈ Sd(K) we also write A > 0 and
A ≥ 0, respectively. The transpose of A ∈Mn×d(R) is written as A′, the complex conjugate
transpose of A ∈Mn×d(C) as A∗. The identity matrix in Md(K) shall be denoted by Id.

On Rd and Cd, resp., we denote by | · | the Euclidean norm, whereas ‖ ·‖ stands for any
other arbitrary norm. Recall the fact that two norms on a finite dimensional linear space
are always equivalent which is why the concrete type of a norm in that case shall not be
important for our results. A scalar product on linear spaces is written as 〈 · , · 〉; in Rd and
Cd, we usually take the Euclidean one. If X and Y are normed linear spaces, let B(X, Y )
be the set of bounded linear operators from X into Y . On B(X,Y ) we will usually use
the operator norm which, in the case of Y being a Banach space, makes B(X,Y ) itself to
a Banach space. If X is a topological space, we denote by B(X) the Borel σ-algebra on
X, that is the smallest σ-algebra on X containing all open subsets of X. The Lebesgue
measure on (Rd,B(Rd)) is written as λd.

For a random variable X defined on some probability space (Ω,F ,P) we call the image
measure X(P) distribution of X which is written as L (X). For two random variables X

and Y the notation X
D
= Y means equality in distribution. For a d-dimensional K-valued,

K ∈ {R,C}, random variable X, we say that X ∈ Lp(Ω,F ,P; Kd), 1 ≤ p <∞, if E[|X|p]
is finite. If we define the norm ‖X‖Lp := (E[|X|p])1/p and, as usual, do not distinguish
between random variables and equivalence classes of random variables, Lp(Ω,F ,P; Kd)
becomes a Banach space. If we consider a sequence of random variables (Xn)n∈N, we shall
denote almost sure convergence of the sequence to some random variable X by Xn

a.s.→ X.

Convergence in probability will be denoted by Xn
P→ X, convergence in Lp by Xn

Lp

→ X
and convergence in distribution by Xn

w→ X.

5



6 CHAPTER 2. PRELIMINARIES

2.2 Multivariate Lévy processes

We give a summary of elementary properties of multivariate Lévy processes that will be
needed throughout this thesis. For a more general treatment and proofs we refer the reader
to the standard books on this topic, e.g. Sato [54], Applebaum [1] and Bertoin [8].

Let (Ω,F ,P) be a probability space. An increasing family F := (Ft)t∈R+ of sub-σ-
algebras of F is called filtration. (Ω,F ,P,F) is referred to as a filtered probability
space. A family X = (Xt)t∈R+ of Rd-valued random variables defined on (Ω,F ,P) is
called a d-dimensional stochastic process. We say that X is adapted to F if Xt is
Ft-measurable for all t ∈ R+.

Definition 2.1. An adapted Rd-valued stochastic process L = (Lt)t∈R+ is called Lévy
process with respect to F, if

(i) L0 = 0 a.s.,

(ii) Lt − Ls is independent of Fs for all s, t ∈ R+ with s ≤ t,

(iii) Lt+h − Lt
D
= Ls+h − Ls for all s, t, h ∈ R+,

(iv) L is continuous in probability, i.e. for all s ∈ R+ we have Lt − Ls
P→ 0 as t→ s.

We call a process just Lévy process if it is a Lévy process w.r.t. its own natural filtration
(FL

t := σ(Ls : 0 ≤ s ≤ t))t∈R+.

Property (ii) says in particular that L has independent increments and property (iii) says
that L has stationary increments.

2.2.1 Infinitely divisible distributions

Recall that for two probability measures µ1 and µ2 on (Rd,B(Rd)) the convolution is
defined by

µ1 ∗ µ2(A) :=

∫
Rd

∫
Rd

1A(x+ y)µ1(dx)µ2(dy), A ∈ B(Rd).

The convolution operation is commutative and associative. If X1 and X2 are independent
random variables on Rd with distribution µ1 and µ2, resp., then X1 +X2 has distribution
µ1 ∗ µ2.

The n-fold convolution of a probability measure µ with itself will be denoted by

µn∗ := µ ∗ µ ∗ . . . ∗ µ︸ ︷︷ ︸
n times

.

Definition 2.2. A probability measure µ on (Rd,B(Rd)) is called infinitely divisible
if, for any n ∈ N, there is a probability measure µn on (Rd,B(Rd)) such that µ = µn∗

n .
Or equivalently, µ is infinitely divisible iff its characteristic function Φµ : Rd →

C, Φµ(z) :=
∫

Rd e
i〈z,x〉µ(dx), has n-th roots, i.e. for any n ∈ N there is a characteris-

tic function Φn : Rd → C such that Φµ(z) = (Φn(z))n for all z ∈ Rd.
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It can be shown that there is a close connection between Lévy processes and infinitely
divisible distributions. Recall that two stochastic processes X and Y (not necessarily

defined on a common probability space) are identical in law, written as X
D
= Y , if the

systems of their finite dimensional distributions are identical.

Lemma 2.3 (cf. [54], Lemma 7.9).
If µ is infinitely divisible, then, for every t ∈ R+, µt∗ is definable and infinitely divisible.

Theorem 2.4 (cf. [54], Theorem 7.10).

(i) Let (Lt)t∈R+ be a Lévy process on Rd. Then, for any t ∈ R+, the distribution of Lt

is infinitely divisible and, letting µ = L (L1), we have L (Lt) = µt∗.

(ii) Conversely, if µ is an infinitely divisible distribution on (Rd,B(Rd)), then there is
a Lévy process (Lt)t∈R+ with L (L1) = µ.

(iii) If L(1) = (L
(1)
t )t∈R+ and L(2) = (L

(2)
t )t∈R+ are Lévy processes on Rd such that

L (L
(1)
1 ) = L (L

(2)
1 ), then L(1) and L(2) are identical in law.

Hence the collection of all infinitely divisible distributions is in one-to-one correspondence
with the collection of all Lévy processes, when two processes identical in law are considered
as the same.

We recall the well-known Lévy-Khintchine representation of characteristic functions
of all infinitely divisible distributions.

Theorem 2.5 (cf. [54], Theorem 8.1).

(i) Let µ be an infinitely divisible distribution on (Rd,B(Rd)), then there exist γ ∈
Rd, Σ ∈ S+

d (R) and a measure ν on (Rd,B(Rd)) satisfying

ν({0}) = 0 and

∫
Rd

(
1 ∧ ‖x‖2) ν(dx) <∞ (2.1)

such that the characteristic function of µ is given by

Φµ(z) = exp

{
i〈γ, z〉 − 1

2
〈z,Σz〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1[0,1](‖x‖)

)
ν(dx)

}
,

(2.2)
for each z ∈ Rd.
Moreover, the representation of Φµ(z) in (2.2) by γ, Σ and ν is unique.

(ii) Conversely, if Σ ∈ S+
d (R), ν a measure on (Rd,B(Rd)) satisfying (2.1) and γ ∈ Rd,

then there exists an infinitely divisible distribution µ whose characteristic function
is given by (2.2).

We call (γ,Σ, ν) the generating triplet of µ. The matrix Σ and the measure ν are called,
respectively, the Gaussian covariance matrix and the Lévy measure of µ.

Corollary 2.6 (cf. [54], Corollary 8.3).
If µ has generating triplet (γ,Σ, ν), then, for every t ∈ R+, µt∗ has generating triplet
(tγ, tΣ, tν).
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Henceforth we can characterize due to the Theorems 2.4 and 2.5 every Lévy process L in
a unique way by the generating triplet of the distribution of L1.

Remark 2.7.

(i) The function 1[0,1](‖x‖) is called truncation function. It makes the integrand of
the integral in the right-hand side of (2.2) integrable with respect to ν. There are
many other ways of getting an integrable integrand incorporating only a change in
γ (cf. [54, Remark 8.4] for examples).

(ii) If ν satisfies the additional condition
∫
{‖x‖≤1} ‖x‖ ν(dx) < ∞, then the truncation

function can be omitted and we get

Φµ(z) = exp

{
i〈γ0, z〉 −

1

2
〈z,Σz〉+

∫
Rd

(
ei〈z,x〉 − 1

)
ν(dx)

}
with γ0 := γ −

∫
Rd x1[0,1](‖x‖) ν(dx). The constant γ0 is called drift of µ and we

may also call (γ0,Σ, ν) generating triplet of µ (w.r.t. the truncation function zero).

(iii) If ν satisfies
∫
{‖x‖≥1} ‖x‖ ν(dx) <∞, which is equivalent to finiteness of

∫
Rd ‖x‖µ(dx)

(cf. upcoming Theorem 2.20), we can write the characteristic function as

Φµ(z) = exp

{
i〈γ1, z〉 −

1

2
〈z,Σz〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉

)
ν(dx)

}
with γ1 := γ +

∫
{‖x‖>1} x ν(dx). The constant γ1 is called center of µ and is equal

to the mean of µ (cf. [54, Example 25.12]).

2.2.2 Sample paths and the Lévy-Itô decomposition

Definition 2.8. Let X = (Xt)t∈R+ be a stochastic process. X is said to be a càdlàg
process (continu à droite, limité à gauche) if almost all paths are right continuous and
have existing limits from the left.

For a càdlàg process X we define the process X− by Xt− := lims↗tXs for t > 0 and
X0− := X0 and the process of jumps ∆X by ∆Xt := Xt −Xt− and ∆X0 := 0. Note that,
a.s., ∆X 6= 0 at most countably often.

Definition 2.9.
Let X and Y be two stochastic processes on a common probability space (Ω,F ,P).

(i) X and Y are said to be modifications of each other if P(Xt = Yt) = 1 for all
t ∈ R+.

(ii) X and Y are called indistinguishable if P(Xt = Yt for all t ∈ R+) = 1.

Obviously, two indistinguishable processes are also modifications of each other. If two
càdlàg processes are modifications of each other, then they are indistinguishable.

Theorem 2.10 (cf. [54], Theorem 11.5 and [47], Theorem I.30).

Let L be a Lévy process. Then there exists a modification L̃ of L which is a càdlàg process
and in particular also a Lévy process. L̃ is unique up to indistinguishability.
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We will henceforth always assume that a given Lévy process has a.s. càdlàg paths.
Since it is important for stochastic integration purposes, we make the following defi-

nition.

Definition 2.11. A filtered probability space (Ω,F ,P,F = (Ft)t∈R+) is said to satisfy
the usual hypotheses if

(i) the filtration F is right continuous, i.e. Ft =
⋂
s>t

Fs for all t ∈ R+,

(ii) F is complete, i.e. F0 contains all the P-null sets of F .

Given a filtration (Ft)t∈R+ we can always enlarge it to satisfy the completeness property
(ii) in the following way: let N denote the collection of all P-null sets in F and define
Gt := Ft ∨ N for each t ∈ R+, then (Gt)t∈R+ is another filtration of F , called the
augmented filtration. Lévy processes provide us with examples of filtrations that satisfy
the usual hypotheses. Recall that the natural filtration of a Lévy process L is given by(
FL

t := σ(Ls : 0 ≤ s ≤ t)
)

t∈R+
.

Theorem 2.12 (cf. [1], Theorem 2.1.9 and [47], Theorem I.31).
If L is the càdlàg version of a Lévy process, then its augmented natural filtration is right
continuous.

As we shall make use of two-sided Lévy processes, i.e. Lévy processes starting in the
infinite past, let us briefly introduce them. Taking two independent copies (L

(1)
t )t∈R+ and

(L
(2)
t )t∈R+ of a one-sided Lévy process, we set

Lt :=

{
L

(1)
t if t ≥ 0

−L(2)
(−t)− if t < 0

and call L = (Lt)t∈R a two-sided Lévy process. Obviously L also has a.s. càdlàg paths.
Finally, we conclude this subsection by the Lévy-Itô decomposition which shows that

every Lévy process can be decomposed pathwise into the independent sum of the so-
called continuous part (composed of a deterministic drift γt and a Brownian motion
with covariance matrix Σ) and the so-called jump part (which consists itself of two parts
– the sum of all large jumps and the sum of small jumps compensated by an infinite drift).
We define the punctured Euclidean space by Rd

∗ := Rd\ {0}.

Definition 2.13. Let ρ be a σ-finite measure on (R+ × Rd
∗,B(R+ × Rd

∗)). A mapping
J : B(R+×Rd

∗)×Ω → Z+ := {0, 1, 2, . . .}∪{+∞} is called Poisson random measure
on (R+ × Rd

∗,B(R+ × Rd
∗)) with intensity measure ρ if

(i) J(A, · ) ∼ Poisson(ρ(A)) for all A ∈ B(R+ × Rd
∗),

(ii) the random variables J(A1, · ), . . . , J(An, · ) are independent whenever A1, . . . , An ∈
B(R+ × Rd

∗) are pairwise disjoint,

(iii) J( · , ω) is a measure on (R+ × Rd
∗,B(R+ × Rd

∗)) for all ω ∈ Ω.

For integration w.r.t. Poisson random measures we refer to Sato [54, Proposition 19.5].



10 CHAPTER 2. PRELIMINARIES

Theorem 2.14 (cf. [54], Theorem 19.2 and [1], Theorem 2.4.16).
Let L be a Lévy process on Rd with generating triplet (γ,Σ, ν) defined on a probability
space (Ω,F ,P). Assume that L has càdlàg paths for all ω ∈ Ω. For A ∈ B(R+ × Rd

∗) we
set

J(A, ω) := # {s ∈ R+ : (s,∆Ls(ω)) ∈ A} .

Then the following hold:

(i) J is a Poisson random measure on (R+ × Rd
∗,B(R+ × Rd

∗)) with intensity measure
λ1|R+ ⊗ ν|Rd

∗
(where λ1|R+ is the Lebesgue measure on R+).

(ii) There is Ω1 ∈ F with P(Ω1) = 1 s.t. for all ω ∈ Ω1

L
(1)
t (ω) = lim

ε↘0

∫
(0,t]×{x: ‖x‖∈(ε,1]}

x (J(d(s, x), ω)− ds ν(dx))

+

∫
(0,t]×{x: ‖x‖>1}

x J(d(s, x), ω)

is definable for every t ∈ R+ and the first term converges uniformly on compact
intervals of t. L(1) is a Lévy process on (Ω,F ,P) with generating triplet (0, 0, ν).

(iii) Define

L
(2)
t (ω) = Lt(ω)− L

(1)
t (ω) for ω ∈ Ω1.

Then there is Ω2 ∈ F with P(Ω2) = 1 such that L
(2)
t (ω) is continuous in t for

all ω ∈ Ω2. L
(2) is a Lévy process with generating triplet (γ,Σ, 0) (i.e. a Brownian

motion with drift γ and covariance matrix Σ).

(iv) The two processes L(1) and L(2) are independent.

Remark 2.15.

(i) Since ν ({x : ‖x‖ > ε}) <∞ for every ε > 0, a Lévy process has only finitely many
jumps bigger in norm than any ε > 0 on bounded time intervals.
However, if ν(Rd) = ∞ it has infinitely (but countably) many arbitrarily small jumps
on any finite time interval. We shall speak of infinite activity of the Lévy process in
that case.

(ii) In general neither∫
(0,t]×{x: ‖x‖∈(ε,1]}

x J(d(s, x)) nor

∫
(0,t]×{x: ‖x‖∈(ε,1]}

x ds ν(dx)

converges for ε→ 0. That is “the first addend of L(1) is given by the sum of infinitely
many small jumps, which are not summable, compensated by an infinite drift”.

(iii)
∫

(0,t]×{x: ‖x‖>1} x J(d(s, x)) is simply the sum of all large jumps.

(iv) If the small jumps are summable (ensured by the condition that
∫
{‖x‖≤1} ‖x‖ ν(dx)

is finite), then the compensation and limiting procedure is not needed, see Sato [54,
Theorem 19.3].
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2.2.3 δ-variation of sample paths

From the Lévy-Itô decomposition we can deduce many important path properties. One
of them is the so-called δ-variation of sample paths.
Let D(R+,Rd) denote the set of all càdlàg functions on R+ with values in Rd.

Definition 2.16. Let f ∈ D(R+,Rd) and δ > 0, then

V δ
f (t) := sup

∆t

n∑
j=1

‖f(sj)− f(sj−1)‖δ

with the supremum taken over all finite partitions ∆t : 0 = s0 < s1 < . . . < sn = t, n ∈ N,
of [0, t], is called δ-variation of f .
If V δ

f (t) <∞ for all t ∈ R+, then f is said to be of finite δ-variation.

For δ = 1, we shall speak of variation instead of 1-variation. For many important processes,
conditions for the almost sure boundedness of δ-variation of sample paths on bounded time
intervals are already known: Lévy [36] showed that, for Brownian motion, the δ-variation
is a.s. bounded if and only if δ > 2, a result refined by Taylor [59]. The δ-variation of
Gaussian processes was investigated by Jain and Monrad [31]. The same problem for Lévy
processes was addressed in the papers by Fristedt and Taylor [27] and Bretagnolle [10].
We recall the following results:

Proposition 2.17 (cf. [54], Theorem 21.9 and [10], Theorem IIIb).
Suppose 1 ≤ δ < 2 and let L be a Lévy process with generating triplet (γ,Σ, ν). Then L
has a.s. finite δ-variation iff Σ = 0 and

∫
{‖x‖≤1} ‖x‖

δ ν(dx) <∞.

Remark 2.18.
One must not confound the notions of 2-variation and quadratic variation, the latter used
in stochastic analysis in order to define for instance stochastic integration w.r.t. Brownian
motion (see e.g. Protter [47]). In the case of Brownian motion, the quadratic variation
(which uses a refining sequence of interval partitions) is finite whereas the 2-variation is
infinite.

We conclude this part by introducing the Blumenthal-Getoor-Index, defined for the
first time in [9].

Definition 2.19. Let ν be a Lévy measure on (Rd,B(Rd)). Then the Blumenthal-
Getoor-Index of ν is given by

β(ν) := inf

{
α > 0 :

∫
{‖x‖≤1}

‖x‖α ν(dx) <∞
}
.

Obviously, 0 ≤ β(ν) ≤ 2 holds for every Lévy measure ν.

2.2.4 Moments of Lévy processes

We discuss the question whether moments of Lt for a Lévy process (Lt)t∈R+ are finite or
not. One has the following central theorem:
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Theorem 2.20 (cf. [54], Corollary 25.8).
Let (Lt)t∈R+ be a d-dimensional Lévy process with generating triplet (γ,Σ, ν) and a >
0, 0 < b ≤ 1, c ≥ 0. If g : Rd → R+ is of one of the forms

(i) g(x) = ‖x‖a

(ii) g(x) = (0 ∨ log ‖x‖)a

(iii) g(x) = ‖x‖c · ea‖x‖b

,

then E[g(Lt)] < ∞ for all t ∈ R+ if and only if E[g(L1)] < ∞ and E[g(L1)] < ∞ if and
only if

∫
{‖x‖≥1} g(x) ν(dx) <∞.

This means that the property of finite moments is time independent in the class of Lévy
processes.

2.2.5 Stochastic integrals with respect to Lévy processes

We consider the stochastic integral process (Xt)t∈R given by

Xt :=

∫
R
ft(s)L(ds), t ∈ R, (2.3)

where f : R× R → Mk×d(R), (t, s) 7→ ft(s), is a measurable function and L = (Lt)t∈R is
a two-sided d-dimensional Lévy process.
We first recall an existence result. Let therefore (γ,Σ, ν) be the generating triplet of L.
Necessary and sufficient conditions for the integral in (2.3) to exist are (cf. [48, Theorem
2.7]) ∫

R

∥∥∥∥ft(s)γ +

∫
Rd

ft(s)x
(
1{‖ft(s)x‖≤1} − 1{‖x‖≤1}

)
ν(dx)

∥∥∥∥ ds <∞ (2.4)∫
R
‖ft(s)Σft(s)

′‖ ds <∞ (2.5)

and ∫
R

∫
Rd

(
1 ∧ ‖ft(s)x‖2) ν(dx) ds <∞. (2.6)

Moreover, it is possible to characterize the distribution of every Xt. Namely, if the integral
is well-defined, then the distribution of Xt is infinitely divisible with generating triplet
(γt

X ,Σ
t
X , ν

t
X) given by (cf. [48, Theorem 2.7] and [55, Corollary 2.19 and Proposition 5.5])

γt
X =

∫
R

(
ft(s)γ +

∫
Rd

ft(s)x
(
1{‖ft(s)x‖≤1} − 1{‖x‖≤1}

)
ν(dx)

)
ds (2.7)

Σt
X =

∫
R
ft(s)Σft(s)

′ds (2.8)

and

νt
X(A) =

∫
R

∫
Rd

1A(ft(s)x) ν(dx) ds, A ∈ B(Rk
∗). (2.9)
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2.3 Fourier transforms on the real line

In this section we summarize important properties of Fourier transforms on the real line.
The theory for complex-valued functions in L1 and L2, resp., is rather standard. Also
the extension to complex-valued functions in Lp with p ∈ (1, 2), for which the Fourier
transforms can be defined by continuity as functions in Lq with q = p/(p − 1), is quite
common. For good expositions we refer the reader to Katznelson [33] or Stein and Weiss
[58].

Since we shall consider complex matrix-valued functions on the real line and, to the
best of our knowledge, general results cannot be found elsewhere yet, we found it useful to
give an outline of the “multivariate” case, although it is obvious that one can generalize
the well-known univariate theory by a componentwise perception to the multivariate case.
We will essentially follow Chapter VI of [33] to derive the following results.

2.3.1 The L1 theory

Let us denote by

L1(Md(C)) :=

{
f : R →Md(C) measurable,

∫
R
‖f(t)‖ dt <∞

}
the space of all Lebesgue integrable complex matrix-valued functions on the real line. It is
independent of the norm ‖ ·‖ on Md(C) (since Md(C) is a finite dimensional linear space)
and it is equal to the space of functions f = (fij) : R → Md(C) where all components
fij, i, j = 1, . . . , d, are in the usual space L1(C). We assume throughout the whole section
that the norm on Md(C) is given by

‖A‖ =
√

tr(AA∗), A ∈Md(C),

where tr( · ) denotes the trace of a matrix. Note that 〈A,B〉Md(C) := tr(AB∗) defines a
scalar product on the Hilbert space Md(C). On L1(Md(C)) we define the norm

‖f‖L1 :=

∫
R
‖f(t)‖ dt

and L1(Md(C)) becomes a Banach space with respect to ‖ ·‖L1 .

The Fourier transform f̂ of f ∈ L1(Md(C)) is defined by

f̂(ξ) :=
1√
2π

∫
R
e−iξxf(x) dx, ξ ∈ R. (2.10)

Clearly, f̂ : R → Md(C) and f̂ can be interpreted as the componentwise Fourier trans-

formation of fij, i, j = 1, . . . , d, i.e. f̂ = (f̂ij). That is why standard results for Fourier
transforms in the space L1(C) (cf. for example [33]) can be generalized:

Theorem 2.21. Let f, g ∈ L1(Md(C)) and α ∈Md(C). Then:

(i) f̂ + g = f̂ + ĝ and α̂f = αf̂ (i.e. the Fourier transformation is a linear operator).

(ii) For fy(x) := f(x− y) with arbitrary y ∈ R, we have

f̂y(ξ) = e−iξy · f̂(ξ), ξ ∈ R.
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(iii) For fc(x) := c · f(cx) with arbitrary c ∈ R\ {0}, we have

f̂c(ξ) = f̂

(
ξ

c

)
, ξ ∈ R.

(iv) For every ξ ∈ R, we have ∥∥∥f̂(ξ)
∥∥∥ ≤ ‖f‖L1 .

Proof. The theorem follows immediately from the definition (2.10).

Theorem 2.22. Assume that we have given f ∈ L1(C) and g ∈ L1(Md(C)). For almost
all x ∈ R, f(x− y)g(y) is integrable as a function of y and, if we write

h(x) :=

∫
R
f(x− y)g(y) dy,

then h ∈ L1(Md(C)) and

‖h‖L1 ≤ ‖f‖L1 · ‖g‖L1 .

We denote h = f ∗ g and call h the convolution of f and g. Moreover,

ĥ(ξ) =
√

2πf̂(ξ) · ĝ(ξ)

for any ξ ∈ R.

Proof. The function F (x, y) := f(x − y)g(y) is obviously measurable. For almost all
y ∈ R, the components of the function x 7→ F (x, y) are constant multiples of f( · − y),
hence integrable and∫

R

(∫
R
‖F (x, y)‖ dx

)
dy =

∫
R
‖f‖L1 · ‖g(y)‖ dy = ‖f‖L1 · ‖g‖L1 .

Thus, due to the Theorems of Tonelli and Fubini, y 7→ F (x, y) is integrable for almost all
x ∈ R and∫

R
‖h(x)‖ dx =

∫
R

∥∥∥∥∫
R
F (x, y) dy

∥∥∥∥ dx ≤ ∫
R

∫
R
‖F (x, y)‖ dx dy = ‖f‖L1 · ‖g‖L1 .

Finally, for ξ ∈ R we obtain

ĥ(ξ) =
1√
2π

∫
R
e−iξxh(x) dx =

1√
2π

∫
R
e−iξx

(∫
R
f(x− y)g(y) dy

)
dx

=

∫
R

(
1√
2π

∫
R
e−iξ(x−y)f(x− y) dx

)
e−iξyg(y) dy = f̂(ξ) ·

∫
R
e−iξyg(y) dy

=
√

2πf̂(ξ) · ĝ(ξ),

where the change in the order of integration is again justified by Fubini’s Theorem.



2.3. FOURIER TRANSFORMS ON THE REAL LINE 15

Corollary 2.23. Let f ∈ L1(C), g ∈ L1(Md(C)),

f(x) =
1√
2π

∫
R
eiξxF (ξ) dξ

for some F ∈ L1(C). Then, for every x ∈ R,

(f ∗ g)(x) =

∫
R
eiξxF (ξ)ĝ(ξ) dξ.

Proof. For almost all x ∈ R

(f ∗ g)(x) =

∫
R
f(x− y)g(y)dy =

1√
2π

∫
R

∫
R
eiξ(x−y)F (ξ)g(y) dξ dy.

The function F (ξ)g(y) is integrable in (ξ, y), hence the Theorem of Fubini yields

(f ∗ g)(x) =

∫
R
eiξxF (ξ)

(
1√
2π

∫
R
e−iξyg(y) dy

)
dξ =

∫
R
eiξxF (ξ)ĝ(ξ) dξ.

It is obvious that one can also understand the convolution operation componentwise.
Since L1(C) with ∗ as multiplication is a Banach algebra without unit element, our next
objective is to approximate the missing “convolution one” by an appropriate sequence of
functions. We make the following definition:

Definition 2.24. A summability kernel on the real line is a family of continuous
functions (kλ)λ∈(0,∞) on R satisfying the following:

(i)
∫

R kλ(x) dx = 1 for all λ ∈ (0,∞),

(ii)
∫

R |kλ(x)| dx = O(1) as λ→∞,

(iii) lim
λ→∞

∫
{|x|>δ} |kλ(x)| dx = 0 for all δ > 0.

Example 2.25. Probably the best known summability kernel is the so-called Féjer ker-
nel on R defined by

Fλ(x) := λ · F (λx), λ ∈ (0,∞),

where

F (x) :=
1

2π

(
sin x/2

x/2

)2

=
1

2π

∫
R
eiξx(1− |ξ|)1[−1,1](ξ) dξ. (2.11)

The second equality in (2.11) is obtained directly by integration and using the identity
cos 2x = 1− 2 sin2 x, x ∈ R.
We only have to prove

∫
R F (x) dx = 1, since this implies, introducing the change of

variable y = λx, ∫
R
Fλ(x) dx =

∫
R
F (y) dy = 1, λ ∈ (0,∞),∫

R
|Fλ(x)| dx =

∫
R
|F (y)| dy = 1, λ ∈ (0,∞)
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and ∫
{|x|>δ}

|Fλ(x)| dx =

∫
{|y|>λδ}

|F (y)| dy → 0 as λ→∞,

which shows that (Fλ)λ∈(0,∞) is indeed a summability kernel on the real line.
For the proof of

∫
R F (x) dx = 1 we refer to [33, p. 125].

Using the Féjer kernel we get an approximative convolution one in the following sense:

Theorem 2.26. Let f ∈ L1(Md(C)) and (Fλ)λ∈(0,∞) the Féjer summability kernel on R,
then, for any x ∈ R,

(Fλ ∗ f)(x) =
1√
2π

∫ λ

−λ

eiξx

(
1− |ξ|

λ

)
f̂(ξ) dξ (2.12)

and

lim
λ→∞

‖f − Fλ ∗ f‖L1 = 0. (2.13)

Proof. We first show (2.12). Setting

∆(x) :=

{ 1√
2π

(1− |x|), |x| ≤ 1

0, otherwise

we obtain, due to (2.11), ∆̂(ξ) = F (−ξ) = F (ξ) for all ξ ∈ R. Theorem 2.21 (iii) yields,

for all ξ ∈ R, Fλ(ξ) = ∆̂λ(ξ) with

∆λ(x) :=

{
1√
2π

(
1− |x|

λ

)
, |x| ≤ λ

0, otherwise.
(2.14)

Hence,

Fλ(x) =
1

2π

∫ λ

−λ

eiξx

(
1− |ξ|

λ

)
dξ

using again the symmetry of Fλ( · ). Then Corollary 2.23 implies (2.12).
As to (2.13), let f ∈ L1(Md(C)) and define ϕ : R → L1(Md(C)), ϕ(τ) := f( · − τ).

Note that ϕ is a continuous L1(Md(C))-valued function on the real line. If ε > 0, then
there is a continuous function g with compact support on R such that ‖f − g‖L1 < ε and
thus, due to the Dominated Convergence Theorem,

‖ϕ(τ)− ϕ(τ0)‖L1 = ‖f( · − τ)− f( · − τ0)‖L1 ≤ ‖f( · − τ)− g( · − τ)‖L1

+ ‖g( · − τ)− g( · − τ0)‖L1 + ‖g( · − τ0)− f( · − τ0)‖L1

≤ ε+ ‖g( · − τ)− g( · − τ0)‖L1︸ ︷︷ ︸
→0 as τ→τ0

+ε

which proves the continuity of ϕ since ε can be taken arbitrarily small.
We next show that ∫ ∞

−∞
Fλ(τ)ϕ(τ) dτ

L1

→ ϕ(0) = f as λ→∞. (2.15)
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Note that the left-hand side in (2.15) is stated in terms of vector-valued integrals, i.e.
they have to be understood as improper Riemann integrals of Banach space-valued (here
L1(Md(C))-valued) functions, defined and continuous on the real line. The existence is
assured since

∫∞
−∞ ‖Fλ(τ)ϕ(τ)‖L1 dτ <∞. Now, due to

∫∞
−∞ Fλ(τ) dτ = 1, we have∫ ∞

−∞
Fλ(τ)ϕ(τ) dτ − ϕ(0) =

∫ ∞

−∞
Fλ(τ) (ϕ(τ)− ϕ(0)) dτ

=

∫ δ

−δ

Fλ(τ) (ϕ(τ)− ϕ(0)) dτ +

∫
{|τ |>δ}

Fλ(τ) (ϕ(τ)− ϕ(0)) dτ

for arbitrary δ > 0. Then∥∥∥∥∫ δ

−δ

Fλ(τ) (ϕ(τ)− ϕ(0)) dτ

∥∥∥∥
L1

≤ max
|τ |≤δ

‖ϕ(τ)− ϕ(0)‖L1 ·
∫ ∞

−∞
|Fλ(τ)| dτ

= max
|τ |≤δ

‖ϕ(τ)− ϕ(0)‖L1 (2.16)

since (Fλ) is a nonnegative summability kernel and∥∥∥∥∫
{|τ |>δ}

Fλ(τ) (ϕ(τ)− ϕ(0)) dτ

∥∥∥∥
L1

≤ max
τ
‖ϕ(τ)− ϕ(0)‖L1 ·

∫
{|τ |>δ}

|Fλ(τ)| dτ

≤ 2 ‖f‖L1 ·
∫
{|τ |>δ}

|Fλ(τ)| dτ. (2.17)

Given ε > 0, we can choose, due to the continuity of ϕ(τ) at τ = 0, a δ > 0 such
that (2.16) is bounded by ε and keeping that δ, (2.17) is bounded by ε for large λ since∫
{|τ |>δ} |Fλ(τ)| dτ → 0 as λ→∞. Thus (2.15) is shown.

Although the integrals in (2.15) have the formal appearance of a convolution, the
operation involved (i.e. vector integration) is different from the convolution as defined in
Theorem 2.22. The ambiguity, however, is harmless, since∫ ∞

−∞
Fλ(τ)ϕ(τ) dτ = Fλ ∗ f (2.18)

for all f ∈ L1(Md(C)). To establish (2.18), assume first that f is continuous with compact
support on R. Then, for any n ∈ N,∫ n

−n

Fλ(τ)ϕ(τ) dτ = lim
N→∞

N∑
j=0

(τj+1 − τj)Fλ(τj)f( · − τj)

where the limit is taken in the L1(Md(C)) norm as the subdivision (τj) of [−n, n] becomes
finer and finer. On the other hand,

lim
N→∞

N∑
j=0

(τj+1 − τj)Fλ(τj)f(t− τj) =
(
Fλ1[−n,n] ∗ f

)
(t)

for any t ∈ R. Hence, for all n ∈ N,∫ n

−n

Fλ(τ)ϕ(τ) dτ = Fλ1[−n,n] ∗ f. (2.19)
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Now, the left-hand side in (2.19) converges in L1(Md(C)) to
∫∞
−∞ Fλ(τ)ϕ(τ) dτ as n→∞

by definition of the improper vector-valued integral. For the right-hand side in (2.19) we
observe ∥∥Fλ1[−n,n] ∗ f − Fλ ∗ f

∥∥
L1 =

∥∥(Fλ1[−n,n] − Fλ

)
∗ f
∥∥

L1

≤
∥∥Fλ1[−n,n] − Fλ

∥∥
L1 · ‖f‖L1 → 0

as n→∞ by the Dominated Convergence Theorem. Thus (2.18) holds for continuous f
with compact support. For arbitrary f ∈ L1(Md(C)), let ε > 0 and let g be continuous
with compact support on R such that ‖f − g‖L1 < ε. Then∫ ∞

−∞
Fλ(τ)ϕ(τ) dτ − Fλ ∗ f =

∫ ∞

−∞
Fλ(τ)(f − g)( · − τ) dτ + Fλ ∗ (g − f)

and thus
∥∥ ∫∞

−∞ Fλ(τ)ϕ(τ) dτ − Fλ ∗ f
∥∥

L1 ≤ 2ε. This completes the proof of (2.18).
Finally, (2.15) together with (2.18) yields (2.13) which concludes the proof.

Corollary 2.27 (Inversion formula).

Let f ∈ L1(Md(C)) and f̂ ∈ L1(Md(C)). Then, for almost all x ∈ R,

f(x) =
1√
2π

∫
R
eiξxf̂(ξ) dξ.

Proof. The function ξ 7→ 1[−λ,λ](ξ)e
iξx (1− |ξ| /λ) f̂(ξ) converges pointwise for all x ∈ R

to the function ξ 7→ eiξxf̂(ξ) as λ→∞. Since f̂ ∈ L1(Md(C)) we can use the Dominated
Convergence Theorem to deduce for all x ∈ R

(Fλ ∗ f) (x)
(2.12)
=

1√
2π

∫
R
1[−λ,λ](ξ)e

iξx

(
1− |ξ|

λ

)
f̂(ξ) dξ

λ→∞→ 1√
2π

∫
R
eiξxf̂(ξ) dξ.

Theorem 2.26 shows that ‖Fλ ∗ f − f‖L1 → 0 as λ → ∞, hence there is a subsequence

(Fλk
)k∈N such that Fλk

∗ f k→∞→ f almost everywhere.

Before extending the Fourier transformation theory to Lp, 1 < p ≤ 2, we finish the
L1 theory by the following two observations which we will use several times in Chapter 4
and 5 where we consider Fourier transformations of α-stable and regularly varying Lévy
processes, respectively.
Due to Corollary 2.27 we have, for almost all ξ ∈ R,

F̂λ(ξ) =
1√
2π

(
1− |ξ|

λ

)
1[−λ,λ](ξ)

(2.14)
= ∆λ(ξ) (2.20)

and by virtue of Theorem 2.22, we obtain for all f ∈ L1(Md(C)),

F̂λ ∗ f(ξ) =
√

2πF̂λ(ξ) · f̂(ξ) =
√

2π∆λ(ξ) · f̂(ξ) (2.21)

for almost all ξ ∈ R.
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2.3.2 The Lp, 1 < p ≤ 2, theory

For p ∈ (1, 2] we set

Lp(Md(C)) :=

{
f : R →Md(C) measurable,

∫
R
‖f(t)‖p dt <∞

}
.

We equip Lp(Md(C)) with the norm ‖f‖Lp :=
(∫

R ‖f(t)‖p dt
)1/p

. The fact that the
Lebesgue measure of R is infinite implies that Lp(Md(C)) ⊆ L1(Md(C)) does not hold
if p > 1. Thus we have to find a new way to define the Fourier transform for the spaces
Lp(Md(C)), 1 < p ≤ 2.

We first consider the case p = 2. Let

C0(Md(C)) := {f : R →Md(C), f continuous with compact support}

which is equal to the space of functions f = (fij) : R → Md(C) where all components
fij are continuous complex-valued functions with compact support on R. We obtain the
following result:

Lemma 2.28. For f ∈ C0(Md(C)),∫
R

∥∥∥f̂(ξ)
∥∥∥2

dξ =

∫
R
‖f(x)‖2 dx.

Proof. Recall that, if f = (fij), we have f̂ = (f̂ij) since the Fourier transformation
can be interpreted componentwise (cf. Section 2.3.1). The proof of the lemma in the
one-dimensional case can be found in [33, Chapter VI.3]. Thus∫

R

∥∥∥f̂(ξ)
∥∥∥2

dξ =
d∑

i,j=1

∫
R

∣∣∣f̂ij(ξ)
∣∣∣2 dξ =

d∑
i,j=1

∫
R
|fij(x)|2 dx =

∫
R
‖f(x)‖2 dx.

The next theorem is central in the L2 theory:

Theorem 2.29 (Plancherel).
There exists a unique linear bijective operator

F : L2(Md(C)) → L2(Md(C))

satisfying
Ff = f̂ for all f ∈ L1(Md(C)) ∩ L2(Md(C)) (2.22)

‖Ff‖L2 = ‖f‖L2 for all f ∈ L2(Md(C)). (2.23)

Proof. We observe first that L1(Md(C))∩L2(Md(C)) is dense in L2(Md(C)), consequently
any continuous operator defined on L2(Md(C)) is determined by its values on L1(Md(C))∩
L2(Md(C)). This shows the uniqueness claim.

By virtue of Lemma 2.28, (2.23) holds for all f ∈ C0(Md(C)) and since C0(Md(C)) is
dense in L1(Md(C))∩L2(Md(C)) (w.r.t. the norm ‖ ·‖L1 +‖ ·‖L2), (2.23) also holds for all
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f ∈ L1(Md(C)) ∩ L2(Md(C)). The mapping f 7→ f̂ clearly can be extended by continuity
to an isometry from L2(Md(C)) into L2(Md(C)).

It remains to show that F is onto. Note that 〈f, g〉L2(Md(C)) :=
∫

R tr(f(t)g∗(t)) dt defines
a scalar product on L2(Md(C)). One can then establish easily Parseval’s formula

〈f, g〉L2(Md(C)) = 〈Ff,Fg〉L2(Md(C)) (2.24)

for f, g ∈ L2(Md(C)) which is in fact equivalent to (2.23). We have moreover

〈Ff, g∗〉L2(Md(C)) = 〈Fg, f ∗〉L2(Md(C)) (2.25)

for all f, g ∈ L2(Md(C)). For, if f, g ∈ C0(Md(C)), the Theorem of Fubini yields

〈Ff, g∗〉L2(Md(C)) =

∫
R

tr(Ff(t)g(t)) dt = tr

∫
R

(
1√
2π

∫
R
e−iξtf(ξ) dξ

)
g(t) dt

= tr

∫
R
f(ξ)

(
1√
2π

∫
R
e−iξtg(t) dt

)
dξ =

∫
R

tr(f(ξ)Fg(ξ)) dξ

= 〈Fg, f ∗〉L2(Md(C))

where we used the fact that tr(AB) = tr(BA) for all A,B ∈Md(C).
For general f, g ∈ L2(Md(C)), one can choose sequences (fn), (gn) ⊆ C0(Md(C)) such that

fn
L2

→ f, gn
L2

→ g as n → ∞. With the continuity of the scalar product, (2.25) also holds
for the limits f and g.
Hence, for arbitrary f ∈ L2(Md(C)), setting g := (Ff)∗ and h := (Fg)∗, we deduce

‖f − h‖2
L2 = ‖f‖2

L2 + ‖h‖2
L2︸ ︷︷ ︸

=‖f‖2
L2

−
∫

R
tr(h(t)f ∗(t) + f(t)h∗(t)) dt.

Since

〈f, h〉L2(Md(C)) = 〈h∗, f∗〉L2(Md(C)) = 〈Fg, f ∗〉L2(Md(C))

(2.25)
= 〈Ff, g∗〉L2(Md(C)) = 〈Ff,Ff〉L2(Md(C))

(2.24)
= 〈f, f〉L2(Md(C)) = ‖f‖2

L2

and
〈h, f〉L2(Md(C)) = 〈f, h〉L2(Md(C)) = ‖f‖2

L2

we finally obtain ‖f − h‖2
L2 = 0 which proves that F is surjective.

In view of (2.22) we shall write henceforth f̂ instead of Ff which simplifies notation.

Remark 2.30.
For f ∈ L2(Md(C)) we can define fn := f1[−n,n] ∈ L1(Md(C)) ∩ L2(Md(C)). Obviously

fn
L2

→ f as n → ∞ and we obtain the following form of Plancherel’s Theorem: the
sequence f̂n( · ) = 1√

2π

∫ n

−n
e−ix · f(x) dx converges in L2(Md(C)) to a function, denoted by

f̂ , for which (2.23) is valid.

We now turn our attention to p ∈ (1, 2). Using the Riesz-Thorin Theorem (cf. [33, p.
97]), one can establish the well-known Hausdorff-Young Theorem:
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Theorem 2.31 (cf. [33], p. 142 and [56], p. 6).
Let 1 < p < 2 and q = p

p−1
(i.e. 1

p
+ 1

q
= 1). Then there is a constant C(p) such that for

all f ∈ L1(Md(C)) ∩ L2(Md(C)),(∫
R

∥∥∥f̂(ξ)
∥∥∥q

dξ

) 1
q

≤ C(p)

(∫
R
‖f(x)‖p dx

) 1
p

. (2.26)

Using this result, we extend the Fourier transform to the space Lp(Md(C)), 1 < p < 2, by
continuity in the following way:

Definition 2.32.
Let f ∈ Lp(Md(C)), 1 < p < 2, and q = p

p−1
. Then the Fourier transform f̂ of f is

defined as the limit in Lq(Md(C)) of the sequence 1√
2π

∫ n

−n
e−ix · f(x) dx as n→∞.

Note that f̂ is well-defined, since L1(Md(C)) ∩ L2(Md(C)) is dense in L1(Md(C)) ∩
Lp(Md(C)) (w.r.t. the norm ‖ ·‖L1 + ‖ ·‖Lp) which implies that (2.26) holds for all f ∈
L1(Md(C)) ∩ Lp(Md(C)).

The mapping f 7→ f̂ so-defined is a linear continuous operator from Lp(Md(C)) into
Lq(Md(C)), however, it is no longer an isometry and the range is not the whole of
Lq(Md(C)).

We want to generalize Theorem 2.26 to the Lp case for p ∈ (1, 2]. To this end, we first
generalize Theorem 2.22 and get

Theorem 2.33. Let f ∈ L1(C) and g ∈ Lp(Md(C)), 1 < p ≤ 2. For almost all x ∈ R,
the convolution h(x) := (f ∗ g)(x) is well-defined, h ∈ Lp(Md(C)) and

‖h‖Lp ≤ ‖f‖L1 · ‖g‖Lp .

Moreover, ĥ =
√

2πf̂ · ĝ.

Proof. Consider the function F (x, y) := |f(x− y)| · ‖g(y)‖p which is obviously measur-
able. Similar to the proof of Theorem 2.22 we obtain that, for almost all x ∈ R, the
integral

∫
R F (x, y) dy exists and∫

R

∫
R
F (x, y) dy dx = ‖f‖L1 · ‖g‖p

Lp .

Hence, with 1
p

+ 1
q

= 1, we have for almost all x ∈ R,

‖h(x)‖ = ‖(f ∗ g)(x)‖ ≤
∫

R
|f(x− y)| · ‖g(y)‖ dy

≤
(∫

R
|f(x− y)| · ‖g(y)‖p dy

)1/p

·
(∫

R
|f(x− y)| dy

)1/q

<∞

where we used Hölder’s Inequality. Thus the convolution is almost everywhere defined
and ∫

R
‖h(x)‖p dx ≤ ‖f‖L1 · ‖g‖p

Lp · ‖f‖p/q

L1 , i.e. ‖h‖Lp ≤ ‖f‖L1 · ‖g‖Lp . (2.27)
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Finally, note that ĥ as well as
√

2πf̂ · ĝ are elements in Lq(Md(C)) with q = p/(p−1). Let
(gn)n∈N ⊆ C0(Md(C)) be a sequence of continuous functions with compact support on R
such that gn → g as n→∞ in Lp(Md(C)). Then, using Theorem 2.22 and 2.31 together
with Definition 2.32, we obtain∥∥∥ĥ−√2πf̂ · ĝ

∥∥∥
Lq
≤
∥∥∥ĥ− f̂ ∗ gn

∥∥∥
Lq

+
∥∥∥f̂ ∗ gn −

√
2πf̂ · ĝ

∥∥∥
Lq

=
∥∥∥ ̂f ∗ (g − gn)

∥∥∥
Lq

+
∥∥∥√2πf̂ · ĝn − g

∥∥∥
Lq

≤ C(p) · ‖f ∗ (g − gn)‖Lp +
√

2π ‖f‖L1 ·
∥∥∥ĝn − g

∥∥∥
Lq

(2.27)

≤ C(p) · ‖f‖L1 · ‖g − gn‖Lp +
√

2π ‖f‖L1 · C(p) · ‖gn − g‖Lp

n→∞→ 0.

This shows that ĥ =
√

2πf̂ · ĝ and concludes the proof.

As a consequence, if we take for f the Féjer kernel Fλ, we have

F̂λ ∗ g =
√

2πF̂λ · ĝ
(2.20)
=

√
2π∆λ · ĝ (2.28)

for all g ∈ Lp(Md(C)), 1 < p ≤ 2. Since Fλ ∗ g is bounded (namely, for all x ∈ R,
‖(Fλ ∗ g)(x)‖ ≤ ‖Fλ‖Lq · ‖g‖Lp with 1/p+ 1/q = 1) and in Lp(Md(C)) (cf. Theorem 2.33)
we also obtain that Fλ ∗ g ∈ L2(Md(C)). Hence, by virtue of Theorem 2.29 and its proof
(in particular the “surjective” part), we deduce

Fλ ∗ g =
1√
2π

∫ λ

−λ

eiξ ·
(

1− |ξ|
λ

)
ĝ(ξ) dξ (2.29)

for all g ∈ Lp(Md(C)), 1 < p ≤ 2.
The last point which we have to show for the generalization of Theorem 2.26 to the Lp

case is that ‖g − Fλ ∗ g‖Lp → 0 as λ → ∞ for all g ∈ Lp(Md(C)). In fact, this can be
established in a completely analogous way to the proof of (2.13). We only have to replace
L1(Md(C)) by Lp(Md(C)), 1 ≤ p <∞. We thus have

Theorem 2.34. Let f ∈ Lp(Md(C)) with 1 ≤ p ≤ 2. Then

f = lim
λ→∞

1√
2π

∫ λ

−λ

eiξ ·
(

1− |ξ|
λ

)
f̂(ξ) dξ

in the Lp(Md(C)) norm.



Chapter 3

Multivariate CARMA processes

In this chapter we introduce multivariate Lévy-driven continuous time autoregressive mov-
ing average (CARMA) processes. They extend the well-known univariate CARMA models,
dating back to [20], which have been extensively studied over the recent years (see e.g.
[11, 12, 14, 60] and references therein). Originally, driving processes of CARMA models
were restricted to Brownian motion, however, [11] allowed for Lévy processes which have
a finite r-th moment for some r > 0. The multivariate CARMA model (MCARMA) was
introduced in [41] where an explicit construction using a state space representation and
a spectral representation of the driving Lévy process is given.

The chapter is organized as follows. In the first section we start with a brief sum-
mary of notions and results concerning random orthogonal measures. We then recall the
construction of such a random orthogonal measure allowing for a spectral representation
of square-integrable Lévy processes before we shall give some examples and study fur-
ther properties of that measure in the third section. Multivariate CARMA and causal
MCARMA processes are introduced in the last section.

3.1 Random orthogonal measures

As we shall make use of spectral representations of stationary processes (see [21, 29, 52]
for comprehensive treatments), we need the notion of random orthogonal measures. In
this section we briefly introduce these measures and integration w.r.t. them.

Let S be a non-empty set. Recall that a subset R of the power set P(S) of S is called
ring if ∅ ∈ R and A,B ∈ R implies A ∪ B ∈ R and A\B ∈ R. If in addition S ∈ R,
then R is called algebra.

Definition 3.1. Let (Ω,F ,P) be a probability space and let S be a non-empty set with a
ring R. If ζ : R → L2(Ω,F ,P; Cd) is a map satisfying

(i) ζ(∅) = 0,

(ii) for all sequences (An)n∈N ⊆ R pairwise disjoint with
⋃

n∈N
An ∈ R

ζ
( ⋃

n∈N

An

)
=
∑
n∈N

ζ(An)

(i.e. the series converges in L2 to ζ(
⋃

n∈NAn)),

23
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(iii) for all A1, A2 ∈ R with A1 ∩ A2 = ∅

E[ζ(A1)ζ(A2)
∗] = 0,

then ζ is called a d-dimensional random orthogonal measure on R.

The map F : R → Md(C), F (A) := E[ζ(A)ζ(A)∗] is called spectral function w.r.t.
the random orthogonal measure ζ.

One often only has that ζ : R → L2 is additive which is less than (ii) in Definition 3.1.
In this case ζ is referred to as a random orthogonal content.

F assumes values in the positive semidefinite matrices. From the point of view of
functional analysis, the positive semidefinite matrices form the cone of positive bounded
operators in the C∗-algebra B(Cd) := B(Cd,Cd). For every sequence (An)n∈N ⊆ R pair-
wise disjoint with

⋃
n∈NAn ∈ R, one has

F
( ⋃

n∈N

An

)
= E

[
ζ
( ⋃

n∈N

An

)
ζ
( ⋃

n∈N

An

)∗]
= lim

k→∞

k∑
n=1

E[ζ(An)ζ(An)∗] =
∑
n∈N

F (An),

where the convergence of the series holds for any (operator) norm on B(Cd). Obviously
F (A) ≥ F (∅) = 0 for every A ∈ R, where, for X, Y ∈ S+

d (C) positive semidefinite, X ≥ Y
if and only if X−Y ≥ 0, i.e. X−Y ∈ S+

d (C). Thus F is a positive-operator-valued (POV)
measure on R (cf. for instance [57] for the notion of a POV measure).

Let us denote by σ(R) the σ-ring generated by R (i.e. σ(R) is the smallest σ-ring
containing R). In the following we will assume throughout that S = R, R ⊆ B0(R) and
σ(R) = B(R) where B0(R) is the ring of all Borel sets with finite Lebesgue measure.
We only encounter random orthogonal measures whose associated spectral functions have
constant density w.r.t. the Lebesgue measure λ1 on R, i.e. F (A) = λ1(A)C for some
C ∈ S+

d (C) and all A ∈ R, which simplifies the upcoming integration theory considerably.

Due to our assumption that F has constant density w.r.t. to λ1, one can immediately
extend F to a POV measure F̃ on B0(R) by setting F̃ (A) := λ1(A)C for all A ∈ B0(R).
By abuse of notation we denote that extension again by F . It is referred to as the spectral
measure of the random orthogonal measure ζ.

Our next aim is to extend also ζ to the ring of all Borel sets with finite Lebesgue
measure B0(R). To this end, consider an elementary function ϕ : R → Md(C), ϕ =∑n

k=1 ϕk1Ak
, where Ak ∈ R are pairwise disjoint and ϕk ∈ Md(C), k = 1, . . . , n, n ∈ N.

We define the stochastic integral of ϕ with respect to ζ by

J(ϕ) :=
n∑

k=1

ϕkζ(Ak) ∈ L2(Ω,F ,P; Cd).

It is standard to show that J(ϕ) is independent of the concrete representation of the
elementary function ϕ. Moreover, it is easy to deduce that

E[J(ϕ)J(ψ)∗] =

∫
R
ϕ(t)F (dt)ψ(t)∗ =

∫
R
ϕ(t)Cψ(t)∗dt (3.1)

for all elementary functions ϕ and ψ. Indeed there exist representations of ϕ and ψ with
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ϕ =
n∑

k=1

ϕk1Ak
and ψ =

n∑
k=1

ψk1Ak
where Aj ∩ Ak = ∅ for all j 6= k. Then

E[J(ϕ)J(ψ)∗] =
n∑

k=1

E[ϕkζ(Ak)ζ(Ak)
∗ψ∗k] =

n∑
k=1

ϕk E[ζ(Ak)ζ(Ak)
∗]︸ ︷︷ ︸

=F (Ak)

ψ∗k

=

∫
R
ϕ(t)F (dt)ψ(t)∗ =

∫
R
ϕ(t)Cψ(t)∗dt.

We want to extend integration w.r.t. ζ to all functions in L2(Md(C)) which is defined as
(cf. Section 2.3)

L2(Md(C)) :=

{
f : R →Md(C) measurable,

∫
R
‖f(t)‖2 dt <∞

}
with ‖ ·‖ being any norm on Md(C). Note that

∫
R ‖f(t)‖2 dt < ∞ implies the existence

of
∫

R f(t)F (dt)f(t)∗. Recall that the space L2(Md(C)) is equal to the space of functions
f = (fij) : R → Md(C) where all components are in the usual space L2(C). With the
ordinary norm ‖f‖L2 := (

∫
R ‖f(t)‖2 dt)1/2, the space L2(Md(C)) becomes a Banach space

and thus it is in particular complete.

Proposition 3.2. Let ζ : R → L2(Ω,F ,P; Cd) be a random orthogonal measure on the
ring R ⊆ B0(R) such that σ(R) = B(R).
Define T (R) := {ϕ =

∑n
k=1 ϕk1Ak

, Ak ∈ R pairwise disjoint, ϕk ∈Md(C)} the linear
space of all R-elementary functions. Then T (R) is dense in L2(Md(C)).

Proof. It is a well-known result that the linear space of B0(R)-elementary functions is
dense in L2(Md(C)). Recall the simple fact that for A ∈ σ(R) = B(R) with λ1(A) < ∞
there exists for every ε > 0 a set Aε =

⋃n
i=1Ai with Ai ∈ R pairwise disjoint such that

λ1(A4Aε) < ε (where A4B := (A\B) ∪ (B\A) is the symmetric difference of the sets A
and B). Thus every B0(R)-elementary function can be approximated by an R-elementary
function.

If now f ∈ L2(Md(C)), let (ϕn)n∈N ⊆ T (R) be a sequence s.t. ϕn → f in L2(Md(C)).
Hence, using (3.1), we have

‖J(ϕn)− J(ϕm)‖2
L2 = E[|J(ϕn − ϕm)|2] ≤ c · ‖E[J(ϕn − ϕm)J(ϕn − ϕm)∗]‖
≤ c′ · ‖C‖ · ‖ϕn − ϕm‖2

L2 (3.2)

for some constants c, c′ > 0. This yields that J(ϕn) converges in mean square since it is a
Cauchy sequence in L2(Ω,F ,P; Cd). We set∫

R
f dζ := J(f) := l.i.m.

n→∞
J(ϕn) ∈ L2(Ω,F ,P; Cd)

where l.i.m. means the L2-limit.

Proposition 3.3. Suppose the settings of Proposition 3.2 and assume that the correspond-
ing spectral measure is given by F : B0(R) →Md(C), F (dt) = C dt for some C ∈ S+

d (C).
Then the following properties hold for the introduced integral:
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(i) For all f ∈ L2(Md(C)), the integral
∫

R f dζ is independent of the approximating
sequence of R-elementary functions ϕn.

(ii) E[(
∫

R f dζ)(
∫

R g dζ)
∗] =

∫
R f(t)Cg(t)∗dt for all f, g ∈ L2(Md(C)).

(iii)
∫

R(αf + βg) dζ = α
∫

R f dζ + β
∫

R g dζ for all α, β ∈Md(C) and f, g ∈ L2(Md(C)).

(iv) If (fn)n∈N is a sequence in L2(Md(C)) and f ∈ L2(Md(C)) with ‖fn − f‖L2 → 0 as

n→∞, then
∫

R fn dζ
n→∞→

∫
R f dζ in L2(Ω,F ,P; Cd).

Proof. These properties are an easy consequence of the definition of the integral and
(3.1) and (3.2), respectively.

Now we are able to extend ζ : R → L2 to a random orthogonal measure defined on the ring
of all Borel sets with finite Lebesgue measure B0(R). More precisely, for all A ∈ B0(R),
define

ζ̃(A) := J(1A) =

∫
R
1A dζ.

Being completely correct one should write Id1A with Id being the identity matrix in Md(C)
instead of 1A for the integrand above. However, we forego this correctness to simplify
notation in the upcoming proof of Theorem 3.4. Obviously ζ̃|R = ζ. Moreover we have:

Theorem 3.4. Let ζ̃ : B0(R) → L2(Ω,F ,P; Cd) be the extension of a random orthogonal
measure to the ring of all Borel sets with finite Lebesgue measure as constructed above.
Then:

(i) E
[
ζ̃(A1)ζ̃(A2)

∗
]

= F (A1 ∩ A2) for all A1, A2 ∈ B0(R).

(ii) ζ̃(A1 ∪ A2) = ζ̃(A1) + ζ̃(A2) for all A1, A2 ∈ B0(R) with A1 ∩ A2 = ∅.

(iii) If (An)n∈N ⊆ B0(R) are pairwise disjoint with
⋃

n∈N
An ∈ B0(R) then ζ̃

( ⋃
n∈N

An

)
=∑

n∈N
ζ̃(An) in L2(Ω,F ,P; Cd).

Proof.
(i) For arbitrary A1, A2 ∈ B0(R), we deduce

E
[
ζ̃(A1)ζ̃(A2)

∗
]

= E
[(∫

R
1A1 dζ

)(∫
R
1A2 dζ

)∗]
=

∫
R
1A1(t)C1A2(t)

∗dt

=

∫
A1∩A2

C dt = λ1(A1 ∩ A2)C = F (A1 ∩ A2).

(ii) Let A1, A2 ∈ B0(R) be two disjoint sets, then

ζ̃(A1 ∪ A2) =

∫
R
1A1∪A2 dζ =

∫
R
(1A1 + 1A2) dζ

=

∫
R
1A1 dζ +

∫
R
1A2 dζ = ζ̃(A1) + ζ̃(A2).
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(iii) Let A :=
⋃

n∈N
An and fn := 1A −

n∑
i=1

1Ai
. Due to (3.2) and Proposition 3.3 (ii), we

obtain (with the same c′ as in (3.2))

E

∣∣∣∣∣ζ̃(A)−
n∑

i=1

ζ̃(Ai)

∣∣∣∣∣
2
 ≤ c′ · ‖C‖ · ‖fn‖2

L2 → 0 as n→∞.

Theorem 3.4 shows that ζ̃ is indeed a random orthogonal measure on B0(R). Of course it
is possible to define integration of functions f ∈ L2(Md(C)) w.r.t. the extended random

orthogonal measure ζ̃ in the same way as it has been done above for ζ. It is easy to see
that Proposition 3.3 remains valid.

3.2 Spectral representation of square-integrable Lévy

processes

We recall the central theorem in [41] establishing a spectral representation for square-
integrable Lévy processes using random orthogonal measures.

Theorem 3.5. Let L = (Lt)t∈R be a two-sided square-integrable Lévy process in Rd with
E[L1] = 0 and E[L1L

∗
1] = ΣL. Then there is a d-dimensional random orthogonal measure

ΦL defined on B0(R) with spectral measure FL such that E[ΦL(∆)] = 0 for any bounded
Borel set ∆,

FL(dt) =
ΣL

2π
dt

and

Lt =

∫ ∞

−∞

eiµt − 1

iµ
ΦL(dµ).

The random measure ΦL is uniquely determined by

ΦL ([a, b)) =

∫ ∞

−∞

e−iµa − e−iµb

2πiµ
L(dµ)

for all −∞ < a < b <∞.

Proof. See [41, Theorem 3.5].

Remark 3.6. The proof of [41, Theorem 3.5] starts with the observation that Φ̃ ([a, b)) :=
Lb − La defines a random orthogonal measure on the semi-ring of intervals [a, b) with

−∞ < a < b < ∞. The associated spectral function F̃L satisfies F̃L(dt) = ΣL dt. In
Section 3.1 we described the general procedure how one can extend a random orthog-
onal measure from a ring that generates the Borel σ-algebra to B0(R). The definition
on a semi-ring (that generates B(R)) is not a constraint for that procedure since it
is well-known how a measure can be extended from a semi-ring to the generated ring
therefrom. Namely, if S R is a semi-ring, the generated ring therefrom has the form
{
⋃n

i=1Ai : n ∈ N, Ai ∈ S R, i = 1, . . . , n} where the sets Ai can be chosen w.l.o.g. pair-
wise disjoint.
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3.3 Properties of the associated random orthogonal

measure

In this section we study further properties of the random orthogonal measure ΦL in The-
orem 3.5. Therefore recall that, if the integral Xt =

∫
R f(t, s)L(ds) with f : R × R →

Mk×d(R) measurable and (Lt)t∈R a two-sided d-dimensional Lévy process with generat-
ing triplet (γ, 0, ν) is well-defined, then the distribution of Xt is infinitely divisible with
generating triplet (γt

X , 0, ν
t
X) where

γt
X =

∫
R

(
f(t, s)γ +

∫
Rd

f(t, s)x
(
1{‖f(t,s)x‖≤1} − 1{‖x‖≤1}

)
ν(dx)

)
ds

and

νt
X(A) =

∫
R

∫
Rd

1A(f(t, s)x) ν(dx) ds, A ∈ B(Rk
∗)

(cf. Section 2.2.5).

Example 3.7. We start with the simple example of a (compensated) Poisson process in
R. Let (Nt)t∈R be a Poisson process with rate κ and consider L = (Lt)t∈R, Lt := Nt − κt.
Then E[L1] = 0 and E[L2

1] = Var(L1) = κ and hence the requirements of Theorem 3.5 are
fulfilled.

The original Lévy measure is given by ν = κ ·δ1 where δ1 denotes the Dirac measure in
1. Thus it is obvious that L has finite activity, a.s. finite variation and finite exponential
moments (i.e. E[exp {α |L1|}] <∞ for every α > 0).

We fix t > 0 and consider Zt := ΦL ([0, t)) =
∫∞
−∞

1−e−iµt

2πiµ
L(dµ). Then the distribution

of Zt is infinitely divisible and we obtain for its Lévy measure, identifying C with R2,

νZt(A) =

∫
R

∫
R
1A

(
1− e−iµt

2πiµ
x

)
ν(dx) dµ

= κ ·
∫

R
1A

(
1− e−iµt

2πiµ

)
dµ = κ · λ1

({
µ ∈ R :

1− e−iµt

2πiµ
∈ A

})
for every A ∈ B(C∗), denoting the Lebesgue measure on R by λ1 and the punctured
complex plane by C∗ := C\ {0}. Hence, νZt is an infinite measure on (C,B(C)). That is,
Zt has not a compound Poisson distribution.

We define f : R → C, f(µ) := 1−e−iµt

2πiµ
and denote by f(λ1) the image measure of λ1

by f on (C,B(C)). Then one has∫
{|x|≤1}

|x|δ νZt(dx) = κ ·
∫
{|x|≤1}

|x|δ f(λ1)(dx) = κ ·
∫

f−1({|x|≤1})
|f(y)|δ λ1(dy)

=
κ

2
δ
2πδ

·
∫

{√
1−cos (yt)

|y| ≤
√

2π

} (1− cos (yt))
δ
2

|y|δ
λ1(dy).

Since

lim
y→0

√
1− cos (yt)

|y|
=

t√
2

and lim
y→∞

√
1− cos (yt)

|y|
= 0

we observe that

{|y| ≥ c} ⊆

{√
1− cos (yt)

|y|
≤
√

2π

}
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for a sufficiently large c > 0.

Setting A := {|y| ≥ c} and B := {|y| < c} ∩
{√

1−cos (yt)

|y| ≤
√

2π

}
yields

∫
{|x|≤1}

|x|δ νZt(dx) =
κ

2
δ
2πδ

·

(∫
A

(1− cos (yt))
δ
2

|y|δ
λ1(dy) +

∫
B

(1− cos (yt))
δ
2

|y|δ
λ1(dy)

)
.

The second integral on the right-hand side is nonnegative and bounded by (
√

2π)δ2c and
the first integral is finite if and only if δ > 1. Hence, νZt integrates |x|δ locally at zero iff
δ > 1.

Analogously, for any α > 0 and c′ sufficiently large s.t.

{|y| > c′} ⊆

{√
1− cos (yt)

|y|
<
√

2π

}
,

we obtain∫
{|x|≥1}

exp {α |x|} νZt(dx) ≤ κ ·
∫
{|y|≤c′}

exp

{
α ·
√

1− cos (yt)√
2π |y|

}
λ1(dy)

≤ κ · 2c′ · c′′

for some c′′ ∈ R+, since the integrand converges to exp
{
α · t

2π

}
as y → 0 and thus it is

in particular bounded on {|y| ≤ c′}. This implies that Zt has finite exponential moments
and in particular finite moments of all orders.

This example shows that although the original process has finite activity and a.s.
finite variation, νZt is not finite and does not integrate |x| locally at zero. However, the
“transformation” preserves moments. Indeed, this can be shown in general.

Theorem 3.8. Let L = (Lt)t∈R be a two-sided square-integrable Lévy process in Rd without
a Brownian component such that E[L1] = 0 and let ΦL be the corresponding random
orthogonal measure of Theorem 3.5. Moreover, letting (γ, 0, ν) the generating triplet of
L, we assume that ν 6= 0. Then, for all t > 0, we have the following results for Zt :=
ΦL ([0, t)) =

∫∞
−∞

1−e−iµt

2πiµ
L(dµ):

(i) The distribution of Zt is infinitely divisible, its corresponding Lévy measure νZt is
infinite and

∫
{‖x‖≤1} ‖x‖ νZt(dx) = ∞.

(ii) For any δ ∈ (1, 2), the Lévy process L has a.s. finite δ-variation if and only if∫
{‖x‖≤1} ‖x‖

δ νZt(dx) is finite.

(iii) The Blumenthal-Getoor-Index of νZt is given by β(νZt) = 1 ∨ β(ν).

(iv) If α > 2, then E[‖L1‖α] <∞ if and only if E[‖Zt‖α] <∞.

(v) If E [exp {α ‖L1‖}] <∞ for some α > 0, then E [exp {α(t) ‖Zt‖}] <∞ with

α(t) =
π√
2c(t)

α and c(t) = sup
µ∈R

√
1− cos (µt)

|µ|
∈ (0,∞).
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Proof.
(i) Obviously, Zt = ΦL ([0, t)) =

∫∞
−∞

1−e−iµt

2πiµ
L(dµ) has an infinitely divisible distribution

for every t > 0.
Its Lévy measure, identifying again C with R2 and Cd with (R2)

d
, is given by

νZt(A) =

∫
R

∫
Rd

1A

(
1− e−iµt

2πiµ
x

)
ν(dx) dµ = f(λ1 ⊗ ν)(A), A ∈ B

(
Cd
∗
)
,

where f : R × Rd → Cd, f(µ, x) := 1−e−iµt

2πiµ
x and λ1 denotes again the one-dimensional

Lebesgue measure. Since νZt ({0}) = 0, we obtain

νZt

(
Cd
)

= νZt

(
Cd
∗
)

= λ1 ⊗ ν

({
(µ, x) ∈ R× Rd :

1− e−iµt

2πiµ
x 6= 0

})
= λ1 ⊗ ν

({
µ ∈ R :

1− e−iµt

2πiµ
6= 0

}
×
{
x ∈ Rd : x 6= 0

})
= λ1

({
µ ∈ R :

1− e−iµt

2πiµ
6= 0

})
︸ ︷︷ ︸

=∞

· ν
(
Rd
)︸ ︷︷ ︸

>0

= ∞.

Now, for any δ ∈ [1, 2), we observe∫
{‖x‖≤1}

‖x‖δ νZt(dx)

=

∫
{

(µ,y)∈R×Rd:

√
1−cos (µt)

|µ| ‖y‖≤
√

2π

}
(
‖y‖√
2π

)δ
(1− cos (µt))

δ
2

|µ|δ
(λ1 ⊗ ν)(d(µ, y))

=

(
1√
2π

)δ

·
∫

Rd\{0}
‖y‖δ

∫{
µ∈R:

√
1−cos (µt)

|µ| ‖y‖≤
√

2π

} (1− cos (µt))
δ
2

|µ|δ
dµ

 ν(dy)

(3.3)

due to the Theorem of Fubini.

Since the inner integral
∫{

µ∈R:

√
1−cos (µt)

|µ| ‖y‖≤
√

2π

} (1−cos (µt))
δ
2

|µ|δ dµ = ∞ for all y ∈ Rd\ {0} if

δ = 1 (cf. Example 3.7), we deduce∫
{‖x‖≤1}

‖x‖ νZt(dx) = ∞, (3.4)

and (i) is shown.
(ii) Let now δ ∈ (1, 2) and assume that L has a.s. finite δ-variation. Note that the inner
integral in (3.3) satisfies∫

{
µ∈R:

√
1−cos (µt)

|µ| ‖y‖≤
√

2π

} (1− cos (µt))
δ
2

|µ|δ
dµ ≤

∫
R

(1− cos (µt))
δ
2

|µ|δ
dµ =: C(δ) <∞ (3.5)

and thus (3.3) becomes∫
{‖x‖≤1}

‖x‖δ νZt(dx) ≤ C(δ) ·
(

1√
2π

)δ

·
∫

Rd\{0}
‖y‖δ ν(dy)

≤ C(δ) ·
(

1√
2π

)δ

·
(∫

{‖y‖≤1}
‖y‖δ ν(dy) +

∫
{‖y‖>1}

‖y‖2 ν(dy)

)
.
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The first integral on the right-hand side is finite since we assume that L has a.s. finite
δ-variation (cf. Proposition 2.17) and the second integral is finite as well since L is square-
integrable (cf. Theorem 2.20). Hence, the integral

∫
{‖x‖≤1} ‖x‖

δ νZt(dx) is finite.

Conversely, assume that
∫
{‖x‖≤1} ‖x‖

δ νZt(dx) <∞. Then (cf. (3.3))∫
{‖x‖≤1}

‖x‖δ νZt(dx)

=

(
1√
2π

)δ

·
∫

R

(1− cos (µt))
δ
2

|µ|δ

∫{
y∈Rd\{0}:

√
1−cos (µt)

|µ| ‖y‖≤
√

2π

} ‖y‖δ ν(dy)

 dµ

and due to

{
y ∈ Rd\ {0} : ‖y‖ ≤ π · |µ|

}
⊆

{
y ∈ Rd\ {0} :

√
1− cos (µt)

|µ|
‖y‖ ≤

√
2π

}

for all µ 6= 0, we deduce∫
{‖x‖≤1}

‖x‖δ νZt(dx)

≥
(

1√
2π

)δ

·
∫
{|µ|≥1}

(1− cos (µt))
δ
2

|µ|δ

(∫
{‖y‖≤π|µ|}

‖y‖δ ν(dy)

)
dµ

≥
(

1√
2π

)δ

·
∫
{|µ|≥1}

(1− cos (µt))
δ
2

|µ|δ

(∫
{‖y‖≤π}

‖y‖δ ν(dy)

)
dµ

=

(
1√
2π

)δ

·
∫
{|µ|≥1}

(1− cos (µt))
δ
2

|µ|δ
dµ ·

∫
{‖y‖≤π}

‖y‖δ ν(dy).

The first integral on the right-hand side is strictly positive and finite since δ > 1. This
implies

∫
{‖y‖≤π} ‖y‖

δ ν(dy) <∞ and thus L has a.s. finite δ-variation which completes the

proof of (ii).
(iii) To establish (iii) combine (ii) and (3.4).
(iv) We still have to prove that moments are preserved by the “transformation”. Let
α > 2 and assume that E[‖L1‖α] <∞. Then, analogously to (3.3) and (3.5),∫

{‖x‖≥1}
‖x‖α νZt(dx)

=

(
1√
2π

)α

·
∫

Rd\{0}
‖y‖α

∫{
µ∈R:

√
1−cos (µt)

|µ| ‖y‖≥
√

2π

} (1− cos (µt))
α
2

|µ|α
dµ

 ν(dy)

≤ C(α) ·
(

1√
2π

)α

·
(∫

Rd

(
1 ∧ ‖y‖2) ν(dy) +

∫
{‖y‖>1}

‖y‖α ν(dy)

)
.

The first integral on the right-hand side is finite since ν is a Lévy measure (cf. (2.1)) and
the second integral is finite since we assume that L1 has a finite α-th moment. Hence,∫
{‖x‖≥1} ‖x‖

α νZt(dx) <∞ which implies (cf. Theorem 2.20) that E[‖Zt‖α] <∞.
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Conversely, let E[‖L1‖α] = ∞, i.e.
∫
{‖y‖≥1} ‖y‖

α ν(dy) = ∞. Since lim
µ→0

√
1−cos (µt)

|µ| = t√
2

(cf. Example 3.7), there is a positive constant c > 0 s.t.

√
1−cos (µt)

|µ| ≥ t
2

for all |µ| ≤ c. By
virtue of

{
y ∈ Rd\ {0} : ‖y‖ ≥ 2

√
2

t
π

}
⊆

{
y ∈ Rd\ {0} :

√
1− cos (µt)

|µ|
‖y‖ ≥

√
2π

}

for any |µ| ≤ c, we obtain

∫
{‖x‖≥1}

‖x‖α νZt(dx)

=

(
1√
2π

)α

·
∫

R

(1− cos (µt))
α
2

|µ|α

∫{
y∈Rd\{0}:

√
1−cos (µt)

|µ| ‖y‖≥
√

2π

} ‖y‖α ν(dy)

 dµ

≥
(

1√
2π

)α

·
∫
{|µ|≤c}

(1− cos (µt))
α
2

|µ|α

(∫
{
‖y‖≥ 2

√
2

t
π
} ‖y‖α ν(dy)

)
dµ

≥
(

t

2
√

2π

)α

· 2c ·
∫

{
‖y‖≥ 2

√
2

t
π
} ‖y‖α ν(dy) = ∞.

This implies
∫
{‖x‖≥1} ‖x‖

α νZt(dx) = ∞, i.e. E[‖Zt‖α] = ∞ and thus (iv) is shown.

(v) We know by virtue of Theorem 2.20 that E[exp {α′ ‖Zt‖}] < ∞ if and only if∫
{‖x‖≥1} exp {α′ ‖x‖} νZt(dx) is finite which is obviously the case if and only if the integral∫
{‖x‖>1} exp {α′ ‖x‖} νZt(dx) if finite. We have

∫
{‖x‖>1}

exp {α′ ‖x‖} νZt(dx)

=

∫
Rd\{0}

∫
{

µ∈R:

√
1−cos (µt)

|µ| ‖y‖>
√

2π

} exp

{
α′
‖y‖√
2π

√
1− cos (µt)

|µ|

}
dµ ν(dy). (3.6)

Setting c(t) := supµ∈R

√
1−cos (µt)

|µ| , observe first that c(t) ∈ (0,∞) for any t > 0. Thus we

obtain for any y ∈ Rd\ {0} with ‖y‖ ≤
√

2π
c(t)

that

√
1−cos (µt)

|µ| ‖y‖ ≤
√

2π for all µ ∈ R. This

gives that the inner integral in (3.6) vanishes for all y ∈ Rd\ {0} with ‖y‖ ≤
√

2π
c(t)

and
hence, due to

{
µ ∈ R :

√
1− cos (µt)

|µ|
‖y‖ >

√
2π

}
⊆
{
µ ∈ R : |µ| < ‖y‖

π

}
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for any y ∈ Rd\ {0},∫
{‖x‖>1}

exp {α′ ‖x‖} νZt(dx)

=

∫
{
‖y‖>

√
2π

c(t)

}
∫

{√
1−cos (µt)

|µ| ‖y‖>
√

2π

} exp

{
α′
‖y‖√
2π

√
1− cos (µt)

|µ|

}
dµ ν(dy)

≤
∫

{
‖y‖>

√
2π

c(t)

}
∫
{|µ|< ‖y‖

π }
exp

{
α′
‖y‖√
2π

√
1− cos (µt)

|µ|

}
dµ ν(dy)

≤ 2

π
·
∫

{
‖y‖>

√
2π

c(t)

} ‖y‖ · exp

{
α′
c(t) · ‖y‖√

2π

}
ν(dy). (3.7)

Since

E
[
‖L1‖ · exp

{α
2
‖L1‖

}]
≤ E

[
‖L1‖2] 1

2 · E [exp {α ‖L1‖}]
1
2 <∞

by assumption, Theorem 2.20 (iii) shows that the right-hand side of (3.7) is finite for
α′ = α(t) := π√

2c(t)
α > 0. This proves (v).

Example 3.9. We consider a real-valued (compensated) compound Poisson process, i.e.
Lt :=

∑Nt

i=1 Ui−κtE[U1], t ∈ R, where (Nt)t∈R is a Poisson process with rate κ, independent
of (Ui)i≥1 which is an i.i.d. sequence of real-valued random variables with distribution
µU . Suppose moreover that µU ∈ L2, i.e. E[U2

1 ] =
∫

R x
2 µU(dx) < ∞. Then E[L1] = 0

and E[L2
1] = κE[U2

1 ] and thus Theorem 3.8 applies. In particular, for any α > 2, the
process Zt = ΦL ([0, t)) , t ∈ R+, has finite α-th moments if and only if µU ∈ Lα (i.e.∫

R |x|
α µU(dx) <∞).

Example 3.10. If we take a Gamma process with corresponding Lévy measure νΓ(dx) =
c · e−αx

x
1(0,∞)(x)λ

1(dx) for some α, c > 0, then the original process has already infinite
activity but a.s. finite variation and finite moments of any order. Theorem 3.8 shows that
the associated random orthogonal measure of the compensated Gamma process has also
finite moments of any order and νZt integrates |x|δ locally at zero for every δ > 1, i.e. the
Blumenthal-Getoor-Index of νZt equals 1.

Example 3.11. Finally, we consider a normal inverse Gaussian process which has itself
a.s. infinite variation but finite moments of any order. Due to Theorem 3.8 the corre-
sponding random orthogonal measure of the compensated NIG process has again finite
moments of any order and νZt (like ν) does not integrate |x| locally at zero. Moreover,
the Blumenthal-Getoor-Index of νZt coincides with the index of ν. Since the Lévy density
f of ν satisfies f(x) ∼ π−1δx−2 as x → 0 for some constant δ > 0 (cf. [6, (3.18)]) one
immediately obtains that these indices are equal to 1.

Remark 3.12. The fact that we assume in Theorem 3.8 the Lévy process to have no
Brownian component is not really a constraint. It is a well-known result that

Wt =

∫ ∞

−∞

eiµt − 1

iµ
Φ(dµ), t ∈ R,

is a d-dimensional standard Wiener process if Φ is a d-dimensional Gaussian random
orthogonal measure satisfying E[Φ(A)] = 0 and E[Φ(A)Φ(A)∗] = λ1(A) Id

2π
for all A ∈



34 CHAPTER 3. MULTIVARIATE CARMA PROCESSES

B0(R) (cf. for instance [2, Section 2.1, Lemma 5]). Conversely, every standard Wiener
process (Wt)t∈R yields such a Gaussian random orthogonal measure by setting

Φ ([a, b)) =

∫ ∞

−∞

e−iµa − e−iµb

2πiµ
W (dµ)

for −∞ < a < b <∞ and extending that measure to B0(R) (cf. Section 3.1 and Theorem
3.5). In other words Brownian components are “preserved” by the transition to their
associated random orthogonal measures.
Since we can decompose every Lévy process in a Brownian component and another Lévy
process without a Brownian component (Lévy-Itô decomposition) we deduce that the
Brownian part is “preserved” whereas Theorem 3.8 applies for the other part.

3.4 Definition of multivariate CARMA and causal

MCARMA processes

We finish this chapter with the definition of a d-dimensional CARMA (MCARMA) process
using the spectral representation for square-integrable Lévy processes. In addition we
recall an extension of that definition, called causal MCARMA processes, allowing for
driving Lévy processes with finite logarithmic moment.

Definition 3.13 (cf. [41], Definition 3.18).
Let L = (Lt)t∈R be a two-sided square-integrable d-dimensional Lévy process with E[L1] = 0
and E[L1L

∗
1] = ΣL. A d-dimensional Lévy-driven continuous time autoregressive moving

average process (Yt)t∈R of order (p, q) with p, q ∈ N0, p > q (MCARMA(p, q) process)
is defined as

Yt : =

∫ ∞

−∞
eiλtP (iλ)−1Q(iλ) Φ(dλ), t ∈ R, where

P (z) : = Idz
p + A1z

p−1 + . . .+ Ap,

Q(z) : = B0z
q +B1z

q−1 + . . .+Bq

and Φ is the Lévy orthogonal random measure of Theorem 3.5 satisfying E[Φ(dλ)] = 0 and
E[Φ(dλ)Φ(dλ)∗] = ΣL

2π
dλ. Here Ai ∈ Md(R), i = 1, . . . , p, and Bj ∈ Md(R), j = 1, . . . , q,

are real matrices satisfying B0 6= 0 and N (P ) := {z ∈ C : det(P (z)) = 0} ⊆ R\ {0}+iR.

Remark 3.14.

(i) An MCARMA process Y can be interpreted as a solution to the p-th order d-
dimensional differential equation

P (D)Yt = Q(D)DLt, t ∈ R,

where D denotes the differentiation operator w.r.t. t (cf. [41, Remark 3.19 (a)]).

(ii) The well-definedness is ensured by [41, Lemmata 3.10 and 3.11] which show that the
integrand is in L2(Md(C)) and thus integrable with respect to Φ (cf. Section 3.1).
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(iii) Assuming E[L1] = 0 is actually no restriction. If E[L1] = µL 6= 0, one simply observes

that the compensated Lévy process L̃t = Lt − µLt has zero expectation and

P (D)−1Q(D)DLt = P (D)−1Q(D)DL̃t + P (D)−1Q(D)µL.

The first term on the right-hand side is the MCARMA process driven by the com-
pensated Lévy process L̃ and the second an ordinary differential equation having the
unique solution −A−1

p BqµL, as simple calculations show. Thus, the definition can be
immediately extended to E[L1] 6= 0 (cf. [41, Remark 3.19 (c)]).

Definition 3.15 (cf. [41], Definition 3.20).
Let L = (Lt)t∈R be a d-dimensional Lévy process with associated Lévy measure ν satisfying∫
{‖x‖≥1} log ‖x‖ ν(dx) < ∞, and p, q ∈ N0 with p > q. We suppose A1, A2, . . . , Ap ∈
Md(R), B0, B1, . . . , Bq ∈ Md(R), B0 6= 0, and define the polynomial P as in Definition
3.13. Let A ∈Mdp(R) be the matrix

A :=


0 Id 0 . . . 0

0 0 Id
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 Id
−Ap −Ap−1 . . . . . . −A1


and define another matrix β = (β′1, . . . , β

′
p)
′ ∈Mdp×d(R) by

βp−j := −
p−j−1∑

i=1

Aiβp−j−i +Bq−j, j = 0, 1, . . . , p− 1, (3.8)

setting Bi = 0 for i < 0. Denote the spectrum of A by σ(A) and assume that σ(A) =
N (P ) ⊆ (−∞, 0) + iR. Let (Gt)t∈R be the unique strictly stationary solution to the
stochastic differential equation

dGt = AGtdt+ βdLt, t ∈ R. (3.9)

Then the d-dimensional process Yt :=
(
Id, 0Md(C), . . . , 0Md(C)

)
Gt is said to be a causal

Lévy-driven MCARMA(p, q) process with state space representation G.

Remark 3.16.

(i) The unique strictly stationary solution to (3.9) is given by

Gt =

∫ t

−∞
e(t−s)Aβ L(ds), t ∈ R

(cf. [41, Theorem 3.12 and remark after Theorem 3.12]). From the same theorem
it follows that Definition 3.15 coincides with Definition 3.13, when L is square-
integrable.

(ii) The fact σ(A) = N (P ) has been shown in [41, Lemma 3.8].
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(iii) An MCARMA process Y can be represented as the moving average process

Yt =

∫ ∞

−∞
g(t− s)L(ds), t ∈ R,

with the kernel matrix function

g(t) =
1

2π

∫ ∞

−∞
eiµtP (iµ)−1Q(iµ) dµ.

An analogous result holds for causal MCARMA processes with the kernel function
g replaced by

g̃(t) =
(
Id, 0Md(C), . . . , 0Md(C)

)
etAβ1[0,∞)(t)

(cf. [41, Theorem 3.22 and Remark 3.23]).



Chapter 4

Multivariate symmetric α-stable
CARMA processes

In this chapter we consider multivariate symmetric α-stable (SαS) CARMA processes.
We are going to derive both, a spectral and a moving average representation for them.
Our results extend those of Chapter 3 and we shall prove that in the causal case they
are in line with the extended definition of MCARMA processes proposed by Definition
3.15. We focus on the symmetric stable case with index of stability α ∈ (1, 2). The case
α = 2 corresponds to the well-known Gaussian case and thus it is already contained in
the preceding chapter.

The relationship between harmonizable SαS processes (i.e. Fourier transforms of pos-
sibly dependently scattered SαS noises) and moving averages of stationarily and inde-
pendently scattered SαS noises has been studied for a long time. It was first investigated
by Cambanis and Soltani in [18] where it has been proven that, if α ∈ (1, 2), no SαS
process having a moving average representation is strongly harmonizable (i.e. a Fourier
transform of some independently scatterd SαS noise). Moreover, they stated that every
SαS process having such a moving average representation was instead harmonizable. A
few years later this claim was corrected and it has been shown that they are not even har-
monizable (cf. [39] and also [17]). Again three years later Cambanis and Houdré [16] have
shown that the crux of the dichotomy between Fourier transforms and moving averages is
a “boundedness” property of the stable noise in the Fourier transformation. Furthermore,
they derived the result that a large class of moving averages of SαS Lévy processes are
Fourier transforms, in the summability sense, of dependently scattered SαS noises. We
will basically follow the ideas of this paper to develop our results for SαS MCARMA and
their driving Lévy processes. Since we are obliged to consider Fourier transforms in the
summability sense, we shall make heavily use of the theory in Section 2.3.

At this point a word of caution is necessary. The Fourier transforms considered in
[16, 18, 39] and here are “usual” Fourier transforms of random noises and rely on norm
properties of the noise and the process. With a weaker notion of Fourier transformation via
random Schwartz distributions, stable moving averages are Fourier transforms of random
distributions (cf. [22, 23, 39]).

The outline of the chapter is as follows: in the first section we introduce real and
complex SαS random variables and define the notion of covariation, a concept which has
analogous properties to those of the covariance, although it is not as powerful because
it lacks some of the nice properties of the covariance. In Section 2 we will explain SαS
random measures and integration w.r.t. them before we describe in the third section a

37
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general procedure how one can extend such a random measure from the semi-ring of inter-
vals [a, b) with −∞ < a < b <∞ to the ring of all Borel sets with finite control measure
where the latter will be defined in combination with stable integrals. For more details
concerning these concepts we refer the reader to standard textbooks on this topic like for
instance Samorodnitsky and Taqqu [53] or Janicki and Weron [32]. A good exposition for
the complex case is also [15]. Thereafter we construct a (dependently scattered) SαS noise
allowing for a spectral representation (in the summability sense) of SαS Lévy processes
and state some further properties of this noise in Section 4. Using these results we deduce
a spectral and a moving average representation of SαS MCARMA processes in the last
section which we finish with the proof of consistency to Definition 3.15 in the causal case.

4.1 Symmetric stable random variables

We start with the univariate real case.

Definition 4.1. A real-valued random variable X is called symmetric α-stable (SαS)
with index of stability α ∈ (0, 2], if its characteristic function is of the form

ΦX(z) = E [exp {izX}] = exp {−σα |z|α}, z ∈ R,

for some σ ≥ 0. We shall write X ∼ SαS(σ).

We recall well-known properties of real SαS random variables (cf. [53, Chapter 1.2]):

Proposition 4.2.

(i) Let X1 and X2 be independent random variables with Xi ∼ SαS(σi), i = 1, 2. Then
X1 +X2 ∼ SαS(σ) with σ = (σα

1 + σα
2 )1/α.

(ii) Let X ∼ SαS(σ), α ∈ (0, 2), then

E [|X|p] <∞ for any p ∈ (0, α),

E [|X|p] = ∞ for any p ≥ α.

Let now X = (X1, . . . , Xd)
′ be an Rd-valued random variable.

Definition 4.3. X is said to be a symmetric α-stable random vector in Rd with index
of stability α ∈ (0, 2] if all linear combinations

∑d
i=1 aiXi, ai ∈ R, i = 1, . . . , d, are SαS.

We shall also say that X1, . . . , Xd are jointly SαS.

Remark 4.4. In contrast to what one might expect, a random vector X = (X1, . . . , Xd)
′

is in general not SαS if all its components are SαS, i.e. the symmetry of an α-stable
random vector cannot be regarded as a componentwise property. Indeed, there are non-
symmetric α-stable random vectors X whose components X1, X2, . . . , Xd are all SαS
(cf. [53, Remark 2 in Section 2.4] for a counterexample and [53, Definition 2.1.1] for the
general definition of α-stable random vectors).
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Theorem 4.5 (cf. [53], Theorem 2.3.1 and 2.4.3).
X is a symmetric α-stable random vector in Rd with α ∈ (0, 2) iff there is a symmetric
finite measure ΓX on the unit sphere Sd :=

{
x ∈ Rd : |x| = 1

}
(i.e. ΓX(A) = ΓX(−A) for

any Borel set A of Sd) s.t. the joint characteristic function of X is of the form

ΦX(z) = E [exp {i〈z,X〉}] = exp

{
−
∫

Sd

|〈z, s〉|α ΓX(ds)

}
, z ∈ Rd. (4.1)

Moreover, the measure ΓX is unique. It is referred to as the spectral measure of the
SαS random vector X.

Note that in the Gaussian case α = 2, expression (4.1) also holds but ΓX is not unique
any longer (cf. [53, Remark 3 in Section 2.4]).

Let us now introduce the covariation of jointly SαS random variables.

Definition 4.6 (cf. [53], Definition 2.7.1).
If X and Y are real jointly SαS random variables with α ∈ (1, 2] and ΓX,Y the corre-
sponding spectral measure of (X, Y ), then we define the covariation of X on Y by

[X,Y ]α :=

∫
S2

x · y〈α−1〉 ΓX,Y (d(x, y))

where, for all y ∈ R and β > 0,

y〈β〉 := |y|β · sign(y) =

{
yβ if y ≥ 0,

− |y|β if y < 0.

Note that Definition 4.6 reduces to the well-known covariance in the case α = 2, where the
exact relationship is [X, Y ]2 = 1/2 · Cov(X, Y ) (cf. [53, Example 2.7.2]). The covariation
has analogous properties to those of the covariance, however, it lacks some of the nice
properties of the covariance like for example symmetry or linearity in the second argument.
We summarize the properties in the following proposition:

Proposition 4.7. Let X1, . . . , Xd, Y be real jointly SαS random variables with α ∈ (1, 2].
Denote by ΓX the corresponding spectral measure of X = (X1, . . . , Xd)

′. Then:

(i) [X1, X2]α =
∫

Sd
s1s

〈α−1〉
2 ΓX(ds) and [X1, X1]α =

∫
Sd
|s1|α ΓX(ds).

(ii) [X1 +X2, Y ]α = [X1, Y ]α + [X2, Y ]α (Additivity in the first argument).

(iii) [aX1, bX2]α = ab〈α−1〉 [X1, X2]α for all a, b ∈ R (Scaling).

(iv) The covariation is in general neither symmetric in its arguments nor linear in its
second argument.

(v) If X1 and X2 are independent, then [X1, X2]α = 0.

(vi) If X1 and X2 are independent, then [Y,X1 +X2]α = [Y,X1]α + [Y,X2]α.

(vii) ‖Y ‖α = [Y, Y ]1/α
α defines a norm on any linear space of jointly SαS random vari-

ables. Convergence in ‖ ·‖α is equivalent to convergence in probability and con-
vergence in Lp(Ω,F ,P; R) for any p < α. If X1, . . . , Xd are independent, then∥∥∑d

k=1Xk

∥∥α

α
=
∑d

k=1 ‖Xk‖α
α.
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(viii) |[X1, X2]α| ≤ ‖X1‖α · ‖X2‖α−1
α .

Proof. See [53, Lemma 2.7.5, Corollary 2.7.9 and 2.7.10, Property 2.7.11 and 2.7.15,
Proposition 2.8.3 and Property 2.8.4].

Now we pass on to complex SαS random variables which we define in the following
way:

Definition 4.8. A complex random variable X = X1 + iX2 is symmetric α-stable, or
SαS, if X1 and X2 are jointly SαS.

Several complex random variables X1, . . . , Xd are jointly SαS (or equivalently the Cd-
valued random vector X = (X∗

1 , . . . , X
∗
d)∗ is said to be SαS) if their real and imaginary

parts Re(X1), Im(X1), . . . , Re(Xd), Im(Xd) are jointly SαS.

It is easy to show that X = (X∗
1 , . . . , X

∗
d)∗ is a SαS random vector in Cd if and only if

all linear combinations
∑d

i=1 aiXi, ai ∈ C, i = 1, . . . , d, are SαS.
The joint characteristic function of a complex SαS random variable X = X1 + iX2 can
be written, with z = z1 + iz2, as

E [exp {iRe(zX∗)}] = E [exp {i(z1X1 + z2X2)}]

= exp

{
−
∫

S2

|z1s1 + z2s2|α ΓX1,X2(d(s1, s2))

}
where ΓX1,X2 is the spectral measure of (X1, X2).

We modify the notion of covariation and obtain the following extension of the real
case (cf. [15]).

Definition 4.9. If X = X1+iX2 and Y = Y1+iY2 are complex jointly SαS with α ∈ (1, 2]
and ΓX1,X2,Y1,Y2 the corresponding spectral measure of (X1, X2, Y1, Y2), then we define the
covariation of X on Y by

[X,Y ]α :=

∫
S4

(x1 + ix2) (y1 + iy2)
〈α−1〉 ΓX1,X2,Y1,Y2(d(x1, x2, y1, y2))

where, for all z ∈ C and β > 0, we use the convention

z〈β〉 :=

{
|z|β−1 · z∗ if z 6= 0,
0 if z = 0.

One can generalize Proposition 4.7 to the complex case with the following modifications:
(i) becomes

[X1, X2]α =

∫
S2d

(s1 + is2) (s3 + is4)
〈α−1〉 ΓX(ds) and

[X1, X1]α =

∫
S2d

|s1 + is2|α ΓX(ds)

with ΓX being the spectral measure of (Re(X1), Im(X1), . . . ,Re(Xd), Im(Xd)) and the
terms symmetric and linear in (iv) have to be replaced by Hermitian and sesquilinear,
respectively. For the proofs we refer to [15, Theorem 2.1 and Lemma 2.2].
There it also has been shown that Definition 4.9 is indeed an extension of the real case, i.e.
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one has [X, Y ]α = [X1, Y1]α if X2 = Y2 = 0. However, there is one remarkable difference
between the real and complex case, namely, ‖X‖α determines the distribution of X via
ΦX(z) = exp {−‖X‖α

α · |z|
α} in the real case whereas this is no longer valid in the complex

case where for X = X1 + iX2, only ‖X‖α
α = ΓX1,X2(S2) holds, i.e. the covariation norm

only determines the total mass of the spectral measure.
Concerning moments of complex SαS random variables, we recall the following:

Corollary 4.10. Let X be a complex SαS random variable with α ∈ (0, 2), then

E [|X|p] <∞⇔ 0 < p < α.

If X1, . . . , Xd are complex jointly SαS random variables with α ∈ (0, 2) and d-fold depen-
dent, i.e.

Γ
({
u ∈ S2d : (u2

1 + u2
2) · · · (u2

2d−1 + u2
2d) 6= 0

})
> 0

where Γ is the spectral measure of (Re(X1), Im(X1), . . . ,Re(Xd), Im(Xd)), then

E[|X1|p1 · · · |Xd|pd ] <∞⇔ 0 < p1 + . . .+ pd < α.

Proof. See for instance [15, Section 4].

4.2 Symmetric stable processes and integrals

Throughout this section we shall assume that α ∈ (1, 2). A real or complex stochastic
process is said to be SαS if all finite dimensional margins are SαS.

In the following we introduce complex-valued SαS random measures and complex sta-
ble stochastic integrals. Let L0(Ω,F ,P; C) denote the set of all complex random variables
defined on (Ω,F ,P) and let k be a measure on the product space (R× S2,B(R)×B(S2)),
where S2 denotes again the unit circle in R2, such that

for every A ∈ B(R) with k(A× S2) <∞

k(A× · ) is a (finite) symmetric measure on (S2,B(S2)). (4.2)

We define B0(R) := {A ∈ B(R) : k(A× S2) <∞}.

Definition 4.11. A complex-valued SαS random measure on (R,B(R)) with circular
control measure k is a set function

M : B0(R) → L0(Ω,F ,P; C)

satisfying

(i) M(A) is complex SαS with spectral measure k(A× · ) for all A ∈ B0(R),

(ii) M(A1), M(A2), . . . , M(An) are independent whenever A1, A2, . . . , An ∈ B0(R) are
pairwise disjoint,

(iii) M
( ∞⋃

j=1

Aj

)
=

∞∑
j=1

M(Aj) a.s. for all A1, A2, . . . ∈ B0(R) that are mutually disjoint

with
∞⋃

j=1

Aj ∈ B0(R).
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A SαS random measure is an independently scattered (property (ii)) and σ-additive
(property (iii)) set function.

Definition 4.12. The measure on (R,B(R)) defined by m(A) := k(A × S2) is called
control measure of the complex-valued SαS random measure M .

In order to define integration w.r.t. complex SαS random measures, the first step is to
define such an integral for simple functions f =

∑n
i=1 fi1Ai

where fi ∈ C, i = 1, . . . , n,
and Ai ∈ B0(R), i = 1, . . . , n, are pairwise disjoint sets. As usual, for such an f we set∫

R
f dM :=

n∑
i=1

fiM(Ai). (4.3)

It is easy to check that for simple functions the integral is linear and one can show that
its real and imaginary part are jointly SαS. Thereafter we can extend integration to the
space

Lα(C; dm) :=

{
f : R → C measurable,

∫
R
|f(x)|αm(dx) <∞

}
by choosing a sequence of simple functions (fn)n∈N such that∫

R
|fn(x)− f(x)|αm(dx)

n→∞→ 0 (i.e. fn → f as n→∞ in Lα(C; dm))

and then proving that (
∫

R fn dM)n∈N converges in probability. We define∫
R
f dM := P− lim

n→∞

∫
R
fn dM (4.4)

where P− lim means the limit in probability. For more details about that construction, see
[53, Section 3.4 and Section 6.2]. Note in particular, that the integral does not depend on
the concrete choice of the approximating sequence (fn)n∈N. We summarize its properties
in the following proposition:

Proposition 4.13.

(i) For any f ∈ Lα(C; dm), the integral
∫

R f dM is a complex SαS random variable
with joint characteristic function

E

[
exp

{
i

(
z1 Re

∫
R
f dM + z2 Im

∫
R
f dM

)}]

= exp

{
−
∫

R

∫
S2

|z1(s1 Ref(x)− s2 Imf(x))

+ z2(s1 Imf(x) + s2 Ref(x))|α k(dx, ds)

}
, z1, z2 ∈ R.

(ii) For all f, g ∈ Lα(C; dm), a, b ∈ C,∫
R
(af + bg) dM = a ·

∫
R
f dM + b ·

∫
R
g dM.
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(iii) Let f : R → C be measurable s.t. there is a sequence (fn)n∈N of measurable simple
functions satisfying

fn(x)
n→∞→ f(x) for m-almost every x ∈ R

and s.t. the sequence of integrals (
∫

R fn dM)n∈N defined by (4.3) converges in distri-
bution, then f ∈ Lα(C; dm).

(iv) Let Xj =
∫

R fj dM, j = 1, 2, . . ., and X =
∫

R f dM with f, fj, j = 1, 2, . . ., being in
Lα(C; dm). Then

P− lim
j→∞

Xj = X ⇔ lim
j→∞

∫
R
|fj(x)− f(x)|αm(dx) = 0. (4.5)

Proof. See for instance [53, Proposition 6.2.1, 6.2.2 and 6.2.3].

Remark 4.14.

(i) It is easy to deduce that the convergence in probability of the sequence (
∫

R fn dM)n∈N
in (4.4) and (

∫
R fj dM)j∈N in (4.5), respectively, is equivalent to convergence in

Lp(Ω,F ,P; C) for any p < α (cf. also Proposition 4.7 (vii)).

(ii) The assumption that there is a sequence (fn)n∈N s.t. fn → f m-a.e. in Proposition
4.13 (iii) can be replaced by the assumption that there is a sequence (fn)n∈N s.t. fn →
f in Lα(C; dm). Note that the latter is a stronger assumption, since convergence in
Lα(C; dm) implies convergence m-a.e. for some subsequence (fnj

)j∈N.

We conclude this section by extending the notion of stable integrals to the multivariate
case for which we will use a componentwise perception. Let L0(Ω,F ,P; Cd) denote the
collection of all Cd-valued random variables defined on (Ω,F ,P) and let k be a measure
on the product space (R× S2d,B(R)×B(S2d)), where S2d stands for the unit sphere in
R2d, such that, analogously to (4.2),

for every A ∈ B(R) with k(A× S2d) <∞

k(A× · ) is a (finite) symmetric measure on (S2d,B(S2d)). (4.6)

Again the control measure on (R,B(R)) is defined by m(A) := k(A×S2d) and B0(R) :=
{A ∈ B(R) : m(A) <∞}.

Definition 4.15.
A complex-valued d-dimensional SαS random measure on (R,B(R)) with circular
control measure k is an independently scattered, σ-additive set function

M : B0(R) → L0(Ω,F ,P; Cd)

s.t. M(A) = (M1(A), . . . ,Md(A)) is a complex SαS random vector with spectral measure
k(A× · ) for all A ∈ B0(R), i.e. k(A× · ) is the spectral measure of the real random vector
(ReM1(A), ImM1(A), . . . ,ReMd(A), ImMd(A)).
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Now we take the same approach as in the one-dimensional case to define multivariate
symmetric stable integrals. First we set∫

R
f dM :=

n∑
i=1

fiM(Ai) (4.7)

for any simple function f =
∑n

i=1 fi1Ai
, where fi ∈ Md(C), i = 1, . . . , n, and Ai ∈

B0(R), i = 1, . . . , n, are pairwise disjoint. Obviously, the integral is linear for simple
functions and it is a complex d-dimensional SαS random vector due to the following two
facts:

Corollary 4.16.

(i) If X = (X∗
1 , . . . , X

∗
d)∗ is a Cd-valued SαS random variable and A ∈ Md(C), then

AX is also jointly SαS.

(ii) If X = (X∗
1 , . . . , X

∗
d)∗ and Y = (Y ∗

1 , . . . , Y
∗
d )∗ are SαS random vectors and indepen-

dent, then X + Y is jointly SαS.

Proof.
(i) Due to the remark after Definition 4.8, AX is jointly SαS if and only if all linear
combinations

∑d
i=1 bi(AX)i, bi ∈ C, i = 1, . . . , d, are SαS random variables. Now, letting

A = (aij),
d∑

i=1

bi(AX)i =
d∑

i=1

bi

(
d∑

j=1

aijXj

)
=

d∑
j=1

(
d∑

i=1

biaij

)
Xj

is a linear combination of the random variables Xj and thus SαS.
(ii) Due to Definition 4.8, we assume w.l.o.g. that X and Y are real random vectors. Due
to the independence assumption, we obtain for the characteristic function of X + Y

− log ΦX+Y (z) = − log E[exp {i〈z,X〉}]− log E[exp {i〈z, Y 〉}]
(4.1)
=

∫
Sd

|〈z, s〉|α ΓX(ds) +

∫
Sd

|〈z, s〉|α ΓY (ds)

=

∫
Sd

|〈z, s〉|α (ΓX + ΓY )(ds)

with ΓX and ΓY being the spectral measures of X and Y , respectively. Since Γ := ΓX +ΓY

is a symmetric finite measure on Sd, we apply once more Theorem 4.5 to conclude.

Note that the integral in (4.7) can be understood componentwise: denoting the coordinates
of M by M = (M∗

1 , . . . ,M
∗
d )∗, the i-th element of

∫
R f dM is given by

∑d
j=1

∫
R fij dMj

where the integrals are one-dimensional stable integrals introduced previously and fij

denotes the component function of f in the i-th row and j-th column. Therefore we can
extend integration to

Lα(Md(C); dm) :=

{
f : R →Md(C) measurable,

∫
R
‖f(x)‖αm(dx) <∞

}
where ‖ ·‖ denotes an arbitrary norm on Md(C). The space Lα(Md(C); dm) is equal to the
space of functions f = (fij) : R →Md(C) with all components fij being in Lα(C; dm) (cf.
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also Section 2.3 and 3.1). Hence, for any f = (fij) ∈ Lα(Md(C); dm), it is clearly possible
to choose a sequence of simple functions (f (n))n∈N s.t.∫

R

∣∣∣f (n)
ij (x)− fij(x)

∣∣∣αm(dx)
n→∞→ 0 for all i, j = 1, . . . , d. (4.8)

Now note that every coordinate Mj, j = 1, . . . , d, of the SαS random measure M is itself
a SαS random measure according to Definition 4.11 with control measure mj satisfying

mj(A) = kj(A× S2) = ‖Mj(A)‖α
α = [Mj(A),Mj(A)]α

=

∫
S2d

|s2j−1 + is2j|α k(A× · )(ds) ≤ k(A× S2d)

= m(A), A ∈ B(R),

where we used the complex version of Proposition 4.7 (i) and (vii). Hence

fij ∈ Lα(C; dmk) for all i, j, k = 1, . . . , d

and (4.8) holds as well with m replaced by mk. Thus, for all i, j = 1, . . . , d, the in-

tegrals
∫

R f
(n)
ij dMj converge in probability to

∫
R fij dMj, respectively. This implies that∑d

j=1

∫
R f

(n)
ij dMj converges in probability to

∑d
j=1

∫
R fij dMj for all i = 1, . . . , d. Conse-

quently, the integrals
∫

R f
(n)dM =

(∑d
j=1

∫
R f

(n)
ij dMj

)
i=1,...,d

converge in probability and

we define ∫
R
f dM := P− lim

n→∞

∫
R
f (n)dM =

(
d∑

j=1

∫
R
fij dMj

)
i=1,...,d

. (4.9)

As in the univariate case this definition does not depend on the approximating sequence.
Since we used a componentwise perception and since convergence in probability implies
convergence in distribution, we get the following proposition in analogy to Proposition
4.13:

Proposition 4.17.

(i) For any f ∈ Lα(Md(C); dm) the integral
∫

R f dM is a Cd-valued SαS random vari-
able.

(ii) For all f, g ∈ Lα(Md(C); dm), A,B ∈Md(C),∫
R
(Af +Bg) dM = A ·

∫
R
f dM +B ·

∫
R
g dM.

(iii) Let f : R → Md(C) be measurable s.t. there is a sequence (f (n))n∈N of measurable
simple functions satisfying

‖fn(x)− f(x)‖ n→∞→ 0 for m-almost every x ∈ R

and s.t. the sequences of integrals
∫

R f
(n)
ij dMk converge in distribution for all i, j, k =

1, . . . , d, then f ∈ Lα(Md(C); dm).
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(iv) Let Xj =
∫

R fj dM, j = 1, 2, . . ., and X =
∫

R f dM with f, fj, j = 1, 2, . . ., being in
Lα(Md(C); dm). Then

lim
j→∞

∫
R
‖fj(x)− f(x)‖αm(dx) = 0 ⇒ P− lim

j→∞
Xj = X. (4.10)

Proof. Use the univariate case (Proposition 4.13) and the fact that the set of complex
d-dimensional SαS random variables is closed under convergence in distribution in order
to show (i) and (iv). The statement (ii) follows immediately by the definition of the
integral and its linearity for simple functions. As to (iii), Proposition 4.13 gives that for
all i, j, k = 1, . . . , d the component function fij is in Lα(C; dmk). Since

d∑
k=1

mk(A) =

∫
S2d

d∑
k=1

|s2k−1 + is2k|α︸ ︷︷ ︸
≥c for some c>0 and all s∈S2d

k(A× · )(ds)

≥ c ·m(A), A ∈ B(R),

this implies fij ∈ Lα(C; dm) for any i, j = 1, . . . , d and thus f ∈ Lα(Md(C); dm).

Remark 4.18. As in the univariate case the convergence in probability in (4.9) and
(4.10), resp., can be replaced by convergence in Lp(Ω,F ,P; Cd) for any p < α.

4.3 Extension of SαS random measures from semi-

rings to B0(R)

In general, it is convenient to define a SαS random measure on the semi-ring of intervals
[a, b) with −∞ < a < b < ∞, denoted henceforth by S R(R), and then to extend it to
B0(R). As announced at the beginning of this chapter we are going to use this section for
the description of a general procedure how one can construct such an extension.

We assume that k is a measure on (R × S2d,B(R) × B(S2d)) satisfying (4.6). Sup-
pose moreover that we have given a complex-valued d-dimensional SαS random measure
on S R(R), i.e. an independently scattered, σ-additive set function M : S R(R) →
L0(Ω,F ,P; Cd) such that M(A) is jointly SαS with spectral measure k(A × · ) for all
A ∈ S R(R). We set m(A) := k(A × S2d) and assume that S R(R) ⊆ B0(R) =
{A ∈ B(R) : m(A) <∞}.

Now the first step is to extend M to the ring E (R) generated by S R(R). Note that
E (R) contains all elementary subsets of R, i.e. all finite unions of the half-open bounded
intervals in S R(R), where w.l.o.g. the union can always be taken over mutually disjoint
intervals. Thus an appropriate extension is given by

M̃(A) :=
n∑

i=1

M([ai, bi)) (4.11)

for A =
⋃n

i=1[ai, bi) ∈ E (R) with pairwise disjoint intervals [ai, bi), i = 1, . . . , n. It is easy

to check that this is indeed a SαS random measure on E (R) and that M̃(A) is jointly
SαS with spectral measure k(A × · ) for all A ∈ E (R) (cf. Corollary 4.16 (ii)). We shall

denote the extension M̃ also by M .
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The second step is the extension to B0(R). Therefore, note that the same procedure as
in Section 4.2 is possible in order to introduce integration of functions f ∈ Lα(Md(C); dm)
w.r.t. the SαS random measure M given by (4.11). In fact, since for all A ∈ B0(R) and all
ε > 0 there exists Aε ∈ E (R) such that m(A4Aε) < ε, where A4Aε := (A\Aε)∪ (Aε\A)
is the symmetric difference of the sets A and Aε, we can approximate every B0(R)-simple
function by an E (R)-simple function. That is why the sequence (f (n))n∈N in (4.8) can be
assumed to be E (R)-simple. Thus one can define∫

R
f dM := P− lim

n→∞

∫
R
f (n)dM

analogously to Section 4.2, where (f (n))n∈N is now an arbitrary sequence of E (R)-simple
functions such that

∫
R

∥∥f (n)(x)− f(x)
∥∥α
m(dx) → 0 as n→∞. The extension of the SαS

random measure M to B0(R) is then defined by

M̃(A) :=

∫
R
1A dM, A ∈ B0(R), (4.12)

where

1A(x) :=

{
Id, x ∈ A
0Md(C), otherwise.

The definition is well-posed since 1A ∈ Lα(Md(C); dm) for all A ∈ B0(R). M̃ is now a

SαS random measure on (R,B(R)) according to Definition 4.15 and M̃(A) is jointly SαS
with spectral measure k(A× · ) for all A ∈ B0(R).

For, if A ∈ B0(R), we choose a sequence (An)n∈N ⊆ E (R) such that m(An4A) < n−1

for all n ∈ N. This implies that∫
R
‖1An(x)− 1A(x)‖αm(dx) → 0 as n→∞

and thusM(An)
P→ M̃(A) as n→∞. Since convergence in probability implies convergence

in distribution, we obtain for the characteristic function of M̃(A) at the point z ∈ R2d,
due to Lévy’s Continuity Theorem,

ΦM̃(A)(z) = E

[
exp

{
i

d∑
j=1

(
z2j−1 Re M̃j(A) + z2j Im M̃j(A)

)}]

= lim
n→∞

ΦM(An)(z) = lim
n→∞

exp

{
−
∫

S2d

|〈z, s〉|α k(An × ds)

}
.

Setting µn( · ) := k(An × · )− k(A× · ), we obtain∣∣∣∣∫
S2d

|〈z, s〉|α k(An × ds)−
∫

S2d

|〈z, s〉|α k(A× ds)

∣∣∣∣
=

∣∣∣∣∫
S2d

|〈z, s〉|α µn(ds)

∣∣∣∣
≤
∫

S2d

|〈z, s〉|α |µn| (ds) ≤ |z|α · |µn| (S2d)
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where |µn| denotes the total variation of the signed measure µn and since

|µn| (S2d) = sup


∞∑
i=1

|µn(Bi)|︸ ︷︷ ︸
≤k((An4A)×Bi)

: (Bi)i∈N a partition of S2d


≤ k((An4A)× S2d) = m(An4A) <

1

n

we deduce that

ΦM̃(A)(z) = exp

{
−
∫

S2d

|〈z, s〉|α k(A× ds)

}
, z ∈ R2d.

This shows that M̃(A) is jointly SαS with spectral measure k(A× · ) for all A ∈ B0(R).

To prove that M̃ is independently scattered, let A1, . . . , Ak ∈ E (R) be mutually dis-
joint. Then the joint characteristic function of M(A1), . . . ,M(Ak) is given, due to their
independence, by

E

[
exp

{
i

k∑
j=1

(
z

(1)
j ReM1(Aj) + z

(2)
j ImM1(Aj) + . . .

+ z
(2d−1)
j ReMd(Aj) + z

(2d)
j ImMd(Aj)

)}]

=
k∏

j=1

E
[
exp

{
i
(
z

(1)
j ReM1(Aj) + z

(2)
j ImM1(Aj) + . . .

+ z
(2d−1)
j ReMd(Aj) + z

(2d)
j ImMd(Aj)

)}]
=

k∏
j=1

exp

{
−
∫

S2d

∣∣∣z(1)
j s1 + z

(2)
j s2 + . . .+ z

(2d)
j s2d

∣∣∣α k(Aj × ds)

}

=
k∏

j=1

exp

{
−
∫

R

∫
S2d

∣∣∣(z(1)
j s1 + z

(2)
j s2 + . . .+ z

(2d)
j s2d

)
1Aj

(x)
∣∣∣α k(dx× ds)

}

= exp

{
−
∫

R

∫
S2d

∣∣∣∣∣
k∑

j=1

(
z

(1)
j s1 + z

(2)
j s2 + . . .+ z

(2d)
j s2d

)
1Aj

(x)

∣∣∣∣∣
α

k(dx× ds)

}
(4.13)

which is actually true for arbitrary, not necessarily disjoint sets A1, . . . , Ak ∈ E (R) (cf. also
[53, p. 273]). Again Lévy’s Continuity Theorem and the argumentation from above (using
this time the Dominated Convergence Theorem) yield (4.13) for arbitrary A1, . . . , Ak ∈
B0(R) and the joint characteristic function of M̃(A1), . . . , M̃(Ak). In particular, since the
joint characteristic function can be factorized for pairwise disjoint A1, . . . , Ak ∈ B0(R),

we obtain that M̃ is independently scattered.
Finally, we have to show the σ-additivity. Additivity of M̃ is clear by definition. Thus

we have to prove that, for all A1, A2, . . . ∈ B0(R) with A :=
⋃∞

i=1Ai ∈ B0(R),

M̃(A) =
∞∑
i=1

M̃(Ai) a.s.,
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i.e. M̃(A) = lim
n→∞

n∑
i=1

M̃(Ai) = lim
n→∞

M̃

(
n⋃

i=1

Ai

)
a.s.

or M̃(A) = lim
n→∞

M̃

(
n⋃

i=1

Ai

)
in probability

since the series
∑n

i=1 M̃(Ai) has independent summands. Due to Proposition 4.17 (iv)
(which is also true for the SαS random measure M on E (R)) and the fact that 1∪n

i=1Ai
→

1A as n→∞ in Lα(Md(C); dm), this is indeed the case.

Remark 4.19. Our point of view of extending a SαS random measure from the semi-
ring of half-open bounded intervals on the real line to B0(R) seems to be, to the best of
our knowledge, new. However, in [53, Chapter 3] several definitions of univariate (real)
stable integrals are mentioned. The first definition there as an α-stable stochastic process
parameterized by their integrands (which are also supposed to be in Lα) is used in order
to show that an α-stable random measure exists at all. This verification of existence seems
to be in some kind related to our approach, since they define, for any A ∈ B0(R), the
measure M(A) as the stable integral of 1A (understood as the stochastic process at “time”
1A). In the following they describe using this existence of an α-stable random measure the
constructive definition of stable integrals which can be found in our Section 4.2 and verify
that both definitions actually coincide. Nevertheless, only the univariate case is studied
in that different ways and they do not consider stable integrals w.r.t. an α-stable random
measure only defined on E (R). Note also that Section 4.3 and 3.1 are very similar.

4.4 Spectral representation of SαS Lévy processes

In this section we will establish a spectral representation for symmetric α-stable Lévy
processes, where again 1 < α < 2 is assumed throughout the whole section. Let E (R)
denote the collection of all elementary subsets of R (cf. Section 4.3). As already explained
in the introduction to this chapter (cf. also upcoming Remark 4.28) it is only possible to
derive spectral representations in the summability sense.

It will turn out that we have to integrate w.r.t. what we shall call SαS random
contents, i.e. possibly dependently scattered, additive SαS noises defined on E (R).

Definition 4.20. For α ∈ (1, 2) a d-dimensional SαS random content is a set function

M : E (R) → L0(Ω,F ,P; Cd)

satisfying

(i) M(A) is a d-dimensional SαS random vector for all A ∈ E (R),

(ii) M(
⋃n

i=1Ai) =
∑n

i=1M(Ai) a.s. whenever A1, . . . , An ∈ E (R) are pairwise disjoint
(i.e. M is additive).

Analogously to Section 4.2 and 4.3, integration of simple functions f =
∑n

i=1 fi1Ai
(with

fi ∈ Md(C), i = 1, . . . , n, n ∈ N, and Ai ∈ E (R) mutually disjoint) w.r.t. a SαS random
content M is defined by ∫

R
f dM :=

n∑
i=1

fiM(Ai).
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This integral is jointly SαS given that the random vector (M(A1), . . . ,M(An)) is jointly
SαS whenever Ai ∈ E (R) are mutually disjoint. Note that, in general,

∫
R f dM is not

symmetric and thus only a complex d-dimensional α-stable random vector (cf. Remark
4.4). It is obvious that the integral is linear for simple functions and that it is well-defined
due to the additivity of M . Integration of more general functions is difficult, but we have
the following:

Theorem 4.21. Let L = (Lt)t∈R be a SαS Lévy process in Rd with α ∈ (1, 2). Then there
is a SαS random content M : E (R) → L0(Ω,F ,P; Cd) s.t.

Lt = P− lim
λ→∞

∫ λ

−λ

eiµt − 1

iµ
·
(

1− |µ|
λ

)
M(dµ), t ∈ R. (4.14)

The SαS random content M is given by

M(A) =
1√
2π

∫ ∞

−∞
1̂A(µ)L(dµ), A ∈ E (R),

where 1̂A(µ) = 1√
2π

∫∞
−∞ e−iµx1A(x) dx is the Fourier transform of 1A (cf. Section 2.3).

Moreover, the random content M is dependently scattered, i.e. the increments of M are
not independent.

Proof.
Step 1: We first show that M is well-defined and a SαS random content on E (R). For
−∞ < a < b <∞ we obtain

1̂[a,b)(µ) =
1√
2π

· e
−iµa − e−iµb

iµ
, µ ∈ R,

which is obviously an element of Lα(C) since α is supposed to be greater than 1. Hence,

for any A ∈ E (R), the Fourier transform 1̂A is in Lα(C).

Given the Lévy process (Lt)t∈R, we define M̃([a, b)) := Lb − La for −∞ < a < b <∞
which is clearly a SαS random measure on the semi-ring S R(R) of half-open bounded
intervals in R. The circular control measure k on (R×Sd,B(R)×B(Sd)) is given by the
product measure λ1 ⊗ Γ where λ1 denotes the one-dimensional Lebesgue measure and Γ
is the spectral measure of L1. We extend this SαS random measure to B0(R) using the
general procedure of Section 4.3 (note that the assumption S R(R) ⊆ B0(R) is fulfilled
since the control measure on (R,B(R)) is given by Γ(Sd) · λ1). The extension shall also

be denoted by M̃ . It is clear that integration w.r.t. M̃ is the same as integration w.r.t.
the Lévy process L. Thus M is well-defined (cf. Section 4.2) and obviously a SαS random
content according to Definition 4.20 (cf. Proposition 4.17 (i), (ii) and Section 2.3).
Step 2: Next we want to study integration of more general than simple functions w.r.t.
M . For simple functions f =

∑n
i=1 fi1Ai

we deduce, using the linearity of the Fourier
transformation, the identity∫ ∞

−∞
f dM =

n∑
i=1

fiM(Ai) =
1√
2π

∫ ∞

−∞

n∑
i=1

fi1̂Ai
dL =

1√
2π

∫ ∞

−∞
f̂ dL. (4.15)

If now f : R →Md(C) is a measurable function s.t. there is a sequence of E (R)-simple
functions fn satisfying

f̂n
Lα(Md(C))→ f̂ as n→∞, (4.16)
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then we can define the integral
∫∞
−∞ f dM as the limit in probability of the sequence of

simple integrals
∫∞
−∞ fn dM which is well-defined since every fn is E (R)-simple. Due to

Proposition 4.17 (iv), this limit exists and satisfies∫ ∞

−∞
f dM = P− lim

n→∞

∫ ∞

−∞
fn dM

(4.15)
= P− lim

n→∞

1√
2π

∫ ∞

−∞
f̂n dL =

1√
2π

∫ ∞

−∞
f̂ dL. (4.17)

We shall call measurable functions f : R →Md(C) satisfying (4.16) M -integrable.
Step 3: Let us now define, for any −∞ < a < b <∞,

f(µ) :=
eiµb − eiµa

iµ
, µ ∈ R.

Then f · Φλ : R → C with

Φλ(µ) :=

(
1− |µ|

λ

)
1[−λ,λ](µ), µ ∈ R,

is continuous with compact support on R. Moreover, note that f · Φλ is M -integrable.
For, writing

f(t) · Φλ(t) =

(
sin (tb)− sin (ta)

t
− i

cos (tb)− cos (ta)

t

)
·
(

1− |t|
λ

)
1[−λ,λ](t), t ∈ R,

one immediately verifies that there is a lower sequence of E (R)-simple functions s.t.

|fn| ≤ |fΦλ|

fn
L1(C)→ fΦλ as n→∞ and

Var(fn) ≤ Var(fΦλ) <∞

where Var( · ) denotes the total variation (cf. [16, proof of Theorem 3.1]). We show that

f̂n → f̂Φλ in Lα(C) as n→∞. We have∥∥∥f̂n − f̂Φλ

∥∥∥α

Lα
=

∫ 1

−1

∣∣∣f̂n(µ)− f̂Φλ(µ)
∣∣∣α︸ ︷︷ ︸

≤‖fn−fΦλ‖α
L1

dµ+

∫
{|µ|>1}

∣∣∣f̂n(µ)− f̂Φλ(µ)
∣∣∣α dµ

≤ 2 · ‖fn − fΦλ‖α
L1 +

∫
{|µ|>1}

∣∣∣f̂n(µ)− f̂Φλ(µ)
∣∣∣α dµ (4.18)

where the first addend vanishes as n→∞. Integration by parts yields∣∣∣f̂n(µ)
∣∣∣ =

∣∣∣∣∫
R
fn(t)e−iµt dt

∣∣∣∣ =

∣∣∣∣∫
R
fn(t) d

(
− 1

iµ
e−iµt

)
(t)

∣∣∣∣ ≤ 1

|µ|

(
2 sup

t
|fn(t)|+ Var(fn)

)
≤ 1

|µ|

(
2 sup

t
|f(t)Φλ(t)|+ Var(fΦλ)

)
∈ Lα((−∞,−1) ∪ (1,∞))

and since
∣∣f̂n(µ) − f̂Φλ(µ)

∣∣ ≤ ‖fn − fΦλ‖L1

n→∞→ 0 for all µ ∈ R, we obtain, due to
the Dominated Convergence Theorem, that the second term in (4.18) vanishes as well as
n→∞. Hence fΦλ is M -integrable.
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We set g(µ) :=
√

2π1[a,b)(µ) and h(µ) := g(−µ), µ ∈ R. Then

ĥ(t) =
eitb − eita

it
= f(t)

and hence, due to Corollary 2.27,

f̂Φλ = Φ̂λĥ
(2.14)
=

(2.21)

̂̂
Fλ ∗ h = (Fλ ∗ h)(−· ) = Fλ ∗ g

Lα(C)→ g as λ→∞

where the convergence follows from (2.29) together with Theorem 2.34. Thus∫ ∞

−∞
fΦλ dM

(4.17)
=

1√
2π

∫ ∞

−∞
f̂Φλ dL =

1√
2π

∫ ∞

−∞
(Fλ ∗ g) dL

P→ 1√
2π

∫ ∞

−∞
g dL = Lb − La as λ→∞

by virtue of Proposition 4.17 (iv) and the claimed spectral representation of the SαS
Lévy process is shown.
Step 4: We still have to show that the increments of M are not independent. Assume that
they were independent s.t., in particular, ReM1([a, b)) and ReM1([c, d)) have to be in-

dependent for disjoint intervals [a, b) and [c, d). Since ReM1([a, b)) =
∫∞
−∞ Re

(
1̂[a,b)

)
dL(1)

where L(1) denotes the first component of L, we can use [53, Theorem 3.5.3] to deduce
that

Re
(
1̂[a,b)(µ)

)
· Re

(
1̂[c,d)(µ)

)
=

(sin (µb)− sin (µa)) · (sin (µd)− sin (µc))

µ2
= 0

Lebesgue-a.e. on R, which is obviously not true. Hence the increments of M cannot be
independent.

Remark 4.22.

(i) Again the limit in probability which occurs in the spectral representation of the
Lévy process in (4.14) can be replaced by a limit in Lp(Ω,F ,P; Cd) for any p < α
(cf. Remark 4.14 (i) and 4.18).

(ii) The assumption (4.16), used in the second step of the proof above for the extension
of integration w.r.t. M to more general integrands, is strong. However, it holds for
any continuous function f with compact support on R if f is in addition of bounded
variation as one can observe from Step 3 in the preceding proof. All the functions
appearing in the next section where we consider multivariate symmetric α-stable
CARMA processes shall be of this type.

(iii) One might ask whether the random content M in Theorem 4.21 can be extended to
B0(R), i.e. to a dependently scattered, σ-additive SαS noise on B0(R). Although
it is not necessary for the developed spectral representation of the Lévy process
L, it seems to be an interesting question. We know that, for any A1, A2, . . . ∈
B0(R) pairwise disjoint with A :=

⋃
i∈NAi ∈ B0(R), the sequence 1̂∪n

i=1Ai
converges

pointwise and in L2(C) to 1̂A, but we could not establish the convergence in Lα(C)
to this day which, however, seems to be necessary (cf. Proposition 4.17 (iii)). We
could not find a solution to this problem in literature either. Finally, note that the
general procedure of Section 4.3 cannot be applied, since M is not independently
scattered.
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The following properties for the SαS random content in Theorem 4.21 are easy to
deduce:

Proposition 4.23. Let L = (Lt)t∈R be a two-sided SαS Lévy process in Rd with α ∈
(1, 2) and let M be its corresponding SαS random content. Moreover, letting (γ, 0, ν) the
generating triplet of L, we assume that ν 6= 0 (i.e. L is non-trivial). Then (Zt)t∈R+ with

Zt := M ([0, t)) =

∫ ∞

−∞

1− e−iµt

2πiµ
L(dµ), t ∈ R+,

is a SαS stochastic process.
Additionally, for any t > 0, we have the following results for Zt and its corresponding

Lévy measure νZt:

(i)
∫
{‖x‖≤1} ‖x‖ νZt(dx) = ∞ which in particular implies that νZt is infinite.

(ii) E[‖Zt‖p] <∞ if and only if 0 < p < α.

(iii) For any δ ∈ (0, 2), we have
∫
{‖x‖≤1} ‖x‖

δ ν(dx) < ∞ iff
∫
{‖x‖≤1} ‖x‖

δ νZt(dx) < ∞
which is in turn the case iff δ > α. Consequently, the Blumenthal-Getoor-Indices of
νZt and ν are both equal to α.

Proof. We first show that (Zt)t∈R+ is a SαS process, i.e. all finite dimensional margins
are (complex) SαS. Let (t1, . . . , tm)′ ∈ Rm

+ , thenZt1
...

Ztm

 =
1√
2π


∫∞
−∞ 1̂[0,t1)(µ)L(dµ)

...∫∞
−∞ 1̂[0,tm)(µ)L(dµ)

 =
1√
2π

∫ ∞

−∞
gt1,...,tm(µ)L(dµ) (4.19)

where gt1,...,tm : R →Mmd×d(C) is defined by

gt1,...,tm(µ) :=

 1̂[0,t1)(µ)
...

1̂[0,tm)(µ)


(note that we can understand 1̂A for any A ∈ E (R) as a function mapping from R to

Md(C) by 1̂A(µ) = diag(1̂A(µ), . . . , 1̂A(µ))).
It is not hard to verify that all results for stable integrals in Section 4.2 remain valid if

we take integrands mapping into the complex md× d matrices with any m ∈ N (where m
equals 1 in Section 4.2). We want to use Proposition 4.17 (i) to deduce that (4.19) is a SαS
random vector in Cmd. Therefore, we only have to verify that gt1,...,tm ∈ Lα(Mmd×d(C))
which is actually true since there is c > 0 s.t.∫

R
‖gt1,...,tm(s)‖α ds ≤ c ·

m∑
k=1

∫
R

∣∣∣1̂[0,tk)(s)
∣∣∣α ds <∞.

Thus (Zt)t∈R+ is a SαS process.
Since, for any t > 0, νZt is obviously non-trivial (cf. (2.9) and Theorem 3.8), [54,

Proposition 14.5] immediately implies statement (i) and Corollary 4.10 shows statement
(ii).
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As to (iii), [54, Theorem 14.3] implies that there is a finite measure κ on the unit
sphere Sd =

{
x ∈ Rd : ‖x‖ = 1

}
s.t.

ν(A) =

∫
Sd

κ(dξ)

∫ ∞

0

1A(rξ)
dr

r1+α

for all A ∈ B(Rd). Hence, simple calculations show that∫
{‖x‖≤1}

‖x‖δ ν(dx) =

∫
Sd

κ(dξ)

∫ 1

0

1

r1+α−δ
dr

where the right-hand side is finite iff δ > α. Since (Zt)t∈R+ is a SαS process the same is
true with ν replaced by νZt and (iii) is shown.

4.5 Symmetric α-stable MCARMA processes

In this section we use the results obtained in Section 4.4 to derive a spectral representation
(in the summability sense) and a moving average representation of SαS MCARMA pro-
cesses. The proof of consistency to Definition 3.15 in the causal case forms the conclusion
of the chapter.

Before turning to these representations we are going to state three lemmata. The
first one establishes a spectral representation for moving averages of SαS Lévy processes
having kernel functions that are in L1 ∩ Lα and satisfy in addition that their Fourier
transforms are of bounded variation on compacta.

Lemma 4.24. Let L = (Lt)t∈R be a d-dimensional SαS Lévy process with 1 < α < 2 and
M the corresponding SαS random content of Theorem 4.21. Assume that we have given
some h ∈ L1(Md(C)) ∩ Lα(Md(C)) s.t. ĥ is of bounded variation on compacta.
Define

Gt := P− lim
λ→∞

∫ λ

−λ

eiµt ĥ(µ)

(
1− |µ|

λ

)
M(dµ), t ∈ R.

Then (Gt)t∈R is a SαS process and, for all t ∈ R,

Gt =
1√
2π

∫ ∞

−∞
h(t− µ)L(dµ).

Proof. Since h ∈ L1(Md(C)), the Fourier transform ĥ is obviously continuous and thus
the function

fλ,t(µ) := eiµt ĥ(µ)

(
1− |µ|

λ

)
1[−λ,λ](µ)

is continuous with compact support on R and has bounded variation by assumption.
Consequently, it can be approximated in the L1(Md(C))-norm by a sequence of E (R)-

simple functions fn satisfying in addition f̂n → f̂λ,t in Lα(Md(C)) as n→∞ (this can be
shown in the same way as in Step 3 of the proof of Theorem 4.21; cf. also Remark 4.22
(ii)). This gives that

∫∞
−∞ fλ,t(µ)M(dµ) is well-defined for any λ > 0 and t ∈ R.

Then

Gt = P− lim
λ→∞

∫ ∞

−∞
fλ,t(µ)M(dµ)

(4.17)
= P− lim

λ→∞

1√
2π

∫ ∞

−∞
f̂λ,t(µ)L(dµ).
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Setting Φλ(µ) :=
(
1− |µ|

λ

)
1[−λ,λ](µ) and ht(µ) := h(µ+ t), we have

fλ,t = Φλe
it · ĥ

(2.14)
=

√
2π∆λe

it · ĥ =
√

2π∆λĥt
(2.28)
= F̂λ ∗ ht

and thus, due to Corollary 2.27,

f̂λ,t =
̂̂
Fλ ∗ ht = (Fλ ∗ ht)(−· ) = Fλ ∗ (ht(−· ))

Lα(Md(C))→ ht(−· )

as λ → ∞ where the convergence holds by virtue of (2.29) together with Theorem 2.34.
Hence, due to Proposition 4.17 (iv),

Gt = P− lim
λ→∞

1√
2π

∫ ∞

−∞
Fλ ∗ (ht(−· )) dL =

1√
2π

∫ ∞

−∞
ht(−· ) dL

for all t ∈ R.

We still have to show that (Gt)t∈R is a SαS process, i.e. all finite dimensional distri-
butions are symmetric α-stable. For (t1, . . . , tm)′ ∈ Rm we have (cf. proof of Proposition
4.23) Xt1

...
Xtm

 =
1√
2π

∫ ∞

−∞
gt1,...,tm(µ)L(dµ) (4.20)

where gt1,...,tm : R →Mmd×d(C) is defined by

gt1,...,tm(µ) :=

h(t1 − µ)
...

h(tm − µ)

 .

In order to show that (4.20) is a SαS random vector in Cmd, we only have to verify that
gt1,...,tm ∈ Lα(Mmd×d(C)) (cf. Proposition 4.17 (i)). This is actually true since there are
c1, c2 > 0 s.t. ∫

R
‖gt1,...,tm(s)‖α ds ≤ c1 ·

∫
R

(
max

i=1,...,md
j=1,...,d

∣∣∣g(ij)
t1,...,tm(s)

∣∣∣ )α

ds

≤ c1 ·
∫

R

m∑
k=1

(
max

i,j=1,...,d

∣∣h(ij)(tk − s)
∣∣)α

ds

≤ c1 · c2 ·
m∑

k=1

∫
R
‖h(tk − s)‖α ds <∞

where g
(ij)
t1,...,tm and h(ij) denote the (i, j)-th component function of gt1,...,tm and h, respec-

tively.

The next lemma relates the zeros of what is to become the autoregressive polynomial
of an MCARMA process to the spectrum of a particular matrix A (cf. also Section 3.4).
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Lemma 4.25. Let A1, . . . , Ap ∈Md(C), p ∈ N, and define

P : C →Md(C), z 7→ Idz
p + A1z

p−1 + . . .+ Ap.

Setting N (P ) := {z ∈ C : det(P (z)) = 0} and

A :=


0 Id 0 . . . 0

0 0 Id
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 Id
−Ap −Ap−1 . . . . . . −A1

 ∈Mdp(C)

one has N (P ) = σ(A) where σ(A) denotes the spectrum of A.
Moreover, if N (P ) ⊆ R\ {0} + iR, then P (iz) ∈ GLd(C) for all z ∈ R (i.e. P (iz) is

an invertible d× d matrix for all z ∈ R).

Proof. See [41, Lemma 3.8 and 3.10].

The last lemma verifies the assumptions of Lemma 4.24 in the case of SαS MCARMA
processes.

Lemma 4.26. Let p, q ∈ N0 with p > q and B0, B1, . . . , Bq ∈ Md(C) with B0 6= 0.
Define the matrix A and the polynomial P as in Lemma 4.25 and assume that N (P ) ⊆
R\ {0}+ iR. Setting Q : C →Md(C), z 7→ B0z

q +B1z
q−1 . . .+Bq, the function

g : R →Md(C), g(µ) := P (iµ)−1Q(iµ)

is continuous and of bounded variation on compacta. Moreover g(µ) = ĥ(µ) for almost
every µ ∈ R with

h(µ) := ĝ(−µ) =
1√
2π

∫
R
eiµsP (is)−1Q(is) ds

=
√

2π
∑

λ

m(λ)−1∑
s=0

(
µseλµ1{Re(λ)·µ<0}Cλs

)
∈ L1(Md(C)) ∩ Lα(Md(C)) (4.21)

where
∑
λ

denotes the sum over all distinct zeros in N (P ), the multiplicity of the zero λ

is written as m(λ) and Cλs are constant complex-valued d× d matrices.

Proof. We need the following consequence of the residue theorem from complex analysis
(cf., for instance, [35, Section VI.2, Theorem 2.2] or [26, Section III.7, Theorem 7.11]): let
q and p : C → C be polynomials where p is of higher degree than q. Assume that p has
no zeros on the real line. Then

∫ ∞

−∞
eiµt q(t)

p(t)
dt =


2πi ·

∑
z∈C: Im(z)>0,

p(z)=0

Reszf, µ > 0

−2πi ·
∑

z∈C: Im(z)<0,
p(z)=0

Reszf, µ < 0


with f : C → C, z 7→ eiµz q(z)

p(z)
and Reszf denoting the residual of the function f at the

point z.
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Turning now to our function g, note first that it is well-defined by virtue of Lemma
4.25, it is clearly continuous and we have from elementary matrix theory that

g(µ) = P (iµ)−1Q(iµ) =
S(iµ)

det(P (iµ))

where S : C →Md(C) is some matrix-valued polynomial. Due to [41, Lemma 3.11] it is not
hard to see that the complex-valued polynomial det(P (iµ)) in µ is of higher degree than
S(iµ). Since all zeros of P are assumed to have non-vanishing real part, the zeros of P (i · )
have non-vanishing imaginary part. This implies on the one hand that all components of
the function g are continuously differentiable and hence of bounded variation on compacta
which shows that g is of bounded variation on compacta as well.

On the other hand this enables us to apply the above stated results from complex
function theory componentwise and we deduce for all j, k = 1, . . . , d and µ ∈ R, µ 6= 0,(√

2πh(µ)
)

jk
=

(∫ ∞

−∞
eiµtg(t) dt

)
jk

= 2πi

(
1{µ>0} ·

∑
z∈C: Im(z)>0,
det(P (iz))=0

Reszfjk − 1{µ<0} ·
∑

z∈C: Im(z)<0,
det(P (iz))=0

Reszfjk

)

= 2πi

(
1{µ>0} ·

∑
z∈C: Re(z)<0,
det(P (z))=0

Res−izfjk − 1{µ<0} ·
∑

z∈C: Re(z)>0,
det(P (z))=0

Res−izfjk

)
(4.22)

where fjk : C → C, z 7→ eiµz Sjk(iz)

det(P (iz))
.

Let λ denote the distinct zeros of det(P (z)) (i.e. the distinct eigenvalues of A) andm(λ)
the multiplicity of the zero λ. Since it is well-known that the residual of any meromorphic
function f : C → C at a pole a of order n ∈ N is given by

Resaf =
1

(n− 1)!

[
dn−1

dzn−1
(z − a)nf(z)

]
z=a

(cf. [26, Section III.6, Remark 6.4.1]), the residual of fjk at the point −iλ, with λ being
any zero of det(P (z)), can be written as

Res−iλfjk =
1

(m(λ)− 1)!

[
dm(λ)−1

dzm(λ)−1
(z + iλ)m(λ)eiµz Sjk(iz)

det(P (iz))

]
z=−iλ

= −i ·
m(λ)−1∑

s=0

cjkλsµ
seλµ (4.23)

for some complex constants cjkλs (where the sum reduces to−i·Sjk(λ)/
[

d
dz

det(P (z))
]
z=λ

eλµ

if m(λ) = 1). Thus (4.22) becomes

h(µ)jk =
√

2π
(
1{µ>0} ·

∑
λ: Re(λ)<0

m(λ)−1∑
s=0

cjkλsµ
seλµ − 1{µ<0} ·

∑
λ: Re(λ)>0

m(λ)−1∑
s=0

cjkλsµ
seλµ

)

=
√

2π
∑

λ

m(λ)−1∑
s=0

(
c̃jkλsµ

seλµ1{Re(λ)·µ<0}

)
(4.24)
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with c̃jkλs := cjkλs if Re(λ) < 0 and c̃jkλs := −cjkλs if Re(λ) > 0.
Hence h is obviously in L1(Md(C))∩Lα(Md(C)) for all α ∈ (1, 2] and by virtue of the

inversion formula (cf. the “surjective part” of the proof of Theorem 2.29) we obtain ĥ = g

in L2(Md(C)) and thus for almost every µ ∈ R we have ĥ(µ) = g(µ).
Finally, defining the d×d matrices Cλs := (c̃jkλs)jk, we obtain the claimed representation

of h in (4.21).

Now, due to the Lemmata 4.24, 4.25 and 4.26, we are able to give a definition of
symmetric α-stable CARMA processes which is at the same time what we shall call their
spectral representation.

Definition 4.27. Let L = (Lt)t∈R be a d-dimensional SαS Lévy process with α ∈ (1, 2)
and M the corresponding SαS random content of Theorem 4.21. A d-dimensional sym-
metric α-stable Lévy-driven continuous time autoregressive moving average process (Yt)t∈R
of order (p, q) with p, q ∈ N0, p > q (SαS MCARMA(p, q) process) is defined as the
SαS process

Yt : = P− lim
λ→∞

∫ λ

−λ

eiµtP (iµ)−1Q(iµ)

(
1− |µ|

λ

)
M(dµ), t ∈ R, where

P (z) : = Idz
p + A1z

p−1 + . . .+ Ap and

Q(z) : = B0z
q +B1z

q−1 + . . .+Bq

are the autoregressive and moving average polynomial, respectively.
Here Ai ∈Md(R), i = 1, . . . , p, and Bj ∈Md(R), j = 1, . . . , q, are real matrices satisfying
B0 6= 0 and N (P ) = {z ∈ C : det(P (z)) = 0} ⊆ R\ {0}+ iR.

Remark 4.28. One might think that SαS MCARMA processes also have a bona fide
spectral representation of the form

Yt =

∫ ∞

−∞
eiµtP (iµ)−1Q(iµ) M̃(dµ), t ∈ R,

for some appropriate extension M̃ of the SαS random content of Theorem 4.21 to B0(R).
However, we have already mentioned in the introduction to this chapter that this is not
possible given that (Yt)t∈R is non-trivial. Namely, [39, Proposition 1.9] implies that if (Yt)
were representable in that way, Yt ≡ 0 for all t ∈ R.

Lemmata 4.24 and 4.26 yield the following moving average representation as well:

Corollary 4.29. Let Y = (Yt)t∈R be a SαS MCARMA(p, q) process, then Y has the
moving average representation

Yt =
1√
2π

∫ ∞

−∞
h(t− µ)L(dµ)

for all t ∈ R, where h is given by (4.21).

Remark 4.30. Alternatively, the SαS MCARMA(p, q) process can be written as

Yt =
1

2π

∫ ∞

−∞
h̃(t− µ)L(dµ)
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with kernel function

h̃(t) =

∫
R
eitsP (is)−1Q(is) ds, t ∈ R.

This is in line with [44, Example 3.7] where the same moving average representation has
also been established for α ≤ 1.

The question which may be asked at the end of this chapter is whether our defini-
tion (spectral representation) and moving average representation of a symmetric α-stable
MCARMA process coincides in the causal case where σ(A) = N (P ) ⊆ (−∞, 0)+iR with
the definition of causal MCARMA processes made in [41] (cf. Definition 3.15). Indeed,
the following (more general) lemma gives the consistency.

Lemma 4.31. Let the polynomials P and Q be defined as in Definition 4.27 and the
matrices A and β as in Definition 3.15. Then, for any t ∈ R,(

Id, 0Md(C), . . . , 0Md(C)

)
etAβ =

1

2πi

∫
ρ

P (z)−1Q(z)etz dz (4.25)

where ρ is a simple closed curve in the complex plane that encircles all eigenvalues of the
matrix A.

Proof. By virtue of [7, Proposition 11.2.1] we have, for any t ∈ R,

etA =
1

2πi

∫
ρ

(zIdp − A)−1etz dz

where ρ is a simple closed curve in the complex plane enclosing the spectrum of A. Setting

hk,p(z) :=

p−k∑
u=0

Ap−k−uz
u, k = 1, . . . , p, (4.26)

with A0 := Id, and

rk(z) := −
k∑

u=0

Ap−uz
u, k = 0, 1, . . . , p− 2,

one easily verifies that, for all z /∈ σ(A), the d × d blocks cij(z), i, j = 1, . . . , p, of the
matrix (zIdp − A)−1 ∈Mdp(C) are given by

cij(z) = P (z)−1

{
hj,p(z)z

i−1, if i ≤ j,
rj−1(z)z

i−j−1, if i > j.

Indeed, one can show by simple calculations that this matrix is a left inverse for zIdp −A
and thus, due to [7, Corollary 2.6.4], it is the unique inverse of zIdp − A. Hence(

Id, 0Md(C), . . . , 0Md(C)

)
etA =

1

2πi

∫
ρ

P (z)−1 · (h1,p(z), h2,p(z), . . . , hp,p(z)) e
tz dz

which implies

(
Id, 0Md(C), . . . , 0Md(C)

)
etAβ =

1

2πi

∫
ρ

P (z)−1 ·

[
p∑

j=1

hj,p(z)βj

]
etz dz.
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Since Bi = 0 for all i < 0, we obtain

p∑
j=1

hj,p(z)βj
(4.26)
=

p∑
j=1

p−j∑
u=0

Ap−j−uβjz
u =

p−1∑
u=0

(
p−u∑
j=1

Ap−j−uβj

)
zu

=

p−1∑
u=0

(
p−u−1∑

j=1

Ajβp−j−u + βp−u

)
zu

(3.8)
=

p−1∑
u=0

Bq−uz
u =

q∑
u=0

Bq−uz
u

= Q(z)

and thus (4.25) is shown.

Now observe that the causal MCARMA process in Definition 3.15 can be represented as

Yt =

∫ t

−∞

(
Id, 0Md(C), . . . , 0Md(C)

)
e(t−s)Aβ L(ds), t ∈ R.

Since σ(A) = N (P ) ⊆ (−∞, 0) + iR, we obtain for all s < t, due to Lemma 4.31 and the
Residue Theorem,(

Id, 0Md(C), . . . , 0Md(C)

)
e(t−s)Aβ =

1

2πi

∫
ρ

P (z)−1Q(z)e(t−s)z︸ ︷︷ ︸
=:f(z)

dz

=
∑

z∈C: Re(z)<0,
det(P (z))=0

(Reszfjk)j,k=1,...,d

= i ·
∑

z∈C: Re(z)<0,
det(P (z))=0

(
Res−izf̃jk

)
j,k=1,...,d

with f̃(z) := P (iz)−1Q(iz)ei(t−s)z, z ∈ C. Using then (4.23) and (4.24), we deduce(
Id, 0Md(C), . . . , 0Md(C)

)
e(t−s)Aβ · 1{s<t} =

1√
2π
h(t− s)

and the claimed consistency follows from Corollary 4.29.

Remark 4.32. The same results in the univariate case can be found in [14, Lemma 2.3].
However, the first claim in the proof of this lemma concerning the elements of the matrix
etA seems to be in contradiction to our proof of Lemma 4.31. Since at least the upper
triangle of etA is correct in [14], the result (2.10) there remains true and is in line with
the multivariate version (4.25) in our Lemma 4.31.



Chapter 5

Multivariate regularly varying
CARMA processes

In this chapter we will generalize the foregoing results obtained for SαS Lévy and CARMA
processes to the setting of regularly varying processes. Since every α-stable Lévy process
is also regularly varying with index α, this is actually an extension of Chapter 4. We shall
concentrate on the case where the index of variation satisfies α ∈ (1, 2] since the case
α > 2 implies that the driving Lévy process possesses finite second moments and thus it
is already contained in Chapter 3.

The chapter is organized as follows: first we recall the notion of multivariate regular
variation and give a useful connection to Lévy measures in the case of infinitely divisible
distributions. In Section 2 we then prove a spectral representation for multivariate reg-
ularly varying Lévy processes. Our approach therefore will be similar to Theorem 4.21,
but we have to specify suitable conditions in Step 2 of the proof of that theorem ensuring
that integration can again be extended to more general than simple functions. Having
shown the spectral representation for the driving Lévy process, we will be able to state
analogously to Section 4.5 a spectral and a moving average representation of multivariate
regularly varying CARMA processes in the last section.

5.1 Multivariate regular variation

As announced we first recall the notion of multivariate regular variation which can be
used for the analysis of the tail behavior of multivariate stochastic processes. However,
there is not only one single definition of multivariate regular variation, but many different
equivalent ones. For detailed and good introductions into the different approaches, we
refer the reader to Resnick [49] and Lindskog [37]. We start with a definition from [30].

Let therefore
v→ denote vague convergence. It is defined on the one-point uncompact-

ification Rd\ {0} (where R := [−∞,∞]), which assures that the Borel sets of Rd that are
bounded away form the origin can be referred to as the relatively compact sets in the
vague topology.

Definition 5.1. An Rd-valued random vector X with unbounded support is called regu-
larly varying with index α > 0, if there exist a function l : R → R which is slowly varying

at infinity and a non-zero Radon measure κ defined on B(Rd\ {0}) with κ(Rd\Rd) = 0
such that, as u→∞,

uαl(u)P(u−1X ∈ · ) v→ κ( · )

61
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on B(Rd\ {0}). We write X ∈ RV (α, l, κ).
Similarly, we call a Radon measure ν regularly varying, if α, l and κ exist as above

such that
uαl(u)ν(u · ) v→ κ( · )

as u→∞ and we write ν ∈ RV (α, l, κ).
A d-dimensional real-valued stochastic process (Xt)t∈R is called regularly varying with

index α if all its finite dimensional distributions are regularly varying with index α.
We say that a complex random vector X = (X1, . . . , Xd) is regularly varying if and

only if the real random vector (Re(X1), Im(X1), . . . ,Re(Xd), Im(Xd)) is regularly varying.

We want to recall another definition which is widely used and gives a nice interpreta-
tion of multivariate regular variation. The following theorem shows their equivalence. Let
therefore Sd =

{
x ∈ Rd : ‖x‖ = 1

}
denote the unit sphere in Rd.

Theorem 5.2 (cf. [44], Theorem A.1).
Let X be a random vector in Rd. Then the following characterizations are equivalent:

(i) X is regularly varying with index α in the sense of Definition 5.1.

(ii) There exists an Sd-valued random variable Θ s.t. for every t > 0

P
(
‖X‖ > tu, X

‖X‖ ∈ ·
)

P(‖X‖ > u)

v→ t−αP(Θ ∈ · )

on B(Sd) as u→∞.

The second characterization in particular implies that limu→∞
P(‖X‖>tu)
P(‖X‖>u)

= t−α for any

t > 0, i.e. whenever a random variable X is (multivariate) regularly varying of index α,
the univariate random variable ‖X‖ is also regularly varying with the same index. Thus
we immediately infer, using the well-known results for the univariate case (cf. e.g. [24]):

Proposition 5.3.
Let X be an Rd-valued regularly varying random variable with index α. Then

E[‖X‖p] <∞ for any 0 < p < α,

E[‖X‖p] = ∞ for any p > α.

For infinitely divisible random variables, the following very useful connection between
regular variation of the random variable and its Lévy measure exists.

Theorem 5.4 (cf. [30], Proposition 3.1).
Let X be an infinitely divisible Rd-valued random vector with Lévy measure ν. Then X ∈
RV (α, l, κ) if and only if ν ∈ RV (α, l, κ).

One can show that a d-dimensional Lévy process L = (Lt)t∈R is regularly varying of index
α iff its characteristic Lévy measure ν (i.e. the Lévy measure of L1) is regularly varying of
index α. Strictly speaking the Lévy process (Lt)t∈R is not regularly varying since L0 ≡ 0
a.s., but, as all other finite dimensional margins are regularly varying, we neglect that
inaccuracy.
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5.2 Spectral representation of regularly varying Lévy

processes

In analogy to Definition 4.20 we define:

Definition 5.5. For α ∈ (1, 2] a d-dimensional regularly varying random content
with index α is a set function

M : E (R) → L0(Ω,F ,P; Cd)

satisfying

(i) M(A) is a complex d-dimensional random vector that is regularly varying with index
α for all A ∈ E (R),

(ii) M(
⋃n

i=1Ai) =
∑n

i=1M(Ai) a.s. whenever A1, . . . , An ∈ E (R) are pairwise disjoint
(i.e. M is additive).

Integration of simple functions f =
∑n

i=1 fi1Ai
(with fi ∈ Md(C), i = 1, . . . , n, n ∈ N,

and Ai ∈ E (R) mutually disjoint) w.r.t. M is again defined by∫
R
f dM :=

n∑
i=1

fiM(Ai)

which is obviously a complex d-dimensional random vector. The integral is linear for
simple functions and it is well-defined due to the additivity of M . We have the following
theorem in analogy to Theorem 4.21:

Theorem 5.6. Let L = (Lt)t∈R be a Lévy process in Rd, regularly varying of index
α ∈ (1, 2] and suppose E[L1] = 0. Then there is a regularly varying random content
M : E (R) → L0(Ω,F ,P; Cd) with index α such that

Lt = P− lim
λ→∞

∫ λ

−λ

eiµt − 1

iµ
·
(

1− |µ|
λ

)
M(dµ), t ∈ R.

The random content M is given by

M(A) =
1√
2π

∫ ∞

−∞
1̂A(µ)L(dµ), A ∈ E (R),

where 1̂A is the Fourier transform of 1A.

Before we pass on to the proof of Theorem 5.6, we recall two results from [44] and
establish one more lemma which will be used in the proof.

Theorem 5.7 (cf. [44], Theorem 2.5).
Let L = (Lt)t∈R be a d-dimensional Lévy process with generating triplet (γ,Σ, ν), let ν be
regularly varying with index α ∈ (1, 2] and let f : R →Mk×d(R) be measurable. Then f is
L-integrable if it is bounded, E[L1] = 0 and f ∈ Lδ(Mk×d(R)) for some δ < α.
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Theorem 5.8 (cf. [44], Theorem 3.2).
Let L = (Lt)t∈R be a d-dimensional Lévy process with generating triplet (γ,Σ, ν) and
let ν ∈ RV (α, l, κν). If f : R → Mk×d(R) is L-integrable, f ∈ Lα(Mk×d(R)) and
κν

(
f−1(s)(Rk\ {0})

)
= 0 does not hold for almost every s, then X :=

∫
R f(s)L(ds) ∈

RV (α, l, κX) with

κX(A) :=

∫
R

∫
Rd

1A(f(s)x)κν(dx) ds, A ∈ B(Rk\ {0}).

The following lemma will be central in the proof of Theorem 5.6 for the extension of
integration to more general integrands.

Lemma 5.9. Let L = (Lt)t∈R be a d-dimensional Lévy process with E[L1] = 0 and
generating triplet (γ,Σ, ν) where ν is supposed to be regularly varying with index α ∈ (1, 2].
Let f : R → Mk×d(R) be measurable and fn : R → Mk×d(R) be a sequence of measurable
functions s.t. fn → f as n→∞ in Lδ(Mk×d(R)) for some δ < α. Moreover, assume that
‖fn(s)− f(s)‖ + ‖f(s)‖ ≤ C for all n ∈ N, s ∈ R and some constant C > 0. Then the
sequence of integrals

∫
R fn dL converges in probability to

∫
R f dL as n→∞.

We use the following general result on the relation between convergence of characteristic
triplets and weak convergence of probability distributions.

Lemma 5.10 (cf. [54], Theorem 8.7).
Let c : Rd → R be bounded and continuous s.t.

c(x) = 1 + o(‖x‖) as ‖x‖ → 0 and

‖x‖ c(x) → 0 as ‖x‖ → ∞.

Assume that µn for n ∈ N are infinitely divisible distributions on Rd with generat-
ing triplets (γn,Σn, νn)c (i.e. (2.2) holds with the truncation function c(x) in place of
1[0,1](‖x‖)) and let µ be another probability distribution on Rd. Then µn

w→ µ if and only
if µ is infinitely divisible with characteristic triplet (γ,Σ, ν)c satisfying the following three
conditions:

(1) If f is a bounded, continuous function from Rd to R vanishing in a neighborhood of
0, then

lim
n→∞

∫
Rd

f(x) νn(dx) =

∫
Rd

f(x) ν(dx)

(i.e. νn converges to ν vaguely as measures on Rd\ {0}).

(2) Define the symmetric positive semidefinite matrices Σn,ε by

〈z,Σn,εz〉 = 〈z,Σnz〉+

∫
{‖x‖≤ε}

〈z, x〉2 νn(dx).

Then
lim
ε↘0

lim sup
n→∞

|〈z,Σn,εz〉 − 〈z,Σz〉| = 0

for all z ∈ Rd.
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(3) γn → γ as n→∞.

Proof of Lemma 5.9.
Note first that the integrals

∫
R fn dL and

∫
R f dL are well-defined due to Theorem 5.7.

Letting gn := fn − f , we have to show that
∫

R gn dL
P→ 0 as n→∞ which is equivalent

to
∫

R gn dL
w→ 0 as n→∞.

The distribution of every
∫

R gn dL is infinitely divisible and possesses the generating
triplet (γn,Σn, νn) given by (cf. Section 2.2.5 (2.7)-(2.9))

γn =

∫
R

(
gn(s)γ +

∫
Rd

gn(s)x
(
1[0,1](‖gn(s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

)
ds,

Σn =

∫
R
gn(s)Σgn(s)′ds,

νn(B) =

∫
R

∫
Rd

1B(gn(s)x) ν(dx) ds, B ∈ B(Rk
∗).

Since we want to use Lemma 5.10, we change the truncation function from 1[0,1](‖x‖)
to c(x) := 1[0,1](‖x‖) + 1(1,2](‖x‖)(2 − ‖x‖) which satisfies the assumptions of Lemma
5.10. Concerning the generating triplet of

∫
R gn dL, only γn is affected, namely, using c as

truncation function we obtain the generating triplet (γn,c,Σn, νn)c where

γn,c = γn +

∫
Rk

x
(
c(x)− 1[0,1](‖x‖)

)
νn(dx) = γn +

∫
{‖x‖∈(1,2]}

x (2− ‖x‖) νn(dx).

The remainder of the proof is dedicated to the verification of conditions (1) - (3) in Lemma
5.10.

We first show that ∫
R

∫
Rd

(
1 ∧ ‖gn(s)x‖2) ν(dx) ds n→∞→ 0. (5.1)

We get∫
R

∫
Rd

(
1 ∧ ‖gn(s)x‖2) ν(dx) ds

=

∫
R

∫
Rd

1{‖gn(s)x‖>1} ν(dx) ds+

∫
R

∫
Rd

‖gn(s)x‖2
1{‖gn(s)x‖≤1} ν(dx) ds. (5.2)

If we assume w.l.o.g. that our norm on Mk×d(R) is compatible with the vector norm
(which is e.g. the case for any operator norm), we can use the inequality

‖gn(s)‖ ‖x‖ ≥ ‖gn(s)x‖ > 1

which implies ‖x‖ ≥ 1/ ‖gn(s)‖ . Thus the first term on the right-hand side of (5.2) can
be bounded by∫

R

∫
Rd

1{‖gn(s)x‖>1} ν(dx) ds ≤
∫

R
ν

({
‖x‖ ≥ 1

‖gn(s)‖

})
ds.

Now we can apply the Potter bounds (cf. [49, Proposition 2.6]), giving the existence of
some t0 s.t. for all t ≥ t0 a regularly varying function (in our case ν) can be bounded.



66 CHAPTER 5. REGULARLY VARYING MCARMA PROCESSES

Therefore, we distinguish the cases 1/ ‖gn(s)‖ > t0 and 1/ ‖gn(s)‖ ≤ t0.

For the first case we set C̃ := sup {‖gn(s)‖ : ‖gn(s)‖ < 1/t0} ≤ 1/t0. Then we can apply

the Potter bounds for t = 1/C̃ ≥ t0 in order to get∫
R
1{1/‖gn(s)‖>t0} ν

({
‖x‖ ≥ 1

‖gn(s)‖

})
ds

≤ (1 + α− δ)

∫
R
1{1/‖gn(s)‖>t0} ν

({
‖x‖ ≥ 1

C̃

})(
‖gn(s)‖
C̃

)δ

ds
n→∞→ 0

since gn → 0 as n→∞ in Lδ(Mk×d(R)).
In the other case we note that sup ‖gn(s)‖ ≤ C <∞ and obtain∫

R
1{1/‖gn(s)‖≤t0} ν

({
‖x‖ ≥ 1

‖gn(s)‖

})
ds ≤

∫
R
1{1/‖gn(s)‖≤t0} ν

({
‖x‖ ≥ 1

C

})
ds

= ν

({
‖x‖ ≥ 1

C

})
· λ1

({
s : ‖gn(s)‖ ≥ 1

t0

})
≤ ν

({
‖x‖ ≥ 1

C

})
· tδ0 ·

∫
R
‖gn(s)‖δ ds→ 0

as n→∞, using again the assumption that gn converges to 0 in Lδ(Mk×d(R)).
The second term on the right hand side of (5.2) can be bounded by∫

R

∫
Rd

‖gn(s)x‖2
1{‖gn(s)x‖≤1} ν(dx) ds

=

∫
R

∫
{‖x‖<1}

‖gn(s)x‖2
1{‖gn(s)x‖≤1} ν(dx) ds

+

∫
R

∫
{‖x‖≥1}

‖gn(s)x‖2
1{‖gn(s)x‖≤1} ν(dx) ds

≤
∫

R
‖gn(s)‖2 ds

∫
{‖x‖<1}

‖x‖2 ν(dx)

+

∫
R
‖gn(s)‖δ ds

∫
{‖x‖≥1}

‖x‖δ ν(dx)

n→∞→ 0

where we used the fact that the boundedness of the sequence gn together with the conver-
gence to 0 in Lδ(Mk×d(R)) implies that gn converges to 0 also in L2(Mk×d(R)). Moreover,
note that

∫
{‖x‖≥1} ‖x‖

δ ν(dx) < ∞ due to Theorem 2.20, since 0 < δ < α and hence the

underlying Lévy process has a finite δ-th moment. Putting these results together we have
shown that (5.1) holds.

Let us now verify condition (1) of Lemma 5.10. We show that νn converges in total
variation to the zero measure outside of any fixed neighborhood of 0. Let therefore U =
{‖x‖ < ε} , ε > 0, be such a neighborhood. We obtain

νn(Rk\U) = λ1 ⊗ ν ({(s, x) : ‖gn(s)x‖ ≥ ε})

≤ 1

1 ∧ ε2

∫
R

∫
Rd

(
1 ∧ ‖gn(s)x‖2)

1{‖gn(s)x‖≥ε} ν(dx) ds

≤ 1

1 ∧ ε2

∫
R

∫
Rd

(
1 ∧ ‖gn(s)x‖2) ν(dx) ds n→∞→ 0
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by virtue of (5.1). This immediately implies condition (1) of Lemma 5.10.
As to condition (2), note first that, for some c1 > 0,

‖Σn‖ ≤ c1 · ‖Σ‖ ·
∫

R
‖gn(s)‖2 ds

n→∞→ 0

since gn converges to 0 in L2(Mk×d(R)) as previously noted. Hence, using again (5.1) we
obtain for any ε ∈ (0, 1),

|〈z,Σn,εz〉| ≤ |〈z,Σnz〉|+
∫
{‖y‖≤ε}

〈z, y〉2 νn(dy)

= |〈z,Σnz〉|+
∫
{(s,x): ‖gn(s)x‖≤ε}

〈z, gn(s)x〉2 (λ1 ⊗ ν)(d(s, x))

≤ c2 · ‖z‖2

(
‖Σn‖+

∫
R

∫
Rd

(
1 ∧ ‖gn(s)x‖2) ν(dx) ds) n→∞→ 0

where c2 is a positive constant. This in particular yields lim
ε↘0

lim sup
n→∞

|〈z,Σn,εz〉| = 0 for all

z ∈ Rk.
Finally we show condition (3), i.e. γn,c → 0 as n→∞. Recall that

γn,c = γn +

∫
{‖x‖∈(1,2]}

x (2− ‖x‖) νn(dx).

We immediately obtain that∫
{‖x‖∈(1,2]}

‖x‖ (2− ‖x‖) νn(dx) ≤ νn ({‖x‖ ∈ (1, 2]}) n→∞→ 0

since νn converges in total variation to the zero measure outside of any fixed neighborhood
of 0. For γn we have

‖γn‖ ≤
∫

R

∥∥∥∥gn(s)γ +

∫
Rd

gn(s)x
(
1[0,1](‖gn(s)x‖)− 1[0,1](‖x‖)

)
ν(dx)

∥∥∥∥ ds
=

∫
R

∥∥∥∥∥gn(s)γ +

∫
{‖x‖>1}

gn(s)x1{‖gn(s)x‖≤1} ν(dx)

−
∫
{‖x‖≤1}

gn(s)x1{‖gn(s)x‖>1} ν(dx)

∥∥∥∥∥ds. (5.3)

Since E[L1] = 0, we know γ = −
∫
{‖x‖>1} x ν(dx) (cf. Remark 2.7 (iii)). Choose any

ξ ∈ (δ, α), ξ > 1. Then (5.3) becomes∫
R

∥∥∥∥∥−
∫
{‖x‖>1}

gn(s)x ν(dx) +

∫
{‖x‖>1}

gn(s)x1{‖gn(s)x‖≤1} ν(dx)

−
∫
{‖x‖≤1}

gn(s)x1{‖gn(s)x‖>1} ν(dx)

∥∥∥∥∥ds
≤
∫

R

∫
Rd

‖gn(s)x‖1{‖gn(s)x‖>1} ν(dx) ds ≤
∫

R

∫
Rd

‖gn(s)x‖ξ
1{‖x‖≥ 1

C} ν(dx) ds

≤ Cξ−δ

∫
R
‖gn(s)‖δ ds

∫
{‖x‖≥ 1

C}
‖x‖ξ ν(dx)

n→∞→ 0
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since gn → 0 in Lδ(Mk×d(R)). Note again that
∫
{‖x‖≥ 1

C} ‖x‖
ξ ν(dx) is finite since 0 < ξ < α

and hence the underlying Lévy process has a finite ξ-th moment. Together this shows
γn,c → 0 as n→∞.

We conclude the proof by using Lemma 5.10.

Now we are able to give a proof of Theorem 5.6. Since it is similar to the proof of
Theorem 4.21, we shall only sketch it.

Sketch of the proof of Theorem 5.6.

• Due to Theorem 5.4, it follows immediately that the characteristic Lévy measure
ν of L is regularly varying with index α ∈ (1, 2]. For any A ∈ E (R), we split the

Fourier transform 1̂A up into its real and imaginary part and Theorem 5.7 can be
applied in order to show that M is well-defined. Using then Theorem 5.8 we obtain
that M is a regularly varying random content.

• For simple functions f =
∑n

i=1 fi1Ai
one can deduce the same identity as in (4.15),

namely ∫ ∞

−∞
f dM =

1√
2π

∫ ∞

−∞
f̂ dL. (5.4)

• If now f : R → Md(C) is a measurable function s.t. there is a sequence of E (R)-
simple functions fn satisfying

f̂n
Lδ(Md(C))→ f̂ as n→∞ for some δ < α and∥∥∥f̂n(µ)− f̂(µ)

∥∥∥+
∥∥∥f̂(µ)

∥∥∥ ≤ C for all n ∈ N, µ ∈ R and some constant C > 0,

then we define the integral
∫∞
−∞ f dM as the limit in probability of the sequence of

simple integrals
∫∞
−∞ fn dM . Note that this sequence of integrals is well-defined since

every fn is E (R)-simple. Since we can always identify C with R2 and Cd with (R2)d

and since the multiplication of two complex numbers x = x1 + ix2 and y = y1 + iy2

can be regarded as the (real) matrix-vector multiplication(
x1 −x2

x2 x1

)
·
(
y1

y2

)
,

it is easy to see that Lemma 5.9 holds with functions that take values in the complex
k × d matrices as well. Thus, due to that Lemma, we have∫ ∞

−∞
f̂n dL

P→
∫ ∞

−∞
f̂ dL (5.5)

as n→∞. Using (5.4), we know that∫ ∞

−∞
fn dM =

1√
2π

∫ ∞

−∞
f̂n dL

and hence the sequence of simple integrals
∫∞
−∞ fn dM converges in probability which

shows that
∫∞
−∞ f dM is well-defined. Moreover, (5.5) immediately yields∫ ∞

−∞
f dM =

1√
2π

∫ ∞

−∞
f̂ dL. (5.6)

We shall call such functions, as in Chapter 4, M -integrable.
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• Now define, for any −∞ < a < b <∞,

f(µ) :=
eiµb − eiµa

iµ
and Φλ(µ) :=

(
1− |µ|

λ

)
1[−λ,λ](µ), µ ∈ R.

Completely analogous as in the proof of Theorem 4.21 one can then show that f ·Φλ

is M -integrable (note that the additional boundedness assumption follows directly
from Theorem 2.21 (iv)).

• Finally, setting g(µ) :=
√

2π1[a,b)(µ) and h(µ) := g(−µ), µ ∈ R, we obtain ĥ = f
and hence (cf. proof of Theorem 4.21)

f̂Φλ = Fλ ∗ g
Lδ(C)→ g as λ→∞

for any 1 ≤ δ < α. Thus, applying once more Lemma 5.9, we deduce∫ ∞

−∞
fΦλ dM

(5.6)
=

1√
2π

∫ ∞

−∞
f̂Φλ dL =

1√
2π

∫ ∞

−∞
(Fλ ∗ g) dL

P→ 1√
2π

∫ ∞

−∞
g dL = Lb − La as λ→∞.

We get the following properties for the regularly varying random contentM (cf. Section
3.3 and 4.4).

Proposition 5.11. Let L = (Lt)t∈R be a two-sided Lévy process in Rd with E[L1] = 0 and
generating triplet (γ,Σ, ν). Assume moreover that ν ∈ RV (α, l, κν) for some α ∈ (1, 2]
and let M be the associated regularly varying random content of Theorem 5.6. Then the
process

Zt := M ([0, t)) =

∫ ∞

−∞

1− e−iµt

2πiµ
L(dµ), t > 0,

is regularly varying with index α.
Furthermore we have, for any t > 0, the following results for Zt and its corresponding

Lévy measure νZt:

(i)
∫
{‖x‖≤1} ‖x‖ νZt(dx) = ∞ and thus νZt is in particular infinite.

(ii) E[‖Zt‖p] <∞ for any 0 < p < α and E[‖Zt‖p] = ∞ for any p > α.

(iii) For any δ ∈ (1, α) the integral
∫
{‖x‖≤1} ‖x‖

δ ν(dx) is finite iff
∫
{‖x‖≤1} ‖x‖

δ νZt(dx)

is finite, i.e. the Lévy process L has a.s. finite δ-variation if and only if Σ = 0
and

∫
{‖x‖≤1} ‖x‖

δ νZt(dx) < ∞. Moreover, if the Lévy process satisfies in addition

E[‖L1‖α] <∞, then the statement is also true for δ = α.

(iv) The implication∫
{‖x‖≤1}

‖x‖δ νZt(dx) <∞⇒
∫
{‖x‖≤1}

‖x‖δ ν(dx) <∞

is valid for every δ ∈ (1, 2).
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Proof. Let (t1, . . . , tm)′ ∈ (0,∞)m and observe thatZt1
...

Ztm

 =
1√
2π


∫∞
−∞ 1̂[0,t1)(µ)L(dµ)

...∫∞
−∞ 1̂[0,tm)(µ)L(dµ)

 =
1√
2π

∫ ∞

−∞
gt1,...,tm(µ)L(dµ)

where gt1,...,tm : R →Mmd×d(C) is defined by

gt1,...,tm(µ) :=

 1̂[0,t1)(µ)
...

1̂[0,tm)(µ)


(cf. proof of Proposition 4.23). Since we obviously have gt1,...,tm ∈ Lα(Mmd×d(C)) and
κν

(
g−1

t1,...,tm(µ)(Cmd\ {0})
)

= 0 does not hold for almost every µ, a simple application of
[44, Theorem 3.2] shows that the process (Zt)t>0 is regularly varying of index α which
also implies (ii) by virtue of Proposition 5.3. In order to establish the other statements,
repeat the proof of Theorem 3.8 with some evident modifications.

5.3 Spectral representation of multivariate regularly

varying CARMA processes

The next lemma provides the analogous results of Lemma 4.24 in the regularly varying
setting. It gives more insight into the spectral representation of moving averages of reg-
ularly varying Lévy processes and will enable us to state a spectral representation for
multivariate regularly varying CARMA processes (in the summability sense).

Lemma 5.12. Let L = (Lt)t∈R be a Lévy process in Rd with generating triplet (γ,Σ, ν)
where ν ∈ RV (α, l, κν) with α ∈ (1, 2] and suppose E[L1] = 0. Let M be the corresponding
random content of Theorem 5.6 and assume that h ∈ L1(Md(C))∩Lα(Md(C)) s.t. in ad-

dition h is bounded and its Fourier transformation ĥ is of bounded variation on compacta.
Define

Gt := P− lim
λ→∞

∫ λ

−λ

eiµt ĥ(µ)

(
1− |µ|

λ

)
M(dµ), t ∈ R.

Then, for all t ∈ R,

Gt =
1√
2π

∫ ∞

−∞
h(t− µ)L(dµ).

If κν

(
h−1(s)(Cd\ {0})

)
= 0 does not hold for almost every s, then the process (Gt)t∈R is

also regularly varying of index α.

Proof. The proof is similar to that of Lemma 4.24. Setting

fλ,t(µ) := eiµt ĥ(µ)

(
1− |µ|

λ

)
1[−λ,λ](µ)

one notes that fλ,t ∈ L1(Md(C)) and can be approximated in the L1(Md(C))-norm by a

sequence of E (R)-simple functions fn satisfying in addition f̂n → f̂λ,t in Lδ(Md(C)) as
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n→∞ for some δ < α (this can be shown in the same way as in the proof of Theorem
4.21 and Theorem 5.6, respectively). Thus fλ,t is M -integrable for any λ > 0 and t ∈ R.

Then, analogously to the proof of Lemma 4.24, we obtain∫ ∞

−∞
fλ,t dM =

1√
2π

∫ ∞

−∞
f̂λ,t dL =

1√
2π

∫ ∞

−∞
Fλ ∗ h(t− · ) dL P→ 1√

2π

∫ ∞

−∞
h(t− · ) dL

as n→∞ for all t ∈ R, since Fλ ∗ h(t − · ) → h(t − · ) in Lδ(Md(C)) for any 1 ≤ δ < α
which implies together with the boundedness of Fλ ∗ h(t − · ) and h(t − · ) the claimed
stochastic convergence by virtue of Lemma 5.9.

The additional statement follows from [44, Corollary 3.5].

Let us now give both, a spectral representation and a moving average representation
for regularly varying MCARMA processes with index α ∈ (1, 2]. We begin with a definition
which is at the same time their spectral representation. Note that the well-definedness is
ensured by the Lemmata 4.25, 4.26 and 5.12.

Definition 5.13. Let L = (Lt)t∈R be a d-dimensional Lévy process with generating triplet
(γ,Σ, ν) where ν ∈ RV (α, l, κν) with index α ∈ (1, 2] and let M be the corresponding ran-
dom content of Theorem 5.6. A d-dimensional regularly varying Lévy-driven continuous
time autoregressive moving average process (Yt)t∈R of order (p, q) with p, q ∈ N0, p > q
(regularly varying MCARMA(p, q) process) of index α is defined as the regularly
varying process

Yt : = P− lim
λ→∞

∫ λ

−λ

eiµtP (iµ)−1Q(iµ)

(
1− |µ|

λ

)
M(dµ), t ∈ R, where

P (z) : = Idz
p + A1z

p−1 + . . .+ Ap and

Q(z) : = B0z
q +B1z

q−1 + . . .+Bq

are the autoregressive and moving average polynomial, respectively.
Here Ai ∈Md(R), i = 1, . . . , p, and Bj ∈Md(R), j = 1, . . . , q, are real matrices satisfying
B0 6= 0 and N (P ) = {z ∈ C : det(P (z)) = 0} ⊆ R\ {0}+ iR and κν is a Radon measure
s.t. κν

(
h−1(s)(Cd\ {0})

)
= 0 does not hold for almost every s, where h = ĝ(−· ), letting

g = P (i · )−1Q(i · ) (cf. (4.21)).

Lemmata 4.26 and 5.12 together yield immediately the following moving average rep-
resentation:

Corollary 5.14. Let Y = (Yt)t∈R be a regularly varying MCARMA(p, q) process of index
α ∈ (1, 2], then Y has the moving average representation

Yt =
1√
2π

∫ ∞

−∞
h(t− µ)L(dµ)

for all t ∈ R, where h(µ) = 1√
2π

∫∞
−∞ eiµsP (is)−1Q(is) ds is given by (4.21).

Remark 5.15.

(i) One can ask the same question as in Chapter 4 whether this definition (spectral
representation) and moving average representation of a regularly varying MCARMA
process coincides in the causal case where σ(A) = N (P ) ⊆ (−∞, 0) + iR with the
definition of causal MCARMA processes made in [41] (cf. Definition 3.15). This is
indeed still the case and can be established in a completely analogous way as in
Chapter 4.
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(ii) For α = 2 we can distinguish the following two cases: if E[‖L1‖2] <∞, then we are in
the setting of Chapter 3 and one can derive a bona fide spectral representation for the
driving Lévy and the associated MCARMA process. If L1 has infinite variance, then
the L2-theory of Chapter 3 is not applicable but we get a spectral representation (in
the summability sense) for the driving Lévy and the associated MCARMA process
according to Theorem 5.6 and Definition 5.13, respectively.



Chapter 6

Mixing of multivariate CARMA
processes

In this chapter we will study mixing properties of the multivariate CARMA processes
considered in Chapter 4 and 5. Let us first recall the notions mixing, weakly mixing and
ergodic.

Let (Xt)t∈R be a real-valued strictly stationary process defined on the canonical space
(RR,F ,P), i.e. F = B(RR). The process (Xt)t∈R is said to be ergodic if

1

T

∫ T

0

P(A ∩ StB) dt
T→∞→ P(A)P(B),

weakly mixing if
1

T

∫ T

0

∣∣P(A ∩ StB)− P(A)P(B)
∣∣ dt T→∞→ 0

and mixing if

P(A ∩ StB)
t→∞→ P(A)P(B) (6.1)

where (St)t∈R is the induced group of shift transformations on RR (i.e. St(xs)s∈R =
(xs−t)s∈R for any (xs)s∈R ∈ RR and t ∈ R) and A,B ∈ F . It is obvious that mixing
implies weakly mixing and weakly mixing implies ergodic, respectively. However, the in-
verse implications are not true in general since in ergodic theory there are examples of
flows (St)t∈R that are weakly mixing, but not mixing and ergodic, but not weakly mixing,
respectively (cf. [19], [45]).

In the same way as in the univariate case we shall call an Rd-valued strictly stationary
process (Xt)t∈R defined on the canonical space

(
(Rd)R,F = B((Rd)R),P

)
mixing if (6.1)

holds for any A,B ∈ F where (St)t∈R is now the group of shift transformations on (Rd)R

defined again by St(xs)s∈R = (xs−t)s∈R for any t ∈ R and (xs)s∈R ∈ (Rd)R.
Usually, the weak mixing property is much closer to mixing than to ergodicity (cf. [51,

Proposition 1]). However, in the case of stationary Gaussian processes, weak mixing and
ergodicity coincide (see [19, Chapter 14 §2]). Podgórski [46] has shown that the same is
true for symmetric stable processes, a result extended by Kokoszka and Podgórski [34] to
symmetric semistable processes. Five years later Rosiński and Żak [51, Theorem 1] have
even proven the equivalence of weak mixing and ergodicity for general stationary infinitely
divisible processes.

The chapter is structured as follows: Section 1 gives a brief summary of important
results concerning mixing and ergodic properties of stationary infinitely divisible pro-
cesses. In particular we recall the characterization of mixing via their Lévy characteristics

73



74 CHAPTER 6. MIXING OF MULTIVARIATE CARMA PROCESSES

which dates back to the fundamental paper by Maruyama [42]. In the second section we
shall generalize these mixing conditions in terms of Lévy characteristics to multivariate
infinitely divisible processes, which is not yet to be found in the literature to the best of
our knowledge. The last section will apply these results in order to prove mixing for the
multivariate SαS and regularly varying CARMA processes of Chapter 4 and 5, respec-
tively. For causal MCARMA processes with finite r-th moment for some r > 0 strong
mixing can already be found in [41, Proposition 3.34] (note that strongly mixing implies
mixing).

6.1 Results for infinitely divisible processes

This section summarizes some results concerning the properties mixing, weak mixing and
ergodicity for real-valued strictly stationary infinitely divisible processes. Recall that a
stochastic process is said to be infinitely divisible if all its finite dimensional margins are
infinitely divisible.

As mentioned in the introduction to this chapter, the description of the mixing prop-
erty for such processes can be characterized in terms of their Lévy characteristics, namely,
Maruyama [42, Theorem 6] showed that an infinitely divisible strictly stationary process
(Xt)t∈R is mixing if and only if

(M1) the covariance function r(t) of its Gaussian part tends to 0 as t→∞,

(M2) lim
t→∞

ν0t(|xy| > δ) = 0 for every δ > 0 and

(M3) lim
t→∞

∫
{0<x2+y2≤1} xy ν0t(dx, dy) = 0

where ν0t is the Lévy measure of L (X0, Xt).
This result has been improved by [38], where the implication (M2)⇒(M3) has been

established.
However, condition (M2) is not very easy to verify even for symmetric stable processes

as mentioned in [50]. Recall that the density of a subset D of the positive half-line is de-
fined by limC→∞ |D ∩ [0, C]| /C if the limit exists, where | · | denotes the one-dimensional
Lebesgue measure. We also recall the following well-known characterization of weak mix-
ing: a stationary stochastic process is weakly mixing iff for any A,B ∈ F there is some
D, a subset of the density one in R+, such that limt→∞, t∈D P(A ∩ StB) = P(A)P(B) (cf.
[51, Proposition 1]). The following theorem provides another useful criterion for (weak)
mixing of infinitely divisible processes:

Theorem 6.1 (cf. [50], Theorem 1 and 3).
Let (Xt)t∈R be a strictly stationary infinitely divisible process s.t. ν0, the Lévy measure of
L (X0), has no atoms in 2πZ. Then (Xt)t∈R

(i) is mixing if and only if lim
t→∞

E[ei(Xt−X0)] =
∣∣E[eiX0 ]

∣∣2 and

(ii) weakly mixing if and only if there is some set D of density one in R+ such that

lim
t→∞, t∈D

E[ei(Xt−X0)] =
∣∣E[eiX0 ]

∣∣2.
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Rosiński and Żak reformulated Theorem 6.1 in terms of the codifference. The latter is
defined for jointly infinitely divisible real random variables X1 and X2 by

τ(X1, X2) := log E[ei(X1−X2)]− log E[eiX1 ]− log E[e−iX2 ].

Hence, the following version of Theorem 6.1 is easily obtained:

Proposition 6.2 (cf. [51], Proposition 4).
Let (Xt)t∈R be a strictly stationary infinitely divisible process s.t. ν0, the Lévy measure of
L (X0), has no atoms in 2πZ. Then (Xt)t∈R

(i) is mixing if and only if τ(t) := τ(X0, Xt) → 0 as t→∞ and

(ii) weakly mixing if and only if there exists a set D of the density one in R+ such that
τ(t) → 0 as t→∞, t ∈ D.

Since SαS and regularly varying MCARMA processes always possess a moving average
representation w.r.t. their driving Lévy processes, we want to recall mixing conditions for
stationary infinitely divisible processes of the form∫

R
ft(s)L(ds), t ∈ R,

with ft(s) : R× R → R, (s, t) 7→ ft(s), measurable and L = (Lt)t∈R a Lévy process in R.
We have the following results:

Theorem 6.3 (cf. [50], Theorem 4, 5 and Remark 4).
Let L = (Lt)t∈R be a Lévy process in R with generating triplet (γ, σ2, ν) and let ft(s) :
R× R → R, (s, t) 7→ ft(s), be measurable. Assume that

Xt :=

∫
R
ft(s)L(ds), t ∈ R,

is a well-defined and strictly stationary infinitely divisible process.

(i) (Xt)t∈R is mixing if and only if

lim
t→∞

{∣∣∣∣∫
R
f0(s)ft(s)σ

2 ds

∣∣∣∣+ ∫
R

∫
R

(
1 ∧ (|f0(s)x| · |ft(s)x|)

)
ν(dx) ds

}
= 0.

(ii) If in addition (Xt)t∈R has no Gaussian part, then it is mixing if and only if, for any
ε > 0,

λ1 ({s ∈ R : |f0(s)| > ε, |ft(s)| > ε}) → 0 as t→∞.

6.2 Generalization to multivariate infinitely divisible

processes

This section is dedicated to the generalization of the results in Section 6.1 to multivariate
infinitely divisible processes. The extension to the multivariate setting is straightforward,
however, since it is not yet to be found in the literature to the best of our knowledge we
shall also give the proofs.

We denote the j-th component of an Rd-valued stochastic process (Xt)t∈R by
(
X

(j)
t

)
t∈R.

In analogy to Theorem 6.1 we will show the following:
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Theorem 6.4. Let (Xt)t∈R be an Rd-valued strictly stationary infinitely divisible process
s.t. ν0, the Lévy measure of L (X0), satisfies

ν0

({
x = (x1, . . . , xd)

′ ∈ Rd : ∃j ∈ {1, . . . , d} , xj ∈ 2πZ
})

= 0. (6.2)

Then (Xt)t∈R is mixing if and only if

lim
t→∞

E
[
e

i
(
X

(j)
t −X

(k)
0

)]
= E

[
eiX

(j)
0

]
· E
[
e−iX

(k)
0

]
(6.3)

for every j, k = 1, . . . , d.

Proof. We follow the proof of [50, Theorem 1].
“⇒”: Let (Xt)t∈R be mixing which implies

E
[
ei〈θ1,X0〉+i〈θ2,Xt〉

] t→∞→ E
[
ei〈θ1,X0〉

]
· E
[
ei〈θ2,X0〉

]
for any θ1, θ2 ∈ Rd (see e.g. [19] or [45]) and in particular, setting (θ1, θ2) = (−ek, ej), j, k =
1, . . . , d, with ej the j-th unit vector in Rd, (6.3) holds.
“⇐”: We will prove the converse. Assume that (6.3) holds for every j, k = 1, . . . , d. Note
first that then

E
[
e

i
(
X

(j)
t +X

(k)
0

)]
t→∞→ E

[
eiX

(j)
0

]
· E
[
eiX

(k)
0

]
(6.4)

holds for every j, k = 1, . . . , d as well (cf. [50, Theorem 1, Step 1]).
We shall prove the following two conditions:

(M1) the covariance matrix function Σ(t) of the Gaussian part of (Xt)t∈R tends to 0 as
t→∞ and

(M2) lim
t→∞

ν0t(‖x‖ · ‖y‖ > δ) = 0 for every δ > 0

where ν0t is the Lévy measure of L (X0, Xt) on (R2d,B(R2d)). Having established (M1)
and (M2), we will conclude with the upcoming Lemma 6.6 which shows that these two
conditions imply mixing.

As to (M1), since (X0, Xt) has a 2d-dimensional infinitely divisible distribution, its
characteristic function can be written, due to the Lévy-Khintchine formula, for every
(θ1, θ2) ∈ Rd × Rd, as

E
[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
= exp

{
i〈
(
θ1

θ2

)
,

(
γ1

γ2

)
〉 − 1

2
〈
(
θ1

θ2

)
,Σ

(
θ1

θ2

)
〉

+

∫
R2d

ei〈θ1,x〉+i〈θ2,y〉 − 1− (i〈θ1, x〉+ i〈θ2, y〉)1[0,1]

(∥∥ (x′, y′)′ ∥∥) ν0t(d(x, y))

}
(6.5)

where γ1, γ2 ∈ Rd, Σ ∈ S+
2d(R) and ν0t is the Lévy measure of L (X0, Xt) on (R2d,B(R2d)).

Since L (X0) = L (Xt), observe that

Σ =

(
Σ(0) Σ(t)
Σ(t)′ Σ(0)

)
(6.6)
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with Σ(t) being the covariance matrix function of the Gaussian part of (Xt)t∈R. If we
denote the generating triplet of L (X0) by (γ,Σ(0), ν0), we can use [54, Proposition 11.10]
in order to deduce

γ1 = γ −
∫

R2d

x
(
1[0,1] (‖x‖)− 1[0,1]

(∥∥ (x′, y′)′ ∥∥)) ν0t(d(x, y)) (6.7)

and

γ2 = γ −
∫

R2d

y
(
1[0,1] (‖y‖)− 1[0,1]

(∥∥ (x′, y′)′ ∥∥)) ν0t(d(x, y)). (6.8)

Putting the results (6.5)-(6.8) together, the characteristic function of (X0, Xt) at the point
(θ1, θ2) ∈ Rd × Rd can be written as

E
[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
= exp

{
i〈θ1 + θ2, γ〉 −

1

2

(
〈θ1,Σ(0)θ1〉+ 2〈θ1,Σ(t)θ2〉+ 〈θ2,Σ(0)θ2〉

)
+

∫
R2d

ei〈θ1,x〉+i〈θ2,y〉 − 1− i〈θ1, x〉1[0,1](‖x‖)− i〈θ2, y〉1[0,1](‖y‖) ν0t(d(x, y))

}
.

(6.9)

By substituting (−ek, ej), (0, ej) and (−ek, 0), j, k = 1, . . . , d, for (θ1, θ2) in (6.9) we
get the description of (6.3) in terms of the covariance matrix function of the Gaussian
part and the Lévy measure ν0t, namely

lim
t→∞

E
[
e

i
(
X

(j)
t −X

(k)
0

)]
·
(
E
[
eiX

(j)
t

]
· E
[
e−iX

(k)
0

])−1

= lim
t→∞

exp

{
σjk(t) +

∫
R2d

(
ei(y(j)−x(k)) − eiy(j) − e−ix(k)

+ 1
)
ν0t(d(x, y))

}
= 1

for arbitrary j, k = 1, . . . , d, where σjk(t) is the (j, k)-th element of Σ(t) and x(k) and y(j)

denote the k-th and j-th element of x and y, respectively. Next, taking logarithms of both
sides and using the identity

Re
(
ei(y−x) − eiy − e−ix + 1

)
= (cosx− 1)(cos y − 1) + sinx sin y

we obtain

lim
t→∞

σjk(t) +

∫
R2d

(
(cosx(k) − 1)(cos y(j) − 1) + sinx(k) sin y(j)

)
ν0t(d(x, y)) = 0 (6.10)

for any j, k = 1, . . . , d.
Starting with (6.4) and using the same arguments as above, we get

lim
t→∞

−σjk(t) +

∫
R2d

(
(cosx(k) − 1)(cos y(j) − 1)− sin x(k) sin y(j)

)
ν0t(d(x, y)) = 0 (6.11)

for every j, k = 1, . . . , d.
Adding (6.10) and (6.11) yields, due to the consistency of Lévy measures (cf. [54,

Proposition 11.10]),

lim
t→∞

∫
R2d

(cosx(k) − 1)(cos y(j) − 1) ν0t(d(x, y))

= lim
t→∞

∫
R2

(cosx− 1)(cos y − 1) ν
(jk)
0t (dx, dy) = 0 (6.12)
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for every j, k = 1, . . . , d, where ν
(jk)
0t denotes the Lévy measure of L

(
X

(k)
0 , X

(j)
t

)
on

(R2,B(R2)).
Now we use a tightness argument. Fix j, k ∈ {1, . . . , d} and observe first that the

family
{
L
(
X

(k)
0 , X

(j)
t

)}
t∈R is tight. Indeed, letting Br := {(x, y) ∈ R2 : x2 + y2 ≤ r2}, we

have by stationarity

P
((
X

(k)
0 , X

(j)
t

)
/∈ Br

)
≤ P

(∣∣X(k)
0

∣∣2 > r2

2

)
+ P

(∣∣X(j)
t

∣∣2 > r2

2

)
= P

(∣∣X(k)
0

∣∣2 > r2

2

)
+ P

(∣∣X(j)
0

∣∣2 > r2

2

)
and hence lim

r→∞
sup
t∈R

P
((
X

(k)
0 , X

(j)
t

)
/∈ Br

)
= 0. Thus, due to the Theorem of Prohorov, the

family is relatively compact (in the topology of weak convergence). Choose any sequence

τn →∞, τn ∈ R, and let Fjk be an accumulation point of
{
L
(
X

(k)
0 , X

(j)
τn

)}
n∈N. Then Fjk

is an infinitely divisible distribution on R2 with some Lévy measure νjk (cf. [54, Lemma
7.8]). Now let (tn)n∈N be a subsequence of (τn)n∈N s.t.

L
(
X

(k)
0 , X

(j)
tn

)
w→ Fjk as n→∞. (6.13)

Then, for every δ > 0 with νjk(∂Bδ) = 0,

ν
(jk)
0tn

∣∣∣
Bc

δ

w→ νjk|Bc
δ

as n→∞ (6.14)

(see for instance Lemma 5.10 or [3]). Since (cos x− 1)(cos y − 1) ≥ 0, we deduce

0 ≤
∫

Bc
δ

(cosx− 1)(cos y − 1) νjk(dx, dy)
(6.14)
= lim

n→∞

∫
Bc

δ

(cosx− 1)(cos y − 1) ν
(jk)
0tn (dx, dy)

≤ lim
n→∞

∫
R2

(cosx− 1)(cos y − 1) ν
(jk)
0tn (dx, dy)

(6.12)
= 0.

Since δ can be taken arbitrarily small we infer that every Lévy measure νjk is concentrated
on {(x, y) ∈ R2 : x ∈ 2πZ or y ∈ 2πZ}.

By the stationarity of the process and (6.13), the projection of νjk onto the first

and second axis coincide with ν
(k)
0 and ν

(j)
0 , respectively, on the complement of every

neighborhood of zero. Hence, by our assumption (6.2) on ν0, for every m ∈ Z, m 6= 0,

νjk ({2πm} × R) = ν
(k)
0 ({2πm}) = ν0(R× . . .× R︸ ︷︷ ︸

k−1

×{2πm} × R× . . .× R︸ ︷︷ ︸
d−k

)

≤ ν0

({
x ∈ Rd : ∃l ∈ {1, . . . , d} , xl ∈ 2πZ

})
= 0

and similarly νjk (R× {2πm}) = 0. This shows that every νjk, j, k = 1, . . . , d, is actu-

ally concentrated on the axes of R2 and on each of them coincides with ν
(k)
0 and ν

(j)
0 ,

respectively.
Now, observe that, for every t ∈ R,∫

Bδ

|xy| ν(jk)
0t (dx, dy) ≤ 1

2

∫
Bδ

(x2 + y2) ν
(jk)
0t (dx, dy)

≤ 1

2

∫
{|x|≤δ}

x2 ν
(k)
0 (dx) +

1

2

∫
{|y|≤δ}

y2 ν
(j)
0 (dy) < ε (6.15)
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for any positive ε and any j, k = 1, . . . , d, if only δ is small enough. Then (6.15) yields,
for every j, k = 1, . . . , d,∫

Bδ

|sin x sin y| ν(jk)
0tn (dx, dy) ≤

∫
Bδ

|xy| ν(jk)
0tn (dx, dy) < ε

for sufficiently small δ > 0 and any n. Since every νjk is concentrated on the axes of R2,

(6.14) implies that limn→∞
∫

Bc
δ
sin x sin y ν

(jk)
0tn (dx, dy) = 0. Thus

lim
n→∞

∫
R2

sin x sin y ν
(jk)
0tn (dx, dy) = 0 (6.16)

for every j, k = 1, . . . , d.
From (6.10), (6.12) and (6.16) we infer that σjk(tn) → 0 as n→∞ for all j, k =

1, . . . , d. Since (tn) is a subsequence of an arbitrary sequence τn → ∞, it follows that
σjk(t) → 0 as t→∞ and thus Σ(t) → 0 as t→∞, i.e. (M1) holds.

To prove (M2), observe that, for any n ∈ N,

ν0tn

(
|x|2 · |y|2︸ ︷︷ ︸

=
∑d

j,k=1(x(k)y(j))
2

> δ2
)
≤

d∑
j,k=1

ν
(jk)
0tn

((
x(k)y(j)

)2
>
δ2

d2

)

≤
d∑

j,k=1

ν
(jk)
0tn

(∣∣x(k)y(j)
∣∣ ≥ δ

d

)
.

Since

lim sup
n→∞

ν
(jk)
0tn

(∣∣x(k)y(j)
∣∣ ≥ δ

d

)
(6.14)

≤ νjk

(∣∣x(k)y(j)
∣∣ ≥ δ

d

)
= 0

for every j, k = 1, . . . , d, we deduce limn→∞ ν0tn (|x| · |y| > δ) = 0 for every δ > 0.
Again, since (tn) is a subsequence of any arbitrary sequence τn → ∞, it follows that
limt→∞ ν0t (|x| · |y| > δ) = 0 for every δ > 0 and thus also limt→∞ ν0t (‖x‖ · ‖y‖ > δ) = 0
for any δ > 0 and any norm ‖ ·‖, i.e. (M2) is shown.

As already mentioned at the beginning of the proof, we can now conclude with the
upcoming Lemma 6.6.

In order to establish Lemma 6.6 we need the following multivariate generalization of [38,
Lemma 1].

Lemma 6.5.
Assume that limt→∞ ν0t (‖x‖ · ‖y‖ > δ) = 0 for every δ > 0. Then one also has

(M3) lim
t→∞

∫
{0<‖x‖2+‖y‖2≤1} ‖x‖ · ‖y‖ ν0t(d(x, y)) = 0.

Proof. Fix ε > 0 and define for any δ ∈ (0, 1) the sets

Bδ :=
{
(x, y) ∈ Rd × Rd : ‖x‖2 + ‖y‖2 ≤ δ2

}
and Rδ := B1\Bδ. Then, for every δ ∈ (0, 1),∫

{0<‖x‖2+‖y‖2≤1}
‖x‖ · ‖y‖ ν0t(d(x, y))

=

∫
Bδ

‖x‖ · ‖y‖ ν0t(d(x, y)) +

∫
Rδ

‖x‖ · ‖y‖ ν0t(d(x, y)) =: I1 + I2.
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Taking advantage of stationarity of (Xt)t∈R, we obtain

|I1| ≤
1

2

∫
Bδ

‖x‖2 + ‖y‖2 ν0t(d(x, y))

≤ 1

2

(∫
{‖x‖≤δ}

‖x‖2 ν0t(d(x, y)) +

∫
{‖y‖≤δ}

‖y‖2 ν0t(d(x, y))

)
=

∫
{‖x‖≤δ}

‖x‖2 ν0(dx) ≤
ε

2

for every δ sufficiently small.
We fix such a δ and set l := min {δ/2, ε/8q} with q := ν0

({
‖x‖2 > δ2/2

})
< ∞ and

C := Rδ ∩ {‖x‖ · ‖y‖ > l}. Then

|I2| =
∫

C

‖x‖ · ‖y‖ ν0t(d(x, y)) +

∫
Rδ\C

‖x‖ · ‖y‖ ν0t(d(x, y)) ≤
1

2
ν0t(C) +

ε

8q
ν0t(Rδ\C)

≤ 1

2
ν0t(C) +

ε

8q

[
ν0t

(
‖x‖2 >

δ2

2

)
+ ν0t

(
‖y‖2 >

δ2

2

)]
≤ 1

2
ν0t (‖x‖ · ‖y‖ > l) +

ε

4
.

Since ν0t (‖x‖ · ‖y‖ > l) ≤ ε/2 if only t is large enough, we obtain∫
{0<‖x‖2+‖y‖2≤1}

‖x‖ · ‖y‖ ν0t(d(x, y)) ≤ ε

for sufficiently large t. Letting ε↘ 0, we obtain the desired result.

The next lemma shows that conditions (M1) and (M2) together imply mixing and thus
concludes the proof of Theorem 6.4.

Lemma 6.6.
Let (Xt)t∈R be an Rd-valued strictly stationary infinitely divisible process. Assume that

(M1) the covariance matrix function Σ(t) of its Gaussian part tends to 0 as t→∞ and

(M2) lim
t→∞

ν0t (‖x‖ · ‖y‖ > δ) = 0 for every δ > 0.

Then the process (Xt)t∈R is mixing.

Proof. Note first that, due to Lemma 6.5, also condition (M3) holds. We follow the proof
of Theorem 6 in [42]. We shall denoteXτ = (X ′

s1
, . . . , X ′

sm
)′ for any τ = (s1, . . . , sm)′ ∈ Rm.

Then (cf. [42]) it is sufficient for (Xt)t∈R to be mixing that for all τ = (s1, . . . , sm)′, µ =
(u1, . . . , um)′ ∈ Rm and z1, z2 ∈ Rmd,

lim
t→∞

E
[
ei〈z1,Xτ 〉+i〈z2,Xµ+t〉

]
= E

[
ei〈z1,Xτ 〉

]
· E
[
ei〈z2,Xµ〉

]
(6.17)

where µ+ t = (u1 + t, . . . , um + t)′.
The family of R2md-valued infinitely divisible random vectors {(Xτ , Xµ+t)}t∈R is tight.

Therefore let Br :=
{
x ∈ R2md : |x|2 ≤ r2

}
. Then

P
(
(Xτ , Xµ+t) /∈ B√

2mr

)
≤

m∑
j=1

P
(∣∣Xsj

∣∣ > r
)

+ P
(∣∣Xuj+t

∣∣ > r
)

= 2m · P (|X0| > r) → 0
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as r → ∞. Hence the family is relatively compact w.r.t. the weak topology (i.e. the
topology generated by weak convergence).

Let (γ1,Σ1, ν1) and (γ2,Σ2, ν2) be the characteristic triplets of L (Xτ ) and L (Xµ),
respectively. Consider an arbitrary sequence ηn ∈ R, ηn →∞ and an accumulation point
F of the associated sequence {L (Xτ , Xµ+ηn)}n∈N as n→∞, i.e. there is a subsequence
(tn)n∈N of (ηn)n∈N s.t.

L (Xτ , Xµ+tn)
w→ F as n→∞

where the accumulation point F is obviously (cf. [54, Lemma 7.8]) an infinitely divisible
distribution on R2md with some generating triplet (γ,Σ, ν). We denote by (γn,Σn, νn) the
characteristic triplet of L (Xτ , Xµ+tn) for any n ∈ N and by Φn(z1, z2) its characteristic
function at the point (z1, z2) ∈ Rmd×Rmd. The logarithm of Φn can be written (cf. proof
of Theorem 6.4) as

log Φn(z1, z2) = i〈
(
z1

z2

)
,

(
γ1

γ2

)
〉 − 1

2
〈
(
z1

z2

)
,Σn

(
z1

z2

)
〉

+

∫
{|x|<δ, |y|<δ}

ei〈z1,x〉+i〈z2,y〉 − 1− i〈z1, x〉1[0,1](‖x‖)− i〈z2, y〉1[0,1](‖y‖) νn(d(x, y))

+

∫
{|x|≥δ or |y|≥δ}

ei〈z1,x〉+i〈z2,y〉 − 1− i〈z1, x〉1[0,1](‖x‖)− i〈z2, y〉1[0,1](‖y‖) νn(d(x, y))

=: I1 + I2 + I3 + I4.

We shall prove that log Φn(z1, z2) → log Φ1(z1) + log Φ2(z2) as n→∞ for all z1, z2 ∈ Rmd

where Φ1 and Φ2 are the characteristic functions of Xτ and Xµ, respectively.

Obviously I1 = i〈z1, γ
1〉 + i〈z2, γ

2〉 and due to the assumption (M1) the second term
I2 converges to −1/2〈z1,Σ

1z1〉 − 1/2〈z2,Σ
2z2〉 as n→∞.

As to I4, we have (cf. (6.14))

I4
n→∞→

∫
{|x|≥δ or |y|≥δ}

ei〈z1,x〉+i〈z2,y〉 − 1− i〈z1, x〉1[0,1](‖x‖)− i〈z2, y〉1[0,1](‖y‖) ν(d(x, y))

=

∫
{|x|≥δ}

ei〈z1,x〉 − 1− i〈z1, x〉1[0,1](‖x‖) ν1(dx)

+

∫
{|y|≥δ}

ei〈z2,y〉 − 1− i〈z2, y〉1[0,1](‖y‖) ν2(dy)

since, letting x =
(
x(1)′, . . . , x(m)′)′ ∈ (Rd

)m
and y =

(
y(1)′, . . . , y(m)′)′ ∈ (Rd

)m
,

ν (|x| · |y| > δ) ≤ lim inf
n→∞

νn (|x| · |y| > δ)

≤ lim inf
n→∞

m∑
j,k=1

ν0,uk−sj+tn

(∣∣x(j)
∣∣ · ∣∣y(k)

∣∣ > δ

m

)
(M2)
= 0

for any δ > 0 which shows in particular that ν(|x| · |y| > 0) = 0.

Analogously to x and y we denote the Rd-components of z1 and z2 by z
(j)
1 and z

(j)
2 ,
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respectively. Concerning I3, a simple Taylor expansion yields for any δ > 0 small enough

I3 = −1

2

[∫
{|x|<δ, |y|<δ}

(
m∑

j=1

〈z(j)
1 , x(j)〉

)2

+

(
m∑

j=1

〈z(j)
2 , y(j)〉

)2

νn(d(x, y))

+ 2

∫
{|x|<δ, |y|<δ}

(
m∑

j,k=1

〈z(j)
1 , x(j)〉〈z(k)

2 , y(k)〉

)
νn(d(x, y))

]
+R

with

6 |R| ≤
∫
{|x|<δ, |y|<δ}

|〈z1, x〉+ 〈z2, y〉|3 + o
((
|x|2 + |y|2

)3/2
)
νn(d(x, y))

≤
∣∣∣∣(z1

z2

)∣∣∣∣3 · √2 ·
∫
{|x|<δ, |y|<δ}

∣∣∣∣(xy
)∣∣∣∣3 νn(d(x, y))

≤
∣∣∣∣(z1

z2

)∣∣∣∣3 · 2δ · (∫
{0<|x|<δ}

|x|2 ν1(dx) +

∫
{0<|y|<δ}

|y|2 ν2(dy)

)
and thus 6 |R| < ε for any positive ε if only δ is small enough. Moreover, for again
sufficiently small δ > 0 and every j, k = 1, . . . ,m,∫

{|x|<δ, |y|<δ}

∣∣∣〈z(j)
1 , x(j)〉〈z(k)

2 , y(k)〉
∣∣∣ νn(d(x, y))

≤
∣∣z(j)

1

∣∣ · ∣∣z(k)
2

∣∣ · ∫
{|x|<δ, |y|<δ}

∣∣x(j)
∣∣ · ∣∣y(k)

∣∣ νn(d(x, y))

≤
∣∣z(j)

1

∣∣ · ∣∣z(k)
2

∣∣ · ∫
{0<‖x(j)‖2+‖y(k)‖2≤1}

∣∣x(j)
∣∣ · ∣∣y(k)

∣∣ ν0,uk−sj+tn

(
d
(
x(j), y(k)

))
n→∞→ 0

by virtue of (M3). Finally∣∣∣∣∣12
∫
{|x|<δ, |y|<δ}

〈z1, x〉2 νn(d(x, y)) +

∫
{0<|x|<δ}

ei〈z1,x〉 − 1− i〈z1, x〉1[0,1](‖x‖) ν1(dx)

∣∣∣∣∣
≤ J1 + J2

with

J1 =

∣∣∣∣12
∫
{0<|x|<δ, |y|<δ}

〈z1, x〉2 νn(d(x, y))− 1

2

∫
{0<|x|<δ}

〈z1, x〉2 νn(d(x, y))

∣∣∣∣
≤
∫
{0<|x|<δ, |y|≥δ}

〈z1, x〉2 νn(d(x, y)) ≤ |z1|2 ·
∫
{0<|x|<δ}

|x|2 ν1(dx)

and

J2 =

∣∣∣∣12
∫
{0<|x|<δ}

〈z1, x〉2 νn(d(x, y)) +

∫
{0<|x|<δ}

ei〈z1,x〉 − 1− i〈z1, x〉1[0,1](‖x‖) ν1(dx)

∣∣∣∣
=

∣∣∣∣∫
{0<|x|<δ}

1

2
〈z1, x〉2 + ei〈z1,x〉 − 1− i〈z1, x〉1[0,1](‖x‖) ν1(dx)

∣∣∣∣
≤ |z1|3 δ ·

∫
{0<|x|<δ}

|x|2 ν1(dx).
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An analogous result is obviously true for the second addend of the first term of I3.
Putting all this together we obtain

lim
n→∞

log Φn(z1, z2) = log Φ1(z1) + log Φ2(z2) for all z1, z2 ∈ Rmd

and thus the desired result in (6.17) which completes the proof.

From the foregoing results we can derive the following corollary:

Corollary 6.7. Let (Xt)t∈R be an Rd-valued strictly stationary infinitely divisible process.
Then, with the previous notation, (Xt)t∈R is mixing iff

lim
t→∞

{
‖Σ(t)‖+

∫
R2d

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y))

}
= 0. (6.18)

Proof. Obviously (6.18) implies (M1) and (M2) and thus, due to Lemma 6.6, (6.18)
implies mixing.

Conversely, if (Xt)t∈R is mixing, then by investigating again Theorem 6.4 and Lemma
6.6 (and their proofs) we know that (M1) holds. Moreover (cf. (6.14))

ν
(jk)
0t

∣∣∣
Bc

δ

w→ νjk|Bc
δ

as t→∞ (6.19)

for every δ > 0 s.t. νjk(∂Bδ) = 0 and any j, k = 1, . . . , d. From the proof of Theorem
6.4 we further know that the Lévy measures νjk are concentrated on the axes of R2. Now
choose δ > 0 s.t. (6.15) and (6.19) hold, then we have

lim sup
t→∞

∫
R2

(1 ∧ |xy|) ν(jk)
0t (dx, dy) ≤ ε+ lim sup

t→∞

∫
Bc

δ

(1 ∧ |xy|) ν(jk)
0t (dx, dy) = ε.

Letting ε ↘ 0 we deduce limt→∞
∫

R2 (1 ∧ |xy|) ν(jk)
0t (dx, dy) = 0 for any j, k = 1, . . . , d.

Finally∫
R2d

(
1 ∧

d∑
k=1

|xk| ·
d∑

j=1

|yj|

)
ν0t(d(x, y)) ≤

d∑
j,k=1

∫
R2d

(1 ∧ |xkyj|) ν0t(d(x, y))

=
d∑

j,k=1

∫
R2

(1 ∧ |xy|) ν(jk)
0t (dx, dy)

t→∞→ 0.

This clearly implies limt→∞
∫

R2d (1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) = 0 as well and hence (6.18) is
shown.

In view of an application to MCARMA processes in the upcoming section, we now
consider a stationary infinitely divisible process of the form∫

R
ft(s)L(ds), t ∈ R,

where L = (Lt)t∈R is a Lévy process in Rd and ft(s) : R → Mk×d(R), (s, t) 7→ ft(s), is
measurable (cf. end of Section 6.1 for the univariate mixing results in such a case).
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Theorem 6.8. Let (Xt)t∈R
D
=
(∫

R ft(s)L(ds)
)

t∈R be a strictly stationary infinitely divisible

process where L = (Lt)t∈R is a Lévy process in Rd with generating triplet (γ,Σ, ν) and
ft(s) : R →Mk×d(R), (s, t) 7→ ft(s), is measurable. Then (Xt)t∈R is mixing iff

lim
t→∞

{∥∥∥∥∫
R
f0(s)Σft(s)

′ds

∥∥∥∥+

∫
R

∫
Rd

(1 ∧ ‖f0(s)x‖ · ‖ft(s)x‖) ν(dx) ds
}

= 0.

Proof. Since we can write(
X0

Xt

)
=

∫
R

(
f0(s)
ft(s)

)
L(ds), t ∈ R,

we immediately obtain the covariance matrix function of the Gaussian part of (Xt)t∈R (cf.
(2.8)) by

Σ(t) =

∫
R
f0(s)Σft(s)

′ds, t ∈ R.

The Lévy measure ν0t of L (X0, Xt) is given (cf. (2.9)) by

ν0t(A) =

∫
R

∫
Rd

1A(f0(s)x, ft(s)x) ν(dx) ds, A ∈ B(R2k
∗ ).

Thus ∫
R2k

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) =

∫
R

∫
Rd

(1 ∧ ‖f0(s)x‖ · ‖ft(s)x‖) ν(dx) ds

and Corollary 6.7 completes the proof.

6.3 Application to MCARMA processes

Let us now consider a SαS or a regularly varying MCARMA(p, q) process (Yt)t∈R which
can be represented as the moving average

Yt =

∫ ∞

−∞
f(t− s)L(ds), t ∈ R, (6.20)

with kernel function

f(s) =
1

2π

∫
R
eiµsP (iµ)−1Q(iµ) dµ, s ∈ R,

where P and Q are the autoregressive and moving average polynomial, respectively. The
Lévy process L is accordingly supposed to be SαS or regularly varying.

Applying [1, Theorem 4.3.16] immediately yields strict stationarity of SαS and reg-
ularly varying MCARMA processes. The moving averages in (6.20) are in particular in-
finitely divisible processes. We get the following analogue to [41, Proposition 3.27]:

Proposition 6.9. If the driving Lévy process has generating triplet (γ,Σ, ν), then the
distribution of the MCARMA process Yt in (6.20) is infinitely divisible for all t ∈ R and
the generating triplet of the stationary distribution is (γ∞Y ,Σ

∞
Y , ν

∞
Y ) where

γ∞Y =

∫
R
f(s)γ ds+

∫
R

∫
Rd

f(s)x
(
1{‖f(s)x‖≤1} − 1{‖x‖≤1}

)
ν(dx) ds,
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Σ∞
Y =

∫
R
f(s)Σf(s)′ds

and

ν∞Y (A) =

∫
R

∫
Rd

1A(f(s)x) ν(dx) ds, A ∈ B(Rd
∗).

We use Theorem 6.8 in order to derive the mixing property (and thus also weak mixing
and ergodicity) for the MCARMA processes in (6.20). Observe first (see (4.21)) that

‖f(t− s)‖ ≤ C

for some C > 0 and any t, s ∈ R. Then, for some c > 0,∥∥∥∥∫
R
f(−s)Σf(t− s)′ds

∥∥∥∥ ≤ c ‖Σ‖ ·
∫

R
‖f(−s)‖ · ‖f(t− s)‖ ds t→∞→ 0

due to the Dominated Convergence Theorem since the integrand converges pointwise to
0 as t → ∞ and can be bounded by C · ‖f(−s)‖ which is an integrable majorant. The
second condition in Theorem 6.8, namely∫

R

∫
Rd

(1 ∧ ‖f(−s)x‖ · ‖f(t− s)x‖) ν(dx) ds t→∞→ 0, (6.21)

is verified in the following lemma. Hence, Theorem 6.8 yields the mixing property for SαS
and regularly varying MCARMA processes.

Lemma 6.10.
The SαS (or alternatively regularly varying) MCARMA process satisfies (6.21).

Proof. First note that, for any ε > 0,

λ1 ({s ∈ R : ‖f(−s)‖ > ε, ‖f(t− s)‖ > ε}) t→∞→ 0. (6.22)

Indeed, for any ε > 0 there is some nε ∈ N such that

{s ∈ R : ‖f(−s)‖ > ε} ⊆ [−nε, nε]

since f(−s) → 0 as s→ ±∞. Thus, for any t > 2nε,

λ1({s ∈ R : ‖f(−s)‖ > ε, ‖f(t− s)‖ > ε})
≤ λ1 ({s ∈ [−nε, nε] : ‖f(t− s)‖ > ε}) = 0.

Now fix an arbitrary ε > 0. We set Br :=
{
(x, y) ∈ Rd × Rd : ‖x‖2 + ‖y‖2 ≤ r2

}
. Note

that in order to establish (6.14) we did not use the assumption that the process is mixing.
Hence there is some R > 1 and some t0 > 0 s.t.

sup
t≥t0

ν0t(B
c
R) ≤ ε.

Thus, for any t ≥ t0,∫
R

∫
Rd

(1 ∧ ‖f(−s)x‖ · ‖f(t− s)x‖) ν(dx) ds =

∫
R2d

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y))

≤
∫

BR

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) + ε.
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Then, for any δ > 0,∫
BR

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y))

=

∫
{‖f(−s)‖≤δ}∪{‖f(t−s)‖≤δ}

∫
{(f(−s)x,f(t−s)x)∈BR}

(1 ∧ ‖f(−s)x‖ · ‖f(t− s)x‖) ν(dx) ds

+

∫
{‖f(−s)‖>δ, ‖f(t−s)‖>δ}

∫
{(f(−s)x,f(t−s)x)∈BR}

(1 ∧ ‖f(−s)x‖ · ‖f(t− s)x‖) ν(dx) ds

=: I1 + I2.

Since
min{‖u‖ · ‖v‖ , 1} ≤ R ·min{‖u‖ , 1} ·min{‖v‖ , 1},

provided that max{‖u‖ , ‖v‖} ≤ R, we obtain

I1 ≤ R ·
∫
{‖f(−s)‖≤δ}∪{‖f(t−s)‖≤δ}

∫
Rd

(1 ∧ ‖f(−s)x‖) · (1 ∧ ‖f(t− s)x‖) ν(dx) ds

≤ R ·
(∫

{‖f(−s)‖≤δ}

∫
Rd

(
1 ∧ ‖f(−s)x‖2) ν(dx) ds)1/2

×
(∫

R

∫
Rd

(
1 ∧ ‖f(t− s)x‖2) ν(dx) ds)1/2

+R ·
(∫

R

∫
Rd

(
1 ∧ ‖f(−s)x‖2) ν(dx) ds)1/2

×
(∫

{‖f(t−s)‖≤δ}

∫
Rd

(
1 ∧ ‖f(t− s)x‖2) ν(dx) ds)1/2

= R ·
(∫

{‖f(−s)‖≤δ}

∫
Rd

(
1 ∧ ‖f(−s)x‖2) ν(dx) ds)1/2

×

{(∫
Rd

(
1 ∧ ‖y‖2) νt(dy)

)1/2

+

(∫
Rd

(
1 ∧ ‖y‖2) ν0(dy)

)1/2
}

= 2R ·
(∫

Rd

(
1 ∧ ‖y‖2) ν0(dy)

)1/2

·
(∫

{‖f(−s)‖≤δ}

∫
Rd

(
1 ∧ ‖f(−s)x‖2) ν(dx) ds)1/2

≤ ε

if only δ is sufficiently small. Now fix such a δ and consider I2. Analogously, one obtains

I2 ≤ R ·
(∫

{‖f(−s)‖>δ, ‖f(t−s)‖>δ}

∫
Rd

(
1 ∧ ‖f(−s)x‖2) ν(dx) ds)1/2

×
(∫

R

∫
Rd

(
1 ∧ ‖f(t− s)x‖2) ν(dx) ds)1/2

= R ·
(∫

Rd

(
1 ∧ ‖y‖2) ν0(dy)

)1/2

×
(∫

{‖f(−s)‖>δ, ‖f(t−s)‖>δ}

∫
Rd

(
1 ∧ ‖f(−s)x‖2) ν(dx) ds)1/2
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where the right-hand side converges to 0 as t→∞ by virtue of (6.22) and thus (6.21) is
shown.
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[16] S. Cambanis and C. Houdré, Stable processes: moving averages versus Fourier trans-
forms, Probability Theory and Related Fields 95 (1993), 75–85.

[17] S. Cambanis and M. Maejima, Two classes of self-similar stable processes with sta-
tionary increments, Stochastic Processes and their Applications 32 (1989), 305–329.

[18] S. Cambanis and A. R. Soltani, Prediction of Stable Processes: Spectral and Moving
Average Representations, Probability Theory and Related Fields 66 (1984), 593–612.

[19] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Grundlehren der
mathematischen Wissenschaften, vol. 245, Springer-Verlag, New York, 1982.

[20] J. L. Doob, The Elementary Gaussian Processes, Annals of Mathematical Statistics
15 (1944), 229–282.

[21] , Stochastic Processes, John Wiley & Sons, New York, 1953.

[22] R. M. Dudley, Fourier Analysis of Sub-Stationary Processes with a Finite Moment,
Transactions of the American Mathematical Society 118 (1965), 360–375.

[23] , Sub-stationary processes, Pacific Journal of Mathematics 20 (1967), 207–215.
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