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Abstract

In this paper we extend the standard approach of correlation structure analysis

for dimension reduction of highdimensional statistical data. The classical assump-

tion of a linear model for the distribution of a random vector is replaced by the

weaker assumption of a model for the copula. For elliptical copulae a correlation-like

structure remains, but different margins and non-existence of moments are possible.

After introducing the new concept and deriving some theoretical results we observe

in a simulation study the performance of the estimators: the theoretical asymptotic

behavior of the statistics can be observed even for small sample sizes. Finally, we

show our method at work for a financial data set and explain differences between

our copula based approach and the classical approach. Our new method yields a

considerable dimension reduction also in non-linear models.
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1 Introduction

When analyzing high-dimensional data one is often interested in understanding the de-

pendence structure aiming at a dimension reduction. In the framework of correlation rep-

resenting linear dependence, correlation structure analysis is a classical tool; see Steiger

(1994) or Bentler and Dudgeon (1996). Correlation structure analysis is based on the as-

sumption that the correlation matrix of the data satisfies the equation RRR = RRR(ϑϑϑ) for some

function RRR(ϑϑϑ) and a parameter vector ϑϑϑ. Typically, a general linear structure model is

then considered for a random vector XXX ∈ R
d, i.e. XXX

d
= AAAξξξ, where AAA = AAA(ϑϑϑ) is a function

of a parameter vector ϑϑϑ, and ξξξ represents some (latent) random vector.

The typical goal of correlation structure analysis is to reduce dimension, i.e. to explain

the whole dependence structure of a multivariate data set through lower dimensional pa-

rameters summarized in ϑϑϑ. One particularly popular method is factor analysis, where the

dataXXX are assumed to satisfy the linear modelXXX
d
= µµµ+LLLfff+VVVeee, where µµµ = (µ1, . . . , µd)

⊤

is a location parameter, fff = (f1, . . . , fm)⊤ for m < d is a vector of non-observable and

(usually) uncorrelated factors and eee = (e1, . . . , ed)
⊤ is a vector of noise variables. Further,

LLL ∈ R
d×m is called loading matrix and VVV is a diagonal matrix with nonnegative entries.

An often used additional assumption is that (fff⊤, eee⊤) has mean zero and covariance ma-

trix III, the identity matrix. Then, describing the dependence structure of XXX through its

covariance matrix yields CovXXX = ΣΣΣ = LLLLLL⊤ + VVV2, i.e., the dependence of XXX is described

through the entries of LLL.

Provided that the data are normally distributed this approach of decomposing the

correlation structure is justified, since dependence in normal data is uniquely determined

by correlation. However, many data sets exhibit properties contradicting the normality

assumption, see e.g. Cont (2001) for a study of financial data. Further, several covariance

structure studies based on the normal assumption exhibit problems for nonnormal data,

see e.g. Browne (1982, 1984). A modified approach is to assume an elliptical model, and

the corresponding methods can be found for instance in Muirhead and Waternaux (1980)

and Browne and Shapiro (1987). Browne (1982, 1984) also developed a method being

asymptotically free of any distributional assumption, but it was found that acceptable

performance of this procedure requires very large sample sizes; see Hu, Bentler, and Kano

(1992).

Relaxing more and more the assumptions of classical correlation structure analysis as

indicated above, one assumption still remains, namely that XXX
d
= AAA(ϑϑϑ)ξξξ, i.e. XXX ∈ R

d can

be described as a linear combination of some (latent) random variables ξξξ ∈ R
q for q ≥ d

with existing second moments (and existing fourth moments to ensure asymptotic distri-

butional limits of sample covariance estimators). For real multivariate data it may happen

that some margins are well modeled as being normal and some are more heavy-tailed (or
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leptokurtic). Moreover, nonlinear dependence can occur, as is common in financial portfo-

lios of assets and derivatives. If this happens, it is hard to believe that some linear model

is appropriate. Since the primary aim of correlation or covariance structure analysis is to

decompose and describe dependence we present a simple method to avoid problems of

non-existing moments or different marginal distributions by using copulae. A copula is a

d-dimensional distribution function with unif(0, 1) margins and, by Sklar’s theorem, each

distribution function can be described through its margins and its copula separately. We

focus on elliptical copulae being the copulae of elliptical distributions, which are very flex-

ible and easy to handle also in high dimensions. As the correlation matrix is a parameter

of an elliptical copula, correlation structure analysis can be extended to such copulae and

we will call this method copula structure analysis.

The main advantage of our method is that we only need iid data to ensure consistency

and asymptotic normality of the estimated factor loadings as well as the asymptotic

χ2-distribution of the test statistic for model selection (i.e. for the estimation of the

number of latent factors). We require an elliptical copula only to allow for a meaningful

interpretation of the analysis, the asymptotics of the estimators are not affected by the

specific copula of the data’s distribution. Furthermore, a simulation study shows that our

approach works well for reasonably large sample sizes in the sense that the distribution

of the test statistic is close to its asymptotic χ2-distribution. This is in contrast to other

methods of correlation structure analysis or generalized structural equation models, which

either need large sample sizes or distributional assumptions. Moreover, they show quite

unstable behavior, if these assumptions are not met.

Our paper is organized as follows. We start with definitions and preliminary results

on copulae and elliptical distributions in Section 2. In Section 3 we introduce the new

copula structure model and show which (classical) methods can be used for a structure

analysis and model selection. In Section 4 we show the copula dependence concept based

on Kendall’s tau and develop estimators, which can then be used for the copula structure

analysis. We also derive asymptotic results for our estimates.

In Section 5 a simulation study shows that the asymptotic results hold already for a

rather small simulated sample. Finally, we fit a copula factor model to real data based on

our dependence concept and the classical linear model, and give an interpretation of the

results. Proofs are summarized in Section 6.

2 Elliptical copulae versus elliptical distributions

First, we give a short summary of the copula concept. For more technical background

information we refer to Nelsen (1999).
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A copula C : [0, 1]d → [0, 1] is simply a d-dimensional distribution function with

standard uniform margins, i.e. C(1, . . . , 1, uj, 1, . . . , 1) = uj for 1 ≤ j ≤ d.

Its importance is based on Sklar’s Theorem, which ensures that every d-dimensional

distribution function F with margins F1, . . . , Fd has representation

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) , xxx = (x1, . . . , xd)
⊤ ∈ R

d ,

for some copula C. The copula C is unique on RanF1 × · · ·×RanFd. If F has continuous

margins F1, . . . , Fd, then the copula C of F is for (u1, . . . , ud)
⊤ ∈ [0, 1]d

C(u1, . . . , ud) = F (F←1 (u1), . . . , F
←
d (ud)) .

Recall that for a distribution function F on R the generalized inverse is defined as

F←(y) = inf{x ∈ R | F (x) ≥ y} , y ∈ [0, 1] .

We will focus on copulae of elliptical distributions, and we first give definitions and

state some properties. For a general treatment of elliptical distributions we refer to Fang,

Kotz, and Ng (1990), Fang, Fang, and Kotz (2002) and to Cambanis, Huang, and Simons

(1981).

Definition 2.1. (a) A random vector XXX ∈ R
d has an elliptical distribution, if for µµµ ∈ R

d,

a positive (semi-)definite matrix ΣΣΣ = (σij)1≤i,j≤d ∈ R
d×d, a positive random variable G

and a random vector UUU (q) ∼ unif{sss ∈ R
q : sss⊤sss = 1} independent of G the distribution of

XXX satisfies

XXX
d
= µµµ+GAAAUUU (q) with AAA ∈ R

d×q and AAAAAA⊤ = ΣΣΣ. (2.1)

We write XXX ∼ Ed(µµµ,ΣΣΣ, G). The random variable G is called generating variable. Further,

if the first moment exists, then EXXX = µµµ, and if the second moment exists, then G can be

chosen such that CovXXX = ΣΣΣ.

(b) We define the correlation matrix RRR of XXX by RRR :=
(
σij/

√
σiiσjj

)
1≤i,j≤d

. If XXX has finite

second moment, then CorrXXX = RRR.

(c) We define an elliptical copula as the copula ofXXX ∼ Ed(µµµ,ΣΣΣ, G), denoted by ECd(RRR, G).

We call RRR the copula correlation matrix and G the generating variable.

Note that the notion ECd(RRR, G) for an elliptical copula makes sense, since it is char-

acterized by the generating variable G (unique up to a multiplicative constant) and the

copula correlation matrix RRR. This follows as a simple consequence of the definition and

the fact that copulae are invariant under strictly increasing transformations.

In general, the dimension q of UUU (q) can be arbitrary compared to d, both for the

distribution and, by Sklar’s theorem, for its copula. However, for q < d the random vector
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XXX lies in a q-dimensional subspace of R
d, which transfers to the copula (cf. the uniqueness

part of Sklar’s theorem). We avoid such sophistications and restrict ourselves throughout

to q ≥ d.

Remark 2.2. (a) With µµµ = 000 and AAA = IIId, the random vector XXX
d
= GUUU (d) is spherical.

Then XXX has characteristic function

E
(
ei ttt⊤XXX

)
= E

(
ei ttt⊤GUUU (q))

= ψ(ttt⊤ttt) , ttt ∈ R
d .

Denoting ‖ttt‖ =
√
ttt⊤ttt, we also have

(
G,UUU (d)

)
=

(
‖GUUU (d)‖, GUUU (d)

‖GUUU (d)‖

)
.

(b) If XXX is elliptic as defined in (2.1) with µµµ = 000, then it has characteristic function

E
(
ei ttt⊤XXX

)
= ei ttt⊤µµµE

(
e−i(AAA⊤ttt)⊤GUUU (q))

= ei ttt⊤µµµψ
(
ttt⊤ΣΣΣttt

)
, ttt ∈ R

d .

Moreover, this implies

(
Λ,ΞΞΞ

)
:=




√

(XXX − µµµ)⊤ΣΣΣ−1(XXX − µµµ),
Σ−1/2(XXX −µµµ)√

(XXX −µµµ)⊤ΣΣΣ−1(XXX −µµµ)



 d
=
(
G,UUU (q)

)

and Λ2 and ΞΞΞ are independent. �

In the next example we present some classical elliptical distributions and their copulae.

Example 2.3. [Normal variance mixture model and its copula]

(a) Let XXX
d
= µµµ +

√
WAAAZZZ with µµµ ∈ R

d, AAA ∈ R
d×q a matrix of rank d ≤ q, ZZZ ∈ R

q a

standard normal vector and W > 0 a random variable, independent of ZZZ. Then XXX is a

normal variance mixture model with characteristic function

E
(
eittt⊤XXX

)
= eittt⊤µµµE

(
e−(W/2) ttt⊤ΣΣΣ ttt

)
= eittt⊤µµµΨ(ttt⊤ΣΣΣ ttt) , ttt ∈ R

d ,

i.e. XXX is elliptic. We calculate Λ2 = (
√
WAAAZZZ)⊤ΣΣΣ−1(

√
WAAAZZZ) = WZZZ⊤ZZZ, where ZZZ⊤ZZZ is

χ2
d-distributed and independent of W .

(b) In the situation of part (a), if W has an inverse gamma distribution with parame-

ters (
ν

2
,
ν

2
), then

ν

W
∼ χ2

ν , which implies that
Λ2

d
∼ νχ2

d

dχ2
ν

, which is F (d, ν)-distributed.

Moreover, we have XXX−µµµ
d
=

AAAZZZ√
χ2

ν/ν
∼ tttν(000,ΣΣΣ); i.e. XXX−µµµ is a ttt-distributed vector with ν

degrees of freedom. Further, if ν > 2, then XXX −µµµ has covariance matrix
ν

ν − 2
ΣΣΣ.

4



(c) Let ZZZ = (Z1, . . . , Zd) be standard normal and denote by Φ the standardnormal distri-

bution function in R. Then (Φ(Z1), . . . ,Φ(Zd)) is a Gaussian copula. LetXXX = (X1, . . . , Xd)

be tttν(000,ΣΣΣ) and denote by tν the t-distribution function in R with ν degrees of freedom,

then (tν(X1), . . . , tν(Xd)) is a tttν copula. �

Based on elliptical copulae, we can now formulate the copula structure model.

3 Copula structure models

First, we give some notations: let ϑϑϑ ∈ Θ ⊂ R
p be a p-dimensional parameter vector in

some parameter space Θ. A correlation structure model is then a function

RRR : Θ → R
d×d, ϑϑϑ 7→ RRR(ϑϑϑ), (3.1)

such that RRR(ϑϑϑ) is a correlation matrix, i.e. RRR(ϑϑϑ) is positive definite with diagonal 111. As

we will later also use vector notation, we denote by vec[·] the column vector formed from

the non-duplicated and non-fixed elements of a symmetric matrix. Fixed elements are

known, whereas non-fixed elements have to be estimated from the data. If a matrix AAA is

not symmetric, then vec[AAA] denotes the column vector formed from all non-fixed elements

of the columns of AAA. In case of a correlation matrix with all elements non-fixed

rrr := vec[RRR] ∈ R
d(d−1)/2. (3.2)

For a general linear correlation structure model, (3.1) corresponds to the following situa-

tion: let ξξξ ∼ Eq(000, III, G) be a q-dimensional elliptical random vector and let AAA : Θ → R
d×q,

ϑϑϑ 7→ AAA(ϑϑϑ), be some matrix valued function and define

ΣΣΣ : Θ → R
d×d, ϑϑϑ 7→ ΣΣΣ(ϑϑϑ) := AAA(ϑϑϑ)AAA(ϑϑϑ)⊤.

Then (3.1) can be written as RRR(ϑϑϑ) = diag[ΣΣΣ(ϑϑϑ)]−1/2ΣΣΣ(ϑϑϑ)diag[ΣΣΣ(ϑϑϑ)]−1/2.

3.1 The model

As by Definition 2.1 a correlation matrix is a parameter of an elliptical copula, we can

extend the usual correlation structure model to elliptical copulae.

Definition 3.1. Let ϑϑϑ ∈ Θ ⊂ R
p be a p-dimensional parameter vector, AAA : Θ → R

d×q a

matrix valued function and ξξξ ∼ Eq(000, III, G) a q-dimensional elliptical random vector with

continuous generating variable G > 0 and q ≥ d. Further, denote by CAAA(ϑ)ξξξ the copula of

AAA(ϑϑϑ)ξξξ ∈ R
d. We say that the random vector XXX ∈ R

d with copula CXXX satisfies a copula

structure model, if

CXXX = CAAA(ϑϑϑ)ξξξ ∈ ECd(RRR(ϑϑϑ), G), (3.3)
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where RRR(ϑϑϑ) := diag[ΣΣΣ(ϑϑϑ)]−1/2ΣΣΣ(ϑϑϑ)diag[ΣΣΣ(ϑϑϑ)]−1/2 and ΣΣΣ(ϑϑϑ) := AAA(ϑϑϑ)AAA(ϑϑϑ)⊤.

Define by FFF←(uuu) := (F←1 (u1), . . . , F
←
d (ud)) the vector of the inverses of the marginal

distribution functions of XXX and by HHH(xxx) := (H1(x1), . . . , Hd(xd)) the vector of the

marginal distribution functions of AAA(ϑϑϑ)ξξξ. Then (3.3) is equivalent toXXX
d
= FFF←(HHH(AAA(ϑϑϑ)ξξξ)),

where all operations are componentwise. Hence, the copula model can also be seen as an

extension of a correlation structure model for elliptical data: if not only CXXX = CAAA(ϑϑϑ)ξξξ

holds but also HHH = FFF with existing second moment, then this is a classical correlation or

covariance structure model. For normal ξξξ it gives back the classical normal model and for

elliptical ξξξ the elliptical model of Browne (1984).

The classical correlation structure model assumes some (functional) structure for the

correlation matrix of the observed data. In the copula structure model this functional

structure prevails. The only difference lies in the interpretation of the correlation matrix.

In the classical model it represents the linear correlation between the data, in the copula

model it represents a dependence parameter which can be interpreted as a correlation-like

measure; see Definition 2.1(c).

Example 3.2. (a) For classical factor analysis, (3.3) translates to ϑϑϑ = vec[LLL,VVV], RRR(ϑϑϑ) =

LLLLLL⊤+VVV2 for some m < d, LLL ∈ R
d×m and a diagonal matrix (with nonnegative entries) VVV ∈

R
d×d. The corresponding copula structure model assumes that there exists ξξξ ∼ Eq(000, III, G)

with q = m+ d such that

CXXX = C(LLL,VVV)ξξξ. (3.4)

We call this identity a copula factor model.

(b) Generalized covariance structure analysis aims at a model

ΣΣΣ(ϑϑϑ) = FFF1PPP1FFF
⊤
1 + · · ·+ FFFmPPPmFFF⊤m,

where FFFk = Fk,1 · · ·Fk,n(k) for arbitrary matrices Fk,i and the matrices PPPk are symmetric,

ϑϑϑ = vec[F1,1, . . . , F1,n(1), F2,1, . . . , Fm,n(m),PPP1, . . . ,PPPm], and some values in all matrices

can be fixed. Note that the above copula factor model can be seen as a special case

of a corresponding generalized copula covariance model. For more details about latent

structure models like explanatory factor analysis, confirmatory factor analysis and general

structural equation models see e.g. Loehlin (2001), Bollen (1989), Everitt (1984), or Fuller

(1987) for structure models in the context of observable variables. Further note that such

particular generalized covariance structure models are provided by statistical software

packages like SAS and LISREL. They also allow, in particular for ordinal data, to estimate

the Kendall’s tau matrix.

(c) Another well know correlation structure model is the latent variable model. Assume
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a factor model XXX = LLLfff + VVVeee, where XXX ∈ R
d is assumed to have mean 000 and correlation

matrix RRR. For 1 ≤ i ≤ d let DDDi := (Di
−1, D

i
0, . . . , D

i
n) with −∞ = Di

−1 < Di
0 < · · · <

Di
n = ∞ be deterministic cut-off levels and define

Yi = j ⇐⇒ Di
j−1 < Xi ≤ Di

j for j = {1, . . . , n}.

Then (Xi,DDD
i)i=1,...,d is called the latent variable model for the state vector (Y1, . . . , Yd).

It is straightforward to show that the distribution of (Y1, . . . , Yd) is uniquely determined

by the copula C and the marginal distributions pij := P(Xi ≤ Di
j), cf. Frey and McNeil

(2003, Proposition 3.2). Therefore, concerning the distribution of YYY , the assumption of

XXX
d
= LLLfff + VVVeee is equivalent to CXXX = C(LLL,VVV)ξξξ for ξξξ ∈ R

m+d. �

3.2 Estimation of ϑϑϑ

The next step is to estimate a structure model. Let XXX1, . . . ,XXXn be an iid sequence of

random vectors in R
d and denote by R̂RR := R̂RR(XXX1, . . . ,XXXn) an arbitrary estimator of the

correlation matrix RRR of XXX as for instance the empirical correlation or a copula correla-

tion estimator. We review some results from the literature, which we will need for the

estimation of the copula structure model later.

Given this estimator R̂RR we want to find some parameter vector ϑϑϑ which fits the assumed

structure RRR(ϑϑϑ) to R̂RR as well as possible. Similarly to (3.2), we define r̂rr := vec[R̂RR] and

rrr(ϑϑϑ) := vec[RRR(ϑϑϑ)].

We estimate ϑϑϑ by minimizing the quadratic (or weighted least squares) discrepancy

function defined as

D(r̂rr, rrr(ϑϑϑ)|ΥΥΥ) = (r̂rr − rrr(ϑϑϑ))⊤ΥΥΥ−1 (r̂rr − rrr(ϑϑϑ)) , (3.5)

where ΥΥΥ is a positive definite matrix or a consistent estimator of some positive definite

matrix. For more details, see Steiger, Shapiro, and Browne (1985).

Alternatively, an often used discrepancy function is the one derived from the normal

maximum likelihood function, see e.g. Lawley and Maxwell (1971). In our set-up we take

the normal maximum likelihood estimator as initial value for the numerical optimiza-

tion procedure to follow. For more details about discrepancy functions, their properties,

advantages and drawbacks, we refer to Bentler and Dudgeon (1996) and Steiger (1994).

Given a discrepancy function D and some estimator R̂RR of the correlation matrix RRR, we

can define a consistent estimator of ϑϑϑ.

Proposition 3.3 (Browne (1984), Proposition 1). Let RRR0 be some correlation matrix,

rrr0 := vec[RRR0] ∈ R
d(d−1)/2 and Θ ⊂ R

p a bounded and closed parameter space. Further

assume that r̂rr is an estimator based on an iid sample XXX1, . . . ,XXXn in R
d and let D be a
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discrepancy function. Assume that r̂rr
P−→ rrr0 as n→ ∞ and that ϑϑϑ0 ∈ Θ is the unique

minimizer of D(rrr0, rrr(ϑϑϑ)|ΥΥΥ) in Θ. Assume also that the Jacobian matrix ∂rrr(ϑϑϑ)/∂ϑϑϑ is

continuous in ϑϑϑ. Define the estimator

ϑ̂ϑϑ := arg min
ϑϑϑ∈Θ

D(r̂rr, rrr(ϑϑϑ)|ΥΥΥ). (3.6)

Then ϑ̂ϑϑ
P−→ ϑϑϑ0 as n→ ∞.

Under the assumptions of Proposition 3.3, we define the test statistic

TΥΥΥ := nD̂ΥΥΥ = nD(r̂rr, rrr(ϑ̂ϑϑ)|ΥΥΥ) = nmin
ϑϑϑ∈Θ

D(r̂rr, rrr(ϑϑϑ)|ΥΥΥ), (3.7)

for some matrix ΥΥΥ. The null hypothesis is that the true correlation vector rrr0 satisfies a

prespecified structure model, i.e.,

H0 : rrr0 = rrr(ϑϑϑ0) for some ϑϑϑ0 ∈ Θ. (3.8)

To obtain the limit distribution of TΥΥΥ for the quadratic discrepancy function (3.5), we

apply the following result.

Theorem 3.4. (Browne (1984, Corollary 4.1)) Assume that the conditions of Proposi-

tion 3.3 hold and that ϑϑϑ0 is an interior point of Θ. Furthermore, assume that
√
n(r̂rr −

rrr0)
d−→ N (000,ΓΓΓ) and that Γ̂ΓΓ is a consistent estimator of ΓΓΓ, the asymptotic covariance

matrix of r̂rr. Finally, assume that the p× d Jacobian matrix

△ =
∂rrr(ϑϑϑ)

∂ϑϑϑ

∣∣∣∣
ϑϑϑ=ϑϑϑ0

(3.9)

has full column rank p. Then, under the null hypothesis (3.8),

TbΓΓΓ = nD̂bΓΓΓ

d−→ χ2
df , n→ ∞ , (3.10)

where df = d(d− 1)/2 − p and p is the dimension of ϑϑϑ.

3.3 Model selection

To select an appropriate structural model, we consider a set of g models (which all have

to satisfy the assumptions of Theorem 3.4)

rrr(i) : Θ(i) → R
d(d−1)/2, ϑϑϑ(i) 7→ rrr(i)(ϑϑϑ(i)), and Θ(i) ⊂ R

p(i)

, 1 ≤ i ≤ g. (3.11)

Further, we require that the g models are nested, i.e. for every 1 ≤ i ≤ g−1 and ϑϑϑ(i) ∈ Θ(i)

there exists some ϑϑϑ(i+1) ∈ Θ(i+1) such that rrr(i+1)(ϑϑϑ(i+1)) = rrr(i)(ϑϑϑ(i)). Next, define the null

hypotheses

H
(i)
0 : rrr0 = rrr(i)(ϑϑϑ0) for some ϑϑϑ

(i)
0 ∈ Θ(i), 1 ≤ i ≤ g,
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and assume that at least one of these null hypotheses holds true; i.e. there exists some j

such thatH
(i)
0 does not hold for 1 ≤ i < j and does hold for j ≤ i ≤ g. As we are interested

in a structure model, which is likely to explain the observed dependence structure and is

as simple as possible, we have to estimate j, the smallest index where the null hypothesis

is not rejected. By Theorem 3.4, the corresponding test statistics

T (i) := nD(r̂rr, rrr(i)(ϑϑϑ
(i)
0 ) | Γ̂ΓΓ) := n min

ϑϑϑ∈Θ(i)
D(r̂rr, rrr(i)(ϑϑϑ) | Γ̂ΓΓ)

are not χ2-distributed for 1 ≤ i < j and are χ2
df -distributed for j ≤ i ≤ g with df given

in Theorem 3.4. Consequently, we reject a null hypothesis H
(i)
0 , if the corresponding test

statistic T (i) is larger than some χ2
df -quantile. Hence, j is the smallest number, where H

(j)
0

cannot be rejected.

For a proof of the asymptotic normality of ϑ̂ϑϑ with covariance matrix (∆⊤ΓΓΓ−1∆)−1

with ∆ as in (3.9) we refer to Browne (1984, Corollary 2.1). If Γ̂ΓΓ is consistent, then T (i),

1 ≤ i < j, has an approximate noncentral χ2
df -distribution with non-centrality parameter

nD(rrr0, rrr
(i)(ϑϑϑ

(i)
0 )|ΓΓΓ), see Browne (1984, Corollary 4.1). Regarding the limiting distribution

of T (j), if Γ̂ΓΓ is not consistent, see Satorra and Bentler (2001) or van Praag, Dijkstra, and

van Velzen (1985).

In general, a unique true parameter ϑϑϑ0 need not exist: in the classical factor model

(see Example 3.2, where RRR = LLLLLL⊤ + VVV2), LLL can always be replaced by LLL∗ = LLLPPP for any

orthogonal matrix PPP. By a minor adaption of the parameter space Θ (i.e. LLL⊤VVV−2LLL has to

be diagonal), ϑ̂ϑϑ can be forced to be unique and Proposition 3.3 applies; see Lawley and

Maxwell (1971, Section 2.3). By Lee and Bentler (1980) the degrees of freedom in (3.10)

are then increased by the number of additional constraints. For better interpretation, the

factors can be rotated after estimation, e.g. with the varimax method, for details see

Anderson (2003, Chapter 14). With this correction for uniqueness, the factor model of

Example 3.2(a) satisfies the regularity conditions of Proposition 3.3 and Theorem 3.4, see

Steiger et al. (1985, Section 4) and Browne (1984, Section 5).

In case of the copula factor model (see Example 3.2(a)) we only need to estimate

the loading matrix LLL ∈ R
d×m, since diag(VVV2) = 111 − diag(LLLLLL⊤). Therefore the number

of free parameters are dm minus the number of additional constraints to ensure that

LLL⊤VVV−2LLL is diagonal, i.e. the degrees of freedom of the limiting χ2-distribution are df =

d(d− 1)/2 − dm+m(m− 1)/2.

For the computation of ϑ̂ϑϑ as the minimizer of the quadratic discrepancy function as

in (3.6) and the test statistic TΥΥΥ from (3.7) we used the statistical software package R

and the optimization routine optim with the Nelder-Mead method therein. By adding

appropriate penalty terms to the discrepancy functions, we took both side conditions into

account, i.e. that LLL⊤VVV−2LLL is diagonal and diag(L̂LLL̂LL
⊤

+V̂VV
2
) = 111. As starting values for the
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optimization algorithm, we took the loadings derived from the standard factor analysis

routine factanal (which uses the normal maximum likelihood discrepancy function).

4 Methodology

As we consider a copula structure model, according to Theorem 3.4 we need an estimator

R̂RR of the copula correlation matrix RRR, whose limit distribution is N (000,ΓΓΓ) for some non-

degenerate covariance matrix ΓΓΓ, and a consistent estimator of ΓΓΓ. In the following we

will introduce a copula based dependence concept and its corresponding correlation and

asymptotic covariance estimators (which are also consistent and asymptotically normal).

4.1 Dependence Concepts

A well known dependence concept is (linear) correlation or covariance, which is limited by

the fact that it measures only linear dependence. Further, since correlation is not invariant

under non-linear (strictly increasing) transformations, it is not a copula property. As a

dependence concept which is related to correlation and a copula property we use Kendall’s

tau.

Kendall’s tau τij between two components (Xi, Xj) of a random vector XXX ∈ R
d is

defined as

τij := P
(
(Xi − X̃i)(Xj − X̃j) > 0

)
− P

(
(Xi − X̃i)(Xj − X̃j) < 0

)
,

where (X̃i, X̃j) are the corresponding components of an independent copy X̃XX of XXX. More-

over, we call TTT := (τij)1≤i,j≤d the Kendall’s tau matrix.

This dependence concept provides a valid alternative to the linear correlation as a

measure also for non-elliptical distributions, for which linear correlation is an inappropri-

ate measure of dependence and often misleading; see Embrechts, McNeil, and Straumann

(2002) for a readable discussion. Originally, Kendall’s tau has been suggested as a robust

dependence measure, which makes it also appropriate for heavy-tailed data; for more

details see Kendall and Gibbons (1990).

Concerning elliptical copulae the following result is given in Fang, Fang, and Kotz

(2002), see also Hult and Lindskog (2002).

Theorem 4.1. (Fang, Fang, and Kotz (2002, Theorem 3.1)) Let XXX be a vector of ran-

dom variables with elliptical copula C ∈ ECd(RRR, G) and absolutely continuous generating

variable G > 0, then τij = 2 arcsin(ρij)/π.

10



Theorem 4.1 implies for an elliptical copula with continuous G that the correlation

matrix RRR is a function of Kendall’s tau. In Section 4.2 we will invoke this functional rela-

tionship for the estimation of RRR. Of course, copula structure analysis can be applied to any

copula correlation estimator with a certain limiting behavior as required in Theorem 3.4.

Using Kendall’s tau for estimation can then be seen as a robust extension of the usual

correlation structure analysis.

Another alternative candidate for the linear correlation could be Spearman’s ρS. For

a bivariate normal vector (X1, X2) with correlation ρ it is well-known that

ρS(X1, X2) =
6

π
arcsin

ρ

2
.

Unfortunately, simple formulas for Spearman’s ρS for other than the Gaussian distribution

are to our knowledge not available. Moreover, it has been shown in Lindskog et al. (2003)

that ρS in the case of an elliptical copula depends on the distribution of the generating

variate G. Consequently, there can be no one-to-one relationship between Spearman’s ρS

and ρ.

The next section explains the estimation procedures and presents asymptotic results.

4.2 Estimating the copula correlation matrix

Our method is based on Kendall’s tau, which can be used by Theorem 4.1 for estimating

the correlation matrix RRR. The properties of its empirical version can be derived from

general results on U -statistics; see Lee (1990). The following results go back to Hoeffding

(1948).

Given an iid sample XXX1, . . . ,XXXn with XXX i = (Xi,1, . . . , Xi,d)
⊤, we define the estimator

T̂TT = (τ̂ij)1≤i,j≤d of Kendall’s tau matrix TTT by τ̂ii = 1 for i = 1, . . . , d and

τ̂ij =

(
n

2

)−1 ∑

1≤l<k≤n

sign ((Xk,i −Xl,i) (Xk,j −Xl,j)) , 1 ≤ i 6= j ≤ d.

Note that a naive implementation of this estimator is numerically slow, since it re-

quires a computation time of order O(d2n2) for sample size n. For faster algorithms with

computation time O(d2n lnn) and additional adjustments for duplicate entries see e.g.

Christensen (2005).

Estimating the copula correlation matrix via Kendall’s tau yields the following general

result. Its proof can be found in Section 6.

Theorem 4.2. Let XXX1,XXX2, . . . be an iid sequence in R
d satisfying the conditions of The-

orem 4.1. Further, define

R̂RRτ = (ρ̂τ
ij)1≤i,j≤d := sin

(π
2
T̂TT
)
, (4.1)

11



where the sine function is used componentwise, and define r̂rrτ := vec[R̂RRτ ] and rrr := vec[RRR].

Then

√
n (r̂rrτ − rrr)

d−→ Nd(d−1)/2(000,ΓΓΓτ ) , n→ ∞ , (4.2)

where ΓΓΓτ = (γτ
ij,kl)1≤i6=j,k 6=l≤d with

γτ
ij,kl = π2 cos

(π
2
τij

)
cos
(π

2
τkl

)
(τij,kl − τijτkl) and

τij,kl = E
(
E
(
sign [(X1,i−X2,i)(X1,j−X2,j)]

∣∣XXX1

)
E
(
sign [(X1,k−X2,k)(X1,l−X2,l)]

∣∣XXX1

) )
.

(4.3)

It is worth mentioning that also for iid XXX1, XXX2, . . ., which do not have an elliptical

copula, the limit relation (4.2) still holds, provided rrr is replaced by vec[TTTπ/2]. This means

that the asymptotic properties of the Kendall’s tau based correlation estimator do not

depend on the copula class of the XXX i’s.

An estimator of ΓΓΓτ = (γτ
ij,kl)1≤i6=j,k 6=l≤d can be defined by the empirical version of (4.3).

Given an iid sample XXX1, . . . ,XXXn with XXX i = (Xi,1, . . . , Xi,d)
⊤, we define the estimator

Γ̂ΓΓτ = (γ̂τ
ij,kl)1≤i6=j,k 6=l≤d, where

γ̂τ
ij,kl := π2 cos

(π
2
τ̂ij

)
cos
(π

2
τ̂kl

)
(τ̂ij,kl − τ̂ij τ̂kl) and (4.4)

τ̂ij,kl :=
1

n(n− 1)2

n∑

p=1

[(
n∑

q=1, q 6=p

sign ((Xp,i−Xq,i)(Xp,j−Xq,j))

)

×
(

n∑

q=1, q 6=p

sign ((Xp,k−Xq,k)(Xp,l−Xq,l))

)]
. (4.5)

Similarly to the remark after the Definition of Kendall’s tau, a naive implementation of

this estimator without numerical improvements requires a computation time of the order

O(d4n3); we also used this simple one for the simulation and data example in section 5.

The following result is proved in Section 6.

Theorem 4.3. Under the assumptions of Theorem 4.2 vec[Γ̂ΓΓτ ] is consistent and asymp-

totically normal.

Unfortunately, both the Kendall’s tau based estimated correlation matrix (4.1) as well

as its estimated asymptotic covariance matrix may sometimes not be positive definite. In

such a case, the estimator can be replaced by its projection into the class of correlation or

covariance matrices, respectively. However, this may lead only to a positive semi-definite

matrix.
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Using, for instance, the Euclidean norm ‖ΓΓΓ‖2 =
∑

i,j γ
2
i,j, the projection ΓΓΓ∗ of Γ̂ΓΓ to the

class of covariance matrices is

ΓΓΓ∗ = arg inf
{
‖Γ̂ΓΓ −ΓΓΓ‖ : ΓΓΓ is symmetric and positive definite

}
.

It can be shown that ΓΓΓ∗ is obtained by replacing the negative eigenvalues of Γ̂ΓΓ by 0, see

Higham (2002).

In case of the correlation estimator, the projection RRR∗ of R̂RR to the class of correlation

matrices is

RRR∗ = arg inf
{
‖R̂RR −RRR‖ : RRR is symmetric and positive definite with diagonal 1

}
.

An algorithm for computation of RRR∗ iteratively replaces negative eigenvalues by 0 and

then replaces the diagonal of the resulting matrix by 1, also see Higham (2002).

Note that the discrepancy function D requires a strictly positive definite covariance

estimator Γ̂ΓΓ. Further, the standard factor analysis routine (using the normal maximum

likelihood discrepancy function) also requires strictly positive definite correlation matrices.

Therefore, since we use the standard routine for computation of the starting values, we

also need strictly positive definite correlation matrices. A simple pragmatic approach in

this case would be to replace the negative eigenvalues not by 0 but by some small ε > 0.

5 The new method at work

Using the estimators (4.1) and (4.4) together with the quadratic discrepancy function

(3.5), we can now apply copula structure analysis. In the following, we consider the copula

factor model, i.e. we choose the setting CXXX = C(LLL,VVV)ξξξ, where LLL ∈ R
d×m, VVV ∈ R

d×d is a

diagonal matrix with nonnegative entries and ξξξ ∼ Em+d(000, III, G); see also Example 3.2(a).

For the test statistic T , as defined in (3.7), based on the quadratic discrepancy function

(3.5) we first compare in a simulation study the empirical distribution of T to its limiting

χ2-distribution as formulated in Theorem 3.4. Therefore, we define

Tτ := nmin
ϑϑϑ∈Θ

D
(
r̂rrτ , rrr(ϑϑϑ)| Γ̂ΓΓτ

)
(5.1)

with the Kendall’s tau based correlation estimators r̂rrτ = vec[R̂RRτ ] as given in (4.1) and its

estimated covariance matrix Γ̂ΓΓτ as defined in (4.4), respectively.

We also compare the copula factor model to the classical factor model XXX = (LLL,VVV)ξξξ,

where ξξξ ∼ Em+d(000, III, G). To this end we define

Tρ := nmin
ϑϑϑ∈Θ

D
(
r̂rremp, rrr(ϑϑϑ)| Γ̂ΓΓemp

)
,
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where r̂rremp = vec[R̂RRemp] is the vector of the empirical correlations. Furthermore, if we

denote by ΓΓΓemp the asymptotic covariance matrix of the normal limit in the central limit

theorem analogous to (4.2) for r̂rremp providedXXX is normal, then Γ̂ΓΓemp denotes the maximum

likelikhood estimator of ΓΓΓemp. It is a disadvantage of the classical correlation estimator

r̂rremp that the covariance matrix ΓΓΓ depends on the distribution ofXXX; for details see Browne

and Shapiro (1986).

The parameter ϑϑϑ is then estimated also in two different ways, denoted by ϑ̂ϑϑτ and ϑ̂ϑϑρ,

by minimizing Tτ and Tρ, respectively.

5.1 Model selection by χ2-tests

To see the performance of the quadratic test statistics Tτ from (5.1), we perform a simu-

lation study. We choose a d = 10 dimensional setting with m = 2 factors and loadings as

given in Table 1. Then LLLLLL⊤ + VVV2 = RRR is a correlation matrix.

component 1 2 3 4 5 6 7 8 9 10

LLL·,1 .9 .9 .9 .9 .9 0 0 0 0 0

LLL·,2 0 0 0 0 0 .9 .9 .9 .9 .9

diag(VVV2) .19 .19 .19 .19 .19 .19 .19 .19 .19 .19

Table 1: Factor loadings of the simulation example

Recall that a multivariate tttν-copula is the copula of the random vector
√
WZZZ, where

ν/W ∼ χ2
ν (ν > 0) is independent of ZZZ ∼ N (000,RRR); cf. Examples 2.3(b,c).

For 2 < ν ≤ 4 the random vector
√
WZZZ has finite second moment, but its fourth

moment does not exist. Hence, classical factor analysis applied on
√
WZZZ may only lead

to a consistent estimate of ϑϑϑ, but model selection is not justified by Proposition 3.3 and

Theorem 3.4.

Also note that for 4 < ν < 8 any estimator of the linear correlation’s asymptotic

covariance matrix ΓΓΓ may only be consistent, but not asymptotically normal, and large

sample sizes may be necessary to observe the limiting χ2 distribution of the test statistic

TbΓΓΓ. Moreover, ΓΓΓemp is the asymptotic covariance matrix of r̂rremp only, if
√
WZZZ is normal.

On the other hand, the test statistic Tτ is not affected by the existence or non-existence

of moments; cf. Theorems 4.2 and 4.3.

We simulate 500 iid samples of length n = 100 of the ttt3-copula, calculate the Kendall’s

tau based estimators (4.1) and (4.4) and calculate the test statistic Tτ from these.

In case of the 1-factor with m = 1, the empirical distribution of the test statistic Tτ

was far off the expected χ2
df -distribution (with df = 35 under the null hypothesis) rejecting

obviously the 1-factor model on almost any confidence level.
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In case of a 2-factor setting, to ensure uniqueness of the loadings, we use the restriction

that LLL⊤VVV−2LLL is diagonal, hence we havem(m−1)/2 = 1 additional constraints; see Lawley

and Maxwell (1971, Section 2.3). Using this restriction and the 2-factor setting, Tτ should

be (for a large sample) χ2
df distributed with df = d(d − 1)/2 − dm + m(m − 1)/2 = 26

degrees of freedom; see Theorem 3.4. Therefore, we compare the 500 estimates of Tτ with

the χ2
26-distribution by a QQ-plot, see Figure 1, left plot. From this plot we see that the

empirical distribution of Tτ fits the χ2
26-distribution quite well. The right plot of Figure 1

shows the same situation with sample size n = 1 000 showing an almost perfect fit to

the χ2
26-distribution. We further compare some theoretical asymptotic acceptance rates α

with the rates observed from the 500 samples, see Table 2. There, it can be seen that the

observed acceptance rates are very close to the asymptotically expected rates. In case of

sample size 100, the empirical rates are below the theoretical as also the QQ-plot is below

the diagonal, and, in case of the sample size 1 000, the empirical rates are slightly above

the theoretical as also the QQ-plot is in this region above the diagonal.
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Figure 1: QQ-plots of ordered estimates Tτ against the χ2
26-quantiles.

α χ2
26,α F̂100(χ

2
26,α) F̂1 000(χ

2
26,α)

0.80 31.79 0.710 0.818

0.85 33.43 0.772 0.850

0.90 35.56 0.834 0.906

0.95 38.89 0.916 0.962

0.99 45.64 0.980 0.994

Table 2: Empirical acceptance rates based on the empirical distribution F̂n (n = 100 and

n = 1000) estimated from the 500 simulated Tτ -statistics from figure 1. We denote by χ2
26,α the

α-quantile of the χ2-distribution with 26 degrees of freedom.
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5.2 The oil-index-currency data

Before we apply our method to real life data, we have to discuss possibilities for verifying

or falsifying the assumption of an elliptical copula as this is our basic requirement on the

data. Unfortunately, there is no straightforward answer to this problem. Existing methods

either test if data are elliptically (or spherically) distributed (cf. Manzotti, Pérez, and

Quiroz (2002) and references therein) or test for certain parametric copula families like the

normal, the ttt or the Archimedian copula families. For the suggested parametric tests it is,

however, not clear, whether the dependence structure of a data set is really appropriately

modeled by the chosen copula family. Information criterions, such as Akaike’s information

criterion (AIC) are not able to provide any understanding about the power of the decision

rule employed. Alternatively, goodness-of-fit (GOF) tests have been suggested by various

researchers and we refer to Panchenko (2005) and Berg (2007) for discussions of existing

methods. GOF tests have the advantage that they are able to reject or fail to reject a

parametric copula model.

Unfortunately, this does not provide a solution to our problem as an elliptical copula is

not parameterized by a few parameters, but by the generating random variable G and the

correlation matrix RRR. At the moment we have to leave the important problem of formally

testing for an elliptical copula for future research, and provide below only some reasoning,

why the assumption of an elliptical copula may be an acceptable working hypothesis for

our data.

We consider an 8-dimensional set of data (oil, s&p500, gbp, usd, chf, jpy, dkk, sek),

i.e. we are interested in the dependence structure between the oil-price, the S&P500 index

and some currency exchange rates with respect to euro. Each time series consists of 4 904

daily log-returns from May 1985 to June 2004.

We start with an application of both Panchenko’s and Berg and Bakken’s GOF test

to the oil-index-currency data based on the null hypotheses of a normal copula and of

a ttt-copula as the most prominent examples in the literature. For the whole dataset of

4 904 data, both, the normal copula and the ttt-copula are rejected; the normal copula,

however, at a much higher significance level than the ttt-copula. Now, using a subsample

of the last 904 observations the normal copula is still rejected, whereas the ttt-copula is

not rejected. Of course, the rejection of the normal copula also implies a rejection of

the normal distribution indicating that usage of the standard estimation procedure could

indeed lead to the selection of a wrong model. What remains is the ttt-copula, which has

completely different features than the normal copula as the generating random variable

G is heavy-tailed, and can model dependence in large observations.

Certainly an important problem in our data is the fact that they cover almost 30

years of development. As market parameters have undoubtedly changed during this time
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it is not to be expected that the very same distributional model may hold for our data

over the whole time interval. One simple indicator is, for instance, the currency change

to the euro in 2002. For our data, before the change to euro we took the deutsch mark

(dem) as reference currency and transfered it to euro by taking the fixed official exchange

rate 1.95583 dem/eur. Although there is no guarantee, we believe that the rather weak

assumption of an elliptical copula without having to specify a particular distribution

provides a reasonable and robust working hypothesis for our data.

To our data set we fit a copula factor model using the Tρ and Tτ statistics for estimation

and model selection. The values of these test statistics, based on different numbers of

factors are given in Table 3.

number of factors df Tρ Tτ χ2
df,0.95

2 13 298.5 252.7 22.36

3 7 33.7 17.4 14.07

4 2 2.3 3.3 5.99

Table 3: Test statistics Tρ and Tτ of oil-index-currency data under different number of factors.

To estimate the number of factors, we use a 95% confidence test, i.e. we reject the

null hypothesis of having an m-factor model if the test statistic T is larger than the 95%-

quantile of the χ2
df -distribution. This yields 4 factors under the empirical correlation and

the Kendall’s tau based test statistics.

Applying a factor analysis based on the different correlation estimates (and their

asymptotic covariance estimates) yield different results; see Figure 2. The first four plots

show the loadings of the four factors, obtained from the empirical correlation estimator

and the Kendall’s tau based estimator. The last plot shows the loadings of the specific

factors for both correlation estimators.

We want to emphasize that, although we have plotted the factors in the same figures,

the factors obtained by the two different estimation methods are not known and may have

different interpretations. We call them empirical factors, and Kendall’s tau factors.

For the first factor the loadings of the different correlation estimators behave very

similar with respect to factor 1, which has a weight close to one for usd. Hence, factor

one can be interpreted as the usd-factor. It also can be seen that this factor has a positive

weight for all currencies, but not for the oil-price and s&p500 (almost 0 or very small

negative), and the largest dependence is observed for gbp and jpy.

For factor 2 we observe for both correlation estimators a large weight on Swiss Francs

chf, so we call it chf-factor. We observe that the empirical factor and the Kendall’s tau

factor has almost no (or very little) correlation with oil, s&p500, gbp, usd and jpy. The
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weights on dkk and sek are larger.

Considering factor 3, we see for both factors a large loading for sek and dkk with only

little impact on the other components. If scandinavian currencies were merged, then only

a specific factor would remain.

From factor 4 we observe for the empirical factor a loading close to one for the oil-price

and loadings close to 0 for the rest of the factors. This indicates that a 3-factor model

is sufficient in this case. In combination with the model selection procedure as seen in

Table 3 it indicates that the distribution of Tρ is far away from a χ2 distribution. For the

Kendall’s tau factor there is some (weak) dependence indicated between the European

currencies and the usd. Using this method, the oil-price factor is correctly categorized as

specific factor.

Finally, we give an interpretation of the specific factors, where we find the correlation

which is not explained through common factors. For the empirical factor, the oil-price is

completely explained by factor 4, which is the specific factor for oil, and s&p500 has a

loading close to one, showing there is (almost) no correlation to the oil-price and the other

currencies. For the Kendall’s tau factor, oil and s&p500 are uncorrelated and uncorrelated

from the rest.

As pointed out by a referee, the χ2 approximation of Theorem 3.4 can be improved

by various methods. One was suggested in Browne and Shapiro (1987) correcting for

kurtosis in the data, another possibility is the approximation of the χ2 distribution by a

normal distribution using the Bartlett correction term. Since we have found reasonable

interpretations of the factors, and the emphasis of this paper is on the presented robust

method, we have refrained from further sophistications for model selection.

6 Proofs

Proof of Theorem 4.2. Define t̂tt := vec[T̂TT] and ttt := vec[TTT]. Since t̂tt is a vector of

U -statistics and, obviously, for i 6= j

E
(
sign ((X1,i −X2,i) (X1,j −X2,j))

2) < ∞,

Lee (1990, Section 1.3, Theorem 2) applies (together with the remark at the end of p. 7

therein that all results also hold for random vectors). The covariance structure is stated

in Lee (1990, Section 1.4, Theorem 1), hence

√
n(̂ttt− ttt)

d−→ Nd(d−1)/2 (000, 4ΥΥΥ) , n→ ∞ ,

where ΥΥΥ = (τij,kl − τijτkl)1≤i6=j,k 6=l≤d and τij,kl is given in (4.3). Note that the Jacobian

matrix ∂ (sin (tttπ/2)) /∂ttt is diagonal with entries π
2

cos(tttπ/2). Hence, by the delta method
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(see Casella and Berger (2001, Section 5.5.4)),

√
n (r̂rr − rrr)

d−→ Nd(d−1)/2

(
000, 4DDD⊤ΥΥΥDDD

)
, n→ ∞ ,

and the proof is complete. �

Proof of Theorem 4.3. We first consider τ̂ij,kl and rewrite it as a linear combination of

U -statistics. Define for 1 ≤ a < b < c ≤ n

U
ij,kl
2 (xxxa,xxxb) := sign [(xa,i − xb,i)(xa,j − xb,j)] sign [(xa,k − xb,k)(xa,l − xb,l)] ,

U
ij,kl
abc := U

ij,kl
abc (xxxa,xxxb,xxxc)

:= sign [(xa,i − xb,i)(xa,j − xb,j)] sign [(xa,k − xc,k)(xa,l − xc,l)] ,

U
ij,kl
3 (xxxa,xxxb,xxxc) :=

1

6

(
U

ij,kl
abc + U

ij,kl
acb + U

ij,kl
bac + U

ij,kl
bca + U

ij,kl
cab + U

ij,kl
cba

)
.

Hence, U
ij,kl
2 and U

ij,kl
3 are symmetric in their arguments. Next, define

ûij,kl
2 :=

2

n(n− 1)

∑

1≤a<b≤n

U
ij,kl
2 (XXXa,XXXb) and

ûij,kl
3 :=

6

n(n− 1)(n− 2)

∑

1≤a<b<c≤n

U
ij,kl
3 (XXXa,XXXb,XXXc),

and note that both are U -statistics. Obviously,

E

((
U

ij,kl
2 (XXX1,XXX2)

)2
)
<∞ and E

((
U

ij,kl
3 (XXX1,XXX2,XXX3)

)2
)
<∞,

therefore, by Lee (1990, Chapter 3, Theorem 2), the vector of all ûij,kl
2 and ûij,kl

2 is consis-

tent and asymptotically normal. Since

τ̂ij,kl =
1

n(n− 1)2

(
n(n− 1)

2
ûij,kl

2 +
n(n− 1)(n− 2)

6
ûij,kl

3

)
,

τ̂ij,kl is a linear combination of U -statistics and is therefore also consistent and asymptot-

ically normal. The result then follows using the delta method. �
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Figure 2: Oil-currency data: factor analysis based on 4 factors and different statistics, “emp”

for the loadings ϑ̂ϑϑρ, and “tau” for ϑ̂ϑϑτ .

Upper row: loadings of factor 1 (left) and 2 (right).

Middle row: loadings of factor 3 (left) and 4 (right).

Lower row: specific factors diag(VVV2).
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