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Summary. This paper surveys a class of Generalised Ornstein-Uhlenbeck (GOU)
processes associated with Lévy processes, which has been recently much analysed in
view of its applications in the financial modelling area, among others. We motivate
the Lévy GOU by reviewing the framework already well understood for the “or-
dinary” (Gaussian) Ornstein-Uhlenbeck process, driven by Brownian motion; thus,
defining it in terms of a stochastic differential equation (SDE), as the solution of
this SDE, or as a time changed Brownian motion. Each of these approaches has an
analogue for the GOU. Only the second approach, where the process is defined in
terms of a stochastic integral, has been at all closely studied, and we take this as
our definition of the GOU (see Eq. (12) below).

The stationarity of the GOU, thus defined, is related to the convergence of a
class of “Lévy integrals”, which we also briefly review. The statistical properties
of processes related to or derived from the GOU are also currently of great inter-
est, and we mention some of the research in this area. In practise, we can only
observe a discrete sample over a finite time interval, and we devote some attention
to the associated issues, touching briefly on such topics as an autoregressive rep-
resentation connected with a discretely sampled GOU, discrete-time perpetuities,
self-decomposability, self-similarity, and the Lamperti transform.

Some new statistical methodology, derived from a discrete approximation pro-
cedure, is applied to a set of financial data, to illustrate the possibilities.

1 Introduction

The Ornstein-Uhlenbeck (throughout: OU) process was proposed by Uhlen-
beck and Ornstein (1930) in a physical modelling context, as an alternative
to Brownian Motion, where some kind of mean reverting tendency is called
for in order to adequately describe the situation being modelled. Since the
original paper appeared, the model has been used in a wide variety of ap-
plications areas. In Finance, it is best known in connection with the Vasicek
(1977) interest rate model. References to this (huge) literature are readily
available via library and web searches, and we will not attempt to review it
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all here. However, to set the scene we will briefly discuss the standard (Gaus-
sian) OU process, driven by Brownian Motion, and concentrate thereafter
on some extensions that have recently attracted attention, especially in the
financial modelling literature.

2 OU Process driven by Brownian Motion

The (one-dimensional) Gaussian OU process X = (Xt)t≥0 can be defined as
the solution to the stochastic differential equation (SDE)

dXt = γ(m−Xt)dt+ σdBt, t > 0, (1)

where γ, m, and σ ≥ 0 are real constants, and Bt is a standard Brownian
Motion (SBM) on R. X0, the initial value of X , is a given random variable
(possibly, a constant), taken to be independent ofB = (Bt)t≥0. The parameter

m can be formally eliminated from (1) by considering X
(m)
t := Xt−m rather

than X , but we will keep it explicit in view of some later applications.
Alternatively, we could define X in terms of a stochastic integral:

Xt = m
(
1 − e−γt

)
+ σe−γt

∫ t

0

eγsdBs +X0e
−γt, t ≥ 0. (2)

It is easily verified that X as defined by (2) satisfies (1) for any γ, m, σ, and
choice of X0; it is the unique, strong Markov solution to (1), cf. Protter (2005,
p. 298). The stochastic integral in (2) is well defined and satisfies the properties
outlined in Protter (2005), for example. In particular, M· :=

∫ ·
0
eγsdBs is

a zero-mean martingale with respect to the natural filtration of B, whose
quadratic variation is [M,M ]· =

∫ ·
0 e

2γsds. So Mt = W[M,M ]t , t ≥ 0, where
W is an SBM (Protter 2005, p. 88). This leads to a third representation for
X as a time changed Brownian motion:

Xt = m
(
1 − e−γt

)
+ σe−γtW(e2γt−1)/2γ +X0e

−γt, t ≥ 0. (3)

Basic properties of X are easily derived from (1)–(3). In particular, con-
ditional on X0, and assuming X0 has finite variance, Xt is Gaussian with
expectation and covariance functions given by

EXt = m
(
1 − e−γt

)
+ e−γtEX0, t ≥ 0, (4)

and

Cov(Xu, Xt) =
σ2

2γ
e−γu

(
eγt − e−γt

)
+ e−γ(u+t)VarX0, u ≥ t ≥ 0. (5)

When, and only when, γ > 0, the limit limt→∞
∫ t
0
e−γsdBs exists almost

surely (a.s.) as a finite random variable, which we can denote as
∫ ∞
0
e−γsdBs.
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Using time reversal (for a fixed t > 0, (Bs)0≤s≤t has the same distribution as
(Bt−s)0≤s≤t) we see from (2) that, for each t ≥ 0,Xt has the same distribution
as

X̃t := m
(
1 − e−γt

)
+ σ

∫ t

0

e−γsdBs +X0e
−γt, (6)

so limt→∞ X̃t exists a.s., is finite, and equals X̃∞ := m+σ
∫ ∞
0 e−γsdBs, when

γ > 0. If Xt is “started with” initial value X0, having the distribution of X̃∞,
and independent of (Xt)t>0, then it is strictly stationary in the sense that the
random vectors (Xt1 , Xt2 , . . . , Xtk) and (Xt1+h, Xt2+h, . . . , Xtk+h) have the
same distribution, for any k = 1, 2, . . ., h > 0, and 0 < t1 < t2 < . . . < tk <∞.

In this case we can extend Bt to (−∞, 0), note that X̃∞ :
D
= m+σ

∫ 0

−∞ eγsdBs,

independent of (Xt)t≥0, and take X0 := m + σ
∫ 0

−∞ eγsdBs. From (2), then,
we can write

Xt = m+ σe−γt
∫ t

−∞
eγsdBs, t ≥ 0. (7)

Since Bt has stationary independent increments, from (7) we see that X is
a stationary, Markovian, Gaussian process, which is continuous in probabil-
ity. Conversely, any such process is a (stationary) version of a Gaussian OU
process.

The “mean reversion” of X to the constant level m when γ > 0 can be
inferred from (1); if X has diffused above m at some time, then the coeffi-
cient of the “dt” drift term is negative, so X will tend to move downwards
immediately after, with the reverse holding if X is below m at some time.

Definitions (1) and (2) still make sense when γ ≤ 0. When γ = 0,X reduces
to a zero mean Brownian motion (note that the parameter m is unidentified

when γ = 0) and when γ ≤ 0 of courseX is not stationary, in fact |
∫ t
0
e−γsdBs|

tends to infinity in probability as t→ ∞, so this is an “explosive” case.

3 Generalised OU Processes

There are many ways of generalising the Gaussian OU process, but we will
concentrate here on a class of generalisations which has particular application
in financial modelling, and has been recently studied intensely from this point
of view. There are certainly applications of this class in other areas too.

The idea is to replace the dt and dBt differentials in (1) with the dif-
ferentials of other semimartingales, or, alternatively, replace the exponential
function and Brownian motion in (2) or (3) with other processes. These are
quite sweeping generalisations, and to keep the analysis manageable we re-
strict ourselves to a Lévy generalisation. This is already a profound one, and,
apart from greatly increasing applicability, introduces many interesting and
important analytical considerations, not least to do with the intricacies of the
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stochastic calculus. We passed over this aspect in Section 2 because the inte-
grals involve only the continuous semimartingale Bt, and are relatively easy to
handle. A general Lévy process has a jump component which requires special
attention in the analysis. But the jumps introduce a modelling feature we wish
to incorporate since they prove useful in some financial modelling situations,
see, e.g., Geman, Madan and Yor (2000). Another aspect that becomes more
interesting (and more difficult!) for jump processes is the statistical analysis;
we discuss this below.

Before proceeding, we need to recall some properties of Lévy processes.

Background on Bivariate Lévy Processes

We refer to Bertoin (1996) and Sato (1999) for basic results and repre-
sentations concerning Lévy processes (see also Protter 2005, Ch. I, Sect. 4).
Univariate Lévy processes are also considered in Brockwell (2007). For the
Generalised OU Process (GOU) we need some specialised material on bivari-
ate Lévy processes, which we briefly review now.

The setup is as follows. Defined on (Ω,F , P ), a complete probability space,
a bivariate Lévy process (ξt, ηt)t≥0 is a stochastic process in R

2, with càdlàg
paths and stationary independent increments, which is continuous in prob-
ability. We take (ξ0, η0) = (0, 0) and associate with (ξ, η) its natural filtra-
tion (Ft)t≥0, the smallest right-continuous filtration for which (ξt, ηt)t≥0 is
adapted, completed to contain all P -null sets.

Especially important is the Lévy exponent, ψ(θ), which is defined in terms
of the characteristic function of (ξt, ηt) via

Eei〈(ξt,ηt),θ〉 =: etψ(θ),

where 〈·, ·〉 denotes inner product in R
2. For a bivariate Lévy process the

exponent is given by the Lévy-Khintchine representation:

ψ(θ) = i〈A, θ〉− 1
2 〈θ,Σθ〉+

∫∫

|(x,y)|≤1

(
ei〈(x,y),θ〉−1−i〈(x, y), θ〉

)
Πξ,η(dx, dy)

+

∫∫

|(x,y)|>1

(
ei〈(x,y),θ〉 − 1

)
Πξ,η(dx, dy), for θ ∈ R

2. (8)

Here | · | is Euclidian distance in R
2, A = (A1, A2) is a nonstochastic 2–

vector, Σ = (σrs) is a nonstochastic 2 × 2 non-negative definite matrix, and
the Lévy measure, Πξ,η, is a measure on the Borel subsets of R

2 \ {0}, with∫
(|(x, y)|2∧1)Πξ,η(dx, dy) <∞. Though its value at (0, 0) is not relevant, for

definiteness, we can take Πξ,η{(0, 0)} = 0. In the literature, Lévy processes
such that the Lévy measure of any neighbourhood in R

2 \ {0} whose closure
contains 0 is infinite, are often described as having “infinite activity”. Such
processes have infinitely many jumps in every nonempty time interval, a.s.
The remaining Lévy processes, that is, Lévy processes with “finite activity”,
are compound Poisson processes (possibly with a drift).
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The component processes ξt and ηt are Lévy processes in their own right,
having canonical triplets (Aξ, σ11, Πξ) and (Aη, σ22, Πη), say, where the Lévy
measures are given by

Πξ{Λ} :=

∫

R

Πξ,η{Λ, dy} and Πη{Λ} :=

∫

R

Πξ,η{dx, Λ}, (9)

for Λ a Borel subset of R \ {0}, and the centering constants are given by

Aξ := A1 +

∫

|x|≤1

x

∫

|y|≥
√

1−x2

Πξ,η{dx, dy},

and similarly for Aη.
A (càdlàg) Lévy process has countably many jumps at most, a.s. We set

(ξs−, ηs−) := limu↑s(ξu, ηu) for s > 0, and denote the jump process by

∆(ξ, η)t := (∆ξt, ∆ηt) = (ξt − ξt−, ηt − ηt−), t ≥ 0

(with (ξ0−, η0−) = 0). If Λ is a Borel subset of R
2 \ {0}, then the expected

number of jumps of (ξ, η) of (vector) magnitude in Λ occuring during any unit
time interval equals Π{Λ}, i.e., for any t > 0,

Π{Λ} = E
∑

t<s≤t+1

1{(∆ξs,∆ηs)∈Λ}. (10)

Corresponding exactly to the decomposition in (8) is the Lévy-Ito repre-
sentation of the process as a shift vector plus Brownian plus “small jump”
plus “large jump” components:

(ξt, ηt) = (A1, A2)t+ (Bξ,t, Bη,t) + (ξ
(1)
t , η

(1)
t ) + (ξ

(2)
t , η

(2)
t ). (11)

Here (Bξ,t, Bη,t)t≥0 is a Brownian motion on R
2 with mean (0, 0) and covari-

ance matrix tΣ, (ξ
(1)
t , η

(1)
t )t≥0 is a discontinuous (pure jump) process with

jumps of magnitude not exceeding 1, which may be of bounded variation on
compact time intervals (that is,

∑
0<s≤t |∆(ξ, η)s| < ∞ a.s. for all t > 0), or

of unbounded variation, and (ξ
(2)
t , η

(2)
t )t≥0 is a pure jump process with jumps

of magnitude always exceeding 1; thus it is a compound Poisson process. The
truncation point “1” is arbitrary and can be replaced by any other positive
number at the expense only of redefining the shift vector (A1, A2). The rep-
resentation (11) is a great aid to intuition as well as being indispensible in
many analyses.

The couple (ξ
(1)
t , η

(1)
t ) (also a bivariate Lévy process, as is (ξ

(2)
t , η

(2)
t ))

have finite moments of all orders, and by adjusting the centering vector A

if necessary we can take Eξ
(1)
1 = Eη

(1)
1 = 0. Moments of ξ

(2)
t and η

(2)
t are

not necessarily finite; conditions for this to be so, in terms of the canonical
measures, are in Sato (1999, p.159, and p.163, ff.). In general, one or more
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of the components on the righthand side of (11) may not be present, i.e.,
degenerates to 0. The bivariate Lévy then correspondingly degenerates to a
simpler form.

Lévy OU Processes

As a starting point for the generalisation we could use (1), (2), or (3). In our
general setting these three definitions do not produce the same process. Each
is interesting in its own right, but what is presently known in the literature
as the Generalised OU process proceeds from (2), and we will adhere to this
usage. Thus, we take a bivariate Lévy process (ξ, η) and write

Xt = m
(
1 − e−ξt

)
+ e−ξt

∫ t

0

eξs−dηs +X0e
−ξt , t ≥ 0, (12)

where X0 is independent of (ξt, ηt)t≥0, and assumed F0-measurable. Consid-
erations of the stochastic calculus require us to be precise in specifying the
filtration with respect to which the integral in (12) is defined, and we take
it to be the natural filtration (Ft)t≥0. The Lévy processes ξ and η are semi-
martingales, so the stochastic integral in (12) is well defined without further
conditions; in particular, no moment conditions on ξ or η are needed.

One motivation for studying (12) is that special cases of it occupy cen-
tral positions in certain models of financial time series; the Lévy driven OU
processes of Barndorff-Nielsen and Shephard (2001a, 2001b, 2003) and the
COGARCH process of Klüppelberg, Lindner and Maller (2004) are recent
examples.

The GOU as defined in (12) seems to have been first considered by Car-
mona, Petit and Yor (1997); it is also implicit in the paper of de Haan and
Karandikar (1989), where it occurs as a natural continuous time generalisation
of a random recurrence equation. It has been studied in some detail by Lind-
ner and Maller (2005), with emphasis on carrying over some of the properties
enjoyed by the Gaussian OU. Other applications are in option pricing (Yor
(1992, 2001)), insurance and perpetuities (Harrison (1977), Dufresne (1990),
Paulsen and Hove (1999)), and risk theory (Klüppelberg and Kostadinova
(2006)). Many of these place further restrictions on ξ and η; for example, ξ
may be independent of η, or one or another or both of ξ or η may be a Brow-
nian motion or compound Poisson process, etc. To begin with, we make no
assumptions on ξ or η (not even independence), and investigate some general
properties of Xt.

Thus, it is the case that Xt is a time homogeneous Markov process (Car-
mona et al. 1997, Lemma 5.1), and it is elementary that (Xt)t≥0 is strictly
stationary if and only if Xt converges in distribution to X0, as t → ∞. To
study when this occurs, stationarity is related to the convergence of a certain
stochastic integral in Lindner and Maller (2005). But which integral? Let us
note that in general there is no counterpart of the equality (in distribution)

of (2) and (6). That is, in general, e−ξt
∫ t
0 e

ξs−dηs does not have the same dis-

tribution (even for a fixed t > 0) as
∫ t
0
e−ξs−dηs, as might at first be thought
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via a time-reversal argument. The correct relationship is given in Proposition
2.3 of Lindner and Maller (2005):

e−ξt

∫ t

0

eξs−dηs
D
=

∫ t

0

e−ξs−dLs, for each t > 0, (13)

where Lt is a Lévy process constructed from ξ and η as follows:

Lt := ηt +
∑

0<s≤t
(e−∆ξs − 1)∆ηs − tCov(Bξ,1, Bη,1), t ≥ 0. (14)

Here “Cov” denotes the covariance of the Brownian components of ξ and η.
In general Lt 6= ηt, but when ξ and η are independent, for example, they have
no jumps in common, a.s., and the covariance term is 0, so (14) gives Lt ≡ ηt,

and the integral on the righthand side of (13) then equals
∫ t
0
e−ξs−dηs.

But even in the general case, (13) can be used to investigate the large
time behaviour of Xt, because necessary and sufficient conditions for the con-
vergence (a.s., or, in distribution) of Lévy integrals of the form

∫ ∞
0
e−ξt−dLt

have been worked out by Erickson and Maller (2005), phrased in terms of
quite simple functionals of the canonical triplet of (L, η), which is easily ob-
tained from the canonical triplet of (ξ, η) via (14). Except for a degenerate
case, necessary and sufficient is that limt→∞ ξt = ∞ a.s., together with a kind
of log-moment condition involving only the marginal measures of ξ and η.
The divergence criterion limt→∞ ξt = ∞ a.s. is also easily expressed in terms
of the canonical measure of ξt. The stationarity criterion, given in Theorem
2.1 of Lindner and Maller (2005), is that (Xt)t≥0 is strictly stationary, for an
appropriate choice of X0, if and only if the integral

∫ ∞
0 e−ξt−dLt converges

(a.s., or, equivalently, in distribution), or else Xt is indistinguishable from a
constant process.

From these results we see that a study of the GOU process can be reduced
in part to a study of the exponential Lévy integral

∫ ∞
0
e−ξt−dLt, and this pro-

gram is continued in Erickson and Maller (2007) (conditions for convergence of
stochastic integrals), Bertoin, Lindner and Maller (2007) and Kondo, Maejima
and Sato (2006) (continuity properties of the integral), and Maller, Müller and
Szimayer (2007) (discrete approximation and statistical properties).

We took as starting point in this section a generalisation of (2), via (12).
(12) has direct relevance to stochastic volatility and other models in finance,
among other possible applications. On the other hand, modelling by SDEs
such as (1) (the Langevin equation) can arise directly from a physical situa-
tion; e.g., the interpretation of (1) as describing the motion of a particle under
a restraining force proportional to its velocity. The counterpart of (1) for the
GOU is the SDE

dXt = (Xt− −m)dUt + dLt, t ≥ 0, (15)

where (U,L) is a bivariate Lévy process. Suppose this holds for a U whose
Lévy measure attributes no mass to (−∞,−1], and define a Lévy process ξ by
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ξt = − log E(U)t, where E(U) denotes the stochastic exponential of U , namely,
the solution to the SDE dE(U)t = E(U)t−dUt with E(U)0 = 1; see Protter
(2005, p.85). Then define a Lévy process ηt by

ηt := Lt −
∑

0<s≤t
(1 − e−∆ξs)∆Ls + tCov(Bξ,1, BL,1), t ≥ 0. (16)

With these definitions, (12) is the unique (up to indistinguishability) solution
to (15). To verify this, use integration by parts in (12) together with Eq. (2.10)
of Lindner and Maller (2005). The fact that the Lévy measure of U attributes
no mass to (−∞,−1] ensures that E(U) is positive. Conversely, if, for a given
bivariate Lévy process (ξ, η), L satisfies (14), and U satisfies ξt = − log E(U)t,
then Xt as defined in (12) satisfies (15), and, further, the Lévy measure of U
attributes no mass to (−∞,−1]. See Protter (2005, p.322) and Yoeurp (1979)
for further discussion.

A third approach to generalising an OU is to consider more general time
changes. Monroe (1978), generalising Lévy’s result for continuous local mar-
tingales, showed that any semimartingale can be obtained as a time changed
Brownian motion. Thus we can write

∫ t
0 e

ξs−dηs = WTt
, for an SBM W and

an increasing semimartingale (Tt)t≥0, leading to another kind of generalisa-
tion of (3). The properties of such a class are also unexplored, so far as we
know. Other versions of time changed Brownian motions have been used in
many situations; see, e.g., Anh, Heyde and Leonenko (2002), for a financial
application.

Self-Decomposability, Self-Similarity, Class L, Lamperti Transform

Consider the case when m = 0 and ξt = γt, γ > 0, is a pure drift in (12):

Xt = e−γt
∫ t

0

eγsdηs +X0e
−γt, t ≥ 0. (17)

Say that (the distribution of) a random variable X is semi-self-decomposable

if X has the same distribution as aX + Y (a), for a constant 0 < a < 1, for
some random variable Y (a), independent of X , possibly depending on a. If

an equality in distribution X
D
= aX + Y (a) can be achieved for all a ∈ (0, 1),

X is said to be self-decomposable. See Sato (1999, Section 15). This property
can also be described as saying that the distribution of X is of Class L; this
is a subclass of the infinitely divisible distributions which can be obtained as
the limit laws of normed, centered, sums of independent (but not necessarily
identically distributed) random variables. See Feller (1971, p. 588). Class L
contains but is not confined to the stable laws, which are the limit laws of
normed, centered, sums of i.i.d. random variables.

A potential limiting value of Xt in (17) as t → ∞ is the random variable

X∞ :=
∫ ∞
0
e−γtdηt, if finite, and then Xt is stationary if X0

D
= X∞. Wolfe

(1982) showed that a random variable X is self-decomposable if and only if it
has the representation
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X
D
=

∫ ∞

0

e−γtdηt,

for some Lévy process η with E log+ |η| < ∞ (and then X is a.s. finite),
and, further, that the canonical triplets of Xt (the Lévy process with the
distribution of X when t = 1) and ηt are then connected in a simple way. He
made crucial use of the formula

Eeiθ
R

b

a
f(s)dηs = Ee

R

b

a
Ψη(−θf(s))ds, 0 ≤ a < b <∞, θ ∈ R, (18)

where f is a bounded continuous function in R and Ψη(θ) := − log
(
Eeiθη1

)

(e.g., Bichteler (2002, Lemma 4.6.4, p. 256)).
An H–self-similar process (Xt)t≥0 is such that (Xat)t≥0 has the same

distribution as (aHXt)t≥0, for some constant H > 0, and each a > 0. Sato
(1991) showed that a random variable X1 is self-decomposable if and only
if for each H > 0 its distribution is the distribution at time 1 of an H–self-
similar process. An H–self-similar Lévy process must have H ≥ 1/2; and then
Xt is an α–stable process with index α = 1/H ∈ (0, 2].

The Lamperti Transform of an H–self-similar process (Xt)t≥0 is the (sta-
tionary) process Yt := e−tHXet , t ≥ 0. Lamperti (1962, 1972) showed, con-
versely, that any stationary process Y can be represented in this form. Thus,
in summary, we have a correspondence between a stationary process Yt, an
H–self-similar process Xt, a self-decomposable random variable X1, the class
L, and the integral

∫ ∞
0 e−γtdηt. Jeanblanc, Pitman and Yor (2002) give an

elegant linking approach to these.
The integral

∫ ∞
0 e−ξtdt (assumed convergent) is self-decomposable when

ξ is spectrally negative, but not in general; (in fact, it is not even infinitely
divisible in general). These results are due to Samorodnitsky (reported in
Klüppelberg et al. (2004)). Thus, a fortiori, the integral

∫ ∞
0 e−ξtdηt is not in

general self-decomposable. See also Kondo et al. (2006) for further results.

4 Discretisations

Autoregressive Representation, and Perpetuities

Given a Lévy process Lt with E log+ |L1| < ∞ and constants h > 0 and

γ > 0, let (Qn)n=1,2,... be i.i.d. with the distribution of e−γh
∫ h
0 e

γsdLs. Then
(Wolfe 1982) the discrete time process (time series) defined recursively by

Zn = e−γhZn−1 +Qn, n = 1, 2, . . . , with Z0 = 0, (19)

converges in distribution as n→ ∞ to a random variable with the distribution
of the (a.s. finite) integral

∫ ∞
0 e−γtdLt. Thus the stationary distribution of an

OU process driven by Lévy motion can be obtained from the behaviour at
large times of an autoregressive time series. Conversely, Wolfe showed that if
(Qn)n=1,2,... are given i.i.d. random variables with E log+ |Qn| < ∞, and Zn
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are defined by the recursion in (19) with γ > 0 and h = 1, then there is a
Lévy process Lt with E log+ |L1| < ∞ such that the process Xt as defined

in (17) satisfies Xn = Zn, n = 1, 2, . . ., if and only if Q1
D
= e−γ

∫ 1

0
eγsdLs.

He further gave necessary and sufficient conditions for the latter property to

hold; namely, a random variableQ has the same distribution as e−γ
∫ 1

0 e
γsdLs,

for a given γ > 0 and Lévy process Lt with E log+ |L1| < ∞, if and only if∏∞
j=0 E(eiρ

jθQ) is the characteristic function of a distribution in class L, where

ρ = e−γ . See also Sato (1999, Section 17).
(19) is a special case of a discrete time “perpetuity”. More generally, we

may replace the coefficient e−γh in (19) by a random sequence, Mn, say, such
that (Qn,Mn)n=1,2,... is an i.i.d. sequence of 2-vectors. Then Zn is a kind of

analogue of the Lévy integral
∫ t
0
e−ξs−dηs; see, e.g., Lindner and Maller (2005)

for a discussion. Random sequences related to perpetuities have received much
attention in the literature as models for a great variety of phenomena, includ-
ing but not restricted to the actuarial area. We refer to Vervaat (1979), Goldie
and Maller (2000), Nyrhinen (1999, 2001).

Statistical Issues: Estimation and Hypothesis Testing

There are methods of estimation of parameters in continuous time models
based on hypothetical continuous time observation of a process over a finite
interval, and the testing of hypotheses about them, for example, in a likelihood
framework (Liptser and Shiryaev (1978), Basawa and Prakasa Rao (1980),
Heyde (1997), Kutoyants (2004)), which provide much insight. But in practise
we can only observe in discrete time, and have to think how to approximate
the parameters in the original continuous time model from a finite (discrete)
sample. Furthermore, observation in practise can only be carried out over a
finite time interval, whereas frequently in Statistics we may wish to employ a
large sample theory, or, in the case of a time series, let the observation time
grow large, to derive benchmark distributions for parameter estimates and
test statistics which are free from finite sample effects.

Consequently, in approximating a continuous by a discrete time process,
we can proceed in one or both of two ways. One is to form a series of approx-
imations on a finite time interval [0, T ], which is subdivided into finer and
finer grids, so that in the limit the discrete approximations converge, hope-
fully, to the original continuous, time process (in some mode); alternatively,
we can sample at discrete points in a finite time interval [0, T ] and let T → ∞
to get asymptotic distributions; or, thirdly, we can attempt to combine both
methods in some way.

Discretely Sampled Process

Discrete sampling of an OU process on an equispaced grid over a finite
time horizon T > 0 produces an autoregressive (AR) time series, as follows.
Suppose Xt satisfies (1), and fix a compact interval [0, T ], T > 0. Then

Xi,n = XiT/n, i = 0, 1, . . . , n, for n = 1, 2, . . . , (20)



Ornstein-Uhlenbeck Processes and Extensions 11

is the discretely sampled process. From (1) we can write

Xi,n = (1 − αn)m+ αnXi−1,n + σnεi,n, i = 1, 2, . . . , n, (21)

where
αn = e−γT/n, σ2

n = σ2(1 − e−2γT/n)/(2γ), (22)

and

εi,n :=
σ

σn

∫ T/n

0

eγ(s−T/n)dBs+(i−1)T/n. (23)

(21) is a system of autoregressions, where the (εi,n)i=1,2,...,n are i.i.d. standard
normal random variables for each n = 1, 2, . . ..

Next, embed each Xi,n into a continuous time process Xn(t) by setting

Xn(t) = Xi−1,n, for (i− 1)T/n ≤ t < iT/n, i = 1, 2, . . . , n. (24)

Then Xn(t) → Xt, uniformly on [0, T ], in probability, as n→ ∞.
Szimayer and Maller (2004) carry out the above procedure, but with a Lévy

process Lt, satisfying EL1 = 0 and EL2
1 = 1, replacing Bt in (1) and conse-

quently in (23). The εi,n in (23) remain i.i.d. (0, 1) random variables, though
in general of course they are no longer normally distributed. Szimayer and
Maller (2004) used a Quasi-Maximum Likelihood (QML) approach, whereby
a likelihood for the observations is written down as if the εi,n were normally
distributed, and estimates and test statistics calculated from it, but then the
normality assumption is discarded for the rest of the analysis. They test the
hypothesis H0 : γ = 0, of no mean reversion in the model (so Xt reduces to Lt,
a pure Lévy process). This hypothesis test has the nonstandard feature that
the long term equilibrium parameter m “disappears under the null”; it cannot
be identified from (1) when γ = 0. Methods of Davies (1977, 1987) are avail-
able for handling this. Szimayer and Maller (2004) work out the asymptotic
distribution (as the mesh size tends to 0, over the compact interval [0, T ]) of
the QML statistic for testing H0, as a function of the underlying Lévy process
Lt. That asymptotic distribution of course depends on T , and as T → ∞,
Szimayer and Maller (2004) show further that it tends to the distribution of
a random variable related to the Dickey-Fuller unit root test in econometrics.
This procedure is an example of estimating on a finite grid whose mesh size
shrinks to 0, after which the observation window expands to infinity.

Approximating the COGARCH

The COGARCH is a continuous-time dynamic model suggested by Klüp-
pelberg, Lindner and Maller (2004) to generalise the popular GARCH (Gen-
eralised Autoregressive Conditional Heteroscedasticity) model now commonly
used in (discrete) time series analysis. The COGARCH is defined by

Gt =

∫ t

0

σs−dLs, t ≥ 0, (25)
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where Lt is a “background driving Lévy process”, and σt, the volatility pro-
cess, satisfies

σ2
t = βe−Xt

∫ t

0

eXs ds+ σ2
0e

−Xt , t ≥ 0, (26)

for constants β > 0 and σ2
0 > 0. (26) is a version of the GOU (12), with ηt

replaced by a pure drift, and ξt replaced by Xt. The latter is just a notational
change; the Xt in (26) is also a Lévy process, defined in terms of the original
Lt by

Xt = ηt−
∑

0<s≤t
log(1 + ϕ(∆Ls)

2), t ≥ 0, (27)

for parameters η > 0 and ϕ > 0. Note that only one source of randomness, Lt,
underlies both the process itself and the volatility process; this is an important
feature of the discrete time GARCH models, preserved in the COGARCH.

Further analysis of the COGARCH is in Klüppelberg et al. (2004, 2006),
where stationarity properties are related to the convergence of a Lévy integral.
See also Lindner (2007). Statistical issues, especially, fitting the COGARCH
to data, are in Haug et al. (2007), Müller (2007), and Maller, Müller and
Szimayer (2007). The latter paper proposes a discretisation of the COGARCH
in the same spirit as we discussed above for the Lévy driven OU model. Using
a first-jump approximation of a Lévy process originally developed in Szimayer
and Maller (2006) for an option pricing application, Maller et al. (2007) show
that the COGARCH can be obtained as a limit of discrete time GARCH
processes defined on the same probability space. This allows advantage to be
taken of currently existing methods in time-series modeling and econometrics
for this well-established process class.

The procedure is as follows. Take a sequence of integers (Nn)n≥1 with
limn→∞Nn = ∞, and a finite interval [0, T ], T > 0, with a deterministic
partitioning 0 = t0(n) < t1(n) < . . . < tNn

(n) = T . Let ∆ti(n) := ti(n) −
ti−1(n) for i = 1, 2, . . . , Nn, and assume ∆tn := maxi=1,...,Nn

∆ti(n) → 0 as
n→ ∞. Given the COGARCH parameters (β, η, ϕ), define the process

Gi,n = Gi−1,n+σi−1,n

√
∆ti(n)εi,n, for i = 1, 2, . . . , Nn, with G0,n = 0, (28)

with an accompanying variance process:

σ2
i,n = β∆ti(n) +

(
1 + ϕ∆ti(n)ε2i,n

)
e−η∆ti(n)σ2

i−1,n, i = 1, 2, . . . , Nn. (29)

Here, for each n ≥ 1, (εi,n)i=1,...,Nn
is a sequence of independent random

variables with Eε1,n = 0 and Eε21,n = 1 constructed pathwise from the driving
Lévy process Lt in (25) and its characteristics; and σ2

0,n is a given random
variable, independent of the εi,n. (28) and (29) define a kind of discrete time
GARCH-type recursion with scaling by the time increments ∆ti(n).

The discrete time processes are then embedded into continuous time by

Gn(t) := Gi,n and σ2
n(t) := σ2

i,n when t ∈ (ti−1(n), ti(n)], 0 ≤ t ≤ T, (30)
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with Gn(0) = 0 and σ2
n(0) = σ2

0,n. A key result of Maller et al. (2007) is that,
as n → ∞ (so ∆t(n) → 0), the Skorokhod distance between (Gn(·), σn(·))
and (G(·), σ(·)), over [0, T ], converges in probability to 0; thus, in particu-
lar, (Gn(·), σn(·)) converges in distribution to (G(·), σ(·)) in D[0, T ]×D[0, T ],
where D[0, T ] is the space of càdlàg stochastic process on [0, T ].

Maller et al. (2007) use this result to motivate an estimation procedure
for the COGARCH parameters in terms of estimates of the parameters of the
discrete GARCH approximating process. Via some simulations, this is shown
to work somewhat better, in some selected situations, than the Haug et al.
(2007) method, at least as judged by the mean square error of the estimates.

As an example application, we fitted the COGARCH model to a series of
33,480 log-prices of the Intel stock traded on the NYSE between February 1
and June 6, 2002, observed every minute from 09:36am to 04:00pm. The data
is from the TAQ data base provided by the NYSE. We removed the overnight
jumps and a linear trend from the data, then fitted a GARCH model by
the QML method as described above, thus obtaining estimates (β̂, ϕ̂, η̂) of
(β, ϕ, η). Then with Gt as the log stock price at time t, an estimate of the
volatility process (σ2

t )t≥0 can be calculated recursively from

σ̂2
n = β̂ + (1 − η̂)σ̂2

n−1 + ϕ̂(Gn −Gn−1)
2, n = 1, 2, . . .

(Haug et al. 2007). Figure 1 shows that the resulting volatility sequence (for
the first 1,000 observations) compares reasonably well with the absolute log
returns. Further discussion is in Maller et al. (2007).
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Fig. 1. Top: 1,000 minute-by-minute absolute log returns on Intel stock. Bottom:
Corresponding estimated annualised volatilities for Intel data.
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5 Conclusion

This survey cannot do justice in the space available to the many theoretical
and practical studies, past and ongoing, related to the OU and GOU pro-
cesses. We note in particular Brockwell, Erdenebaatar and Lindner (2006) (a
COGARCH(p, q)); Masuda (2004) (a multidimensional OU process); Aalen
and Gjessing (2004) (an interesting connection between the finance and sur-
vival analysis applications); Novikov (2004) (passage time problems); Kondo
et al. (2006) (multidimensional exponential Lévy integrals); and the list goes
on. Despite all this activity, much remains to be done, as we have suggested
throughout the discussion, to add to our understanding of the stochastic pro-
cesses themselves, and their statistical properties.
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exponential Lévy investment. Insurance: Math. and Econ., to appear.
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