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Abstract

In this paper we present a review on the extremal behavior of stationary
continuous-time processes with emphasis on generalized Ornstein-Uhlenbeck
processes. We restrict our attention to heavy-tailed models like heavy-tailed
Ornstein-Uhlenbeck processes or continuous-time GARCH processes. The sur-
vey includes the tail behavior of the stationary distribution, the tail behavior
of the sample maximum and the asymptotic behavior of sample maxima of
our models.

1 Introduction

In this paper we study the extremal behavior of stationary continuous-time
processes. The class of stationary continuous-time processes is rich, and the
investigation of their extremal behavior is complex. The development of the
extremal behavior of Gaussian processes, which is the origin of continuous-
time extreme value theory starting with Rice [46, 47, 48], Kac [24], Kac and
Slepian [25], Volkonskii and Rozanov [56, 57] and Slepian [54, 55], alone, would
fill a paper. See the monograph of Leadbetter, Lindgren and Rootzén [33] or
the Ph.D. thesis of Albin [2] or the paper [3] for a review of this topic. Since
financial time series

• are often random with jumps,
• have heavy tails,
• exhibit clusters on high levels,

we will concentrate mainly on stationary continuous-time processes having
these properties.

We will explain the basic ideas concerning extreme value theory for sta-
tionary continuous-time processes by generalized Ornstein-Uhlenbeck (GOU)
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processes, which are applied as stochastic volatility models in finance and as
risk models in insurance. They are represented by

Xt = e−ξt

∫ t

0

eξs− dηs + e−ξtX0, t ≥ 0, (1)

where (ξt, ηt)t≥0 is a bivariate Lévy process independent of the starting ran-
dom variable X0 (cf. Lindner and Maller [39] and for definitions, further details
and references see also Maller, Müller and Szimayer [40] in this volume). A
bivariate Lévy process is characterized by the Lévy-Khinchine representation

E(ei〈Θ,(ξt,ηt)〉) = exp(−tΨ(Θ)) for Θ ∈ R
2,

where

Ψ(Θ) = −i〈γ, Θ〉 +
1

2
〈Θ, Σ Θ〉 +

∫

R2

(
1 − ei〈Θ,(x,y)〉 + i〈(x, y), Θ〉

)
dΠξ,η(x, y)

with γ ∈ R
2, Σ a non-negative definite matrix in R

2×2, 〈·, ·〉 the in-
ner product and Πξ,η a measure on R

2, called Lévy measure, such that∫
R2 min{

√
x2 + y2, 1} dΠξ,η(x, y) < ∞ and Πξ,η((0, 0)) = 0 (cf. Sato [51]).

The limit behavior of the sample maxima

M(T ) = sup
0≤t≤T

Xt (2)

as T → ∞ of the stationary GOU-process (Xt)t≥0 will be described either
when ξt = λt or when E(e−αξ1) = 1 for some α > 0.

In Section 2, a synopsis of extreme value theory is given. Precise definitions
of the GOU-models studied in this paper are presented in Section 3. We start
with the investigation of the tail behavior of the sample maximum in Section 4.
Section 5 on the asymptotic behavior of sample maxima M(T ) as T → ∞
and the cluster behavior follows. Finally, Section 6 concludes with remarks on
extensions of the results to more general models.

2 Extreme value theory

One method of investigating extremes of stationary continuous-time processes
is to study the extremal behavior of the discrete-time skeleton

Mk(h) = sup
(k−1)h≤s≤kh

Xs for k ∈ N (3)

and some fixed h > 0, which is again a stationary sequence. The advantage
of such a skeleton is that known results for sequences can be applied, which
are well investigated; see de Haan and Ferreira [15], Embrechts, Klüppelberg
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and Mikosch [17], Leadbetter et al. [33] and Resnick [45]. To my knowl-
edge this idea was first applied to Gaussian processes by Leadbetter and
Rootzén [34]. The monograph of Leadbetter et al. [33] and the paper of Lead-
better and Rootzén [35] contain a detailed study of extremes of discrete-
time and continuous-time processes. A completely different approach to ex-
treme value theory for continuous-time processes as presented here is given in
Berman [8]. Both approaches were combined by Albin [2, 3].

2.1 Extremes of discrete-time processes

We start with an introduction into extremes of discrete-time processes. Let
(Yn)n∈N be a stationary sequence with distribution function F and Mn =
max{Y1, . . . , Yn} for n ∈ N. The simplest stationary sequence is an iid (inde-
pendently and identically distributed) sequence. In this case, we find sequences
of constants an > 0, bn ∈ R, such that

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = G(x) for x ∈ supp(G), (4)

and some non-degenerate distribution function G whose support is denoted
by supp(G), if and only if

lim
n→∞

nF (anx + bn) = − log G(x) for x ∈ supp(G) , (5)

where F = 1−F denotes the tail of F . Then we say that F is in the maximum
domain of attraction of G (F ∈ MDA(G)). The Extremal Types Theorem
(Leadbetter et al. [33], Theorem 1.4.2) says that G is either a Fréchet (Φα,
α > 0), a Gumbel (Λ) or a Weibull (Ψα, α > 0) distribution.

For a stationary sequence (Yn)n∈N there exists sufficient conditions such
that the extremal behavior of the stationary sequence coincides with the ex-
tremal behavior of an iid sequence with the same stationary distribution;
i.e. (5) implies (4). The conditions which guarantee this conclusion are known
as D and D′ conditions (cf. Leadbetter et al. [33], pp. 53). The condition D
is a mixing condition for the asymptotic independence of maxima, and the
condition D′ is an anti-clustering condition. That is, given an observation at
some time n is large, the probability that any of the neighboring observations
are also large is quite low.

Examples exist which do not satisfy the D′ condition and which have
extremal clusters on high level values. There, the extremal index is defined as
a measure of the cluster size; i. e. if (5) holds and

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = Gθ(x) for x ∈ supp(G),

then θ is called the extremal index. The parameter θ takes only values in [0, 1],
where θ = 1 reflects no extremal clusters.
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2.2 Extremes of continuous-time processes

After these basic ideas concerning extremes of stationary discrete-time pro-
cesses, we continue with extremes of stationary continuous-time processes.
The extremal behavior of a continuous-time process is influenced by the
dependence of the process not only in large, but also in small time in-
tervals. The dependence structure of the process in small time intervals is
negated by investigating the extremal behavior of (Mk(h))k∈N as in (3), where
maxk=1,...,n Mk(h) = M(nh). The conditions D and D′ on the sequence
(Mk(h))k∈N can be reformulated as conditions on the continuous-time pro-
cess (Xt)t≥0 known as C and C′ conditions. Again, condition C is a condition
on the asymptotic independence of maxima and C′ on the cluster behavior
of (Mk(h))k∈N. Similar to discrete-time models, an Extremal Types Theorem
also holds (cf. Leadbetter et al. [33], Theorem 13.1.5). For Gaussian processes
a simple condition only on the covariance function exists such that C and C′

are satisfied (cf. Leadbetter et al. [33], Theorem 12.3.4).
As in discrete time, there are also continuous-time examples which do not

satisfy the C′ condition and have extremal clusters on high levels. In this
case, the extremal index function θ : (0,∞) → [0, 1] is defined as a measure
for clusters, where θ(h) is the extremal index of the sequence (Mk(h))k∈N for
every h > 0. The function θ(·) is increasing. In our context we say that a
continuous-time process has extremal clusters, if limh↓0 θ(h) < 1, and other-
wise it has no clusters, i. e. θ(h) = 1 for every h > 0, by the monotony of θ.
The interpretation of an extremal cluster in continuous-time is the same as in
discrete-time, i.e., a continuous-time process clusters if given a large observa-
tion at some time t, there is a positive probability that any of the neighboring
observations is also large.

2.3 Extensions

At the end we also want to describe the way in which it is in mathemati-
cal terms possible to investigate the locations and heights of local maxima.
One possibility is by marked point processes (cf. Daley and Vere-Jones [13],
Kallenberg [26] and Resnick [45]). In our case, a marked point process counts
the number of elements in the set

{k : a−1
n (Mk(h) − bn)∈B0, a

−1
n (Xk+t1 − bn)∈B1, . . . , a

−1
n (Xk+tl

− bn)∈Bl}

(6)

for any Borel sets Bj in supp(G), j = 0, . . . , l, fixed l ∈ N and k + t1, . . . , k +
tl ≥ 0, n ∈ N. But there are slightly different ways to define them; see also
Leadbetter et al. [33] and Rootzén [49]. In this way, we find the locations of
high level exceedances if Mk(h) is large, and we describe the behavior of the
process if it is on a high level by taking the limit as n → ∞ in (6). More
on this idea of marked point processes for Gaussian processes can be found
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under the name Slepian model going back to Lindgren in a series of papers
(cf. the survey [37]), where a−1

n (Mk(h) − bn) is replaced by an upcrossing;
i. e. an upcrossing of level u is a point t0 for which Xt < u when t ∈ (t0 −
ǫ, t0) and Xt ≥ u when t ∈ (t0, t0 + ǫ) for some ǫ > 0. These ideas have
been extended to non-Gaussian models. We refer to the very readable review
paper of Leadbetter and Spaniolo [36] on this topic and on the intensity of
upcrossings on high levels. However, upcrossings have the disadvantage that
there may be infinitely many in a finite time interval, so that the marked point
processes converge to a degenerate limit as n → ∞.

3 The GOU-model

Generalized Ornstein-Uhlenbeck processes are applied in various areas as, e. g.,
in financial and insurance mathematics or mathematical physics; we refer to
Carmona et al. [11, 12] and Donati-Martin et al. [16] for an overview of appli-
cations. In the financial context, generalized Ornstein-Uhlenbeck processes are
used as stochastic volatility models (cf. Barndorff-Nielsen and Shephard [6, 7],
Barndorff-Nielsen, Nicolata and Shephard [5]) and as insurance risk models
(cf. Paulsen [43], Klüppelberg and Kostadinova [31], Kostadinova [32]).

We assume throughout that (Xt)t≥0 is a measurable, stationary càdlàg
(right-continuous with left limits) version of the GOU-process as in (1) and
that P(sup0≤t≤1 |Xt| < ∞) = 1. For two functions, f and g, we write f(x) ∼
g(x) as x → ∞, if limx→∞ f(x)/g(x) = 1. Two distribution functions, F and
H , are called tail-equivalent if both have support unbounded to the right and
there exists some c > 0 such that limx→∞ F (x)/H(x) = c.

3.1 The Ornstein-Uhlenbeck-process

Let (Xt)t≥0 be a stationary GOU-process as in (1) with ξt = λt for some
λ > 0; then the GOU-process reduces to a classical Ornstein-Uhlenbeck (OU)
process

Xt = e−λt

∫ t

0

eλs dηs + e−λtX0, t ≥ 0. (7)

A stationary version of (7) exists if and only if
∫
{|x|>1}

log(1+|x|)Πη(dx) < ∞,

where Πη is the Lévy measure of (ηt)t≥0. This result goes back to Wolfe [59];
see also the monograph of Sato [51]. The OU-process is a popular volatility
model as introduced by Barndorff-Nielsen and Shephard [7]; see also Shep-
hard [53] in this volume.

In this paper, we study only distribution functions F of η1 belonging to the
class of convolution equivalent distributions denoted by S(γ) for some γ ≥ 0,
i. e., functions which satisfy

(i) F (x) < 1 for every x ∈ R.
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(ii) limx→∞ F (x + y)/F (x) = exp(−γy) for all y ∈ R locally uniformly.
(iii) limx→∞ F ∗ F (x)/F (x) exists and is finite.

The class S(0) is called the class of subexponential distributions. For details
and further references see Embrechts et al. [17] and Watanabe [58]. An im-
portant family in S(γ) are distribution functions with tail

F (x) ∼ x−βe−γx−cxp

, x → ∞,

where γ, c ≥ 0, p < 1, and if c = 0, β > 1 (cf. Klüppelberg [28], Theorem 2.1,
or Pakes [42], Lemma 2.3). There are certain subclasses of generalized inverse
Gaussian distributions, normal inverse Gaussian distributions, generalized hy-
perbolic distributions and CGMY distributions in S(γ), which are used for
modelling financial time series (cf. Schoutens [52]).

We investigate two different kinds of OU-models.

(M1) OU-model with η1 ∈ S(γ) ∩ MDA(Λ). Let (Xt)t≥0 be a sta-
tionary OU-process as in (7). We assume that the distribution of η1 is in
S(γ) ∩ MDA(Λ) for some γ ≥ 0.

This assumption is sufficient for the existence of a stationary version of an
OU-process. The following Proposition (cf. Proposition 2 and Proposition 3
of Fasen, Klüppelberg and Lindner [22]) describes the tail behavior of Xt.
The proof of this result is based on the asymptotic equivalence of the tail of
the distribution function and the tail of its Lévy measure for every infinitely
divisible convolution equivalent distribution in S(γ), and the representation
of the Lévy measure of Xt (cf. Wolfe [59], Theorem 2 and the monograph of
Sato [51]) as

νX(dx) =
ν(x,∞)

x
dx for x > 0.

Proposition 1. Let (Xt)t≥0 be as in (M1). Then

P(Xt > x) = o(P(η1 > x)) as x → ∞

and Xt ∈ S(γ) ∩ MDA(Λ).

This result shows that the driving Lévy process and the OU-process are in the
same maximum domain of attraction, but they are not tail-equivalent. The
precise relationship is given in [22]. In the next model this will be different.

(M2) OU-model with η1 ∈ R
−α. Let (Xt)t≥0 be a stationary OU-

process as in (7). We assume that η1 has a regularly varying right tail distri-
bution function, written as η1 ∈ R−α, i. e.,

P(η1 > x) = l(x)x−α , x ≥ 0, (8)

where l(·) is a slowly varying function; for more details on regular variation
see Section 4 of Davis and Mikosch [14] in this volume.
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Under these assumptions there exists again a stationary version of the OU-
process. All distribution functions with regularly varying tails are in S(0) and
belong to MDA(Φα), α > 0. In particular this means that the distribution of
η1 is also in MDA(Φα). The same techniques to compute the tail behavior of
Xt as in (M1), where the tail of the Lévy measure and the probability measure
are compared, are also used to derive the tail behavior of Xt in (M2) (cf. [22],
Proposition 3.2).

Proposition 2. Let (Xt)t≥0 be as in (M2). Then

P(Xt > x) ∼ (αλ)−1
P(η1 > x) as x → ∞.

This result shows that the tail of Xt is again regularly varying of index −α,
and hence, also Xt is in MDA(Φα).

3.2 The non-Ornstein Uhlenbeck process

The last model we investigate in this paper is again a GOU-model as in (1),
but it excludes the classical OU process as in (7).

(M3) Non-OU model. Let (Xt)t≥0 be a stationary GOU-model as in (1).
Let (ηt)t≥0 be a subordinator, i. e., a Lévy process with nondecreasing sample
paths, and if (ξt)t≥0 is of finite variation, then we assume additionally that
either the drift of (ξt)t≥0 is non-zero, or that there is no r > 0 such that the
Lévy measure of (ξt)t≥0 is concentrated on rZ. Furthermore, we suppose

E(e−αξ1 ) = 1 for some α > 0. (9)

We assume, finally, the moment conditions

E|η1|
q max{1,d} < ∞ and E(e−max{1,d}pξ1) < ∞ (10)

for some d > α and p, q > 0 with 1/p + 1/q = 1.

In the classical OU-model condition (9) is not satisfied. As in many studies like
the GARCH-model, Lindner and Maller [39] apply the results of Kesten [27]
and Goldie [23] for stochastic recurrence equations to deduce the stationarity
and the heavy-tailed behavior of model (M3). In this context the stochastic
recurrence equation has the form

Xt+1 = At+1Xt + Bt+1 , t ≥ 0,

where

At = e−(ξt−ξt−1) and Bt = e−ξt

∫ t

t−1

eξs− dηs , t ≥ 0.

The result for the tail behavior as presented in Lindner and Maller [39], The-
orem 4.5, is the following.
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Proposition 3. Let (Xt)t≥0 be as in (M3). Then for some C > 0,

P(Xt > x) ∼ Cx−α as x → ∞.

Typical examples which satisfy (M3) are the volatility process of the continuous-
time GARCH(1, 1) (COGARCH(1, 1)) model introduced by Klüppelberg et
al. [29, 30] and the volatility process of Nelson’s diffusion limit of a GARCH(1, 1)-
model [41].

Example 1 (COGARCH(1, 1) process). The right-continuous version of the
volatility process of the COGARCH(1, 1) process is defined as GOU-process
as in (1), where

ξt = ct −
∑

0<s≤t

log(1 + βec(∆Ls)
2) and ηt = λt for t ≥ 0,

λ, c > 0, β ≥ 0 are constants and (Lt)t≥0 is a Lévy process (cf. Lindner [38]
of this volume). The assumptions in (M3) are satisfied if and only if

−αc +

∫
((1 + βecy2)α − 1)ΠL(dy) and E|L1|

2d̃ < ∞ for some d̃ > α,

where ΠL denotes the Lévy measure of L.

Example 2 (Nelson’s diffusion model). The Nelson’s diffusion model, originally
defined as solution of the stochastic differential equation

dXt = λ(a − Xt) dt + σXt dBt,

where a, λ, σ > 0 and (Bt)t≥0 is a Brownian motion, is by Theorem 52 on
p. 328 in Protter [44] a GOU-process with

ξt = −σBt +

(
1

2
σ2 + λ

)
t and ηt = λat for t ≥ 0.

Since

E(e−uξ1) = exp

(
1

2
σ2u2 −

(
1

2
σ2 + λ

)
u

)

we have E(e−αξ1) = 1 for α = 1 + 2λ/σ2.

For more details on these examples we refer to Lindner [38] in this volume.

3.3 Comparison of the models

At first glance, the results presented in Propositions 1-3 are surprising. We
start with a comparison of models (M1) and (M3) driven by the same Lévy
process (ηt)t≥0. In model (M1), the tail of η1 is heavier than the tail of Xt.
In contrast, in model (M3) the existence of the qα moment of η1 by (10)
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results in the tail of η1 being at most −qα regularly varying and hence, lighter
tailed than Xt. Taking now, in models (M1) and (M3), the same Lévy process
(ηt)t≥0, it ensures that Xt has a different tail behavior in each model. In (M1)
it is lighter tailed and in (M3) it is heavier tailed than η1.

Next we compare the OU-models (M1) and (M2), which have the same
Lévy process (ξt)t≥0. In model (M1) we find that Xt is lighter tailed than η1;
in (M2) we find the tail-equivalence of the distribution function of Xt and η1.

We conclude that both Lévy processes (ξt)t≥0 and (ηt)t≥0 are contributing
factors to the tail behavior of Xt.

4 Tail behavior of the sample maximum

It is the tail of the distribution of the sample maximum M(h) as in (2) for
some h > 0, rather than Xt itself, that determines the limit distribution of the
normalized process M(T ) as T → ∞. The tail behavior of M(h) is affected
differently in models (M1)–(M3).

For (M1) the derivation of the asymptotic behavior of the tail of M(h) is
much more involved than for (M2) and given in Fasen [20]. For model (M2)
the following asymptotic behavior holds:

P(M(h) > x)

= P

(
sup

0≤t≤h

{
e−λt

∫ t

0

eλs dηs + e−λtX0

}
> x

)

∼ P

(∫ h

0

sup
0≤t≤h

{
1[0,t) e−λ(t−s)

}
dηs > x

)
+ P

(
sup

0≤t≤h

{
e−λt

}
X0 > x

)

= P(ηh > x) + P(X0 > x) as x → ∞.

The mathematical proof (see Fasen [18], Proposition 3.2) is based on results
of Rosinski and Samorodnitsky [50] investigating the tail behavior of random
variables in S(0), which are functionals acting on infinitely divisible processes.
In model (M3) only the last summand of representation (7) influences the tail
behavior, since

E

∣∣∣∣ sup
0≤t≤h

e−ξt

∫ t

0

eξs− dηs

∣∣∣∣
d

< ∞

(cf. Fasen [19], Remark 2.3 (iii)). Hence, Klüppelberg et al. [30], Lemma 2,
and Breiman [9], Proposition 3, give as x → ∞,
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P(M(h) > x) = P

(
sup

0≤t≤h

{
e−ξt

∫ t

0

eξs− dηs + e−ξtX0

}
> x

)

∼ P

(
sup

0≤t≤h

{
e−ξt

}
X0 > x

)

∼ E

(
sup

0≤s≤h

e−αξs

)
P(X0 > x).

We summarize the tail behavior of M(h) for the different models.

Proposition 4.

(a) OU-model with η1 ∈ S(γ) ∩ MDA(Λ) as in (M1):

P(M(h) > x) ∼ h
E(eγX0)

E(eγη1)
P(η1 > x) as x → ∞.

(b) OU-model with η1 ∈ R−α as in (M2):

P(M(h) > x) ∼

(
h +

1

αλ

)
P(η1 > x) as x → ∞.

(c) Non-OU model as in (M3):

P(M(h) > x) ∼ E

(
sup

0≤s≤h

e−αξs

)
P(Xt > x) as x → ∞.

In all three models M(h) is in the same maximum domain of attraction as
Xt.

5 Running sample maxima and extremal index function

The classic problem arising from studying the extremal behavior of stochastic
processes is the asymptotic behavior of the sample maxima M(T ) as T → ∞.
One of the first researchers turning from the extremal behavior of Gaussian
processes to stable processes was Rootzén [49]. His results already include the
asymptotic behavior of sample maxima of OU-processes driven by stable Lévy
motions and their marked point process behavior, where the definition of the
marked point process is slightly different to Section 2.3. Generalizations of his
results to regularly varying processes including model (M2) are presented in
Fasen [18]. Model (M1) was investigated in Fasen et al. [22], but more details
can be found in [20]. A proof of the asymptotic behavior in model (M3) is
given in [19]. We denote by x+ = max{0, x} for x ∈ R.

Proposition 5.
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(a) OU-model with η1 ∈ S(γ) ∩ MDA(Λ) as in (M1):
Let aT > 0, bT ∈ R be sequences of constants such that

lim
T→∞

TP(M(1) > aT x + bT ) = exp(−x) for x ∈ R.

Then

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) = exp(−e−x) for x ∈ R,

and

θ(h) = 1 for h > 0.

(b) OU-model with η1 ∈ R−α as in (M2):
Let aT > 0 be a sequence of constants such that

lim
T→∞

TP(M(1) > aT x) = x−α for x > 0.

Then

lim
T→∞

P(a−1
T M(T ) ≤ x) = exp

(
−

αλ

αλ + 1
x−α

)
for x > 0,

and

θ(h) =
hαλ

hαλ + 1
for h > 0.

(c) Non-OU model as in (M3):
Let aT > 0 be a sequence of constants such that

lim
T→∞

TP(M(1) > aT x) = x−α for x > 0.

Then

lim
T→∞

P(a−1
T M(T ) ≤ x) = exp

(
−

E
(
sup0≤s≤1 e−αξs − sups≥1 e−αξs

)+

E
(
sup0≤s≤1 e−αξs

) x−α

)

for x > 0, and

θ(h) = h
E
(
sup0≤s≤1 e−αξs − sups≥1 e−αξs

)+

E
(
sup0≤s≤h e−αξs

) for h > 0.

These results reflect the fact that model (M1) has no clusters of extremes on
high levels, whereas both regularly varying models (M2) and (M3) have them.
In particular, models (M2) and (M3) do not satisfy the anti-cluster condition
C′.

For the behavior of the marked point processes of model (M1) and (M2)
we refer to [22] and of (M3) to [19].
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6 Conclusion

All continuous-time models (Xt)t≥0 presented in Section 3 are heavy-tailed
models, which model stationary continuous-time processes with jumps. The
OU-model in (M1) has no clusters of extremes. This property has been con-
firmed so far in all investigated OU-models in MDA(Λ), including Gaussian
OU-processes (cf. Albin [1]). However, the regularly varying models (M2) and
(M3) have extremal clusters on high levels.

One generalization of the OU-process is the supOU process introduced by
Barndorff-Nielsen [4], where the driving Lévy process is replaced by an in-
finitely divisible random measure. Modelling long range dependence, in the
sense that the autocovariance function decreases very slowly, is a special fea-
ture of this class of processes. All models presented in this paper have exponen-
tially decreasing covariance functions and do not allow long range dependence.
SupOU processes have an extremal behavior similar to that of OU-models, see
Fasen and Klüppelberg [21]. This means that only regularly varying supOU
processes have extremal clusters.

Another extension of OU-processes are continuous-time ARMA (CARMA)
processes, as presented in Brockwell [10] of this volume. In such models the ex-
ponentially decreasing kernel function of an OU-process is replaced by a more
general kernel function. The results of Fasen [20, 18] show that a CARMA
process and an OU-process, driven by the same Lévy process, have similar
extremal behavior. The regularly varying CARMA processes show extremal
clusters. In the case in which the driving Lévy process of the CARMA pro-
cess has marginals in S(γ)∩MDA(Λ), and the kernel functions have only one
maximum, there are again no extremal clusters. If they have more than one
maximum, then they may also model extremal clusters.
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Lévy processes. In: O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick (Eds.),
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21. Fasen, V. and Klüppelberg, C. (2007). Extremes of supOU processes. In:
F. E. Benth, G. Di Nunno, T. Lindstrom, B. Oksendal, and T. Zhang (Eds.),
Stochastic Analysis and Applications: The Abel Symposium 2005 , pp. 340–359.
Springer.



14 Vicky Fasen
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51. Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge University Press, Cambridge.
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