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Abstract

We consider a stochastic model for the wealth of an insurance company which
has the possibility to invest into a risky and a riskless asset under a constant mix
strategy. The total claim amount is modeled by a compound Poisson process and the
price of the risky asset follows a general exponential Lévy process. We investigate the
resulting integrated risk process and the corresponding discounted net loss process.
This opens up a way to measure the risk of a negative outcome of the integrated risk
process in a stationary way. We provide an approximation of the optimal investment
strategy, which maximizes the expected wealth of the insurance company under a
risk constraint on the Value-at-Risk. We conclude with some examples.
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1 Introduction

It is well known that the success of an insurance company depends not only on its insur-

ance business, but also on how well the company invests its reserve. This paper applies the

theoretical results for an integrated risk process (IRP) of an insurance company invest-

ing into bond and stock, obtained in Klüppelberg and Kostadinova [16]. A risk measure

frequently used in practice – Value-at-Risk (VaR), is defined in the framework of the inte-

grated risk model. We suggest and compare several methods to find an optimal investment

strategy, which maximizes the expected wealth of the insurance company subject to a risk

bound. For the risk bound we use the VaR as a risk measure.

We first recall the model under consideration.

For the insurance business, we assume the classical model. The company starts with

some initial capital u > 0 and it receives premiums at a constant rate c > 0. The total

claim amount is modeled by a compound Poisson process S(t) =
∑N(t)

j=1 Yj , t ≥ 0 . Here

N = (N(t))t≥0 is a homogeneous Poisson process with an intensity λ > 0, counting the

claims, and (Yj)j∈N is a sequence, independent of N , of positive iid random variables (rv’s)

with a distribution function (df) F and a mean µ < ∞, modeling the claim sizes. We

denote by Y a generic claim size. Such models are very well studied, see, for example,

Asmussen [1], Chapter 3, or Embrechts, Klüppelberg and Mikosch [7], Chapter 1.

For the investment we assume a Black-Scholes type market consisting of a bond with

a constant interest rate and some stock which is modeled by an exponential Lévy process.

Their respective prices follow the equations

X0(t) = eδt and X1(t) = eL(t) , t ≥ 0.

The constant δ > 0 is the riskless interest rate. The Lévy process L has characteristic

exponent Ψ, i.e. E[exp (isL(t))] = exp (tΨ(s)), s ∈ R, t ≥ 0, where Ψ has a Lévy-

Khintchine representation

Ψ(s) = isγ − σ2

2
s2 +

∫ +∞

−∞

(
eisx − 1− isx1{|x|≤1}

)
ν(dx) , s ∈ R ,

with γ ∈ R, σ ≥ 0 and Lévy measure ν satisfying ν({0}) = 0 and
∫

R(x2 ∧ 1)ν(dx) < ∞.

The characteristic triplet (γ, σ2, ν) determines completely the distribution of the Lévy

process L. For general Lévy process theory we refer to the monographs of Cont and

Tankov [4] or Sato [25].

We assume that the insurance company invests by using the so called constant mix

strategy. Under such a strategy, at each instance of time an initially fixed fraction θ ∈ [0, 1]

of the wealth is invested in the risky asset and a fraction 1 − θ in the riskless asset; see

e.g. Emmer, Klüppelberg and Korn [6] and Emmer and Klüppelberg [5]. This strategy
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is dynamic in the sense that it requires a rebalancing of the portfolio at any moment

of time depending on the corresponding price changes. This approach is based on self-

financing portfolios and hence is classical in financial portfolio optimization; see Korn [19],

Section 2.1. We call the fraction θ the investment strategy.

We introduce the intergrated risk process as the result of the insurance business and

the net gains of the investment through a stochastic differential equation (SDE).

Definition 1.1. For an investment strategy θ ∈ [0, 1] we call the solution to the SDE

dUθ(t) = c dt + dS(t) + Uθ(t−)
(
(1− θ)δ + θdL̂(t)

)
, t > 0 , Uθ(0) = u , (1.1)

the integrated risk process (IRP), where u > 0 is the initial capital, c > 0 is the constant

premium rate, S is the total claim amount process, δ is the riskless interest rate and L̂ is

a Lévy process such that exp(L) = E(L̂). �

The notation E in Definition 1.1 stays for the stochastic exponential of a Lévy process,

see, e.g. Protter [24], Section 2.8, or Cont and Tankov [4], Section 8.4.2.

Provided that the insurance and the investment processes are independent, by Lemma 1.4

in [16] the solution to the SDE (1.1) is

Uθ(t) = eLθ(t)

(
u +

∫ t

0

e−Lθ(v) (c dv − dS(v))

)
, t ≥ 0 . (1.2)

Here the Lévy process Lθ has characteristic exponent Ψθ and characteristic triplet (γθ, σθ, νθ)

specified in terms of the original process L, see Lemma 1.3 in [16]. Thus, the IRP Uθ fits

in the framework of the generalized Ornstein-Uhlenbeck (OU) processes, which have re-

cently attracted a lot of attention, see e.g. Lindner and Maller [20] or Carmona, Petit and

Yor [3].

In the insurance framework, similar models have been investigated for example by

Paulsen [23] and Kalashnikov and Norberg [14], and, in the special case of a geometric

Brownian motion as an investment process, by Gaier and Grandits [9], Gaier, Grandits

and Schachermayer [10] and Frolova, Kabanov and Pergamenshchikov [8].

Hipp and Plum [12, 13] analyse a model when the insurance company invests into risky

assets, not necessarily financed from the risk reserve. In contrast to that, in our model

the trading strategy θ is constant and θ ∈ [0, 1], i.e. short selling is not allowed and the

portfolio is self-financing.

Besides the characteristic exponents Ψ and Ψθ of the processes L and Lθ respectively,

we shall also use the corresponding Laplace exponents defined by

ϕ(s) = Ψ(is) = E[e−sL(1)] and ϕθ(s) = Ψθ(is) = E[e−sLθ(1)] , (1.3)

3



provided they exist. As we know from Lemma A1(c) in [16], ϕθ(s) < ∞ for all θ ∈ [0, 1]

provided that ϕ(s) < ∞.

In the next example, we use the geometric Brownian motion as a model for the risky

asset to illustrate the dynamics of the integrated risk model and our futher results.

Example 1.2. [Geometric Brownian motion as risky investment process]

Let L be a Brownian motion with drift, i.e. L(t) = γt + σW (t), t ≥ 0. Then L has

characteristic triplet (γ, σ2, 0) and Laplace exponent ϕ(s) = −γs + σ2

2
s2, s ∈ R. In this

case the SDE (1.1) for Uθ reduces to Uθ(0) = u and

dUθ(t) = cdt− dS(t) + Uθ(t−)

(
((1− θ)δ + θ(γ +

σ2

2
))dt + θσdW (t)

)
, t > 0 .

This enables the simulation of the IRP Uθ for all investment strategies θ ∈ [0, 1]. Further-

more, the solution to this SDE is given by (1.2), where Lθ is again a Brownian motion

with drift with Laplace exponent

ϕθ(s) = −γθs +
σ2

θ

2
s2 , (1.4)

where, due to Lemma 1.3 in [16],

γθ = θγ + (1− θ)(δ +
σ2

2
θ) and σ2

θ = θ2σ2 . (1.5)

However, it has been well observed in numerous empirical studies, that the Brownian mo-

tion model is not realistic for various stock prices, as these often exhibit sudden downward

jumps and the distribution of the returns has heavier tails than the normal distribution,

see e.g. Madan and Seneta [21]. In such cases it would be natural to model the stock

prices by a more general exponential Lévy process with jumps. Unfortunately, such mod-

els lead to less explicit results, as the jump measure should be taken into account, see

the examples in Section 2 of [16]. In particular, the simulation of Uθ is not easy for θ < 1

and the process Lθ in (1.2) typically does not belong to any of the known classes of Lévy

processes. �

The paper is organized as follows. In Section 2 we define the risk measure VaR in the

framework of the integrated risk model and introduce a portfolio optimization problem.

In Section 3 we recall and extend some of the theoretical results on the integrated risk

model in [16]. In Section 4 we suggest and compare several methods to approximate the

VaR and to solve the optimization problem. We conclude with some examples.

2 Risk measurement

The Value-at-Risk has become a standard risk measure for the insurance and banking

industry. It is related to the capital reserve, which the financial institution needs to hold,

4



in order to prevent (at a sufficiently high confidence level) insolvency due to an extremely

negative development of the risks in its portfolio. Mathematically, the VaR is defined as

some high quantile of the corresponding loss distribution.

In this section we provide a definition of the VaR for the integrated risk model. We

aim at a stationary loss distribution. Following long tradition in insurance, we work with

discounted losses by introducing the following transformation of the IRP

Vθ(t) = u− e−Lθ(t)Uθ(t) =

∫ t

0

e−Lθ(v) (dS(v)− c dv) , t ≥ 0 , (2.1)

which we call the discounted net loss process (DNLP), see [16] for details. This process

describes the total net loss (both from insurance and investment) of the company, (ran-

domly) discounted to time 0. An important relation between the IRP and the DNLP

is

P (Uθ(t) < 0 |Uθ(0) = u) = P (Vθ(t) > u) , t ≥ 0 . (2.2)

The advantage of this approach lies in the fact that the DNLP has a natural embedded

discrete time skeleton, see Proposition 3.7 of [16]. This allows us to apply standard meth-

ods from the theory of stochastic recurrence equations, see for example Kesten [15] and

Goldie [11]. The next proposition gives conditions, under which the DNLP defined in (2.1)

has an a.s. limit as time tends to infinity. Recall the notations for the Laplace exponents

ϕ and ϕθ in (1.3).

Proposition 2.1. Let E[Y ] = µ < ∞, 0 < E[L(1)] < ∞, δ < ϕ(−1) and either σ > 0 or

ν((−∞, 0)) > 0. Define V = {v ≥ 0 : ϕ(v) < ∞} and assume that supV /∈ V.

(a) If ϕ(1) < λ, then, for every θ ∈ [0, 1],

Vθ(t)
a.s.→ V ∞θ , t →∞ , (2.3)

where V ∞θ is a finite rv.

(b) If ϕ(1) ≥ λ, then (2.3) holds for every θ ∈ [0, θu), where θu ∈ (0, 1] is the unique

strictly positive solution to the equation ϕθ(1) = λ.

Proof. We apply Theorem 3.8 in [16]. By Lemma 4.1(b) in [16] we have that for a fixed

s > 0 the function ϕθ(s) is convex in θ ∈ [0, 1]. Furthermore, ϕ0(1) = −δ < 0 < λ,

hence we have two cases. In the first case, if ϕ1(1) = ϕ(1) < λ, then ϕθ(1) < λ for all

θ ∈ [0, 1], which proves (a). In the second case, if ϕ1(1) = ϕ(1) ≥ λ, take θu as in (b).

Then ϕθ(1) < λ for all θ ∈ [0, θu), which proves (b).

Remark 2.2. Note that the conditions in Proposition 2.1 are quite natural. Indeed,

E[Y ] < ∞ is seen as a prerequisite for any insurance, E[L(1)] > 0 is a prerequisite for
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any investment and δ < log E[exp(L(1))] = ϕ(−1) guarantees that the expected value of

the risky investment is larger than the riskless investment. Further, any reasonable risky

investment model should satisfy also that either σ > 0 or ν((−∞, 0)) > 0; otherwise no

losses from risky investment are possible. �

The distribution of the a.s. limit V ∞θ in Proposition 2.1 is of central interest in our

work. In particular, it enables us to measure the risk in a stationary way.

Definition 2.3. Let the conditions of Proposition 2.1 be satisfied. Denote by Θ ⊆ [0, 1]

the non-empty interval of investment strategies θ for which (2.3) holds. For θ ∈ Θ we

define

VaRα(V ∞θ ) = inf{x ∈ R : P (V ∞θ > x) ≤ α} ,

where α ∈ (0, 1) is some (typically small) probability. �

For risky assets, for which ϕ(1) ≥ λ, the constant θu in Proposition 2.1(b) gives an

upper bound for the reasonable investment strategies θ. Above this upper bound we cannot

guarantee an a.s. limit of the DNLP and, hence, no reasonable statistical risk assesment

is possible. This is illustrated in the following example.

Example 2.4. [Continuation of Example 1.2]

Consider the geometric Brownian motion as a model for the risky asset as in Example 1.2.

Recall the Laplace exponent ϕθ in (1.4). Straightforward calculations show that, if the

volatility of the risky asset is small enough, i.e. σ2 < 2(γ + λ), then the set Θ in De-

finition 2.3 is the whole interval [0, 1]. Otherwise, if σ2 ≥ 2(γ + λ), then Θ = [0, θu),

where

θu =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 4σ2(δ + λ)

2σ2
≤ 1 (2.4)

is the unique strictly positive solution to the equation ϕθ(1) = λ. Hence, for Brownian

motion models with a very large volatility, i.e. σ2 ≥ 2(γ + λ), no investment strategies

greater or equal than θu given in (2.4) should be allowed. �

Insurance companies usually review their success at predetermined times, e.g. every

year or every quarter of a year. Hence, on the one hand, it seems reasonable to choose

an investment strategy, which maximizes the wealth at the end of the planing period. On

the other hand, there are certain regulatory or financial bounds on the amount of risk,

which an insurance company may take on. The following optimization problem is based

on these considerations:

max
θ∈Θ

E[Uθ(t)] subject to VaRα(V ∞θ ) ≤ C , (2.5)
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for a given constraint C > 0, some fixed time period t > 0 and a given small probability

α. Such problems are typical for the financial industry, see e.g Korn [19]. Our goal is to

provide explicit solutions to (2.5).

The use of VaRα(V ∞θ ) as a risk measure in the portfolio optimization problem is

explained by the fact that this quantity is equal to the capital reserve required to prevent

insolvency with a sufficiently high probability 1 − α over a long time period, see (2.2).

Note that in our definition the VaR does not depend on the initial capital and on the

time t, but only on the selected investment strategy θ and on the stochastic properties of

the insurance and the investment processes. The next lemma shows that the solution to

the optimization problem (2.5) is also independent of the time period and of the initial

capital.

Lemma 2.5. Let the IRP Uθ be given by (1.2). Recall that E[Y ] = µ < ∞. Assume also

that ϕ(−1) = log E[exp(L(1))] < ∞. Then, for t ≥ 0, E [Uθ(t)] exists and

E [Uθ(t)] = uE
[
eLθ(t)

]
+ (c− λµ)

∫ t

0

E
[
eLθ(v)

]
dv ,

where E
[
eLθ(t)

]
= exp (t (δ + θ(ϕ(−1)− δ))).

Furthermore, if the safety loading condition c > λµ holds and δ < ϕ(−1), then E [Uθ(t)]

is increasing in θ ∈ [0, 1].

Proof. First note that due to Lemma A.1(c) in [16], if ϕ(−1) < ∞ then also ϕθ(−1) < ∞.

Then the mean function of Uθ can be obtained from (2.1) and Lemma 3.2(a) in [16].

Also, by Lemma 1.3 in [16] we compute that ϕθ(−1) = δ + θ(ϕ(−1) − δ). Therefore, if

δ < ϕ(−1), the mean function E[exp(Lθ(t))] = exp(tϕθ(−1)) is increasing in θ. Finally, if

c > λµ, the mean function of Uθ is increasing in θ.

From Lemma 2.5 follows that, under natural conditions for the insurance and for the

investment process, the expectation of the wealth of the company is an increasing function

of the investment strategy θ for every fixed time period t > 0 and initial capital u > 0.

Consequently, the optimization problem (2.5) is equivalent to

max {θ ∈ Θ : VaRα(V ∞θ ) ≤ C} , (2.6)

which depends only on the risk measure itself. This is, from a mathematical point of

view, no surprise, as the a.s. limit V ∞θ of the DNLP, which is independent of u and t, is

the basis for the risk measure. For an economic interpretation, recall that the investment

strategy takes extreme risks into account during time intervals, where all parameters of

the insurance model and the investment model are fixed. Only changes in these parameters

would indicate that the investment strategy should be reconsidered.
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3 Analytic results

In order to find the solution of the optimization problem (2.6), we need a method to

compute VaRα(V ∞θ ) as a function of θ. As it is hard or even impossible to do this

analytically, we approximate the df of V ∞θ . We are interested in approximating its far

out upper tail, as VaRα(V ∞θ ) is defined as a high (1− α)-quantile.

We start with the mean and the variance of V ∞θ . Recall the notation for the Laplace

transforms ϕ and ϕθ in (1.3).

Lemma 3.1. Let the conditions of Proposition 2.1 hold.

(a) If ϕ(2) < 0, then for every θ ∈ [0, 1]

E [V ∞θ ] =
c− λµ

ϕθ(1)
< ∞ , (3.1)

and, provided that E[Y 2] = µ2 < ∞,

var(V ∞θ ) =
2ϕθ(1)− ϕθ(2)

ϕ2
θ(1)ϕθ(2)

(c− λµ)2 − λµ2

ϕθ(2)
< ∞ . (3.2)

(b) If ϕ(2) ≥ 0 and ϕ(1) < 0, then (3.1) holds for every θ ∈ [0, 1] and (3.2) holds for

every θ ∈ [0, θ2), where θ2 is the unique positive solution to ϕθ(2) = 0.

In this case 0 < θ2 ≤ 1.

(c) If 0 ≤ ϕ(1) < λ, then (3.1) holds for every θ ∈ [0, θ1), where θ1 is the unique

positive solution to ϕθ(1) = 0 and (3.2) holds for every θ ∈ [0, θ2), where θ2 is as in (b).

In this case 0 < θ2 < θ1 ≤ 1.

(d) If ϕ(1) ≥ λ, then (3.1) holds for every θ ∈ [0, θ1) and (3.2) holds for every

θ ∈ [0, θ2), where θ1 and θ2 are as in (c).

In this case 0 < θ2 < θ1 < θu ≤ 1, where θu is given in Proposition 2.1(b).

Proof. We apply Lemma 3.3 in [16] to get formulae for the moment functions E[Vθ(t)] and

var(Vθ(t)), t ≥ 0. Straightforward calculations show that (3.1) holds, whenever ϕθ(1) < 0,

and (3.2) holds, whenever ϕθ(2) < 0. Now recall that by Lemma 4.1(b) in [16], for fixed

s > 0, the function ϕθ(s) is convex in θ ∈ [0, 1]. Since ϕ0(s) = −δs < 0, similar arguments

as in the proof of Proposition 2.1(b) imply the required results.

Remark 3.2. Using Lemma 3.1, a more prudent regulator or insurance company may de-

rive a stricter upper bound for the investment strategies than the upper bound introduced

in Proposition 2.1(b), see the comments after Definition 2.3. For instance, let ϕ(2) ≥ 0,

ϕ(1) < 0 and E[Y 2] < ∞. Then the a.s. limit V ∞θ of the DNLP exists and has finite mean

for every θ ∈ [0, 1], see Proposition 2.1 and Lemma 3.1(b). However, V ∞θ does not have a

finite second moment for investment strategies larger than θ2 as defined in Lemma 3.1(b).

Therefore, a risk averse insurance company may avoid investment strategies θ ≥ θ2. �
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Example 3.3. [Continuation of Example 1.2]

Consider the geometric Brownian motion as a model for the risky asset as in Example 1.2.

For simplicity assume that E[Y 2] = µ2 < ∞. We apply Lemma 3.1. Straightforward

calculations show that we have the following cases.

(a) If σ2 < γ, then E [V ∞θ ] < ∞ and var(V ∞θ ) < ∞ for every θ ∈ [0, 1].

(b) If γ ≤ σ2 < 2γ, then E [V ∞θ ] < ∞ for every θ ∈ [0, 1] and var(V ∞θ ) < ∞ for every

θ ∈ [0, θ2), where

θ2 =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 6σ2δ

3σ2
∈ (0, 1] . (3.3)

(c) If 2γ ≤ σ2 < 2(γ + λ), then E [V ∞θ ] < ∞ for every θ ∈ [0, θ1), where

θ1 =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 4σ2δ

2σ2
, (3.4)

and var(V ∞θ ) < ∞ for every θ ∈ [0, θ2), where θ2 is as in (3.3). In this case we have

0 < θ2 < θ1 ≤ 1.

(d) If σ2 ≥ 2(γ + λ), then E [V ∞θ ] < ∞ for every θ ∈ [0, θ1) and var(V ∞θ ) < ∞ for

every θ ∈ [0, θ2), where θ1 and θ2 are as in (3.4) and (3.3) respectively. In this case

0 < θ2 < θ1 < θu ≤ 1, where θu is as in (2.4). �

Since knowing the mean and the variance of a rv is not sufficient to compute its

extreme quantiles, some additional analysis is needed. We make use of the fact that the

DNLP has a natural embedded discrete time skeleton, namely the process sampled at the

claim arrival times. Using stochastic recurrence equations we achieve two goals, see [16]

for details:

(1) explicit and easy to check in practice conditions for the existence of an a.s. limit

V ∞θ of the DNLP as in Propisition 2.1;

(2) conditions for deriving the tail behaviour of V ∞θ .

The next theorem combines the results for the behaviour of the right tail of V ∞θ
in Theorem 4.4 and Theorem 4.7 in [16], which use extensively results for stochastic

recurrence equations, see Goldie [11], Konstantinides and Mikosch [18] and Nyrhinen [22].

As elaborated in [16], there are two main regimes to consider, based on the interaction

between the insurance claims and the investment process. We clarify this in the next

result. Recall the notation for the set Θ in Definition 2.3.

Theorem 3.4. Let the conditions in Proposition 2.1 hold and denote θ = sup Θ. For

θ ∈ (0, θ] denote by κ(θ) the unique strictly positive solution in s to ϕθ(s) = 0.

(a) Dangerous investment: Assume that Y has moments of every order. Then, for

θ ∈ Θ/{0}, there exists C+(θ) > 0, such that

P (V ∞θ > x) ∼ C+(θ)x−κ(θ) , x →∞ . (3.5)

9



(b) Dangerous claims: Assume that P (Y > x) ∼ CY x−ρ, x → ∞, for some constants

CY > 0 and ρ > 1. If ρ < κ(θ), then for θ ∈ Θ,

P (V ∞θ > x) ∼ λ

|ϕθ(ρ)|
CY x−ρ , x →∞ . (3.6)

If ρ > κ(θ), then (3.6) holds for θ ∈ [0, θρ) and (3.5) holds for θ ∈ (θρ, 1] ∩Θ 6= ∅, where

θρ ∈ (0, θ) is the unique positive solution in θ to the equation ϕθ(ρ) = 0.

Proof. (a) is a direct consequence of Theorem 4.4 in [16]. To show (b), we use Theorem

4.7(a) in [16]. We know that (3.6) holds for every θ such that ρ < κ(θ) and for θ = 0. On

the other hand, if ρ > κ(θ), then E[Y κ(θ)+β] < ∞ for some β > 0. Hence, if ρ > κ(θ), then

(3.5) holds by Theorem 4.4 in [16]. By Lemma 4.1(c) in [16], the function κ(θ) is strictly

decreasing in θ ∈ Θ/{0}. Therefore, if ρ < κ(θ), then ρ < κ(θ) for every θ ∈ Θ/{0}.
Let now ρ > κ(θ). Note that ϕ0(ρ) = −δρ < 0 and that by Lemma 4.1(b) in [16],

ϕθ(ρ) is convex in θ. Therefore, to show that ϕθ(ρ) = 0 has a unique solution θρ ∈ (0, θ),

it suffices to show that ϕθ(ρ) > 0. There are two cases. First, if we are in case (a) of

Proposition 2.1, then θ = 1. By definition, ϕ1(κ(1)) = 0. Since ϕ1(s) is convex in s and

ρ > κ(1), we have ϕ1(ρ) > ϕ1(κ(1)) = 0. Second, assume that we are in case (b) of

Proposition 2.1, i.e. θ = θu. By definition, ϕθu(1) = λ > 0. Since ϕθu(s) is convex in s and

ρ > 1, we have ϕθu(ρ) > ϕθu(1) = λ > 0. Finally, note that by definition κ(θρ) = ρ. Since

κ(θ) is strictly decreasing in θ ∈ Θ/{0}, we get that ρ > κ(θ) for θ > θρ and ρ < κ(θ) for

θ < θρ. This implies the required result.

Remark 3.5. (i) Note that by Lemma 4.1(c) in [16] the Pareto index κ(θ) is a decreasing

function in the investment strategy θ. This means that, whenever (3.5) holds, the more

risky investment we choose, the heavier tail of the DNLP we get, which is quite natural.

(ii) The constant C+(θ) in (3.5) cannot be computed analytically; see (4.16) in [16].

(iii) As for any fixed s > 0 the function ϕθ(s) is convex in θ (see Lemma 4.1(b) in [16]),

there exists an investment strategy, minimizing the rhs of (3.6). �

Example 3.6. [Continuation of Example 1.2]

Consider the geometric Brownian motion as a model for the risky asset as in Example 1.2.

Recall that in this example the investment process exp(Lθ) is again a geometric Brownian

motion with drift γθ and volatility σθ as in (1.5). For simplicity assume that σ2 < 2(γ+λ),

so that Θ = [0, 1], see Example 2.4. The value κ(θ) is given by

κ(θ) =
2γθ

σ2
θ

=
2

σ2θ2

(
γθ + (1− θ)(δ +

σ2

2
θ)

)
.

Note that κ(θ) →∞ as θ → 0. Therefore, when the claims have moments of every order,

and when the fraction invested in the risky asset tends to 0, the tail of V ∞θ approaches

10



a tail, which is no longer a Pareto tail. The limit case θ = 0 is treated in detail in

[16], Example 3.4; see also Sundt and Teugels [26], and, in the case of Pareto claims,

Klüppelberg and Stadtmüller [17].

When the insurance claims have Pareto tail with a small tail index ρ < 2γ/σ2, then the

tail of the a.s. limit V ∞θ of the DNLP is similar to that of the claims. In other words, the

claims dominate the integrated risk process, regardless of the selected investment strategy.

On the other hand, if ρ > 2γ/σ2, then the claims dominate for the less risky strategies

θ ∈ [0, θρ), whereas the investment process dominates for the more risky investment

strategies θ ∈ (θρ, 1]. We can compute θρ from Theorem 3.4(b) as

θρ =
γ + σ2/2− δ +

√
(γ + σ2/2− δ)2 + 2σ2δ(ρ + 1)

(ρ + 1)σ2
∈ (0, 1) .

The investment strategy θρ plays the role of a change-point strategy between the dangerous

claims regime and the dangerous investment regime. �

4 Examples

Recall the optimization problem (2.6) considering the maximal investment strategy θ, such

that a risk constraint is satisfied. To solve this problem we need a method to compute the

quantile of V ∞θ (the VaR) as a function of the investment strategy θ. Unfortunately, apart

from the very few special cases considered in [16], Section 3.2, the distribution of V ∞θ is

not known. In general we can compute the moments of V ∞θ , if they exist, see Lemma 3.1.

Further, we know from Theorem 3.4 that V ∞θ has a Pareto tail. The Pareto index depends

on the interaction between the insurance claims and the investment process, see also

Example 4.6 and Example 4.8 in [16]. We distinguish between two different regimes.

(a) Dangerous investment: insurance claims have moments of a sufficiently large order;

then the Pareto index of V ∞θ is determined only by the investment process.

(b) Dangerous claims: insurance claims have a Pareto tail with a sufficiently small

Pareto index; then the Pareto index of V ∞θ is the same as that of the claims.

4.1 Dangerous investment

First we consider the dangerous investment regime, i.e. when the investment process

dominates the integrated risk process. In what follows we assume that there exists an

a.s. limit V ∞θ of the DNLP with finite mean and variance for all investment strategies

θ ∈ [0, 1]. This is satisfied when ϕ(2) < 0 and the insurance claims have finite second

moment (E[Y 2] < ∞), see Lemma 3.1.

11



A crude and often used approximation of the (1 − α)-quantile of V ∞θ (the VaR) can

be achieved by the (1− α)-quantile of a normal rv with the same mean and variance.

Normal approximation algorithm, dangerous investment

Let V N
θ be a normal rv with mean and variance as those of V ∞θ and let qα(θ) be its

(1−α)-quantile. Then we have P (V N
θ > x) = P (E[V ∞θ ] +

√
var(V ∞θ )N(0, 1) > x), where

N(0, 1) is a standard normal rv. Therefore, we obtain that

qα(θ) = E[V ∞θ ] + Φ−1(1− α)
√

var(V ∞θ ) ,

where Φ−1 is the quantile function of the standard normal distribution. �

Assuming that the df of V N
θ approximates the df of V ∞θ (and hence qα(θ) approximates

VaRα(V ∞θ )), we replace the optimization problem (2.6) by

max {θ ∈ [0, 1] : qα(θ) ≤ C} . (4.1)

Note that the moments E[V ∞θ ] and var(V ∞θ ) can be computed by Lemma 3.1 and,

hence, the optimization problem (4.1) can be solved by numerical methods. However,

it is well known that the normal approximation does not take into account interesting

properties of the original distribution as skewness or heavy tails. Hence, for our model it

will presumably underestimate the risk considerably. We demonstrate this in the following

example.

Example 4.1. [Exponential claims]

We consider an insurance model with a premium rate c = 2.1, an intensity of the Poisson

claim counting process λ = 1 and exponential claims with a mean E[Y ] = µ = 2. We

assume also that the price of the risky asset follows a geometric Brownian motion with a

drift γ = 0.06 and a volatility σ = 0.2. In this example we analyze the pure stock strategy

θ = 1 only.

We simulate 10 000 copies of the rv V ∞1 . As we do not know the distribution of V ∞1 ,

we invoke the forward stochastic recurrence equation corresponding to the discrete time

skeleton of the DNLP given in equation (3.5) in [16].

In Figure 1, left plot, the histogram of the simulated data is compared to the cor-

responding normal density of the rv V N
1 with a mean E[V ∞1 ] = −2.5 and a variance

var(V ∞1 ) = 106.25, as computed by Lemma 3.1. We see more values close to the mean in

the simulated data than the normal approximation suggests.

In Figure 1, right plot, we compare the empirical quantiles of the simulated data to

the normal quantiles. We see that in this example, when α is around 2.5%, the normal

12
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Figure 1: Histograms and quantiles of V∞1 for simulated data versus the normal approximation. The
parameters are as in Example 4.1. Left plot: histogram of 10 000 simulated copies of V∞1 compared to
the density of a normal rv with the same mean and variance as V∞1 . Right plot: empirical quantiles of
the simulated data compared to the normal quantiles.

approximation works quite well. However, when we go further in the tail, for α =1% or

0.5%, the normal approximation underestimates the risk significantly. �

Example 4.1 demonstrates that the normal approximation of the quantile of the rv

V ∞1 is not very satisfactory, when one is interested in extreme quantiles. This happens

despite the fact, that we have a light-tailed input (i.e. exponentially distributed insurance

claims and a geometric Brownian motion for the stock price). In this case Theorem 3.4(a)

applies and V ∞θ has a Pareto tail, for all θ ∈ (0, 1].

From now on we assume for simplicity that the claims have finite moments of every

order, so that we are in the dangerous investment regime for all θ ∈ (0, 1]. In the next ap-

proximation method we make extensive use of Theorem 3.4(a). Unfortunately, a straight-

forward approximation of the tail of V ∞θ with asymptotic as in (3.5) is not possible, since

the constant C+(θ) cannot be computed, see Remark 3.5(ii). As a remedy we combine the

normal approximation with the Pareto tail behaviour in the following algorithm.

Pareto approximation algorithm, dangerous investment

If (3.5) holds for V ∞θ , then it also holds for the centered rv:

P (V ∞θ − E[V ∞θ ] > x) ∼ C+(θ)(x + E[V ∞θ ])−κ(θ) ∼ C+(θ)x−κ(θ) , x →∞ . (4.2)

Denote by G←θ (α) = inf{x ∈ R : P (V ∞θ − E[V ∞θ ] > x) ≤ α}, α ∈ (0, 1), the general-

ized inverse function of the df of the centered rv. Then, by (4.2) and Theorem 1.5.12 of

13



Bingham, Goldie and Teugels [2], we have

G←θ (α)

G←θ (β)
∼

(
α

β

)−1/κ(θ)

, α < β, α → 0, β → 0 . (4.3)

We select some small probability β > α, where α is the given probability of interest in

(2.3). Using (4.3) we approximate

G←θ (α) ≈ G←θ (β)

(
α

β

)−1/κ(θ)

.

Then we apply the normal approximation to G←θ (β) to get

G←θ (α) ≈ Φ−1(1− β)
√

var(V ∞θ )

(
α

β

)−1/κ(θ)

.

Since G←θ (α) = VaRα(V ∞θ )− E[V ∞θ ], we approximate VaRα(V ∞θ ) by

pα(θ) = E[V ∞θ ] + Φ−1(1− β)
√

var(V ∞θ )

(
α

β

)−1/κ(θ)

. (4.4)

Note that, when α = β, then pα(θ) = qα(θ). �

Using the above algorithm, we replace the optimization problem (2.6) by

max {θ ∈ [0, 1] : pα(θ) ≤ C} , (4.5)

where pα(θ) is as in (4.4). In the next example we investigate the accuracy of the Pareto

approximation applied to the model in Example 4.1.

Example 4.2. [Continuation of Example 4.1]

Consider the model with light-tailed input as in Example 4.1. In Figure 2 we compare

the normal approximation to the suggested Pareto approximation of VaRα(V ∞θ ) for two

ranges for α. In the left plot we show the VaR for comparatively large probabilities

α ∈(0.5%, 3%) based on β = 0.03, and in the right plot – for very small probabilities α <

0.5% based on β = 0.005. In both cases the Pareto approximation provides a better fit to

the empirical quantiles than the normal approximation, in particular for α ∈ (0.5%, 1.5%)

in the left plot and for α < 0.2% in the right plot. Note that the Pareto and the normal

approximation are equal when α = β, which explains the gap between the empirical

quantiles and the approximations at α = β = 0.5% in the right plot of Figure 2, see also

Figure 1, right plot. �
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Figure 2: Comparison of the normal approximation, the Pareto approximation and the empirical quantiles
of the simulated data. The parameters are as in Example 4.1. Left plot: in the Pareto approximation
algorithm we have chosen β = 0.03 and we are interested in α ∈ (0.005, 0.03). Right plot: in the Pareto
approximation algorithm we have chosen β = 0.005 and we are interested in α ∈ (0, 0.005).

4.2 Dangerous insurance claims

We consider the dangerous insurance claims regime, i.e. when the insurance process dom-

inates the integrated risk process. In what follows we assume that there exists an a.s.

limit V ∞θ of the DNLP with finite mean for all investment strategies θ ∈ [0, 1]. This is

satisfied when ϕ(1) < 0, see Lemma 3.1. Moreover, we assume that the claims have a

Pareto distribution, i.e. for some ρ > 1, l > 0,

P (Y > x) =

(
l

l + x

)ρ

, x > 0 .

From now on we assume for simplicity that ρ < κ(1) in all considered models for the risky

investment. In this case (3.6) holds and V ∞θ has Pareto tail with Pareto index ρ for all

investment strategies θ ∈ [0, 1]. We suggest the following approximation algorithm:

Pareto approximation algorithm, dangerous claims

Similar to the approximation algorithm in Section 4.1, if (3.6) holds for V ∞θ , then it also

holds for the centered rv:

P (V ∞θ − E[V ∞θ ] > x) ∼ lρλ

|ϕθ(ρ)|
x−ρ , x →∞ .

Hence, for the generalized inverse function G←θ (α) of the df of the centered rv holds

G←θ (α) ∼ α−1/ρ

(
λlρ

|ϕθ(ρ)|

)1/ρ

, α → 0 . (4.6)
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Figure 3: Comparison of the Pareto approximation and the empirical quantiles of the simulated data.
The parameters are from Example 4.3. Left plot: we are interested in α ∈ (0.005, 0.03) Right plot: we are
interested in extreme quantiles for α < 0.005.

Using (4.6) and the fact that G←θ (α) = VaRα(V ∞θ )−E[V ∞θ ], we approximate VaRα(V ∞θ ),

for a small α, by

rα(θ) = E[V ∞θ ] + α−1/ρ

(
λlρ

|ϕθ(ρ)|

)1/ρ

. (4.7)

�

Using the above algorithm, we replace the optimization problem (2.6) by

max {θ ∈ [0, 1] : rα(θ) ≤ C} , (4.8)

where rα(θ) is as in (4.7). We investigate the accuracy of the suggested Pareto approxi-

mation for the dangerous claims regime in the next example.

Example 4.3. [Pareto claims]

We consider an insurance model with a premium rate c = 2.1, an intensity of the claim

counting process λ = 1 and Pareto claims with ρ = 1.1 and l = 0.2. The parameters of

the investment model are the same as in Example 4.1. In this example we analyze the

pure stock strategy θ = 1 only.

We simulate 10 000 copies of the rv V ∞1 using the same method as in Example 4.1.

In Figure 3 we compare the suggested Pareto approximation to the empirical quantiles

of the simulated data. We see that in the tail, i.e. for probabilities less than 2%, the

suggested approximation is quite accurate. �
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4.3 Comparison of the models

In the previous two sections we have discussed methods to approximate the VaR in the

dangerous investment and in the dangerous claims regime. This enables us to find in

each of the two regimes an (approximate) solution to the optimization problem (2.6) by

numerical methods. Up to now for simplicity we have considered only examples where

the risky asset is modeled by a geometric Brownian motion. In this section we focus on

the impact of different models for both the insurance claims and the risky asset on the

optimal investment strategy. From one side we discuss the difference between the optimal

investment strategy in the dangerous claims regime and in the dangerous investment

regime. From another side, we compare the magnitude of the influence of different models

for the risky asset on the optimal investment strategy within each of the regimes.

Example 4.4. [Comparison of the models]

We compare the Brownian motion model from Example 4.1 to a variance gamma (VG)

model for the risky asset. The VG model, sugested by Madan and Seneta [21], is a normal

mixture model and is given by

L(t) = ξt + Wa,b(SΓ(t)) , t ≥ 0 ,

where ξ > 0, Wa,b is a Brownian motion with drift a < 0 and volatility b > 0, independent

of the gamma Lévy process (SΓ(t))t≥0, SΓ(1)
d
= Γ(η, r), r, η > 0. Thus the VG process

is a pure jump process of infinite activity (with infinitely many jumps in every compact

interval) with drift. We consider a VG process with paramethers ξ = 0.16, a = −0.1,

b2 = 0.04− a2 and η = r = 1.

In order to allow for a comparison, we have selected the parameters of the Brownian

motion and of the VG process in such a way, that the mean and the variance of L(1),

i.e. of the log returns of the stock price, coincide in both models. However, the VG model

has jumps, taken here with a negative mean, corresponding to (downward) jumps of the

stock price. Hence, one would consider it as a more ’dangerous’ investment model.

For the insurance business we use the parameters from Example 4.1 (dangerous in-

vestment regime) and Example 4.3 (dangerous claims regime). We set the riskless interest

rate to δ = 0.01. We solve (4.5) for the dangerous investment regime and (4.8) for the

dangerous claims regime, using a number of risk constraints C.

Let us first fix the regime (i.e. the distribution of the claim sizes) and compare the

impact of the stock price model on the VaR and on the optimal investment strategy.

In Figure 4, left plot, we show the optimal investment strategy in the dangerous invest-

ment regime (i.e. the solution to the optimization problem (4.5)), vs. the risk constraint

C for the VaR. We observe that the more risky VG model affects significantly the VaR,

in particular for more risky investment strategies θ > 80%. For a fixed risk constraint C,
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Figure 4: The solution to optimization problem (2.6) for different risk constraints. The parameters are
from Example 4.4. Left plot: Dagerous investment regime. The claims are modeled as in Example 4.1.
Right plot: Dangerous claims regime. The claims are modeled as in Example 4.3

it allows for less investment in the risky asset than the Brownian motion model. Hence,

we may conclude that the more risky model for the stock price leads to more conservative

investment strategies.

In Figure 4, right plot, we show the optimal investment strategy in the dangerous

claims regime (i.e. the solution to the optimization problem (4.8)), vs. the risk constraint

C for the VaR. Again, we observe that the more risky VG model implies more conservative

investment strategies. However, in the dangerous claims regime this impact is weaker

compared to the dangerous investment regime; compare the right and the left plot of

Figure 4 and note the difference in the scales of the horizontal axes. For instance, at

investment strategy θ = 1, changing the investment model from a Brownian motion to a

VG leads to about 90% increase of the VaR in the dangerous investment regime, whereas

this change leads to only 10% increase of the VaR in the dangerous claims regime.

Let us fix the model of the stock price and investigate the impact of the claim size

distribution. Note that in the dangerous claims and in the dangerous investment regime

we have the same interest rate, premium rate, claim arrival intensity and mean claim size.

This implies that, holding the stock price model fixed, for every fixed investment strategy

θ ∈ [0, 1], the mean of the a.s. limit V ∞θ of the DNLP in both regimes is the same.

However, for both stock price models, the Pareto claims from Example 4.3 lead to higher

risk compared to the exponential claims from Example 4.1. Indeed, in the dangerous claims

regime, the risk constraint C has to be set much higher than in the dangerous investment

regime (almost 10 times), in order to obtain a solution to the optimization problem at all,

notice again the difference in the scales of the horizontal axes in Figure 4. Furthermore,

the difference between the light- and the heavy-tailed claims model is much more severe

than between the two stock price models. For instance, at investment strategy θ = 1,
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changing the insurance claims model from exponential to Pareto leads to almost 9 times

increase of the VaR in the Brownian motion case (compare the two plots in Figure 4),

while changing the investment model from a Brownian motion to a VG leads to only

about 90% increase of the VaR in the exponential claims case (Figure 4, left plot).

Recall that, in the dangerous claims regime, the Pareto index of V ∞θ is the same as

that of the insurance claims. In contrast to that, in Example 4.1, the investment process

determines the Pareto index κ(θ) of V ∞θ regardless of the insurance process. Therefore,

the choice of the investment strategy is much more important in the case of Example 4.1

than in Example 4.3. In other words, the VaR is less sensitive to the investment strategy in

the dangerous claims regime than it is in the dangerous investment regime. For instance,

within the Brownian motion model, increasing the investment strategy from 0.85 to 1

leads to an increase of about 3% of the VaR in the dangerous claims regime (Figure 4,

right plot), while the same change in the investment strategy leads to about 24% increase

of the VaR in the dangerous investment regime (Figure 4, left plot). Similar observations

can be made for the VG model for the stock price. �
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