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Abstract. Starting from short memory (Gaussian) processes we present various approaches to construct

long memory processes and generalize these concepts to the Lévy setting. Moreover, Ornstein-Uhlenbeck

processes are replaced by more general moving average (MA) processes, e.g. CARMA processes, thus allowing

to model a broader class of autocorrelation functions, for instance oscillating autocorrelations. We obtain

superposititions of MA processes, in particular supCARMA processes, as well as, by randomizing the time

scale of short memory processes, a rather large class of long memory MA processes. Finally, Lévy-driven

Gamma-mixed moving average processes exhibiting long memory are introduced. The latter model has the

nice property that its integrated process can be calculated explicitly and converges to a fractional Lévy

process.

1. Introduction. In modern mathematical finance continuous time models play a cru-
cial role because they allow handling unequally spaced data and even high frequency data,
which are realistic for liquid markets. In this context Lévy-driven processes of Ornstein-
Uhlenbeck (OU) type have been extensively studied over the last recent years and widely
used in applications. Several examples of univariate non-Gaussian OU processes can be found
in Barndorff-Nielsen & Shephard (2001a), where OU processes are used to model stochas-
tic volatility. In this paper we replace OU processes by the more general CARMA(p, q)
processes driven by a two-sided Lévy process L = {L(t)}t∈R, defined as

L(t) =


L1(t), t ≥ 0

−L2(−t−), t < 0
, (1.1)

where L1 = {L1(t)}t≥0 is a Lévy process and L2 = {L2(t)}t≥0 is an independent copy of
L1. The virtue of CARMA(p, q) processes is that a much larger class of autocorrelations
can be modeled. In particular, the autocorrelation functions of CARMA processes are not
necessarily monotone decreasing as that of OU processes. Moreover, it has been shown
in an econometric analysis by Todorov & Tauchen (2004) that CARMA and in particular
CARMA(2, 1) processes are reasonable processes to model stochastic volatility. Lévy-driven
CARMA processes, have been studied and applied during the last years (see e.g. Brockwell
(2001a), Brockwell (2001b), Todorov & Tauchen (2004) and the references therein), but
like OU processes belong to the class of short memory processes, due to the fact that their
autocorrelation functions show an exponential rate of decay.

Recently, Brockwell (2004) (see also Brockwell & Marquardt (2005)) defined fractionally
integrated CARMA (FICARMA) processes by a fractional integration of the kernel function
of the short memory CARMA process. These FICARMA processes exhibit long memory
properties in the sense that their autocorrelations are hyperbolically decreasing. However,
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due to the slow decay of the fractionally integrated kernel function, simulation algorithms for
FICARMA processes have been very slow and expensive and so far no stimulating estimation
techniques are available.

An alternative approach to generate long memory processes, namely infinite superpo-
sition of Ornstein-Uhlenbeck (supOU) processes, was studied in Barndorff-Nielsen (2001).
SupOU processes provide a flexible class of models which incorporate long-range dependence
as well as self-similarity-like properties. Furthermore, supOU processes have the potential
to describe some of the other key distributional features of typical data in finance, tur-
bulence and other fields of application. In particular, empirical volatility has tails heavier
than normal, long-range dependence in the sense that the empirical autocorrelation function
decreases slower than exponential and exhibits volatility clusters on high levels. Barndorff-
Nielsen & Shephard (2001b) investigate supOU processes as volatility models and show that
supOU processes are capable to model these so-called stylized facts. Moreover Fasen &
Klüppelberg (2007) study the extremal behaviour of supOU processes. However, supOU
processes are defined in terms of integrals with respect to an independently scattered ran-
dom measure - often referred to as Lévy basis - and thus the supOU framework adds another
non-trivial layer of complexity to the problem of simulation and parameter estimation.

This is our motivation to propose in this paper several alternative approaches to gen-
erate long memory processes leading to models which are easy to simulate and estimate.
After having introduced the necessary preliminaries in Section 2, we consider in Section 3
superpositions of general moving average (MA) processes. To the best of our knowledge,
this is the first approach to construct an infinite superposition of CARMA (supCARMA)
processes. By randomizing the time scale of a (short memory) MA process we construct in
Section 4 a MA model which allows for modeling long memory situations and which has
the same autocovariance functions as the supOU (or supCARMA) processes when its kernel
function equals that of an OU (CARMA) process. In Section 5 we discuss mixing models
by transfer functions. In particular, we come up with a Lévy-driven Gamma-mixed OU
process which on the one hand is the limiting process of centered m-factor models, as well
as closely related to the fractional Lévy processes considered in Marquardt (2006b). In fact,
the latter aggregation model has the nice property that its integrated process can be calcu-
lated explicitly and converges to a fractional Lévy process. Finally, we calculate integrated
volatility and show how the aggregation idea can be generalized.

2. Preliminaries. In this section we recall some basic defintions and notions which
we will need in the following sections.

2.1. CARMA and OU Processes. As the name already suggests, CARMA processes
belong the class of continuous-time moving average (MA) processes.

Definition 2.1 (Stationary MA Process). A stationary continuous time moving aver-
age (MA) process is a process of the form

Y (t) =

∞∫
−∞

g(t− u)L(du), t ∈ R, (2.1)

where g : R → R, called kernel function, is measurable and the driving process L = {L(t)}t∈R

is a two-sided Lévy process on R having generating triplet (γ, σ2, ν). We call L the back-
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ground driving Lévy process (BDLP) of the MA process Y = {Y (t)}t∈R.

Definition 2.2 (CARMA(p, q) Process). A Lévy-driven continuous time autoregressive
moving average CARMA(p, q) process {Y (t)}t≥0 of order (p, q) with p, q ∈ N0, p > q is
defined to be the stationary solution of the formal p-th order linear differential equation,

p(D)Y (t) = q(D)DL(t), t ≥ 0, (2.2)

where D denotes differentiation with respect to t, {L(t)}t≥0 is a Lévy process with Lévy
measure ν satisfying

∫
|x|>1

log |x|ν(dx) <∞,

p(z) := zp + a1z
p−1 + ...+ ap and q(z) := b0z

q + b1z
q−1 + ....+ bq, (2.3)

where ap �= 0, bq �= 0. The polynomials p(·) and q(·) are referred to as the autoregressive
and moving average polynomial, respectively.

Since in general the derivative of a Lévy process does not exist, (2.2) is interpreted as
being equivalent to the observation and state equations

Y (t) = bTZ(t) and (2.4)

dZ(t) = AZ(t)dt+ e L(dt), t ≥ 0, (2.5)

where A =

[
0 Ip−1

−ap −ap−1 . . . −a1

]
, eT = [0, . . . , 0, 1], bT =

[
bq, bq−1, . . . , bq−p+1

]
with b−1 = b−2 = . . . = bq−p+1 = 0, if q < p − 1 and Ip−1 ∈ Mp−1(R) denotes the identity
matrix.

Remark 2.3. It is easy to check that the eigenvalues ϑ1, . . . , ϑp of the matrix A are
the zeros of the autoregressive polynomial p(z).

Proposition 2.4 (Brockwell (2004, Section 2)). If all eigenvalues ϑ1, . . . , ϑp of A, i.e.
the roots of p(z), have negative real parts, the process {Z(t)}t∈R defined by

Z(t) =
t∫

−∞
eA(t−u)e L(du), t ∈ R, is the strictly stationary solution of (2.5) for t ∈ R with

corresponding CARMA process

Y (t) =

t∫
−∞

bT eA(t−u)e L(du), t ∈ R, (2.6)

where L is a two-sided Lévy process as defined in (1.1).
As it drives the CARMA process, we refer to L as the BDLP (see Definition 2.1).
From (2.6) it is obvious that Y = {Y (t)}t∈R is a moving average process, since it has

the form

Y (t) =

t∫
−∞

g(t− u)L(du), t ∈ R,

with kernel

g(t) = bT eAte1[0,∞)(t) (2.7)
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satisfying g ∈ L1(R) ∩ L2(R).
Replacing eAt by its spectral representation, the kernel g given by (2.7) can be expressed

as (Brockwell (2004))

g(t) =
1
2π

∞∫
−∞

eitϑ q(iϑ)
p(iϑ)

dϑ, t ∈ R. (2.8)

From now on we assume that the condition on the eigenvalues of A in Proposition 2.4
is always satisfied.

Obviously, the CARMA(1,0) process is an Ornstein-Uhlenbeck (OU) process

Y (t) =

t∫
−∞

e−λ(t−s) L(ds), t ∈ R, (2.9)

where λ > 0. In the literature the OU process is often written in the form of an Itô stochastic
differential equation (SDE) dY (t) = −λY (t)dt + L(dt), where it is understood that Y has
to be the stationary solution of the SDE.

As long as E[L(1)2] < ∞, the autocorrelation functions of CARMA processes exist
and show an exponential rate of decay, i.e. CARMA processes belong to the class of short
memory models. In particular, for the OU process we have rY (h) = corr(Y (t+ h), Y (t)) =
e−λh, h ∈ R. This and the Markov property of CARMA processes are often too restrictive
and recently various approaches have been made to generalize the Lévy-driven OU and
CARMA model, respectively.

In order to expand the class of OU processes one can for instance construct a process as
the sum, or superposition, of independent OU processes, each indexed by different parameter
values, i.e.

Ỹ m(t) =
m∑

j=1

Yj(t), (2.10)

where Yj is an OU process as defined in (2.9). In econometrics this finite superposition of
OU processes is often called an m-factor model. This model can be extended to the infinite
dimensional case by allowing m, the number of components of Y , to go off to infinity and
by replacing summation with integration (see Section 2.2 below).

2.2. Lévy Basis and SupOU Processes. This section contains a brief review of
the definition and the main properties of supOU processes. Throughout this section we
write τ(x) = 1{|x|≤1} and work with an infinitely divisible independently scattered ran-
dom measure, which we will refer to as Lévy basis, Λ = {Λ(A); A ∈ T }, on some prob-
ability space (Ω,F , P ), as defined in Rajput & Rosinski (1989), where T is a σ-ring on
B(R+ × R). This means that for every sequence {An}n∈N ⊆ T of disjoint sets the random

variables Λ(An), n = 1, 2, . . . , are independent and Λ
( ∞⋃

n=1
An

)
=

∞∑
n=1

Λ(An) a.s., when-

ever ∪∞
n=1An ∈ T . Furthermore, for every A ∈ T , Λ(A) is an infinitely divisible random

variable whose characteristic function can be written in the form (see Rajput & Rosinski
(1989, Proposition 2.4)),

E[exp{iuΛ(A)}] = exp{Ψ(u)}, u ∈ R, (2.11)
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where

Ψ(u) = ium0(A) − u2

2
m1(A) +

∫
R

(eiux − 1 − iuτ(x))Q(A, dx). (2.12)

Here m0 is a signed measure, m1 is a positive measure and Q is a generalized Lévy measure,
which means by definition that for every fixed A ∈ T with points ω = (s, λ), Q(A, ·) is a
Lévy measure on B(R), i.e. Q(A, {0}) = 0 and

∫
R
(1 ∧ |x|2)Q(A, dx) < ∞. In this paper,

like in Barndorff-Nielsen (2001), our discussion is restricted to the case where

Q(dω, dx) = ds π(dλ) ν(dx) (2.13)

factorizes as the product of some probability measure π on R+, the Lebesgue measure (Leb)
and some Lévy measure ν on R. Moreover, we assume

m0(dω) = γ ds π(dλ) and m1(dω) = σ2 ds π(dλ),

for γ ∈ R and σ2 ≥ 0. We shall refer to (γ, σ2, ν, π) as the Lévy characteristics of Λ, as the
distribution of Λ is completely determined by (γ, σ2, ν, π). Writing

ψ(u) = iuγ − u2

2
σ2 +

∫
R

(eiux − 1 − iuτ(x)) ν(dx), u ∈ R, (2.14)

we can rewrite (2.11) as

E[exp{iuΛ(A)}] = exp



∫

R+

∫
R

ψ(u1A(λ, s)) ds π(dλ)


 , u ∈ R. (2.15)

Notice that for A = R+ × [0, t], t ≥ 0, we obtain the corresponding Lévy process
Λ(R+ × [0, t]) = L(t) with characteristic triplet (γ, σ2, ν).

Integrals with respect to a Lévy basis Λ are defined as limits in probability of integrals
over simple functions. In what follows we will work with the following proposition and refer
to Rajput & Rosinski (1989, Theorem 2.7) for details and proofs.

Proposition 2.5. A measurable function f : R+ ×R → R is Λ-integrable if and only if

(i)
∫

R+

∫
R

∣∣∣∣∣∣f(λ, s)γ +
∫
R

(τ(xf(λ, s)) − f(λ, s)τ(x)) ν(dx)

∣∣∣∣∣∣ ds π(dλ) <∞,

(ii) σ2

∫
R+

∫
R

|f(λ, s)|2 ds π(dλ) <∞,

(iii)
∫

R+

∫
R

∫
R

(1 ∧ |xf(λ, s)|2) ν(dx) ds π(dλ) <∞.

If (i)-(iii) hold,
∫
f dΛ is infinitely divisible with characteristic function

E


exp


iu

∫
R+

∫
R

f(λ, s) dΛ(λ, s)




 = exp



∫

R+

∫
R

ψ(uf(λ, s)) ds π(dλ)


 . (2.16)
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Now we recall the definition of supOU processes (Barndorff-Nielsen (2001)) which can
serve as long memory models.

We say that a stationary process X = {X(t)}t∈R exhibits long-range dependence (long
memory) if the autocovariance (or autocorrelation) function γX of X behaves as

γX(h) ∼ L̃(h)h−2d (2.17)

for h→ ∞, where L̃ is a slowly varying function and d ∈ (0, 0.5).
Suppose that the above assumptions are satisfied, i.e. Ω = R+×R with points ω = (s, λ)

and let B be the σ-algebra of Borel subsets of R+×R. Furthermore let Λ be a Lévy basis on
(Ω,B) with characteristics (γ, 0, ν, π), where π is a probability measure on R+. Moreover,
we assume

γ = −
∫
{|x|>1}

|x| ν(dx). (2.18)

Definition 2.6 (supOU Process). Let Λ be a Lévy basis which satisfies the above
conditions. We call a stochastic process X = {X(t)}t∈R of the form

X(t) =
∫

R+

e−λt

λt∫
−∞

es Λ(ds, dλ), t ∈ R, (2.19)

a supOU process.
Remark 2.7. The process X defined in (2.19) is well-defined, stationary and infinitely

divisible, where the finite-dimensional distributions of the stationary process X have the
cumulant generating function

logE[exp{i(u1Xt1 + . . .+ umXtm)}]

=
∫

R+

∫
R

ψ


 m∑

j=1

uje
−λ(tj−s)1[0,∞)(tj − s)


λds π(dλ), (2.20)

where m ∈ N, −∞ < t1 < . . . < tm <∞, u1, . . . , um ∈ R and ψ is given as in (2.14).
Observe that we can conclude from (2.18) that E[X(t)] = 0 for all t ∈ R. Furthermore,

we have the following proposition.
Proposition 2.8. Assuming the supOU process X is square integrable the autocorre-

lation function rX of X is given by

rX(h) =

∞∫
0

e−λh π(dλ), h ≥ 0. (2.21)

Example 2.9. Suppose that π is the Γ(1 − 2d, 1) law, where 0 < d < 0.5, i.e.

π(dλ) =
1

Γ(1 − 2d)
λ−2de−λ dλ.

Then

rX(h) = (1 + h)2d−1,
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i.e. X exhibits long-range dependence.
Now, if we interprete λ as a random variable with distribution π we can rewrite (2.21)

as

rX(h) = E[e−λh],

i.e. we can model the memory of a linear, nonnegative process through the moment gener-
ating function of the memory parameter and the choice of this moment generating function
has no impact on the marginal distribution of λ.

Some choices of the moment generating function will deliver short memory models,
others will deliver long memory. However, all of these models will have correlations which
are nonnegative at all values of h. This fact is an unfortunate limitation of the class of
supOU processes.

Based on this observation our motivation is to define superpositions of CARMA (sup-
CARMA) processes, since CARMA processes allow for a much more general class of au-
tocorrelation functions. In particular we will not only derive supCARMA processes but a
superposition of general moving average processes.

3. Superposition of Moving Average Processes. This section is devoted to the
construction of supCARMA processes and superposititions of moving average (supMA) pro-
cesses, in general. In order to construct superpositions of MA processes we work with Lévy
bases as introduced in Section 2.2. Moreover, we need the following “generalization” of MA
processes.

Definition 3.1. For λ > 0 define a moving average process Yλ = {Yλ(t)}t∈R by

Yλ(t) := Y (λt) =

t∫
−∞

g(λ(t− s))L(λds), t ∈ R, (3.1)

where L is a Lévy processes and g : R → R is a kernel function satisfying g(t) = 0 for t < 0.
For simplicity from now on we assume that E[L(1)] = 0 and E[L(1)2] <∞. In particu-

lar, then (3.1) exists whenever g ∈ L2(R).
Proposition 3.2. The process Yλ defined in (3.1) is stationary. Moreover, we have

for all t ∈ R and λ > 0 fixed

Yλ(t) d= Yλ(0) d= Y (0).

Proof. Stationarity can be easily seen from

logE


exp


i

m∑
j=1

ujYλ(tj)




 =

∫
R

ψ


 m∑

j=1

ujg(λ(tj − s))1[0,∞)(tj − s)


 λds

=
m∑

k=1

tk∫
tk−1

ψ


 m∑

j=k

ujg(λ(tj − s))


 λds,
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where m ∈ N, −∞ < t0 < t1 < . . . < tm and u1, . . . , um ∈ R and ψ is given as in (2.14). In
particular,

logE
[
eiuYλ(t)

]
=

t∫
−∞

ψ (ug(λ(t− s))λds

=

∞∫
0

ψ (ug(λs))λds =

∞∫
0

ψ (ug(s)) ds = logE
[
eiuY (0)

]
.

We are now in the position to define superpositions of MA processes.
Definition 3.3. Let Λ be a Lévy basis satisfying the conditions of Section 2.2. We call

stochastic processes X = {X(t)}t∈R of the form

X(t) =

∞∫
0

t∫
−∞

g(λ(t− s)) Λ(λds, dλ), t ∈ R, (3.2)

superpositions of moving average processes or supMA processes, for short.
The following proposition is straightforward, we therefore omit its proof.
Proposition 3.4. The process X defined in (3.2) is well-defined, stationary and in-

finitely divisible, where the finite-dimensional distributions of the stationary process X have
the cumulant generating function

logE


exp


i

m∑
j=1

ujX(tj)




 =

∫
R+

∫
R

ψ


 m∑

j=1

ujg(λ(tj − s))1[0,∞)(tj − s)


λds π(dλ),

where m ∈ N, −∞ < t1 < . . . < tm <∞, u1, . . . , um ∈ R and ψ is given as in (2.14).
Remark 3.5.

(i) Substituting the OU kernel g(t) = e−λt into (3.2) we obtain the supOU processes
discussed in Section 2.2.

(ii) Substituting the CARMA kernel (2.8) into (3.2), we thus obtain a superposition
of CARMA processes, which we will refer to as supCARMA processes. The sup-
CARMA process is then given by

X(t) =
∫

R+

t∫
−∞

bT eA(t−s)eΛ(λds, dλ) = bT


∫

R+

eAλte

λt∫
−∞

e−AseΛ(ds, dλ)


 .

Moreover, a formal calculation shows that the supCARMA process is the stationary
solution of

X(t) = bTZ(t),

dZ(t) =
∫

R+

{−λZ(t, dλ) dt+ Λ(dt, dλ)} ,

where

Z(t, B) =
∫
B

eAλte

λt∫
−∞

e−AseΛ(ds, dλ).
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(iii) Obviously, E[X(t)] = 0 for all t ∈ R.
(iv) Let us denote by γYλ

(h) := E[Yλ(t + h)Yλ(t)], h ≥ 0, the autocovariance function
of the MA process (3.1) and by rYλ

(h) the corresponding autocorrelation function.
Then, assuming that the supMA process X is square integrable, we obtain that the
autocorrelation function rX of the supMA process X is given by

rX(h) =

∞∫
0

rYλ
(h)π(dλ), h ≥ 0.

We have already mentioned in the introduction that supOU processes and thus in par-
ticular supMA processes are often too complex models for simulations and parameter esti-
mation. Therefore, in the following section we will discuss a simple and effective method
of constructing long memory models which leads to a class of more tractable long memory
models. For Gaussian processes a similar idea has been considered in Chunsheng (2003).

4. Long Memory Generation via Randomization of Moving Average Pro-
cesses. We consider again the stationary MA process Yλ introduced in (3.1). We have seen
that the process Yλ is stationary and that in distribution holds

Yλ(t) d= Yλ(0) = Y (0),

which is (pathwise) independent of λ.

Now, assume that λ is a non-negative random variable with distribution π independent
of the BDLP L. By this randomization we then define a process X̃ = {X̃(t)}t∈R such that

X̃(t) |λ d= Yλ(t), (4.1)

i.e.

X̃(t, ω) = Yλ(ω)(t, ω) =

t∫
−∞

g(λ(ω)(t− s))L(λ(ω)ds, ω), t ∈ R.

Proposition 4.1. The process X̃ defined in (4.1) is well-defined (provided that Yλ

is well-defined) and stationary. Furthermore, the finite-dimensional distributions of the
stationary process X̃ have the characteristic functions

E


exp


i

m∑
j=1

ujX̃(tj)




 =

∞∫
0

exp




m∑
k=1

tk∫
tk−1

ψ


 m∑

j=k

ujg(λ(tj − s))


 λds


 π(dλ).

where m ∈ N, −∞ < t1 < . . . < tm <∞, u1, . . . , um ∈ R and ψ is given in (2.14).
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Proof. We have

E


exp


i

m∑
j=1

ujX̃(tj)




 = E


E


exp


i

m∑
j=1

ujX̃(tj)




∣∣∣ λ





=

∞∫
0

E


exp


i

m∑
j=1

ujYλ(tj)




 π(dλ)

=

∞∫
0

exp



∫
R

ψ


 m∑

j=1

ujg(λ(tj − s))1[0,∞)(tj − s)


λds


 π(dλ)

=

∞∫
0

exp




m∑
k=1

tk∫
tk−1

ψ


 m∑

j=k

ujg(λ(tj − s))


 λds


 π(dλ),

from which follows stationarity.
Note that the preceding theorem shows that the processX given by (3.2) and the process

X̃ defined by (4.1) are not identical. In particular, the marginal distributions of X̃ are in
general no longer infinitely divisible. However, we have the following result.

Proposition 4.2. The process X̃ defined by (4.1) has the same autocorrelation function
rX̃ as the supMA process, i.e.

rX̃(h) =

∞∫
0

rYλ
(h)π(dλ), h ≥ 0, (4.2)

where rYλ
(h) = rY (λh) denotes the autocorrelation function of the process Yλ defined in

(3.1) and rY denotes the autocorrelation function of the MA process (2.1).

Proof. We have

cov(X̃(t+ h), X̃(t)) = E[X̃(t+ h)X̃(t)] − E[X̃(t+ h)]E[X̃(t)]

=

∞∫
0

E[X̃(t+ h)X̃(t) |λ]π(dλ) − E[E[X̃(t+ h) |λ]] E[E[X̃(t) |λ]]

=

∞∫
0

E[Yλ(t+ h)Yλ(t)]π(dλ) −
∞∫
0

E[Yλ(t+ h)]E[Yλ(t)]π(dλ)

=

∞∫
0

γYλ
(h)π(dλ)

In order to randomize CARMA processes we define for λ > 0 a stationary CARMA
process by

Yλ(t) =

t∫
−∞

g(λ(t− s))L(λds) (4.3)
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with kernel function given by

g(λt) =
1
2π

∫
R

eiλtϑ q(iϑ)
p(iϑ)

dϑ.

Note that g(λt) = 0 whenever t < 0.
Proposition 4.3. If the eigenvalues ϑ1, ..., ϑp of A have negative real parts, the auto-

covariance function of (4.3) is given by

γYλ
(h) =

1
2π

∫
R

eihλϑ |q(iϑ)|2
|p(iϑ)|2 , h ≥ 0. (4.4)

Proof. Let δ(h) be the Dirac function with density concentrated on 0. Thus∫
R

δ(h)e−ihωdh = 1 and
1
2π

∫
R

eihωdω = δ(h).

Now let h ≥ 0, then

γYλ
(h) =

t∫
−∞

g(λ(t− u))g(λ(t+ h− u))λdu =
∫
R

g(λu)g(λ(u + h))λdu

=
∫
R

1
2π

∫
R

eiuλϑ q(iϑ)
p(iϑ)

dϑ

∫
R

1
2π
eiλ(u+h)ω q(iω)

p(iω)
dω λdu

=
1
2π

∫
R

∫
R

eiλhω q(iϑ)q(iω)
p(iϑ)p(iω)


 1

2π

∫
R

eiλ(ϑ+ω)udu


 dϑ λ dω

=
1
2π

∫
R

∫
R

eiλhω q(iϑ)q(iω)
p(iϑ)p(iω)

λ−1δ(ϑ+ ω) dϑ λ dω

=
1
2π

∫
R

eiλhω q(−iω)q(iω)
p(−iω)p(iω)

dω.

Remark 4.4. If we additionally assume that the eigenvalues ϑ1, ..., ϑp of A are distinct
it can be shown (using results of Brockwell (2004)) that the autocovariance function simplifies
to

γYλ
(h) =

p∑
r=1

q(ϑr)q(−ϑr)
p′(ϑr)p(−ϑr)

eϑrλh, h ≥ 0. (4.5)

Corollary 4.5. From Proposition 4.2 follows that the randomized CARMA process X̃
defined by (4.1) with Yλ given by (4.3) has autocorrelation function

γX̃(h) =

∞∫
0

γYλ
(h)π(dλ), h ≥ 0,

where γYλ
(h) is given by (4.4) or (4.5), respectively.
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Example 4.6 (Long Memory). Assume that λ is Γ(1 − 2d, 1) distributed, i.e.

π(dλ) =
1

Γ(1 − 2d)
e−λλ−2d dλ, λ > 0.

Then
∞∫
0

eϑλh π(dλ) =
1

Γ(1 − 2d)

∞∫
0

eϑλhe−λλ−2d dλ = (1 − ϑh)2d−1.

Consequently, if we assume that the eigenvalues ϑ1, . . . , ϑp of A are distinct with negative
real parts, we have

γX̃(h) =

∞∫
0

γYλ
(h)π(dλ) =

p∑
r=1

q(ϑr)q(−ϑr)
p′(ϑr)p(−ϑr)

∞∫
0

eϑrλh π(dλ)

=
p∑

r=1

q(ϑr)q(−ϑr)
p′(ϑr)p(−ϑr)

(1 − ϑrh)2d−1,

i.e. we have long memory if 0 < d < 0.5.
This example shows that randomization as in (4.1) can be used to derive long memory

processes from a given (short memory) process Yλ by selecting the distribution π of λ
appropriately. The memory behaviour of the resulting process X̃ in (4.1) depends highly on
the behaviour of π near the origin. In particular, the role of π is to slow down the process by
randomizing its time scale. As the following result (see Chunsheng (2003, p. 1137)) shows,
the resulting process X̃ then exhibits long memory.

Proposition 4.7. Assume that the distribution π of λ has a density fπ with respect to
the Lebesgue measure, i.e. π(dλ) = fπ(λ) dλ. Furthermore, suppose that this density fπ is
monotone on the interval (0, 1], vanishes outside [0, 1] and that

fπ(λ) ∼ cL(λ−1)λ2d−1, λ→ 0, (4.6)

where 0 < d < 0.5, c > 0 and L̃(·) is a slowly varying function. Then the autocorrelation
function of X̃ takes the form

rX̃(h) =

1∫
0

rY (λh)fπ(λ) dλ, h ∈ R

and as h→ ∞,

rX̃(h) ∼ cL̃(h)h−2d

∞∫
0

rY (u)u2d−1 du,

provided that
∫∞
0
rY (u)u2d−1 du is convergent.

Note that for an OU process Yλ, (4.6) is a necessary and sufficient condition for the
corresponding process X̃ to exhibit long memory in the sense of (2.17) (see Chunsheng
(2003)).

Though the previous randomization technique leads to a class of statistically tractable
long memory processes, it might in some practical applications be a disadvantage that
processes X̃ generated by this approach do not have infinite divisible finite dimensional
distributions, in general.
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5. Long Memory by Aggregation. Our starting point in this section is the Lévy-
driven OU process defined by (2.9).

It has been shown in Marquardt & Stelzer (2007) that for every (two-sided) square
integrable Lévy process L = {L(t)}t∈R with E[L(1)] = 0 and E[L(1)2] = ΣL there exists a
random orthogonal measure ΦL with spectral measure FL such that E[ΦL(∆)] = 0 for any
bounded Borel set ∆,

FL(dt) =
ΣL

2π
dt (5.1)

and

L(t) =
∫
R

eiµt − 1
iµ

ΦL(dµ). (5.2)

Moreover, the random measure ΦL is uniquely determined by

ΦL([a, b)) =
∫
R

e−iµa − e−iµb

2πiµ
L(dµ) (5.3)

for all −∞ < a < b < ∞. An obvious consequence of these results is that the OU process
(2.9) has spectral representation

Y (t) =
∫
R

eitω 1
iω + λ

ΦL(dω), t ∈ R. (5.4)

Now, assume again that λ is a non-negative random variable. In particular, suppose λ has
a Γ(1 − d, β) law for some 0 < d < 0.5, β > 0. The next proposition follows by easy
calculations. We omit the proof.

Proposition 5.1. The time domain transfer function is given by

E
[
e−λ(t−s)

]
=

∞∫
0

e−x(t−s) β1−d

Γ(1 − d)
x−de−βx dx =

(
β

β + t− s

)1−d

, (5.5)

the frequency domain transfer function takes the form

E

[
1

iω + λ

]
=

∞∫
0

1
iω + x

β1−d

Γ(1 − d)
x−de−βx dx

= eiβωβ1−d

∞∫
β

ud−1e−iuω du

= eiβωβ1−d(iω)−dΓ̄(iβω, d),

where Γ̄(α, β) denotes the incomplete Gamma function with complex-valued argument.
Definition 5.2. We call a process Ỹ = {Ỹ β

d (t)}t∈R defined by

Ỹ (t) = Ỹ β
d (t) =

t∫
−∞

E
[
e−λ(t−s)

]
L(ds) =

t∫
−∞

(
β

β + t− s

)1−d

L(ds) (5.6)
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a Lévy-driven Gamma-mixed OU process with parameters d ∈ (0, 0.5) and β > 0, LΓOU(d, β)
process for short.

In the Gaussian case (i.e. when the Lévy process is a Brownian motion) such processes
have been studied in Iglói & Terdik (1999). They are of particular interest for us, since they
can be seen as limiting processes of centered m-factor models having representation (2.10),
as the following theorem shows.

Theorem 5.3. Define

Ỹ m(t) =
1
m

m∑
j=1

Yj(t), m ∈ N,

where Yj are OU processes given by

Yj(t) =

t∫
−∞

e−λj(t−s) L(ds), t ∈ R.

Then

Ỹ m(t) → Ỹ (t), in L2(Ω,F , P )

as m→ ∞.
Proof. We have a.s.

Ỹ m(t) =

t∫
−∞

1
m

m∑
j=1

e−λj(t−s) L(ds).

By the law of large numbers

lim
m→∞

1
m

m∑
j=1

e−λj(t−s) = E[eλ1(t−s)] =
(

β

β + t− s

)1−d

, i.e.

1
m

m∑
j=1

e−λs −
(

β

β + s

)1−d

→ 0 a.s.

By an argument given in Iglói & Terdik (1999, Appendix), it follows that the series of
functions 

 1
m

m∑
j=1

e−λjs −
(

β

β + s

)1−d



2

is uniformly integrable. Therefore,

E[Ỹ m(t) − Ỹ (t)]2 =

∞∫
0


 1
m

m∑
j=1

e−λs −
(

β

β + s

)1−d



2

ds→ 0 a.s.

as m→ ∞. The left-hand side does not depend on t, hence the assertion follows.
14



Remark 5.4. Obviously, the process Ỹ is a moving average process with kernel

g(t) =
(

β

β + t

)1−d

.

Therefore Ỹ is stationary, infinitely divisible, where the finite dimensional distributions have
the cumulant generating function

logE


exp




m∑
j=1

ujỸ (tj)




 =

m∑
k=1

tk∫
tk−1

ψ


 m∑

j=k

uj

(
β

β + tj − s

)1−d

 ds.

Provided the driving Lévy process L has zero mean and is square integrable, we obtain
the following second-order properties.

Proposition 5.5. The process Ỹ defined in (5.6) has zero mean and autocorrelation
function

rỸ (h) =2 F1

(
1 − d, 1 − 2d; 2 − 2d,−h

β

)
, (5.7)

where 2F1 denotes the Gaussian hypergeometric function.
Proof. E[Ỹ (t)] = 0 is a direct consequene of E[L(1)] = 0. Therefore,

γỸ (h) = E[Ỹ (t+ h)Ỹ (t)]

= E[L(1)2]

t∫
−∞

β2−2d

(β + t+ h− s)1−d(β + t− s)1−d
ds

= E[L(1)2]

∞∫
0

β2−2d

(β + h+ s)1−d(β + s)1−d
ds

= E[L(1)2]β

1∫
0

s−2d

(
1 +

sh

β

)d−1

ds

=
βE[L(1)2]

1 − 2d 2F1

(
1 − d, 1 − 2d; 2 − 2d,−h

β

)
.

Hence, for all t ∈ R, E[Ỹ (t)2] = βE[L(1)2]
1−2d and the assertion follows from

rỸ (h) =
γỸ (h)
E[Ỹ (t)2]

.

In particular, the preceding proposition shows that the process Ỹ exhibits long memory,
since

rỸ (h) ∼ β2−2dB(d, 1 − 2d)h2d−1, as h→ ∞,

where B(α, β) denotes the Beta function.
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5.1. Convergence to a Fractional Lévy Process. A remarkable result is the re-
lation between the process Ỹ and fractional Lévy processes. The name “fractional Lévy
process” already suggests that it can be regarded as a generalization of fractional Brown-
ian motion (FBM). Fractional Lévy processes have been studied in Marquardt (2006a) and
Marquardt (2006b) and we refer to the latter works for details.

Definition 5.6 (Fractional Lévy Process (FLP)). Let L = {L(t)}t∈R be a Lévy process
on R with E[L(1)] = 0, E[L(1)2] < ∞ and without Brownian component. For fractional
integration parameter 0 < d < 0.5 a stochastic process

Md(t) =
1

Γ(d+ 1)

∞∫
−∞

[
(t− s)d

+ − (−s)d
+

]
L(ds), t ∈ R, (5.8)

is called a fractional Lévy process (FLP).

Note that the kernel (5.8) given by

ft(s) =
1

Γ(1 + d)
[(t− s)d

+ − (−s)d
+], s ∈ R, (5.9)

is square integrable. Thus, fractional Lévy processes are well-defined and belong to L2(Ω)
for fixed t.

In general, fractional Lévy processes are not differentiable. However, let us consider a
process, which can be interpreted as the formal derivative of Md (as β → 0), namely

mβ
d(t) =

1
Γ(d)

t−β∫
−∞

(t− s)d−1L(ds), t ∈ R, (5.10)

where we assume that β > 0 is small. Whereas for β = 0 the process m0
d does not exist in

L2, the process mβ
d is well-defined in an L2-sense for β �= 0. Furthermore, mβ

d exhibits long
memory. This is a consequence of the fact that we cut off only the recent past and present,
but not the long past, from which the long memory arises.

Remark 5.7. Since,

mβ
d (t) d=

1
Γ(d)

t∫
−∞

(t+ β − s)d−1 L(ds), t ∈ R,

we have the relation

mβ
d (t) d= Ỹ β

d (t)
βd−1

Γ(d)
.
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Now, applying Fubini’s theorem for stochastic integrals we obtain

t∫
0

mβ
d (s) ds =

1
Γ(d)

t∫
0

s∫
−∞

(s+ β − u)d−1L(du) ds

=
1

Γ(d)

0∫
−∞

t∫
0

(s+ β − u)d−1 dsL(du) +
1

Γ(d)

t∫
0

t∫
u

(s+ β − u)d−1 dsL(du)

=
1

Γ(d+ 1

0∫
−∞

[(t+ β − u)d − (β − u)d]L(du) +
1

Γ(d+ 1)

t∫
0

(t+ β − u)d L(du) − βd

Γ(d+ 1)
L(t)

=
1

Γ(d+ 1)

−β∫
−∞

[(t− s)d − (−s)d]L(ds) +
1

Γ(d+ 1)

t−β∫
0

(t− s)d L(ds) − βd

Γ(d+ 1)
L(t).

In particular, the integral process of the properly scaled process Ỹ β
d converges (in L2) to the

FLP, i.e.

βd−1

Γ(d)

t∫
0

Ỹ β
d (s) ds →Md(t)

as β → 0 for all t ∈ R.

5.2. Applications to Modelling Integrated Volatility. A key meaure in finance
is integrated volatility. For the integrated OU process it takes the simple structure

IYλ(t) :=

t∫
0

Yλ(u) du = λ−1 [L(λt) − Yλ(t) + Yλ(0)] ,

whereas for the integrated supOU process IX(t) :=
t∫
0

X(u) du we do not have an explicit

representation. However, we can calculate its cumulants generating function

ψIX(u) := log E[exp{iuIX(t)}] = u

∞∫
0

t∫
0

ψ′
X

(u
λ

(1 − e−λs)
)
ds π(dλ),

where ψ′
X denotes the derivative of the cumulants generating function ψX of the supOU

process X (provided that ψX(u) is differentiable for u �= 0 and provided that uψ′
X(u) → 0

for 0 �= u→ 0). Note that it follows by (2.20) that

ψX(u) =

∞∫
0

ψ(e−su) du = ψYλ
(u), ψ(u) = uψ′

X(u),

where ψ is given by (2.14).
Now, we consider the process Ỹ = {Ỹ β

d (t)}t∈R and wish to describe it integrated version.
That is,

IỸ β
d (t) =

∫ t

0

Ỹ β
d (s)ds =

∞∫
−∞

∫ t−s

0

(
β

β + v

)1−d

dv L(ds) (5.11)

17



In order to evaluate quantities such as

∫ t−s

0

(
β

β + v

)1−d

dv,

it is better to use a double expectation argument. That is go back to the time transfer
function in Proposition 5.1. Note this will work quite well for more general kernels based
on the aggregation idea. Recall

E
[
e−λ(t−s)

]
=

∞∫
0

e−x(t−s) β1−d

Γ(1 − d)
x−de−βx dx =

(
β

β + t− s

)1−d

. (5.12)

Hence, we have that

∫ t−s

0

(
β

β + v

)1−d

dv =

t−s∫
0

E[e−λv] dv

=

t−s∫
0

∞∫
0

e−xv 1
Γ(1 − d)

β1−dx−de−βx dx dv

= β1−d

∞∫
0

t−s∫
0

e−xv dv
x−d

Γ(1 − d)
e−βx dx

= β1−d

∫ ∞

0

(1 − e−x(t−s))
1

Γ(1 − d)
x−d−1e−βx dx.

But

1
Γ(1 − d)

x−d−1e−βx

is the Lévy density of a generalized Gamma subordinator otherwise known as a tempered
stable process. It follows that for −∞ < s < t

∫ t−s

0

(
β

β + v

)1−d

dv = β1−d
[
(t− s+ β)d − βd

]
.

Hence,

IỸ β
d (t) = β1−d

∫ t

−∞

[
(t− s+ β)d − βd

]
L(ds). (5.13)

Thus, we can extend the aggregation idea by defining an arbitrary transfer function

E
[
e−λ(t−s)

]
= e−Φ(t−s),

where −Φ(x) is logarithm of the Laplace transform of a positive random variable λ with
density (or probability mass function) denoted as π(λ). Note here we, at this point, do not
necessarily require infinite divisibility of π. Now provided that

ρ(λ) = λ−1π(λ)
18



is a Lévy density of some subordinator, say S, it follows that

ψπ(x) = − logE
[
e−xS

]
=

∫ ∞

0

(1 − eλx)ρ(λ)dλ.

Thus, we have that a general aggregated process is of the form

Ỹπ(t) =
∫ t

−∞
e−Φ(t−s)L(ds)

and its integrated form is given by

IỸ π(t) =
∫ t

−∞
ψπ(t− s)L(ds).
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rics, in O. E. Barndorff-Nielsen, T. Mikosch & S. I. Resnick (eds), Lévy Processes – Theory and

Applications, Birkhäuser, Basel, pp. 283–318.

Barndorff-Nielsen, O. E. & Shephard, N. (2001b). Non-Gaussian Ornstein-Uhlenbeck based models and some

of their uses in financial economics (with discussion), J. Roy. Statist. Soc. Ser. B 63(2): 167–241.

Brockwell, P. J. (2001a). Continuous-time ARMA processes, in D. N. Shanbhag & C. R. Rao (eds), Stochastic

Processes: Theory and Methods, Vol. 19 of Handbook of Statistics, Elsevier, Amsterdam, pp. 249–

276.
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