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Abstract

Generalized estimating equations (GEE) fit parameters based on sums of weighted

residuals, which may be applied for example to the Poisson distribution. We discuss

Generalized Poisson (GP) response data. This distribution has a more flexible variance

function than the Poisson distribution and has an additional dispersion parameter. To fit

this parameter, second level estimating equations based on covariance residuals are neces-

sary. This requires knowledge of variances of empirical covariances, which for most discrete

distributions except the binary cannot be derived from first level GEE. We approximate

them by a novel approach. We allow for regression on mean and overdispersion parame-

ters. In an application we deal with the outsourcing of patent filing processes. Exploratory

data analysis tools developed earlier by the authors are utilized to choose regression for

the dispersion parameters. For the given data, our approach will outperform longitudinal

Poisson regression and GP setups with constant dispersion.
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make-or-buy decision; overdispersion
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1 Introduction

This paper considers longitudinal setups for generalized Poisson (GP) data using GEE. The GP

distribution has first been introduced by Consul & Jain (1970). GP regression models were dis-

cussed by Consul & Famoye (1992) and Famoye (1993). Famoye et al. (2004) apply generalized

Poisson regression to accident data, whereas Famoye & Singh (2003) develop a zero-inflated

generalized Poisson regression model. A multivariate generalization of the generalized Poisson

distribution capable of modeling exchangeable covariance structures has been developed by Ver-

nic (2000) and is applied to insurance. Statistical inference regarding the generalized Poisson

distribution is done by Tripathi & Gupta (1984). A Bayesian analysis is carried out by Scollnik

(1995) and Gschlößl & Czado (2008). The interest in the class of GP models is driven by the

fact that it can handle overdispersion, which count data very often exhibits. Here we allow

for regression effects not only on the mean but on the overdispersion parameter as well. This

allows to model overdispersion by individual characteristics (e.g. by a company’s industry) and

improve model fit when constant dispersion is insufficient. The GP distribution is a hyper model

of the Poisson distribution which allows for nested model comparison if the mean specifications

are hierarchical. Its variance function can be written as a product of the mean and an indepen-

dent dispersion parameter, which allows for simple second moment regression specifications. In

contrast to the GP distribution the variance of the negative binomial distribution is a product of

the mean and a dispersion factor, which depends on both the mean and a dispersion parameter.

GEE have been introduced by Liang & Zeger (1986). Second level GEE (Prentice & Zhao

(1991)) allow to determine variance parameters as well. Yan & Fine (2004) consider generalized

estimating equations for the Poisson distribution. An implementation can be found in the R

package ’geepack’ (see Yan (2002)). For the conditional fixed-effects negative binomial distri-

bution, generalized estimating equations are implemented in Stata (StataCorp (2007)). Hilbe

(2007, Section 10.4) emphazises that in this setup the dispersion parameter is not estimated as

a separate parameter, it is apportioned across panels.

A comparison of three models starting with the regular Poisson GEE extended by dispersion

designs will be carried out in this paper. Since these models might be nonnested, partial

deviance, likelihood ratio tests or AIC are not applicable. Instead we use the ’quasilikelihood

under independence criterion’ (QIC) introduced by Pan (2001) for variable selection and the

Wald-Wolfowitz run test (Chang (2000)) for assessing the goodness-of-fit.

The usefulness of our extensions will be demonstrated in an application to make-or-buy

decision drivers in the field of patent filing processes. This data has already been examined by
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Wagner (2006b), who used negative binomial panel regression to fit the data. Wagner (2006a)

applies Transaction Cost Economics and a resource based view on make-or-buy decisions of

patent related services. Czado et al. (2007) apply zero-inflated generalized Poisson (ZIGP)

regression to this data and present tools for an exploratory data analysis to select covariates

on the dispersion level, which will also be used in this paper. While in the ZIGP paper the

observation year was conditioned on by considering it as a covariate, this temporal dependency

will actually be quantified in this paper.

The paper is innovative with regard to the following aspects: first of all, despite its advan-

tages over the negative binomial distribution, the GP distribution has not been considered in

the context of GEE. Thereby we suggest an approach to approximate higher mixed moments

for second level estimating equations. Secondly the GP distribution allows to let the dispersion

parameter vary with covariates thus to identify covariate combinations where one finds large

and small overdispersion effects. The dispersion coefficients will be estimated using second-level

estimating equations. Thirdly, a closer look at the patent data including a quantification of the

time dependency will be taken.

The paper is organized as follows: Section 2 gives a short review of the GP distribution.

Section 3 introduces our GP regression setup. In Section 4, we show how the GEE approach

by Liang & Zeger (1986) and the extensions by Prentice & Zhao (1991) can be applied to

estimate parameters in our setup. A simulation study investigating small sample properties will

be given in Section 5 showing a satisfactory behaviour for medium sample sizes. Subsection

6.1 reviews the variable selection criterion for panel data by Pan (2001) while in Subsection 6.2

an overview of our extensions to GEE techniques applied to longitudinal Poisson data is given

and the goodness-of-fit will be compared for the different setups. Section 7 applies our findings

to patent outsourcing data and interprets the results of our ’best’ model. We conclude with a

summary and discussion section.

2 The Generalized Poisson distribution

The generalized Poisson distribution GP (µ, ϕ) was first introduced by Consul & Jain (1970) and

subsequently studied in detail by Consul (1989). Here we will utilize the mean parametrization

(see e.g. Consul & Famoye (1992)). For Y ∼ GP (µ, ϕ) we have Var(Y ) > (=, <) E(Y ) ⇔

ϕ > (=, <) 1. This allows for modeling over-, equi- and underdispersion. Its probability mass
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function (pmf) is given by

P (Y = y| µ, ϕ) =





µ(µ+(ϕ−1)y)y−1

y!
ϕ−ye−

1

ϕ
(µ+(ϕ−1)y) y = 0, 1, 2...

0 y > m, if ϕ < 1
(2.1)

where ϕ > max(1
2
, 1− µ

m
) and m is the largest natural number with µ+m(ϕ− 1) > 0, if ϕ < 1.

Hence, in the case of underdispersion (ϕ < 1), the support of the distribution depends on µ and

ϕ, which is difficult to enforce when µ and ϕ need to be estimated. In the regression context

this fact implies that the support of a link function for ϕ depends on µ. Therefore, we restrict

to the case of overdispersion. Mean and variance of Y ∼ GP (µ, ϕ) are given by E(Y |µ, ϕ) = µ

and Var(Y |µ, ϕ) = µϕ2. The GP distribution does not belong to the exponential family even if

the dispersion parameter ϕ is known.

3 A GEE setup for longitudinal count data

Assume we have longitudinal responses Yit for t = 1, . . . , T time points and i = 1, . . . , K subjects,

which we arrange as follows:

Y11 . . . Y1T Y 1∼ ∈ N
T
0

...
...

... (independent random vectors)

YK1 . . . YKT Y K∼ ∈ N
T
0

Y ∼1 ∈ N
K
0 . . . Y ∼T ∈ N

K
0

.

Here Y i := Y i∼ = (Yi1, . . . , YiT )
′ summarizes the T dimensional vector of dependent variables

for subject i. Observations from different subjects are assumed to be independent. Similarly

Y ∼t := (Y1t, . . . , YKt)
′ ∈ N

K
0 collects the i.i.d. marginal data at time point t. Moreover let

µi(β) := E(Y i | β) ∈ R
T denote the vector of means of subject i. Variances are given by

σ2
it(δ) := Var(Yit|δ) with δ being a vector summarizing all parameters which influence the

variance. Correlations are modeled by a ’working correlation matrix’ R1(λ1) = (ρtt∗(λ1)) ∈

[−1, 1]T×T for Y i, which will be equal for all subjects. Without loss of generality, assume

a scalar λ1 ∈ [−1, 1], which allows for the most common correlation structures used in the

literature. We investigate two specifications for R1(λ1), i.e.

• exchangeable: ρtt∗(λ1) = λ1 and ρtt(λ1) = 1, λ1 ∈ (−1, 1),

• first-order autoregressive AR(1): ρtt∗(λ1) = λ
|t−t∗|
1 and ρtt(λ1) = 1, λ1 ∈ (−1, 1).
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Collecting all observations in a vector Y := (Y ′
1, . . . ,Y

′
K)

′ the correlation matrix of Y is

Corr(Y ) =




R1(λ1) 0T×T . . . 0T×T

0T×T R1(λ1) 0T×T

...
. . .

...

0T×T 0T×T . . . R1(λ1)




∈ R
KT×KT . (3.1)

The advantage of using a GEE approach is that one does not need to specify the joint distribution

of Y ∈ R
K×T but it is enough to specify the first two moments of the distribution. For

t = 1, . . . , T we assume the following marginal specification for Y ∼t ∼ GP (µ∼t,ϕ∼t) where

µ∼t := (µ1t, . . . , µKt)
′ and ϕ∼t := (ϕ1t, . . . , ϕKt)

′, i.e. we have E(Y ∼t) = µ∼t and

Var(Y ∼t) =




µ1tϕ
2
1t . . . 0

...
. . .

...

0 . . . µKtϕ
2
Kt


 . (3.2)

Since for some data a constant overdispersion parameter might be too restrictive, we allow for

regression on both mean and overdispersion parameters. Thereby, we use (known) explanatory

variables xit = (1, xit1, . . . , xitp)
′ for the mean and wit = (1, wit1, . . . , witq)

′ for overdispersion,

i = 1, . . . , K, t = 1, . . . , T .

Another possibility for specifying the influence of regressors on the distribution’s hetero-

geneity would be to regress on the variances directly. However, this would imply that we would

have to set ϕit :=
√

Var(Yit)
E(Yit)

which might fall below 1 for some observations. According to the

definition of the underdispersed GP distribution in Section 2, in this case ϕit > max(1
2
, 1− µit

mit
)

needs to be fulfilled and the cumulative sum of probabilities needs not be 1 (see Consul & Jain

(1970, p. 4)). Therefore we prefer to regress on the overdispersion parameter itself. In order to

specify appropriate regression models for the overdispersion parameter, we utilize tools for an

exploratory data analysis suggested by Czado et al. (2007, Section 5), which will be illustrated

in Section 7.1. Finally we allow individual (known) exposure variables Eit > 0. The complete

specification is given by:

1. Random components:

Let Yit ∼ GP (µit, ϕit), where {Yit, 1 ≤ i ≤ K, 1 ≤ t ≤ T} are independent over all i and

dependent with correlation matrix R1(λ1) for t = 1, . . . , T .
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2. Systematic components:

Two linear predictors ηµit(β) = x′
itβ and ηϕit(α) = w′

itα, i = 1, . . . , K, t = 1, . . . , T influ-

ence the response Yit. Here, β = (β0, β1, . . . , βp)
′ and α = (α0, α1, . . . , αq)

′ are unknown

regression parameters. The matrices X i = (xi1, . . . ,xiT )
′ and W i = (wi1, . . . ,wiT )

′ are

the corresponding design matrices.

3. Parametric link components:

The linear predictors ηµit(β) and ηϕit(α) are related to µit(β) and ϕit(α), i = 1, . . . , K,

t = 1, . . . , T as follows:

(i) Mean level

E(Yit | β) = µit(β) := Eite
x′

itβ = ex
′

itβ+log(Eit) > 0

⇔ ηµit(β) = log(µit(β))− log(Eit) (log link), (3.3)

(ii) Overdispersion level

ϕit(α) := 1 + ew
′

itα > 1

⇔ ηϕit(α) = log(ϕit(α)− 1)) (shifted log link). (3.4)

This setup for longitudinal count regression data {Yit, i = 1, . . . , K; t = 1, . . . , T} we denote

by GP (µit, ϕit,R1(λ1)). To be precise this is not a complete statistical formulation, since only

the margins and the covariance structure are specified. This however is sufficient for estimation

using a GEE approach. The following abbreviations will be used:

ρtt∗
(
λ1(γ)

)
:= [R1(λ1(γ))]tt∗ = Corr(Yit, Yit∗), t 6= t∗,

λ1(γ) := e2γ−1
e2γ+1

= tanh(γ) ∈ (−1, 1), γ ∈ R, where

λ1(γ) is the parameter of the working correlation matrix,

δ := (β′,α′, γ)′ ∈ R
p+q+3, β ∈ R

p+1, α ∈ R
q+1,

Eit := known exposure of observation i at time t,

µit(β) := ex
′

itβ+log(Eit),

ϕit(α) := 1 + ew
′

itα = 1 + bit(α), bit(α) := ew
′

itα

The Fisher Z-transformation λ1(γ) := tanh(γ) (Fisher (1921)) will be used to allow for

unconstrained optimization over γ (instead of constrained optimization over λ1 on (−1, 1)).

Also, this will allow to estimate the variance of γ̂ along with the variances of the estimates β̂

and α̂. Since λ1(0) = 0, using this transformation for testing H0 : γ = 0 versus H1 : γ 6= 0
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will correspond to testing H0 : λ1 = 0 versus H1 : λ1 6= 0.

4 A GEE approach for GP (µit, ϕit,R1(λ1))

Generalized estimating equations have first been introduced by Liang & Zeger (1986) and will

be denoted by GEE1. Since GEE1 are based on weighted residuals, only parameters influencing

the means (i.e. β) can be estimated. In the GEE1 context, the correlation has to be estimated

separately using for instance estimators based on residuals. Prentice & Zhao (1991) extend

generalized estimating equations (GEE2). These extensions allow to estimate the correlation

parameter γ simultaneously with β. The additional variance parameters α are estimated by

a second set of estimating equation based on covariance residuals. For E(Yit) = µit(β) and

Var(Yit) = σ2
it(δ), a working covariance matrix for Y i can be constructed by

V i1(δ) := A
1/2
i (δ)R1(λ1(γ))A

1/2
i (δ) ∈ R

T×T , (4.1)

where Ai(δ) := diag{σ2
i1(δ), . . . , σ

2
iT (δ)}. Covariances will be denoted by σ2

itt∗(δ) := Cov(Yit,

Yit∗) and σ2
i (δ) :=

(
σ2
itt∗(δ); t ≤ t∗; t, t∗ = 1, . . . , T

)′
∈ R

T (T+1)/2 will be the vector of co-

variances of subject i. Further, let Si(β) = (Sitt∗(β); t ≤ t∗; t, t∗ = 1, . . . , T
)′

∈ R
T (T+1)/2

be empirical covariances with entries Sitt∗(β) := (Yit − µit(β))(Yit∗ − µit∗(β)). Finally, let

R2(λ2) ∈ R
[T (T+1)/2]×[T (T+1)/2] be a working correlation matrix for Si(β) and λ2 its parameter.

With τ 2itt∗(δ) := Var(Sitt∗(β) | δ), we can again construct a working covariance

V i2(δ, λ2) := Cov(Si(β) | δ, λ2) = diag
(
τi11(δ), τi12(δ), . . . , τiTT (δ)

)
R2(λ2)

×diag
(
τi11(δ), τi12(δ), . . . , τiTT (δ)

)
. (4.2)

We will address the problem of determining analytical expressions for τ 2itt∗(δ) later. The esti-

mating equation according to GEE1 is

K−1/2

K∑

i=1

D′
i1(β)V

−1
i1 (δ)(Y i − µi(β)) = 0p+1, (4.3)

where Di1(β) =
∂µi(β)
∂β

∈ R
T×[p+1] and 0p+1 is a (p+ 1)-dimensional vector of zeros. Parameter

α together with γ will be estimated using GEE2 by solving

K−1/2

K∑

i=1

D′
i2(δ)V

−1
i2 (δ, λ2)

(
Si(β)− σ2

i (δ)
)
= 0q+2, (4.4)
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where Di2(δ) :=
∂σ2

i (δ)

∂(α′,γ)′
∈ R

[T (T+1)/2]×[q+2]. Additionally, we calculate Di12(δ) :=
∂σ2

i (δ)

∂β
∈

R
[T (T+1)/2]×[p+1] since we hope to gain information on the mean parameters β also from σ2

i (δ).

According to our experience, setting Di2(δ) to 0 gives similar results and decreases the required

computational time. For the GP distribution, covariances are σ2
itt∗(δ) = ρtt∗

(
λ1(γ)

)√
µit(β)ϕ2

it(α)
√

µit∗(β)ϕ2
it∗(α), where ρtt∗

(
λ1(γ)

)
= Corr(Yit, Yit∗), i = 1, . . . , K. Then,

Di1(β) =
[
µit(β)xitr

]

t = 1, . . . , T , r = 1, . . . , p+ 1,

(4.5)

D′
i2(δ) =







ρtt∗(λ1(γ))
√
µit(β)µit∗(β)×

{bit(α)witrϕit∗(α)+

bit∗(α)wit∗rϕit(α)}




(t, t∗) ∈ I,

r = 1, . . . , q + 1[
∂ρtt∗ (λ1(γ))

∂λ1(γ)
4e2γ

(e2γ+1)2
σit(δ)σit∗(δ)

]
(t,t∗)∈I




, (4.6)

D′
i12(δ) =




1
2
ρtt∗(λ1(γ)) ϕit(α)ϕit∗(α)×{√
µit(β)xitr +

√
µit∗(β)xit∗r

}



(t, t∗) ∈ I, r = 1, . . . , p+ 1

(4.7)

and I := {(t, t∗) | t ≤ t∗}. Now (4.3) and (4.4) can be solved simultaneously. One defines

Di(δ) :=




∂µi(β)
∂β

∂σ2

i (δ)

∂β

0
∂σ2

i (δ)

∂(α′,γ)′


 =


Di1(δ) Di12(δ)

0 Di2(δ)


 ∈ R

[T (T+3)/2]×[p+q+3], (4.8)

V i(δ, λ2) :=


V i1(δ) 0

0 V i2(δ, λ2)


 ∈ R

[T (T+3)/2]×[T (T+3)/2], (4.9)

f i(δ) :=


 yi − µi(β)

si(β)− σ2
i (δ)


 ∈ R

T (T+3)/2 (4.10)

and Γ(δ, λ2) := K−1
∑K

i=1 D
′
i(δ)V

−1
i (δ, λ2)Di(δ). The overall set of estimating equations is

K−1/2
∑K

i=1 D
′
i(δ)V

−1
i (δ, λ2)f i(δ) = 0p+q+3. Updating δ by a Fisher-Scoring step yields

δ̂j+1 = δ̂j +

{
K∑

i=1

D′
i(δ̂j)V

−1
i (δ̂j, λ̂2j)Di(δ̂j)

}−1{ K∑

i=1

D′
i(δ̂j)V

−1
i (δ̂j, λ̂2j)f i(δ̂j)

}
, (4.11)

where λ̂2j := λ̂2(δ̂j). Residuals r̂ilm(δ̂) := silm(β̂) − σ2
ilm(δ̂) may be used to estimate λ2. For

example, for an exchangeable matrix R2(λ2), define I
∗ := {(lm, l∗m∗) : l ≤ l∗∧m ≤ m∗}. Then
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according to Liang & Zeger (1986, p. 18, example 3), an estimate of λ2 is given by

λ̂2(δ̂) =

∑K
i=1

∑
(lm,l∗m∗)∈I∗ r̂ilm(δ̂)r̂il∗m∗(δ̂)

K
[
T (T+1)

2

(
T (T+1)

2
− 1
)
/2
]
− (p+ q + 3)

. (4.12)

According to Prentice & Zhao (1991, Appendix 1), Z := K1/2
(
(β̂ − β)′, (α̂−α)′, (γ̂ − γ)′

)′

is asymptotically normal for K → ∞ with mean 0p+q+3 and covariance

Cov(Z) = K−1Γ−1(δ, λ2)

(
K∑

i=1

D′

i
(δ)V −1

i
(δ, λ2)Cov

(
(Y ′

i
,S′

i
(β))′

)
V −1

i
(δ, λ2)Di(δ)

)
Γ−1(δ, λ2). (4.13)

Note that Cov
(
(Y ′

i,S
′
i(β))

′
)
is unknown. A consistent ’sandwich’ estimator of (4.13) is

Ωsw(δ̂, λ̂2) := Ĉov(Z)sw (4.14)

= K−1Γ−1(δ̂, λ̂2)

(
K∑

i=1

D′
i(δ̂)V

−1
i (δ̂, λ̂2)f i(δ̂)f

′
i(δ̂)V

−1
i (δ̂, λ̂2)Di(δ̂)

)
Γ−1(δ̂, λ̂2)

(see Prentice & Zhao (1991, p. 828)). Alternatively, a model-based estimator of the variance

of Z is obtained by replacing Cov((Y ′
i,S

′
i(β))

′) by V i(δ̂, λ̂2) yielding

Ωmb(δ̂, λ̂2) := Ĉov(Z)mb = K−1Γ−1(δ̂, λ̂2). (4.15)

An issue still open is how to determine

τ 2itt∗(δ) := Var
(
(Yit − µit(β))(Yit∗ − µit∗(β))

)

= E
[
Y 2
itY

2
it∗

]
− 2E

[
Y 2
itYit∗

]
µit∗(β)− 2E

[
YitY

2
it∗

]
µit(β)

+4E [YitYit∗ ]µit(β)µit∗(β) + E[Y 2
it ]µ

2
it∗(β) + E[Y 2

it∗ ]µ
2
it(β)− 3µ2

it(β)µit∗(β)
2

−
[
ρtt∗
(
λ1(γ)

)√
Var(Yit)Var(Yit∗)

]2
. (4.16)

in (4.2). So τ 2itt∗(δ) is a function of higher mixed moments E [YitYit∗ ], E [Y 2
itYit∗ ], E [YitY

2
it∗ ] and

E [Y 2
itY

2
it∗ ] depending on δ for which a closed form is unknown - except for the first one, for

which we have an expression based on our working correlation. The remaining mixed moments

can be determined if t = t∗, since in this case moments up to order 4 are needed, which exist

for the GP distribution (see Consul (1989, p. 50)).

However, if t < t∗ a different approach is necessary. For this consider the general bivariate

specification Y = (Y1, Y2) with Y1 ∼ GP (µ1, ϕ1), Y2 ∼ GP (µ2, ϕ2) and correlation ρ. Here we

abbreviate Y1 := Yit, Y2 := Yit∗ , µ1 := µit(β), µ2 := µit∗(β), ϕ1 := ϕit(α), ϕ2 := ϕit∗(α) and ρ :=
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ρtt∗
(
λ1(γ)

)
. We would like to simulate from such a specification by using a bivariate Gaussian

copula, i.e. by first simulating (Z1, Z2) ∼ N2(0,Σ(ρ)) where Σ(ρ) is diagonal with elements

g(ρ). Then we consider the probability integral transformation (U1, U2) := (Φ(Z1),Φ(Z2)) and

utilize the inversion method (Famoye (1997, p. 222)) to sample count random variables, i.e. we

calculate the quantiles y1 := F−1
GP (u1|µ1, ϕ1) and y2 := F−1

GP (u2|µ2, ϕ2). Here FGP (·|µ, ϕ) denotes

the cdf of a GP (µ, ϕ) random variable. We need to determine g(ρ) such that Corr(Y1, Y2) = ρ.

This is approximately accomplished using the approach suggested by Erhardt & Czado (2009).

To approximate τ 2(θ) := Var ((Y1 − µ1)(Y2 − µ2)) with θ := (µ1, µ2, ϕ1, ϕ2, ρ) we generate a

sample of Y r(θ) = (Y r
1 (θ), Y

r
2 (θ)), r = 1, . . . , R using the above sampling approach. Now we

approximate τ̂ 2(θ) := 1
R

∑R
r=1

[
(yr1(θ)−µ1)(y

r
2(θ)−µ2)

]2
−
[
1
R

∑R
r=1(y

r
1(θ)−µ1)(y

r
2(θ)−µ2)

]2
.

Since we are interested in an approximate analytical expression for τ 2(θ) for arbitrary values

of θ, we use a log-normal regression approach to express τ̂ 2(θ) as a function of θ over a grid

of values (µ1, µ2, ϕ1, ϕ2, ρ). In particular we use grid values θj = (µ1j, µ2j , ϕ1j , ϕ2j , ρj), j =

1, . . . , 63 · 52 = 5 400 constructed by

1. {2, 8, 25, 50, 150, 400} for µ1j and µ2j, respectively,

2. {1, 2, 3, 6, 9} for ϕ1j and ϕ2j , respectively,

3. {−0.8,−0.5,−0.25, 0.25, 0.5, 0.8} for ρj.

In order to specify such a grid we started by fitting a GP (µi, ϕi) regression model according to

Czado et al. (2007) using the R software package ’ZIGP’ (Erhardt (2009)) available on CRAN.

Thereby we ignored the clustered structure of the data and assumed all observations to be

independent. Then we chose as smallest and largest grid points for µ1j and µ2j, ϕ1j and ϕ2j,

values not far outside the range of fitted means and overdispersion parameters, respectively.

The remaining grid points were chosen such that they were more dense at the lower part of the

chosen range where most of the fitted values could be found. The grid points for ρj were chosen

symmetric around 0 and also more close to 0.

Let τ̂ 2j := τ̂ 2(θj) and consider the log-normal regression of response τ̂ 2j with covariates µ1j,

µ2j, ϕ1j , ϕ2j and ρj for j = 1, . . . , 5400. From an exploratory data analysis we see that we need

to distinguish the cases ρj < 0 and ρj ≥ 0. For both cases we use as explanatory variables

an intercept, log(µ1j), log(µ2j), log(ϕ1j), log(ϕ2j) and ρj and all three-dimensional interactions.

Then by backward selection we eliminate nonsignificant effects according to the Wald test. The
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fitted mean function Ê(log(τ̂ 2j )) for log(τ̂
2
j ) for the case ρj ≥ 0 is given by

Ê(log
(
τ̂2j
)
) = −0.454 ·+1.027 · log(µ1j) + 2.615 · log(ϕ1j) + 0.974 · log(µ2j) + 2.650 · log(ϕ2j) +

1.186 · ρj − 0.135 · log(µ1j) · log(ϕ1j) + 0.010 · log(µ1j) · log(µ2j)−

0.028 · log(µ1j) · log(ϕ2j)− 0.110 · log(µ1j) · ρj + 0.086 · log(ϕ1j) · log(ϕ2j) +

0.913 · log(ϕ1j) · ρj − 0.116 · log(µ2j) · log(ϕ2j) + 0.804 · log(ϕ2j) · ρj −

0.058 · log(µ1j) · log(ϕ1j) · ρj − 0.056 · log(ϕ1j) · log(µ2j) · ρj −

0.087 · log(µ2j) · log(ϕ2j) · ρj (4.17)

with an adjustedR2 of 99.2%. For ρj ≤ 0 we get a similar expression (adjustedR2 = 99.96%. Fi-

nally for δ = (β,α, γ) and γ = tanh−1(ρ) = 1
2
log
(

1+ρ
1−ρ

)
we approximate τ 2itt∗(δ) by the analyti-

cal expression exp(Ê(log(τ̂ 2)|θ∗
itt∗)), where θ

∗
itt∗ :=

(
µit(β), µit∗(β), ϕit(α), ϕit∗(α), ρitt∗(λ1(γ))

)
.

5 Small sample properties of the GEE estimates

In a simulation study we generated N = 1000 samples from {Yit, i = 1, . . . , K; t = 1, . . . T}

counts with Yit ∼ GP (µit, ϕit) independent for i = 1, . . . , K and correlation Σ for Y i =

(Yi1, . . . , YiT ). As correlation matrix Σ we chose an autoregressive AR(1) structure, i.e. Σ =

Σ(λ), where [Σ(λ)]tt∗ = λ|t−t∗|. Again this is facilitated using the approximate approach sug-

gested by Erhardt & Czado (2009).

’Small’ and ’large’ number of subjects ofK = 250 andK = 500 were taken into consideration.

As test setting, we chose T = 8 and λ1 = 0.5. The design matrix for the mean level contains

an intercept, subject-specific and a time specific covariate, while the one for the dispersion level

contains an intercept and a subject-specific one. In particular we use

log(µit) = β0 + β1 · xi + β2 · t/T (5.1)

log(ϕit − 1) = α0 + α1 · wi. (5.2)

Here xi is distributed equidistantly on [−1, 1] and wi on [−2, 2] over all subjects. Choosing

β1 = β2, the parameter values were chosen to be β = (1.32, 0.70, 0.70)′ and α = (0.21, 0.90)′ to

yield µit(β) ∈ [2, 15] and ϕit(α) ∈ [1.5, 4], respectively. QQ plots shown in Figure 1 were used

to assess the asymptotic normality of the estimates. The parameters on the mean level have

approximately a normal distribution already for K = 250, while this is only approximately true

for K = 500 for the parameters on the dispersion level.
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Figure 1: QQ plots of centered and standardized estimates based on N = 1000 replications
(K = 250, 500, T = 8, λ = 0.5, β = (1.32, 0.70, 0.70)′, α = (0.25, 0.31, 0.31)′)

By considering the mean of the estimated parameters and estimated mean squared errors

(MSE) together with standard errors for both statistics, the predictive quality of the estimation

method will be assessed (see Table 1). The relative bias of an estimate θ̂ of θ is given by

b(θ, θ̂) = E(θ̂)−θ
θ

and for a sample of N independent estimates it will be estimated by

b̂(θ, θ̂) =
1

Nθ

N∑

i=1

θ̂i − 1. (5.3)

The estimated variance of the estimated relative bias is given by V̂ar
(
b̂(θ, θ̂i)

)
:= 1/θ2V̂ar(θ̂),

where θ̂ := (θ̂1, . . . , θ̂N )
′, and V̂ar(θ̂) := 1

N−1

∑N
i=1

(
θ̂i −

1
N

∑N
k=1 θ̂k

)2
. The mean squared error

(MSE) is given by

R(θ, θ̂) := E([θ̂ − θ]2) = Var(θ̂) + b2(θ̂, θ). (5.4)

Its variance can be estimated by V̂ ar(R(θ, θ̂)) = 1
N
(m4 − 4θm3 + 4θ2m2 − m2

2 + 4θm1m2 −

4θ2m2), where mk is the kth moment estimate of θ, so mk := 1
N

∑N
i=1 θ

k
i is an estimate of
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µk = E(θk) (Stekeler (2004, p. 126)). The standard deviations of the parameter estimates δ̂

will be calculated using ’sandwich’ estimates given in (4.14).

Para-
meter

True
value

T K Estimate Relative Bias MSE

µit ∈ [2, 15] β0 1.32 8 250 1.319 (0.067) 0.001 (0.051) 0.004 (3 · 10−8)
500 1.316 (0.048) 0.004 (0.036) 0.002 (9 · 10−9)

β1 0.7 8 250 0.696 (0.092) 0.004 (0.132) 0.009 (8 · 10−8)
500 0.701 (0.068) −0.001 (0.097) 0.005 (2 · 10−8)

β2 0.7 8 250 0.698 (0.063) 0.002 (0.090) 0.004 (2 · 10−8)
500 0.702 (0.044) −0.002 (0.063) 0.002 (5 · 10−9)

ϕit ∈ [1.5, 4] α0 0.21 8 250 0.215 (0.108) −0.005 (0.514) 0.012 (1 · 10−7)
500 0.223 (0.082) −0.013 (0.388) 0.007 (3 · 10−8)

α1 0.9 8 250 0.873 (0.181) 0.027 (0.201) 0.033 (2 · 10−6)
500 0.865 (0.139) 0.035 (0.154) 0.021 (9 · 10−7)

λ = 0.5 λ 0.5 8 250 0.489 (0.101) 0.011 (0.202) 0.010 (8 · 10−9)
500 0.504 (0.080) −0.004 (0.160) 0.006 (4 · 10−9)

Table 1: Average coefficients, relative bias (see 5.3) and mean squared error (see 5.4) together
with estimated ’sandwich’ standard deviations in round brackets according to (4.14) for N =
1000 fitted samples.

This shows that the accuracy of the estimations is satisfactory for medium sample sizes.

The absolute values of the relative bias in Table 1 are smaller for the mean effects than for

the dispersion effects, hence the mean coefficients are estimated better than the dispersion

coefficents. This is due to the approximating approach for determining τ 2itt∗(δ).

Several alternative setups have also been investigated. The main results of these additional

simulations are that increasing the range of means µit(β) leads to even better results. The

reason is that a larger range of µit(β) covers a larger and steeper interval of the inverse link

function which implies larger absolute derivatives of the link functions and larger absolute true

values. These circumstances improve parameter estimation. Increasing overdispersion results

in worse estimates of the mean parameters. The reason is simply higher data heterogeneity in

the counts. Understandably, dispersion parameters are estimated better in this setting because

again, a larger and steeper interval of the inverse dispersion link is covered. Moreover, higher

correlated data improves the estimation of time-specific covariates. For all other covariates,

highly correlated data seems to carry less information over time than weakly correlated data.

Finally, increasing the number of time points T has a positive impact on the estimation quality

of the mean parameters. This is in line to what one would expect from longer time series.
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6 Variable selection and model comparison

6.1 A variable selection criterion for nested models

Standard approaches for variable selection such as the Akaike Information Criterion (AIC)

(Akaike (1974)) require a fully specified likelihood. Pan (2001) introduces a criterion for GEE

which uses only the quasi-likelihood. For a r.v. Y with E(Y ) = µ and Var(Y ) = φV (µ), where

φ is a dispersion parameter, the quasi-likelihood function is defined as QL(µ, φ, y) =
∫ µ

y
y−t
φV (t)

dt

(McCullagh & Nelder (1989, p. 325)). In the GP context, we have E(Yit) = µit(β) and

Var(Yit) = ϕ2
it(α)µit(β), i.e. V (µit(β)) = µit(β) and φ = ϕ2

it(α), and obtain

QL(µit(β), ϕit(α), yit) =

∫ µit(β)

yit

yit − t

ϕ2
it(α)t

dt (6.1)

=
1

ϕ2
it(α)

(yit log(µit(β))− µit(β)) + constants ind. of (β,α).

If overall independence across times and subjects is assumed, the overall quasi-likelihood under

independence becomes

Q(β,α,y) :=
K∑

i=1

T∑

t=1

QL(µit(β), ϕit(α), yit) (6.2)

=
K∑

i=1

T∑

t=1

1

ϕ2
it(α)

(yit log(µit(β))− µit(β)) + constants ind. of (β,α).

A model with parameter vector θ ∈ R
k and estimate θ̂ is compared by AIC(θ̂) := −2L(θ̂) +

2k. Pan (2001) replaces the log-likelihood by the quasi-likelihood and the penalty term 2k

by 2 trace(Ω−1
mb(δ̂, λ̂2)Ωsw(δ̂, λ̂2)). With δ̂ = (β̂, α̂, γ̂) and the working correlations matrix R1

being a function of γ, a ’quasi-likelihood under independence model criterion’ (QIC) is

QIC(δ̂, λ̂2) := −2Q(β̂, α̂, I,y) + 2 trace(Ω−1
mb(δ̂, λ̂2)Ωsw(δ̂, λ̂2)). (6.3)

As for the AIC, the smaller the QIC, the better the model.

6.2 Assessing model fit for nonnested models

Recall that we denote the GEE setup for correlated count data Y = (Yit, i = 1, . . . , K; t =

1, . . . , T ) with GP (µit, ϕit) margins for Yit and working correlation matrix R by GP (µit, ϕit,R).

Similar we denote by Poi(µit,R) a setup with margin Yit ∼ Poi(µit). A GEE setup where the
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overdispersion parameter for Yit is constant, we denote by GP (µit, ϕ,R). The corresponding

model hierarchy is given in Figure 2. A covariate being significant in terms of the Wald test (e.g.

in the mean design of Poi(µit,R)) can be insignificant in a different model (say GP (µit, ϕ,R)).

The same holds for dispersion designs. Therefore, a pool of covariates chosen in an exploratory

data analysis will be reduced by backward selection using the QIC in each one of our setup

classes. Since design matrices may thus be different, their designs need not be nested.

(1) Poi(µit,R)

''
OOOOOOOOOOOOOOOOOO

wwoooooooooooooooooo

(2) GP(µit, ϕ,R) (3) GP(µit, ϕit,R)

ϕ > 1 ϕit > 1

Figure 2: Investigated setup hierarchy

There exists a test proposed by Vuong (1989) which can be used to compare models with

nonnested settings. The test statistic, however, is based on the Kullback-Leibler information

criterion (KLIC), which requires a fully specified likelihood. Therefore, this approach cannot

by applied here. The same holds for a distribution-free test proposed by Clarke (2007).

We will use the Wald-Wolfowitz run test for testing the goodness-of-fit as proposed by Chang

(2000) and also described in Hilbe (2007, Section 4.2.1f). The residuals will be sorted by the

corresponding fitted means. We define an indicator whether the residual is positive (’1’) or

negative (’−1’) in the same ordering. Further np will be the number of positive, nn the number

of negative residuals. Let T the number of runs in the sequence of indicators. Under the null

hypothesis that the signs of the residuals are distributed in a random sequence, the expected

value and variance of T are given as E(T ) = 2npnn

np+nn
+ 1 and Var(T ) = 2npnn(2npnn−np−nn)

(np+nn)2(np+nn−1)
. Then

WZ := T−E(T )
Var(T )

is approximately standard normal. A α level test can be constructed as

Reject H0 if |WZ | > q1−α/2 (6.4)

where q1−α/2 is the 1−α/2 quantile of the standard normal distribution. Note that this criterion

does not account for the model complexity, for the choice between competing setups one has to

consider the number of model parameters as well.
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7 Application: Outsourcing of patent applications

7.1 Data description and model comparison

The data consists of patent information of the European Patent Office. It has been examined

and completed with corporate information by Wagner (2006b). A zero-inflated generalized

Poisson regression model assuming independent observations has been considered by Czado

et al. (2007) for this data. A more detailed description of this model will be given in Section

7.2. The survey considers 107 European companies over eight years (1993 to 2000). There are

two ways of filing a patent application: a company’s internal patent department can undergo the

application process itself or the company may delegate it to an external patent attorney. Wagner

(2006b) examines make-or-buy decision drivers using negative binomial panel regression. We

will consider the three classes illustrated in Figure 2.

Czado et al. (2007, Table 1) gives an overview of all influential variables. For more details

see Wagner (2006b, pp. 119-121). We used standard exploratory data analysis tools to in-

vestigate main effects and two-dimensional interactions on the mean level. The four strongest

two-dimensional interactions were LN.COV ∗ BREADTH, CHEM.PHA ∗ LN.COV, CHEM.PHA

∗ SQRT.EMP and RDmiss ∗ CHEM.PHA. To find covariates which have a significant influence

on the overdispersion parameter, we apply the approach by Czado et al. (2007, Section 5).

A covariate’s influence on the overdispersion parameter can be quantified by comparing sam-

ple mean to sample variances. For a level j of a categorical covariate wit or a class of a discretized

continuous covariate with njt observations, let δitj be a dummy indicating if observation wi,t falls

in class j, i.e. δitj = 1 if wi,t ∈ class j and 0 else. Sample mean and sample variance for j will be

µ̂jt(Y ) and σ̂2
jt(Y ). For overdispersed GP data we have ϕit =

√
σ2

it

µit
. Therefore, in a regression

context using the shifted log link ϕit = 1+ewitα, we obtain witα = log

(√
σ̂2

jt(Y )

µ̂jt(Y )
−1

)
=: ηjt(Y ).

If the data was not overdispersed, mean and variance would coincide and the fraction
σ̂2

jt

µ̂jt
would

be around 1 in every class. The values inside the logarithm would be close to zero. High values,

however, indicate overdispersion. A value larger than 0 indicates that the estimated variance

exceeds the estimated mean already more than four times. For the covariate EMP, the values

of ηjt(Y ) are plotted in Figure 3. We see that for smaller EMP the dispersion is lower whereas

for higher values it is high.

As a working correlation matrix for Corr(Y i(β)) we choose AR(1), i.e. ρtt∗(λ1) = λ
|t−t∗|
1 ,

since the matrix of empirical correlations of residuals based on the model from Czado et al.

(2007) strongly suggests that it has this structure. For Corr(Si(δ)) we choose the identity matrix
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Figure 3: Influence of EMP on the overdispersion parameter

IT (T+1)/2. For mean regression we select the covariates 1, LN.COV, BREADTH, SQRT.EMP,

INV.RDP, RDE1, RDE2, RDE3, RDmiss, CHEM.PHA, ELEC.TEL.OTHER, YEAR, LN.COV

∗ BREADTH, CHEM.PHA ∗ LN.COV, CHEM.PHA ∗ SQRT.EMP and RDmiss ∗ CHEM.PHA.

For overdispersion we select 1, ENGINEER, CAR.SUPP.OTHER, MED.BIOT, YEAR,

BREADTH.49.72, EMP.11291 and RDE.63. All covariates have been centered and standardized

for numerical stability. We apply backward selection using the QIC (6.3), i.e. sequentially

eliminate the covariate from the full model which decreases the QIC the most (as long as QIC

shrinks).

QIC Wald-Wolfowitz
full reduced full reduced

WZ (p) WZ (p)
p+ q + 1 p+ q + 1

(1) Poi(µit,R) −215813.10 −216270.49 −1.34 (0.18) −2.02 (0.04)
17 12

(2) GP (µit, ϕ,R) −2409.02 −2546.67 −0.56 (0.58) −2.53 (0.01)
18 12

(3) GP (µit, ϕit,R) −3945.78 −4581.72 −0.46 (0.64) −0.48 (0.63)
25 14

Table 2: QIC (see (6.3)) and results of the Wald-Wolfowitz test (see (6.4)) of full and reduced
designs for the three model classes specified in Figure 2.

Note that it make only sense to compare the QIC for nested settings. Poisson and GP models
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are not nested since for a dispersion of 1 in a GP setting an infinitesimal small predictor would

be required. ’Full’ and ’reduced’ models within each model class, however, are nested. Also,

the ’full’ settings of (2) GP (µit, ϕ,R) and (3) GP (µit, ϕit,R) are nested. The QIC statistics

according to (6.3) and the result of the Wald-Wolfowitz test according to (6.4) can be found in

Table 2. We report WZ together with the p-value and the number of parameters. Note that

a p-value of more than 5% indicates that one cannot reject H0 on the 5% level and hence the

residuals indicate a good fit. A summary of the resulting model equations is given in Table 3.

Model Mean Dispersion p+ q + 1

Poi(µit,R)
full

offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1

+ RDE2 + RDE3 + RDmiss +
CHEM.PHA + ELEC.TEL.OTHER

+ YEAR + LN.COV.BREADTH

+ CHEM.PHA.LN.COV +
CHEM.PHA.SQRT.EMP + RD-

miss.CHEM.PHA

1 (not estimated) 17

Poi(µit,R) re-

duced

offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDmiss

+ CHEM.PHA + ELEC.TEL.OTHER +
YEAR + CHEM.PHA.LN.COV + RD-

miss.CHEM.PHA

1 (not estimated) 12

GP (µit, ϕ,R)
full

offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1

+ RDE2 + RDE3 + RDmiss +
CHEM.PHA + ELEC.TEL.OTHER

+ YEAR + LN.COV.BREADTH

+ CHEM.PHA.LN.COV +
CHEM.PHA.SQRT.EMP + RD-

miss.CHEM.PHA

1 18

GP (µit, ϕ,R)
reduced

offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDmiss

+ CHEM.PHA + ELEC.TEL.OTHER

+ LN.COV.BREADTH +
CHEM.PHA.SQRT.EMP

1 12

GP (µit, ϕit,R)
full

offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1

+ RDE2 + RDE3 + RDmiss +
CHEM.PHA + ELEC.TEL.OTHER

+ YEAR + LN.COV.BREADTH

+ CHEM.PHA.LN.COV +
CHEM.PHA.SQRT.EMP + RD-

miss.CHEM.PHA

1 + ENGINEER +
CAR.SUPP.OTHER

+ MED.BIOT

+ YEAR +
BREADTH.49.72

+ EMP.11291 +
RDE.63

25

GP (µit, ϕit,R)
reduced

offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + RDmiss +
CHEM.PHA + ELEC.TEL.OTHER

+ YEAR + LN.COV.BREADTH +
CHEM.PHA.SQRT.EMP

1 +
CAR.SUPP.OTHER

+ EMP.11291

14

Table 3: Model equations of the models shown in Figure 2 using backward selection by QIC
(6.3).
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For these designs we now discuss the consequences of our suggested enhancements.

Adding a dispersion parameter

Adding a dispersion parameter to the Poisson setup has a positive impact on model fit. Com-

paring (1) Poi(µit,R) to (2) GP (µit, ϕ,R), the p-value for rejecting H0 in the Wald-Wolfowitz

test increases from 0.18 to 0.58 in the full settings. In the reduced settings, however, both setups

having the same number of parameters show no good fit on the 5% level.

Regression on the dispersion parameter

Comparing model (2) GP (µit, ϕ,R) to (3) GP (µit, ϕit,R), the p-values of the Wald-Wolfowitz

run test increases from 0.58 to 0.64 (full settings) and from 0.01 to 0.63 (reduced settings).

This indicates the usefulness of allowing for regression on the dispersion parameter. Since the

full settings of these two models are nested, the QIC can be used for model comparison here

as well. There is a large decrease from −2409.02 to −3945.78, which reinforces the conclusion

from above.

In terms of the Wald-Wolfowitz test, the full model (3) GP (µit, ϕit,R) is to be preferred

over all other classes discussed (see Table 2). However, this goodness-of-fit criterion does not

account for the model complexity. Since the reduced design for (3) GP (µit, ϕit,R) shows a

comparable test result (p-value of 0.63 instead of 0.64) but has only 14 parameters instead of

25 we choose this setup to be our best.

7.2 Model interpretation

The paper by Czado et al. (2007) considers a zero-inflated generalized Poisson regression model

(among others) for this data. In the context of GEE, however, we will not consider zero-inflation.

We encountered numerical problems when fitting a ZIGP specification with the means of GEE

and learned that the model flexibility of this distribution is too large.

In the ZIGP model of Czado et al. (2007) the observation year is allowed to be included as a

covariate and is found to be highly significant in the dispersion level. Hence the autocorrelation

of the ZIGP residuals was very low. Due to this fact and due to the different distributional

assumptions, we stress that these two models cannot be compared with respect to the panel

correlation. However, as for the regression designs on the mean and dispersion levels which

we found to be most suitable, both models have a great deal in common. There is a detailed

graphical evaluation of the ZIGP model in Czado et al. (2007).

We will now briefly interpret the reduced setup (3) GP (µit, ϕit,R). Note that some of the

covariates in the GP (µit, ϕit,R) setup in Table 4 are insignificant according to the Wald test.

19



Estimate Std. Error z-value Pr(> |z|)
µ REGRESSION

b0 1 −1.174 0.141 −8.344 < 2 · 10−16

b1 LN.COV 0.036 0.035 1.035 0.301
b2 BREADTH 0.043 0.029 1.459 0.145
b3 SQRT.EMP −0.222 0.050 −4.444 8.8 · 10−6

b4 RDmiss 0.004 0.046 0.076 0.939
b5 CHEM.PHA −0.403 0.384 −1.048 0.295
b6 ELEC.TEL.OTHER 0.504 0.157 3.198 0.001
b7 YEAR 0.067 0.033 2.046 0.041
b8 LN.COV.BREADTH −0.002 0.028 −0.073 0.942
b9 CHEM.PHA.SQRT.EMP 0.286 0.374 0.765 0.444

ϕ REGRESSION
a0 1 2.346 0.087 26.906 < 2 · 10−16

a1 CAR.SUPP.OTHER −0.961 0.099 −9.706 < 2 · 10−16

a2 EMP.11291 −1.096 0.106 −10.360 < 2 · 10−16

CORRELATION
γ 1.499 0.188 7.963 1.7 · 10−15

QIC -4581.72
Range µ [0.22, 568.44]
Range ϕ [2.33, 11.44]

λ̂1(γ) 0.90

Table 4: Summary of the fitted GP (µit, ϕit,R) model obtained by backward selection using
QIC

In contrast to the ZIGP model mentioned, variable selection has been done using backward

selection with respect to QIC. In the ZIGP model, RDmiss is insignificant and therefore does

not appear in the final model instead of AIC. This is a desirable result since RDmiss is a

dummy for missing R & D data. In our GP model, RDmiss still appears, it is, however,

insignificant according to Wald: the p-value is 93.9% (Table 4). Obviously, the lack of modeling

zero-inflation in the GP model is reflected in the higher overdispersion range of [2.20, 11.04] as

compared to [2.41, 10.15] in the ZIGP model. Also, there is an additional interaction between the

Chemical / Pharmaceutical industry dummy and the square root of the number of employees

SQRT.EMP. Further, the observation year remains in the mean design. On the other hand,

RDE1 and INV.RDP are not appearing any longer. On dispersion level, the engineering industry

dummy as well as YEAR and RDE.63 are eliminated in addition to effects already taken out

of the ZIGP model. Neglecting correlation between the counts within each subject leads to

an underestimation of the predicted variances of the parameter estimates. Thus, the z values

calculated tend to be too large and therefore effects may be regarded as significant although

they are not. Comfortingly, the signs of the coefficients of common covariates in both models

compared do not change. Hence there is no turnaround in how means and dispersion are

affected by the chosen descriptive variables. Similar to Czado et al. (2007) we will look at patent
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outsourcing rates for the interpretation. In order to obtain outsourcing rates as functions of the

covariates, we will fix the exposure by its mode EM = 13.36. Then, we can define functions µ̂(xk)
EM ,

where xk is the kth covariate. All other covariates will be fixed by their mode as well, where for

interacting covariates, their common mode will be used. Since there is an additional interaction

between CHEM.PHA and SQRT.EMP as compared to the ZIGP fit, we will look at the influence

of EMP on the outsourcing rate in Figure 4 (1) since here there might crop up a considerable

difference of EMP’s influence on the outsourcing rates. For the Chemical / Pharmaceutical

industry, the interaction leads to an inverted influence of the number of employees (compare to

Czado et al. (2007, Figure 4 (1))). While in all remaining industries large companies in terms

of employees tend to have their own patent departments, large Chemical / Pharmaceutical

companies are likely to contract out. As one can see in Figure 4 (2), there is a positive time

trend. The share of outsourced patent applications was increasing in all industries. This reflects

the general tendency to decrease economic risk by the outsourcing of services in recent years.
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Figure 4: Influence of EMP and YEAR on the outsourcing rate while fixing other covariates by
their empirical modes

We define the overdispersion factor of a random variable Yit ∼ GP (µit, ϕit) as Vit :=
Var(Yit)
E(Yit)

=

ϕ2
it. There are only categorical covariates for overdispersion: w :=(1, CAR.SUPP.OTHER,

EMP.11291). Using (3.4), we define ϕ̂(w) := 1 + exp
(
α̂0 + w1 · α̂1 + w2 · α̂2

)
. We use this

overdispersion function to estimate V (X = x,W = w) = ϕ2 by V̂ (X = x,W = w) :=

ϕ̂(w)2. Table 5 lists V̂ (X = x,W = w) depending on the settings arising from the categorical

dispersion designs. As in Czado et al. (2007, Table 6), companies in the Cars / Suppliers /

’Others’ sector are predicted to have lower overdispersion than companies in other industries.

Large companies show higher overdispersion, which in line with the ZIGP model as well.
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Industry Employees V̂ (X = x,W = w)
Cars / Suppl. / Other ≥ 11 291 24.9
Cars / Suppl. / Other ≤ 11 291 5.5
Remaining industries ≥ 11 291 130.9
Remaining industries ≤ 11 291 20.2

Table 5: Estimated overdispersion factor in the ’best’ model (Table 4) depending on categorical
overdispersion covariates

For more graphical evaluations, for example the effect of the interacting covariates LN.COV

and BREADTH on the outsourcing rate, see Czado et al. (2007).

8 Conclusions and Discussions

We introduced a GP (µit, ϕit,R) setup for longitudinal count data, which not only extends

the known Poisson GEE by overdispersion but also allows for regression on this parameter.

We estimate variances of empirical covariances by a log normal regression model using a data

designed grid. This grid can be adjusted when other data sets are considered.

We carried out a comparison of different setups extending Poisson GEE using data dealing

with the determinants of patent outsourcing. We illustrated that every extension incorporated

in our GP (µit, ϕit,R) setup improved model fit in terms of the QIC for nested comparisons and

the Wald-Wolfowitz run test for assessing the goodness-of-fit. Both QIC and the Wald-Wolfowitz

test chose the introduced GP (µit, ϕit,R) setup as the one fitting our data best.

A short model interpretation confirmed insights of former work on the given data from an

economic point of view. We added some analytical and economic interpretation for mean and

overdispersion drivers in our ’best’ model. The correlation between outcomes of two subsequent

years is estimated to be 90%.

It would be interesting to compare the GEE approach to other estimating techniques such as

MCMC, maximization by parts or composite likelihood. Also, including zero-inflation in these

models will be subject of further research.
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