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Abstract

Sklar’s theorem allows the construction of models for dependent components using a multi-
variate copula together with marginal distributions. For estimation of the copula and marginal
parameters, a two step procedure is often used to avoid high dimensional optimization. Here,
marginal parameters are estimated first, then used to transform to uniform margins and in a
second step, the copula parameters are estimated. This procedure is not efficient. Therefore, we
follow a joint estimation approach in a Bayesian framework using Markov Chain Monte Carlo
(MCMC) methods. This allows also for the assessment of parameter uncertainty using credible
intervals. D-Vine copulas are utilized and as marginal models we allow for autoregressive mod-
els of first order. Finally, we apply these methods to Australian electricity loads demonstrating
the usefulness of this approach. Bayesian model selection is also discussed and applied using a
method suggested by Congdon (2006).
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1 Introduction

The celebrated result of Sklar (1959) shows that dependence among random variables can be
separated from the marginal distributions. This forms the basis for the construction of many
multivariate models in statistics and finance (see for example the books by Joe (1997), Nelsen
(2006) and Cherubini, Luciano, and Vecchiato (2004)). While there are many bivariate copulas
available for modelling bivariate dependence, the catalogue of multivariate copulas is less rich.
Joe (1997) used a decomposition into pair-copulas to construct multivariate distributions. Bed-
ford and Cooke (2002) systemized these constructions using a graphical tree representation and
the book by Kurowicka and Cooke (2006) contains an overview.
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Aas, Czado, Frigessi, and Bakken (2007) derived statistical inference methods based on
these pair copula constructions (PCC) using bivariate t-copulas. While the maximum likelihood
estimation is feasible in small dimensions, the number of copula pairs increases quadratically
with the number of dimensions, therefore assessing the variability of the estimates is difficult
requiring the numerical inversion of large dimensional Hessian matrices. Therefore, we prefer
to use a Bayesian approach to estimation and inference. Min and Czado (2008) develop such a
Bayesian approach using Markov Chain Monte Carlo (MCMC) methods to estimate the posterior
distribution for PCC’s with bivariate t-copulas as building blocks for multivariate copula data,
i.e. for an i.i.d. multivariate sample with uniform margins.

For financial applications, one usually starts with multivariate time series and in a first step,
one estimates for each marginal time series its structure as an ARMA or GARCH structure. In a
second step, one determines standardized residuals, which are assumed to form an i.i.d marginal
sample. Depending on whether the distribution of the residuals are known or unknown, one
uses a parametric or empirical probability transform to transform to data with approximate
uniform margins. This separates the marginal distribution from the dependence structure. In a
final step, this dependency is modelled using a multivariate copula and copula parameter are
estimated. The statistical properties of such two step estimation procedures are investigated
by Joe (2005) for a known standardized residual distribution and by Chen and Fan (2006)
for unknown standardized residual distribution, respectively. It is known that such two step
procedures are not efficient. The loss in efficiency depends on the specific data structure and
model.

The main contribution of this paper is to provide a Bayesian analysis which jointly estimates
the marginal and copula parameters. For this, we start with a simple marginal time series
structure such as the first order autoregressive structure. In Section 2 we introduce the model
and in Section 3 we derive a MCMC algorithm which will be used to facilitate the Bayesian
analysis. In Section 4 we apply our methods to Australian electricity load data. Here we remove
the trend and seasonal effects. In Section 5 we consider Bayesian model selection when one
wants to choose among a small number of alternative model specifications based on approach
suggested by Congdon (2006). We close with a summary and discussion section.

2 Multivariate time series with D-vine dependency and marginal
autoregressive structure

First we describe the marginal time series structure. For this let Y t := (Y1t, · · · , Ymt) for t =
1, · · · ,m denote m dependent time series with marginal AR(1) time series structure and normal
errors, i.e.

Yit = γi · Yi(t−1) + εit t = 1, . . . , T, and εit ∼ N (0, σ2
i ) i.i.d. , i = 1, . . . ,m

Yi0 ∼ N (0,
σ2

i

1− γ2
i

) and
∣∣γi

∣∣ < 1.

From this it follows that Yi := (Yi1, · · · , YiT )′ ∼ NT (0,Σi) with the (r, s) th element of Σi

given by Σi,r,s = σ2
i

1−γ2
i
γ
|r−s|
i for i = 1, · · · ,m. We first transform each marginal time series Yi to

achieve i.i.d. margins by defining

Zi := Σ−1/2
i Yi ∼ NT (0, IT ), (1)

where IT is the identity matrix of size T . Wise (1955) shows that Σ−1
i is a tridiagonal matrix

and it is easy to determine the Cholesky factorization Σ−1/2
i as
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Σ−1/2
i = σ−1

i



1 0 . . . . . . 0

−γi 1 0
...

0 −γi 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −γi

√
1− γ2

i


and

det Σ−1/2
i = σ−T

i

√
1− γ2

i .

For the dependency structure between the m marginal time series, we now impose a m
dimensional D-vine (see Bedford and Cooke (2001) and Kurowicka and Cooke (2006)) structure
on the i.i.d. random vectors Zt := (Z1t, · · · , Zmt) for t = 1, · · · ,m. In particular, each random
vector Zt has a D-vine density f(z1, · · · , zm) given by

m∏
k=1

f(zk)
m−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1 {F (zi|zi+1, . . . , zi+j−1), F (zi+j |zi+1, . . . , zi+j−1)} , (2)

where ci,i+j|i+1,...,i+j−1(·, ·) are arbitrary bivariate copula densities depending on parameters
θi,i+j|i+1,...,i+j−1. Here F (·|·) denote conditional cdf’s. Utiliziling (1), we can use (2) together with
the density transformation theorem to construct a multivariate density for Y t for t = 1, · · · , T .
In the application, we will consider the case m = 4, where the D-vine density is given by

f(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4)·
· c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3)) · c34(F3(x3), F4(x4))·
· c13|2(F (x1|x2), F (x3|x2)) · c24|3(F (x2|x3), F (x4|x3))·
· c14|23(F (x1|x2, x3), F (x4|x2, x3)). (3)

For details and exact density expressions for Y t in the case m = 4 see Chapter 5 of Gärtner
(2008). In our application, we use bivariate t-copulas c(u, v) = c(u, v|θ) with θ = (ν, ρ), where
ν is the degree of freedom (df) parameter and ρ the correlation parameter. Correlation refers to
the corresponding t-distribution and not to the copula.

3 Bayesian analysis of multivariate time series with D-vine de-
pendency and marginal autoregressive structure

The multivariate time series models introduced in the previous section have many parameters
to estimate, for example the model when m = 4 and bivariate t-copulas are used require 20
parameters. We could follow a two step approach by first estimating marginal parameters using
the R function arima within the stats package. In a second step we transform to the Z-level
using these estimated parameters and apply the D-vine R package of Daniel Berg (private
communication) to determine maximum likelihood estimates of the D-vine parameters. However,
at the moment, there is no efficient estimation of the standard errors of such estimates reflecting
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the uncertainty in the marginal parameters. Therefore, we follow a Bayesian approach where
credible intervals can be determined naturally to assess the significance of the parameter.

First we have to specify prior distributions to complete the model specification. In particular
we would like to use a uniform prior for the correlation matrix in the D-vine based on bivariate
t-copulas. Using the results of Lewandowski, Kurowicka, and Joe (2007) and the calculations of
Joe (2006), we assume a Beta((4 − k)/2, (4 − k)/2) distribution on (−1, 1) for ρj|i1,··· ,ik , where
k is the cardinality of the set of conditioning variables. This choice of conditional correlations
results in an unconditional correlation matrix which is uniformly distributed over the space of
correlation matrices. For the degree of freedom parameter, we choose a half Cauchy distribution
as prior, i.e. π(ν) ∝ 1

1+( ν−1
2

)2
, ν ∈ (1,∞) and for the marginal error variances σ2

i an inverse

Gamma prior, given by π(u) = 0.001
Γ(1) u−2 exp

(
−0.001

u

)
as suggested by Congdon (2003, p. 15).

Finally for the autoregressive parameters γi, we choose a N(0, 10) prior on the transformed scale
ai := 1

2 log 1+γi

1−γi
. In addition, we assume prior independence among all parameters.

The posterior distribution is however not analytically tractable, therefore we use Markov
Chain Monte Carlo (MCMC) methods (see for example Gamerman and Lopes (2006)). In partic-
ular, we utilize the Metropolis-Hastings (MH) algorithm with independence proposal introduced
by Tierney (1994). As proposal distribution, we take a normal distribution centered around the
mode with covariance matrix a multiple of the inverse Hessian matrix evaluated at the mode as
suggested by Gamerman and Lopes (2006, p. 83). For determining the mode and Hessian on the
transformed scale of the parameters, the delta method is applied. To reduce computing time,
we update the proposal distribution only every 20th iteration. The corresponding acceptance
probabilities for the MH algorithm were developed in Gärtner (2008, Chapter 4). In particular,
each parameter is updated individually.

4 Modeling Australian electricity loads

Initially the Australian electricity supply was organized as a vertically integrated monopoly
with almost no trade or connection between different states. The liberalization started with
the opening of the National Electricity Market (NEM) in December 1998. The first members
were Victoria, Queensland, New South Wales, the Australian Capital Territory and then South
Australia and Tasmania joined in 2005. It is a wholesale market for electricity to supply retailers
and end-users.

The connection between the electricity producers and electricity consumers is facilitated by
the establishment of the National Electricity Market Management Company (NEMMCO). This
company manages a pool where the output of all generators is aggregated and scheduled to meet
the forecasted demand.

Wholesale trading is done as a real-time market where supply and demand are instanta-
neously matched through a centrally dispatched process. As the offers are submitted by the
generators every five minutes, NEMMCO determines the necessary plants and they are dis-
patched into production. So the market clearing price is determined every five minutes and is
averaged for each trading interval (30 minutes).

Since the Australian electricity market is an energy-only market, there are a lot of price
spikes. But the experience shows that these price spikes are enough incentives for the electricity
companies to build new generation plants, for example as seen in South Australia in the period
1998 - 2003 where the generation capacities increased heavily after a series of price spikes to meet
these peak demands. For more details on the Australian electricity market see Weron (2006).

The used load data consists of four time series of daily observations dating from May 16th,
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2005 to June 30th, 2008, in total 1142 data points per time series. It describes the average daily
load demand in Gigawatt (GW) for the regions Queensland, New South Wales, Victoria and
South Australia calculated by averaging the half-hourly observed data for one day. This data is
available at www.nemmco.com.au.

Figure 1: Time series plots of the observed data in the four different states

Electricity demand clearly shows seasonal fluctuations, mostly due to changing climate con-
ditions like temperature or the number of daylight hours. We follow the classical technique of
seasonal decomposition by thinking of a trend component Tt, a seasonal component St and the
remaining stochastic component Yt, i.e we can represent the observed daily load data {x1, . . . , xn}
as

xt = Tt + St + yt, t = 1, . . . , n.

Using techniques of Weron (2006) and Brockwell and Davis (1991), we investigate the origi-
nal time series to identify the trend and seasonal component. In a preprocessing step, these
components will be removed before we analyse the marginal and across time series dependency.

Looking at the original data in Figure 1, we see that the trend component is negligible. Based
on estimated (partial) autocorrelations and periodograms, we see evidence of a weekly and yearly
cycle. Weron (2006) uses a rolling volatility technique to remove the annual seasonality. We apply
this to our data. In a second step we remove the weekly cycle by fitting a moving average MA(7)
model where only the seventh moving average coefficient is not equal to zero, i.e.

Xt = εt + θ7εt−7, θ7 6= 0, εt ∼ WN(0, σ2).
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After the preprocessing, we want to test this data for stationarity or if there is a unit root. We
use the augmented Dickey-Fuller test (ADF) with lag order 1, a Phillips-Perron test (PP) (both
test for a unit root) and the KPSS test for stationarity (for details cf. Banerjee et al. (1993)
and Kwiatkowski et al. (1992)). The KPSS test has the null hypothesis ’K0: The time series is
stationary.’ versus the alternative ’K1: The time series is not stationary.’ and ADF and PP test
have the null hypothesis ’H0: The time series has a unit root, i.e. the autoregressive coefficient
has an absolute value of 1.’ against the alternative ’H1: The absolute value of the autoregressive
coefficient is smaller than 1.’ The test results are given in Table 1. For each of the preprocessed

QLD NSW VIC SA

stat. p-value stat. p-value stat. p-value stat. p-value
0.0671 > 0.1 0.126 > 0.1 0.099 > 0.1 0.065 > 0.1KPSS

accept K0 accept K0 accept K0 accept K0
-12.74 < 0.01 -13.70 < 0.01 -15.11 < 0.01 -15.04 < 0.01ADF

reject H0 reject H0 reject H0 reject H0
-334.31 < 0.01 -347.94 < 0.01 -413.37 < 0.01 -421.71 < 0.01PP

reject H0 reject H0 reject H0 reject H0

Table 1: Tests for Stationarity and Unit Root for the preprocessed time series

time series, we cannot reject the KPSS test for stationarity. In addition, we have to reject the
ADF and PP test for unit roots. So, we assume stationarity for all four time series. Therefore,
we will model them marginally with an AR(1) process. The preprocessed time series are given
in Figure 2. For more details on the preprocessing methods and alternative preprocessing see
Gärtner (2008, Chapter 3).

Now we are ready to investigate the dependencies among the preprocessed time series. For
this, we have preprocessed time series for Queensland, New South Wales, Victoria and South
Australia, each consisting of 1134 observations available. We chose this order because of geo-
graphical reasons. These states are neighbored and connected with all its infrastructure in this
way along the Eastern Coast of Australia beginning with Queensland in the North, then New
South Wales, then Victoria and South Australia following in the South West.

Applying the joint MCMC (JMCMC) approach developed in Section 2, we ran 10000 MCMC
iterations. Using trace plots and estimated autocorrelation (see Gärtner (2008, Section 5.3)), we
determined appropriate burnin and thining parameters. A burnin of 1000 iterations for all but
one parameter and a thining to every 20th iterations were sufficient.

For comparison, we also determined the two step MLE estimates, i.e. first marginal parame-
ters are estimated (marg. MLE) and used to transform to the Z-level. For the copula parameters,
the Z-level time series are further transformed using the standard normal cdf to time series with
uniform margins. Finally, this data is used to determine the MLE’s of the copula parameters
(C-MLE). The resulting kernel density estimates of the posterior distribution for each parameter
are given in Figures 3 and 4, while summary statistics are presented in Table 2.

The MLE’s of the marginal autoregressive parameters are higher than the corresponding
JMCMC estimates indicating the effect of ignoring the joint dependency. Some of these differ-
ences are credible since the marginal MLE values for the parameters γ2, γ3 and γ4 lie outside
of the estimated posterior 95% credibility interval. There is however good agreement for the
remaining parameters. Some of the df parameters are quite high especially for the df parame-
ters corresponding to conditional copula pairs. This leads to the question if one can reduce the
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Figure 2: Time series plots of the preprocessed data in the four different states

copula dependency model to Gaussian bivariate copulas for those conditional copula pairs. We
will investigate this question in the following section.

5 Bayesian model selection

As we have seen in the previous section, we might want to compare several model specifications
in a Bayesian setup. For this we want to compare posterior model probabilities for models of
interest. Assume that we have fitted models M1, . . . ,Mk with a MCMC method where model
Mk has parameters θk and want to estimate

P (Model Mk|data), k = 1, . . . ,K.

Congdon (2006) gives the following estimation procedure under the assumption that the dis-
tribution of the data under Model Mk is independent of {θj 6=k} and he assumes independence
among all θk given Model M . Then he shows that the posterior distributions are independent
and can be sampled individually. He uses the relationship

P (M = Mk|data,θ) ∝ P (data|θ,M = Mk)P (θ|M = Mk)P (M = Mk). (4)
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Figure 3: Plots of the estimated kernel density of ν and ρ estimated of the observed real data
based on the thinned out MCMC chain
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Figure 4: Plots of the estimated kernel density of σ2 and γ estimated of the observed Real Data
based on the thinned out MCMC chain
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Copula 2.5% 5% 50% 95% 97.5% mean mode C-MLE

ν12 5.17 5.45 7.37 11.72 12.71 7.80 6.92 7.32
ν23 4.11 4.26 5.57 7.65 8.60 5.76 5.36 5.52
ν34 7.08 7.69 11.45 24.29 29.68 12.89 10.23 11.17
ν13|2 15.01 16.28 36.89 84.56 91.77 41.44 29.80 38.55
ν24|3 4.20 4.73 14.25 78.22 93.44 22.84 11.60 8.34
ν14|23 12.32 14.58 34.43 78.22 86.81 38.94 29.00 58.07

ρ12 0.27 0.28 0.34 0.38 0.39 0.34 0.34 0.33
ρ23 0.33 0.35 0.40 0.45 0.45 0.40 0.40 0.39
ρ34 0.54 0.55 0.59 0.62 0.63 0.59 0.59 0.57
ρ13|2 −0.01 −0.00 0.05 0.10 0.11 0.05 0.05 0.06
ρ24|3 −0.01 0.00 0.05 0.11 0.12 0.06 0.05 0.04
ρ14|23 −0.04 −0.03 0.02 0.07 0.08 0.02 0.03 0.03

Marginal 2.5% 5% 50% 95% 97.5% mean mode marg. MLE

σ2
1 0.41 0.41 0.44 0.48 0.48 0.45 0.44 0.44

γ1 0.67 0.67 0.70 0.74 0.74 0.70 0.70 0.71
σ2

2 0.47 0.48 0.51 0.55 0.56 0.51 0.51 0.52
γ2 0.62 0.62 0.66 0.69 0.69 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.52 0.53 0.49 0.49 0.49
γ3 0.53 0.54 0.57 0.60 0.61 0.57 0.57 0.63
σ2

4 0.47 0.47 0.51 0.54 0.55 0.51 0.51 0.50
γ4 0.50 0.51 0.54 0.57 0.58 0.54 0.54 0.63

Table 2: Estimated posterior mean, mode and quantiles of JMCMC as well as marginal MLE,
starting values and C-MLE for the preprocessed Australian load data

We assume now that the K independent MCMC runs result in

M1 : θ
(t)
1 , r = 1, . . . R p(θ1|data)

... which approximate
...

MK : θ
(t)
K , r = 1, . . . R p(θK |data).

We use {θ(r) := (θ(r)
1 , . . . ,θ

(r)
K ), r = 1, . . . R} and hence, we can approximate

P (M |data) =
∫

P (M |θ,data)p(θ|data)dθ

by

P̂ (M |data) :=
1
R

R∑
r=1

P (M |θ(r),data).

Using Equation (4), we can estimate P (M = Mk|data,θ(r)) by

w
(r)
k :=

G
(r)
k∑K

j=1 G
(r)
k

,

where

G
(r)
k := exp(L(r)

k − L(r)
max)

L
(r)
k := log(P (data|θ(r),M = Mk)P (θ(r)|M = Mk)P (M = Mk))

L(r)
max := max

k=1,...,K
L

(r)
k .
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Therefore, we get

T̂k :=
1
R

R∑
r=1

w
(r)
k

as an estimator for P (M = Mk|data).
We investigated 6 models for the Australian load data, which are described in Table 3

together with their estimated posterior model probability. These results indicate clearly that the
model with a marginal AR(1) structure and a four-dimensional t-copula where the conditional
correlation parameters are fixed to 0 gives the best fit to the observed data.

Model Model T̂k

M1 Joint Bayesian estimation with marginal AR(1) and D-Vine of 4.2689 · 10−06

pair t-copulas
M2 Joint Bayesian estimation of reduced model M1: marginal 0.0351

AR(1), unconditional pair copulas as t-copulas, conditional pair
copulas as t-copulas with correlation 0 and df = 100

M3 Joint Bayesian estimation with marginal AR(1) and D-Vine of 4.5999 · 10−13

normal pair copulas (approximated by a t-copula with df=100)
M4 Joint Bayesian estimation of reduced model M4: marginal 3.2536 · 10−14

AR(1), unconditional pair copulas as Gauss copulas (approximated
by a t-copula with df=100), conditional pair copulas as pair
t-copulas with correlation 0

M5 marginal AR(1) and four-dimensional t-copula with common df 0.3245
M6 marginal AR(1) and four-dimensional t-copula with with common 0.6404

df and the conditional correlation parameters fixed to 0

Table 3: Estimated posterior model probabilities for six models for the Australian load data

Finally, we present the parameter estimates for the Model M6 in Table 4. This shows that
there are strong marginal autocorrelations present in the four time series. The strongest one is
observed in Queensland, while the lowest one is in South Australia. The dependence between the
time series on the Z variable level has a first order Markov structure determined by the uncon-
ditional bivariate t-copulas. Since conditional and partial correlations are the same for elliptical
distributions (see Baba and Sibuya (2005)) and there exists a one-to-one relationship between
partial correlations and unconditional correlations, the remaining unconditional correlations in
M6 can be determined. In particular the posterior mode for ρ13, ρ24 and ρ14 are estimated to be
.13, .23 and .075 respectively. This shows that the strongest dependence is Victoria and South
Australia followed by New South Wales and Victoria. This is reasonable since South Australia
and New South Wales are neighbors of Victoria and Victoria is the most populated region among
the 4 regions.

6 Summary and discussion

This paper developed a joint Bayesian analysis of a multivariate copula model with AR(1) time
series margins. This avoids efficiency loss introduced by the usual two step estimation procedure.
Model selection was facilitated by applying the approach by Congdon (2006). This approach
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2.5% 5% 50% 95% 97.5% mean mode C-MLE
ν 5.80 6.08 7.44 9.30 9.79 7.54 7.32 9.59

ρ12 0.27 0.28 0.33 0.38 0.39 0.33 0.33 0.30
ρ23 0.34 0.35 0.40 0.45 0.46 0.40 0.40 0.34
ρ34 0.54 0.55 0.59 0.62 0.63 0.59 0.59 0.58

2.5% 5% 50% 95% 97.5% mean mode marg. MLE
σ2

1 0.40 0.41 0.44 0.48 0.48 0.44 0.44 0.44
γ1 0.67 0.67 0.71 0.74 0.74 0.71 0.71 0.71
σ2

2 0.46 0.47 0.50 0.54 0.54 0.50 0.50 0.52
γ2 0.62 0.63 0.66 0.69 0.70 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.52 0.53 0.49 0.49 0.49
γ3 0.52 0.53 0.56 0.59 0.60 0.56 0.56 0.63
σ2

4 0.47 0.48 0.51 0.55 0.56 0.51 0.51 0.50
γ4 0.50 0.50 0.54 0.57 0.57 0.54 0.54 0.63

Table 4: Estimated posterior mean, mode and quantiles of the joint MCMC as well as marginal
MLE and C-MLE for marginal AR(1) and four-dimensional t-Copula with the conditional cor-
relation parameters fixed to 0

however has been criticized by Robert and Marin (2008) in general. Alternatively, one can use
reversible jump MCMC (RJMCMC) developed by Green (1995). However, it is our experience
that Congdon’s method is a close approximation to RJMCMC for copula models based on vines.

Several extensions are of interest, for example using higher order autoregressive models and
especially to use GARCH margins for financial applications. For Bayesian approaches to uni-
variate GARCH models see Bauwens and Lubrano (1998) and Ardia (2008). The joint Bayesian
estimation of such marginal models together with copula models based on vines is subject of
current research.
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